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A STUDY OF DYNAMICS AND STABILITY OF TWO-CRAFT

COULOMB TETHER FORMATIONS

Arun Natarajan

Abstract

In this dissertation the linearized dynamics and stability of a two-craft Coulomb tether

formation are investigated. With a Coulomb tether the relative distance between two satel-

lites is controlled using electrostatic Coulomb forces. A charge feedback law is introduced

to stabilize the relative distance between the satellites to a constant value. Compared to

previous Coulomb thrusting research, this is the first feedback control law that stabilizes a

particular formation shape. The two craft are connected by an electrostatic virtual tether

that essentially acts as a long, slender near-rigid body. Inter-spacecraft Coulomb forces

cannot influence the inertial angular momentum of this formation. However, the differ-

ential gravitational attraction can be exploited to stabilize the attitude of this Coulomb

tether formation about an orbit nadir direction. Stabilizing the separation distance will

also stabilize the in-plane rotation angle, while the out-of-plane rotational motion remains

unaffected. The other two relative equilibriums of the charged 2-craft problem are along

the orbit-normal and the along-track direction. Unlike the charged 2-craft formation sce-

nario aligned along the orbit radial direction, a feedback control law using inter-spacecraft

electrostatic Coulomb forces and the differential gravitational accelerations is not sufficient

to stabilize the Coulomb tether length and the formation attitude. Therefore, hybrid feed-

back control laws are presented which combine conventional thrusters and Coulomb forces.

The Coulomb force feedback requires measurements of separation distance error and error

rate, while the thruster feedback is in terms of Euler angles and their rates. This hybrid

feedback control is designed to asymptotically stabilize the satellite formation shape and

attitude while avoiding plume impingement issues. The relative distance between the two



satellites can be increased or decreased using electrostatic Coulomb forces. The linear dy-

namics and stability analysis of such reconfiguration are studied for all the three equilibrium.

The Coulomb tether expansion and contraction rates affect the stability of the structure

and limits on these rates are discussed using the linearized time-varying dynamical mod-

els. These limits allow the reference length time histories to be designed while ensuring

linear stability of the virtual structure. Throughout this dissertation the Coulomb tether

is modeled as a massless, elastic component and, a point charge model is used to describe

the charged craft.
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1 Introduction

1.1 Coulomb Formation Flying

Formation flying of spacecraft using Coulomb forces is a new and emerging field of study.

Here, the electrostatic (Coulomb) charge of spacecraft is varied by active emission of either

negative electric charges (electrons) or positive electric charges (ions). The resulting changes

in inter-spacecraft Coulomb forces are used to control the relative motion of the spacecraft

as illustrated by Figure 1.1. This novel concept of propellantless relative navigation control

has many advantages over conventional thrusters like ion engines. For example, this method

of propulsion has been shown to require essentially no consumables (fuel efficiencies ranging

up to 1013 seconds), require very little electric power to operate (often less than 1 Watt),

and can be controlled with a high bandwidth (zero to maximum charge transition times are

of the order of milli-seconds). Thus, this propulsion concept could enable high precision

formation flying with separation distances ranging between 10–100 meters. It is also a

clean method of propulsion compared to ion engines, thereby avoiding the thruster plume

contamination issue with neighboring satellites. For this range of separation distances, the

plume-impingement problem of high-efficiency ion engines would be severe.

Proposed uses of the Coulomb propulsion concept include high-accuracy, wide-field-of-

view optical interferometry missions with geostationary orbits(GEO),1 controlling clusters

of spacecraft to maintain a bounded shape,2 as well as the use of drone-worker concepts

1



1.1 Coulomb Formation Flying

Electrostatic (Coulomb)
Force Fields

Separation Distance L

Charged Satellites

Figure 1.1: The Coulomb force interaction between two charged craft.

where dedicated craft place a sensor in space using Coulomb forces.3 The cluster Coulomb

formation flying concept is illustrated in Figure 1.2. In this type of formation the Coulomb

forces not only keep the satellites bounded, but also keep them from colliding with each

other. The drone-worker concept or the “Gluon” Coulomb formation concept is shown in

Figure 1.3. Here, the gluon satellite in the center acts like the mother satellite that is

capable of carrying a large charge, and the satellites in the periphery, or daughter satellites,

carry only small charges. The net force experienced by a daughter satellite will be high

as it will depend on the product of gluon charge and daughter satellite charge. Thus, this

concept allows a daughter satellite to carry sophisticated instruments that might be affected

by high charging. Also, in this type of formation the force interactions between the daughter

satellites are negligible and therefore, effectively decouples the complex system. Figure 1.4

shows another potential application for a two-craft Coulomb formation setup. A camera or

a probe can be deployed from a satellite and retrieved back using the Coulomb forces.

