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Spacecraft navigation in proximity to small celestial bodies, such as asteroids and comets, is

challenging due to their complex dynamical environment and the lag in communications from Earth

to the spacecraft. Increasing autonomous spacecraft navigation reduces the burden of ground-based

planning and modeling, and enables insightful mission profiles. The state-of-the-art of relative

spacecraft navigation uses optical images, requires an iterative procedure, and currently must be

performed on the ground. A flash lidar instrument instantaneously returns a 3D elevation map of its

target and shows promise for advancing autonomous spacecraft navigation. Using this instrument

as a relative measurement source for navigation performed similarly or better than landmark-based

navigation from optical images. The model-based approach used to compute the onboard flash lidar

images eliminated the correlation procedures required of landmark-based approaches, and reduced

the computational load. An extended Kalman filter (EKF), an unscented Kalman filter (UKF),

and an iterative least-squares (LS) filter were investigated in this analysis. The iterative LS filter

iterated the estimation state at each observation time, produced smaller errors than the EKF and

UKF, and did not encounter filter saturation. The image properties of the flash lidar measurements

allowed for pointing to be estimated. The UKF and LS filters were robust to initial position errors

as long as an overlap occurred between the observed and computed flash lidar images. When

introducing shape modeling errors, the filters did not diverge, and the majority of the state errors

were captured with a sequential consider covariance analysis. Using the image properties of the

flash lidar images, and assuming inertial spacecraft pointing knowledge, the filter was initialized

through pre-processing algorithms and the iterative LS algorithm. Optimally reducing the number

of altimetry measurements processed by maximizing their information contribution increased the

computational efficiency and combated filter saturation without sacrificing accuracy.



Dedication

I would like to dedicate this to my parents. To my mom for being an example for me to

always work hard. To my dad for instilling in me a sense of adventure and teaching me how to

navigate in it. And to both for setting up this life for me that has given me so many opportunities

and for supporting me in every one I wanted to take.



v

Acknowledgements

I would first like to acknowledge my advisor, Jay McMahon for his guidance in this research

topic, his patience with me when things broke or when work got slow, and his support of me to

persevere. I appreciate his willingness to always meet if needed, and to help tackle the math when it

just wasn’t working correctly. I want to especially recognize his grounded approach to his advising,

as I never felt that I was given unreasonable expectations, but was always pushed to my potential.

I would like to thank my committee members for their time to read this dissertation, to

attend my presentations, and for the conversations that have helped direct this research. I would

especially like to thank George Born for hiring me five years ago, providing me with the Smead

fellowship, and giving me this opportunity to attend the best space program in the country.

The Smead program has been instrumental in my achievements and support at CU, and I

would like to thank Ann and Michael from the bottom of my heart for all that they have provided

me with. I have also been supported by the National Science Foundation Graduate Research

Fellowship, the Zonta Amelia Earhart Fellowship, the ARCS Scholar fellowship, and the Society

of Women Engineers. Their financial support greatly decreased the burden of completing this

dissertation.

Most importantly, I would like to thank the friends I have made in Colorado and our adven-

tures that have kept me sane and motivated. I want to thank the grad students that were here when

I arrived at CU for accepting me into this community, and for teaching me just as much research

knowledge or more than I learned in my classes. I want to thank my fellow grad students for the

help in classes and in research, the late nights, and the knowledge that we weren’t going through



vi

this alone. Particularly, I would like thank the girlfriends I have made in this program for our

shared understanding and our friendships. A specific acknowledgement is reserved for Samantha

Rieger, who has shared with me the exact same experiences at almost the same times, and lent her

support whenever I needed it.

Again, I would like to thank my parents for all of their support of me. From the after-school

clubs to dance performances to science camps to helping me move in college, and for their continued

support while I’ve been 1600 miles away, thank you.



vii

Contents

Chapter

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Small Body Mission Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Small Body Relative Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Flash Lidar for Relative Navigation . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Lidar Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.5 Autonomous Spacecraft Navigation . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.6 Space Applications of Relative Navigation . . . . . . . . . . . . . . . . . . . . 22

1.2.7 Relative Navigation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Orbit Determination Methods 36

2.1 Estimation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Small Body Dynamical Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Spherical Harmonic Gravity Modeling . . . . . . . . . . . . . . . . . . . . . . 39



viii

2.2.2 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Sun Third Body Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.4 Estimation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.5 Comparison of Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.6 Small Body Terminator Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Flash Lidar Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Analytical Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Generation of Flash Lidar Images . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Optical Navigation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Estimation Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.2 Least-Squares Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.3 Minimum Variance Estimator with a priori Information . . . . . . . . . . . . 51

2.5.4 Sequential Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.5 State Noise Compensation (Process Noise) . . . . . . . . . . . . . . . . . . . . 54

2.5.6 Sequential Consider Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.7 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.8 Iterative Least-Squares Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Realization of Flash Lidar Measurements in the Estimation Filters . . . . . . . . . . 70

2.6.1 Flash Lidar Measurement Processing . . . . . . . . . . . . . . . . . . . . . . . 71

2.6.2 Relationship of Spacecraft Position to One Lidar Beam . . . . . . . . . . . . 72

2.6.3 Relationship of Spacecraft Pointing to One Lidar Beam . . . . . . . . . . . . 76

2.6.4 Processing the Full Flash Lidar Image . . . . . . . . . . . . . . . . . . . . . . 79

2.6.5 Information Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Orbit Determination Simulations 86

3.1 Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



ix

3.1.1 Dynamical Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1.2 Itokawa Terminator Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1.3 Bennu Terminator Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.4 Itokawa Eccentric Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.5 Itokawa Descent Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.2 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.3 Initial Covariance and Process Noise . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 Orbit Determination Estimating Position and Velocity . . . . . . . . . . . . . . . . . 94

3.3.1 Itokawa Terminator Orbit Results . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.2 Bennu Terminator Orbit Results . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4 Optical Navigation in the Itokawa Terminator Orbit . . . . . . . . . . . . . . . . . . 103

3.4.1 OpNav State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.2 Flash Lidar and OpNav Comparison . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.3 Flash Lidar vs. OpNav Discussion . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Orbit Determination in the Itokawa Descent Orbit . . . . . . . . . . . . . . . . . . . 108

3.5.1 Without Initial State Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.2 Initial State Errors Based on the Terminator Orbit Estimation . . . . . . . . 109

3.5.3 Monte Carlo Simulations with Varying Maneuver Errors . . . . . . . . . . . 111

3.5.4 Altered Observation Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5.5 Landing and Descent Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6 Orbit Determination Estimating Position, Velocity, and Pointing Error . . . . . . . . 115

3.6.1 Filter Setup and Error Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.6.2 Itokawa Terminator Orbit Results . . . . . . . . . . . . . . . . . . . . . . . . 116

3.6.3 Bennu Terminator Orbit Results . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.6.4 Itokawa Eccentric Orbit Results . . . . . . . . . . . . . . . . . . . . . . . . . 126



x

3.7 Summary of Filter Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.7.1 Discussion on Filter Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.7.2 Discussion on Estimating the Pointing . . . . . . . . . . . . . . . . . . . . . . 132

4 Estimation Robustness 134

4.1 Robustness to Nominal Initial State Errors . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Initial State Error Robustness with the Unscented Kalman Filter . . . . . . . . . . . 139

4.2.1 Measurement Overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.2 Robustness to Initial State Errors . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.3 Effects of Measurement Processing . . . . . . . . . . . . . . . . . . . . . . . . 147

4.3 Initial State Error Robustness with the Iterative Least Squares Algorithm . . . . . . 148

4.3.1 Moderate Position and Pointing Uncertainty . . . . . . . . . . . . . . . . . . 149

4.3.2 Large Pointing Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3.3 Large Position Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3.4 Position Only Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4 Shape Modeling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.4.1 Shape Model Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4.2 Orbit Determination Robustness . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4.3 Orbit Determination with the Consider Filter . . . . . . . . . . . . . . . . . . 167

4.5 Pointing Jitter with the Least Squares Filter . . . . . . . . . . . . . . . . . . . . . . 174

5 Filter Initialization 177

5.1 Edge Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.2 Pre-Processing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2.1 Initial Position Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.2.2 Radial Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.2.3 Hill Climber Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



xi

5.2.4 Progression of the Pre-Processing Algorithm . . . . . . . . . . . . . . . . . . 185

5.3 Single State Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.3.1 Itokawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.3.2 Bennu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.4 Initializing the Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.4.1 Filter Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Increasing Filter Speed 196

6.1 Information of the Flash Lidar Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.1.1 Position Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.1.2 Position and Pointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.2 Maximum Information Pixel Subsets of a Single Image . . . . . . . . . . . . . . . . . 198

6.2.1 Maximizing the Position Information . . . . . . . . . . . . . . . . . . . . . . . 199

6.2.2 Maximizing Pointing and Position Information . . . . . . . . . . . . . . . . . 201

6.3 Pre-Determined Pixel Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3.1 Definition of Pixel Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.3.2 Comparison of Pixel Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.4 Filtering with Pre-Determined Pixel Patterns . . . . . . . . . . . . . . . . . . . . . . 206

6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7 Conclusion 213

Bibliography 217



xii

Tables

Table

1.1 Relative navigation research in space applications, organized by sensor type and

space application. Key: Theorized/Tested in Lab, Used in mission operations,

Tested in space, Autonomous capabilities, Follow-on work, Thesis work . . . . . . . 23

3.1 Point of interest state, and the final state of the descent orbit. . . . . . . . . . . . . . 91

3.2 RMS errors of the magnitude of the position and velocity error over the full simu-

lation, excluding the first 5 observations (†), and the run time of the filter. This is

in the Itokawa terminator orbit with measurements every 2 hours for 10 days and

process noise added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 RMS errors of the magnitude of the position and velocity error over the full simu-

lation, excluding the first 5 observations (†), and the run time of the filter. This is

in the Itokawa terminator orbit with measurements every 2 hours for 10 days and

process noise added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 RMS errors of the magnitude of the position and velocity error over the full simula-

tion, excluding the first 5 observations (†), and the run time of the filter. This is in

the Itokawa terminator orbit with measurements every 10 minutes for 30 hours and

process noise added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xiii

3.5 RMS errors of the magnitude of the position and velocity error over the full sim-

ulation, excluding the first 5 observations (†), and the run time of the filter. This

is in the Bennu terminator orbit with measurements every 2 hours for 10 days and

process noise added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6 RMS errors of the magnitude of the position and velocity error over the full sim-

ulation, excluding the first 5 observations (†), and the run time of the filter. This

is in the Bennu terminator orbit with measurements every 2 hours for 10 days and

without process noise added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.7 RMS errors of the magnitude of the position and velocity error over the full simu-

lation, and excluding the first 5 observations (†), comparing the OpNav and flash

lidar measurements with (w/ PN) and without process noise (w/o PN). This was is

in the Itokawa terminator orbit with measurements every 2 hours for 10 days. . . . . 107

3.8 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. This is in the Itokawa terminator orbit, estimating a pointing

bias, with measurements every 2 hours for 10 days and process noise added. . . . . . 117

3.9 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. This is in the Itokawa terminator orbit, estimating a pointing

bias, with measurements every 2 hours for 10 days and without process noise added. 120

3.10 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. This is in the Itokawa terminator orbit, estimating a pointing

bias, with measurements every 10 minutes for 30 hours and with process noise added.120



xiv

3.11 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. This is in the Bennu terminator orbit, estimating a pointing

bias, with measurements every 2 hours for 10 days and with process noise added. . . 124

3.12 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. This is in the Bennu terminator orbit, estimating a pointing

bias, with measurements every 2 hours for 10 days and without process noise added. 124

3.13 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. This is in the Bennu terminator orbit, estimating a pointing

bias, with measurements every 2 hours for 10 days and with process noise added. . . 126

3.14 Summary of RMS errors of the magnitude of the position and velocity error over

the full simulation, the consistency of the filter errors, and the run time of the filter.

Presented for when estimating the position and velocity. . . . . . . . . . . . . . . . 129

3.15 Summary of RMS errors of the magnitude of the position and velocity errors and

total pointing error angle, α over the full simulation, the consistency of the filter

errors, and the run time of the filter. Presented for when estimating the position,

velocity, and pointing bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.1 RMS errors of the ending magnitude of the position and velocity errors and total

pointing error angle, α, and the average run time of the filter for the filter Monte

Carlo simulation. This is in the Itokawa terminator orbit, estimating a pointing bias,

with measurements every 2 hours for 10 days and with process noise added. . . . . . 139

4.2 RMS of ending errors of the LS MC cases that converged for 1σr = 50 m, 1σθn = 0.5◦151

4.3 RMS of ending errors of the LS MC cases that converged for 1σr = 10 m, 1σθn = 3◦ 153

4.4 RMS of ending errors of the LS MC cases that converged for 1σr = 100 m, 1σθn = 0.5◦155



xv

4.5 Mean, standard deviation, and maximum absolute value of the measured differences

between the shape model fidelities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.6 RMS values of the magnitude of the position and velocity errors, the total angular

pointing offset from nominal, α, excluding the first five observations (†), and the

total run time. This is in the Itokawa terminator orbit with measurements every 2

hours for 10 days for the FV-8/FV-32 case without additional measurement noise. . 162

4.7 RMS errors of the magnitude of the position and velocity error and the total angular

pointing offset from nominal, α excluding the first five observations (†), and the run

time of the filter. This is in the Itokawa terminator orbit with measurements every

2 hours for 10 days for the FV-8/FV-32 case and σshp = 2 m. . . . . . . . . . . . . . 162

4.8 RMS values of the magnitude of the position and velocity errors, the total angular

pointing offset from nominal, α, excluding the first five observations (†), and the

total run time. This is in the Itokawa terminator orbit with measurements every 2

hours for 10 days for the FV-8/FV-32 case and σshp = 6 m. . . . . . . . . . . . . . 167

5.1 Algorithm run times of the edge detection algorithms for different measurements

from the Itokawa terminator orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2 Weights of the metrics used in the hill climber cost function. . . . . . . . . . . . . . 184

5.3 RMS of the magnitude of the position error and the total pointing offset error, α of

the pre-processing algorithm MC simulation with Itokawa observations. . . . . . . . 187

5.4 RMS of the magnitude of the position error and the total pointing offset error, α of

the pre-processing algorithm MC simulation with Bennu observations. . . . . . . . . 189

5.5 Progression of state errors through the filter initialization steps. . . . . . . . . . . . 193

5.6 RMS errors of the magnitude of the position and velocity errors and total pointing

error angle, α over the full simulation, excluding the first 5 observations (†), and the

run time of the filter. T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



xvi

6.1 Timing of processing the observation to determine the pixel pattern, and calculating

the computed measurement in milliseconds. . . . . . . . . . . . . . . . . . . . . . . . 206

6.2 RMS of the magnitude of the position and velocity errors, and the total pointing

offset error of the different patterns and filtering methods for the entirety of the

simulation. This was performed in the Itokawa terminator orbit with measurements

every 10 minutes for 30 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.3 Final RMS of the magnitude of the position and velocity errors, and the total pointing

offset error of the different patterns and filtering methods. This was performed in

the Itokawa terminator orbit with measurements every 10 minutes for 30 hours. . . . 211



xvii

Figures

Figure

1.1 Cumulative number of discovered near Earth asteroids over time . . . . . . . . . . . 4

1.2 Relationship of intensity to (a) range and (b) angle of incidence for two materials

with different reflectance (ρ). Reproduced from Ref. [61]. . . . . . . . . . . . . . . . 17

2.1 Accelerations in a 1 km circular terminator orbit around Itokawa for 3 days (approx-

imately 2 orbital periods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Flash lidar vector diagram depicting one lidar vector to the asteroid surface that

returns a range measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Depiction of (a) a sample flash lidar measurement of Itokawa and (b) a facet/vertex

shape model of Itokawa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Vector diagram depicting a perturbation in the spacecraft position, ∆rsc, and the

resulting perturbation in the surface vector, ∆rA along the surface. . . . . . . . . . 74

3.1 Nominal terminator orbit about Itokawa propagated for 10 days . . . . . . . . . . . 89

3.2 Bennu nominal circular terminator orbit for one day in the asteroid-centered inertial

(ACI) frame (a), and the body-fixed frame (BF) (b), and a sample flash LIDAR

measurement (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Eccentric orbit about Itokawa propagated for 30 hours . . . . . . . . . . . . . . . . 91

3.4 Descent orbit (blue) from its intital terminator orbit (cyan) in the body-fixed frame

about Itokawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



xviii

3.5 Body-fixed (BF) and asteroid-centered inertial (ACI) frames defined on the asteroid

Itokawa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the Itokawa terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without

process noise for the Itokawa terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.8 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the Itokawa terminator orbit with measurements every 10 minutes

for 30 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.9 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the Bennu terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.10 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without

process noise for the Bennu terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.11 Useable landmarks at one state in the Itokawa terminator orbit. (a) Global view of

the useable landmarks (red) and non-useable landmarks (green) in the ACI frame,

and (b) Image view of the sample/line locations of the visible landmarks. . . . . . . 104

3.12 Errors and 3σ covariance bounds in the RIC frame for the OpNav landmark mea-

surements in the Itokawa terminator orbit . . . . . . . . . . . . . . . . . . . . . . . 106

3.13 Errors and 3σ covariance bounds in the RIC frame for the Itokawa descent orbit

with no initial state errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.14 Errors and 3σ covariance bounds in the RIC frame for the Itokawa descent orbit

with initial state errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xix

3.15 RMS errors in position and velocity over the time of the descent orbit trajectory for

each of the MC runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.16 Errors and 3 σ covariance bounds in the RIC frame with the altered measurement

frequency: observations every one minute for ten minutes, then every 5 minutes.

This was applied to two initial states from the MC simulations, (a) MC 7 with 2%

|∆v| error and (b) MC 5 with 10% |∆v| error. . . . . . . . . . . . . . . . . . . . . . 113

3.17 RMS errors in position and velocity over time for when using a uniform observation

frequency of 5 minutes, and an altered scheme of a frequency of 1 minute for 10

minutes, and then every 5 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.18 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the Itokawa terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.19 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without

process noise for the Itokawa terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.20 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the Itokawa terminator orbit with measurements every 10 minutes

for 30 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.21 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the Bennu terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.22 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without

process noise for the Bennu terminator orbit with measurements every 2 hours for

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.23 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without

process noise for the Itokawa eccentric orbit with measurements every 10 minutes

for 30 hours. The grey patch represents the data gap. . . . . . . . . . . . . . . . . . 127



xx

3.24 Post-fit residuals for the LS simulation; as the spacecraft traveled above 1 km in

altitude, a measurement gap occurred due to the upper limit of the flash lidar in-

strument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.25 Trace of the covariance for the three filter simulations in the Itokawa terminator orbit

with observations every 2 hours and the Itokawa eccentric orbit with observations

every 10 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1 Monte Carlo errors (solid gray) and 3σ covariance bounds (dashed black) in the RIC

frame with the EKF for the Itokawa terminator orbit with measurements every 2

hours for 10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Monte Carlo errors (solid gray) and 3σ covariance bounds (dashed black) in the RIC

frame with the UKF for the Itokawa terminator orbit with measurements every 2

hours for 10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Monte Carlo errors (solid gray) and 3σ covariance bounds (dashed black) in the RIC

frame with the LS filter for the Itokawa terminator orbit with measurements every

2 hours for 10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4 Observed image and computed image from the a priori state, X̄0 at t = 0 of MC

case 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.5 Computed images from the perturbed sigma points (χ−points) in position for MC

run 17 with α = 1 at t = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.6 Overlap of the observed image and each sigma point computed image for MC case

17 at t = 0 with α values of α = 0.6 and α = 0.4. . . . . . . . . . . . . . . . . . . . 142

4.7 Position errors in the a priori state in the RIC frame for the MC simulations with

varying α values, and the usability of each case: no bad observations (blue), all bad

observations (red), some bad observations (cyan), or did not finish (black). . . . . . 145



xxi

4.8 Position errors in the a priori state in the IC frame for the MC simulations with

varying α values, and the usability of each case: no bad observations (blue), all bad

observations (red), some bad observations (cyan), or did not finish (black). . . . . . 145

4.9 Velocity errors in the a priori state in the IC frame for the MC simulations with

varying α values, and the usability of each case: no bad observations (blue), all bad

observations (red), some bad observations (cyan), or did not finish (black). . . . . . 146

4.10 Histograms of the position errors at the final time in each RIC direction for the MC

simulations with varying α values, and the usability of the cases. . . . . . . . . . . . 147

4.11 Histograms of the velocity errors at the final time in each RIC direction for the MC

simulations with varying α values, and the usability of the cases. . . . . . . . . . . . 147

4.12 Example observation images of the observed and perturbed flash lidar images for the

LS MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.13 Initial position errors and resulting LS MC outcomes for 1σr = 50 m, 1σθn = 0.5◦. . 150

4.14 Magnitude of the initial position and pointing errors and their resulting LS MC

outcomes for 1σr = 50 m, 1σθn = 0.5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.15 Magnitude of the initial position and pointing errors and their resulting LS MC

outcomes for 1σr = 10 m, 1σθn = 3◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.16 Convergence of the LS MC cases for 1σr = 10 m, 1σθn = 3◦. . . . . . . . . . . . . . . 152

4.17 Initial position errors and resulting LS MC outcomes for 1σr = 100 m, 1σθn = 0.5◦. . 154

4.18 Magnitude of the initial position and pointing errors and their resulting LS MC

outcomes for 1σr = 100 m, 1σθn = 0.5◦. . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.19 Convergence of the LS MC cases for 1σr = 100 m, 1σθn = 0.5◦. . . . . . . . . . . . . 155

4.20 Initial position errors and resulting LS MC outcomes for position-only variations

with 1σr = 100 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.21 Corresponding facets from the FV-32 model within one facet of the FV-8 model. . . 159

4.22 Differences in FV-8 and FV-32 facet/vertex models of Itokawa . . . . . . . . . . . . 159

4.23 Differences in FV-16 and FV-32 facet/vertex models of Itokawa . . . . . . . . . . . 160



xxii

4.24 Errors in the radial (R), in-track (I), and cross-track (C) frame (solid) and the 3σ

covariance bounds (dashed) with FV-8/FV-32 shape modeling errors with σshp = 2 m.163

4.25 Errors in the radial (R), in-track (I), and cross-track (C) frame (solid) and the 3σ

covariance bounds (dashed) with FV-8/FV-32 shape modeling errors with σshp = 6 m.164

4.26 Estimated spacecraft position in the Itokawa BF frame from the FV-8/FV-32 UKF

simulation when the radial error peaks occurred in Figure 4.25(b). . . . . . . . . . . 165

4.27 Histograms of +x and −x shape model differences for the FV-8/FV-32 comparison

of the Itokawa shape model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.28 State errors in the RIC frame (black solid), the 3σ state covariance bounds (black

dashed), and the 3σ consider covariance bounds (Pc, blue dashed) with FV-8/FV-32

shape modeling errors with σb = 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.29 Errors of the filter state (black dashed), consider state from the analysis (CA, blue),

and consider state from the filter (CF, teal) with FV-8/FV-32 shape modeling errors

with σb = 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.30 State errors in the RIC frame (black solid), the 3σ state covariance bounds (black

dashed), and the 3σ consider covariance bounds (Pc, blue dashed) with FV-8/FV-32

shape modeling errors with σb = 6 m. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.31 Errors of the filter state (black dashed), consider state from the analysis (CA, blue),

and consider state from the filter (CF, teal) with FV-8/FV-32 shape modeling errors

with c̄ = −4 and σb = 6 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.32 Errors in the radial (R), in-track (I), and cross-track (C) frame (solid) and the 3σ

covariance bounds (dashed) when using the LS filter with pointing jitter errors. . . . 176

5.1 Edge pixels and center pixel for measurement A as determined by the FFT algorithm

(a) and the Image Shifting and Neighbor Search algorithms (b). . . . . . . . . . . . . 180

5.2 Edge pixels and center pixel for measurement C as determined by the FFT algorithm

(a) and the Image Shifting and Neighbor Search algorithms (b). . . . . . . . . . . . . 180



xxiii

5.3 Pre-Processing algorithm flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.4 Evolution of position and pointing errors in the pre-processing algorithm when sam-

pling from the Itokawa lost-in-space orbit. . . . . . . . . . . . . . . . . . . . . . . . 187

5.5 Sample of an initial observation and the evolution of computed measurements, G

through the steps of the pre-processing algorithm for an Itokawa observation. . . . 189

5.6 Evolution of position and pointing errors in the pre-processing algorithm when sam-

pling from the Bennu lost-in-space orbit. . . . . . . . . . . . . . . . . . . . . . . . . 190

5.7 Sample of an initial observation and the evolution of computed measurements, G

through the steps of the pre-processing algorithm for a Bennu observation. . . . . . 191

5.8 Flow chart of steps to initialize the filter with the pre-processing algorithm. . . . . . 192

5.9 Observation and truth position and pointing state at t1 to initialize the filter. . . . . 194

5.10 Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with

process noise for the filter initialization simulation with an Itokawa observation. . . 195

6.1 Pixels that composed the top three-pixel combinations for maximizing the position

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.2 Histogram of pixels that occurred in a top three-pixel combination with the bins

labeled as the pixel coordinates in the sensor frame (SF ) for maximizing the position

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3 Pixels that composed the top six-pixel combinations (pink) out of the 200 randomly

selected pixels (black) for maximizing the position and pointing information. . . . . 201

6.4 Histogram of pixels that occurred in a top six-pixel combination with the bins labeled

as the pixel coordinates in the sensor frame (SF ) for maximizing the position and

pointing information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.5 Pre-determined pixel patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



xxiv

6.6 Information content of the pre-determined patterns in Figure 6.5, the optimal six-

pixel combination, and the full image, as well as the number of pixels used for each

calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.7 State errors in the RIC frame and 3σ covariance bounds in the Itokawa terminator

orbit with measurements every 10 minutes for 30 hours, with the EKF. . . . . . . . 208

6.8 State errors in the RIC frame and 3σ covariance bounds in the Itokawa terminator

orbit with measurements every 10 minutes for 30 hours, with the UKF. . . . . . . . 209

6.9 State errors in the RIC frame and 3σ covariance bounds in the Itokawa terminator

orbit with measurements every 10 minutes for 30 hours, with the LS filter. . . . . . 210



Chapter 1

Introduction

1.1 Motivation

Small celestial bodies, such as asteroids and comets, are abundant in our Solar System and

provide great scientific insight into the origins of our Solar System. These small bodies may be

mined for resources, such as water or metals, and if one was inbound toward Earth, humans would

need knowledge on how to deflect it for planetary protection. Furthermore, the size and composition

of small celestial bodies varies, and spacecraft missions to multiple small bodies are required for

adequate characterization.

Spacecraft navigation around these small bodies is difficult due to the complex dynamical

environments that surround them. Most small bodies have irregular shapes that entail an asym-

metric gravity field, and their small mass leads to other dynamical sources, such as solar radiation

pressure and other planets, imparting a larger effect on the motion of the spacecraft. The rotation

period of a small body may be on the order of hours or days, and its axis of rotation may be a

nonprincipal axis.[96] Limited ground-based information is available due to their small size, and

a lag in communications occurs between Earth and the spacecraft. Missions have experienced a

round trip communications lag from 15 to 30 minutes.[43, 39]

Developing autonomous navigation systems for small body spacecraft missions can increase

the return on scientific knowledge, and the spacecraft may perform more interesting mission profiles.

Due to the complex dynamical environment, and the limited a priori knowledge of a small body,

precise navigation of the orbiting spacecraft is prudent to estimate the position and velocity of the
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spacecraft, as well as uncertain dynamical and physical parameters of the small body. Measurements

relative to the target body notably reduce the uncertainty in the estimation state by providing rel-

ative navigation information.[11] While missions have been successfully executed,[77, 72, 11] much

of the planning and operations are currently performed on the ground, and further characterization

of the small body is required once arriving.[43, 69]

Currently, relative navigation is performed with optical images and optical navigation (Op-

Nav), and is the state-of-the-art for small body missions.[73, 18, 55] This process involves correlating

the two-dimensional (2D) optical images with a three-dimensional (3D) shape model, and iterating

between an OpNav team and an orbit determination (OD) team. The images must be directed

to the sunlit side of the small body, and a 2D scale factor must be resolved within the estimation

state or with an altitude measurement. This current architecture may take hours or days and also

must be performed on the ground, hindering the real-time navigation capabilities of the spacecraft

in these complex environments.[72]

This dissertation evaluates using a flash lidar instrument as a relative measurement source

for OD in proximity to a small celestial body as a means to increase navigation autonomy. A flash

lidar measurement instantaneously returns an array of altimetry measurements, where each pixel

provides a range measurement. This measurement provides multiple altimetry measurements to

the surface, contains image properties, and the altitude is inherently included. Additionally, this is

used in any lighting conditions, and optical image processing procedures may be sidestepped.

Using a flash lidar instrument for relative navigation simplifies the navigation process, and

allows the algorithms to be placed onboard the spacecraft. The onboard computer does not need

to perform image correlations or render features (as with OpNav), and simply needs a shape

model and relative orientation of the target body. Multiple lidar measurements at slightly different

angles are captured at once, and information is gathered on the spacecraft relative position as well

as pointing orientation. These characteristics add up to promising applications of flash lidar in

onboard navigation, and thus enhancing spacecraft autonomy.

Altimetry measurements, such as those from a lidar instrument, have been studied for terrain
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relative navigation, planetary landings, and autonomous rendezvous and docking [5, 88, 49]. The

dynamics in these studies are confined to terrestrial applications, and/or evolve over a short time

period, such as a planetary landing. The application of a using a 3D lidar sensor, such as a flash

lidar or scanning lidar, for relative measurements around a small body for OD and for long durations

is still an open topic of research. Using a flash lidar sensor is advantageous over using a scanning

lidar as it does not involve moving parts and may be treated as a time-of-flight camera. [29]

Challenges arise in processing flash lidar images with linearized estimation techniques. The

dynamics around a small body are complex and nonlinear, and the relationship between an altime-

try measurement and the spacecraft state is also nonlinear. Processing a considerable number of

measurements at one observation time (as is the case with a flash lidar image) may lead to underes-

timation of the uncertainty of the state errors. In addition, comparing the observed and computed

3D images involves matching corresponding points and these processes may exclude information.

This dissertation focuses on relative navigation in the proximity operations phase of a small

body mission. This phase would occur after the characterization phase is completed, and the space-

craft is performing low altitude orbits. Therefore, it is assumed a shape model has been defined,

and the rotation axis and spin rate of the small body have been estimated in greater detail beyond

that from solely ground observations. To simplify the problem, only flash lidar measurements for

relative navigation were studied in order to analyze their capabilities. It was assumed that other

measurement types, such as range and Doppler measurements from Earth, would also be used to

estimate the spacecraft state in the inertial frame. For the algorithm development, simple and fast

algorithms were given more merit over complex algorithms. This was chosen to advance the study

of using flash lidar measurements for autonomous navigation.

Thesis Statement
A flash lidar instrument is evaluated as a means to increase spacecraft navi-
gation autonomy in proximity to small bodies. The performance of flash lidar
images is compared to the state-of-the-art of using optical images. Employing
a model-based approach for computation of the flash lidar images is evaluated
for increased computational efficiency, as well as the robustness of the flash li-
dar images to initial state and measurement model errors. Filter initialization
algorithms are derived from the image properties of a flash lidar image, and fur-
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ther computational efficiency is examined by reducing the number of lidar beams
processed.

1.2 Background

Small celestial bodies tend to have highly irregular shapes and weak gravity fields, and comets

may have drag and outgassing accelerations that are difficult to characterize. While asteroids and

comets are our closest neighbors in the Solar System, their small size makes them difficult to

observe. Observing techniques have advanced over the past decade and therefore so has our catalog

of near earth objects (NEOs) [52]. However, our knowledge of their ephemeris and shape remains

limited. Even on the most recent Rosetta mission, the knowledge of the comet’s ephemeris before

approach involved errors too large to plan and execute the orbit insertion burn [11].

NEOs overall are categorized as asteroids and comets in orbits with a semi-major axis less

than 1.3 AU, and range from less than 30 m in diameter to over 1 km in diameter. The majority

of NEOs are near Earth asteroids (NEAs) and these are further classified into subgroups based on

their orbits. The number of cataloged NEAs has grown exponentially since 2000. Figure 1.1 shows

the cumulative number of NEAs discovered by year, and categorized by their size. It is estimated

that there are 990 ± 20 NEAs that are larger than 1 km in diameter and 90% of them have been

discovered since August 2014. [52]
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Figure 1.1: Cumulative number of discovered near Earth asteroids over time (Courtesy of
NASA/JPL-Caltech).2
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Spacecraft missions have flown to small celestial bodies, such as NEAR to the asteroid Eros

in 2000, and are increasing in interest. The OSIRIS-REx spacecraft that recently launched in

September 2016 will travel to the asteroid Bennu, and two asteroid missions were selected in the

2016 NASA Discovery Program: Lucy that will travel to the Trojan asteroids by Jupiter and Psyche

that will travel to a metal asteroid in the main asteroid belt.

The following sections highlight some of the previous small body missions and their mission

profiles, followed by the relative navigation techniques used in these missions once arriving at

the small body. The next section overviews the flash lidar instrument and research involving its

application to relative navigation in space. Spacecraft systems that have implemented autonomous

navigation or autonomous operations is presented next. Relative navigation in space applications

such as terrain relative navigation, planetary landings, and autonomous rendezvous and docking

has acquired multiple publications, and a table is presented mapping the sensors investigated in

this field. Finally, relevant algorithms for relative navigation is overviewed.

1.2.1 Small Body Mission Profiles

Small body missions have performed asteroid fly-bys, inserted into orbit around their small

body target, deployed landers, and attempted sample returns. The US National Aeronautics and

Space Administration (NASA), the European Space Agency (ESA), and the Japan Aerospace

Exploration Agency (JAXA) have all completed missions to small bodies. As limited information

on the target small body is available before arriving there, the mission design usually involves

mapping and reconnaissance orbits at a safe distance from the small body. A spacecraft will

typically insert into these orbits when first arriving at the small body to characterize it, and then

perform lower altitude flybys or landings. Small body missions have successfully been executed,

yet these mission still encounter difficulties and require unique engineering solutions. This section

highlights some of these missions for context on small body mission profiles.

2 Center for Near Earth Object Studies, Discovery Statistics https : //cneos.jpl.nasa.gov/stats/totals.html
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NEAR The NEAR spacecraft inserted into a 320× 360 km orbit about the asteroid Eros

in February 2000 and became the first spacecraft to orbit a small body. NEAR completed 17 orbit

phases between February 2000 and October 2000. These orbits ranged from 360 km, down to 35

km, with a 5 km flyby of the surface in October of 2000. [77]

In February 2001, NEAR landed on Eros as its end-of-mission profile. NEAR was placed in

a 36 km orbit in January 2001; a deorbit maneuver from this orbit and four breaking maneuvers

beginning at 5 km of altitude were planned for NEAR’s descent. At this time, Eros was 2.11 AU

from Earth, imposing a 17.5 minute delay in communications from NEAR to Earth. In February

2001, NEAR touched down on Eros with an estimated vertical velocity of 1.5-1.8 m/s, achieving

a soft landing. The fourth breaking maneuver was terminated early due to earlier-than-expected

contact with the surface, and NEAR was pushed slightly into the surface. The last image taken by

NEAR occurred at an altitude of 129 m with a resolution of 1 cm. [39]

Hayabusa After its launch in May 2003, and an Earth flyby in May 2004, the JAXA

Hayabusa spacecraft arrived at the asteroid (25143) Itokawa in September 2005. For the initial

arrival at Itokawa, the spacecraft was at an altitude of 20 km, and after reconnaissance operations,

transferred to an altitude of 7 km above the surface at the end of September 2005. Throughout

October 2005, the Hayabusa spacecraft did not insert into a specific orbit, but transferred to eight

different hovering positions at different sun phase angles and altitudes. The lowest altitude the

spacecraft reached was about 3 km from the surface. [43]

On November 19th and 25th, 2005, two touchdown attempts were made to the surface, known

as touch-and-go (TAG) manuevers. A Tracking Marker (TM) was released to the surface, and this

was tracked for relative position control during the descent. Following anomalies in both TAG

attempts, including a crash landing, Hayabusa was placed on a return trajectory to Earth, arriving

at Earth in June 2010. When Hayabusa returned to Earth, less than a milligram of a particles had

been returned, yet this was the first direct sample of an asteroid to be returned to Earth. [67, 114]

Rosetta The Rosetta spacecraft and the Philae lander were launched in March 2004 by

ESA toward the comet 67P/Churyumov-Gerasimenko. After three Earth flybys, a Mars flyby, and
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two asteroid flybys, the spacecraft was taken out of hibernation in January 2014. In August 2014,

the Initial Characterization phase began as Rosetta inserted into a pyramid orbit. The subsequent

orbit phases included a 30 km circular orbit, three plane changes to change the sun-relative angles,

a close observation orbit of 10 km, and the Philae delivery orbit to minimize the separation ∆V of

Philae from Rosetta. [11]

In November 2014, the Philae lander was released to land on the surface of 67P. However,

the cold gas thruster and the harpoon subsystems meant to attach Phalie to the surface failed, and

Philae bounced several times on the surface. It finally landed in an unknown location, but most

likely in shade, and hindered its original scientific objectives.[14]

In the following two years, the Rosetta spacecraft characterized 67P, until its end of mission,

landing on 67P in September 2016. In the months leading up to its landing, Rosetta was placed

in a 3-day eccentric orbit with a decreasing periapsis down to approximately 1.5 km in altitude.

Rosetta performed a maneuver to transfer itself to an altitude of 20 km, before descending and

touching down on September 30th, 2016. [18]

OSIRIS-REx The OSIRIS-REx spacecraft launched in September 2016 for rendezvous

with the near-Earth asteroid Bennu (101955). Once arriving in late 2018, the spacecraft will

perform a series of flybys at a distance of 7 km and then insert into a 1.5 km circular terminator

orbit. This first orbit allows for refinement of the characteristics of Bennu, such as the shape

model and landmark identification. Next, a series of hyperbolic flybys allows for a detailed survey

of Bennu at various sun phase angles. The next phase of the mission transfers the spacecraft to

a 1 km circular terminator orbit. This will serve as the base orbit from which the touch-and-go

(TAG) sequences wil initialize from toward the surface of Bennu. After the Reconnaissance phase

to survey candidate sample sites, and two planned rehearsals of the TAG sequence, OSIRIS-REx

will touchdown and collect samples from Bennu. In March 2021, OSRIS-REx is planned to depart

Bennu and return to Earth in September 2023. [55]
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1.2.2 Small Body Relative Navigation

The overall study of spacecraft navigation is determining the orbit of the spacecraft; this

is known as orbit determination (OD). At a minimum, this involves estimating the position and

velocity of the spacecraft either inertially or with respect to its orbiting body, in order to determine

its orbit. Many parameters that describe the dynamical environment of the spacecraft also are

estimated, since limited information is available on this environment. These additional parameters

may include the mass of the small body, gravity parameters, the ephemeris of the small body, solar

radiation pressure from the sun, or drag coefficients, to name a few. Measurement parameters may

also be included in the estimation state, such as measurement biases or landmark locations for

relative navigation.

Measurements are taken of the spacecraft to estimate its position, velocity, and the parameters

of the estimation state. For small body missions, these measurements typically include range

and range-rate (Doppler) measurements from Earth to the spacecraft. The range is measured by

multiplying the time it takes for communications from Earth to arrive at the spacecraft (or vice

versa) by the speed of light, and range-rate is the change in this range. For current small body

missions, these measurements are provided by the Deep Space Network (DSN), operated at the

NASA/Caltech Jet Propulsion Laboratory (NASA/JPL).

Once arriving at a small body, relative navigation is performed by acquiring measurements

with respect to the body. These measurements are critical to decrease the uncertainty in the

estimation state, and at times effect mission-critical events [11]. The current state-of-the-art for

relative navigation is the use of optical images, known as OpNav. This section describes the

evolution of optical navigation from crater landmarks to stereophotoclinometry, and their uses on

previous small body missions.
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1.2.2.1 Optical Navigation with Crater Landmarks

Asteroid proximity navigation concepts began around 1990 with interest in the Comet Ren-

dezvous/Asteroid Flyby (CRAF) NASA mission planned for the Mariner Mark II spacecraft. While

this mission was canceled, studies were performed to tackle the challenges with navigating a space-

craft in proximity to an asteroid. This included addressing the irregular shape, gravitational varia-

tions, and accelerations due to outgassing.[76] Simulated navigation measurements included range,

Doppler, very long baseline interferometry (∆VLBI), and optical imaging of surface landmarks.

Estimation parameters included the asteroid attitude, landmark locations, spacecraft position and

velocity, and gravitational and dynamical parameters. The shape model was depicted as an el-

lipsoid with different sized masses, or mascons, spread around the surface, and the gravity model

included Legendre polynomials with a stochastic error model for varying non-gravitational forces.