While the Coulomb propulsion concept has many exciting advantages and potential ap-

plications, it does come at the price of greatly increased coupling and nonlinearity of the

charged spacecraft equations of motion. The relative motion of all other neighboring charged

craft will be affected by changing the charge of a single craft. Further, with the Coulomb

2
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Figure 1.2: The cluster Coulomb formation flying concept.

forces being formation-internal forces, some constraints are applicable to all feasible charged

spacecraft motions. In particular, Coulomb forces cannot be used to change the total iner-

tial formation angular momentum vector.4,5 As a result, the reorientation of a formation

as a whole to a new orientation must satisfy this momentum constraint.

When charging spacecraft to control relative motion, differential charging across the

spacecraft components must be minimized to avoid arcing. However, note that the con-

trol charge levels required for the Coulomb formation are similar to the naturally occurring

charge levels of GEO spacecraft during periods of high solar activity. The technology to

3
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-

+

-

+

-

-

Figure 1.3: The gluon Coulomb formation flying concept.

control the charge involves high-speed ion and electron emitters, and is similar to what is

currently flying on the CLUSTERS mission6 or to that flown on the SCATHA mission.7

On the CLUSTERS mission the spacecraft charge is actively controlled to neutralize its

potential relative to the space plasma environment. Because of the high fuel efficiency

of the Coulomb thrusting concept,1,8 where relative motion Isp values can range between

1010–1013 seconds, the change in momentum and plasma environment due to the expelled

charges is negligible.

The study of electrostatic charging data of SCATHA spacecraft7 in GEO has shown
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ôh

ôθ

ôr

CAMERA

Figure 1.4: The release of a camera - a potential application of Coulomb for-
mation flying.

that the spacecraft can naturally charge to high voltages in low plasma environments such

as at GEO. The level of natural charge depends on the current solar activity. Further,

this mission demonstrated that the spacecraft charge could be actively controlled. The

Coulomb propulsion has its own set of limitations, however. The magnitude of Coulomb

electrostatic force is inversely proportional to the square of separation distance, which makes

this method effective only for close formations of the order of 10-100 m, depending on the

maximum allowable level of spacecraft charge. Moreover, in the presence charged plasma
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particles, the effectiveness of Coulomb force is diminished with the electric field dropping

off exponentially. The severity of this drop is measured using the Debye length.9,10 For low

Earth orbits (LEO), the Debye length is of the order of centimeters, making the Coulomb

formation flying concept impractical. At geostationary orbits (GEO) or higher, where the

plasma environment is less dense, the Debye length is about 100-1400 meters. The Coulomb

formation flying concepts can be comfortably applied at this altitude.

1.2 Related Work

The concept of formation flying using electrostatic propulsion was introduced in References

1,2 and 8. These pioneering works discussed the static Coulomb satellite formations and the

associated equilibrium charges, but did not address the stabilization of these formations.

The NIAC report by King et al.8 found analytical solutions for Hill-frame invariant Coulomb

formations. Here spacecraft were placed at specific locations in the rotating Hill frame

with specific electrostatic charges. As a result the Coulomb forces perfectly cancel all

Keplerian relative orbit accelerations, causing the satellites to remain fixed or static as

seen by the constantly rotating Hill frame. The analytical solutions were found for simple

geometries involving 3 to 7 satellites using formation symmetry. In all these formations one

satellite is located at the center of mass of the satellite formation. The equations of motion

representing these Coulomb formations in the Hill frame are highly coupled and complex

non-linear equations. With multiple craft, complex static formations other than the simple

symmetric formations found in Reference 8 are also possible. However, these complex static

formations are non-intuitive and a numerical approach is needed to find the constant Hill

frame position and charge that result in a static formation. One such numerical approach

using a genetic algorithm is given in Reference 11. In Reference 11, Coulomb formation

shapes involving up to 9 craft were discussed. The necessary conditions for achieving such

6
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static Coulomb formations were determined in Reference 12 using Hamiltonian formulations

of the Coulomb formation dynamics. These hamiltonian formulations are analogous to the

study of equilibrium conditions of rigid bodies in orbit The analytical solution for the static

charge and their feasibility for different shapes in two-craft and three-craft formations were

discussed in detail in Reference 13. Romanelli et al.14 showed that Coulomb forces can be

used to cancel the differential drag due to solar radiation, J2 effect and atmospheric drag,

experienced by craft in a static formation. Note that the charge is held constant in the

above mentioned open-loop static Coulomb formations studies. The discovered open-loop

static Coulomb formations were all found to be unstable.