The landmarks were assumed to be features on the surface such as craters or valleys.[76]

During the NEAR mission, landmarks were used for relative navigation, usually craters on the

surface, and a catalog of landmarks was kept for landmark tracking. By identifying the landmarks

in subsequent images, this enabled OD down to a few meters, or the resolution of the camera.

This accuracy was much greater than using radiometric data alone, or by fitting the limb of the

asteroid to a reference model. The optical imaging allowed the OD schemes to be less dependent

on referencing a precise shape model. [77] The inclusion of landmark tracking with Doppler data

provided increased orbital position accuracy to the 10 to 20 m range, faster convergence after

maneuvers, and quicker determination of physical properties, such as the spin axis and pole of

Eros [23]. However, the crater detection and identification in subsequent images for NEAR was

performed manually. Methods to automatically identify craters were theorized after the mission by

edge detection and ellipse-fitting of the crater [23].
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1.2.2.2 Optical Navigation and Stereophotoclinometry

The “landmarks” have since evolved into computed images of the surface based on the sun-

phase angle and the reflectance and albedo of the surface. The current standard for optical naviga-

tion (OpNav) is the use of stereophotoclinometry (SPC). This technique creates “landmark maps”

or L-maps to determine the surface topography and spacecraft orbit. These are created from a

reference shape model of the small body, the angle of the sun, the surface illumination, and the

albedo of the surface. These maps do not use actual landmarks, such as craters, and can be com-

puted analytically. Therefore, they can be reconstructed in many different lighting conditions and

cover diverse topography that may not contain craters or landmarks. Gaskell (2008) [45] outlined

this technique, and it was used in the Hayabusa mission to Itokawa that did not have craters for

feature identification.

The L-map is described as a vector from the center of the body to the local surface coordinate

system. The relative heights and albedos throughout that coordinate system are calculated based

on the surface albedo and reflectance functions. These L-maps have the ability to span over multiple

images to be cross-correlated and matched. By knowing the vectors that describe the L-maps in the

body-fixed frame of the small body, as well as the position and orientation of the camera’s image

plane on the spacecraft, the spacecraft location and pointing is able to be estimated. However, the

spacecraft position and landmark positions contain a scale bias that must be resolved by external

data such as lidar or Doppler measurements. Through the L-maps, their position on the surface,

and the spacecraft position and pointing, a shape model of the small body is constructed. A survey

phase was envisioned to use this technique, from which the spacecraft would identify thousands of

landmarks from different lightning conditions to build these maps. Once the maps are constructed,

it is simple for the spacecraft to navigate and compute residuals by using the L-maps and the

body-fixed vectors describing them. [45]

Geometric techniques are used to estimate the spacecraft state from known landmarks by

computing the residuals of the landmark locations in the image frame. Estimating the sample/line
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location of a point in an image may involve many parameters such as the relative direction the

photons are emitting from, distortion within the optical system, and pixel noise [84]. A simpli-

fied version of an OpNav formulation was used in this dissertation for comparison with the lidar

methods, and more details on its mathematical formulation are found in Chapter 2.

1.2.2.3 Mission Navigation Profiles

Optical navigation and SPC are the current state-of-the-art for relative navigation about a

small body. Optical navigation was used on the NEAR mission[77], and OpNav and SPC were

the main source of relative navigation with Hayabusa[45], DAWN [72], Rosetta[11], and will be on

OSIRIS-REx[55].

On approach to the small body, optical navigation is often used to locate the target small

body as a light point source in the field of view of the camera. Once the spacecraft is close enough

to the small body, and features are able to be resolved in the optical images, landmark tracking and

the OpNav procedures explained in the previous section are used (DAWN[72], Rosetta[73], OSIRIS-

REx[55]). As referenced in Section 1.2.1, most small body mission trajectory designs involve an

initial survey phase. This is used to characterize the small body by capturing optical images and

navigation observations, and construct a shape model (Hayabusa[45], DAWN [72], Rosetta [11],

OSIRIS-REx[55]).

Once the spacecraft has inserted into orbit and/or the survey phase is completed, optical

images for navigation may be taken every few minutes, as was done for the DAWN mission at

Vesta[64], or every few hours as will be done for OSIRIS-REx[55].

Many parameters are estimated in the OD filters alongside the spacecraft’s position and

velocity that describe the dynamical environment and measurement parameters. Parameters in

these missions have included the asteroid attitude, the asteroid ephemeris, the mass of the target

body, the gravity field parameters of the target body, the spin pole and rate of the target body,

solar radiation pressure on the spacecraft, the spacecraft maneuvers, the landmark locations, and

measurement biases.
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DAWN During the DAWN mission at the small body Vesta, many images with different

resolutions, and incidence and emission angles were taken to create the shape model and the L-

maps for SPC. Many of the processes and subprocesses to create these L-maps involved multiple

iterations to converge on a solution. This included the model image brightness and albedo, the

heights within the L-map, as well as solving for the landmarks, spacecraft position, position of

Vesta, and the camera pointing. In operations, iterations occurred within each data set for aligning

new images, adding new images to the L-maps, constructing new landmarks, and filing the surface

with landmarks at the needed resolution. [72] Solving for the landmark locations, Vesta’s ephemeris

was reduced in uncertainty by two orders of magnitude in some orbital elements, and the new orbit

had a difference of 2-sigmas from the previous solved-for orbit [64].

Rosetta In the Rosetta mission, NASA/JPL performed an independent shadow navigation

effort to support the ESA mission. Optical images were received by JPL, and independent OpNav

and SPC methods were employed to support this effort. During the initial characterization phase,

the landmark maps required about 4-5 work days to create with the low-resolution images, and the

landmark locations were known to within 3.1 m (1−σ). An iteration process occurred with shifting

individual images to correlate the illumination of their geometry, and a global map was constructed

by overlapping these images. The landmark vectors, camera pointing, and spacecraft state were

estimated again. Once all the visible area had been covered, the OD process was carried out with

these landmark maps, and recreating the landmark maps and brightness model was repeated until

the post-fit residuals reached a steady state.

During the close observation phase, parts of the comet surface were in shadow, yet these

images had to be used in order to extract all of the available information. This led to misidentifica-

tion of landmarks that was resolved by manual processing. At the lowest altitudes, the landmark

location uncertainty could grow from 10 m to 120 m due to the outgassing dynamics, sampling a

small part of the surface, and the high phase angle. This was resolved through additional iterations

of the same image set. [73]
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1.2.2.4 Small Body Relative Navigation with Lidar

Lidar (light detection and ranging) for navigation has been explored as relative measurements

to a celestial body or spacecraft. [16, 1, 75] A lidar sensor actively projects a light source (such as

a laser) toward a target, measures the time traveled for the light source to return to the sensor,

and calculates a range measurement. An advantage of using lidar is that it may be used in any

lighting conditions, as oppose to optical imaging. It is noted though that when using lidar relative

to a celestial body, the altitude returned is relative to the surface of the target body that may be

at an unknown radius from the center of mass. This places reliance on the reference shape model.

While NEAR was in orbit around Eros, a lidar onboard the spacecraft was used primarily for

shape model determination, and optical images were the primary source for OD during operations.

One study [16] investigated the effectiveness of using lidar data in addition to optical data and

radiometric data for OD. The reference orbits used were the operational NEAR orbits that were

estimated with Doppler and optical imaging. The errors in the orbit with respect to the operational

orbit were approximately 40 m when using lidar and radiometric data to estimate the orbit. When

using only the lidar data, the orbit errors increased to the 100 to 150 m range. [16]

The use of multiple beam lidar measurements has been theorized for relative navigation

around asteroids. Navigation using three lidar beams and comparing an ellipsoidal and faceted

shape model within the navigation filter was studied, and it was found to produce similar results

to OpNav [1]. Using one lidar beam at two discrete times was investigated, and it was found that

pointing this beam towards the limb of the asteroid produced the most information [75].

1.2.3 Flash Lidar for Relative Navigation

This dissertation focuses on using a flash lidar instrument to obtain a three-dimensional (3D)

image of its field of view (FOV). A flash lidar measurement operates similar to a conventional

camera in that the measurement contains an array of pixels, and each pixel represents a range

measurement. A single beam is spread out across the illuminated array, and the entire scene is
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illuminated at once to produce the 3D point cloud. Each pixel in the array can be treated as a

single lidar beam directed at a slightly different angle. [91] The algorithms to calibrate a flash lidar

can be complex, but these instruments are suitable for both short and long range targets, up to a

few kilometers away. [29]

1.2.3.1 Flash Lidar Instrumentation

Flash lidar has been developed by aerospace ventures such as Advanced Scientific Concepts

(ASC) and Ball Aerospace. The instrument at Ball Aerospace produces a 256 × 256 resolution

array with rates up to 30 Hz [30].

ASC’s current products include two lightweight (< 3 lbs), small, flash lidar cameras, and one

space-rated flash lidar camera. The GoldenEye Space Camera has a full array of 128× 128 pixels,

with observation frame frequency up to 10 Hz. It is currently flying on the OSIRIS-REx spacecraft,

and weighs 6.5 kg. It provides range up to 3 km, with range biases less than ±10 cm and range

noise less than ±15 cm (3-σ). 3

The measurements returned from a flash lidar instrument may include light intensity reflected

back from the target object and/or range measurements to the objects in its FOV. An electronically

steerable flash lidar has the ability to easily illuminate different patterns of pixels within the image

and adjust the laser power based on the target’s range and reflectivity. [89] For example, when

every pixel in the image is illuminated, the maximum observable range may be up to 1 km, while if a

smaller pattern of pixels within the image is illuminated, the maximum observable range increases.

The errors in the measurements depend on the travel time of the lidar light, the distance of the

pixel from the center of the image, and the intensity of the light returned. [89]

1.2.3.2 Flash Lidar Space Applications

Flash lidar has been investigated for terrain relative navigation and hazard avoidance for

planetary landings. It has also been tested on the Space Shuttle and International Space Station

3 http://www.advancedscientificconcepts.com/products/portable.html
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(ISS) for spacecraft rendezvous and docking.

Using flash lidar measurements, crater identification algorithms such as template matching,

feature identification, and finding local minima and maxima may be used for terrain relative navi-

gation. These formulations require a database of craters on the surface, as well as crater features

on the surface, and are similar to optical crater identification methods. [90]

The Autonomous Landing and Hazard Avoidance (ALHAT) mission, run by NASA Johnson

Spaceflight Center (JSC) and NASA Langley Research Center (LaRC) explored the use of flash lidar

for planetary landings through experimental testing and algorithm development. The ALHAT pro-

gram aimed to achieve specific objectives for planetary landing that included altimetry, velocimetry,

terrain relative navigation, hazard detection and avoidance, and hazard relative navigation. Flash

lidar was proposed to perform all of these tasks, with the exception of the velocimetry, in which a

Doppler lidar was proposed to fulfill this task. [4] [3] A sensor test bed for characterizing flash lidar

and its uses for hazard avoidance was developed at NASA LaRC [86], and flight tests in airplanes

and helicopters have been performed for the flash lidar system. [21] The ALHAT project has be

upgraded to TRL 6 by performing a closed-loop flight test with the flash lidar system attached to

the Morpheous rocket-propelled lander at NASA Kennedy Space Center. The system scanned a

lunar-like surface, built an elevation map, identified a safe landing site, and guided the lander to

this site safely. [88]

A flash lidar system also was tested on the ISS for rendezvous and docking of the space shuttle

on STS-134 in the Sensor Test for Orion RelNav Risk Mitigation (STORRM) mission. The ISS was

considered the “target” spacecraft and had reflectors on it in known locations for the flash lidar;

the STS-134 was the “chaser” spacecraft with the flash lidar instrument. An end-to-end assessment

of performing relative navigation with flash lidar to support autonomous rendezvous and docking

algorithms was developed from this data. The “target” spacecraft was assumed to have reflectors

on it in known positions, so the “chaser” spacecraft only had to identify the features and reduce

their residuals to determine its relative position and attitude. [26]

Relative navigation with the STORRM data also was investigated without the use of reflec-
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tors. The iterative closest point (ICP) method was explored to align successive range images, and

to align range images to a defined model of the ISS. It studied using known features on the ISS for

navigation. However, since the flash lidar instrument was calibrated to the reflectors on the ISS,

the light intensity of specific features greatly varied between successive images. This resulted in

sub-par navigation estimation because the algorithms were not able to align the images with each

other or with a model. [91]

The ASC DragonEye camera was tested on Space Shuttle mission STS-127 to assess its

approach capabilities for the SpaceX Dragon vehicle. At the time, it was slated as the primary

sensor for relative navigation between the Dragon vehicle and the ISS. The DragonEye sensor used

the Trajectory Control Sensor system with retroreflectors on the ISS, and this data was used to

evaluate its performance. [80]

1.2.4 Lidar Capabilities

The intensity of a returned lidar beam is related to the instrument’s power, range, the

acquisition geometry, and the target surface’s reflectance and roughness. [61] These contributing

factors may be used for target/material classification and/or calibrated to provide a useful output

for the end-user. Lidar intensity has seen terrestrial remote-sensing applications such as land

classification (trees and glaciers), structural damage assessment, and transportation assessment.

Surfaces with known reflectance properties may be used to calibrate the returned intensity. The

range and incidence angle (the angle between the surface normal and the incident light) are two

contributing factors that are accounted for in the majority of intensity calibration methods. [61]

The lidar range equation relates the received optical power to the transmitted power and other

instrument and environmental properties. By assuming the target intercepts the entire lidar beam,

and Lambertian reflectance, the received optical power is directly related to the transmitter power,

receiver aperture diameter, atmospheric transmission factor, system transmission factor, target

reflectance, and cosine of the incidence angle, and is inversely related to the square of the range.

Figure 1.2 presents the theoretical relationship between the power returned and the inverse square
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Figure 1.2: Relationship of intensity to (a) range and (b) angle of incidence for two materials with
different reflectance (ρ). Reproduced from Ref. [61].

of the range, Ri (Figure 1.2(a)), and the power returned and the cosine of the angle of incidence,

αi (Figure 1.2(b)) for two materials with different reflectance, ρ. This figure is reproduced from

Ref. [61].

A variety of intensity correction methods have been derived from the range equation, with

the most common based on the range and angle of incidence. Equation 1.1 displays the corrected

intensity value, Ic such that intensity of all points would be equivalent if measured at the reference

range, Rref and an angle of incidence, αi of zero. [61]

Ic = I · R
2
i

R2
ref

· 1

cosαi
(1.1)

The OSIRIS-REx Laser Altimeter (OLA) is a scanning lidar onboard OSIRIS-REx, and has

been calibrated for the surface of Bennu. The low albedo of Bennu creates challenges for remote

sensing [34], and was calibrated with a 3% Lambertian surface [31]. At a nominal power of 59 W,

the high-energy laser has a maximum operational range of 9 km, with a range accuracy of < 0.31

m [31]. For the ASC GoldenEye flash lidar onboard OSIRIS-REx, the maximum range capability

is 3 km with < 50 W of power and a 128× 128 array. 4

In this dissertation, an upper limit of 1 km is placed on the returned altimetry measurements

4 http://www.advancedscientificconcepts.com/products/portable.html
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in the flash lidar image, and a 64 × 64 pixel array is used. This is considered the maximum

operational range, and assumes calibration of the target surface as well as the angle of incidence.

In regards to the angle of incidence, this can be considered conservative, as a return was not

recorded for a range-return larger than 1 km even if the incidence angle was 0◦. In addition, if the

surface is rough and the angle of incidence is high, a range still may be returned from boulders or

rocks on the surface.

1.2.5 Autonomous Spacecraft Navigation

The dynamics around a small body are complex because of the typically irregular shapes

and small masses that result in larger perturbations from other dynamical sources. With limited

information known before visiting a small body, adequate characterization of the small body’s

gravity field, rotation axis, and overall dynamical environment is required before executing mission

profiles such as landings or close-proximity operations.

Ground-based navigation operations are usually faster and more accurate during this char-

acterization phase, and provide a more accurate model of the physical properties and dynamics

surrounding the small body. These ground-based operations are limited by the roundtrip light-

time delay of communications from the Earth to the spacecraft, and the time and processing power

required to adequately characterize the small body.

Once the characterization phase is complete, the spacecraft may engage in trajectories that

travel closer to the body such as low-altitude flying or landings for sample returns. These profiles

require some degree of autonomy on the spacecraft, as the communications delay from Earth is

usually too large to have ground-based operations in the loop.

Optical images, altimetry measurements, and the tracking of beacons on the surface (with

range or Doppler measurements) are all feasible to be processed onboard the spacecraft. These

relative measurements are usually coupled with onboard spacecraft measurements, such as attitude

and acceleration estimates. Each of the relative measurements, however, requires the use of an

onboard map fixed to the body in order to calculate residuals. This map may be of landmarks for
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optical images, surface topography for altimetry measurements, or the locations of beacons on the

surface. The maps may be constructed on the ground and uploaded to the spacecraft to reduce the

processing power required onboard.

The degree of spacecraft autonomy may be tailored for the specific mission. For example, a

ballistic impactor may only need to execute one to three maneuvers, and have an active sensor for

ensuring impact. A controlled descent requires a higher degree of autonomy, such as active OD and

trajectory correction, altimetry measurements to control its rate of descent, and an onboard map

to determine the corrections needed. A landing may be achieved if the characteristics of the small

body are known precisely enough that maneuvers are able to be commanded from the ground. This

was performed at the end of the NEAR mission, after extensive characterization of Eros. [96]

The onboard dynamics in a system and its representation of the “outside world” plays a role in

its autonomy. A high fidelity model of the “outside world” requires more processing time, and may

be dangerous if the real dynamics of the system are changing quickly. A low fidelity representation

of the “outside world” results in quicker response times, but requires a higher reliability on its

sensors.

Autonomy has been flown on spacecraft, including the Deep Impact mission, the MER Op-

portunity rover[40], and EO-1[25]. These autonomous systems incorporated autonomous navigation

and autonomous observation planning. The following sections outline the autonomous navigation

system AutoNav that was flown on Deep Impact, applications of AutoNav, and the proposed au-

tonomous navigation system for the OSIRIS-REx TAG sequence.

1.2.5.1 Deep Impact Mission with AutoNav

The algorithm, AutoNav was used on the Deep Space 1 mission to the comet Borrelly, the

Stardust mission to the asteroid Anne Frank and the comet Wild-2, and the Deep Impact mission

to the comet Tempel 1.

The Deep Impact mission involved a Flyby spacecraft and an Impactor spacecraft, and on

July 4, 2005, the Impactor spacecraft impacted Tempel 1 to create a crater and outburst that the
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Flyby spacecraft imaged. Both the Flyby and Impactor spacecraft employed the AutoNav algorithm

to autonomously detect an illuminated impact location and track this location for imaging. [65]

The Flyby and Impactor spacecraft were separated 24 hours before impact and ran identical

AutoNav algorithms for the autonomous portion of the mission that spanned the two hours before

impact. Both spacecraft autonomously computed the center of brightness of the images taken, and

provided OD updates every minute. The Flyby spacecraft autonomously computed and updated

the time of impact and time of final imaging. The Impactor spacecraft autonomously planned and

executed three targeting maneuvers and aligned the camera with the computed velocity vector for

high resolution images.

The residuals for the OD were determined from the observed and computed center of bright-

ness in the image. This was computed with the Blobber algorithm that scanned the entire image

for lit pixels, and the Centroid Box algorithm that computed first moment of the brightest pixels

within a 400× 400 centroid box. [65]

AutoNav was interfaced with the ground to receive the most up-to-date trajectory to initialize

AutoNav, the ADCS, and the image sequencing. The image sequencing was controlled by AutoNav

in the form of computing the time of impact and time of final imaging, and provided updates of

these to the Flyby and Impactor spacecraft. [74]

The Impactor spacecraft took high-resolution images of the cometary surface seconds before

impact, while the Flyby spacecraft tracked the predicted impact location for 800 seconds to image

the plume. Exact imaging of the impact crater was not possible, however, because the brightness

from the ejected plume lingered such that AutoNav directed the camera to point at the plume

during the flyby. [65]

1.2.5.2 Planetary Landings with AutoNav

AutoNav for planetary landings has been proposed by incorporating it with the stereopho-

toclinometry (SPC) relative navigation methods. AutoNav was used for acquiring observations,

performing orbit determination, and computing correction maneuvers based on this knowledge to
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follow a trajectory designed on the ground. AutoNav only used optical data in its navigation, which

for proximity navigation was the landmarks provided from SPC. [13]

The objectives of the maneuvers were a three-dimensional location in the body-fixed frame

and a target relative velocity. Only one of these three-dimensional states could be controlled. In

the simulations, the position was controlled, and the final velocity was left as a free parameter.

For both the asteroid landing and comet landing simulations, the position dispersion was within a

five meter radius of the target landing site and landing velocities were within 2 cm/s of the target

relative velocity. [13]

1.2.5.3 OSIRIS-REx Touch-and-Go Sequence

The OSIRIS-REx mission launched in September 2016, and to date, is on approach to the

asteroid Bennu. Once arriving, the spacecraft will insert into orbit and perform a sample return to

Earth. A touch-and-go (TAG) procedure at Bennu is planned to execute this sample return.

The nominal TAG sequence begins at a circular sun terminator orbit at 1 km. A deorbit

maneuver is performed to arrive at the “Checkpoint” altitude of 125 m. A Checkpoint maneuver

is performed here to cancel the lateral velocity and transfer 10 minutes later to the “Matchpoint”

altitude of 45 m. A Matchpoint maneuver is performed next to achieve a targeted descent velocity

of 10 cm/s for the TAG operations that are targeted for 8 minutes after this maneuver. The

requirements for the TAG sequence are to land within a 25 m radius around the targeted TAG

site. Before executing the full TAG sequence, two rehearsals are planned, one to the Checkpoint

altitude, and one to the Checkpoint then Matchpoint altitude to ensure mission success. [9]

The estimated light-delay for communications is expected to be around 30 minutes, requiring

autonomous operations of the spacecraft from the deorbit maneuver through the TAG sequence.

Nominally, an lidar-based position estimation scheme was first proposed to reduce the uncertainty

in the spacecraft state during descent. [9] At the critical design review of the mission, a backup

autonomous navigation system was introduced, using optical images and landmark tracking, known

as Natural Feature Tracking (NFT).[69] Both schemes are overviewed below.
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For the nominal TAG sequence, two lidar beam measurements during descent are proposed

to reduce the uncertainty of the spacecraft state. One lidar measurement will be taken once the

limb of the asteroid is in view, and the second will be taken two minutes before the Checkpoint

maneuver. The differences between the expected and observed values of the two lidar measurements

are related to each state component by a two-dimensional second order polynomial. The position

and velocity state will be solved for with six independent polynomials and 54 coefficients. These

coefficients were solved for on the ground with a least-squares fit from Monte Carlo analysis. The

computed state, based on these polynomials, will provide an update to the velocity and timing

of the Checkpoint and Matchpoint maneuvers. Using this control scheme, the dispersion errors

reduced to 12 m and 17 m in the nominal and worst-case scenarios, respectively, in Monte Carlo

simulations. [9]

The NFT algorithm estimates the spacecraft state by comparing “landmark features” from

the observed optical images with the predicted optical images. The onboard algorithm predicts

which features it will see, renders those features, and then compares those features with the observed

optical images. The features are rendered from a shape model that would be created from data

previously acquired in the mission, albedo information of the surface, the predicted sun angle, and

camera orientation. Image cross-correlation is used to match the predicted and observed features.

The location of the correlation peak in the camera focal plane, and the correlation score determines

the quality of the features. Various studies investigated creating the shape model with the onboard

lidar altimeter and with SPC, as well as feature selection that is robust to model creation and

correlation. [69]

1.2.6 Space Applications of Relative Navigation

Relevant work for relative navigation in space is categorized into the following: small body

proximity operations; landings and terrain relative navigation; and spacecraft rendezvous and dock-

ing (R&D). Table 1.1 organizes relevant work in these space applications by relative navigation

sensors. The published research is further organized by whether the work has been theorized (nor-



23

mal text), used in mission operations (bold), tested in space (underlined), or has autonomous

capabilities (italicized). Publications that have originated from this dissertation are highlighted in

red. Follow-on work that has cited publications from this thesis work are highlighted in gray.

Table 1.1: Relative navigation research in space applications, organized by sensor type and space
application. Key: Theorized/Tested in Lab, Used in mission operations, Tested in space, Au-
tonomous capabilities, Follow-on work, Thesis work

Sensor
Optical
Images

3D Vision
Sensors

Optical
+ Lidar

Single/Multi-
Beam Lidar

Scanning
Lidar

Flash Lidar

A
p

p
li

ca
ti

on

Small Body
Proximity
Operations

[76] [77]
[23] [45]
[74, 65]
[72] [73]
[18] [55]

[16] [75] [1] [35, 36, 37,
38] [48]

Landings
and Terrain
Relative
Navigation

[13] [69]
[58]

[67] [39]
[5]

[9] [15] [32] [4, 3, 88]
[86] [21] [90]

Spacecraft
Rendezvous
and Docking

[41, 105]
[41, 85]

[41, 63]
[107]
[41, 53]

[87] [2, 41] [49, 17]
[92] [29]

[26] [91] [80]

Section 1.2.2 overviewed the research topics related to small body navigation from the “Small

Body Proximity Operations” row of Table 1.1, and Section 1.2.3 highlighted the work done with

relative navigation using a flash lidar sensor from the “Flash Lidar” column of Table 1.1. Section

1.2.5 described autonomous navigation systems as related to small body operations and landings.

The following sections highlight the research published in the remaining sections of Table 1.1.

This includes an overview of other 3D lidar sensors, and their applications to planetary landings

and hazard avoidance, and spacecraft R&D.

1.2.6.1 Three-Dimensional Lidar Sensors

A scanning lidar provides a 3D point cloud of its target. It uses one light source, one detector,

and a series of mirrors or deflectors to change the direction of the lidar beam. It is relatively easy

to calibrate and can direct its beam very precisely. Since a scanning lidar contains moving parts,
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potential for failure can occur. Additionally, scanning the scene with one lidar beam requires a

finite amount of time; the target scene must not move faster than the time required to scan the

scene, or the measurement will blur. [29]

A Continuous Wave (CW) lidar system is seen in robotics, computer vision, and home en-

tertainment applications. It modulates the intensity of the projected laser and samples the return

signal at least four times as fast as the modulated signal. This allows the time of flight of the laser

to be easily obtained, yet must be used at close ranges, such as a few meters, as to avoid phase

ambiguity. [29]

A flash lidar instantaneously captures a scene, while a scanning lidar needs a finite amount

of time to scan and capture a scene. With the a CW lidar, the algorithms to calibrate a CW lidar

are less complex than those to calibrate a flash lidar sensor, yet these lidars may only be used up

to a few meters away, while a flash lidar may be used up to a few kilometers. The pixels in a flash

lidar image may be treated as separate lidar beams with known orientation; therefore, one may

know the instantaneous pointing directions of multiple lidar beams of a 3D point cloud.

1.2.6.2 Planetary Landings and Hazard Avoidance

Planetary landings are closely coupled to small body relative navigation in that both require

terrain-relative navigation. With a landing, landing site selection and hazard avoidance are addi-

tional processes that are included in the landing algorithms. Due to the short time frame associated

with landings, autonomous landings and hazard avoidance are usually investigated alongside the

navigation. This was presented previously with the ALHAT mission [3], and with the OSIRIS-REx

TAG sequence [9, 69].

Additional planetary landings investigations have studied an optical and lidar-aided simulta-

neous localization and mapping (SLAM) algorithm [5], and optical image matching and correlation

with Fast Fourier Transforms (FFTs) [58]. With lidar sensors, a three-beam lidar and doppler

system has been investigated [15], as well as a scanning lidar for autonomous hazard avoidance and

landing, such as on Mars [32].
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1.2.6.3 Spacecraft Rendezvous and Docking

Extensive work has been done in regards to spacecraft rendezvous and docking (R&D) and

expanding its autonomous capabilities. Many of the same navigation sensors and algorithms inves-

tigated in the this field can be applied to relative navigation around small bodies. Most notable

are the studies and applications of docking with the ISS.

The Trajectory Control Sensor (TCS) is a scanning lidar on the Space Shuttle that has been

used for relative navigation for rendezvous with Mir, Hubble, and the ISS. The sensor switches from

a pulse laser diode at long ranges greater than 1000 ft to a CW mode for ranges less than 1000

feet. The rendezvous and proximity operations program (RPOP) processed the relative position,

velocity, and angle data on a separate laptop onboard the Space Shuttle and provided relative

motion displays during proximity operations. [49, 17]

The ESA Automated Transfer Vehicle (ATV) operates a unique videometer that was specifi-

cally designed for docking with the ISS. A laser illuminates retro-reflectors installed on the service

module, and the illumination is captured by a CCD sensor to provide range, line-of-sight angles and

relative attitude within 30 m of rendezvous. With this sensor, the target is autonomously acquired

and tracked during docking.[87]

The Neptec TriDar system was tested on STS-128 and STS-131 to the ISS to develop proxim-

ity operations and autonomous rendezvous and docking capabilities with noncooperative objects.

This was done through using a 3D CAD model of the target instead of retro-reflectors or any fea-

tures on the target. The TriDAR had onboard software to autonomously track a target object and

estimate its relative orientation and position. Sparse data patterns were used to lock-on and track

the target, and to initialize the ICP algorithm used for fine alignment. [92]

The “3D Vision Sensors” column in Table 1.1 refers to work done with spacecraft R&D that

was not tied to a specific sensor. It was assumed that a 3D projection of the target scene could be

acquired, and the referenced research focused on the algorithms used for navigation with that 3D

image. These “3D Vision Sensors” included stereo cameras or lidar systems such as a scanning or
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flash lidar. The navigation methods investigated include ICP algorithms [92], motion prediction

algorithms [53], featured-based algorithms [107], and model-based algorithms [85] [63]. An overview

of these algorithms is presented below.

1.2.6.4 Terrestrial Relative Navigation

The use of lidar-based navigation systems are seen in terrestrial robotic applications and in

small areal vehicles, such as quadrotors [106, 6, 51]. Onboard lidar sensors and inertial measurement

units (IMUs) may determine the position of the vehicle, a map of its surroundings, or both, and

this process is known as simultaneous localization and mapping (SLAM). Ground-based robots

typically operate in a two-dimensional plane and are inherently stable [51], while airborne platforms

face navigational challenges that are similar to those faced by an orbiting spacecraft such as fast

dynamics, limited payload, and constant motion [6]. GPS-enabled air vehicles can easily determine

their position and this can form a strong basis for autonomous navigation systems [106]. For

GPS-denied areal vehicles, such as those operating inside, SLAM techniques include estimating the

position and velocity of the vehicle with an onboard lidar scanner and probabilistic scan matching

between 3D point clouds [83, 6], representing a 3D map with 2D representations [51], and using an

iterative closest point (ICP) algorithm for surface matching [106]. These techniques are applicable

to a spacecraft orbiting outside of the GPS constellation, such as at a small body, as it too would

be denied GPS positioning capabilities.

1.2.7 Relative Navigation Algorithms

Algorithms to extract the relative position and pose information of a target object include the

iterative closest point (ICP) algorithm, feature tracking algorithms, and model based algorithms.

ICP algorithms are found primarily with 3D point clouds, while feature tracking and model-based

algorithms are found with optical images and lidar images. Edge detection algorithms may be

applied when a spacecraft is on approach to a celestial body, used in optical images for navigation,

or used for correlating landmarks in optical images.
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The ICP algorithm determines the relative translation and rotation between two 3D point

clouds. Different variations of this algorithm have been studied, with one of the first instances found

in Besl and McKay (1992) [10]. The basis of the ICP algorithm matches pairs of points within

each point cloud by different methods, such as determining the closest point, normal shooting, and

projection. [93] The sum of the square of the distance between each pair is minimized by applying

and solving for a translation vector and rotation matrix. The translation vector and rotation matrix

is solved by a quaternion-based method or a single value decomposition method [10]. Another ICP

method often used minimizes the sum of the squared distances from the point to a plane, and may

be solved by linearizing the problem.[93, 22] Applications of the ICP algorithm for 3D point clouds

include the STORRM mission with a flash lidar [91], and autonomous rendezvous and docking with

the ISS with a scanning lidar [92].

One drawback from using lidar measurements for navigation is their precision. The measure-

ment function is usually nonlinear, yet a linear state update is applied when using conventional

Kalman filtering techniques. This leads to errors in the state estimate and the state covariance does

not accurately capture the state errors. The problem intensifies as the measurement becomes more

accurate.[33] Both of these conditions apply to using lidar measurements for state estimation, and

was seen when processing lidar measurements for relative navigation on the space shuttle. [116]

Remedies to this problem have included iterating the state update with each observation, including

the second order effects of the measurement function, and artificially inflating the measurement

uncertainty.[116, 33] Investigations have found that an iterative Kalman filter is equivalent to the

Gauss-Newton method that may be used to solve a linear least-squares problem.[8] Applying an

iterative Kalman filter is essentially sequentially applying a linear least-squares fit to a nonlinear

function.

A consider covariance is useful when it is known that errors exist in the measurement or

dynamical models, yet these errors may be difficult or computationally intensive to estimate. A

consider covariance systematically inflates the covariance to account for the effect the unmodeled

errors have on the state estimate. [103] This approach is typically seen to account for the uncertainty
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in measurement biases such as seen in sensors [54], and may be expanded to include uncertainty in

the dynamics as well [115].

Feature tracking algorithms determine certain features in a 2D or 3D image, and align these

features between images. This is similar to the OpNav landmark tracking currently used in small

body missions. With feature tracking algorithms, one must first build a database of the features

to be tracked, and accurately match those between images. With planetary landings or terrain

relative navigation, feature tracking algorithms include landmark tracking and crater identification

and tracking, and can be performed with 3D lidar systems [90] or optical systems [5].

Feature tracking algorithms have been used and investigated in spacecraft R&D applications,

including use as a contingency plan for docking with the Hubble Space Telescope [105], 3D feature

mapping with a PMD (photonic mixer device) camera [107], and using retro-reflectors on the ISS

for the ESA Automated Transfer Vehicle (ATV) [87] and JAXA H-II Transfer Vehicle (HTV)[29].

Feature tracking algorithms have been investigated with flash lidar for docking with the ISS in the

STORRM mission[26, 91] with the ASC DragonEye [29].

Model-based algorithms typically use a 3D model of the target, and use this model to match

the observed measurements to the computed measurements. These typically use the full 3D model

within the algorithm, and no specific features are identified. This can be an advantage if the shape

of the target is not known beforehand, and a feature database does not need to be constructed.

Model-based algorithms have been investigated with spacecraft R&D by projecting a 3D model to

a 2D surface [85], or extracting edges from camera images and minimizing their distances in a 2D

plane[63]. A 3D model of the target has also been studied to produce 3D point data to be compared

to a scanning lidar measurement through ICP [92].

Edge detection algorithms are a way to extract features from a scene to use in navigation.

Relative spacecraft navigation with crater identification is an example of this application. In optical

images, the edges of a crater may be extracted and fit to an ellipse.[23] A Fast Fourier Transform

(FFT) for template matching between maps has been investigated for planetary landings with

optical images.[58] With simultaneous localization and mapping (SLAM) algorithms, often used
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for relative autonomous navigation in robotics, feature detection algorithms aim to match the

environment with corners, edges, trees (for outside applications), or curvature.[68] With optical

navigation, limb scans may be used on approach to a small body. [72] Investigations have been

underway to improve the detection of the limb of a moon or planet [28], fit the limb to an ellipse,

and estimate the centroid of the moon or planet.[27]

1.3 Dissertation Overview

A flash lidar instrument is investigated for its performance as the primary data source for

relative navigation around a small body when using Kalman filtering techniques. Flash lidar mea-

surements may be used in any lighting conditions, include the spacecraft altitude, and bypass image

processing and iteration procedures, all of which are advantages over OpNav. This instrument al-

lows for simplification of the navigation algorithms and shows promise for advancing spacecraft

navigation autonomy. The flash lidar images are processed with Kalman filters, and an OpNav OD

simulation is used as a comparison to assess the OD performance of the flash lidar images.

Application of a model-based approach for the computation of the flash lidar images further

reduces the computational load. This does not require the creation of a feature database, and avoids

correlating the features within the images, as opposed to OpNav. In feature-tracking approaches, an

onboard 3D model is required regardless to build the feature database and render onboard computed

features. [69] Employing a model-based approach bypasses these additional steps. Model-based

measurement algorithms are seen in spacecraft R&D applications, and in noncooperative debris-

removal applications [92, 85, 63], but have yet to be employed in small body spacecraft navigation.

A flash lidar image may contain thousands of altimetry measurements in a single image. While

each image contains significant information, processing a considerable number of measurements at

one observation time can lead to underestimation of the uncertainty of the state errors. This is

known as filter saturation, and has been seen when processing multiple precise lidar measurements

for relative navigation [116]. Methods to mitigate filter saturation include iterating the state, using

an underweighting approach that artificially inflates the measurement uncertainty matrix [116], and
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including second order effects of the measurement equation [33, 116]. Iteration of the relative state

at one time step has been investigated with a nonlinear measurement function applied to space

trajectories [33], and is seen in OpNav [72], spacecraft R&D research[63], and ICP algorithms [10].

The performance and limits of three sequential Kalman filters are evaluated with flash lidar

images: an extended Kalman filter (EKF), an unscented Kalman filter (UKF), and an iterated least-

squares (LS) filter. The iterative LS filter applies multiple linear state updates at one observation

time before propagating the state and processing the next observation [8]. State iteration procedures

are performed in OpNav as well within the image processing and correlation procedures, yet are

separte from the OD process. The iterative LS filter combines the state iterations within the OD

process so that observations may be processed sequentially.

Comparing two 3D point clouds is typically performed with an ICP algorithm that involves

multiple iterations and a pair matching algorithm [10, 93, 92]. A flash lidar instrument may take

advantage of the fact that the 3D point cloud is instantaneously captured, and one may directly

match the returned altimetry measurements of the corresponding pixels in multiple image arrays.

Overlapping two images omits a matching algorithm, and this is similar to how landmarks are

compared in the image plane of an optical image. By omitting a matching algorithm, this further

reduces computational time, yet requires the error between the truth and estimated state to be

small enough such that an overlap occurs.

In addition to estimating the position and velocity, the ability to resolve a spacecraft pointing

bias and random pointing error is assessed with the iterative LS filter. While OpNav and feature

tracking approaches also are able to resolve the spacecraft pointing [12], it is more difficult to do

so with a single beam [96] or scanning lidar system.

To support autonomous navigation, the relative simplicity and speed of the algorithms in-

vestigated is evaluated. A procedure is granted greater merit if it produces state errors consistent

with the state uncertainty and is quicker than the other procedures investigated. An EKF is the

simplest estimation filter for onboard estimation, however it may not always produce a consistent

state estimate due to filter saturation. Implementing state iterations with the iterative LS filter
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may combat filter saturation at a lower computational cost than using a UKF. Implementing a low

fidelity onboard shape model and optimally down-selecting the number of altimetry measurements

to process both aim to further reduce the computation cost of measurement processing.

The image properties of the flash lidar measurements are examined for autonomous filter

initialization. This may be useful if the spacecraft has exited safe mode and does not have knowledge

of its relative state. With simple pre-processing algorithms, it may autonomously gain knowledge

of its a priori position and pointing and initialize a sequential estimation filter. In addition, these

algorithms address the challenge of ensuring an overlap occurs to compare observed and computed

images. Similar procedures are seen in SLAM applications [83, 6], but have yet to be investigated

for small body missions.

Optimally selecting a subset of pixels within the flash lidar image to process may further

reduce the computational load and combat filter saturation. Reduction of measurements from a

3D point cloud is seen in ICP algorithms [93] and in spacecraft R&D applications [92].

1.3.1 Contributions

(1) Verified the performance of flash lidar measurements for orbit determination while in prox-

imity to a small body is comparable to or better than the state-of-the-art of using optical

images.

(2) Implemented a model-based approach for predicting the flash lidar measurements that sim-

plified the measurement computation process when compared to a feature-based approach

with optical images.

(3) Designed an iterative filter that handles multiple (lidar) measurements at one time within

a sequential filter.

(4) Developed estimation framework to resolve a spacecraft pointing bias and pointing jitter

with an iterative least-squares filter.
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(5) Analyzed the robustness of the flash lidar measurements and estimation filters to shape

modeling errors.

(6) Designed pre-processing algorithms to determine an a priori position, velocity, and pointing

state to initialize the estimation filter using the flash lidar images and knowledge of the

inertial spacecraft pointing and small body shape.

(7) Developed maximum-information pixel patterns within the flash lidar image to reduce the

number of lidar measurements processed in the filter while maintaining the same level of

accuracy.

1.3.2 Dissertation Outline

Chapter 2 details the methods used in this work and defines the estimation framework.

This includes the estimation state definition, the state dynamics used in the simulations, and the

analytical formulation of the flash lidar measurements. Optical navigation landmarks were used in

a comparison simulation, and their analytical formulation is presented as well. An overview of the

different estimation filters, such as the EKF, UKF, and iterative LS filter is provided, as well as a

discussion of the consider covariance analysis performed and the definition of the Fisher Information

Matrix. The realization of the flash lidar measurements in the estimation filters that includes their

measurement partial derivatives with respect to the estimation state and their information content

is specified.

Chapter 3 defines the small body orbits around Itokawa and Bennu that were investigated,

as well as the definition of the flash lidar sensor model and measurement uncertainty. The or-

bits included stable circular terminator orbits around Itokawa and Bennu, a descent orbit around

Itokawa, and an unstable eccentric orbit around Itokawa. OD simulations are presented in these

various small body orbits, and the three estimation filters, the EKF, UKF, and LS filter, are

compared. An OpNav simulation is provided for comparison with the flash lidar measurement

simulations. The effect of including the spacecraft pointing in the estimation state is investigated,
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as well as the effect of adding process noise.

Chapter 4 introduces robustness studies of initial state errors, shape modeling errors, and

estimating an off-nominal pointing correction. A Monte Carlo simulation while varying the initial

state errors in each of the three estimation filters is studied to compare the filter state errors with

the filter covariance bounds. Monte Carlo simulations are provided with the UKF and LS filter

individually to characterize the limitations of these particular filters. Shape modeling errors were

introduced by employing a low fidelity shape model in the filter and using a high fidelity shape

model for the truth observations. A consider covariance analysis and consider covariance filter was

implemented in this case to capture the shape modeling errors. The LS filter was used to solve a

simulation with pointing jitter, in which a random error was applied to the spacecraft pointing at

each time step.

Chapter 5 develops a pre-processing algorithm for filter initialization. With knowledge of

the spacecraft’s inertial pointing direction, the asteroid attitude, and an observation with the

asteroid in view, this algorithm determines a relative position and pointing of the spacecraft. A

framework is provided to initialize the filter with two successive observations and applications of

this algorithm, and the accumulation of high-frequency observations. A Monte Carlo simulation

with single observations is provided to characterize the limitations of this algorithm.

Chapter 6 determines the optimal pixel placement within a single flash lidar image in order

to maximize the information returned on the state. From this analytical and numerical analysis,

six pixel patterns are developed and compared for processing time and information content. Four

of these pre-determined pixel patterns are tested in each of the three filters, and compared to an

OD simulation with the full flash lidar image.

1.3.3 Publications

For reference, the journal publications that support this work are presented in reverse chrono-

logically order. (∗ Indicates first author )

Journal Papers
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Chapter 2

Orbit Determination Methods

Satellite navigation is the process of orbit determination (OD). This involves creating a model

of the spacecraft’s dynamical environment, and predicting the spacecraft’s motion and expected

measurements in this environment. The predicted measurements are compared to the truth obser-

vations, and the difference between the two provides an update to the current state of the spacecraft

and how it will behave as it is propagated through time.

Typical measurements of a spacecraft may include range, range-rate, or relative angles from

Earth to the spacecraft. Measurements relative to the spacecraft’s central body are typical with

small body missions, and may include optical images or altimetry measurements.

The estimation state at a minimum includes the spacecraft’s position and velocity, and may

include other parameters that help define the dynamical environment of the spacecraft and the

expected measurements. Additional dynamical properties may be related to the gravity of the

central body, gravitational forces separate from the central body, or atmospheric effects, to name

a few. Measurement parameters may be related to measurement biases, the location of ground

stations, or sensor pointing.

The OD measurement model will produce a predicted (computed) measurement, and compare

it to the truth (observed) measurement. The measurements taken of the spacecraft state usually will

not directly observe the spacecraft state, but exist in a nonlinear combination of the state. Through

statistical models, linearizing the system with partial derivatives, and the difference between the

observed and computed measurements, an estimate of the spacecraft state is produced. This
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state is then propagated through the dynamical model to predict its motion and the subsequent

measurements.

Errors are likely to occur in the prediction of the spacecraft’s motion and its predicted

measurements. These can be due to errors such as unmodeled dynamics, linear approximations

in the OD mathematical model, or errors in the observations. Therefore, to maintain an accurate

estimation of the spacecraft state, the estimation procedure must be repeated as the spacecraft

evolves in its dynamical environment.[103]

2.1 Estimation Framework

The estimation state is composed of the position, r and velocity, v of the spacecraft, or the

position, velocity, and pointing, θ of the spacecraft.

X =


r

v

θ

 (2.1)

The position and velocity of the spacecraft are defined with respect to the body in which the

spacecraft was orbiting, and the pointing state is defined with Euler angles. The estimated position

and velocity are defined in the asteroid-fixed inertial frame, and the rotation between the asteroid-

centered body-fixed frame and the inertial frame is assumed to be known.

The angles in θ = [θ1, θ2, θ3] represent a rotation from the nominal pointing direction of the

spacecraft, û∗ to the corrected pointing, û. The angles correspond to a 3−1−2 rotation, where the

angle subscripts correspond to their axis of rotation. The error rotation is represented in Equation

2.2:

û = C2(θ2)C1(θ1)C3(θ3)û∗ (2.2)

The x- and y-axes of sensor frame are defined as the flash lidar pixel array, and the +z-axis is the

axis from which the nominal pointing is defined. The error rotation represents a twist rotation

about the boresight direction (z-axis), and then a rotation about the x- and y-axes of pixel array.
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The spacecraft dynamics are described by the velocity and acceleration of the spacecraft.

The velocity, v describes the derivative of the position, r, and the acceleration, a describes the

derivative of the velocity, v. The estimated pointing state describes an off-nominal pointing error

for simplicity, and the pointing angle dynamics are set to zero.

Ẋ = F (X) =


v

a

0

 (2.3)

The acceleration, a includes the gravity of the central body described by spherical harmonics, solar

radiation pressure from the sun, and third body effects from the sun. These equations of motion

are described in more depth in Section 2.2.

Flash lidar measurements are the sole measurements used for relative navigation in this thesis.

The flash lidar measurements are taken from the spacecraft and directed at the small body. These

measurements are used in the estimation filters to produce updates to the estimation state, X. The

analytical formulation of the flash lidar images are outlined in more detail in Section 2.3 and the

measurement partial derivatives are outlined in Section 2.6.

2.2 Small Body Dynamical Environment

The typically irregular shape and low mass of small bodies leads to varying gravity dynamics

dependent on the body-relative position of an orbiting object. The small mass leads to a small

gravitational parameter, and an orbiting spacecraft is easily effected by other dynamical forces

such as the sun, solar radiation pressure, and other planets. A comet or active asteroid may have

outgassing as well that may impart an additional acceleration or drag on the orbiting spacecraft

and may effect the comet’s heliocentric ephemeris.

While ground-based observations provide information on the physical shape and rotation of

a small body, typically this information is insufficient to fully design a small body mission until

the spacecraft arrives at and further characterizes the small body. [11] Therefore, many physical

parameters are estimated along with the spacecraft position and velocity when navigating around



39

a small body. These parameters may include gravity field coefficients, the orientation and spin axis

of the small body, the location of landmarks on the surface, and non-gravitational accelerations due

to the spacecraft and outgassing from the small body. [77] [64] [11] This work does not estimate

the dynamical parameters of the small body environment, but acknowledges that this is performed

in typical small body missions.

The dynamics modeled for this research involve the main contributing sources of dynamical

perturbations. The dynamical models include modeling the gravity field with a spherical harmonics

expansion, modeling solar radiation pressure on the spacecraft as a cannonball model, and including

third-body effects from the sun. The following sections detail the analytical expressions used for

the accelerations, a comparison of these accelerations, and a discussion on the stability of small

body orbits.

2.2.1 Spherical Harmonic Gravity Modeling

Small bodies tend to have irregular, non-spherical shape, and modeling their gravity as a point

mass is insufficient when orbiting such a body. The gravity of a small body is therefore typically

modeled with such methods as a spherical harmonic expansion [62] or a polyhedron model [111],

which take into account the body-relative position of the spacecraft. Modeling the gravity field

with a spherical harmonic expansion is typically seen in small body missions [77, 64, 18], as it is

simple to estimate the coefficients in the estimation state to update the dynamics.

Equation 2.4 shows the formulation for the spherical harmonics expansion, where Cl,m and

Sl,m are the spherical harmonic coefficients, and l and m are the degree and order, respectively. It

is of note that this formulation assumes the body-fixed coordinate system aligns with the center of

mass of the body, and hence the coefficients C1,0, C1,1, and S1,1 are all zero.

U =
µ

r

∞∑
l=2

l∑
m=0

(
Rs
r

)l
Pl,m(sinφ) (Cl,m cos(mλ) + Sl,m sin(mλ)) (2.4)

Equation 2.4 shows simply the spherical harmonics expansion of the potential due to the

variations in the gravity field. The total potential due to the gravity of the body is defined by
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adding in the point mass gravity to this potential, and this is shown in Equation 2.5.

U =
µ

r
+
µ

r

∞∑
l=2

l∑
m=0

(
Rs
r

)l
Pl,m(sinφ) (Cl,m cos(mλ) + Sl,m sin(mλ)) (2.5)

Here, µ is the gravitational parameter, r is the position magnitude with respect to the center

of mass, Rs is the reference radius of the small body, φ and λ are the latitude and longitude,

respectively, and Pl,m( ) are the Legendre polynomials.[50, 108]

As the degree and order increase, the value of the corresponding coefficients usually decreases,

and therefore to avoid machine precision round-off errors, the coefficients are usually normalized.

Equation 2.6 defines this normalization.[108]

Πl,m =

√
(l +m)!

(l −m)!k(2l + 1)

S̄l,m = Πl,mSl,m C̄l,m = Πl,mCl,m P̄l,m =
Pl,m
Πl,m

k = 1 if m = 0 k = 2 if m 6= 0

(2.6)

Equation 2.5 describes the potential on the spacecraft, therefore the acceleration due to the

gravity is the derivative of this potential with respect to the position of the spacecraft, where r, is

the planet-fixed position of the spacecraft:

aSH =
∂U

∂r
(2.7)

The gravitational acceleration is implemented with the formulation in Reference [50]. This formu-

lation defines the latitude and longitude coordinates in terms of a body-fixed cartesian frame, and

provides further simplification of the coefficients and Legendre polynomials in order to improve

performance of numerically integration.
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2.2.2 Solar Radiation Pressure

The solar radiation pressure (SRP) acceleration is modeled as a cannonball model in Equation

2.8,

aSRP = −pAUCR
(
A

m

)
r�/sc

r3
�/sc

(1AU)2 (2.8)

where, pAU = (1357 W/m2)/(3e8 m/s), CR is the coefficient of reflectivity set to 1.2, the area to

mass ratio, A
m = 0.01 m2/kg, r�/sc is the vector from the spacecraft to the sun, and r�/sc is its

magnitude. [108]

2.2.3 Sun Third Body Effects

The third body perturbations from the sun are expressed in Equation 2.9,

a3 = µ�

(
rsc/�

r3
sc/�

−
rast/�

r3
ast/�

)
(2.9)

where µ� is the gravitational parameter of the sun, rsc/� is the vector from the sun to the spacecraft

with rsc/� as its magnitude, and rast/� is the vector from the sun to the asteroid, with rast/� as

its magnitude. The sun is held fixed with respect to the asteroid since the simulations are over a

short enough period of time that this movement is negligible.

2.2.4 Estimation Dynamics

The estimation state at a maximum involves the position, r, velocity, v, and pointing error,

θ, of the spacecraft. The equations of motion of this state are defined as:

Ẋ = F (X) =


v

a

0

 (2.10)

where

v =ṙ

a =r̈ = aSH + aSRP + a3

(2.11)
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The acceleration is the derivative of the velocity, and is the addition of the three contributing

sources: gravity (aSH), SRP (aSRP ), and third body effects from the sun (a3). The velocity is the

derivative of the position, and the derivative of the pointing error derivative is zero.

2.2.5 Comparison of Accelerations

Figure 2.1 compares the effects of the different accelerations while the spacecraft is in a 1

km circular terminator orbit about the asteroid, Itokawa. The spherical harmonics include up to

degree and order four. The accelerations due to the central body are the main contributing factor

to the spacecraft motion, while the perturbations due to SRP and the spherical harmonics are

close to the same order. One can notice the variations in acceleration from the spherical harmonics

perturbations as the spacecraft orbits through different latitudes and longitudes of Itokawa. These

small perturbations are usually negligible when a spacecraft is orbiting a larger body, but play a

larger role in the small body environment.

2.2.6 Small Body Terminator Orbits

Orbits about small bodies have a tendency to become unstable due to the non-uniform gravity

field and perturbations from SRP. It has been proven however, that stable orbits exist with the

correct selection of the eccentricity and inclination of the orbit. If the direction of the SRP force,

d̂ (away from the sun) is not rotating, frozen orbits exist for an eccentricity of e = 0 or when the

angular momentum vector of the orbit, h, is along the direction of d̂. In addition, an orbit that is

initialized in the plane perpendicular to d̂ will remain circular if d̂ is not rotating.

For the case when the direction of the SRP force is rotating, a frozen orbit exists in the

plane perpendicular to the sun line, also known as the terminator plane. Furthermore, as the SRP

perturbation becomes larger, the orbit becomes more circular. This makes these orbits preferred in

situations with strong perturbations. Additional care must be taken to prevent escape in regards

to the perturbations due to the oblateness of the body, the rotation rate of the body, and the

semi-major axis of orbit. Although, once the orbit pole of an asteroid is determined, it is possible
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Figure 2.1: Accelerations in a 1 km circular terminator orbit around Itokawa for 3 days (approxi-
mately 2 orbital periods)

to specify when this additional care is necessary for the terminator orbits with respect to their

interaction with the gravity field of the asteroid. [97]

A circular orbit in the plane parallel to the sun terminator plane is often used as a stable orbit

for proximity operations, and will serve as a “home base” orbit for the OSIRIS-REx mission. [55]

While these stable orbits exist, accurate and consistent OD must still be performed while orbiting

a small body in order to ensure the safety of the spacecraft.

2.3 Flash Lidar Measurements

A flash lidar instrument has the ability to return the light intensity of an object in its field of

view (FOV), or the range to that object. In this work, the flash lidar measurements are considered

to the be the observed ranges of the target in the FOV with errors based on the observed range.
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2.3.1 Analytical Representation

A flash lidar image may be considered as different vectors originating at a focal point, directed

through the sensor frame, toward a target scene. The vector magnitude of these beams is the range

and the vector direction corresponds to an image pixel. Figure 2.2 illustrates the asteroid body-

fixed vector diagram of one range measurement, ρ = ρû, and the sensor plane at the spacecraft. In

this problem, the magnitude of ρ was measured from the sensor plane to the surface of the asteroid.

In the diagram, rsc is the position of the spacecraft with respect to the asteroid body-fixed frame,

sxy is the position of the pixel on the sensor plane, fp is the focal point, and rA is the vector from

the asteroid center to the asteroid surface where the lidar beam intersects the surface.

Equation 2.12 expresses the range measurement as a function of the asteroid surface radius

and spacecraft position. This equation removes the focal point sensor geometry, and assumes that

the range vector originates at the spacecraft state, rsc. The value ρ is treated as the reported range,

and the pointing vector û is treated as the pointing direction associated with a specific pixel.

ρû = rA − rsc (2.12)

An example of a flash lidar image is shown in Figure 2.3(a), viewing the north pole of

Itokawa. Figure 2.3(a) is an image; the axes on the plots represent the pixel number, and the color

bar represents the range in kilometers. The asteroid shape models used in this work are described as

facet/vertex models. An example of the shape model of Itokawa is illustrated in Figure 2.3(b). The

computed flash lidar measurements are calculated with a ray-tracing technique that is explained in

more detail in Section 2.3.2.

2.3.2 Generation of Flash Lidar Images

To generate the computed flash lidar measurements, ray-tracing is used with each lidar beam.

The shape of the asteroid is represented as a facet/vertex model, and each lidar beam was repre-

sented by a pointing direction, û in the flash lidar array. Given the individual pointing directions

of the lidar beams and the facet/vertex model of the asteroid, a range for each beam is computed
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Figure 2.2: Flash lidar vector diagram depicting one lidar vector to the asteroid surface that returns
a range measurement.

10 20 30 40 50 60

10

20

30

40

50

60

0.88

0.9

0.92

0.94

0.96

0.98

R
a
n
g
e
 (

k
m

)

(a) Flash LIDAR measurement of Itokawa

0.2

0.1

-0.15

-0.1

-0.05

y (km)

0

-0.2 0

z
 (

k
m

)

0.05

0.1

0.15

-0.1

x (km)

0 -0.1
0.1

0.2 -0.2
0.3

(b) Facet/vertex model of Itokawa

Figure 2.3: Depiction of (a) a sample flash lidar measurement of Itokawa and (b) a facet/vertex
shape model of Itokawa.
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from the origin of the spacecraft to the closest intersection of that lidar beam with the shape model.

The pointing direction of each lidar beam is defined in the sensor frame from the focal point

of the lidar array to its specified pixel location in the array (see Figure 2.2). The individual pointing

vector is rotated from the sensor frame to the asteroid body-fixed frame, and offset by the asteroid

body-fixed position of the spacecraft.

Each facet in the shape model is tested to determine distance from the spacecraft to the

plane of the facet, and point where the lidar beam intersects that plane. Equation 2.13 describes

the range value, ρ from the spacecraft to the plane of interest, where V1 is a point on that plane

(a vertex in the model), BF r is the position of the spacecraft in the asteroid-centered body-fixed

frame, n̂ is the normal vector to the facet of interest, and û is the pointing direction. Equation 2.14

describes the point, p where the lidar beam intersects the plane.

ρ =
(V1 −BF r) · n̂

û · n̂ (2.13)

p = ρû+BF r (2.14)

Once the range, ρ and point of intersection to the plane of interest, p is computed, it is

determined whether the point, p is within the bounds of the facet. Given the three vertices that

compose the facet, V1, V2, V3, and the point of intersection, p, the following equations are used to

determine if p is within the facet.

The following vectors are defined as the differences between the vertices and point of inter-

section, and the matrix, M is composed of two of these difference vectors (v1 and v2) and the

surface normal vector, n̂.

v0 =V3 − V1

v1 =V2 − V1

v2 =p− V1

(2.15)

M =

[
v1 v0 n̂

]
(2.16)
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The two vectors, a1 and a2 are defined from the sub-determinants of M divided by the determinant

of M :

a1 =


∣∣∣∣∣∣∣
v0(2) n̂(2)

v0(3) n̂(3)

∣∣∣∣∣∣∣
|M |

∣∣∣∣∣∣∣
v0(1) n̂(1)

v0(3) n̂(3)

∣∣∣∣∣∣∣
|M |

∣∣∣∣∣∣∣
v0(1) n̂(1)

v0(2) n̂(2)

∣∣∣∣∣∣∣
|M |

 (2.17)

a2 =


∣∣∣∣∣∣∣
v1(2) n̂(2)

v1(3) n̂(3)

∣∣∣∣∣∣∣
|M |

∣∣∣∣∣∣∣
v1(1) n̂(1)

v1(3) n̂(3)

∣∣∣∣∣∣∣
|M |

∣∣∣∣∣∣∣
v1(1) n̂(1)

v1(2) n̂(2)

∣∣∣∣∣∣∣
|M |

 (2.18)

The remaining difference vector (v2) is dotted with both of the vectors, a1 and a2:

ν1 = a1 · v2

ν2 = a2 · v2

(2.19)

If the resulting values of ν1 and ν2 are positive, and the sum of ν1 + ν2 ≤ 1, then the point p is

inside the facet.

If p is determined as inside the facet of interest, the range ρ is recorded as the range for that

lidar beam pixel. If more than one range, ρ is returned for one lidar beam, the smallest range is

recorded, as that would be the facet that the lidar beam would encounter first.

2.4 Optical Navigation Measurements

The measurements for optical navigation (OpNav) are “landmarks” that are tied to the sur-

face of the body. The landmark locations for the OpNav measurements are defined as vectors from

the center of the body to the surface of the body. It is assumed that a small body characterization

phase has been completed, a shape model has been defined, and the body-fixed position vectors of

these landmarks are known.

During typical OpNav operations, the incoming optical images are used to create a 3D shape

model of the small body through stereophotoclinometry (SPC). This involves predicting the position

of the spacecraft, the pointing of the camera, the direction of the sun, and the albedo of the surface.

Once the shape model is created, SPC is used to create landmark maps (L-maps) on the surface
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to define landmark locations. A correlation process occurs between the landmark locations and

the optical images to determine the body-fixed locations of the landmarks. Once the landmark

locations are determined, the locations are passed to the OD team to use in the navigation filters.

It was assumed that this process had previously been completed, and the landmark locations were

available to perform OD.

The landmarks are determined to be in view of the camera through three metrics: (1) The

line of sight vector (LOS) from the focal point to the landmark is within the field of view (FOV),

(2) The landmark is sunlit, and (3) The landmark is not behind the asteroid, which is determined

through a facet search with the LOS vector. The landmark is considered to be sunlit if the angle

between the landmark vector, ILM and the vector from the landmark to the sun is less than 90◦.

To determine if a landmark is behind the asteroid, a facet search of the shape model is conducted

similar to the ray-tracing algorithm presented in Section 2.3.2. Using the ray-tracing technique,

the range of the LOS vector and facet it hit are recorded. If the LOS vector encounters a facet

from the shape model before it encounters its corresponding landmark, this landmark is considered

behind the asteroid and out of view.

The landmark vectors, BFLM , are rotated from the body-fixed frame to the inertial frame,

ILM , based on the current time step (CBF/ACI = C3(θ0 + tc)), and the residuals are computed in

the inertial frame.

The sample/line (s, l) coordinates of the landmarks in the image frame are determined from

the LOS vector. This formulation is adapted from Owen (2011)[84]. The LOS vector is rotated

from the inertial frame to the camera frame and projected on to the camera plane through Equation

2.20, where (x, y) is the projected LOS vector and fl is the focal length:x
y

 =
fl

CamLOS3

CamLOS1

CamLOS2

 (2.20)

The projected LOS vector is converted into sample/line coordinates with Equation 2.21:s
l

 = K

x
y

+

s0

l0

 (2.21)
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The origin of the sample/line coordinate system, (s0, l0), is defined as (0, 0) and K =

I(1px/km). The conversion kilometer per pixel is defined by Equation 2.22, where fl is the focal

length and npx is the total number of pixels across one axis. With the sensor model, fl = 10 m,

FOV = 20◦, and npx = 64× 64, this is approximately 5.51e-5 km/px.

fl
tan(FOV/2)

npx/2
km/px (2.22)

2.5 Estimation Filtering Methods

Linear estimation methods involve linearizing the state dynamics about a reference state and

providing a linear update to the estimation state. The measurements taken of the estimation state

are usually a nonlinear combination of the estimation state, and therefore the measurements are

linearized through partial derivatives as well. The unscented Kalman filter (UKF) is a nonlinear

filter and avoids computing these partial derivatives. The UKF estimates a state by propagating a

statistically determined set of states through the nonlinear dynamics and computes a measurement

for each of these states.

The following sections outline the linearization process of the state dynamics and measure-

ments with respect to the estimation state, X. The estimation filters include a least-squares solu-

tion and a minimum variance estimator. The minimum variance estimator is used in the sequential

Kalman filter, which is outlined below along with the extended Kalman filter (EKF). An unscented

Kalman filter (UKF) and an iterative least-squares (LS) filter are presented below as well. The

simulations in the following chapters compared the performance of the EKF, UKF, and LS filter

methods.

2.5.1 Linearization

The estimation state is linearized around a reference trajectory, and the deviation from the

reference trajectory is the solution to the estimation procedures. The reference state is defined

as X∗, the truth state is defined as X, and the deviation from the truth state is defined as x.
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Therefore, the truth state is defined as:

X = X∗ + x (2.23)

A Taylor series expansion is used to linearize the dynamics, Ẋ(t) = F (X, t), around the reference

trajectory, X∗. With higher order terms ignored, the Taylor series expansion is:

F (X, t) = F (X∗, t) +

(
∂F (X, t)

∂X(t)

)∗
(X(t)−X∗(t)) (2.24)

The derivative of the dynamics with respect to the state is defined as the A matrix, and is evaluated

along the reference state:

A(t) =

(
∂F (X, t)

∂X(t)

)∗
(2.25)

The deviation in the dynamics can then be written in state space form, where ẋ(t) = F (X, t) −

F (X∗, t) and x = X(t)−X∗(t):

ẋ(t) = A(t)x (2.26)

The observations are linearized with a Taylor series expansion around the measurements

evaluated along the reference trajectory, G(X∗, t). The error in the truth observations, Y , and the

computed measurements is represented by εεε, and is assumed to be Gaussian white noise.

Y = G(X∗, t) +

(
∂G(X∗, t)

∂X(t)

)
(X(t)−X∗(t)) + εεε (2.27)

The measurement mapping matrix between the observations and the estimation state at time t is

defined as H̃, and is evaluated with the reference trajectory:

H̃ =
∂G(X∗, t)

∂X(t)
(2.28)

The observation deviation is defined as y = Y −G(X∗, t), and the observation deviation equation

becomes:

y = H̃x + εεε (2.29)

The state transition matrix (STM), φ(tk, tk−1) is used to propagate the state deviations from

time tk−1 to tk:

x(tk) = φ(tk, tk−1)x(tk−1) (2.30)
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The STM is propagated through the state dynamics with the A matrix:

φ̇(t, tk) = A(t)φ(t, tk) (2.31)

Measurement mapping matrices produced at different times may be related to a single epoch

time with the STM. This is useful if measurements are taken at various times throughout the

propagation because one may use the information from all of these observations to the estimate

the state at an epoch time. The combination of the multiple measurement mapping matrices, H̃

related to an epoch time is defined as [103]:

H =


H̃0φ(t0, tk)

...

H̃lφ(tl, tk)

 (2.32)

2.5.2 Least-Squares Solution

The method of least-squares is used to minimize a cost function, J(x) based on the errors of

the observations:

J(x) =
1

2
εεεTεεε (2.33)

By substituting in the observation deviation equation, the cost function becomes:

J(x) =
1

2
(y −Hx)T (y −Hx) (2.34)

To minimize this cost function, the derivative of J with respect to the state deviation, x is set

equal to zero, and the second derivative is ensured to be positive. Following this math procedure,

the best estimate of the state deviation is [103]:

x̂ = (HTH)−1HTy (2.35)

2.5.3 Minimum Variance Estimator with a priori Information

The minimum variance estimator is the basis of the Kalman filtering techniques explained in

this chapter. Unlike the least-squares estimation solution, this estimator includes information on
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the uncertainty of the measurements, as well as a priori information on the estimation state and

state covariance.

The minimum variance estimator assumes that the observation errors are random, Gaussian

white noise with a specified covariance, and requires the estimator to be linear, unbiased, and

minimize the variance. The observational errors, εεε, are assumed to be of a Gaussian distribution

with zero mean and covariance R:

E[εεε] = 0, E[εεεεεεT ] = R (2.36)

The observational errors are assumed not to be time-correlated, defining R as a diagonal matrix.

With these assumptions and requirements, and using the measurement mapping matrix, H,

observation uncertainty covariance, R, and difference in the observed and computed measurements,

y, it follows that the best estimate of the state deviation at time tk is:

x̂k = (HT
k R
−1
k Hk)

−1HT
k R
−1
k yk (2.37)

with a minimum covariance:

Pk = (HT
k R
−1
k Hk)

−1 (2.38)

The inclusion of an a priori state, x̄k and a priori covariance, P̄−1
k is folded into the best

estimate of the state and its covariance:

x̂k = (H̃T
k R
−1
k H̃k + P̄−1

k )−1(H̃T
k R
−1
k yk + P̄−1

k x̄k) (2.39)

Pk = (H̃T
k R
−1
k H̃k + P̄−1

k )−1 (2.40)

In Equation 2.39 and 2.40, the measurement mapping matrix is evaluated by H̃k, which is evaluated

at time tk, instead of multiple mappings to an epoch time as is with Hk. [103]

2.5.4 Sequential Kalman Filter

In the sequential Kalman filter, the measurements are processed at each observation time, as

opposed to mapping multiple measurements to one specific observation epoch. A similar approach
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to the minimum variance method above is applied, with the addition of the computation of a

Kalman gain, Kk. An advantage to this approach is that the matrix to be inverted is the same

dimensionality as the number of observations at that time step, instead of the number of parameters

estimated. Therefore, if observations are processed one at a time, then only scalar operations are

necessary.

To initialize the filter, the best estimate and minimum variance are propagated from the pre-

vious time, tk−1 to the next observation time, tk by the STM. The propagated state and covariance

then becomes the a priori state, x̄k, and covariance, P̄k at time tk:

x̄k = φ(tk, tk−1)x̂k−1 (2.41)

P̄k = φ(tk, tk−1)Pk−1φ
T (tk, tk−1) (2.42)

A computed measurement is made with the reference trajectory state, and compared to the

truth observation. The computed measurement, G(X∗k), is subtracted from the observed measure-

ment, Yk, to form the observation deviation vector: yk = Yk −G(X∗k). The measurement mapping

matrix, H̃k (Equation 2.28) is calculated with the computed measurement and the reference tra-

jectory state.

The Kalman gain is defined from the measurement mapping matrix, the a priori covariance,

and the measurement uncertainty matrix:

Kk = P̄kH̃
T
k (H̃kP̄kH̃

T
k +Rk)

−1 (2.43)

The state deviation update and the covariance are derived with the Kalman gain:

x̂k = x̄k +Kk(yk − H̃kx̄k) (2.44)

Pk = (I −KkH̃k)P̄k (2.45)

where I is the identity matrix.

An alternative form of the covariance matrix is the Joseph formulation of the covariance:

Pk = (I −KkH̃k)P̄k(I −KkH̃k)
T +KkRkK

T
k (2.46)
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This form always yields a symmetric result of the covariance. With Equation 2.45, the covariance

can lose its symmetric properties if the a priori covariance is large, and the measurements are

very precise, causing the covariance to shrink quickly. Therefore, due to its stability, the Joseph

formulation is used in the subsequent simulations.

For the conventional Kalman filter, the state deviation solution at each time step is recorded.

For the next observation time, the reference trajectory state, the previous state deviation and the

covariance are propagated forward, a state deviation and covariance solution are recorded, and

the process is repeated. The result is a recorded state deviation and covariance matrix at each

observation time. The reference trajectory is not effected by the state deviation solutions, and

continues to be used in the state propagation and computation of the measurements. [103]

2.5.4.1 Extended Kalman Filter

The Extended Kalman filter (EKF) follows the same procedures and math formulations as the

conventional Kalman filter, except the reference trajectory state is updated with the state deviation

solution at each time step. The updated reference trajectory state is used in the propagation step

for the next observation, representing the best estimate of the reference trajectory. Therefore:

(X∗k)EKF = X∗k + x̂k (2.47)

By updating the reference trajectory, the state deviation is reset to zero: x̂k = 0, and the a priori

state at the next observation time is zero: x̄k+1 = 0. [103]

2.5.5 State Noise Compensation (Process Noise)

As a large number of observations are processed, the elements of the covariance asymptotically

approach zero. At each time step, more information is added, and more uncertainty is subtracted

from the covariance (Equation 2.45). This results in the Kalman gain trending toward zero, and the

state deviation update equaling the a priori state deviation (Equation 2.44). When this happens,

the filter becomes insensitive to new information and observations, and filter saturation occurs.
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Modeling errors can occur in the dynamical model or in the linearization of the nonlinear

dynamics. These errors, combined with filter saturation, can lead to filter divergence as more obser-

vations are processed. The addition of process noise to the acceleration equations can compensate

for these dynamical errors, and increases the uncertainty in the covariance at each time step. This

results in a lower limit for the covariance to prevent filter saturation.

For the state defined as the position and velocity: X = [r, v]T , the dynamics of the system

can be written as:

ẋ(t) = A(t)x(t) +B(t)u(t) (2.48)

where, x(t) is the state deviation. The function A(t) =

(
∂F (X, t)

∂X(t)

)∗
, the function u(t) is assumed

to be white Gaussian process noise, and B(t) maps the process noise into the state dynamics. The

function u(t) has the properties:

E[u(t)] = 0, E[u(ti)u
T (tj)] = Q(ti)δij (2.49)

The matrix, Q(ti) is the process noise covariance matrix, and δij is the Dirac Delta function. The

matrix Q(ti) is assumed to be a constant diagonal matrix.

The state deviation and covariance are propagated with the STM, and the process noise is

propagated with the matrix, Γ(tk+1, tk). The a priori state deviation and covariance at time tk+1

are then augmented to include process noise [103]:

x̄k+1 = φ(tk+1, tk)x̂k + Γ(tk+1, tk)uk (2.50)

P̄k+1 = φ(tk+1, tk)Pkφ
T (tk+1, tk) + Γ(tk+1, tk)QkΓ

T (tk+1, tk) (2.51)

The matrix, Γ(tk+1, tk) is defined as the process noise transition matrix:

Γ(tk+1, tk) =

∫ tk+1

tk

φ(tk+1, τ)B(τ)dτ (2.52)

From the definition of the state, X = [r, v]T , the equations of motion are the velocity, v and

acceleration, a: Ẋ = [v, a]. It is assumed that the process noise was only added to the acceleration;
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therefore, from Equation 2.48, the process noise mapping matrix results in:

B(τ) =

03×3

I3×3

 (2.53)

The integral of the process noise transition matrix is rewritten as:

Γ(tk+1, tk) =

∫ tk+1

tk

φ2(τ)

φ4(τ)

 dτ (2.54)

where, φ2(τ)

φ4(τ)

 =


∂r(tk+1)

∂v(τ)
∂v(tk+1)

∂v(τ)

 (2.55)

If the velocity is assumed to be linear between measurements, and the measurements are dense,

the state and dynamics may be approximated as linear:

X(tk+1) = Ẋ(τ)(tk+1 − τ)

∂X(tk+1)

∂Ẋ(τ)
= tk+1 − τ

(2.56)

It is further assumed that the time difference between measurements is small (from the dense

measurement tracking assumption), and the velocity components negligibly effect each other. With

these assumptions, the function inside the integral for Γ(tk+1, tk) may be further approximated as:

φ2(τ)

φ4(τ)

 =



tk+1 − τ 0 0

0 tk+1 − τ 0

0 0 tk+1 − τ

I3×3


(2.57)

This leads to the approximation of the process noise transition matrix as:

Γ(tk+1, tk) =



∆t2

2
0 0

0
∆t2

2
0

0 0
∆t2

2

∆t 0 0

0 ∆t 0

0 0 ∆t


= ∆t

∆t

2
I3×3

I3×3

 (2.58)
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where ∆t = tk+1 − tk, and I is the identity matrix.

In the presented simulations, this formulation for process noise is added to the covariance, as

in Equation 2.51. If a gap occurs in the measurements that is above a certain threshold, process

noise is not added to the measurements.

2.5.6 Sequential Consider Kalman Filter

The Kalman filter assumes that the estimator is unbiased and the measurement errors are

accurately modeled as Gaussian white noise. In practice, this is not always the case as unmodeled

errors in the dynamical or measurement model can occur and cause biases in the state estimates.

These unmodeled errors are treated as biases in the estimates, and may be neglected, directly esti-

mated, or considered. At times, directly estimating these errors may be computationally expensive

or the parameters may be poorly observable. Considering these parameters, either in an analysis or

a filter, does not estimate the parameters directly but mathematically inflates the state covariance

to include the uncertainty of the consider parameters.

The consider filter, also referred to as the Schmidt-Kalman filter, was first developed by

Schmidt (1966)[98], and has seen further derivations by Jazwinski (1970)[57] and Tapley et al.

(2004) [103]. Several formulations and comparisons of these formulations have been studied [115,

54, 113]. The following formulation follows the derivation in Tapley et al. (2004) [103].

The consider parameters are added to the estimation state:

z =

x

c

 (2.59)

where x is the estimated state deviation (x = X −X∗), and c is the consider state deviation(c =

C − C∗). The a priori estimates of x and c are given by:

x̄ = x + ηηη (2.60)

c̄ = c + βββ (2.61)
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where, ηηη and βββ have the properties:

E[ηηη] = 0, E[ηηηηηηT ] = P̄x (2.62)

E[βββ] = 0, E[ββββββT ] = P̄cc (2.63)

E[ηηηβββT ] = P̄xc = 0 (2.64)

The last equation assumes there is no initial correlation between the state errors and the consider

parameter errors. The measurement residual equation is given by:

y =Hz + εεε

=Hxx +Hcc + εεε

(2.65)

where εεε ∼ N(0, R).

The measurement mapping matrices are defined for the estimated state, X and consider

state, C:

H̃xk =
∂G(Xk, tk)

∂X

∣∣∣∣
∗

(2.66)

H̃ck =
∂G(Xk, tk)

∂C

∣∣∣∣
∗

(2.67)

The measurement mapping matrices are used to define the information matrices, Λxxk and Λxck at

time tk:

Λxxk = P̄xk + H̃T
xk
R−1
k H̃xk (2.68)

Λxck = P̄xck + H̃T
xk
R−1
k H̃ck (2.69)

The sensitivity matrix is defined as: Sxc = −PxΛxc. Substituting in the information matrices and

assuming that P̄xc = 0, the sensitivity matrix at time tk becomes:

Sxck = −PxkH̃T
xk
R−1
k H̃ck (2.70)

The sensitivity matrix defines how a state update that has considered parameters varies with

respect to those considered parameters. The sensitivity matrix also maps the consider parameter

covariance into the state space.
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2.5.6.1 Consider Covariance Analysis

In the consider covariance analysis, a consider state update and consider covariance are

computed that include the effects of the sensitivity matrix. The state update with considered

parameters is:

x̂c = x̂ + Sxcc̄ (2.71)

The consider covariance is defined as Pc = E[(x̂c − x̂)(x̂c − x̂)T ] and may be written:

Pc = Px + SxcP̄ccS
T
xc (2.72)

These are calculated with the covariance, Px and the state update, x̂ that do not involve the effects

of the consider parameters. The formulation of the consider covariance is now systematically

inflated to include the effects of the consider parameters.

In the sequential consider filter, the time update for the state covariance, P̄ , the state update

x̄, and the Kalman gain, Kk remain the same:

x̄k = φ(tk, tk−1)x̂k−1 (2.73)

P̄k = φ(tk, tk−1)Pk−1φ(tk, tk−1)T (2.74)

The sensitivity matrix may be propagated in the sequential filter, given a previous sensitivity

matrix, Sk−1. The time update for the sensitivity matrix is:

S̄k = φ(tk, tk−1)Sk−1 + θ(tk, tk−1) (2.75)

where φ(tk, tk−1) is the state transition matrix, and θ(t, tk) =
∂X(t)

∂C(tk)
. The time update for the

consider state deviation and the consider covariance are as follows:

x̄ck = x̄k + S̄kc̄ (2.76)

P̄ck = P̄xk + S̄kP̄ccS̄
T
k (2.77)

The cross covariance of the deviations in the consider state and consider parameters is defined as

Pxc = E[(x̂c − x)βββT ] and its time update is:

P̄xck = S̄kP̄cc (2.78)
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For the measurement update, the covariance update and state update remain the same:

x̂k = x̄k +Kk(yk − H̃xk x̄k) (2.79)

Pk = (I −KkH̃xk)P̄k (2.80)

The sensitivity matrix is updated as:

Sk = (I −KkH̃xk)S̄k −KkH̃ck (2.81)

The consider state update and the consider covariance are updated with the sensitivity matrix:

x̂ck = x̂k + Sk c̄ (2.82)

Pck = Pk + SkP̄ccS
T
k (2.83)

as is the cross covariance of the deviations:

Pxck = SkP̄cc (2.84)

To initialize the filter, it is noted that the consider parameters do not effect the a priori value

of the consider state at time t0, hence: x̄c0 = x̄0. It follows from the time update of x̄c0 that S̄0 = 0,

and the initial sensitivity matrix at time t0 is:

S0 = −K0H̃c0 (2.85)

In the consider covariance analysis, the consider state and the consider covariance are cal-

culated separately and recorded separately from the nominal Kalman filter state and covariance

equations. The value of c̄ must be known and is passed into the estimation of the consider state.

If c̄ = 0, then the consider state update is the same as the state update.

2.5.6.2 Consider Covariance Filter

The consider covariance filter derives a consider state update that does explicitly include the

value of c̄, yet captures its effects in the consider state update. In this way, c̄ does not need to be

known a priori, and the state update includes the effects of the consider parameters.
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In the consider covariance filter, a new Kalman gain is computed based on the consider

covariance:

Kck = P̄ckH̃
T
xk

(
H̃xk P̄ckH̃

T
xk

+Rk

)−1
(2.86)

This Kalman gain is used to compute the consider state update:

x̂ck = x̄k +Kck(yk − H̃xk x̂k) (2.87)

The remainder of the time update and measurement update equations remain the same as

in the consider covariance analysis. The difference between the two algorithms is the computation

of the additional Kalman gain, Kck and the computation of the consider state, x̂ck .