Reference 2 discussed these static Coulomb satellite formations and a nonlinear control

law that was capable of bounding the relative motion between two close craft. This charge

feedback control can also be used to control general orbit element differences with guar-

anteed stability, but not necessarily with asymptotic convergence. Reference 15 presents

an open loop stable spinning two craft Coulomb tether. The reconfiguration of this spin-

ning Coulomb tether in deep space was also discussed in that paper. A Lyapunov-based

control law for stabilizing a 1D-restricted three-craft Coulomb structure was shown in Ref-

erence 16. The Lyapunov-based control law identified the required charge products and

real implementable charge values for each craft were extracted by studying the null space

of the charge product matrix. A control law for avoiding collision between spacecraft in a

cluster in free space was proposed in Reference 17. The proposed control law required only

the separation distance between the craft and its rate for determining the charge feedback.

The control law ensured that no two craft were within each other’s safety spherical zones

of fixed radius.

Another potential area of application for Coulomb forces is to change the position or

orientation of a space structure. A charge control law was developed in Reference 3 to

reposition a charged body using three charged drones. The control law assumed that the
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Coulomb attraction is the only dominant force acting on the system and neglects orbital

mechanics. Another deployment technique where a chief satellite deploys a drone craft

to a specific location was developed in Reference 18. Here, the chief has small charged

spheres attached to it and the charge of each small sphere was actively controlled to achieve

the desired deployment. Izzo and Pettazzi19 proposed using Coulomb forces for aiding the

self-assembling of large structures in space. Here, the use of Coulomb forces reduce the

propellent consumption significantly.

Formation flying using electromagnetic fields for propulsion is an area of research where

lot of work is being published.20,21,22 Unlike Coulomb forces, the electromagnetic fields are

not constrained by the Debye shielding effects and therefore, are feasible in low Earth orbits

(LEO). But, the 1/r3 decay of magnetic field strength over distance is greater than the 1/r2

decay for Coulomb forces, making the range of deployment very small. The Lorentz Aug-

mented Orbit (LAO) system discussed in Reference 23 also used a type of electromagnetic

propulsion. Here, the propulsion was generated by the interaction of the Earth’s magnetic

field and the static charge present in the satellite. A limitation of this propulsion technique

was that the high charge required for this system to work can not be currently achieved in

practice with any existing technology.

1.3 Dissertation Overview

This dissertation is organized as follows. First, the force experienced by two charged craft

is studied in the plasma environment. The feasibility of using the point charge model for

describing these craft is discussed. In the next chapter, the idea of using Coulomb forces

for reconfiguration of satellites is explored by studying two-craft Coulomb formations in

free space. The charges or voltages required for such a maneuver are studied and the case

for exploring the Coulomb formation in orbit is established. Next, the study of a two-craft

8
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Coulomb virtual tether that is aligned along the orbit-radial (nadir) direction and in a Ke-

plarian Geo-synchronous orbit, is presented. Feedback laws for stabilizing this formation

along the orbit radial axis for a particular shape are derived. In the following chapter, the

two-craft formation stability along the orbit-normal direction and along-track direction are

studied and hybrid feedback control laws are derived for stabilizing the formation. After

developing control laws for stabilizing the formation along all three axes, the reconfiguration

maneuver for craft aligned along the orbit-radial direction is presented. Next, analytical

solutions using Bessel functions are established for the decoupled out-of-plane motion when

the reconfiguration is taking place at a constant rate. In the succeeding chapter, the instan-

taneous changes in the reconfiguration rate is smoothed to ease the excessive oscillations

about the ideal prescribed trajectory for reconfiguration. Finally, the reconfiguration about

the orbit-normal and along-track equilibrium is also presented.
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2 Discretized Model for Coulomb Forces

Under Plasma Screening

2.1 Introduction

Gauss’s law24,25 state’s that the net electric flux coming out of a closed surface is directly

proportional to the net charge enclosed by the surface. Using this law it can be easily shown

that the electric field at any point outside a uniformly charged conducting sphere (solid or

shell) is the same as if the net charge were concentrated at the center of the sphere (like

a point charge). This same concept can be extended while calculating the force between

two charged spheres. The charged spheres can be assumed as point charges at the center of

each sphere, provided the separation distance between them is sufficiently large. At small

separation distances the surface charge distribution will not be even due to the induced

charge effects and the point charge model is not valid.

The behavior of a charge particle is significantly different in a plasma environment than

its behavior in vacuum. If a test charge (positive) is placed in a uniform plasma, it will

attract electrons and repel the positive ions in the plasma. This will result in the gathering

of electrons around the test charge, which will act as a shielding cloud that cancels the

effect of the test charge. Thus the electric field or potential decays much faster in plasma

environment than in vacuum. This phenomenon is called Debye shielding9,10 and is illus-
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Figure 2.1: The Debye shielding.

trated in Figure 2.1. In References 9 and 10, an expression for the electric field due to a

point charge in plasma is given and a new parameter called Debye length, which has the

dimensions of length, is introduced. At distances that are greater than the Debye length

the electric field or potential decays exponentially, and at distances that are much smaller

than the Debye length the electric field is close to the point charge field in vacuum.