2.5.7 Unscented Kalman Filter

The unscented Kalman filter (UKF) differs from the previously discussed filters as it does not

linearize around a reference trajectory, does not require the computation of Jacobian matrices, and

the probability distribution is not restricted to a Gaussian distribution. For an estimation state

of n components, the UKF derives 2n + 1 sigma points from the reference state, and propagates

these points through the nonlinear model dynamics. A measurement is computed for each of

these propagated sigma points and compared to the observed measurement. A weighted average

of the differences between the observed and computed measurements provides a covariance of the

estimated state. From this process, second order accuracy of the probability distribution is provided

for all nonlinear systems, and third order accuracy is provided for Gaussian distributions. [59]

The sigma points that are propagated through the nonlinear dynamics represent the prob-

ability distribution around the mean. Various weighting schemes have been investigated for the

sigma point distribution. [110, 60, 59] These weights effect the spread of the sigma points around

the mean, as well as the weighted averages used to calculate the state update and covariance. The
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method presented here uses the following weights:

Wm
0 = 1− n

3α2

W c
0 = Wm

0 + 1− α2 + β

Wi =
1

6α2

(2.88)

where α and β are tuning parameters. The value of α is defined 1e− 4 ≤ α ≤ 1, and to minimize

errors under a Gaussian distribution assumption, β = 2. [110]

Given an estimated state, X̂k−1 and covariance, Pk−1 at tk−1, the sigma points (χ) at tk−1

can be represented by Equation 2.89, where γ = α
√

3.

χk−1 =

[
X̂k−1 X̂k−1 + γ

√
Pk−1 X̂k−1 − γ

√
Pk−1

]
n×(2n+1)

(2.89)

These sigma points are then propagated through the nonlinear dynamics:

χk/k−1 = F (χk−1, t) (2.90)

A time update is computed from the propagated sigma points, the defined weights, and the process

noise covariance matrix, Qk:

X̄k =
2n∑
i=0

Wm
i χi,k/k−1

P̄k = Qk +
2n∑
i=0

W c
i (χi,k/k−1 − X̄k)(χi,k/k−1 − X̄k)

T

(2.91)

From this weighted average, new sigma points are computed:

χk =

[
X̄k X̄k + γ

√
P̄k X̄k − γ

√
P̄k

]
n×(2n+1)

(2.92)

A measurement is computed with each of the recomputed sigma points, χk:

Gk = G(χk, tk) (2.93)

and combined for a weighted average of the measurements:

ȳk =
2n∑
i=0

Wm
i Gk (2.94)
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The innovation (Pyy) and cross-correlation (Pxy) covariances are computed with the defined

weights, the computed measurements, the weighted average of the measurements, the measurement

uncertainty matrix, Rk, and the sigma points:

Pyy = Rk +

2n∑
i=0

W c
i (Gi,k − ȳk)(Gi,k − ȳk)T (2.95)

Pxy =

2n∑
i=0

W c
i (χi,k − X̄k)(Gi,k − ȳk)T (2.96)

The Kalman gain is determined from the innovation and cross-correlation matrices:

Kk = PxyP
−1
yy (2.97)

The state estimate and covariance matrix are computed with the Kalman gain:

X̂k = X̄k +Kk(Yk − ȳk) (2.98)

Pk = P̄k −KkPyyK
T
k (2.99)

where Yk is the observations.

The best estimate of the state is now considered X̂k. This best estimate is used to formulate

the sigma points at the next time step, tk+1 that are propagated through the nonlinear dynamics.

The difference between this method and the linearized filters is that the state is directly estimated.

With the previous filters, the estimation state described a deviation from a reference trajectory.

2.5.8 Iterative Least-Squares Filter

One of the measurement processing techniques investigated is an iterative least-squares (LS)

algorithm within an EKF. The iterative LS algorithm produces an estimate of the position and

pointing of the spacecraft at one observation time with one flash lidar image. This direct estimate

is passed into an EKF to propagate the state, estimate the velocity, and incorporate a priori

information. This is similar to the current OpNav procedures: an OpNav team uses optical images

to produce an estimated position and pointing of the spacecraft and passes that information to an
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OD team for trajectory estimation. This algorithm parallels the iterative Kalman filter (IKF) [47],

and a comparison is provided below.

To estimate the position and pointing of the spacecraft, a cost function is derived from the

observational errors, minimized, and iterated until convergence. The sum of the square of the

differences between the observed and computed range measurements of each pixel is minimized,

and is expressed as the cost function, J in Equation 2.100.

J =

p∑
i=1

(ρiobs − ρicomp)2 (2.100)

The ranges ρi are from the p number of overlapping pixels in the observed and computed flash

lidar images. This can be rewritten in terms of an observed measurement, Yi, and computed

measurement, Gi(X).

J =

p∑
i=1

(Yi −Gi(X))2 (2.101)

The computed measurement, Gi(X) is expanded about the nominal state, X∗, with a Taylor series

expansion and higher order terms are ignored:

Gi(X) = Gi(X
∗) + H̃iδX (2.102)

In Equation 2.102, H̃i =
∂G(X)i
∂X

∣∣∣∣
∗

is evaluated along the nominal state, X∗, and δX = (X −X∗).

The pre-fit residuals and observation errors are defined in Equations 2.103 and 2.104, respec-

tively, and combing these equations with Equation 2.102, results in Equation 2.105.

yi = Yi −Gi(X∗) (2.103)

εi = Yi −Gi(X) (2.104)

yi = H̃iδX + εi (2.105)

Equation 2.105 is regularly seen in the filter estimation framework [103], and relates the observation

deviation vector, y to the state deviation vector, δX. By substituting Equation 2.104 into Equation

2.101, and substituting that result into Equation 2.105, the cost function, J can be rewritten as:

J = (y − H̃δX)T (y − H̃δX) (2.106)
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where y is a vector of all of the observation deviations, and H̃ is the measurement mapping matrix.

Minimizing Equation 2.106 can be solved through the method of least squares by solving for the

deviation, δX in Equation 2.107, with a covariance matrix, P in Equation 2.108. [103]

δX = (H̃T H̃)−1H̃Ty (2.107)

P = (H̃T H̃)−1 (2.108)

Within in the LS algorithm, a “least-squares state” (XLS) is defined either as the position, r,

or the position and pointing, θ, of the spacecraft. Studying Equation 2.12, the position and pointing

are the two states dependent on the returned ranges, ρi, and therefore the LS state consists of these

states.

XLS =

r

θ

 (2.109)

The state update and covariance equations include the measurement uncertainty of the lidar

beams, Rρ, and are computed with Equations 2.110 and 2.111, where y is defined in Equation

2.103.

δX = (H̃T
LSR

−1
ρ H̃LS)−1H̃T

LSR
−1
ρ y (2.110)

PLS = (H̃T
LSR

−1
ρ H̃LS)−1 (2.111)

After an update, δX, is produced, it is added to the state, XLS . A new computed image is

created, and the algorithm is repeated until a convergence requirement was met.

2.5.8.1 Convergence Criteria

The least-squares algorithm is terminated based on the cost function, J , or a maximum

number of iterations. The algorithm is considered converged if the criteria in Equations 2.112 and

2.113 are simultaneously met. √
J/p < 1.1 ∗ rms(diag(Rρ)) (2.112)

|Jt−1 − Jt|/Jt < 1% (2.113)
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Equation 2.112 represents
√
J/p dropping below a tolerance based on the uncertainty of the ob-

served range values. The criteria,
√
J/p, scales the cost function such that it is the same order of

magnitude as the RMS value of the range uncertainties. Once Equation 2.112 is satisfied, Equation

2.113 is checked until the value of J is within 1% of its previous value. At that point, the algorithm

is considered to be stalled out and converged.

If J stalls out by the criteria in Equation 2.113, yet it is not below the tolerance set in

Equation 2.112, it is assumed that J had reached a local minima, but not the global minima. To

counter this, the current update of XLS is altered before the next algorithm iteration in hopes that

the optimization state would move out of the local minima. If this occurred, the state update δX

is multiplied by −1 for that iteration, and added to the state, XLS : XLSt = XLSt−1 − δXt. While

this does not provide a solution for every case, it is a simple solution that opposes the direction

the optimization state is headed toward the local minima. A maximum of 10 iterations is set if the

algorithm does not converge.

2.5.8.2 Range Registration

To compare the observed and computed ranges of the flash lidar images, the corresponding

pixels of each image array are paired together. The flash lidar image consists of a grid of points

that describes the point cloud, and the range registration method between the point clouds simply

matches the observed pixel grid with the computed pixel grid.

If an individual pixel does not have an observed range, or does not have a computed range, a

comparison can not be made, and that pixel is not used. It is assumed that the pixels that do not

have both an observed and computed range are on the perimeter of the image. The measurements

may contain thousands of range points, and therefore excluding pairs on the boundaries of the

image is assumed to be acceptable.



67

2.5.8.3 Direct Measurement Filter

The result from the LS algorithm is a position error or a position and pointing error estimate

directly, and this is fed into an outer EKF to incorporate the a priori covariance, estimate the

velocity, and propagate the state. The following equations outline the scenario of estimating the

position and pointing state. If only the position is estimated, the pointing state was simply removed

from the measurement matrices.

When estimating the position and pointing, the computed measurement, Gk at time tk, is

the current estimate of the state:

Gk(X
∗) =

r∗

θ∗

 (2.114)

The observed measurement, Yk, is computed with the observed flash lidar image and the LS algo-

rithm. The resulting observed measurement is the current state estimate plus the deviation from

the LS algorithm:

Yk =

r∗ + δr

θ∗ + δθ

 (2.115)

The observation deviation equation in the outer EKF is simply the deviation from the estimated

state based on the LS algorithm:

yk = Yk −Gk(X∗) =

δr
δθ

 (2.116)

From the direct measurement of the state, the measurement mapping matrix, H̃k is a combination

of zeros and identity matrices, I. The measurement mapping matrix when only estimating the

position is Equation 2.117, and the measurement mapping matrix when estimating position and

pointing is Equation 2.118.

H̃k =

I3×3 03×3

03×3 03×3

 (2.117)

H̃k =

I3×3 03×3 03×3

03×3 03×3 I3×3,

 (2.118)
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The measurement uncertainty matrix, Rk is defined as the outputted covariance matrix from

the least-squares algorithm, PLS from Equation 2.111. The Kalman gain is computed with Equation

2.43 and the state update and covariance are computed with Equations 2.44 and 2.46, respectively.

[103]

2.5.8.4 Comparison to the Iterative Kalman Filter

The iterative Kalman filter (IKF) is similar to the EKF in that it is a sequential filter, yet it

iterates the state update with the current observation at each time step. [8, 47]

Provided the time-updated state, X̄k and covariance, P̄k at a time tk, the IKF is initialized

as:

XT0 = X̄k, PT0 = P̄k (2.119)

where XT0 and PT0 are iterated at that time step. The state estimate is then iterated with the

equation:

XT (i+1) = X̄k +KT i

(
Yi −G(XT i)− H̃|XTi

(X̄k −XT i)
)

(2.120)

and the covariance becomes:

PT (i+1) = (I −KT iH̃|XTi
)P̄k (2.121)

The value of the Kalman gain is determined as:

KT i = P̄kH̃|TXTi
(H̃|XTi

P̄kH̃|TXTi
+Rk)

−1 (2.122)

where the expression H̃|XTi
indicates that the derivative of the measurement is evaluated at the

current state within the IKF iterations.

The main difference between the presented iterative LS algorithm and the IKF is the inclusion

of the a priori covariance matrix, P̄k in the IKF. The LS algorithm does not employ a priori

information on the state to produce its state estimate. The IKF reduces to the EKF formulation

if the state is not iterated. The state update for the EKF is the minimum variance estimator

with a priori information (Equation 2.39), while the state update in the LS algorithm is the
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minimum variance estimator without a priori state information (Equation 2.37). The LS filter

presented iterates the state update that is dependent on the measurement before applying a priori

information.

2.5.8.5 Comparison to the Iterative Point Cloud Algorithm

The conventional ICP algorithm aligns two three-dimensional point clouds of a geometric

object by solving for the translation and rotation of the measured point cloud to match that of

the model point cloud. The typical formulation is presented in Besl and McKay [10], and is solved

through the minimization of the mean square objective function that is reproduced in Equation

2.123.

f(~q) =
1

Np

Np∑
i=1

||~xi −R(~qR)~pi − ~qT ||2 (2.123)

The vector ~q represents the registration state vector, ~q = [~qR | ~qT ]T , where ~qR is a unit quaternion

rotation vector, and ~qT is the translation vector. The matrix R(~qR) is the 3 × 3 rotation matrix

created from the quaternion vector, and acts on the point ~pi. The point ~xi is from the model point

cloud and corresponds to the point ~pi from the measured point cloud, and Np is the total number of

points to be aligned. Besl and Mckay[10] present a quaternion-based algorithm to directly solve for

the rotation and translation vectors of ~q, and the process is iterated until an error metric criteria

is met.

A similar formulation is presented in Chen and Medioni [22]. The difference of the distances

of the corresponding points is mapped to the normal vector of the surface at the model point,

and is commonly known as the point-to-plane ICP method. Low[70] linearized the point-to-plane

algorithm with small angle approximations and reduced the problem to a simple least-squares

formulation of Ax− b, where x represented the rotation angles and translation vector.

The least-squares algorithm presented above similarly reduces the minimization of a cost

function to a least-squares formulation. However, instead of solving for a rotation and translation

of the point cloud vectors, as is done in these ICP algorithms, the cost function (Equation 2.100) is

expressed in terms of the state of interest: the spacecraft position and pointing (Equation 2.109).
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In addition, from the expression in Equation 2.12, the partial derivatives of the lidar beams with

respect to the state are derived, and the first order nonlinear effects of the system are able to be

included.

Typical ICP formulations require a registration algorithm to assign the corresponding points

of the two point clouds. This includes such methods as closest point, normal shooting, and pro-

jection, and may involve additional computational methods such as a k-d tree.[93] The method

presented uses the grid of pixels produced with the flash lidar image to pair corresponding pixels,

removing the need for additional registration algorithms.

Furthermore, the orientation of the sensor grid in the sensor frame is assumed to be known,

and thus the directions of the grid vectors are known in the sensor frame. In the cost function,

the magnitudes of the observed and computed vectors (ρi) are simply differenced, and information

on the direction of the beams is folded into the measurement partial derivatives. This reduces the

number of measurements to process (one scalar value vs. a three-component vector for each pixel),

and reduces computational time.

2.6 Realization of Flash Lidar Measurements in the Estimation Filters

This section details the specifics of processing the flash lidar measurements in the estimation

filters. In each filtering technique, the range measurements aer compared by pairing the corre-

sponding pixels in the observed and computed image. If a pixel did not return a range value in

either the observed or computed image, this pixel is not used in the state estimation. This places a

requirement on the measurement processing that an overlap must occur between the observed and

computed measurements. This requirement places constraints on the magnitude of the initial state

errors, effects processing measurements in the UKF, and led to the development of a pre-processing

algorithm.

The partial derivatives with respect to one lidar beam are defined with respect to the space-

craft position and pointing. Since the flash lidar image is produced instantaneously at one obser-

vation time, only the position and pointing may be determined from this one image. The velocity
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state is determined over time as more observations are accumulated. Therefore, the partial deriva-

tives presented are of one lidar beam with respect to the position, r (Section 2.6.2) and pointing

error θ (Section 2.6.3).

The full flash lidar image is processed by combining the individual measurement mapping

matrices for each flash lidar pixel at one observation time. It is assumed that calibration of the

flash lidar pixels has occurred, and each pixel of a flash lidar image is treated as an independent

lidar beam. Therefore, the measurement mapping matrix, H̃, is defined as the accumulation of the

measurement mapping matrices of the individual lidar beams, H̃i. This is mathematically presented

in Section 2.6.4.

With the partial derivatives defined, the information content related to the position and

pointing error may be extracted. This is achieved through the Fisher Information Matrix, which

is detailed in Section 2.6.5. The analytical analysis presented is used in Chapter 6 to support how

subsets of pixels are selected in order to maximize the information content. In addition, this section

compares the information content when using the EKF and LS filter, and shows the information

gained is equivalent.

2.6.1 Flash Lidar Measurement Processing

In each of the estimation methods, the pixels of the flash lidar image are treated as individual

measurements, and the corresponding pixels in the observed image and computed image are com-

pared for the measurement residuals. If a particular pixel does not return a range in the observed

image or in the computed image, a comparison can not be made, and a measurement residual is

not computed for this pixel. It is assumed that if this occurred, these pixels are on the boundaries

of the images, and there are enough pixels within the overlap of the observed and computed image

to calculate the measurement residuals. Furthermore, this requires that the difference in the truth

and estimated state must not be excessive so that an overlap can occur.

The observation deviation vector, yk, has a variable number of measurements used at each

time step. In the filter, the corresponding pixels that returned an altimetry measurement in both
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the observed and computed image are differenced, and the differences populated the observation

deviation vector. The number of measurements used per observation, p, is dynamic.

With the UKF, 2n+ 1 flash lidar images are computed for each of the corresponding sigma

points, and these images are compared to the observed image to provide a state estimate update.

In order for a comparison of an individual pixel to be made, a overlap needed to occur between the

observed image and each of the sigma point images. From the definition of the sigma points, this

required that the state covariance was small enough such that the spread in the sigma points did

not prevent a measurement overlap.

2.6.2 Relationship of Spacecraft Position to One Lidar Beam

The derivative of the range returned from a lidar beam, ρ with respect to the spacecraft

position, r is derived from Equation 2.12. The resulting partial derivative can be expressed in

terms of the pointing direction (û) of the lidar beam and the surface variations where the lidar

beam hit the asteroid (n̂). The following derivation describes the relationship between the returned

range of one lidar beam and the spacecraft position. The lidar beams in a flash lidar image are

considered independent, and the combination of these independent beams comprise the full flash

lidar image.

The first order Taylor series expansion of the range magnitude, ρi, with respect to the space-

craft state, X, is expressed in Equation 2.124, where ρiobs is the observation, ρ∗i is the range

evaluated along the reference trajectory, and εi is the error in the measurement, assumed to be

Gaussian white noise, E[εiε
T
i ] = σ2

ρi . This is the same formulation as in Equation 2.27.

ρiobs = ρ∗i +
∂ρi
∂X

∣∣∣∣
∗

(X −X∗) + εi (2.124)

The state, X is defined as the position of the spacecraft in the body-fixed frame: X = r.

From Equation 2.12, the range ρ is isolated by dotting û with both sides:

ρi = ûTi rA − ûTi r (2.125)
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where rA is vector from the center of the asteroid to the lidar intersection point on the surface.

The vector rA depends on the position of the spacecraft, the pointing direction, and the time.

rA = f(r, ûi, t) (2.126)

The derivative of the range with respect to the spacecraft position is expressed Equation 2.127,

where I is the identity matrix.

∂ρi
∂r

= ûTi
∂rA
∂r
− ûTi I (2.127)

The expression in Equation 2.127 was multiplied by the deviation, ∆r = (r − r∗), and

evaluated along the nominal trajectory:

∂ρ

∂r

∣∣∣∣
∗

∆r = ûT
∂rA
∂r

∣∣∣∣
∗

∆r− ûT∆r (2.128)

The Taylor series expansion of the surface vector, rA is examined:

rA = r∗A +
∂rA
∂r

∣∣∣∣
∗

(r− r∗) (2.129)

and the expression ∆r∗A is defined as:

∆r∗A =
∂rA
∂r

∣∣∣∣
∗

∆r (2.130)

Substituting the expression for ∆r∗A into Equation 2.128, it becomes:

∂ρ

∂r

∣∣∣∣
∗

∆r = ûT∆r∗A − ûT∆r (2.131)

The expression in Equation 2.131 is the same as seen in Equation 2.124. Equation 2.124 is

rewritten as:

ρiobs − ρ∗i = ûTi ∆r∗A − ûTi ∆r + εi (2.132)

From its definition in Equation 2.28, the measurement mapping matrix for one lidar beam, H̃i

equals: H̃i = ûTi ∆r∗A − ûTi ∆r. The expression ∆r is the deviation in the estimation state, so now

one must define the relationship of the surface variations, ∆r∗A to the position deviation.
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2.6.2.1 Relating the Spacecraft Position to the Surface Vector

To relate the perturbations in the surface variations and the spacecraft position, the geometry

between r and rA is evaluated in Figure 2.4. This figure illustrates the vector relationships between

the spacecraft state, r, the vector from the center of the asteroid to the surface, rA, the lidar

beam vector, ρû, and their deviations, ∆rsc and ∆rA. The states, rsc1 and rA1, are the resulting

states from the deviations, and xû is the lidar beam vector at the new position, rsc1. This diagram

assumes the the pointing direction has not changed, only the spacecraft position.

r 
Δrsc 

ΔrA 

rA rA1 

ρû 

xû 

rsc1 

Figure 2.4: Vector diagram depicting a perturbation in the spacecraft position, ∆rsc, and the
resulting perturbation in the surface vector, ∆rA along the surface.

It is assumed that when the spacecraft is perturbed, the intersection point of the lidar beam

at rA1 has the same surface normal, n̂, as the original intersection point, rA. When considering a

faceted shape model of the asteroid surface, this is equivalent to the lidar beam hitting the same

facet as the nominal state after it is perturbed. If the surface is curved, this is equivalent to

assuming the lidar beam hit the plane tangent to surface at the nominal intersection point.

The following vectors are defined from the diagram:

∆rA = rA1 − rA (2.133)

∆rsc = rsc1 − r (2.134)
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r + ρû = rA (2.135)

rsc1 + xû = rA1 (2.136)

The above vector equations are dotted with the normal vector to the surface, n̂, and the ranges ρ

and x are isolated.

r · n̂+ ρû · n̂ = rA · n̂ (2.137)

ρ =
rA · n̂− r · n̂

û · n̂ (2.138)

rsc1 · n̂+ xû · n̂ = rA1 · n̂ (2.139)

x =
rA1 · n̂− rsc1 · n̂

û · n̂ (2.140)

It is assumed that as the spacecraft position is perturbed, ∆rsc, the new intersection point

to the surface, rA1 has the same surface normal vector as rA. The assumption that rA1 and rA

have the same surface normal vector, n̂ leads to:

∆rA · n̂ = 0 (2.141)

The expression for ∆rA is evaluated with the assumption that ∆rA · n̂ = 0:

∆rA = rA1 − rA

= rsc1 + xû− (r + ρû)

= rsc1 − r +
rA1 · n̂− rsc1 · n̂

û · n̂ û− rA · n̂− r · n̂
û · n̂ û

= ∆rsc +
(rA1 − rA) · n̂

û · n̂ û+
(−rsc1 + r) · n̂

û · n̂ û

(2.142)

The resulting relationship is:

∆rA = ∆rsc +
(−∆rsc) · n̂

û · n̂ û (2.143)

2.6.2.2 Defining the Measurement Mapping Matrix

The expression in Equation 2.143 is substituted into Equation 2.132 (where ∆rsc = ∆r) :

ρiobs − ρ∗i = ûTi

(
∆r +

(−∆r) · n̂i
ûi · n̂i

ûi

)
− ûTi ∆r + εi

= ûTi ∆r +
(−∆r) · n̂i
ûi · n̂i

ûTi ûi − ûTi ∆r + εi

(2.144)
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The result of the observation deviation vector is:

ρiobs − ρ∗i =
−n̂Ti
ûi · n̂i

∆r + εi (2.145)

Therefore, the measurement partial matrix for the ith range observation at one time step with

respect to the spacecraft position, H̃i, can be expressed as Equation 2.146:

rH̃i =
∂ρi
∂r

=
−n̂Ti
ûi · n̂i

(2.146)

This relationship provides a better understanding of how the position information is effected

by the lidar beam pointing direction and the surface variations of its target. This is also consistent

with a similar result found in Bayard et al. [7]

2.6.3 Relationship of Spacecraft Pointing to One Lidar Beam

The pointing state in the estimation state is defined as an off-nominal error with Euler angles:

θ = [θ1, θ2, θ3]. The rotation is expressed in Equation 2.2, and reproduced here:

û = C2(θ2)C1(θ1)C3(θ3)û∗ (2.2)

This rotation matrix created a rotation first about the boresight direction, and then about the x-

then y-axes that represent the pixel/line directions of the sensor frame.

The measurement partial derivatives for a single range measurement, ρi, with respect to the

Euler angle, θn, is described by Equation 2.147,

θnH̃i =
∂ρi
∂θn

=
−ρicomp
ûi · n̂i

(Mθn û
∗
i )
T n̂i (2.147)

where,

Mθ1 =


− sin θ2 sin θ3 cos θ1 sin θ2 cos θ3 cos θ1 sin θ2 sin θ1

sin θ3 sin θ1 − cos θ3 sin θ1 cos θ1

cos θ2 sin θ3 cos θ1 − cos θ2 cos θ3 cos θ1 − cos θ2 sin θ1

 (2.148)
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Mθ2 =


− cos θ3 sin θ2 − sin θ1 sin θ3 cos θ2 − sin θ3 sin θ2 + sin θ1 cos θ3 cos θ2 − cos θ1 cos θ2

0 0 0

cos θ3 cos θ2 − sin θ1 sin θ3 sin θ2 sin θ3 cos θ2 + sin θ1 cos θ3 sin θ2 − cos θ1 sin θ2


(2.149)

Mθ3 =


− cos θ2 sin θ3 − sin θ2 sin θ1 cos θ3 cos θ2 cos θ3 − sin θ2 sin θ1 sin θ3 0

− cos θ1 cos θ3 − cos θ2 sin θ3 0

− sin θ2 sin θ3 + cos θ2 sin θ1 cos θ3 sin θ2 cos θ3 + cos θ2 sin θ1 sin θ3 0

 (2.150)

In Equations 2.147, the pointing direction ûi = f(û∗i , θ) from Equation 2.2, and n̂i is the normal

vector to the surface where the lidar beam intersects the surface. In Equation 2.147, ρicomp is the

computed range, and Mθn is the derivative matrix for the corresponding angles (Equations 2.148,

2.149, and 2.150).

2.6.3.1 Derivation of Partial Derivatives for the Pointing State

The pointing direction, û is defined as a function of û∗, such that û∗ is the nominal pointing

direction, and û is the corrected pointing direction based on θ1, θ2, and θ3 (Equation 2.2). It follows

that û can be expanded as such:

û =


cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2




1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1




cos θ1 sin θ3 0

− sin θ3 cos θ3 0

0 0 1




u∗1

u∗2

u∗3

 (2.151)

û =


(cos θ2 cos θ3 − sin θ2 sin θ1 sin θ3)u∗1 + (cos θ2 sin θ3 + sin θ2 sin θ1 cos θ3)u∗2 − sin θ2 cos θ1u

∗
3

− cos θ1 sin θ3u
∗
1 + cos θ1 cos θ3u

∗
2 + sin θ1u

∗
3

(sin θ2 cos θ3 + cos θ2 sin θ1 sin θ3)u∗1 + (sin θ2 sin θ3 − cos θ2 sin θ1 cos θ3)u∗2 + cos θ2 cos θ1u
∗
3


(2.152)

The returned range, ρi, is defined as that from Equation 2.13:

ρi =
(V − r) · n̂i
ûi · n̂i

(2.153)
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where V is a point on the plane that the pointing vector ρû intersects, r is the position of the

spacecraft, n̂i is the normal to that plane, and ûi = f(û∗i , θ1, θ2, θ3).

The derivative of the range measurement, ρi is taken with respect to the angle, θn:

∂ρi
∂θn

=
∂

∂θn

(
(V − r) · n̂i
ûi · n̂i

)
=

(−(V − r) · n̂i
(ûi · n̂i)2

)
∂(ûi · n̂i)
∂θn

(2.154)

This equation is applied to each angle, while only needing to define
∂(ûi · n̂i)
∂θn

for the specific Euler

angle. The computed range is defined as:

ρicomp =
(V − r) · n̂i
ûi · n̂i

(2.155)

The partial derivative of the pointing is rewritten as:

∂ρi
∂θn

=
−ρicomp
ûi · n̂i

∂(ûi · n̂i)
∂θn

(2.156)

The definitions of the partial derivatives
∂(ûi · n̂i)
∂θn

for each Euler angle are as follows. For

θ1, the partial derivative may be written in equation form:

∂(û · n̂)

∂θ1
=(− sin θ2 sin θ3 cos θ1u

∗
1 + sin θ2 cos θ3 cos θ1u

∗
2 + sin θ2 sin θ1u

∗
3)n1

+ (sin θ3 sin θ1u
∗
1 − cos θ3 sin θ1u

∗
2 + cos θ1u

∗
3)n2

+ (cos θ2 sin θ3 cos θ1u
∗
1 − cos θ2 cos θ3 cos θ1u

∗
2 − cos θ2 sin θ1u

∗
3)n3

(2.157)

or in matrix form:

∂(û · n̂)

∂θ1
=




− sin θ2 sin θ3 cos θ1 sin θ2 cos θ3 cos θ1 sin θ2 sin θ1

sin θ3 sin θ1 − cos θ3 sin θ1 cos θ1

cos θ2 sin θ3 cos θ1 − cos θ2 cos θ3 cos θ1 − cos θ2 sin θ1




u∗1

u∗2

u∗3




T 

n1

n2

n3

 (2.158)

Writing the partial derivative in matrix form allows the expression to be reduced:

∂(û · n̂)

∂θ1
= (Mθ1 û

∗
i )
T n̂i (2.159)
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where Mθ1 is defined in Equation 2.148. The partial derivatives for θ2 and θ3 in equation form are:

∂(û · n̂)

∂θ2
=((− cos θ3 sin θ2 − sin θ1 sin θ3 cos θ2)u∗1

+ (− sin θ3 sin θ2 + sin θ1 cos θ3 cos θ3)u∗2 − cos θ1 cos θ2u
∗
3)n1

+ ((cos θ3 cos θ2 − sin θ1 sin θ3 sin θ2)u∗1

+ (sin θ3 cos θ2 + sin θ1 cos θ3 sin θ2)u∗2 − cos θ1 sin θ2u
∗
3)n3

(2.160)

∂(û · n̂)

∂θ3
=((− cos θ2 sin θ3 − sin θ2 sin θ1 cos θ3)u∗1 + (cos θ2 cos θ3 − sin θ2 sin θ1 sin θ3)u∗2)n1

+ (− cos θ1 cos θ3u
∗
1 − cos θ1 sin θ3u

∗
2)n2

+ ((− sin θ2 sin θ3 + cos θ2 sin θ1 cos θ3)u∗1 + (sin θ2 cos θ3 + cos θ2 sin θ1 sin θ3)u∗2)n3

(2.161)

It follows that
∂(û · n̂)

∂θn
can take the general form:

∂(û · n̂)

∂θn
= (Mθn û

∗
i )
T n̂i (2.162)

where the appropriate Mθn matrices are defined in Equations 2.148, 2.149, and 2.150.

2.6.4 Processing the Full Flash Lidar Image

The measurement mapping matrix for that with respect to position is defined as rH̃i, and

that with respect to the pointing state is defined as θH̃i. The measurement mapping matrix for

one lidar beam with respect to the full state of position, velocity, and pointing, is defined as a

combination of these matrices:

H̃i =

[
rH̃i 01×3

θH̃i

]
1×9

(2.163)

Information on the velocity state is not acquired from a single flash lidar image, but is accumulated

over time.

To process the full flash lidar image, the lidar beams are treated as independent measure-

ments. Therefore, the measurement mapping matrix for the full flash lidar image at time tk with



80

p usable measurements is the combination of the individual H̃i matrices:

H̃k =



H̃1

...

H̃i

...

H̃p


p×9

(2.164)

In the LS filter, the position and pointing states populate the LS state (Equation 2.109). The

measurement mapping matrix for the LS algorithm is defined as:

H̃LSi =

[
rH̃i

θH̃i

]
1×6

(2.165)

The measurement matrix for the full flash lidar image, H̃LS is formed by combining the individual

H̃LSi matrices, forming a p× 6 matrix:

H̃LS =



H̃LS1

...

H̃LSi

...

H̃LSp


p×6

(2.166)

2.6.5 Information Content

The information content contained in a lidar measurement can be determined through the

Fisher Information Matrix (FIM). Regardless of the estimation filter used, analyzing this informa-

tion can provide insight into how to best direct the lidar beams in any 3D lidar system.

The Cramér-Rao Lower Bound, P ∗ is the best achievable covariance for an unbiased estimator

[104]. This limit is defined in Equation 2.167, where P is the covariance of an unbiased estimator

of unknown deterministic variables, and Λ is defined as the FIM.

P ≥ P ∗ = Λ−1 (2.167)
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A recursive formulation of the FIM at time tk with acquired measurements over time is defined in

Equation 2.168, where φk−1 is the state transition matrix, Hk is the measurement partial matrix

mapped to one time (Hk = H̃k−1φk−1), and Rk is the measurement uncertainty matrix.

Λk = (φk−1P
∗
k−1φ

T
k−1)−1 +HT

k R
−1
k Hk (2.168)

The FIM for the spacecraft position with an a priori position covariance matrix, P0, for

one range measurement at one time step can be expressed with H̃i and the uncertainty of the

measurement, Ri.

Λi = P−1
0 + H̃T

i R
−1
i H̃i (2.169)

2.6.5.1 Measurement Uncertainty

The measurement error of the lidar beams, εεε is considered to be from a Gaussian distribution

of zero mean with covariance Rρ:

E[εεε] = 0, E[εεεεεεT ] = R (2.170)

The uncertainty of a single lidar beam is defined as σρi . Since each lidar beam is considered an

independent measurement, the matrix R is defined as a diagonal matrix:

Rρ = diag[σ2
ρ1, · · · , σ2

ρi, · · · , σ2
ρp] (2.171)

2.6.5.2 Information with Respect to Position

For a single lidar beam, the inverse of the uncertainty matrix, R−1
i , is simply 1/σ2

ρi. With this,

and the definition of the measurement mapping matrix with respect to position, rH̃i in Equation

2.146, the FIM for one lidar beam becomes:

Λi = P−1
0 +

1

σ2
ρi

n̂in̂
T
i

(ûi · n̂i)2
(2.172)

For p independent lidar beams at one time step, the FIM becomes a sum of the final term

above, and is expressed in Equation 2.173. The variable i represents an individual lidar beam, and
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therefore an individual ûi and n̂i are calculated for each pixel within the measurement image.

Λp = P−1
0 +

p∑
i=1

1

σ2
ρi

n̂in̂
T
i

(ûi · n̂i)2
(2.173)

To quantify the total amount of information content contained in p lidar beams, the de-

terminant of the FIM is examined. This is known as the D-optimality condition, and is seen in

other work [75, 42]. For one or two lidar beams, the determinant of the FIM becomes zero and

no information on the state is available without a priori covariance knowledge, P0. For p ≥ 3, the

determinant of the FIM is nonzero with and without an a priori covariance. The determinant of

the FIM for p = 3 without an a priori covariance is expressed in Equation 2.174.

|Λ3| =
1

σ2
ρ1σ

2
ρ2σ

2
ρ3

(
n̂1

û1 · n̂1
·
(

n̂3

û3 · n̂3
× n̂2

û2 · n̂2

))2

(2.174)

In order to maximize the total measurement information for three beams, the corresponding surface

normals should all be perpendicular to each other: n̂1 ⊥ n̂2 ⊥ n̂3. In addition, the pointing

directions, ûi should be almost perpendicular with their corresponding n̂i vectors to reduce the

denominators in the expression.

Analyzing Equation 2.174, one must direct three beams at three non-parallel target planes

order for the determinant of the information matrix to be nonzero. Mathematically, if n̂2 is parallel

to n̂3, the cross product will be zero and therefore |Λ3| = 0. Moreover, if n̂1 is parallel to n̂3,

then n̂1 will be perpendicular to the cross product of (n̂3 × n̂2); therefore, the dot product of

n̂1 · (n̂3 × n̂2) = 0, and |Λ3| = 0. Equivalently, if all three beams are directed at one flat wall, or at

only two flat walls, the full position state cannot be determined.

2.6.5.3 Information with Respect to Position and Pointing

Following a similar procedure, the FIM is determined for the position and pointing state for

one lidar beam at one time step:

Λi = P̄−1
0 +

rH̃i

θH̃i

 1

σ2
ρi

[
rH̃i

θH̃i

]
(2.175)
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Substituting in the expressions for rH̃i (Equation 2.146) and θH̃i (Equation 2.147), the FIM be-

comes:

Λi = P̄−1
0 +

1

σ2
ρi



n̂in̂
T
i

(ûi · n̂i)2

ρic
(ûi · n̂i)2

[
Mθ1 û

∗
i Mθ2 û

∗
i Mθ3 û

∗
i

]

ρic
(ûi · n̂i)2


Mθ1 û

∗
i

Mθ2 û
∗
i

Mθ3 û
∗
i

 n̂in̂Ti
ρic

(ûi · n̂i)2


Mθ1 û

∗
i

Mθ2 û
∗
i

Mθ3 û
∗
i

 n̂in̂Ti
[
Mθ1 û
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i
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(2.176)

Combining the H̃i matrices for all of the lidar beams in on flash lidar image, the FIM becomes:

Λp = P̄−1
0 +



p∑
i=1

1

σ2
ρi

n̂in̂
T
i

(ûi · n̂i)2

p∑
i=1

1

σ2
ρi

ρic
(ûi · n̂i)2

[
Mθ1 û

∗
i Mθ2 û

∗
i Mθ3 û

∗
i

]

p∑
i=1

1

σ2
ρi

ρic
(ûi · n̂i)2


Mθ1 û

∗
i

Mθ2 û
∗
i

Mθ3 û
∗
i

 n̂in̂Ti
p∑
i=1

1

σ2
ρi

ρic
(ûi · n̂i)2


Mθ1 û

∗
i

Mθ2 û
∗
i

Mθ3 û
∗
i

 n̂in̂Ti
[
Mθ1 û

∗
i Mθ2 û

∗
i Mθ3 û

∗
i

]


(2.177)

One can notice the term
n̂in̂

T
i

(ûi · n̂i)2
, from the position information is common in each of the

matrix terms. This implies that the same criteria to maximize the FIM with respect to position

applies to the FIM involving position and pointing as well.

2.6.5.4 Information Content of Estimation Methods

The information gained at one observation time for the different filtering methods may also

be determined through the FIM. The FIM at time, tk is defined as:

Λk = P̄−1
0 + H̃T

k R
−1
k H̃k (2.178)

In the EKF, the observation deviation vector, yk, directly uses the differences between the
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observed (Yk) and computed (Gk) ranges:

yk = Yk −Gk =



ρ1obs − ρ1comp

...

ρiobs − ρicomp
...

ρpobs − ρpcomp


p×1

(2.179)

The measurement mapping matrix for one pixel with the EKF is presented in Equation 2.180, and

Equation 2.181 represents the full flash lidar image with p range-returns at one measurement time.

H̃i =

[
rH̃i 01×3

θH̃i

]
1×9

(2.180)

H̃p =

[
rH̃p 0p

θH̃p

]
p×9

(2.181)

The measurement uncertainty for the lidar beams is defined as Rρ from Equation 2.171, and H̃p

and Rρ are passed into Equation 2.178 to calculate the information. The FIM for the EKF at one

time step results in:

Λk = P̄−1
0 +


rH̃T

p (R−1
ρ )rH̃p 03×3

rH̃T
p (R−1

ρ )θH̃p

03×3 03×3 03×3

θH̃T
p (R−1

ρ )rH̃p 03×3
θH̃T

p (R−1
ρ )θH̃p

 (2.182)

In the LS filter, the estimate of the position and pointing are treated as the measurements in

the observation deviation vector. The measurement mapping matrix, H̃k is defined as a combination

of zeros and identity matrices from Equation 2.118, and the measurement uncertainty matrix is

defined as the covariance from the LS algorithm: Rk = PLS . Passing these definitions into the

information matrix, the information for the LS method is defined as:

Λk = P̄−1
0 +

I3×3 03×3 03×3

03×3 03×3 I3×3,


T

P−1
LS

I3×3 03×3 03×3

03×3 03×3 I3×3,

 (2.183)
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The LS covariance matrix, PLS (Equation 2.111), can be rewritten from the definition of H̃LS in

Equation 2.166:

P−1
LS =

rH̃T
p

θH̃T
p

R−1
ρ

[
rH̃p

θH̃p

]
(2.184)

Substituting Equation 2.184 into Equation 2.183 results in the same expression for the FIM as in

Equation 2.182.

Therefore, the information content is the same for one flash lidar image for both the EKF and

LS filter. The difference between the methods is in the iterative procedure the LS filter employs at

each time step before passing the estimated state to the propagation. The LS filter uses all of the

available information from the observation and produces a state error that aligns with the filter

covariance.



Chapter 3

Orbit Determination Simulations

Once a spacecraft arrives at a small body, and the characterization phase is complete, the

spacecraft typically inserts into a stable terminator orbit for the scientific observations. Orbit de-

termination (OD) of the spacecraft must be consistent to ensure the accuracy of the spacecraft state

for science applications as well as spacecraft safety. The frequency that the navigation observations

are captured may be reduced to every few hours for OD operations and to accommodate other

scientific instruments onboard.[55]

This chapter compares the performance of three navigation filters, the extended Kalman filter

(EKF), the unscented Kalman filter (UKF) and the iterated least-squares (LS) filter in a variety

of orbits around Itokawa and Bennu with the flash lidar images. An optical navigation (OpNav)

simulation is investigated around Itokawa for comparison with the flash lidar measurements. The

measurements for the OpNav simulations are defined as landmarks tied to the surface of Itokawa,

and the measurement residuals are the difference in the landmark locations in the image plane.

Terminator orbits around Itokawa and Bennu encompass the majority of the simulations since

this is a common small body spacecraft orbit. Other orbits include a descent orbit with an initial

impulsive maneuver that travels to the surface of Itokawa, and an unstable eccentric orbit around

Itokawa. The effect of the observation frequency is also investigated, comparing the performance

of capturing measurements every 2 hours or every 10 minutes. The addition of process noise is

investigated as well with the UKF and LS filters in the Itokawa and Bennu terminator orbits.

These simulations assume the shape model is known, and the spin state and axis of the
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asteroid are known. Gaussian white noise is applied to the individual range measurements in the

flash lidar image, and the uncertainty is based on the observed range. The first set of simulations

estimate the position and velocity, and assume that the spacecraft pointing is known. The second

set of simulations apply an off-nominal pointing bias to the sensor pointing, and estimate this error

along with the position and velocity.

Section 3.1 overviews the orbits, and Section 3.2 presents the simulation setup. Section 3.3

presents simulations that estimate the position and velocity in the Itokawa terminator orbit with

an operations measurement frequency (with and without process noise) and a high measurement

frequency (with process noise). It also presents results from the Bennu terminator orbit with an

operations measurement frequency with and without process noise. Section 3.4 compares the filter

performance of the flash lidar images with an optical navigation simulation. Section 3.5 presents

a navigation simulation in an descent orbit around Itokawa while varying the initial state errors

and observation frequencies. Section 3.6 estimates the position, velocity, and pointing bias of the

spacecraft for the Itokawa terminator orbit with an operations measurement frequency (with and

without process noise), and a high measurement frequency (with process noise). It also includes

OD for the Bennu terminator orbit for an operations measurement frequency with and without

process noise, and an unstable eccentric orbit around Itokawa with a high measurement frequency.

Section 3.7 summarizes the simulation results of the terminator orbits around Itokawa and Bennu,

and the Itokawa eccentric orbit.

3.1 Orbits

A circular orbit in the sun-terminator plane (a terminator orbit) is stable around around a

small body due to the forces of solar radiation pressure (SRP). Small body mission profiles include

this orbit due to its stable properties. One-kilometer circular terminator orbits around the asteroid

Itokawa and around the asteroid Bennu are the focus for the majority of the OD simulations

presented.

In addition, a descent orbit to the surface of Itokawa is investigated. This orbit is initiated
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in a circular terminator orbit, an impulsive maneuver is applied, and the orbit descends to the

surface across the sunlit side of Itokawa. An eccentric orbit around Itokawa is also investigated.

This eccentric orbit is unstable, and escapes after propagation for 30 days. The orbit also travels

beyond the limit of the flash lidar instrument (> 1 km), and a gap in the observations occurrs.

This section outlines the different orbits used in the OD simulations, and the numerical

propagation used.

3.1.1 Dynamical Propagation

The spacecraft is propagated with the dynamics outlined in Section 2.2. The dynamical

forces include gravity modeling with spherical harmonics up to degree and order four for both the

Itokawa [94] and Bennu [24] orbits, solar radiation pressure (SRP), and third body effects from the

sun. A cannonball model is used for the SRP modeling with an area-to-mass ratio of 0.01 m2/kg,

and a coefficient of reflectivity, CR = 1.2. The sun is held constant with respect to Itokawa when

modeling the third-body perturbations due to the short nature of the simulations.

The orbits are numerically propagated with an RK78 integrator. This is a variable step

Runge-Kutta integrator that adjusts the step size by comparing the results of the 7th and 8th

order integrators. An initial guess for the step size is 1e-7 s, and the relative tolerance between the

7th and 8th order integrators is set to 1e-14.

3.1.2 Itokawa Terminator Orbit

The circular terminator orbit had a semi-major axis of one kilometer and inclination of 90◦.

Figure 3.1 illustrates this orbit in the inertial (Figure 3.1(a)) and body-fixed (Figure 3.1(b)) frames

for 10 days. The terminator orbit is stable due to the effects of SRP, and is a typical orbit a

spacecraft would enter for operations around a small body. As shown in Figure 3.1, the orbit

repeats itself for several revolutions.
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Figure 3.1: Nominal terminator orbit about Itokawa propagated for 10 days

3.1.3 Bennu Terminator Orbit

The circular terminator orbit around Bennu had a semi-major axis of 1 km, and an inclination

of 90◦. Figure 3.2(a) shows inertial frame view and Figure 3.2(b) shows the body-fixed view of this

orbit around Bennu. The orbit shown is propagated for one day or approximately one orbital

period.

Figure 3.2(c) shows the observed flash lidar measurement at 100 minutes into the nominal

orbit. The images for Bennu in Figure 3.2(c) and for Itokawa in Figure 2.3(a) were both taken with

the same sensor setup, in a 1 km circular orbit. The main differences between the measurements

is that the surface encompasses the entirety of the image when imaging Bennu, producing more

range measurements per observation time.

3.1.4 Itokawa Eccentric Orbit

The eccentric orbit has a semi-major axis of 800 m, inclination of 60◦, and eccentricity of

0.5. Figure 3.3 shows this orbit for 30 hours in the inertial (Figure 3.3(a)) and body-fixed (Figure

3.3(b)) frames. The orbit stays in the terminator plane and does not travel behind the asteroid,
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Figure 3.2: Bennu nominal circular terminator orbit for one day in the asteroid-centered inertial
(ACI) frame (a), and the body-fixed frame (BF) (b), and a sample flash LIDAR measurement (c).

and shadowing does not need to be taken into account in the propagation. As shown in Figure

3.3(a), the orbit does not repeat due to the small body gravity perturbations, and the spacecraft

is accelerated as it traveled closer to the body, as shown in Figure 3.3(b). This orbit is not stable,

and the spacecraft escapes when it is propagated for 30 days.

Figure 3.3(c) represents the altitude of the spacecraft in the eccentric orbit with respect

to reference radius of 162 m of Itokawa. The lowest altitude occurrs around t = 23 hours at

approximately 290 m. The straight line at one kilometer in Figure 3.3(c) represents the upper limit

of the flash lidar instrument, thus the spacecraft traveled outside the flash lidar capabilities briefly,

and a data gap occurs in the navigation simulations.

3.1.5 Itokawa Descent Orbit

The descent orbit around Itokawa initiates in a terminator orbit, an impulsive maneuver is

applied, and the spacecraft travels in front of the asteroid such that it is seeing the sunlit side of

the asteroid as it was descending. Figure 3.4 represents the descent orbit (blue) and the initial

terminator orbit (cyan) in the body-fixed frame. The spacecraft arrives at the point of interest

(POI) at the end of the descent orbit that is described in Table 3.1. When the spacecraft arrives

at the POI, it is at 30◦ with respect to the terminator plane, and approximately 12 m above the



91

-1

-0.5

0

0.5

z 
(k

m
)

1

1 10.5 0.5

y (km) x (km)

0 0-0.5 -0.5-1 -1

Start
End

(a) Inertial frame orbit

-1

-0.5

0

0.5

1

1

z 
(k

m
)

1 0.50.5 0
x (km)

0
y (km)

-0.5-0.5 -1-1

Start
End

(b) Body-Fixed frame orbit

0 200 400 600 800 1000 1200 1400 1600 1800
Time (min)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
lti

tu
de

 (
km

)

(c) Altitude

Figure 3.3: Eccentric orbit about Itokawa propagated for 30 hours

surface of Itokawa. The total time of flight of the descent trajectory is approximately 420 minutes.

The dynamics for the descent orbit are the same as described in Section 2.2, and do not change

when the spacecraft is close to the surface.

Table 3.1: Point of interest state, and the final state of the descent orbit.

State Value

Latitude 0◦

Longitude 0◦

Radius 300 m

3.2 Simulation Setup

The OD simulations assumed that characterization phase of the small body mission had been

completed, and a well-defined shape model was available. It was assumed that the spin state and

axis of the asteroid, as well as the dynamical environment of the asteroid were known.

A faceted shape model of Itokawa and Bennu were used for the measurement computation.

For the nominal simulations in this chapter, the Itokawa shape model contained approximately 800

facets and was based on the implicitly connected quadrilateral (ICQ) format. In the descent orbit

simulation, an Itokawa shape model with approximately 12,000 facets was used for the measure-

ments. The shape model with 800 facets is referred to as the FV-8 model and the shape model with

12,000 facets is referred to as the FV-32 model. [44] The Bennu shape model had approximately
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2700 facets [81], and was constructed from ground-based observations [82].

3.2.1 Sensor Model

The flash lidar measurements were simulated as an array of vectors originating at a focal

point, and the observed range, ρ was measured from the sensor plane at the spacecraft state to

the intersection of the asteroid (Figure 2.2). The sensor was comprised of a grid map of pixels

with a 20◦ total field of view (FOV) in the x− and y−directions, and a focal length of 10 meters.

While flash lidar instruments can have resolutions of 256 × 256, a 64× 64 resolution was used for

computational purposes. The z−axis of the sensor frame connected the focal point to the center of

the pixel array, and the x− and y−axes were the pixel/line directions.

The measurement uncertainty of each of the lidar measurements had a baseline uncertainty

of 1 cm with a variable uncertainty based on the observed range, ρiobs:

3σρi = 1 cm + 0.01ρiobs (3.1)
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This was based on a baseline model of uncertainty on lidar beams seen in the literature [9]. The

measurement uncertainty matrix, Rρ, was defined as a diagonal matrix in Equation 2.171, and

calculated from observed range (Equation 3.1).

Rρ = diag[σ2
ρ1, · · · , σ2

ρi, · · · , σ2
ρp] (2.171)

A maximum value of 1 km was applied to the ranges, and is reflective of the upper limit of a

flash lidar instrument’s capabilities when the full array is illuminated. Longer ranges are achieved

with different flash lidar instrument models, or different illumination patterns. If a small portion

of the flash lidar array illuminated, more power is directed through those pixels, and a larger range

limit is achieved.

3.2.2 Frames

The asteroid body-fixed (BF) frame was defined with the x-direction along the longest axis,

the z-direction as the spin axis, and the y-direction completing the right-hand system. The asteroid-

centered inertial frame (ACI) was defined with the x-direction away from the sun, the z-direction

as the spin axis, and the y-direction completing the system. With this definition, there was a

simple a rotation about the z-axis to rotate between the body-fixed and inertial frames. Figure 3.5

illustrates these coordinate frames on the asteroid Itokawa.

Figure 3.5: Body-fixed (BF) and asteroid-centered inertial (ACI) frames defined on the asteroid
Itokawa.
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The orbit determination results are presented in the radial, in-track, cross-track (RIC) frame,

where the R-direction is directed radially from the center of the asteroid to the spacecraft state,

the C-direction is along the orbit’s angular momentum vector, and the I-direction completes the

system.

The sensor frame (SF) was oriented such that the +z-direction was pointed radially at the

center of the asteroid, the +y-direction was pointed along the positive orbit normal, and the +x-

direction was directed along the negative orbit in-track direction.

3.2.3 Initial Covariance and Process Noise

For consistency across the nominal OD simulations, the same a priori covariance and same

level of process noise was used. Simulations were run with and without the addition of process

noise. The 1σ value in the a priori covariance for position was 10 m, and for velocity was 1 mm/s.

The a priori covariance, P̄0, is shown in Equation 3.2, and the process noise added had a magnitude

along each axis of 1e−9 m/s2 (Equation 3.3). (For reference, the acceleration of the SRP and the

J2 term of the Itokawa terminator orbit were both on the order of 1e−8 m/s2.)

P̄0 = diag[σ2
r , σ

2
v]

σr = 10 m, σv = 1 mm/s

(3.2)

Q = diag[σ2
Q, σ

2
Q, σ

2
Q]

σQ = 1e− 9 m/s2

(3.3)

3.3 Orbit Determination Estimating Position and Velocity

The following simulations estimated the position and velocity of the spacecraft, and the

pointing of the spacecraft was assumed to be known. Errors were present in the initial state based

on the a priori covariance in Equation 3.2. Gaussian white noise was added to the individual ranges
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based on the measurement uncertainty in Equation 3.1.

X =

r

v

 (3.4)

The Itokawa terminator orbit and Bennu terminator orbit were used in these OD simulations.

In the Itokawa terminator orbit, a simulation involved observations every two hours for ten days,

and another involved observations every 10 minutes for 30 hours. Simulations were also run with

the 2 hour observation frequency without process noise to analyze its effect. The Bennu terminator

orbit acquired observations every two hours for ten days, and also investigated the effect of process

noise.

3.3.1 Itokawa Terminator Orbit Results

Two observation frequencies were investigated: an operations measurement frequency and a

high measurement frequency. The operations measurement frequency acquired measurements every

two hours for ten days. This is a common observation frequency seen in small body missions to

ensure the navigation solution remains up-to-date while accomplishing scientific goals of the other

onboard instruments. The high measurement frequency acquired measurements every ten minutes

for 30 hours. This measurement frequency would be typical if the spacecraft was in uncertain

dynamics or an unstable orbit, and the OD state required a higher frequency of observations to

remain up-to-date.

3.3.1.1 Operations Measurement Frequency

The observations were taken every two hours to simulate the typical observation frequency

of optical navigation measurements, and the observation arc was ten days. This resulted in a total

number of observations of 121. Figure 3.6 compares the performance of the EKF (a), UKF (b)

and LS filter (c). Figure 3.6 illustrates the errors in position and velocity with the 3σ covariance

bounds in the RIC frame. Each filter began with the same a priori state, and processed the same

measurements. Table 3.2 presents the root-mean-squared (RMS) errors of the magnitude of the
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Figure 3.6: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the Itokawa terminator orbit with measurements every 2 hours for 10 days.

position and velocity errors over the course of the simulation and after the first 5 observations when

the filter has settled (†). The table also presents the run time of each of the simulations. It is of

note that the errors presented average the errors over the entirety of the simulation. The errors in

the first few observations were sometimes one or two orders of magnitude larger than those near

the end of the simulation.

Comparing the simulations, the EKF resulted in the largest errors. The initial position errors

reached approximately 50 m at the beginning of the simulation, and this is present in the RMS of

the position errors before with the inclusion of the first five observations. The UKF and LS resulted

in comparable state errors at centimeter-level accuracy in position, and the LS ran slightly faster
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Table 3.2: RMS errors of the magnitude of the position and velocity error over the full simulation,
excluding the first 5 observations (†), and the run time of the filter. This is in the Itokawa terminator
orbit with measurements every 2 hours for 10 days and process noise added.

Filter |er| (m) |ev| (cm/s) |er|† (m) |ev|† (cm/s) Run Time (min)

EKF 14.00 0.0746 3.84 0.041 3.2
UKF 0.102 0.0211 0.0877 7.66e-4 9.7
LS 0.185 0.0216 0.185 4.54e-3 8.2

than the UKF. The errors in the LS filter reached slightly above the covariance bounds near the

beginning of the simulation before reaching a steady state within the covariance bounds. The UKF

resulted in errors within the covariance bounds for the entirety of the simulation. The process noise

added is seen in the covariance bounds of the velocity errors, and the covariance remains open such

that the errors resemble noise.

Figure 3.7 compares the performance of the UKF (a) and LS filter (b) without process noise

added. The same a priori state and measurements were used as in the simulation with process

noise (Figure 3.6). Table 3.3 presents the RMS errors of the magnitude of the position and velocity

errors over the course of this simulation, after the first 5 observations (†), as well as the run times

of the filters.

Without process noise added, the errors in the UKF simulation were the same order of magni-
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Figure 3.7: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without
process noise for the Itokawa terminator orbit with measurements every 2 hours for 10 days.
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Table 3.3: RMS errors of the magnitude of the position and velocity error over the full simulation,
excluding the first 5 observations (†), and the run time of the filter. This is in the Itokawa terminator
orbit with measurements every 2 hours for 10 days and process noise added.

Filter |er| (m) |ev| (cm/s) |er|† (m) |ev|† (cm/s) Run Time (min)

UKF 0.0682 0.0211 0.0419 2.23e-4 9.9
LS 6.84 0.0398 6.99 0.0344 14.3

tude smaller in position and velocity compared to the simulation with process noise. Oscillations are

seen in Figure 3.7(a) in the in-track and cross-track position errors. This was due to observational

issues in these directions due to the orientation of the orbit in the terminator plane. Conversely, the

errors in the LS filter were an order of magnitude larger in position and velocity when process noise

was not added. The LS filter did not diverge, yet the errors were not bounded in the covariance

bounds, and the position errors averaged about 7 m.

The post-fit residuals for both simulations, after the first measurements, were bounded be-

tween ± 10 m. This is consistent with the noise level of the range observations, which was about

9 m (3σ) at the altitude of the spacecraft. The state knowledge dropped below this noise level,

however, due to the variety of geometries in each observation.

3.3.1.2 High Measurement Frequency

The following simulations were taken in the Itokawa terminator orbit at a frequency of 10

minutes for 30 hours for 181 total observations. This simulates a high measurement frequency

situation, and more information is gathered over a shorter period of time. The initial state involved

errors from the a priori covariance in Equation 3.2, and process noise added with Equation 3.3.

The same a priori state and the same measurements were used in each of the filters.

Figure 3.8 illustrates the position and velocity state errors and the 3σ covariance bounds in

the RIC frame for the EKF (a), UKF (b), and LS filter (c). Table 3.4 presents the RMS errors of

the magnitude of the position and velocity errors over the course of the simulation and the errors

without the first 5 observations (†).

The UKF and LS filter resulted in comparable errors after the first five observations, with
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Figure 3.8: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the Itokawa terminator orbit with measurements every 10 minutes for 30 hours.

the LS filter running faster. The errors with the EKF were two orders of magnitude larger than

those from the UKF and LS filter, and ran the fastest of the three filters. The errors from the

LS filter when the first 5 observations were included were similar to when these observations were

excluded, showing consistency across the simulation. With the UKF, the errors were larger in the

beginning of the simulation, showing that the filter needed more observations to converge.

Comparing the RMS errors of the different observation frequencies, the errors are comparable

across the three filters after the first 5 observations. The run time of the filters also followed the

same trend between the two simulations: the EKF was the fastest, the UKF was the slowest, and

the LS filter was in the middle, yet closer to the UKF run time.
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Table 3.4: RMS errors of the magnitude of the position and velocity error over the full simulation,
excluding the first 5 observations (†), and the run time of the filter. This is in the Itokawa terminator
orbit with measurements every 10 minutes for 30 hours and process noise added.

Filter |er| (m) |ev| (cm/s) |er|† (m) |ev|† (cm/s) Run Time (min)

EKF 1.01 0.0316 0.775 0.0237 5.9
UKF 0.0859 0.0147 0.0468 8.26e-4 14.7
LS 0.0453 8.44e-3 0.0405 4.68e-4 10.9

3.3.2 Bennu Terminator Orbit Results

The terminator orbit from Section 3.1 around Bennu was investigated for OD. The shape of

Bennu is much closer to spherical, as opposed to the shape of Itokawa, which is more unique and

elongated. In addition, the flash lidar images of Bennu in this orbit occupy the entirety of the array

for the majority of the observations.

Measurements were taken every 2 hours for 10 days to represent a measurement frequency

seen in operations. The a priori covariance was defined from Equation 3.2, and process noise was

added with Equation 3.3. The a priori state included errors based on the a priori covariance, and

each filter simulation employed the same initial state.

Figure 3.9 presents the state errors in the RIC frame and their 3σ covariance bounds for the

EKF (a), UKF (b), and LS filter (c). Table 3.5 extracts the RMS errors of the magnitude of the

position and velocity errors for the entire simulation, the errors excluding the first 5 observations

(†), and the run time of the fiters.

Table 3.5: RMS errors of the magnitude of the position and velocity error over the full simulation,
excluding the first 5 observations (†), and the run time of the filter. This is in the Bennu terminator
orbit with measurements every 2 hours for 10 days and process noise added.

Filter |er| (m) |ev| (cm/s) |er|† (m) |ev|† (cm/s) Run Time (min)

EKF 1.74 0.0197 1.21 0.0127 7.2
UKF 0.0805 0.0110 0.0772 7.89e-4 30.4
LS 0.0781 0.0110 0.0772 7.92e-4 26.4

As with the Itokawa terminator orbit, the UKF and LS filter performed the best. The errors

from these filters reached centimeter-level accuracy in position, and resulted in almost identical
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Figure 3.9: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the Bennu terminator orbit with measurements every 2 hours for 10 days.

RMS errors when excluding the first 5 observations. The position errors from the EKF averaged

to meter-level accuracy and for the majority of the simulation, achieved centimeter-level accuracy

and were within the covariance bounds.

The magnitude of the errors in the Bennu terminator orbit were an order of magnitude

smaller than those in the Itokawa terminator orbit (Table 3.2), when comparing the errors for the

entirety of the simulations. This is likely due to the magnitude of measurements processed in each

simulation. The flash lidar images in the Bennu orbit contained more altimetry measurements at

each observation time. Excluding the initial observations, the errors in the Bennu orbit and Itokawa

orbit were comparable across the different filters.
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Simulations were run with the UKF and LS filter without process noise added. The same

measurements, a priori covariance, and a priori state were used as with the simulations from Figure

3.9. Figure 3.10 illustrates the position and velocity errors in the RIC frame and the 3σ covariance

bounds for the UKF (a) and the LS filter (b). Table 3.6 represents the RMS of the magnitude of

the position and velocity errors for the complete simulation, the RMS errors when excluding the

first 5 observations, and the time to run the filters.
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Figure 3.10: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without
process noise for the Bennu terminator orbit with measurements every 2 hours for 10 days.

In the UKF (Figure 3.10(a)), oscillations were present in the in-track and cross-track direc-

tions as was seen with the Itokawa terminator orbit (Figure 3.7(a)). This orbit was also circular

in the terminator plane, and was subject to the same sinusoidal effect of the phasing between the

in-track and cross-track directions. The LS filter did not produce errors with in the 3σ covariance

bounds, and oscillations were seen in all three directions.

With process noise added, the UKF errors resembled noise as the covariance was larger due

to the additional process noise. The averaged errors were lower in the UKF when process noise was

not added. The averaged errors with the LS filter without process noise present were an order of

magnitude larger than when process noise was added.
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Table 3.6: RMS errors of the magnitude of the position and velocity error over the full simulation,
excluding the first 5 observations (†), and the run time of the filter. This is in the Bennu terminator
orbit with measurements every 2 hours for 10 days and without process noise added.

Filter |er| (m) |ev| (cm/s) |er|† (m) |ev|† (cm/s) Run Time (min)

UKF 0.0438 0.0109 0.0343 2.53e-4 30.9
LS 0.307 0.0112 0.312 2.18e-3 20.9

3.4 Optical Navigation in the Itokawa Terminator Orbit

A simulation with optical navigation (OpNav) was performed with the UKF in the Itokawa

terminator orbit for comparison with the flash lidar measurements.

One hundred vertices were randomly selected from the FV-8 Itokawa facet model and were

treated as the landmark location measurements. The landmarks were considered to be useable to

the spacecraft if the landmark was within the camera FOV, sunlit, and not behind the asteroid.

The landmarks were calculated with the procedures outlined in Section 2.4.

Figure 3.11 depicts the useable landmarks in the asteroid inertial frame at one state in the

Itokawa terminator orbit. The selected state was at 500 minutes into the nominal terminator orbit

about Itokawa. In Figure 3.11(a), the red markers on Itokawa represent the useable landmarks,

and the green markers represent the remaining non-useable landmarks. The blue marker is the

spacecraft position in the orbit, and the red line is its pointing direction, pointing radially at the

center of the body. Figure 3.11(b) represents the image view of the sample/line locations of the

useable landmarks, and this was the image used in the filter.

The green landmarks that appear to be within the FOV of the spacecraft are not sunlit,

and therefore are not considered to be useable. The sun direction in Figure 3.11(a) is in the

−x−direction, and illuminates the landmarks on that side. The sample/line image view represents

this concentration of landmarks and is related to the orientation of the camera sensor frame. The

+y−axis of the sensor frame was aligned with the normal vector of the orbit, and the orbit normal

was always in the direction of the sun.

The measurement uncertainty on each sample/line coordinate was defined with a baseline
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Figure 3.11: Useable landmarks at one state in the Itokawa terminator orbit. (a) Global view of
the useable landmarks (red) and non-useable landmarks (green) in the ACI frame, and (b) Image
view of the sample/line locations of the visible landmarks.

value of 0.25 pixels, and an additional term related to its distance from the center of the coordinate

system. Equation 3.5 represents the measurement uncertainty applied, where s and l are the

sample/line location, and npx is the total number of pixels across one axis:

1σ = 0.25 + 0.1

√
s2 + l2

npx/2
px (3.5)

This was based off the uncertainty model in Owen (2011) [84], and the second term in Equation

3.5 reflects a degradation of the measurement as it gets closer to the edge of the image.

3.4.1 OpNav State Estimation

The position and velocity state of the spacecraft was estimated with a UKF. The set up of

the camera sensor, dynamical assumptions, and observation frequency for the OpNav simulation

were the same as the flash lidar simulation in order to compare the results as close as possible.

Similar to the flash lidar sensor, the camera sensor model had a total FOV of 20◦, the pixel

resolution was 64 × 64, and the focal length was 10 m. The sensor frame was oriented such that

the camera bore-sight (+z−axis) was pointed radially at the center of asteroid, and the +y−axis

was pointed along the orbit normal. The x−axis was considered the sample coordinate axis, and
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the y−axis was considered the line coordinate axis. It was assumed that the dynamics, the shape

model, the spin state and axis of Itokawa, and the spacecraft pointing were known.

The measurements were taken every 120 minutes for ten days, and the a priori filter state

included errors based on the a priori covariance matrix in Equation 3.2. Two simulations were

performed: without process noise and with process noise added along each axis with magnitudes

of 1e−9 m/s2 (Equation 3.3).

It was assumed that each landmark was correctly identified within the filter, and there were no

false correlations of the landmarks within the noise. To reduce processing time in the simulations,

only the landmarks that were in the observed image were computed in the simulated image.

Figures 3.12(a) and 3.12(b) show the resulting errors in position and velocity in the RIC

frame and the 3σ covariance bounds for the simulations without and with process noise, respectively.

Without process noise (Figure 3.12(a)) the position errors reach approximately 10 cm, with a larger

uncertainty in the in-track direction, and the velocity errors reach approximately 0.01 mm/s. A

sinusoidal pattern is present in the in-track and cross-track directions, similar to the flash lidar case,

and implies that this phenomenon is not specific to one measurement type. When process noise

was added, the maximum position errors were on the order of 50 cm, with the largest uncertainty

in the radial direction. The maximum velocity errors were on the order of 0.03 mm/s, with the

radial direction also having the highest uncertainty.

3.4.2 Flash Lidar and OpNav Comparison

Table 3.7 presents the RMS of the magnitude of the position and velocity error for the flash

lidar and OpNav UKF simulations with and without process noise. The flash lidar results are the

same as in Tables 3.2 and 3.3 and are repeated here for comparison. The results show that with

almost equivalent simulations, the navigation accuracy with flash lidar performs as good or better

than with OpNav. The position errors for the flash lidar simulations were an order of magnitude

smaller than those in the OpNav simulations, and the velocity errors an order of magnitude smaller

when excluding the first 5 measurements.
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Figure 3.12: Errors and 3σ covariance bounds in the RIC frame for the OpNav landmark measure-
ments in the Itokawa terminator orbit

With process noise added in the OpNav simulation, the largest uncertainty was found in the

radial direction (Figure 3.12(b)). As the OpNav landmarks traverse across the field of view, more

information is gained in the cross-track and in-track directions, while the landmarks move little in

the radial direction, causing a higher uncertainty.

In the flash lidar simulation without process noise (Figure 3.7(a)), the cross-track errors

touched the 3σ covariance bounds throughout the simulation, while in the OpNav simulation (Figure

3.12(a)), the errors remained inside 3σ covariance bounds for the entirety of the simulation. In the

flash lidar case, the covariance shrank quickly, down to approximately 10 cm in position by the

second measurement. The uncertainty in the OpNav case was an order of magnitude larger by the

second measurement, at 1 m, and allowed the errors to be bounded.

3.4.3 Flash Lidar vs. OpNav Discussion

The difference in state errors was likely due to the number of measurements used at each

time step. The flash lidar measurements contained approximately 2000 measurements in each image

while the OpNav measurements usually had between 15-20 visible landmarks in each image. The

lighting conditions played a factor in this simulation; as you can see from Figure 3.11, not all of
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Table 3.7: RMS errors of the magnitude of the position and velocity error over the full simulation,
and excluding the first 5 observations (†), comparing the OpNav and flash lidar measurements with
(w/ PN) and without process noise (w/o PN). This was is in the Itokawa terminator orbit with
measurements every 2 hours for 10 days.

Filter |er| (m) |ev| (cm/s) |er|† (m) |ev|† (cm/s)

Flash Lidar UKF (w/o PN) 0.0682 0.0211 0.0419 2.23e-4
OpNav UKF (w/o PN) 0.746 0.0141 0.326 1.92e-3

Flash Lidar UKF (w/ PN) 0.102 0.0211 0.0877 7.66e-4
OpNav UKF (w/ PN) 0.621 0.0160 0.538 2.98e-3

the landmarks in the FOV of the spacecraft could be used because they were shaded from the sun.

One hundred landmarks were used within the defined shape model, and more landmarks on the

surface could provide a better state solution. For example, the Rosetta mission contained about

1600 landmarks to define the surface [73], yet the average useable landmarks per image were on

the order of 50. In addition, the flash lidar observations in these simulations were taken only once

every two hours, while the instrument has potential to take measurements with a frequency of up

to 30 Hz. In that case, the flash lidar would rapidly provide more measurements than the landmark

sample/line measurements.

One drawback to the large number of observations per time step in the flash lidar images,

was that it caused the covariance to shrink quickly. With the flash lidar measurements, the covari-

ance shrank faster than the state estimation errors and faster than the covariance in the OpNav

simulation. While saturation did not occur in this case, the filter has potential to saturate due the

accuracy and large number of measurements per time step.

One aspect of this OpNav simulation that was not included but affects the landmark mea-

surement processing is a scale factor attached to the z-position of the landmarks. Without an

altitude attached to the landmark positions with respect to the spacecraft, multiple solutions of

the relative position of the spacecraft exist due to the two-dimensional nature of the optical images.

The optical measurements only include directional information, while the flash lidar measurements

include both directional and range information.

An advantage the flash lidar measurements have over the OpNav landmark measurements, is
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that the flash lidar measurements do not have to be correlated with the shape model. To use the

OpNav landmark vectors on the surface, an iterative process occurs between the spacecraft state,

spacecraft pointing, OpNav images, and state of the asteroid to create a landmark map. This

iteration process, however, can take hours to days to produce a solution for the navigation, and the

current practice is to perform this on the ground [73, 13, 71].

The flash lidar measurements only need to be computed with the shape model onboard the

spacecraft and differenced by pixel. This requires much less processing power and ground operations

than correlating the OpNav images, and can be more readily moved onboard the spacecraft to

encourage autonomous navigation. This method only requires an onboard shape model to create

measurement residuals, and shape models can be produced from ground observations before arriving

at an asteroid. [24]

3.5 Orbit Determination in the Itokawa Descent Orbit

The Itokawa descent orbit involved an initial circular terminator orbit, an impulsive ma-

neuver, and a 420 minute descent to the surface across the sunlit side of Itokawa. The position

and velocity of the spacecraft were estimated with a UKF, flash lidar measurements, and the sen-

sor model as described in Section 3.2.1. This simulation used the FV-32 faceted shape model of

Itokawa, instead of the FV-8 model, that contained approximately 12,000 facets. The increase in

the number of facets allowed the flash lidar measurements to see more detail of the surface as the

spacecraft was descending.

3.5.1 Without Initial State Errors

The first simulation presented assumed the a priori filter state did not contain errors, and

only included errors in the returned ranges based on Equation 3.1. The a priori covariance was set

to Equation 3.2, process noise was added from Equation 3.3. The observation frequency was every

five minutes for the duration of the orbit (420 minutes).

The state errors and 3σ covariance bounds in the RIC frame are shown in Figure 3.13.
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The covariance bounds dropped to centimeter-level in position after the second measurement, and

the filter was able to converge onto the correct state without the errors diverging outside of the

covariance bounds.
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Figure 3.13: Errors and 3σ covariance bounds in the RIC frame for the Itokawa descent orbit with
no initial state errors.

3.5.2 Initial State Errors Based on the Terminator Orbit Estimation

The second simulation involved errors in the a priori state based on state estimation and

maneuver errors. An OD simulation was performed of the initial terminator orbit with the UKF

and the FV-32 facet model. In the terminator orbit simulation, errors were applied to the a priori

filter state based on the a priori covariance in Equation 3.2, process noise was added from Equation

3.3, and variations on the range measurements were present from Equation 3.1. Observations were

taken every 5 minutes for 0.5 days before the maneuver for the descent orbit.

The final estimated state of the terminator orbit, X̂ft, was used to determine the initial state

of the descent orbit. The initial position was the same as in X̂ft and involved an error on the

order of 1 mm in each direction. The initial velocity was the final estimated velocity from the

terminator orbit, plus an instantaneous maneuver, ∆v1e. The ∆v1e maneuver included an error in
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its magnitude based on the true maneuver, ∆v1, and a small directional error. The error in the

magnitude was calculated with Equation 3.6, where σ∆v = 0.05|∆v1|.

|∆v1e| = (|∆v1|+ σ∆v) (3.6)

The magnitude error on ∆v1e was normally distributed by 5% of the magnitude of ∆v1. The

directional error was pointed off of the nominal pointing direction by an angle θe, with a twist. The

error angle, θe was zero-mean Gaussian noise with 1σ = 0.05◦, or approximately 0.87 mrad. The a

priori velocity state, v0 for the descent orbit was:

v0 = v̂ft + ∆v1e (3.7)

The a priori covariance, P̄0, was a diagonal matrix shown in Equation 3.8. The descent

position covariance, σr, was inflated to 10 times that of the ending position covariances from the

terminator orbit estimation, σRft, while the descent velocity covariance, σv was reset to 3 mm/s.

(For reference, 5% of |∆v1| was approximately 3 mm/s.)

P̄0 = diag[σ2
r , σ

2
v]

σr = 10σRft, σv = 3 mm/s

(3.8)

In the filter, process noise was added uniformly in each direction, similar to Equation 3.3, but

increased to σQ = 1e− 7 m/s2. While lower values of process noise were evaluated, this increased

value was found to work best in this new trajectory. Variations on the range measurements based

on Equation 3.1 were applied, and observations were taken every five minutes with the FV-32 shape

model for the truth and filter measurements.

Figure 3.14 shows the filter results in the RIC frame for this simulation. With the errors

applied to the ∆v maneuver, the estimation errors were not inside of the covariance bounds at

the very beginning of the simulation. However, after approximately 18 observations, the errors

converged inside of the covariance bounds.
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Figure 3.14: Errors and 3σ covariance bounds in the RIC frame for the Itokawa descent orbit with
initial state errors.

3.5.3 Monte Carlo Simulations with Varying Maneuver Errors

In order to investigate the effect of the ∆v error in the filter, two Monte Carlo (MC) sim-

ulations were performed with a normally distributed error of 2% and 10% of the magnitude of

∆v1. This corresponds to σ∆v = 0.02|∆v1|, and σ∆v = 0.1|∆v1| in Equation 3.6. Each simulation

involved ten runs, and the results in Figure 3.15 show the RMS errors in position and velocity at

each time for each of the MC runs.

In each of the figures, the MC runs with high velocity errors correspond to high position

errors, as expected. The largest position error in 2% Error simulation reached approximately 1 m,

and for the 10% Error simulations, the position error reached approximately 10 m. The errors in

each simulation converged to zero by the end of the trajectory.

3.5.4 Altered Observation Frequency

A new observation scheme was next investigated by taking observations at a higher frequency

directly after the maneuver, and then resuming a lower observation frequency for the remainder of
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Figure 3.15: RMS errors in position and velocity over the time of the descent orbit trajectory for
each of the MC runs.

the trajectory. With the flash lidar measurements, information on the velocity is not obtained until

the second measurement. With the previous uniform observation frequency the second observation

was five minutes after the maneuver. The theory was that by increasing the observation frequency

after the maneuver, the error in the |∆v| can be resolved quicker and reduce the overall errors.

The observation frequency after the maneuver (at the beginning of the observation arc) was

increased to an observation every one minute for ten minutes, and then every five minutes for the

remainder of the trajectory. Two initial states were tested with this observation scheme: MC 7

from the 2% error simulation and MC 5 from the 10% error simulation. The velocity error in MC

7 from the 2% Error simulation was approximately 0.2 cm/s, and the velocity error in MC 5 from

the 10% Error simulation was approximately 0.55 cm/s. These two cases were chosen because the

RMS errors were larger in comparison to the other MC runs, but were not at the extremes. The

filter simulations had the exact same setup, except for the altered observation frequency.

Figure 3.16 shows the filter results from these two simulations. Figure 3.16(a) shows MC 7

with a 2% |∆v| error and Figure 3.16(b) shows MC 5 with a 10% |∆v| error. The position and

velocity errors were outside the covariance bounds for almost the entirety of the simulation.
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Figure 3.16: Errors and 3 σ covariance bounds in the RIC frame with the altered measurement
frequency: observations every one minute for ten minutes, then every 5 minutes. This was applied
to two initial states from the MC simulations, (a) MC 7 with 2% |∆v| error and (b) MC 5 with
10% |∆v| error.

To compare the performance of the two observation schemes, Figure 3.17 illustrates the RMS

errors over time in position and velocity for the uniform and altered observation frequencies for

these two MC runs. The altered frequency performed worse and had larger errors in position and

velocity when compared to the uniform frequency. Due to the increased measurement frequency, the

covariance decreased quickly at the beginning of the simulation and saturated the filter. Therefore

the state was not updated accurately.

3.5.5 Landing and Descent Discussion

Using flash lidar measurements in a descent orbit situation can provide accurate results when

the process noise is adequately tuned. Using a higher observation frequency to solve for errors in

the descent maneuver decreased the filter performance. With the higher observation frequency in

the UKF, the covariance decreased quickly and the filter saturated.

As opposed to the terminator orbits, the sensor is closer to the body and therefore sees a
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Figure 3.17: RMS errors in position and velocity over time for when using a uniform observation
frequency of 5 minutes, and an altered scheme of a frequency of 1 minute for 10 minutes, and then
every 5 minutes.

smaller portion of the surface and possibly less variations in the surface. In addition, the spacecraft

is moving quicker when it is closer to the body and the observed and computed measurements could

involve greater discrepancies. This orbit required additional process noise, when compared to the

terminator orbit, to prevent the covariance from shrinking too quickly and account for the initial

errors.

When compared to the OpNav techniques, flash lidar measurements show promise for descent

and landing trajectories. Within OpNav, the number of landmarks decreases as the spacecraft

travels closer to the body, and different landmark maps must be created and used. The flash

lidar measurements, on the other hand, are able to use the same shape model to calculate the

measurement residuals without creating new landmark maps. The onboard shape model, however,

does play a factor in the precision of the navigation when using flash lidar. Since the sensor sees a

smaller portion of the asteroid at one time, a higher fidelity shape model should be used.
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3.6 Orbit Determination Estimating Position, Velocity, and Pointing Error

The estimation state for the OD simulations was expanded to include estimating an off-

nominal pointing error in addition to the position and velocity. Estimating the spacecraft pointing

is achievable with OpNav because the landmark measurements are estimated in the plane of the

camera. Estimating the spacecraft pointing with a single lidar beam or a scanning lidar may

be difficult since only one altimetry measurement is used with a single lidar and the direction is

constantly changing with a scanning lidar. With the flash lidar instrument, the direction of the

pointing is measured in the sensor plane and includes an altimetry measurement.

Three filters were compared: the EKF, UKF, and iterative LS filter. The spacecraft position,

r, and velocity, v, were estimated in the ACI frame, and an off-nominal pointing bias, θ, defined

from Equation 2.2 was estimated. The filter estimation state, X, is shown in Equation 2.1.

X =


r

v

θ

 (2.1)

The pointing direction, û from Equation 2.2 was defined as the z-axis of the sensor frame. The

individual pointing directions of the flash lidar array were defined from this coordinate system and

fixed with respect to the z-axis. The rotation from in Equation 2.2 was applied to the z-axis of the

sensor frame, and the individual pixel pointing directions were defined from this rotated axis.

3.6.1 Filter Setup and Error Modeling

The three measurement processing methods were investigated in the Itokawa terminator oribt,

the Bennu terminator orbit, and the Itokawa eccentric orbit. The observations in the terminator

orbit around Itokawa and Bennu were taken every two hours for 10 days, for a total of 121 observa-

tions. This simulated an operations environment, in which the spacecraft is in a stable orbit, and

navigation images are taken approximately every two hours in order to perform OD operations.

In the eccentric orbit, observations were taken every 10 minutes for 30 hours, totaling 181
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observations. Since the eccentric orbit is not stable and travels closer to the body, navigation

images for OD would likely be taken at a higher frequency to ensure the OD solution remained

up-to-date. This observation frequency was also investigated in the Itokawa terminator orbit.

It was assumed that the dynamics of the system, the shape model of the body, and the spin

state and axis of Itokawa were known. For the pointing, it was assumed that the rotation matrix

between the nominal sensor frame and the asteroid body-fixed frame was known, and the state

estimated an off-nominal pointing error.

The error modeling included Gaussian white noise on the truth individual range measure-

ments based on Equation 3.1, and errors in the a priori state. In the truth measurements, a

constant bias of 0.5◦ was applied to each pointing angle, θn, at each observation time, and was

equivalent to a constant off-nominal pointing of about 12 mrad.

The a priori state error was based on the a priori covariance in Equation 3.9 for the position

and velocity, and the a priori state for each angle was set to zero. For each orbit, the same a priori

state was used in the three filter simulations. The 1σ value in the a priori covariance for position

was 10 m, for velocity was 1 mm/s, and for the angels was 2◦ (Equation 3.9).

P̄0 = diag[σ2
r , σ

2
v, σ

2
θ ]

σr = 10 m, σv = 1 mm/s, σθ = 2◦
(3.9)

Process noise was added on the order of 1e-9 m/s2 (Equation 3.3), which is slightly below the

accelerations due to SRP and the J2 term of Itokawa, which were on the order of 1e-8 m/s2.

3.6.2 Itokawa Terminator Orbit Results

Three OD scenarios were run in the Itokawa terminator orbit while estimating the position,

velocity, and pointing error of the spacecraft. The first two captured measurements every two

hours for ten days to emulate a small body mission operations environment, and were run with and

without process noise added. The third simulation acquired measurements every 10 minutes for 30

hours, and this would be considered a high observation frequency for a small body mission.
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3.6.2.1 Operations Measurement Frequency

Observations were acquired every two hours for ten days, as is common in a small body

mission during nominal operations. This totaled 121 observations. Figures 3.18(a), 3.18(b), and

3.18(c) present the state errors and the 3σ covariance bounds in the RIC frame for the EKF, UKF,

and LS filter, respectively. Table 3.8 presents the RMS of the magnitude of the position and velocity

errors over the entire simulation, and after the first five observations. The angle, α in Table 3.8 was

defined as the total angle offset between the estimated pointing direction and the truth pointing

direction. The run times of each filter are also provided in Table 3.8.

Table 3.8: RMS errors of the magnitude of the position and velocity errors and total pointing error
angle, α over the full simulation, excluding the first 5 observations (†), and the run time of the
filter. This is in the Itokawa terminator orbit, estimating a pointing bias, with measurements every
2 hours for 10 days and process noise added.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

EKF 8.82 0.0482 0.44 4.05 0.0289 0.31 3.5
UKF 2.61 0.0281 0.15 1.79 7.83e-3 0.11 11.4
LS 0.243 0.0266 0.013 0.137 8.79e-4 6.48e-3 6.7

While all of the simulations converged toward the truth, the LS filter was the only simulation

where all of the state errors remained inside the covariance bounds for the entirety of the simulation.

The radial position errors in the EKF and UKF fell within the covariance bounds, while the error

in the pointing angles did not for these simulations. The pointing of the flash lidar sensor was

defined as pointing radially at the asteroid with a small pointing error. Therefore, the majority of

the information was contained in the radial position direction. The averaged errors from the LS

filter were the smallest of the three filters, and ran in almost half the time as the UKF.

The same measurements and a priori state were investigated with the UKF and LS filter, but

without adding process noise. Figure 3.19(a) illustrates the state errors in the RIC frame and the

3σ covariance bounds for the UKF, and Figure 3.19(b) illustrates the state errors in the RIC frame

and the 3σ covariance bounds for the LS filter. Table 3.9 shows the magnitude of the position and

velocity errors and the total pointing angle offset from the truth, α, for the entire simulations and
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excluding the first five observations.

Without process noise added, the UKF resulted in similar errors to when process noise was

(a) EKF (b) UKF

(c) LS

Figure 3.18: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the Itokawa terminator orbit with measurements every 2 hours for 10 days.
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(a) UKF (b) LS

Figure 3.19: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without
process noise for the Itokawa terminator orbit with measurements every 2 hours for 10 days.

added. In contrast to when process noise was present, the cross-track position error with the UKF

fell within the covariance bounds. This trend was the same for the θ1 pointing angle.

The LS filter also resulted in similar errors with and without process noise, yet resulted in

a longer run time without process noise present. Similar to the simulation with process noise, the

state errors when process noise was not present were inside their respective covariance bounds for

the entirety of the simulation.

3.6.2.2 High Observation Frequency

An observation frequency of 10 minutes for 30 hours was investigated in the Itokawa termi-

nator orbit while estimating pointing. The a priori state errors were based off of Equation 3.9, and

process noise was added from Equation 3.3. The a priori state errors were based on the a priori

covariance for the position and velocity state, and the initial pointing angles were set to zero. The
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Table 3.9: RMS errors of the magnitude of the position and velocity errors and total pointing error
angle, α over the full simulation, excluding the first 5 observations (†), and the run time of the
filter. This is in the Itokawa terminator orbit, estimating a pointing bias, with measurements every
2 hours for 10 days and without process noise added.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

UKF 2.31 0.0278 0.13 1.29 6.41e-3 0.083 12.9
LS 0.234 0.0266 0.013 0.115 5.00e-4 6.10e-3 9.4

same a priori state was used in each of the three estimation filters, the EKF, UKF, and LS filter.

Figure 3.20 presents the state errors and 3σ covariance bounds in the RIC frame for the

position and velocity, and the pointing angles with the EKF (a), UKF (b), and LS filter (c). Table

3.10 presents the RMS of the magnitude of the position and velocity errors, and the pointing

offset error angle, α. These are presented for the entire simulation and excluding the first five

observations, and the filter run time is presented as well.

Table 3.10: RMS errors of the magnitude of the position and velocity errors and total pointing
error angle, α over the full simulation, excluding the first 5 observations (†), and the run time of
the filter. This is in the Itokawa terminator orbit, estimating a pointing bias, with measurements
every 10 minutes for 30 hours and with process noise added.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

EKF 14.30 0.0620 0.72 7.85 0.0523 0.41 7.2
UKF 1.79 0.0174 0.099 0.942 4.51e-3 0.055 19.2
LS 0.408 0.0131 0.023 0.352 1.69e-3 0.021 13.0

The EKF resulted in errors outside of the 3σ covariance bounds, and produced the largest

averaged errors of the three filters. The majority of the state errors in the UKF and LS filters were

within their corresponding 3σ covariance bounds. The LS filter generated the smallest averaged

errors that were comparable to the errors from the UKF, and ran faster than the UKF.

As opposed to when only position and velocity were estimated, the UKF and LS filters

performed differently between the two observation frequencies. With the higher frequency, the

state errors from the UKF fell within their covariance bounds as opposed to using the operations

frequency. This resulted in smaller overall errors for the high measurement frequency UKF com-
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(a) EKF (b) UKF

(c) LS

Figure 3.20: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the Itokawa terminator orbit with measurements every 10 minutes for 30 hours.
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pared to the low measurement frequency UKF. The EKF and LS filter produced comparable errors

between the two observation frequencies, with the lower frequency performing better in each case.

3.6.3 Bennu Terminator Orbit Results

OD in the Bennu terminator orbit was investigated with an observation frequency of 2 hours

for 10 days with the EKF, UKF, and LS filter. As with the simulations that only estimated the

position and velocity, the flash lidar images of Bennu cover the full image array for the majority

of the observations. This increases the number of measurements processed at each time step when

compared to the Itokawa orbit measurements.

The a priori state errors were based on the covariance from Equation 3.9 for the position and

velocity, and the initial pointing angles were set to zero. The same a priori state and measurements

were used in each of the three filters. The a priori covariance was that from Equation 3.9 and process

noise was added from Equation 3.3.

Errors in the measurements were the same as with the Itokawa terminator orbit. Gaussian

white noise was added to the truth individual range measurements from Equation 3.1, and a

constant pointing bias of 0.5◦ was applied to each pointing angle (total offset was approximately

12 mrad) in the truth measurements.

Figure 3.21 presents two views of the EKF results (Figures 3.21(a) and 3.21(b)), the UKF

results (Figure 3.21(c)) and the LS filter results (Figure 3.21(d)). The results show the state errors

(solid) in the RIC frame for the position and velocity state, and the pointing angle state, and their

3σ covariance bounds (dashed). Table 3.11 presents the RMS of the magnitude of the errors for

the entire simulation, excluding the first five measurements, and the run time of the filters. The

errors are presented as the magnitude of the position and velocity, and the pointing angle offset

from the true pointing, α.

The LS filter resulted in the lowest state errors of the three filters, and the state errors were

within the covariance bounds for the entirety of the simulation. The state errors with the EKF

filter were orders of magnitude greater than the covariance bounds, and reached over 100 m in
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(a) EKF View 1 (b) EKF View 2

(c) UKF (d) LS

Figure 3.21: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the Bennu terminator orbit with measurements every 2 hours for 10 days.
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Table 3.11: RMS errors of the magnitude of the position and velocity errors and total pointing
error angle, α over the full simulation, excluding the first 5 observations (†), and the run time of
the filter. This is in the Bennu terminator orbit, estimating a pointing bias, with measurements
every 2 hours for 10 days and with process noise added.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

EKF 48.68 0.359 2.76 46.24 0.341 2.69 8.2
UKF 2.20 0.0202 0.13 1.65 0.0117 0.098 40.3
LS 0.193 0.0152 0.011 0.161 1.36e-3 8.38e-3 21.3

position.

The UKF simulation ran in almost twice the time as the LS simulation and produced errors an

order of magnitude larger. The in-track position error and the radial velocity error were outside of

their respective covariance bounds. This was a similar trend seen in the UKF simulations with the

same observation frequency in the Itokawa terminator orbit. Observability issues may be present

due to the orbit geometry and the observation frequency.

The UKF and LS filter were investigated without the addition of process noise in the Bennu

terminator orbit. The same measurements and a priori state were used as the previous simulations,

and the only difference was the exclusion of additional process noise.

Figure 3.22 presents the results of the UKF (a) and LS filter (b) in the Bennu terminator orbit

without process noise. The figures present the state errors (solid) in the RIC frame for the position

and the velocity, and the pointing state, and their corresponding 3σ covariance bounds (dashed).

Table 3.12 presents the magnitude of the errors over the course of the simulation, excluding the

first five measurements, and the run time of the filters.

Table 3.12: RMS errors of the magnitude of the position and velocity errors and total pointing
error angle, α over the full simulation, excluding the first 5 observations (†), and the run time of
the filter. This is in the Bennu terminator orbit, estimating a pointing bias, with measurements
every 2 hours for 10 days and without process noise added.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

UKF 2.08 0.0197 0.13 1.51 0.0107 0.090 44.6
LS 0.159 0.0152 9.27e-3 0.118 7.43e-4 6.47e-3 21.2
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(a) UKF (b) LS

Figure 3.22: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without
process noise for the Bennu terminator orbit with measurements every 2 hours for 10 days.

In the filter results, the same trend is seen in the UKF with and without process noise. The

in-track position direction and the radial velocity direction were outside of their covariance bounds,

and these directions contained the greatest uncertainty with the UKF and LS filter. Oscillation

patterns were seen in the UKF in the cross-track position and velocity directions, similar to those

seen in the Itokawa terminator orbit, and when only estimating the position and velocity.

The errors produced from the LS filter were within their covariance bounds for the entirety of

the simulation. This was different from only estimating the position and velocity with the LS filter

and without process noise, when the errors were not contained within their covariance bounds. The

addition of the pointing angles in the estimation state created more uncertainty, and the position

and velocity covariance bounds were larger when estimating pointing than without.
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3.6.4 Itokawa Eccentric Orbit Results

OD in an eccentric orbit about Itokawa was investigated with the EKF, UKF, and LS filters.

Observations were taken every 10 minutes for 30 hours. This orbit was unstable, as the spacecraft

escaped after 30 days of propagation. In a small body mission, if the spacecraft was in such an

orbit, observations would be required at a frequency higher than every two hours to maintain the

accuracy of the navigation solution.

Figures 3.23(a), 3.23(b), and 3.23(c) show the state errors and 3σ covariance bounds in

the eccentric orbit for the EKF, UKF, and LS filter, respectively. The gray patch in the figures

represents a data gap. The eccentric orbit travels outside of the bounds of the flash lidar instrument

(> 1 km), and a gap in the measurements occurs. Table 3.13 presents the RMS of the magnitude

of the errors over every time step, excluding the first five observations, and the run time of the

filters.

Table 3.13: RMS errors of the magnitude of the position and velocity errors and total pointing
error angle, α over the full simulation, excluding the first 5 observations (†), and the run time of
the filter. This is in the Bennu terminator orbit, estimating a pointing bias, with measurements
every 2 hours for 10 days and with process noise added.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

EKF 7.01 0.0643 0.48 6.28 0.0507 0.40 6.5
UKF 1.63 0.0194 0.12 1.44 7.45e-3 0.096 18.1
LS 0.131 0.0145 9.09e-3 0.112 7.50e-4 6.22e-3 15.1

Similar to the Itokawa terminator orbit, the EKF and UKF simulations converged toward the

truth, yet the filter saturated in both simulations and the errors were outside of the 3σ covariance

bounds. With the LS filter, the state errors were smaller and within the covariance bounds for the

majority of the simulation.

In the eccentric orbit, a data gap occurred between 670 minutes and 790 minutes because

the spacecraft traveled outside of the one kilometer limit of the flash lidar instrument, as shown in

Figure 3.3(c). Figure 3.24 shows the post-fit residuals of LS method, with the data gap, and one can

notice the post-fit residuals worsen as the altitude increases. In the observed measurement before
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the data gap (at 660 minutes), the image of Itokawa was approximately only 15 pixels in diameter.

This still provided over 200 range measurements, but was less accurate than the thousands of range

measurements used in the previous observations.

(a) EKF (b) UKF

(c) LS

Figure 3.23: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame without
process noise for the Itokawa eccentric orbit with measurements every 10 minutes for 30 hours. The
grey patch represents the data gap.
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During the data gap in the filter, the estimated state and covariance were simply propagated

until a useable observation became available. This caused a slight increase in the covariance bounds,

shown in Figure 3.23(c), but due to the high observation frequency and small duration of the gap,

the increase remained small.
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Figure 3.24: Post-fit residuals for the LS simulation; as the spacecraft traveled above 1 km in
altitude, a measurement gap occurred due to the upper limit of the flash lidar instrument.

3.7 Summary of Filter Results

Table 3.14 summarizes the filter results for the terminator orbits around Itokawa and Bennu

when estimating the position and velocity. The consistency of the errors refers to whether the filter

errors for each component were within the 3σ covariance bounds for the majority of the observation

arc.

Across the simulations with the Itokawa and Bennu terminator orbits, the iterative LS filter

results in comparable errors to the UKF, and runs in a shorter amount of time. With the EKF, once

the filter has converged after the initial observations, the resulting errors are within the covariance

bounds for both the Itokawa and Bennu terminator orbits. The same level of accuracy is achieved

with the high frequency measurements and the operations frequency measurements in the Itokawa
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Table 3.14: Summary of RMS errors of the magnitude of the position and velocity error over the
full simulation, the consistency of the filter errors, and the run time of the filter. Presented for
when estimating the position and velocity.

Orbit Obs Freq PN
added

Filter |er| (m) |ev| (cm/s) Consistent
Errors?

Run Time
(min)

Itokawa
terminator

orbit

2 hours,
10 days

X EKF 14.00 0.0746 X 3.2
X UKF 0.102 0.0211 X 9.7
X LS 0.185 0.0216 X 8.2

UKF 0.0682 0.0211 X 9.9
LS 6.84 0.0398 14.3

10 min,
30 hours

X EKF 1.01 0.0316 5.9
X UKF 0.0859 0.0147 X 14.7
X LS 0.0453 8.44e-3 X 10.9

Bennu
terminator

orbit

2 hours,
10 days

X EKF 1.74 0.0197 X 7.2
X UKF 0.0805 0.0110 X 30.4
X LS 0.0781 0.0110 X 26.4

UKF 0.0438 0.0109 X 30.9
LS 0.307 0.0112 20.9

Itokawa
terminator

orbit OpNav

2 hours,
10 days

X UKF 0.621 0.0160 X –
UKF 0.746 0.0141 X –

terminator orbit, as each simulation has a similar number of total observations. The LS filter also

produces similar errors with and without the first five observations when compared to the EKF and

UKF. This implies that the LS filter requires less time to converge on a solution when initializing

the filter.

Without process noise added, the LS filter does not achieve errors within the 3σ covariance

bounds. Analyzing the results from the inner LS algorithm, the majority of the observations

converge on a position state. The estimated position state is passed to the outer EKF to perform

the full state update and covariance calculations. Without process noise added, the covariance in

the outer EKF is smaller, and as a result the state update, x̂, is smaller. Therefore, even if the

inner LS algorithm converges on the truth state, the outer EKF is unable to appropriately update

the state estimate, resulting in larger state errors. This implies that the LS filter performs better

when process noise is included in the filter, which is typical in OD operations.

The larger number of altimetry measurements in each observation in the Bennu orbit leads
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to quicker convergence of the filters when compared to the Itokawa terminator orbit simulations.

However, the filter simulations with the Bennu orbit takes two to three times longer to complete

than the Itokawa orbit simulations.

Table 3.15 summarizes the filter results for the terminator orbits around Itokawa and Bennu

and the Itokawa eccentric orbit when estimating the position, velocity, and pointing bias. The

consistency of the errors refers to whether the filter errors for each component were within the 3σ

covariance bounds for the majority of the observation arc.

Table 3.15: Summary of RMS errors of the magnitude of the position and velocity errors and total
pointing error angle, α over the full simulation, the consistency of the filter errors, and the run
time of the filter. Presented for when estimating the position, velocity, and pointing bias.

Orbit Obs Freq PN
added

Filter |er| (m) |ev| (cm/s) α (deg) Consistent
Errors?

Run Time
(min)

Itokawa
terminator

orbit

2 hours,
10 days

X EKF 8.82 0.0482 0.44 3.5
X UKF 2.61 0.0281 0.15 11.4
X LS 0.243 0.0266 0.013 X 6.7

UKF 2.31 0.0278 0.13 12.9
LS 0.234 0.0266 0.013 X 9.4

10 min,
30 hours

X EKF 14.30 0.0620 0.72 7.2
X UKF 1.79 0.0174 0.099 X 19.2
X LS 0.408 0.0131 0.023 X 13.0

Bennu
terminator

orbit

2 hours,
10 days

X EKF 48.68 0.359 2.76 8.2
X UKF 2.20 0.0202 0.13 40.3
X LS 0.193 0.0152 0.011 X 21.3

UKF 2.08 0.0197 0.13 44.6
LS 0.159 0.0152 9.27e-3 X 21.2

Itokawa
eccentric

orbit

10 min,
30 hours

X EKF 7.01 0.0643 0.48 6.5
X UKF 1.63 0.0194 0.12 18.1
X LS 0.131 0.0145 9.09e-3 X 15.1

The LS filter outperforms the EKF and UKF in each of the terminator orbit simulations

and in the eccentric orbit simulation. The LS filter errors are the smallest of the three filters, and

the errors are within the 3σ covariance bounds. The UKF encounters observability issues with the

in-track position and radial velocity directions in the Itokawa and Bennu terminator orbits with

observation frequencies of two hours. Although, when the observation frequency is increased to

every 10 minutes, the UKF errors fall within the 3σ covariance bounds. The higher observation
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frequency allows the pointing bias to be resolved quicker while the evolution of the dynamics is

slower. This allows the pointing to be resolved before gaining more information on the position

and velocity state.

3.7.1 Discussion on Filter Iterations

Figure 3.25 illustrates the trace of the covariance for the three filter simulations in the Itokawa

terminator orbit with observations every 2 hours (Figure 3.25(a)) and the Itokawa eccentric orbit

with observations every 10 minutes (Figure 3.25(b)). Minimal differences are seen between the

resulting uncertainties in both orbits. The trace of the covariance for the UKF is the smallest

across the simulations, however it follows the same trends as the traces of the covariances for the

EKF and LS simulations. This shows that the primary difference between the filtering techniques

is in the resulting state errors. The additional iterative procedure in the LS filter produces a more

accurate state estimate, and the errors are within the resulting covariance bounds.
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Figure 3.25: Trace of the covariance for the three filter simulations in the Itokawa terminator orbit
with observations every 2 hours and the Itokawa eccentric orbit with observations every 10 minutes.

The filter saturation with the EKF and UKF is due to the preciseness of the lidar measure-

ments and the nonlinear measurement function. Solutions to this problem found in the literature

suggest iterating the state update, including the second order effects of the measurement function,
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or artificially inflating the measurement uncertainty matrix.[33, 116] Following the procedure in

Zanetti (2010) [116], if the a priori covariance, P̄ , mapped with the measurement partial deriva-

tives in H̃, is much larger than the measurement error covariance, R, an underestimation of the

a posteriori state covariance can occur. This implies that the estimated state has less uncertainty

than it actually does. A mathematical form of this underestimation is expressed in Equation 3.10,

where P−k is the a priori covariance and P+
k is the a posteriori covariance at time tk. [116]

if: H̃kP
−
k H̃

T
k � Rk

then: H̃kP
+
k H̃

T
k ' Rk

(3.10)

The conditions in Equation 3.10 are satisfied in both of the EKF orbit scenarios, causing an

underestimation of the state covariance and filter saturation. The proposed solution[116] is to

inflate the measurement error matrix, R, systematically to prevent filter saturation.

Due to the multitude of lidar measurements at each observation time, the proposed solution

in this work is to implement the iterative LS filter to solve for the position and pointing at each time

step. Before moving to the next observation, the linear state update is iterated until convergence,

similar to applying the Gauss-Newton method. This used the all of available information to produce

a state update, as is suggested in Denham (1966)[33], without artificially adding uncertainty to the

range measurements.

3.7.2 Discussion on Estimating the Pointing

When pointing is included in the estimation state, the LS filter produced the smallest errors,

and errors within the resulting covariance bounds, consistently across the simulations. The LS

and UKF generate comparable errors, yet the LS filter consistently runs faster. The UKF creates

2n+1 computes states at each observation step. When pointing is included in the estimation state,

the UKF creates 19 computed measurements at each observation step. The LS algorithm has a

maximum iteration limit of ten, and computes a maximum of ten measurements per observation

step. This number is less if the LS algorithm converged before this maximum iteration limit.
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The UKF consistently produces errors outside the covariance bounds in the in-track position

and radial velocity directions, for the terminator and eccentric orbit around Itokawa and the termi-

nator orbit about Bennu. In the terminator orbit about Itokawa, these issues are resolved when the

observation frequency was increased. This allowed the pointing to be resolved before the evolution

of the dynamics was too great.



Chapter 4

Estimation Robustness

A degree of uncertainty still exists after the characterization phase of a small mission due

to errors in the dynamical and measurement mathematical models, as well as in the observed

measurements. An estimation filter must account for this uncertainty and be robust to errors

between the truth system and the mathematical models.

This chapter investigates the limits of the estimation filters investigated in Chapter 3. Robust-

ness studies include varying the errors in the initial state with a nominal uncertainty to investigate

how the state errors compare to the resulting covariance bounds. The robustness of the UKF and

the LS filter are investigated with larger than nominal initial state errors to study the upper limit

of the initial filter state that would ensure convergence.

Robustness to measurement mismodeling involves applying shape modeling errors and ran-

dom pointing errors. A low fidelity shape model of the asteroid Itokawa is employed in the filter and

a high fidelity model is used to create the truth measurements. Using a lower fidelity shape model

onboard decreases the processing power of the filter, yet introduces measurement model errors. In

order to account for the measurement errors, investigations include increasing the measurement

uncertainty matrix, and increasing the covariance by implementing a consider filter. Errors in the

pointing involve a random pointing offset error at each observation time to emulate pointing jitter.

The iterated LS filter is applied in this case to solve for the pointing jitter.
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4.1 Robustness to Nominal Initial State Errors

Thee Monte Carlo simulations of 100 cases each were conducted with the EKF, UKF, and

LS filter to investigate how the estimation state errors match to the filter covariance bounds. The

filters estimated the spacecraft position, velocity, and pointing error (Equation 2.1) in the Itokawa

terminator orbit with observations every two hours for ten days. It was assumed that the shape

model was well known, and the dynamics, spin state and axis of Itokawa were known. The same

measurements were used in each of the filter cases, and included white noise on each altimetry

measurement in the image array based on Equation 3.1.

The initial position and velocity state were sampled from the uncertainty of the a priori

covariance in Equation 3.9, and each initial pointing angle was set to zero. Process noise was added

on the order of 1 e-9 m/s2 from Equation 3.3.

P̄0 = diag[σ2
r , σ

2
v, σ

2
θ ]

σr = 10 m, σv = 1 mm/s, σθ = 2◦
(3.9)

Q = diag[σ2
Q, σ

2
Q, σ

2
Q]

σQ = 1e− 9 m/s2

(3.3)

The Monte Carlo filter results for the EKF are presented in Figure 4.1 for the position, velocity

and pointing errors. In the EKF, all of the filter runs converge toward the truth values. Once the

filter has processed enough observations, the majority of the runs contain errors that fall within

the 3σ bounds for the radial position, and the in-track and cross-track velocity components. It is

shown that the covariance for each component reduces quickly at the beginning of the simulation,

below the errors. This filter saturation prevents the state estimate from larger updates towards

convergence.

The position, velocity, and pointing errors and 3σ covariance bounds with the UKF are

presented in Figure 4.2. Overall, each of the component errors from the UKF followed a similar

pattern. The radial position and in-track velocity remained inside of their respective covariance
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bounds, while the other component errors reached a steady state either just above or below their

covariance bounds.

The LS filter results of state errors and their 3σ covariance bounds are shown in Figure 4.3.

(a) Position (b) Velocity

(c) Pointing

Figure 4.1: Monte Carlo errors (solid gray) and 3σ covariance bounds (dashed black) in the RIC
frame with the EKF for the Itokawa terminator orbit with measurements every 2 hours for 10 days.
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Once settled, each component error is almost identical through the end of the filter, and each one

falls within their respective 3σ covariance bounds. This implies that the LS filter is very predictable

(a) Position (b) Velocity

(c) Pointing

Figure 4.2: Monte Carlo errors (solid gray) and 3σ covariance bounds (dashed black) in the RIC
frame with the UKF for the Itokawa terminator orbit with measurements every 2 hours for 10 days.
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and behaves almost identically for the various initial state errors. Due to the iterative nature of the

LS filter, the algorithm was able to converge on the same or similar state with the same observations

(a) Position (b) Velocity

(c) Pointing

Figure 4.3: Monte Carlo errors (solid gray) and 3σ covariance bounds (dashed black) in the RIC
frame with the LS filter for the Itokawa terminator orbit with measurements every 2 hours for 10
days.
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in each of the filter runs.

Table 4.1 presents the RMS of the magnitude of the position and velocity errors taken at the

end of each filter simulation. The RMS of the total pointing error from truth, α, evaluated at the

end of each filter simulations is also presented, along with the average run time of the filters. The

Table 4.1: RMS errors of the ending magnitude of the position and velocity errors and total pointing
error angle, α, and the average run time of the filter for the filter Monte Carlo simulation. This is
in the Itokawa terminator orbit, estimating a pointing bias, with measurements every 2 hours for
10 days and with process noise added.

Filter |erf | (m) |evf
| (cm/s) αf (deg) Average Run

Time (min)

EKF 0.831 3.66e-3 0.048 3.8
UKF 1.49 5.42e-3 0.088 12.3
LS 0.0729 2.70e-4 2.83e-3 7.6

errors from the LS filter are at least an order of magnitude smaller than those from the EKF and

UKF in position, velocity and pointing. The EKF errors were smaller than the UKF errors. This

was most likely due to the EKF continuously converging in its filter runs, while the UKF reached

a steady state in the majority of its filter runs.

The iterations employed in the LS filter allowed the filter to converge on the correct state

within the resulting covariance bounds for each state component and for each Monte Carlo run

except one. The large number of altimetry measurements processed at one time step, in combination

with their preciseness leads to a sharp decrease in the filter uncertainty. This causes filter saturation,

and a sequential filter does not produce large enough updates to the estimation state because the

state uncertainty is low. The iterations within the LS algorithm apply multiple linear updates to

converge the position and pointing state at each time step. The result is a state estimate with

errors from the truth that are within the 3σ filter covariance bounds.

4.2 Initial State Error Robustness with the Unscented Kalman Filter

The UKF creates 2n+ 1 sigma points at each observation time and propagates those states

through the nonlinear dynamics. After the propagation, the filter computes flash lidar images for
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each of these sigma points, and compares those images to the observed image. Since each pixel

in the flash lidar image is treated as an individual measurement, a particular pixel must contain

a range-return in the observed image and each of the computed images in order for a comparison

to be made. This requires that an overlap is present between the observed image and each sigma

point computed image.

Monte Carlo simulations were conducted to investigate the limitations of this pixel-matching

measurement technique. Three Monte Carlo (MC) simulations of 50 cases each studied the robust-

ness to initial filter state errors and the sensitivity to the value of α in the UKF. These simulations

estimated the position and velocity of the spacecraft in the circular terminator orbit about Itokawa,

while varying the UKF α parameter in Equation 2.89, and the initial state errors.

The values of α chosen were α = 1, 0.6, and 0.4. Nominally, a value of α = 1 was used in

the UKF simulations. The lower values of α reduced the spread of the UKF sigma points from

the mean, and therefore effected the overlap of the observed image and the sigma point computed

images.

The a priori filter state for each MC case was randomly sampled from a normal distribution

based on the a priori covariance in Equation 4.1. The state was normally varied from the truth

with 1σ = 100 m in position and 1σ = 10 mm/s in velocity.

P̄0 = diag[σ2
r , σ

2
v]

σR = 100 m, σV = 10 mm/s

(4.1)

This variation in the filter state was larger than in the nominal Itokawa terminator case in Sections

3.3 and 4.1 in order to further test the filter robustness. For the three MC simulations, only the

value of α changed, and the same a priori state was used for each corresponding MC case.

4.2.1 Measurement Overlaps

The flash lidar measurements were processed such that each pixel in the image was treated

as an independent observation. If one pixel did not contain a range-return in either the observed

image or any of the sigma point computed images, that pixel could not be used. This required
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at least one range-return pixel overlap between the observed image and each of the sigma point

computed images in order to process that observation.

To further explain this overlap, the observed and sigma point images from MC case 17 are

presented in Figures 4.4 and 4.5. Figure 4.4(a) shows the observed image at the first time step,

and Figure 4.4(b) shows the computed image from the a priori state, X̄0.

10 20 30 40 50 60

10

20

30

40

50

60

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

R
a
n
g
e
 (

k
m

)

(a) Observed Measurement

10 20 30 40 50 60

10

20

30

40

50

60

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

R
a
n
g
e
 (

k
m

)

(b) X̄0 Computed Measurement

Figure 4.4: Observed image and computed image from the a priori state, X̄0 at t = 0 of MC case
17.

Figure 4.5 illustrates the computed images from the sigma points that were perturbed in

position for MC case 17 with α = 1. Since a flash lidar measurement only depends on the position

of the spacecraft, the sigma points that were perturbed in velocity produced the same image as the

a priori state, X̄0, in Figure 4.4(b). When the observed image (Figure 4.4(a)), the X̄0 computed

image (Figure 4.4(b)), and each of the sigma point computed images (Figure 4.5) were superimposed

on top of one another to compare corresponding pixels, the result was a blank image. With α = 1

in this MC case, no individual pixel observed a range in the all of the images, and this observation

at t = 0 was unusable.

When the value of α was reduced to 0.6 and 0.4 for MC case 17, an overlap did occur. Figures

4.6(a) and 4.6(b) show the overlap of the observed image and each sigma point computed image

for α = 0.6 and α = 0.4, respectively, at t = 0. For these α values, the observed image and X̄0

computed image were the same as those in Figures 4.4(a) and 4.4(b), however the perturbed sigma
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Figure 4.5: Computed images from the perturbed sigma points (χ−points) in position for MC run
17 with α = 1 at t = 0.
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Figure 4.6: Overlap of the observed image and each sigma point computed image for MC case 17
at t = 0 with α values of α = 0.6 and α = 0.4.

points were closer to the a priori state, X̄0, and created an overlap in their computed images. The

smaller the α value, the smaller the spread of the perturbed sigma points from X̄0, and the larger

the overlap in images, as evidenced by the larger area in Figure 4.6(b) as opposed to Figure 4.6(a).
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4.2.2 Robustness to Initial State Errors

The MC simulations involved the same nominal Itokawa terminator orbit (Section 3.1), and a

similar filter set up as the OD simulation (Section 3.3). Dissimilar to the OD simulation in Section

3.3, the observation frequency was every 5 minutes for an observation arc of half a day. The a priori

covariance was that in Equation 4.1, and, as explained above, initial state errors were applied based

on this covariance. Process noise was added uniformly to each axis with a magnitude of 1 e-9 m/s2

(Equation 3.3) to slightly inflate the covariance. The sensor was set up as explained in Section

3.2.1, with the exception that the upper limit of 1 km on the flash lidar ranges was removed. It was

assumed that if the spacecraft could see the asteroid, it was able to take flash lidar measurements

of the surface.

4.2.2.1 Usability of Observations

Within the observation arc, the usability of an observation at any time step depended on its

state estimate, X̂t, covariance, Pt, and value of α. It was found that for particular a priori states,

the filter was either able to process all of the observations, some of the observations, none of the

observations, or did not finish. If an observation was unable to be processed, this was because

an overlap was not present between the observed and computed images. The simulations that

were able to process some of the observations had one or multiple observation arcs with unusable

measurements.

The simulations that did not finish were not able to process any observations, and the in-

tegration within the filter was terminated early. In these simulations, since no observations were

able to be processed, the state covariance continued to grow and was never reduced with a state

estimate update. This caused the position of the sigma points to grow farther away from the mean.

Eventually, one of the perturbed sigma points was placed within the asteroid, and resulted in early

termination of the integration. Within a UKF, the calculation of all of the sigma points is required

to determine a state estimate update; therefore, without the use of one of the sigma points, the
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filter was not able to produce a state update and was terminated.

Figure 4.7 illustrates the errors in the a priori state for the 50 cases in each of the three MC

simulations. The colors correspond to whether the filter was able to process all of the observations

(No Bad Obs, blue), some of the observations (Some Bad Obs, cyan), none of the observations (All

Bad Obs, red), or did not finish (Did Not Finish, black).

With α = 1 (Figure 4.7(a)), every case contained either all bad observations, or did not

finish. From the MC cases presented, only the α = 1 simulation contained cases that did not finish.

When the α value was reduced to 0.6 (Figure 4.7(c)), the majority of the cases contained no bad

or some bad observations, with only three cases that contained all bad observations. With α = 0.4

(Figure 4.7(b)), all of the cases were able to process some or all of the observations. The cases that

involved some bad observations with α = 0.6, also involved some bad observations with α = 0.4,

placing significance on the initial state errors.

Further analysis is shown in Figure 4.8 that illustrates the initial position errors in the in-

track (I) and cross-track (C) frame for each of the three α values. The initial errors in the radial

direction were not presented because they did not show a correlation with the usability of the

observations. When an a priori state error was present in the radial direction, the asteroid was

still centered in the image frame and a measurement overlap was still able to occur. Comparing

the α = 0.6 and α = 0.4 simulations (Figures 4.8(b) and 4.8(c), respectively), one can see that the

cases that resulted in all bad or some bad observations were correlated with larger initial errors

in the in-track direction rather than the cross-track direction. These cases involved initial in-track

state errors that were greater than ±100 m.

The correlation of in-track and cross-track errors was due to the orientation of the terminator

orbit with respect to Itokawa. The orbit in-track direction was along the short axis of Itokawa,

while the cross-track direction was along the long axis. Therefore, an initial state perturbation

along the in-track direction of this orbit viewed less of Itokawa since it was perturbed along its

shorter axis, and created less of of an image overlap, if any. On the other hand, a perturbation in

the cross-track direction was perturbed along the long axis of Itokawa, and created a larger image
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Figure 4.7: Position errors in the a priori state in the RIC frame for the MC simulations with
varying α values, and the usability of each case: no bad observations (blue), all bad observations
(red), some bad observations (cyan), or did not finish (black).
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Figure 4.8: Position errors in the a priori state in the IC frame for the MC simulations with varying
α values, and the usability of each case: no bad observations (blue), all bad observations (red),
some bad observations (cyan), or did not finish (black).
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overlap.

The initial velocity errors in the in-track (I) and cross-track (C) frame are shown in Figure

4.9 for each of the three α values. Unlike the initial position errors, less of a correlation is seen

between the initial velocity errors and the usability of the observations. However, in Figure 4.9(a),

the cases that did not finish were more prevalent in the negative in-track direction, which means the

initial state was slower in this direction than the truth state. The cases that did not finish involved

a perturbed sigma point that was inside the asteroid before failing. This correlation implies that

the initial velocity was slower in the in-track direction, causing the estimated state to travel too

close to the asteroid surface, and resulting in early termination.
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Figure 4.9: Velocity errors in the a priori state in the IC frame for the MC simulations with varying
α values, and the usability of each case: no bad observations (blue), all bad observations (red),
some bad observations (cyan), or did not finish (black).

4.2.2.2 Resulting Final Errors

Figure 4.10 shows the histograms of the position errors at the final time, and Figure 4.11

illustrates the histograms for the velocity errors at the final time for the cases that finished in the

three MC simulations. Both of the histograms are presented on a log-scale, with the position in

meters and the velocity in cm/s.

In the simulations for α = 0.6 and α = 0.4, the majority of the cases that contained no

bad observations resulted in position errors within centimeter accuracy, with the maximum error

reaching up to 10 m. The resulting velocity errors were below 0.01 cm/s, with the maximum error
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Figure 4.10: Histograms of the position errors at the final time in each RIC direction for the MC
simulations with varying α values, and the usability of the cases.
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Figure 4.11: Histograms of the velocity errors at the final time in each RIC direction for the MC
simulations with varying α values, and the usability of the cases.

reaching 0.1 cm/s. For those cases with all bad observations (in α = 1 and α = 0.6), the filter

simply propagated the estimated state for 0.5 days.

4.2.3 Effects of Measurement Processing

With this current methodology, if the initial spacecraft position was within 100 m of the

truth, and α = 0.4, the filter converged on the truth within meter-level accuracy. However, if the

α value was increased to 1, measurement overlaps did not occur, and the filter was not able to

converge. This procedure illustrates that even with 100 m of deviation in the initial position, the

value of α can be adjusted in the UKF in order to encourage convergence. This upper limit on the

initial position and velocity state would be sufficient for routine spacecraft operations.

This investigation also addressed the question of how to process these three-dimensional
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images within a filter. The pixel-matching measurement approach required an overlap in the

observed image and each sigma point computed image, and can exclude useful information from

the filter. For example, in Figure 4.5, each χ−points can view the asteroid, but since there is not

an overlap of all of the measurements, the filter cannot process the observation.

4.3 Initial State Error Robustness with the Iterative Least Squares Algo-

rithm

In the LS algorithm, the estimated state was iterated until a convergence criteria was met

or the maximum number of iterations was reached. The LS algorithm does not use a priori infor-

mation from the filter, and only uses the observed image and estimated state. Three Monte Carlo

simulations studied the limit on the initial position and pointing state of the spacecraft in order

to ensure convergence with one observation. Each simulation was conducted with a single state,

estimated the position and pointing of the spacecraft at one time step, and no estimation filtering

was performed. The truth state contained errors in all six state components of the position and

pointing angles based on a normal distribution with specified one-sigma values.

One simulation sampled the position errors from a distribution of 1σr = 50 m and the pointing

errors from a distribution of 1σθn = 0.5◦, a second sampled from a distribution of 1σr = 10 m in

position and 1σθn = 3◦ in pointing, and a third sampled errors from a distribution with 1σr = 100

m in position and 1σθn = 0.5◦ in pointing. A fourth simulation held the pointing state constant at

its truth value, and varied the position state with 1σr = 100 m.

One hundred variations of the initial state were passed into the least-squares algorithm and

each were iterated until the convergence criteria was met. The difference in this MC simulation as

opposed to the filter formulation was that the maximum number of iterations was increased to 40.

The shape model of Itokawa was assumed to be known, as well as the asteroid’s attitude, and no

dynamics were present in these simulations. The errors in each simulation involved errors in the

initial state and white noise on the returned altimetry measurements based on Equation 3.1.
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4.3.1 Moderate Position and Pointing Uncertainty

One hundred initial state errors were sampled from a normal distribution with 1σr = 50 m

in position and 1σθn = 0.5◦ pointing:

1σr = 50 m, 1σθn = 0.5◦ (4.2)

The truth state was chosen as pointed radially above the north pole of Itokawa in the circular

terminator orbit. The observed measurement from the truth state is shown in Figure 4.12(a). For

illustration purposes, Figure 4.12(b) shows the computed measurement image when the one-sigma

values in Equation 4.2 were added to the truth state. Figure 4.12(c) shows the difference of the

computed image subtracted from the observed truth image. The pixels in Figure 4.12(c) represent
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(b) Perturbed observation image
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Figure 4.12: Example observation images of the observed and perturbed flash lidar images for the
LS MC.

the useable data points for comparing these two images.

Figure 4.13 illustrates the spread of the position initial conditions with respect to Itokawa

(Figure 4.13(a)), the initial errors in the XY frame (Figure 4.13(b)), and the outcome of each run.

The open green circle markers indicate there was not an initial overlap between the observed and

computed image. The solid circle markers indicate that the run converged, and the larger the circle,

the more iterations it took to converge. The triangle markers indicate that while an initial overlap

occurred in the filter, the subsequent iterations did not produce an overlap and the algorithm was

terminated. The cross markers indicate the cost function, J , had stalled out without dropping

below the tolerance and was terminated at the maximum number of iterations.
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Figure 4.13: Initial position errors and resulting LS MC outcomes for 1σr = 50 m, 1σθn = 0.5◦.
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Figure 4.14: Magnitude of the initial position and pointing errors and their resulting LS MC
outcomes for 1σr = 50 m, 1σθn = 0.5◦.

Figure 4.14 presents the magnitude of the initial error versus the number of iterations. The

magnitude of the initial errors was defined as the magnitude of the error in position,|er|, and the

total pointing offset angle from the truth, α. Table 4.2 presents the RMS of the final position error

magnitude and total pointing angle offset for those cases that converged and did not reach the

maximum number of iterations. Out of the cases that converged, the averaged ending position
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Table 4.2: RMS of ending errors of the LS MC cases that converged for 1σr = 50 m, 1σθn = 0.5◦

State Ending Error

rms(|erf |) 0.816 m

rms(αf ) 0.866◦

error magnitude was 0.8 m, and the pointing offset angle was 0.9◦.

In this simulation, the position of the spacecraft played a larger role than the pointing in

determining the outcome of the runs. One can notice a pattern in Figure 4.13(b). Runs with a

position error greater than ±50 m in the y-direction did not produce an overlap of the observed

and computed images. Studying the orientation of Itokawa at this time (Figure 4.13(a)), this is

likely due to the short width of Itokawa in the y-direction. When analyzing the initial pointing

angle errors and MC run outcomes, no reasonable pattern could be discerned.

4.3.2 Large Pointing Uncertainty

A similar Monte Carlo simulation varied the position with 1σr = 10 m, and the pointing with

1σθn = 3◦.

1σr = 10 m, 1σθn = 3◦ (4.3)

This position uncertainty was the nominal uncertainty on the OD simulations in Chapter 3. An

uncertainty of 3◦ on each of the Euler angles in the pointing offset definition is equivalent to a total

pointing offset of 4.24◦ or 74 mrad. This is a highly conservative pointing case, as most spacecraft

pointing determination systems can be resolved to a few milliradians.

Figure 4.15 presents the magnitude of the initial errors versus the number of iterations for

convergence, where |er0 | is the magnitude of the initial position error, and α0 is the total initial

pointing offset from the truth. The open circles indicate there was not an initial overlap between

the observed and computed image (which did not occur in this similation), the triangle markers

indicate the case was terminated early, and the cross markers indicate that the cost function, J

stalled out. Table 4.3 presents the RMS of the magnitude of the ending errors over the cases

that converged and did not reach the maximum number of iterations. Figure 4.16 presents the
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Figure 4.15: Magnitude of the initial position and pointing errors and their resulting LS MC
outcomes for 1σr = 10 m, 1σθn = 3◦.

progression of the convergence for the cases that did finish (a), and those that did not finish (b).

This is illustrated as the magnitude of the error from the truth (|er| for position and α for pointing)

versus the iteration number.

A distinct positive trend is present in Figure 4.15 between the initial pointing error and the

number of iterations for the cases that converged. The average errors for the cases that did converge

resulted in a position error less than 1 m and a total offset in pointing error less than 1◦.
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Figure 4.16: Convergence of the LS MC cases for 1σr = 10 m, 1σθn = 3◦.



153

Table 4.3: RMS of ending errors of the LS MC cases that converged for 1σr = 10 m, 1σθn = 3◦

State Ending Error

rms(|erf |) 0.924 m

rms(αf ) 0.97◦

The cases that did not finish all contained an initial pointing offset error larger than 3◦.

For the cases that did not finish in Figure 4.16(a), the first iteration reached a pointing offset

error greater than 20◦, and a position errors of greater than 500 m. This aligns with the sensor

model because the full FOV of the flash lidar instrument was 20◦. The convergence progression for

those cases that did finish (Figure 4.16(b)) all increased in error with the first iteration of the LS

algorithm. Yet, the first iteration errors for these cases were below 500 m in position and below

25◦ in pointing.

4.3.3 Large Position Uncertainty

A third Monte Carlo simulation varied the position with 1σ = 100 m, and the pointing with

1σ = 0.5◦. This is a large variation in the position, and a nominal variation in the pointing.

1σr = 100 m, 1σθn = 0.5◦ (4.4)

The truth state for this simulation was toward the +x body-fixed axis of Itokawa, and pointing

still directed radially at Itokawa. Figure 4.17 illustrates the truth state and the spread of the initial

position states with their MC outcomes.

Figure 4.18 illustrates the magnitude of the initial position error and total initial pointing

offset from truth versus the number of iterations toward convergence. The open circles represent

the cases that did not contain an initial overlap in the observed and computed images, and the

triangles represent the cases that contained an initial overlap but were terminated within the LS

algorithm. Table 4.4 presents the RMS of the magnitude of the final errors for those cases that

converged and did not reach the maximum number of iterations.

The cases that did not finish, contained over 100 m in initial position error. For the cases
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Figure 4.17: Initial position errors and resulting LS MC outcomes for 1σr = 100 m, 1σθn = 0.5◦.
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Figure 4.18: Magnitude of the initial position and pointing errors and their resulting LS MC
outcomes for 1σr = 100 m, 1σθn = 0.5◦.

that did converge, the ending position magnitude error was 0.5 m in position and 0.5◦ in pointing.

Figure 4.19 illustrates the progression of the convergence for the cases that did finish (a), and

those that did not (b). For those cases that did not finish, the errors within the iteration grew to

over 500 m in position and over 30◦ in pointing error. When this occurred, an overlap between the

observed and computed measurement was no longer available and the algorithm was terminated.

However, these error limits were not strictly tied to the convergence outcome of the case. Errors
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Table 4.4: RMS of ending errors of the LS MC cases that converged for 1σr = 100 m, 1σθn = 0.5◦

State Ending Error

rms(|erf |) 0.539 m

rms(αf ) 0.50◦
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Figure 4.19: Convergence of the LS MC cases for 1σr = 100 m, 1σθn = 0.5◦.

reached beyond these limits to up to 800 m in position and 50◦ in pointing in some of the cases

that were able to converge.

When estimating the position and pointing, the LS algorithm has two states to adjust in

order to minimize the cost function. As shown, the LS algorithm adjusts the pointing state farther

than necessary and can cause the asteroid to be out of view of the sensor. This occurs when the

position error is large and the pointing is included in the estimation state,.

4.3.4 Position Only Iterations

This Monte Carlo simulation only varied the position and held the pointing constant. The

position was varied in each component by sampling errors from a normal distribution with 1σ = 100

m.

1σr = 100 m (4.5)

In the LS algorithm, only the position was included in the estimation state, and therefore iterations

were only performed with the spacecraft position.

The spread of the position states are shown in Figure 4.20(a), and the magnitude of the initial
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errors versus the number of iterations is shown in Figure 4.20(b). For the cases that converged, the

RMS of the magnitude of the ending position error was 0.058 m.
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Figure 4.20: Initial position errors and resulting LS MC outcomes for position-only variations with
1σr = 100 m.

A distinct trend is present in Figure 4.20(b) between the initial position error and the number

of iterations for convergence. Unlike the cases that estimated the pointing, this simulation did not

contain any cases that stalled out or were terminated early. Each case either converged or did not

have an initial overlap in observed and computed images to initiate the filter. The cases that did

not have an initial overlap of observed and computed images contained position errors larger than

200 m and were on the periphery of the perturbed states.

4.3.5 Discussion

These simulations tested variations of one state with the LS algorithm. When the position

and pointing were estimated in the state, the LS algorithm was terminated early if the position

error was large. For example, the cases that did not finish yet had an initial image overlap in Figure

4.13 were on the periphery of the perturbed states. When this occurred, the iterations within the

LS algorithm produced states that were no longer in view of the asteroid and an overlap did not

occur between the observed and computed measurements.
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When only the position was estimated and the pointing was held constant, every case con-

verged if an initial overlap in the observed and computed images existed. This implies that better

performance could be achieved if only the position is estimated first in the LS algorithm, and then

after convergence, adding pointing into the estimation state. If it was known that the spacecraft

position errors were large, and the pointing errors were small, this sequential approach would be

beneficial.

These simulations were also performed with just one observation, and without the outer

Kalman filter used for state propagation. Filter simulations showed that even if the least-squares

algorithm did not converge on the truth state for one observation, the overall filter could still

converge. The different orientations of the asteroid, and the propagation of the spacecraft provided

additional information in the Kalman filter to aid in convergence.

This least-squares algorithm shows promise to solve for pointing errors at each observation

time step, such as if the spacecraft pointing experiences jitter. The Monte Carlo simulation that

only slightly varied the position, but varied the pointing with 1σ = 3◦, saw convergence in all of its

runs if the pointing error was less than 3◦. This shows promise for solving for a constant pointing

bias, as well as observation-dependent pointing errors within a Kalman filter.

4.4 Shape Modeling Errors

In practice, perfect knowledge of the asteroid shape may be unknown, and errors may be

present in the shape model even at the highest fidelity. From an autonomous navigation standpoint,

a low fidelity shape model may be used onboard the spacecraft to reduce the computational load.

Since the overall goal of this research is to advance navigation autonomy, the robustness of the

filtering methods presented was tested by using a low fidelity shape model in the filter, and using

a high fidelity shape model to produce the truth measurements.

The resolutions of the Itokawa shape models studied here are described as FV-8, FV-16, and

FV-32.[44] The FV-32 model was the highest fidelity model of the three with approximately 12,000

facets, while the FV-8 model was the lowest fidelity model with approximately 800 facets (shown
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in Figure 2.3(b)). The lower fidelity shape models were formed by removing every other vertex in

the next-higher-fidelity model; for example, the FV-16 model was created by removing every other

vertex in the FV-32 model. It is noted that these shape models were readily available [44], and no

attempt was made to create a more optimal lower fidelity model.

OD investigations studied the EKF, UKF, and LS filter with these shape modeling errors.

To account for the errors, one study increased the uncertainty in the measurement uncertainty

matrix, R, and one study implemented a consider filter. Increasing the measurement uncertainty

is simple for onboard navigation, and has been investigated for small body missions [9]. Consider

covariance analysis have been applied to orbit determination for including sensor biases [54], in

recursive implementations [117], and for an asteroid rendezvous [113].

4.4.1 Shape Model Differences

The measured differences in the shape models were computed by projecting the vertices

of the higher resolution shape model onto the corresponding facet of the lower resolution shape

model. Due to how the lower resolution shape models were formed, it was simple to match the high

resolution facets within one low resolution facet. For example, four facets from the FV-32 model

corresponded to one facet in the FV-16 model, and 16 facets in the FV-32 model corresponded to

one facet in the FV-8 model. An example of the FV-8/FV32 comparison is shown in Figure 4.21.

The vertices from the high resolution shape model were projected onto the facet of the low

resolution model along the normal vector of the low resolution facet. These distances were recorded

as the measured differences of the shape models. If a difference was negative, this meant the high

resolution vertex protruded beyond the low resolution model, and vice versa.

Figure 4.22 illustrates the differences between the FV-8 and FV-32 models, where Figure

4.22(a) represents the measured differences as explained above, and Figures 4.22(b) and 4.22(c)

represent different views of the overlap of the FV-8 and FV-32 shape models. In Figure 4.22(a),

the colored axis was bounded between 6 and -20 meters, and in Figures 4.22(b) and 4.22(c), the

dark color shows where the FV-8 model has a larger radius, and the light color shows where the
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Figure 4.21: Corresponding facets from the FV-32 model within one facet of the FV-8 model.

FV-32 model has a larger radius.

One can notice that the FV-32 model has a larger radius than the FV-8 model along the

boundaries of the Itokawa image. This shows up in the negative measured differences in Figure

4.22(a), and in the light color border in Figures 4.22(b) and 4.22(c). Due to do how the FV-8 model

was created, some features were cut out around the outer edges of Itokawa, creating a smaller radius

here, as well as around the neck of Itokawa, creating a larger radius here.

Figure 4.23 illustrates the differences between the FV-16 and FV-32 models, where Figure

4.23(a) represents the measured differences bounded between 6 and -20 meters, and Figures 4.23(b)
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Figure 4.22: Differences in FV-8 and FV-32 facet/vertex models of Itokawa
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Figure 4.23: Differences in FV-16 and FV-32 facet/vertex models of Itokawa

and 4.23(c) show the overlap between the FV-16 (dark color) and FV-32 (light color) models. In

this comparison, the measured differences and overlaps were not as severe as the FV-8/FV-32

comparison and were more spread out over the body.

Table 4.5 shows the mean, standard deviation, and maximum absolute value of the measured

differences in the FV-8/FV-32 and FV-16/FV-32 comparisons. The statistics in Table 4.5 support

the assumption that the low resolution models had a smaller radius since the mean of the differences

in both comparisons was negative. This implied that the differences in the shape models were biased.

This was not ideal since it is desired for any errors introduced into the state estimation filter to

have a zero-mean and normal distribution.

Table 4.5: Mean, standard deviation, and maximum absolute value of the measured differences
between the shape model fidelities.

Comparison Average Difference (m) Standard Deviation (m) Maximum Difference (m)

FV-8/FV-32 -0.61 1.88 20.29
FV-16/FV-32 -0.100 0.713 11.98

4.4.2 Orbit Determination Robustness

Shape modeling errors were introduced into the filter simulations to test the robustness of

the flash lidar measurements. A high fidelity shape model of Itokawa was used to create the truth

measurements, and a lower fidelity model was used in the filter. The OD was performed in the

circular terminator orbit around Itokawa with measurements every two hours for ten days. It was
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assumed that the spin state and spin axis Itokawa were known, as well as the dynamics.

The errors introduced in these simulations included Gaussian white noise on the altimetry

measurements from Equation 3.1, and shape modeling differences between the onboard filter shape

model and the truth shape model. The measurement uncertainty matrix was implemented as in

Equation 2.171, but with an additional uncertainty added to each range measurement of 1σshp m,

in Equation 4.6.

Rshp = diag
[
[(σρi + σshp)

2]p×1

]
(4.6)

Two values of σshp were investigated: σshp = 2 m and σshp = 6 m. From Table 4.5, the

average difference was −0.6 m for the FV-8/FV-32 comparison, with a standard deviation of about

2 m. Using σshp = 2 m reflects the shape modeling errors based on Table 4.5, and using σshp = 6

m reflects a conservative approach to accounting for the shape modeling errors. Increasing the

uncertainty of the range measurements based on the shape uncertainty is a simple approach that

does not require the formulation of a new filter. This supports the autonomous navigation goal of

this research, and a similar approach is used for the OSIRIS-REx lidar-guidance algorithm. [9]

It is noted that by increasing the measurement noise with Equation 4.6, the tolerance for

convergence in the LS filter (Equation 2.112) was also increased. This was suitable since errors

were known to be present in the measurements, and the iterations of the LS algorithm might not

be able to reach the same tolerance as with the known shape model. The LS algorithm was able

to continue to iterate on a solution once it was below the tolerance, and terminated once J stalled

out from Equation 2.113.

The OD simulations estimated the spacecraft position, velocity, and pointing, and used the

same a priori covariance as in Equation 3.9. Process noise was added as in Equation 3.3. Each

simulation employed the same a priori state error in position and velocity, taken from a normal

distribution based on Equation 3.9, and the a priori pointing angles were set to zero.

For comparison, Table 4.6 presents the magnitude of the state errors excluding the first five

measurements for the FV-8/FV-32 case without the addition of measurement noise.
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Table 4.6: RMS values of the magnitude of the position and velocity errors, the total angular
pointing offset from nominal, α, excluding the first five observations (†), and the total run time.
This is in the Itokawa terminator orbit with measurements every 2 hours for 10 days for the FV-
8/FV-32 case without additional measurement noise.

Filter |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

EKF 2.10 0.0155 0.064 4.1
UKF 4.23 0.0262 0.215 12.3
LS 2.07 0.0139 0.085 29.6

Figure 4.24 presents the EKF (a), UKF (b), and LS filter (c) results when using the FV-8

shape model in the estimation filter, the FV-32 model for the truth measurements, and a shape

uncertainty of σshp = 2 m. Table 4.7 presents the RMS of the magnitude of the position, velocity,

and pointing errors, averaged without the first five measurements, and the run time of the filter.

Table 4.7: RMS errors of the magnitude of the position and velocity error and the total angular
pointing offset from nominal, α excluding the first five observations (†), and the run time of the
filter. This is in the Itokawa terminator orbit with measurements every 2 hours for 10 days for the
FV-8/FV-32 case and σshp = 2 m.

Filter |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

EKF 2.62 0.0177 0.085 4.1
UKF 5.00 0.0305 0.244 12.5
LS 2.19 0.0154 0.078 9.4

The filter results, using a FV-32 model for the truth measurements, the FV-8 model in the

filter, and increasing the measurement uncertainty with σshp = 6 m, are presented next. Figure

4.25(a) shows the state errors and 3σ covariance bounds for the EKF, Figure 4.25(b) shows the

state errors and 3σ covariance bounds for the UKF, and Figure 4.25(c) shows the state errors and

3σ covariance bounds for the LS filter. The magnitude of errors for this simulation, along with

additional cases for the FV-16/FV-32 case are presented in Table 4.8.

All six simulations showed similar patterns in their error results: the errors in the radial and

in-track position directions, and the radial velocity direction plateaued outside their covariance

bounds. Peaks occurred in the radial and in-track position errors at the same observation times.
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Increasing the measurement uncertainty from σshp = 2 m to σshp = 6 m did not cause a significant

change in the filters, and the state errors were of the same order of magnitude.

The same filter simulations, with the same a priori state and σshp = 6 were run with the FV-16

(a) EKF (b) UKF

(c) LS

Figure 4.24: Errors in the radial (R), in-track (I), and cross-track (C) frame (solid) and the 3σ
covariance bounds (dashed) with FV-8/FV-32 shape modeling errors with σshp = 2 m.
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model as the onboard shape model, and using the FV-32 model to produce the truth measurements.

The EKF, UKF, and LS filter for the FV-16/FV-32 case all showed a similar pattern of peaks in

the radial errors at specific observation times. The errors were not as severe, and were inside the 3σ

(a) EKF (b) UKF

(c) LS

Figure 4.25: Errors in the radial (R), in-track (I), and cross-track (C) frame (solid) and the 3σ
covariance bounds (dashed) with FV-8/FV-32 shape modeling errors with σshp = 6 m.
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covariance bounds with the LS filter, yet slightly outside of the covariance bounds with the EKF

and UKF. While the EKF and UKF errors were on the same order of magnitude, the covariance

bounds in the UKF simulation were smaller than those in the EKF, resulting in more errors falling

outside of its covariance bounds.

4.4.2.1 Filter Analysis

Each of the filters for the FV-8/FV-32 case and the FV-16/FV-32 case saw an oscillating

state error at the same observation times in position and velocity. Figure 4.26 depicts the estimated

position of the spacecraft in the BF frame from the FV-8/FV-32 UKF (σshp = 6 m) simulation

when the peaks in the radial errors occurred. It reveals that these periodic errors occurred when

the spacecraft viewed a particular area of Itokawa. This area can be classified as the negative

x−coordinates of Itokawa in the BF frame.
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Figure 4.26: Estimated spacecraft position in the Itokawa BF frame from the FV-8/FV-32 UKF
simulation when the radial error peaks occurred in Figure 4.25(b).

Figure 4.27 shows two histograms of the measured differences between the FV-8 and FV-

32 models, divided between the positive and negative BF x-coordinates of Itokawa. While both

histograms were skewed toward negative differences, the differences associated with the negative

BF x-coordinates involved a greater skew. This implies that the overall radius of the FV-8 model



166

Figure 4.27: Histograms of +x and −x shape model differences for the FV-8/FV-32 comparison of
the Itokawa shape model

was less than that of the FV-32 model in this area of Itokawa.

Within the filter, the average pre-fit residuals revealed that the computed measurements

were greater than the observed measurements at these observation times. The filter adjusted the

spacecraft position closer to the asteroid, and resulted in the negative radial errors seen in the filter

results. When the spacecraft was close to the body, it traveled faster and caused larger in-track

position errors as a secondary effect.

Table 4.8 presents the RMS values of the magnitude of the position and velocity errors, the

total off-nominal offset pointing error (α), and the total run time for the EKF, UKF, and LS filters.

These are presented for the FV-8/FV-32 case and the FV-16/FV-32 case with σshp = 6 m, and

the FV-32 case that did not include additional measurement uncertainty. In the FV-32 case, the

FV-32 model was used for the onboard shape model and to produce the truth measurements.

The RMS errors for the FV-16/FV-32 case were slightly less than those for the FV-8/FV-

32 case for each component error. Across all of the shape model comparison cases, the LS filter

performed the best of the three filters in terms of higher accuracy and lower computational times.

The accuracies when using the FV-32 shape model for the onboard measurements versus

a lower fidelity onboard model were on average an order of magnitude less. The computational

time when using the FV-32 model, however, was increased by an order of magnitude. It is noted
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Table 4.8: RMS values of the magnitude of the position and velocity errors, the total angular
pointing offset from nominal, α, excluding the first five observations (†), and the total run time.
This is in the Itokawa terminator orbit with measurements every 2 hours for 10 days for the FV-
8/FV-32 case and σshp = 6 m.

Filter/Truth
Shape Model

Filter |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

FV-8 / FV-32 EKF 3.43 0.0215 0.137 3.5
FV-8 / FV-32 UKF 3.68 0.0236 0.142 11.5
FV-8 / FV-32 LS 2.28 0.0148 0.084 9.7

FV-16 / FV-32 EKF 2.22 0.0114 0.134 6.1
FV-16 / FV-32 UKF 1.82 0.0101 0.103 39.8
FV-16 / FV-32 LS 0.62 2.84e-3 0.033 11.1

FV-32 EKF 1.03 5.56e-3 0.060 16.5
FV-32 UKF 1.69 7.64e-3 0.103 152.6
FV-32 LS 0.12 8.68e-4 4.66e-3 25.4

that with a higher resolution instrument, such as 256 × 256, the differences in the shape model

resolutions may be more pronounced, and possibly result in smaller errors.

Overall, with the LS filter, a similar level of accuracy and an increase in computation speed is

achieved when using an onboard shape model that is of lower fidelity than the truth shape model.

4.4.3 Orbit Determination with the Consider Filter

When introducing the shape modeling errors, the onboard lower fidelity shape had a smaller

radius than the high fidelity truth shape. This caused subsequent errors in the estimation state.

With the lower fidelity shape model in the filter, errors were introduced on the individual range

measurements in the image array. Estimating an error on the individual range measurements would

cause observability issues of the state since the errors are linearly dependent on the range. It was

assumed that calibration procedures had been performed of the flash lidar instrument and there

were no biases on the pixels due to the sensor. The biases in the state errors were assumed to be

solely from the asteroid shape mismodeling.

To compensate for the state errors due to the shape mismodeling, a consider covariance

analysis and consider filter were implemented. A constant bias was assumed to be present on each

of the range measurements at one time step, and this was the consider parameter. The consider
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state, C was defined as a range bias, b:

C = [b] (4.7)

This bias appears in the measurement model as an addition to the measured range, ρ:

ρi = ûTi (rA − r) + b (4.8)

The measurement mapping matrix for the bias parameter was:

H̃c =
∂ρi
∂b

= 1 (4.9)

The covariance matrix of the consider parameter was simply the uncertainty:

P̄cc = σ2
b (4.10)

The mapping matrix, θ(t, tk) is defined as the change in the state with respect to the change

in the consider parameters over time. The consider parameter does not change the state dynamics,

and only effects the observations. Therefore, the matrix θ(t, tk) = 0, and:

S̄k = φ(tk, tk−1)Sk−1 (4.11)

4.4.3.1 Consider Analysis and Filter Results

A consider analysis and consider filter were run with an uncertainty based off of the shape

model statistics and a conservative shape uncertainty. The FV-8/FV-32 shape model comparison

in the circular terminator orbit around Itokawa with measurements every two hours for ten days

was used as the basis of this simulation. This was the exact same filter simulation as used as in

Section 4.4.2. The difference was that a consider covariance and consider update were produced

alongside the filter simulation.

Two cases were studied with the consider filter. In the first, the value of c̄ and its uncertainty,

σb was defined from the errors computed when differencing the low and high fidelity shape models.

For the FV-8/FV-32 case, these values were: c̄ = −0.6 m, and 1σb = 2 m. The second case used a

more conservative in the shape model uncertainty with c̄ = −4 m, and 1σb = 6 m. The mean of the
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pre-fit residuals at the occurrence of the radial error peaks in the FV-8/FV-32 EKF simulations

were all close to 4 m, and therefore, this mean was chosen to conservatively include the errors.

The consider covariance Pc is the same for the consider analysis and consider filter algorithms.

In the consider analysis, the consider state update depends on the a priori value of the consider

parameters, c̄, while in the consider filter, the consider state update is calculated with a consider

Kalman gain and the consider covariance. In the presented results, the consider covariance, Pc is

presented with the state error and covariance from the filter. To determine error in the consider

state, the consider state update, x̂ck was added to the time update of the state, X∗k + x̄k, and

differenced with the truth state.

Figure 4.28 presents the state error and the 3σ state covariance bounds from the estimation

filter, and the 3σ consider covariance bounds, Pc for 1σb = 2 m. Figure 4.29 presents errors in the

filter state, the consider analysis (CA) state, and the consider filter (CF) state for σb = 2 m and

c̄ = −0.6 m.

The consider covariance captured all of the state errors, with the exception of the in-track

position direction, and θ2 and θ3 in the pointing state. The consider state updates were all consistent

with the filter state estimates, and all followed the same trend. The consider filter, which does not

depend on c̄, produced slightly greater errors in the estimation state, while the consider analysis

state update resulted in slightly less errors.

Figure 4.30 presents the consider covariance 3σ bounds with the filter state error and state

covariance bounds when using the conservative σb = 6 m in the consider analysis. Figure 4.31

illustrates the errors in the filter state and the consider state when evaluated from the consider

analysis (CA) and consider filter (CF) with c̄ = −4 m and σb = 6 m.

When the consider parameter uncertainty was increased to σb = 6 m, the consider covariance

in the radial direction reached ±20 m. This captured the state errors from the filter, but the RMS

of those errors were less than 3 m (Table 4.6). The in-track position consider covariance was also

inflated, but still did not encapsulate the state errors in the in-track position direction. The same

was the case for the pointing angles; the consider covariance was inflated, yet did not capture the
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(a) Position (b) Velocity

(c) Pointing

Figure 4.28: State errors in the RIC frame (black solid), the 3σ state covariance bounds (black
dashed), and the 3σ consider covariance bounds (Pc, blue dashed) with FV-8/FV-32 shape modeling
errors with σb = 2 m.
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Figure 4.29: Errors of the filter state (black dashed), consider state from the analysis (CA, blue),
and consider state from the filter (CF, teal) with FV-8/FV-32 shape modeling errors with σb = 2
m.
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(a) Position (b) Velocity

(c) Pointing

Figure 4.30: State errors in the RIC frame (black solid), the 3σ state covariance bounds (black
dashed), and the 3σ consider covariance bounds (Pc, blue dashed) with FV-8/FV-32 shape modeling
errors with σb = 6 m.
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Figure 4.31: Errors of the filter state (black dashed), consider state from the analysis (CA, blue),
and consider state from the filter (CF, teal) with FV-8/FV-32 shape modeling errors with c̄ = −4
and σb = 6 m.
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errors in θ2 and θ3. Increasing c̄ = −4 m distinguished the consider state updates. The consider

analysis state update that depended on c̄ shifted the radial position and velocity errors upwards

toward the positive errors. However, the shift was too great, and the errors were of the same

magnitude but positive instead of negative. The consider state update in the other components

did not see significant changes.

4.4.3.2 Discussion

A consider filter is designed to account for dynamical or measurement parameters that contain

uncertainty, yet are not directly estimated. These filters are best suited for parameters that may

not be observable or would increase the computational load of the filter. With shape modeling

errors present, the estimation state incurred errors that were not captured by the filter covariance.

A consider covariance analysis and filter are implemented by assuming a range bias, b with

uncertainty σb as the consider parameter. With the bias uncertainty based off the measured shape

model differences, the consider covariance captures the filter state errors in all but three state

components. When the bias uncertainty is increased for a conservative approach, the 3σ consider

covariance bounds are six times larger than the filter state errors in the radial position, and do not

capture the errors in the same three components. The state errors with the consider state update

for the consider analysis and consider filter algorithms are similar to the filter state errors for both

σb cases.

The consider covariance would be suitable in this situation to capture the majority of the

state errors due to shape mismodeling, yet the filter parameters would need further investigation

and tuning to adequately capture all of the state errors.

4.5 Pointing Jitter with the Least Squares Filter

The LS filter did not employ a priori information to estimate the position and pointing of

the spacecraft at each time step, and the filter can easily solve for different state errors at each

observation time as evidenced from Section 4.3. This is ideal if the spacecraft experiences pointing
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jitter, where a random unknown error in the pointing might be present at each observation time.

This study investigated applying a random pointing error at each observation time and im-

plementing the LS filter for OD. The terminator orbit with observations every 2 hours for 10 days

was used as the nominal orbit. In the truth measurements, a random pointing error was applied

to each of the pointing angles of θ, based on a normal distribution with 1σ = 0.5◦. If each angle,

θn, was set 0.5◦, this was equivalent to a total off-nominal offset of 12 mrad. With these errors

implemented on the truth measurements, the total off-nominal offset ranged from 0.08◦ to 1.6◦, a

fairly conservative range of angles.

The same filter setup was employed as in Section 3.2.1, with a priori position and velocity

errors based on the a priori covariance in Equation 3.9, and process noise added based on Equation

3.3. The range measurements had white noise applied based on Equation 3.1, and in this simulation,

the shape model for the truth and computed measurements was the FV-8 model. The a priori

angles, θn, were reset to zero at each observation time, and the a priori covariance for the angles

was reset to the original a priori covariance in Equation 3.9 at each observation time.

Figure 4.32 illustrates the state errors and 3σ covariance bounds when using the LS filter

with pointing jitter. The covariance bounds in this simulation were slightly larger compared to the

pointing bias simulations, and plateaued around 1 m in position and 0.1◦ in pointing. This was due

to the reset of the pointing angle covariance at each time step. The errors were still fairly small,

reaching sub-meter accuracy in position, and below 0.1◦ in pointing, and the LS filter converged on

the correct pointing state within the resulting uncertainty. These results are promising for using

the LS filter not only to estimate a pointing bias, but also random pointing errors present at each

time step.
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Figure 4.32: Errors in the radial (R), in-track (I), and cross-track (C) frame (solid) and the 3σ
covariance bounds (dashed) when using the LS filter with pointing jitter errors.



Chapter 5

Filter Initialization

To initialize the estimation filter, one must have an a priori guess of the estimation state.

Using the image properties of the flash lidar measurement, one can determine a rough estimate of

the spacecraft state, and use this as the a priori state in the estimation filter. This is applicable if the

spacecraft has exited safe mode. With this approach, it can autonomously determine an educated

guess at its position and pointing with respect to the the asteroid. Through two consecutive position

estimates, the spacecraft can determine an estimated velocity, and use this for the a priori filter

state.

It is assumed in this scenario that the spacecraft has performed a pre-determined search

pattern of capturing images with the goal of capturing an image of the asteroid. Once the asteroid

is in view, the spacecraft determines its inertial pointing direction with onboard star tackers. It

is further assumed that a shape model was available to the spacecraft. From knowledge of the

asteroid shape, it is assumed that the spacecraft is able to estimate the relative attitude of the

asteroid by predicting the spin state from the shape model and an onboard clock.

A pre-processing algorithm is presented in this section to estimate the spacecraft position

and pointing at a single observation time using only the flash lidar observation at that time,

knowledge of the inertial spacecraft pointing, and knowledge of the asteroid attitude. Monte Carlo

simulations are performed to test this algorithm with a variety of position and pointing states. The

pre-processing algorithm is performed on two observations to estimate the spacecraft position and

pointing, and the two subsequent position estimates are used to estimate the spacecraft velocity.
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The estimated position, velocity, and pointing are the a priori state in the filter that further refined

the spacecraft state estimation.

5.1 Edge Detection Algorithm

The image properties of a flash lidar measurement allow features to be extracted and matched

between the observed and computed images. One of those features is the edges of the asteroid in the

returned flash lidar array. Edge detection algorithms are seen in spacecraft relative navigation such

as fitting craters to an ellipse in optical images [23], or fitting the limb of a planet to an ellipse while

on approach to a planet [28]. Determining the edges may be performed with various algorithms.

The ones investigated here include using a fast Fourier transform (FFT), image shifting, and a

neighbor search.

Fast Fourier Transform Fast Fourier transforms (FFTs) are commonly used to deter-

mine features in an image and correlate two images that maybe shifted or rotated with respect to

each other. FFTs are also commonly used for image processing and correlation, and have been

investigated for spacecraft relative terrain navigation for landing.[78] High frequencies in an image

correspond to sharp changes, such as edges or corners, while low frequencies correspond to gradual

changes or shading. A high-pass FFT was applied to the flash lidar image to determine the edges

of the asteroid by only allowing the high frequencies in the picture to be detected. This algorithm

used a high-pass filter greater than or equal to the 10th harmonic. The image was inputted into

the high-pass filter FFT, and then the inverse FFT (IFFT) algorithm. The edges were detected

by recording pixels that were greater than 50% times the maximum value in the filtered image.

Figures 5.1(a) and 5.2(a) show the resulting edges for two measurements in the circular terminator

orbit around Itokawa.

Image Shifting This approach shifted the image up, down, left, and right, by one pixel

index with respect to the original image. The pixels in each flash lidar image without a range-return

were set to zero, and the pixels in each shifted image were differenced from the original image. A

tolerance was set at 50% of the maximum difference between the shifted and original image, and
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if a pixel returned a difference greater than this tolerance, it was considered an edge pixel. The

results are shown in Figure 5.1(b) and Figure 5.2(b) for two different observations of Itokawa. The

advantage to this technique over the FFT is that the pixels on the boundary of the image were also

included as edges and the edges were more continuous.

Neighbor Search The Neighbor Search algorithm looped through each pixel that pro-

duced a range-return and tested its neighbors for if the pixel produced a range-return, produced

no-return, or if it was on the boundary of the image. If a pixel’s neighbor did not produce a range-

return or was on the boundary of the image, this pixel was recorded as an edge. This resulted in

the same edge pixels as the Image Shifting algorithm, as shown in Figures 5.1(b) and 5.2(b).

Table 5.1 shows the different run times in milliseconds for the three algorithms for five

different measurements in the circular terminator orbit around Itokawa. The Neighbor Search

algorithm consistently was the fastest algorithm across the different images, and therefore this

algorithm was used in this study.

Table 5.1: Algorithm run times of the edge detection algorithms for different measurements from
the Itokawa terminator orbit.

Measurement FFT (ms) Image Shift (ms) Neighbor Search (ms)

A 0.356 0.188 0.185
B 0.355 0.185 0.182
C 0.362 0.195 0.165
D 0.362 0.191 0.160
E 0.373 0.193 0.137

5.2 Pre-Processing Algorithm

The pre-processing algorithm presented was designed to be run prior to the estimation filter.

It estimates an a priori position and pointing state at one observation time to be fed into the

estimation filter. This was performed without a priori information on the spacecraft position. To

begin the pre-processing algorithm, it was assumed that the spacecraft would perform a pointing

search pattern until an image of the asteroid was captured. With this image captured, the inertial

pointing of the spacecraft could be determined by onboard star trackers, and provide the rotation
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Figure 5.1: Edge pixels and center pixel for measurement A as determined by the FFT algorithm
(a) and the Image Shifting and Neighbor Search algorithms (b).
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Figure 5.2: Edge pixels and center pixel for measurement C as determined by the FFT algorithm
(a) and the Image Shifting and Neighbor Search algorithms (b).

matrix CACI/SF between the flash lidar sensor frame and the inertial frame. This further assumed

that the relative orientation of the instruments on the spacecraft was known, and that the center

of the asteroid in inertial space and the asteroid-center inertial frame (ACI) was defined. With

an observation of the asteroid in the sensor field of view (FOV), and the inertial pointing of the

spacecraft defined, the pre-processing algorithm may commence.

The steps of the pre-processing algorithm are outlined as follows. An initial position estimate

was determined from the inertial spacecraft pointing, the range-return of the center pixel of the
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Figure 5.3: Pre-Processing algorithm flow chart

observed image, Y , and the reference radius of the asteroid. If the computed measurement, G0

from this first state estimate was empty, the spacecraft may be beyond the limit of the flash lidar

instrument. If this occurred, the radial position of the spacecraft was incrementally decreased

until the computed image was populated. The next step tested if there was an overlap between

the observed and computed images, and if a specified minimum number of pixels occurred in this

overlap. If this was not the case, a hill climber optimization algorithm was performed for at least

two iterations. Once an overlap occurred, the LS algorithm commenced while only estimating the

position. After convergence, the LS algorithm was applied again, and estimated the position and

pointing. A flow chart of this algorithm is presented in Figure 5.3.



182

5.2.1 Initial Position Placement

With the knowledge of the spacecraft pointing in the inertial frame, and that the asteroid

was in the field of view, it was assumed that the boresight direction of the sensor frame, +SF z

was directed at the asteroid. The boresight direction of the sensor frame was rotated into the ACI

frame by the rotation matrix CACI/SF :

ACIzsf = CACI/SF (SF z) (5.1)

Next, the Neighbors Search edge detection algorithm was implemented to determine the center

pixel of the observed image. The returned range value of this center pixel, ρobscent was recorded as

the predicted altitude of the spacecraft.

The initial guess of the spacecraft position vector was set with the direction as the opposite

of the inertial pointing direction, ACIzsf and the magnitude as the reference radius of the asteroid,

Rs plus the range of the center pixel, ρobscent:

ACIr0 = −(ρobscent +Rs)
ACIzsf (5.2)

The sensor pointing vector, ACIzsf was defined as pointed from the spacecraft to the asteroid;

therefore, the position vector was multiplied by −1 to define the spacecraft direction from the

asteroid to the spacecraft.

5.2.2 Radial Adjustment

With the initial position placement of the spacecraft at r0, a computed image, G0 was gener-

ated. If the computed measurement, G0 did not produce a measurement return, the spacecraft may

be placed outside the limits of the flash lidar instrument. If this happened, the reference radius,
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Rs was reduced by 25% until a measurement was returned:

r = Rs

while isempty(G0) :

r = 0.75r

r0 = −(ρobscent + r′)ACI û

G0 = G(r0)

(5.3)

5.2.3 Hill Climber Algorithm

The hill-climber algorithm perturbed each element of the initial position forward and back-

ward (∆x), and calculated a cost function, M , for each of these perturbations. The state that

resulted in the lowest cost function was saved and this process was repeated. This was a simplified

optimization technique that did not require differential equations and moved the state towards

the lowest cost. In addition, an initial overlap in the images was not required. The process was

iterated for a set number of iterations or until no states were found with a better cost function.

The algorithm described here also used simulated annealing, where the perturbation added to the

state was reduced at each iteration. Simulated annealing assumes that the state is approaching a

local minimum.

The advantage of this algorithm was the flexibility in the cost function because of the ability

to define different metrics and their weights. The metrics chosen included the number of overlapping

pixels, nol, the differences in ranges of select pixels, |ρobs − ρcomp|, the area of the image, A, and

difference between pixels with and without a return, δpx. The cost function, M, is shown in Equation

5.4 with weights defined in Table 5.2.

M =− wolnol

+ wρ|ρobs[1, · · · , n]− ρcomp[1, · · · , n]|

+ wA|Aobs −Acomp|

+ wδδpx

(5.4)
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Table 5.2: Weights of the metrics used in the hill climber cost function.

Weight Value

wol 1
wρ 100
wA 0.1
wδ 0.1

The metrics were defined as:

• nol: The number of overlapping pixels in the observed and computed images

This was the most important metric, as an overlap of the observed and computed images

must occur in order to process the measurements in the filters. This metric was subtracted

in the cost function, to further reward an overlap in pixels, and the weight was an order of

magnitude larger than the other two metrics that were measured in number of pixels.

• |ρobs − ρcomp|: The difference in ranges of the selected pixels (km)

The selected pixels were a fixed cross that was centered at the center pixel (calculated

from the edge detection algorithm), and expanded to every other pixel for 10 pixels in the

x and y directions. If one of these selected pixels in the observed image did not provide

a range-return, that pixel was not used in the calculated metric. This used n number of

ranges in the metric calculations, with a maximum number of 22 ranges used. If one of

these pixels in the computed image did not have a range-return, the difference was assigned

a value of 100 km to increase the cost function. This metric helped refine the altitude of

the spacecraft, as well as the transverse components.

• A: The area of the image (number of pixels)

This was the total number of pixels that returned a range value. This metric helps refine

the altitude of the spacecraft.

• δpx: The pixel differential (number of pixels)
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To determine the difference between the pixels with and without a return, the two images

were overlaid and the metric recorded the pixels that had a range-return in one image and

a no-return in the other. For example, the observed image could occupy the left portion

of the image, and the computed image could occupy the right portion of the image. These

images could provide the same area, yet the pixel differential would be large as the images

might not overlap.

Implementing simulated annealing, the perturbation of the computed state, ∆x, was reduced

after each iteration by a percentage, ζ (Equation 5.6). The initial perturbation, ∆x0, in each

component was equal to half of the field of view at that altitude (Equation 5.5).

∆x0 = ρobscent tan(10◦) (5.5)

∆x = ∆x · ζ, ζ = 60% (5.6)

The hill climber was terminated once an overlap of the specified minimum number of pixels,

nminol had occurred, the tolerance was met, or the maximum number of iterations was met. The

minimum number of overlap pixel was set to 10% of the total number of pixels in the array and

rounded to the nearest integer. For the 64 × 64 array, nminol = 410. If the current cost differenced

with the previous cost was less than 0.1, the cost function was considered to be stalled out and

terminated, and a maximum number of 20 iterations was allowed.

nminol = 0.1(npx × npx) (5.7)

5.2.4 Progression of the Pre-Processing Algorithm

The goal of the pre-processing algorithm was to provide an a priori state to the estimation

filter. Once an overlap in the measurements occurs, the estimation filters investigated can converge

on a state within sub-meter accuracy.

The hill climber algorithm may be applied regardless of whether an overlap of the initial

computed image and observed image occurred. The hill climber algorithm rewards a state that
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returns an image with the asteroid in view, while the LS algorithm uses the partial derivatives of

the measurements with respect to the state to update the state estimate. Because of this, the LS

algorithm has potential to move the state out of view of the asteroid and terminate the algorithm.

Therefore, the hill climber was applied first to produce enough of an overlap between the observed

and computed images. The minimum number of pixels for the image overlap added additional

robustness to the algorithm.

The hill climber was more computationally expensive than the LS algorithm. The hill climber

produced six different measurements to compare at each iteration of the algorithm, while the LS

algorithm only computed one image at each iteration. Therefore, the hill climber was only used

until enough of an overlap occurred to reduce the computation time.

As seen in Section 4.3, the LS algorithm was more robust to large position errors when only

the position was estimated and the pointing was held fixed. The position was resolved first by only

estimating the position with the LS algorithm, and then the position and pointing were resolved

with the LS algorithm.

5.3 Single State Testing

A Monte Carlo (MC) simulation of 50 cases was performed to test the pre-processing algo-

rithm in orbits around Itokawa and Bennu. These orbits were considered the “lost-in-space” orbits.

It was assumed that if the spacecraft was trying to estimate its current state, its orbit might not be

exactly circular or exactly in the terminator plane. It was assumed that the spacecraft was a safe

distance away from the asteroid at 1 km away. The lost-in-space orbits created involved a slight

inclination and eccentricity from the nominal circular terminator orbits, and involved an off-radial

pointing direction determined from a normal distribution of 1σ = 3◦. This off-radial pointing was

assumed to be known with the CACI/SF rotation matrix.
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5.3.1 Itokawa

For the Itokawa orbit, the states were sampled from an orbit that had a semi-major axis,

a = 1 km, eccentricity, e = 0.1, and inclination i = 75◦. A random pointing offset error was applied

to each of the observations with 1σθn = 0.5◦. The reference radius of Itokawa was Rs = 162 m.

The ending errors are shown in Table 5.3, and the progression of the errors is shown in

Figure 5.4. Figure 5.4(a) presents the progression of the position error through the steps of the

Table 5.3: RMS of the magnitude of the position error and the total pointing offset error, α of the
pre-processing algorithm MC simulation with Itokawa observations.

State Ending Error

rms(|er|) 1.84 m
rms(α) 0.10◦

pre-processing algorithm. In the figure, if a case contains the same position error in the R0 and hill

climber (HC) steps, the hill climber step did not occur and the position from r0 was used in the

LS with position step. Figure 5.4(b) presents the magnitude of the position error and the pointing

error, α between the LS with position and LS with position and pointing step.

From Figure 5.4(a) only a few cases involved the hill climber step because the observed image
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Figure 5.4: Evolution of position and pointing errors in the pre-processing algorithm when sampling
from the Itokawa lost-in-space orbit.
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and computed image from r0 did not contain an image overlap. The position errors reached tens of

meters in magnitude at the LS with position step (LS pos in the figure), and reached meter-level

accuracy after the LS with position and pointing step (LS pt in the figure). From Figure 5.4(b), the

correction from the LS with position and pointing step decreased the position error to meter-level

accuracy and the pointing error to below 0.1◦ in pointing.

Figure 5.5 illustrates a sample of an observation and evolution of the computed measurements

in the pre-processing algorithm for one of the MC cases from the Itokawa lost-in-space orbit.

This was one of the more extreme cases and involved using the hill climber step. The image

computed from r0 occupies only a fraction of the image array and does not provide enough of a pixel

overlap to commence the LS with position step. However, the pre-processing algorithm produces

a measurement similar to the observation and the ending error for this case was |er| = 2.90 m and

α = 0.16◦.

An outlier did occur in this simulation that involved ending errors of 992 m in position

magnitude and α = 43.1◦. (The figures do not include this outlier.) In this case, the two LS

algorithms updated the position and pointing state away from the truth. The final computed

image in this case was an empty image array. In practice, a simple check of the final computed

image with the observed image, such as with the metrics from the hill climber, could be applied to

catch this error.

5.3.2 Bennu

In the Bennu orbit, states were sampled from an orbit that has a semi-major axis of a = 1

km, eccentricity, e = 0.3, and inclination i = 60◦. A random pointing offset error was applied to

each of observation with 1σθn = 0.5◦ in each Euler angle, θn. The reference radius for Bennu was

Rs = 246 m.

Table 5.4 displays the RMS of the magnitude of the ending errors in position, |er| and in total

pointing offset angle, α. Figure 5.6 demonstrates the evolution of the magnitude of the position

error for the pre-processing steps (Figure 5.6(a)) and the difference in position and pointing error
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Figure 5.5: Sample of an initial observation and the evolution of computed measurements, G
through the steps of the pre-processing algorithm for an Itokawa observation.

magnitude between the LS with position step and LS with position and pointing step (Figure

5.6(b)). Similar to the Itokawa observations, the LS with position step (LS pos) solved for the

position error to tens of meters in error magnitude (Figure 5.6(a)). Once this state was passed into

the LS with position and pointing step (LS pt), the position errors reached meter-level accuracy,

and a few cases increased slightly in position error. Figure 5.6(a) displays that the error in position

Table 5.4: RMS of the magnitude of the position error and the total pointing offset error, α of the
pre-processing algorithm MC simulation with Bennu observations.

State Ending Error

rms(|er|) 4.77 m
rms(α) 0.24◦
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Figure 5.6: Evolution of position and pointing errors in the pre-processing algorithm when sampling
from the Bennu lost-in-space orbit.

decreased to meter-level accuracy for the majority of the cases between the LS with position step

and the LS with position and pointing step. The pointing errors were decreased to below 0.2◦ for

the majority of the cases.

Figure 5.7 displays an observation from the Bennu lost-in-space orbit that fills almost the

entirety of the image array, and the evolution of the computed measurements. The observation and

initial computed measurement contained enough of an image overlap and were directly passed into

the LS with position step. After convergence of the pre-processing algorithm, the ending errors in

this case were |er| = 0.31 m and α = 0.016◦.

5.3.3 Analysis

The pre-processing algorithm for the Itokawa and Bennu observations produced meter-level

accuracy in position and below 0.3◦ in total pointing error. The goal of this algorithm was to

provide an initial position and pointing estimate for the filter, and thus an accurate state estimate

was achieved. As observations are accumulated over time, more information becomes available,

and the estimation state is futher refined in the estimation filter.
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Figure 5.7: Sample of an initial observation and the evolution of computed measurements, G
through the steps of the pre-processing algorithm for a Bennu observation.

5.4 Initializing the Filter

With the pre-processing step, one can solve for the position and pointing with the flash lidar

image. This provided information on the position and pointing state at one instant in time, but

information on the velocity must be accumulated over time. The approach outlined here relied

on the asteroid occupying the camera field of view, and taking a high frequency of measurements

(one every second for 30 seconds) with the inertial pointing fixed. From these high frequency

measurements, the pre-processing script was applied to two observation times, and two position

and pointing states were determined. An estimate of the velocity was determined from the two

positions, and thus an a priori state was formed to start the filter.

The procedure for initializing the filter is illustrated in Figure 5.8. Once an observation with
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the asteroid in the FOV was acquired, high frequency observations were acquired once every second

for 30 seconds. The pre-processing algorithm was applied for the first observation at t1, and for a

second observation at t2 from the high frequency observations. The result was two a priori states:

[r̄1, θ̄1] and [r̄2, θ̄2], and their corresponding covariance matrices: P̄1 and P̄2 that were determined

from the LS algorithm. From the two position estimates, an a priori velocity, v1 was determined

and its corresponding covariance, P̄v1 . The LS filter was then applied with [r̄1, v1, θ̄1] as the a

priori state with a priori covariance determined from P̄1 and P̄v1 .

Observation, Y with 
asteroid in FOV

at t1

Acquire high frequency 
observations

with inertial pointing fixed

Pre-Processing 
algorithm

Pre-Processing 
algorithm

a priori state and 
covariance:

r̄1, ✓̄1, P̄1

a priori state and 
covariance:



Determine a priori velocity 
and covariance:

v̄1, P̄v1

LS filter with high 
frequency observations

r̄2, ✓̄2, P̄2

Observation at t1

Observation at t2

Figure 5.8: Flow chart of steps to initialize the filter with the pre-processing algorithm.

The a priori velocity was determined from a linear difference of the position vectors divided

by the time:

v̄1 =
r̄2 − r̄1

t2 − t1
(5.8)

The covariance for the velocity was determined by substituting Equation 5.8 into the definition of

the covariance, P = E[(x̂− x)(x̂− x)T ]:

Pv1 =E[(v̂1 − v1)(v̂1 − v1)T ]

=E

[(
r̂2 − r̂1

t2 − t1
− r2 − r1

t2 − t1

)(
r̂2 − r̂1

t2 − t1
− r2 − r1

t2 − t1

)T] (5.9)

Evaluating the expected values, and assuming that r1 and r2 were independent (i.e. E[(r̂2−r2)(r̂1−
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r1)T ] = 0), the resulting covariance was:

Pv1 =
1

(t2 − t1)2

(
E[(r̂2 − r2)(r̂2 − r2)T ] + E[(r̂1 − r1)(r̂1 − r1)T ]

)
=

1

(t2 − t1)2
(Pr1 + Pr2)

(5.10)

The a priori covariance for the velocity at t1 was defined as:

P̄v1 =
1

(t2 − t1)2
(P̄r1 + P̄r2) (5.11)

The a priori covariance in the filter was a diagonal matrix composed of the diagonal compo-

nents from the respective covariance matrices of P̄r1 , P̄v1 , and P̄θ1 . The values of each covariance

component were multiplied by 10 to inflate them for the filter initialization.

5.4.1 Filter Results

A truth state was sampled from the Itokawa lost-in-space orbit that contained an off-radial

pointing direction and the asteroid in its FOV. The truth measurements were then created by

propagating this truth state and capturing measurements every one second for 30 seconds while

keeping the inertial pointing fixed. The ranges contained white Gaussian noise based on Equation

3.1, and an off-nominal pointing bias was applied to each Euler angle of 0.5◦. The a priori state

and covariance were determined from the pre-processing algorithm and the steps outlined above.

Process noise was added based on Equation 3.3, and the LS filter was used for the state estimation.

The truth observation sampled from the Itokawa orbit is shown in Figure 5.9, and contained

an off-radial pointing direction of 6.5◦. In this simulation the observation at t2 was set at 5 second

after the observation at t1. Table 5.5 displays the errors for position and pointing at r̄1 and r̄2, and

the error in the a priori velocity. Each position state was resolved to about 1 m in accuracy, and

Table 5.5: Progression of state errors through the filter initialization steps.

State |er| (m) α (deg) |ev| (cm/s)

r̄1 1.05 0.050 −
r̄2 1.64 0.085 −
v̄1 − − 66.45
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(a) Observation at t1 (b) Body-fixed position and pointing at t1

Figure 5.9: Observation and truth position and pointing state at t1 to initialize the filter.

less than 0.1◦ accuracy in pointing. While the initial velocity error was significant, the covariance

bounds were inflated to capture this error.

Figure 5.10 illustrates the state errors in the RIC frame (solid lines) and their respective 3σ

covariance bounds. Table 5.6 illustrates the RMS of the magnitude of the state errors through the

entire simulation and excluding the first five observations.

Table 5.6: RMS errors of the magnitude of the position and velocity errors and total pointing error
angle, α over the full simulation, excluding the first 5 observations (†), and the run time of the
filter. T.

Filter |er| (m) |ev| (cm/s) α (deg) |er|† (m) |ev|† (cm/s) α† (deg) Run Time
(min)

LS 0.879 14.57 0.050 0.738 3.20 0.044 1.7

The errors for the position and pointing were below 1 m and 0.1◦ for the position and

pointing, respectively for the entirety of the simulation. The state errors for the position and

pointing were also within the covariance bounds during the simulation. The velocity errors were

larger and required a few observations to be resolved. By the end of the observation arc, the velocity
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Figure 5.10: Errors (solid lines) and 3σ covariance bounds (dashed lines) in the RIC frame with
process noise for the filter initialization simulation with an Itokawa observation.

component errors were within their respective covariance bounds and the ending magnitude of the

velocity error was |ev| = 0.25 cm/s.

5.4.2 Discussion

The pre-processing algorithm and the filter initialization procedure have a number of tuning

parameters. In the filter initialization, the observation frequency and duration of the high frequency

observations may be adjusted. The two position states to determine the velocity may be adjusted,

and the velocity may be determined with a more sophisticated method, such as a Lambert solver.

Determining the velocity was studied by using a Lambert solver, yet because the time span was

small, it produced similar results to the linear approximation.



Chapter 6

Increasing Filter Speed

In each of the previous simulations, the full flash lidar array is processed, and each pixel in

that array is considered an individual measurement. Using the 64×64 flash lidar array entails that

a maximum of 4,096 range measurements may be processed at each observation time. With the

Itokawa measurements, this is usually around 2,000 range measurements per observation because

the asteroid does not occupy the full image array. However, with Bennu, the full image array is

populated in the majority of the terminator orbit measurements, and approximately 4,000 range

measurements are processed at each time step.

This section looks to reduce the number of range measurements processed at each time step.

This entails a smaller measurement mapping matrix in the filter, as well as fewer computations of

the ray-tracing algorithm for the computed measurements. This is performed by selecting pixels

that maximize the information returned. Thus, a reduced number of measurements is selected that

maximizes the information content in each observation and processed in the filter.

6.1 Information of the Flash Lidar Image

The information of the observation was determined from the Fisher Information Matrix (FIM)

that was overviewed in Section 2.6.5, and is reproduced here at time tk:

Λk = P̄−1
k + H̃T

k R
−1
k H̃k (6.1)

where P̄k = φk−1Pk−1φ
T
k−1 and is the a priori covariance matrix, H̃k is the measurement mapping

matrix and R−1
k is the measurement uncertainty matrix. Without a priori covariance knowledge,
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the a priori covariance term P̄k simply drops out and the FIM becomes the second term in the

Equation 6.1:

Λk = H̃T
k R
−1
k H̃k (6.2)

This work studied the FIM without a priori information, and only considered the information

contained in one observation at one time. Equation 6.2 was therefore the basis of the FIM studies.

The determinant of the FIM was used to quantify the amount of information contained in

each observation, and is known as the D-optimality condition:

|Λk| = |H̃T
k R
−1
k H̃k| (6.3)

This quantity has been used in other work [75, 42] also to quantify the information content. The

derivation of the information for a flash lidar image was presented in Section 2.6.5, and an overview

of relevant equations is reproduced here.

The partial derivative of one range measurement, ρi with respect to the state X at one time

step. tk was defined as the measurement mapping matrix, H̃i. The measurement mapping matrix

for the full flash lidar array with p range measurements was the combination of the individual H̃i

matrices:

H̃k =



H̃1

...

H̃i

...

H̃p


p×9

(2.164)

The uncertainty of the range measurements were defined as σρi and populated the measurement

uncertainty matrix, Rρ. Each pixel was treated as an individual range measurement, creating a

diagonal measurement uncertainty matrix:

Rρ = diag[σ2
ρ1, · · · , σ2

ρi, · · · , σ2
ρp] (2.171)

The inverse of the measurement uncertainty matrix, R−1
ρ was a diagonal of the values, 1/σ2

ρi.
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6.1.1 Position Only

For one lidar beam, the measurement mapping matrix with respect to position was:

rH̃i =
∂ρi
∂r

=
−n̂Ti
ûi · n̂i

(2.146)

The vector, n̂i is the surface normal vector where the altimetry measurement intersects the body,

and ûi is the pointing direction. The information of the full flash lidar array with respect to position

and without a priori information is: The combination of

rΛp =

p∑
i=1

1

σ2
ρi

n̂in̂
T
i

(ûi · n̂i)2
(2.173)

6.1.2 Position and Pointing

The partial derivative of the range measurement, ρi with respect to pointing was:

θnH̃i =
∂ρi
∂θn

=
−ρic
ûi · n̂i

(Mθn û
∗
i )
T n̂i (2.147)

where Mθn was defined in Equations 2.148, 2.149, and 2.150 for the corresponding Euler angle. The

FIM with respect to position and pointing for the full flash lidar image was:

Λi = P̄−1
0 +



p∑
i=1

1

σ2
ρi

n̂in̂
T
i

(ûi · n̂i)2

p∑
i=1

1

σ2
ρi

ρic
(ûi · n̂i)2

[
Mθ1 û

∗
i Mθ2 û

∗
i Mθ3 û

∗
i

]

p∑
i=1

1

σ2
ρi

ρic
(ûi · n̂i)2


Mθ1 û

∗
i

Mθ2 û
∗
i

Mθ3 û
∗
i

 n̂in̂Ti
p∑
i=1

1

σ2
ρi

ρic
(ûi · n̂i)2


Mθ1 û

∗
i

Mθ2 û
∗
i

Mθ3 û
∗
i

 n̂in̂Ti
[
Mθ1 û

∗
i Mθ2 û

∗
i Mθ3 û

∗
i

]


(2.177)

6.2 Maximum Information Pixel Subsets of a Single Image

This analysis studied the pixel combinations that maximized the information of one observa-

tion image. The determinant of the FIM was computed for different combinations of pixels within

one observation image. The top 100 combinations were saved, and the locations of these pixel com-

binations were recorded. This was performed for maximizing the information for position only and
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for position and pointing. The observation chosen to perform this analysis was taken of Itokawa,

when the spacecraft was approximately 1 km away from Itokawa.

6.2.1 Maximizing the Position Information

Three pixels were required to resolve the position state. This image contained p = 2535

pixels, and each pixel in the image was combined in a three-pixel combintaion to calculate the

determinant of the FIM from Equation 2.173. This involved 2535C3 = 2.71e9 combinations. The

100 three-pixel combinations that returned the largest value of the determinant of the FIM were

recorded. These were considered the top three-pixel combinations that maximized the information

content in this image.

Figure 6.1 illustrates the locations of the pixels that composed these top three-pixel com-

binations. Some pixels were included in more than one combination, and Figure 6.2 illustrates a

histogram of the pixel indices that occurred in the top three-pixel combinations.
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Figure 6.1: Pixels that composed the top three-pixel combinations for maximizing the position
information.

The pixels that composed the three-pixel combinations with the most information occurred on

the edges of the image. Only 24 pixels of the image appeared in the top information combinations.
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Figure 6.2: Histogram of pixels that occurred in a top three-pixel combination with the bins labeled
as the pixel coordinates in the sensor frame (SF ) for maximizing the position information.

From Figure 6.2, those pixels that occurred in the most combinations were the pixels at (10, 15)

and (7, 16) in the sensor frame array (Figure 6.1).

Following the analytical analysis in Section 2.6.5, the maximum information occurs with the

pointing direction of the lidar beam and the surface normal of the facet it intersects are perpen-

dicular to each other. In addition, the information is further maximized when the surface normal

vectors from the corresponding lidar beams are all perpendicular to each other. This idealized

situation, however, is difficult to realize in practice. For three lidar beams that originate from one

point and are directed at a concave body, the maximum information is achieved when the pointing

directions of the lidar beams are spread toward the limb of the surface. This theory is supported

by the numerical results in Figure 6.1 and previous work [75].
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6.2.2 Maximizing Pointing and Position Information

Determining the position and pointing state required at least six pixels. Testing each six-pixel

combination in an image would require testing pC6 number of combinations. For the image above,

p = 2535; therefore, 2535C6 = 3.7e17 number of combinations would be required for testing the full

image. To reduce the computational load of this analysis, 200 pixels from the image were randomly

selected to be tested. With 200 pixels, the number of combinations was 200C6 = 8.24e10.

The analysis cycled through the randomly selected pixels and determined the determinant of

the FIM from Equation 2.177 for a six-pixel combination. The top 100 combinations that contained

the largest value of the determinant of the FIM were recorded.

Figure 6.3 illustrates the 200 randomly selected pixels in the image (black) and the pixels

that composed the top six-pixel combinations. Figure 6.4 illustrates the histogram of the pixels
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Figure 6.3: Pixels that composed the top six-pixel combinations (pink) out of the 200 randomly
selected pixels (black) for maximizing the position and pointing information.

that were involved in the top six-pixel combinations, and their indices in the sensor frame (SF ) in

Figure 6.3.

Similar to maximizing only the position information, the pixels that composed the combina-

tions with the most information occurred near the edges of the image. One pixel in the center of
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Figure 6.4: Histogram of pixels that occurred in a top six-pixel combination with the bins labeled as
the pixel coordinates in the sensor frame (SF ) for maximizing the position and pointing information.

the image was involved in a top combination, yet only occurred in one instance. From Figure 6.4,

two pixels, (6, 51) and (25, 50) occurred in all of the top combinations, and both were located on

the right edge of the image.

6.3 Pre-Determined Pixel Patterns

The optimization analysis of determining the combination of pixels that maximize the infor-

mation for each observation becomes tedious. The goal of this study is to reduce the computational

load of processing a full flash lidar array in the filter by optimally reducing the number of measure-

ments to process. From the numerical analysis of one observation image, the pixels that contain

the most information on the position and pointing state occur near the edges of the image. In-

stead of performing an optimization step to determine the maximum-information set of pixels at
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each observation, patterns within the flash lidar array are pre-determined based on this numerical

analysis.

Various patterns are tested for their information content and measurement computation time,

and analyzed for robustness. Choosing to process only the edge pixels of an observation image may

provide maximum information, however, this pattern may not be robust because the same pixels

may not be present in the computed image. The pre-determined pixel patterns include a cross

pattern for robustness, a limb pattern based on the edge pixels in the observed image, and a

random selection of the pixels that contain a range-return in the observed image.

6.3.1 Definition of Pixel Patterns

Six overall patterns were investigated, and each one included the center pixel in the pattern,

with the exception of the random selection. The center pixel was determined from the Neighbor

Search edge detection algorithm in Section 5.1. An observation from the Itokawa terminator orbit

was used to display the patterns, and the pre-determined patterns are illustrated in Figure 6.5.

Two cross patterns were investigated: one that expanded from the center pixel to every other

pixel for ten pixels in the SFx and SF y directions (Cross, Figure 6.5(a)), and one that spanned the

entirety of the SFx and SF y directions and was centered on the center pixel (Full Cross, Figure

6.5(b)). Because the cross patterns were centered in the image, they were considered to be robust

to producing an image overlap of the selected pixels.

Three patterns involved the limb of the asteroid and were determined from the edge pixels of

the image. The SFx and SF y coordinates of the edge pixels were subtracted from the those of the

center pixel. The difference was multiplied by 60% (60% Limb, Figure 6.5(c)) and by 80% (80%

Limb, Figure 6.5(d)), and rounded to the nearest integer. The pixels were not double-counted if

this subtraction produced a pixel index more than once. The edge pixels also were investigated as

a pattern (Edges, Figure 6.5(e)). These limb patterns were chosen to maximize the information

by expanding the pointing directions toward the limb. Selecting the pixels at 60% and 80% of the

difference from the center to the limb increased the probability of an overlap of the selected pixels
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(a) Cross

10 20 30 40 50 60
SFy

10

20

30

40

50

60

S
F
x

0.88

0.9

0.92

0.94

0.96

0.98

R
a

n
g

e
 (

k
m

)

(b) Full Cross
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(c) 60% Limb
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(d) 80% Limb
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(e) Edges
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(f) Random

Figure 6.5: Pre-determined pixel patterns

in the observed and computed images. By only using the edge pixels, this introduced a higher

probability that those selected pixels would not be available in both the observed and computed

images.

A random sample pattern also was investigated. This sampled 100 pixels from those pixels

that produced a range-return in the observed image. Figure 6.5(f) illustrates an example of the

randomly selected pixels, but it is noted that a new random sample was created each time the

observation was processed.

6.3.2 Comparison of Pixel Patterns

Figure 6.6 compares the information content of each of the patterns in Figure 6.5, as well as

the maximum information from the optimal six-pixel combination from the numerical simulation,

and the information of the full image. The information of each pattern was determined with the

determinant of the FIM from Equation 6.3. The figure presents the information on a log-scale and

the number of pixel used to calculate the information.
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Figure 6.6: Information content of the pre-determined patterns in Figure 6.5, the optimal six-pixel
combination, and the full image, as well as the number of pixels used for each calculation.

Out of the pre-determined patterns, the Edges pattern contained the most information. The

Random pattern involved the next highest information, followed by the 80% Limb pattern, yet the

Random pattern involved a lower number of pixels than the 80% Limb pattern. This was likely

due to the few pixels that were selected near the limb of the asteroid in the Random pattern that

increased its information content.

Table 6.1 displays the time of to read an observation, determines the pixel pattern (through

edge detection and the center pixel), and calculate the computed measurement for each of the

pre-determined patterns and the full image.

The Cross pattern required the least amount of time to process, yet also contained the

least amount of information. The Random pattern involved the second to lowest processing time

and contained the second highest information content of the pre-determined patterns. The Edges

pattern and the 80% Limb pattern contained comparable processing time, and the Full Cross and

60% Limb patterns required comparable processing time.
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Table 6.1: Timing of processing the observation to determine the pixel pattern, and calculating the
computed measurement in milliseconds.

Pattern Processing Time (ms)

Cross 2.24
Full Cross 8.42
60% Limb 8.97
80% Limb 11.08

Edges 12.70
Random 6.94

Full Image 250.24

6.4 Filtering with Pre-Determined Pixel Patterns

Analyzing the information content and the processing time required of the different patterns,

four patterns were tested with the three estimation filters: Full Cross, 80% Limb, Edges, and

Random patterns. The Full Cross and Random patterns were most likely to contain the selected

pixels in both the observed and computed images because they involved pixels near the center of the

image. The Edges pattern contained the most information, yet the pixels selected in the observed

image may not be present in the computed image. The 80% Limb pattern attempts to increase the

robustness to this by selecting pixels just inside the edges while still maximizing the information.

The patterns were applied for OD in the 1 km circular terminator orbit around Itokawa with

measurements every 10 minutes for 30 hours. The estimated state involved the position, velocity,

and off-nominal pointing error of the spacecraft. Errors included a priori state errors based on the

covariance in Equation 3.9 for position and velocity, an off-nominal pointing bias of 0.5◦ on each

Euler angle, and white Gaussian noise on the range measurements based on Equation 3.1. The a

priori covariance was that in Equation 3.9 and process noise was added from Equation 3.3. The a

priori Euler angle state was set to zero, and the same a priori state and measurements were used

in each simulation.
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6.4.1 Results

The state errors and 3σ covariance bounds for each of the four pixel patterns are presented

in Figure 6.7 for the EKF, Figure 6.8 for the UKF, and Figure 6.9 for the LS filter. Table 6.2

displays the RMS of the magnitude of the errors and filter run time for each pixel pattern with the

three estimation filters, as well as the full flash lidar image for comparison.

Table 6.2: RMS of the magnitude of the position and velocity errors, and the total pointing offset
error of the different patterns and filtering methods for the entirety of the simulation. This was
performed in the Itokawa terminator orbit with measurements every 10 minutes for 30 hours.

Pattern Filter |e|r (m) |e|v (cm/s) α(deg) Run Time (min)

Full Cross EKF 2.44 0.0282 0.12 0.47
UKF 2.69 0.0272 0.16 0.63
LS 2.48 0.0232 0.13 0.40

80% Limb EKF 2.24 0.0268 0.11 0.54
UKF 1.42 0.0202 0.06 0.83
LS 1.34 0.0216 0.07 0.47

Edges EKF 10.80 0.0509 0.57 0.59
UKF 1.63 0.0225 0.09 0.94
LS 0.72 0.0131 0.04 0.73

Random EKF 5.98 0.0318 0.33 0.47
UKF 1.35 0.0232 0.07 0.61
LS 2.00 0.0196 0.10 0.39

Full Image EKF 6.20 0.0365 0.32 7.31
UKF 1.85 0.0167 0.10 18.56
LS 0.31 0.0127 0.02 11.67

In each of the pixel pattern filter simulation, the state errors are bounded by the 3σ covariance

bounds. The one exception is for the Edges pattern in the EKF. Due to the reduced number of

measurements processed per observation step, the covariance does not shrink before the state errors

were reduced and filter saturation did not occur.

With each of the patterns, the UKF requires the longest run time of the three filters. The

run times of the EKF and LS filter are comparable in each of the pattern simulations. In terms of

accuracy, the errors from the LS filter and the UKF are comparable, and are less than those from

the EKF across all of the patterns except the Full Cross pattern. With the Full Cross pattern, the

accuracy of the three filters is similar.
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(a) Full Cross (b) 80% Limb

(c) Edges (d) Random

Figure 6.7: State errors in the RIC frame and 3σ covariance bounds in the Itokawa terminator
orbit with measurements every 10 minutes for 30 hours, with the EKF.
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(a) Full Cross (b) 80% Limb

(c) Edges (d) Random

Figure 6.8: State errors in the RIC frame and 3σ covariance bounds in the Itokawa terminator
orbit with measurements every 10 minutes for 30 hours, with the UKF.
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(a) Full Cross (b) 80% Limb

(c) Edges (d) Random

Figure 6.9: State errors in the RIC frame and 3σ covariance bounds in the Itokawa terminator
orbit with measurements every 10 minutes for 30 hours, with the LS filter.
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The Edges pattern with the LS filter produces the lowest errors of the pixel patterns, yet

had a slightly longer run time than the other LS filter simulations. This was mostly likely due to

extra iterations performed in the LS filter to align the edge pixels. The 80% Limb and Random

patterns with the LS filter also produce small errors and complete in a shorter amount of time.

These patterns are more robust, and do not require many iterations within the LS filter. The 80%

Limb pattern and Full Cross pattern with the EKF result in comparable errors and run times to

their respective LS filters. Implementing an EKF with one of these patterns would be simpler than

implementing an iterative LS filter, and could be further optimized for timing.

Table 6.3 displays the magnitude of the ending errors of each of the pixel patterns with each

of the estimation filters. When using the same measurements and a priori state, every pattern

performed as well as using the full image in terms of accuracy by the end of the simulation.

Table 6.3: Final RMS of the magnitude of the position and velocity errors, and the total pointing
offset error of the different patterns and filtering methods. This was performed in the Itokawa
terminator orbit with measurements every 10 minutes for 30 hours.

Pattern Filter |e|rf (m) |e|vf
(cm/s) αf (deg)

Full Cross EKF 0.22 6.99e-04 3.8e-03
UKF 0.18 5.61e-04 1.6e-03
LS 0.34 1.62e-03 9.2e-03

80% Limb EKF 0.45 2.44e-03 0.023
UKF 0.41 2.25e-03 0.020
LS 0.53 2.42e-03 0.031

Edges EKF 0.45 1.53e-03 0.033
UKF 0.05 2.30e-04 3.4e-03
LS 0.08 2.60e-04 3.8e-03

Random EKF 0.33 1.30e-03 0.017
UKF 0.27 1.23e-03 0.018
LS 0.20 8.28e-04 9.6e-03

Full Image EKF 0.14 8.31e-04 0.011
UKF 0.11 8.84e-04 8.0e-03
LS 0.13 7.90e-04 7.6e-03
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6.4.2 Discussion

Reducing the number of pixels processed in the filter significantly reduces the computational

load when compared to using the full flash lidar image. The computational load is reduced in terms

of calculating the computed measurement through fewer calls of the ray-tracing algorithm, and in

terms of handling smaller matrices within the filter. Selecting a subset of pixels that maximizes

the information achieves the same level of accuracy as when using the full flash lidar image.

A significant result from this study is that filter saturation does not occur due to processing

fewer measurements at each time step. With the full flash lidar image, filter saturation is seen with

the EKF and UKF due to the magnitude of measurements processed at each time step as well as

their high precision. With fewer measurements, filter saturation does not occur and it is possible to

achieve a comparable level of accuracy with the EKF. Implementing an EKF in an onboard filter

would be simpler than implementing an iterative LS filter or UKF.

The 80% Limb and Full Cross patterns consistently run quicker and produce meter-level

errors in position across the three estimation filters. Implementing one of these patterns with an

EKF would significantly reduce the computational power while providing accurate state estimates.

An advantage to using a Full Cross, circle, or random pattern, is that these patterns could be

pre-determined without knowledge of the observed or computed images.

The Edges pattern with the LS filter results in the lowest state errors compared to the other

patterns, and achieves similar accuracy to the full image. This simulation runs slightly longer than

the other LS filter simulations due to additional iterations performed to align the edge pixels. While

the edge pixels contain the most information, using an edge pattern might not be as practical with

the lidar sensor. As the lidar beam is directed toward the limb of the asteroid, the angle of incidence

is increased, and the intensity of the power returned is reduced (Figure 1.2(b)). In addition, the

edge pixels may not be present in the observed and computed images, and possibly reduce the

number of measurements by half. Patterns such as the 60% Limb or 80% Limb would reduce the

angle of incidence to ensure more power is returned while still maximizing the information.



Chapter 7

Conclusion

This dissertation analyzes the use of flash lidar measurements as a relative navigation source

in proximity to a small body. It presents a framework that begins with only knowledge of the

inertial spacecraft pointing and attitude of the asteroid, sequentially estimates the spacecraft state

in a small body orbit, and provides the ability to reduce the number of measurements processed

without sacrificing accuracy. The presented work iterates the spacecraft state at each observation

time to provide an accurate estimate, and provides bounded state errors when shape modeling

errors are present. Reduction of the processing power is achieved by implementing a low fidelity

shape model in the filter, as well as reducing the number of altimetry measurements to process.

This analysis provides groundwork for implementing a flash lidar instrument as a basis for an

autonomous spacecraft navigation system.

Flash lidar and other three-dimensional lidar imaging systems have been studied for spacecraft-

to-spacecraft relative navigation, planetary landings, and hazard avoidance. The current basis of

knowledge for small body relative navigation has primarily focused on using optical images and

single lidar beams for relative navigation. This dissertation addresses this gap in the research by

using flash lidar measurements relative to a small body to perform orbit determination.

Flash lidar measurements perform as well or better than using landmark-based navigation

from optical images, which is the current state-of-the-art for relative small body navigation. The

investigations involve comparing three estimation filters: an extended Kalman filter (EKF), an

unscented Kalman filter (UKF), and an iterated least-squares (LS) filter. The estimated state
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includes estimating the position and velocity, as well as resolving an off-nominal pointing bias. The

LS filter results in the lowest state errors of the three filters when processing the full flash lidar

image in the nominal orbit determination simulations. The state iterations performed at each time

step in this filter combat the filter saturation seen with the EKF and UKF.

Robustness studies analyze the effect of initial state errors, shape modeling errors, and point-

ing jitter. With initial state errors present, the LS filter is the only filter to produce state errors

within the filter covariance bounds. With the UKF, the tuning parameter α effects the potential for

an overlap of the observed image and the computed sigma point images, and effects the usability

of the observation. If an overlap occurs, the UKF is able to reach sub-meter accuracy in position.

When only estimating the position, the LS algorithm is able to converge on a position state to

centimeter-level accuracy if an overlap occurs between the observed and computed images. When

the position and pointing are estimated, the LS algorithm has potential to terminate early if the

position error is too large.

Introducing a low fidelity shape model in the estimation filters does not cause filter divergence,

yet the state errors are outside of their respective covariance bounds. The majority of the state

errors are captured when a sequential consider covariance analysis is implemented. A random error

is applied to the spacecraft pointing at each observation time, emulating pointing jitter, and the

LS filter is able to accurately resolve the pointing jitter.

Through knowledge of the spacecraft inertial pointing and asteroid attitude, an a priori

spacecraft state is determined for filter initialization. A pre-processing algorithm is presented that

uses the image properties of the flash lidar image, and performs iterations that reward an overlap in

the observed and computed images. Once this overlap occurs, the LS algorithm targets the relative

spacecraft position within a few meters and the spacecraft pointing to less than a degree. With two

subsequent position estimates, the velocity is linearly calculated, and an a priori state is formed to

initialize the filter.

Further reduction of the processing power of the navigation filter is achieved by optimally

reducing the number of altimetry measurements used at each time step. The pixels in the flash
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lidar image that provide the maximum information of the spacecraft state occur near the limb of

the body. Directing lidar measurements near the limb of the body increases the angle of incidence,

which reduces the lidar intensity returned, and was accounted for by an upper range limit. Using

this knowledge, pre-determined pixel patterns are developed that reduced the total number of

measurements processed per time step by an order of magnitude. With these pre-determined pixel

patterns, the same level of accuracy is achieved as with using the full flash lidar image by the end

of the observation arc. Additionally, filter saturation does not occur when using these optimal pixel

patterns, and a simpler filter such as the EKF achieves similar accuracy to the UKF and LS filter.

Future work includes further testing of the limitations of the flash lidar measurements as

a source for relative navigation. This involves increasing the errors between the truth and mea-

surement models with mismodeled dynamics and instrument errors. The number of parameters

in the estimation state also may be investigated, such as estimating the spacecraft pointing, the

coefficient of reflectivity involved in solar radiation pressure, and gravity coefficients with flash lidar

measurements. An autonomous system must be robust to many error sources while maintaining

computational efficiency. Tradeoffs may be performed between the number of parameters estimated

to account for the error sources, the magnitude of the error sources, and correctly characterizing

the state covariance.

Robustness studies may be expanded to the pre-processing algorithm and the optimal pixel

selection. Processing fewer measurements per observation and with a lower fideltiy shape model

onboard further increases computational efficiency. The ray-tracing algorithm for computing the

flash lidar measurements also may be evaluated to reduce the onboard processing power. One

technique that is seen in practice is to smartly compute the ray-tracing algorithm for a smaller set

of localized facets.

A parallel research topic to state estimation is creating a map that the filter uses for its

estimation. In this application, that would be building a shape model of the asteroid through lidar

measurements. Future research may be directed at autonomously building this shape model and

then using it for orbit determination. Using a model-based approach in the navigation seamlessly
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connects the autonomous shape building and the navigation.

Other investigations may include studying the differences of other three-dimensional image

sensors, such as a scanning lidar or multiple beam lidar, and determining the differences between

the algorithms needed. Experiments may also be investigated with these navigation algorithms to

test their applicability with hardware.
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