In MEO (Medium Earth orbit) and LEO (Low Earth orbit), the Debye lengths are small

(order of few centimeters) and one possible application of Coulomb force is the docking of

two satellites. The satellites can be modeled as two spheres and we study the Coulomb

force between two such spheres in close quarters in a plasma environment. The spheres

are hollow shells with a large surface area (similar to Gluon), and are porous so that the

plasma can seep inside the spheres. Thus the environment inside and outside the spheres is

the same. When the two charged spheres are in a close formation, the effectiveness of the

charge on the surfaces that are further away might be reduced because of Debye shielding.

Hence, point charge modeling of spheres based on Gauss’s law might not give the accurate

Coulomb force acting between the spheres that are in plasma environment. It should be

11



2.2 Choice of Discretization Mesh

noted that this problem is not very acute when the Debye lengths are very large or when

the separation distance between the spheres is large.

In this chapter, we discretize the surface of the spheres to small elemental areas and

the elemental charges in these discretized areas are considered to be point charges. The

resultant Coulomb force between the two spheres is found by adding, vectorially, the forces

due to each elemental charge that make up the spheres. While calculating the forces due to

elemental charge the effect of Debye shielding is taken into account. The net force obtained

from the discretized model is compared with the point charge model, and situations in

which point charge model will fail are identified. As discussed in the beginning of this

chapter, two spheres in close quarters might introduce induced charge separation in each

other. For instance, a positively charged sphere will attract more electrons in the other

sphere to move to the surface facing the positively charged sphere as shown in Figure 2.2.

This induced charging will result in nonuniform surface charge distribution and coupled

with Debye shielding effects might drastically change the net effective Coulomb force. But,

for the time being we neglect this induced charge effect and assume the spheres to have a

uniform surface charge density.

This chapter is organized as follows. Initially, the effective choice of the discretization

mesh size is identified. Next, the net Coulomb force acting between the two spheres is

calculated using the discretized model. Finally, the forces calculated using the discretized

model and the point charge model are compared to identify the situations when the point

charge models fail.

2.2 Choice of Discretization Mesh

Consider a small elemental area on the surface of a sphere as shown in Figure 2.3. The polar

coordinates of the elemental area are given by radius r and angles ψ and θ. The expression
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Charged
Sphere

Uncharged
Sphere

Induced charge
separation

Figure 2.2: The induced charge in a neutral sphere in the vicinity of a charged
sphere.

for the area of this element is given by

dA = r cosψ dθdψ (2.1)

The elemental charge dq on the elemental surface area dA can be written as

dq = σdA = σr cosψ dθdψ (2.2)

where the charge density on the surface of the sphere is σ. Rewriting Eq. (2.2) in terms of

the total charge q carried by the sphere, we get

dq =
q

4πr2
r cosψ dθdψ (2.3)
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Figure 2.3: A simple spherical surface with the illustration of an elemental
surface.

This elemental charge dq can be considered as a point charge and its position in terms of

the cartesian coordinates (with origin at the center of the sphere) can be written as

ρ = [x, y, z]T = [r cos(ψ) cos(θ), r cos(ψ) sin(θ), r sin(ψ)]T (2.4)

Similarly, by varying the polar angles ψ and θ from −π/2 to π/2 and 0 to 2π, respectively,

all the discretized elemental charges and their position can be identified.

Now, consider two such discretized spheres with n elemental areas in each. The net

Coulomb force acting between the spheres is the vector sum of the interaction of each

individual elemental charge. The Coulomb force using the discretized model can be written

14



2.2 Choice of Discretization Mesh

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d! and d" (Radians)

E
rr

o
r 

P
e
rc

e
n
ta

g
e

E
rr

or
P
er

ce
nt

ag
e

dθ and dψ (Radians)

Figure 2.4: The percentage error in the Coulomb force calculated using the point
charge model and the discretized surface model for two spheres for different
discretization mesh size.

as

F =
n∑
i=1

n∑
j=1

kc
dqidqj
|ρj − ρi|3

(ρj − ρi) (2.5)

where kc is the Coulomb constant, dqi and ρi are the ith elemental charge and its cartesian

position vector on sphere one, and similarly, dqj and ρj are the jth elemental charge and

its cartesian position vector on sphere two.

The force between two spheres based on the point charge model is given by

F = kc
q1q2

d2
(2.6)

where q1 and q2 are the respective total charges on sphere one and two, and d is the center-

to-center separation distance.

In order to establish acceptable mesh size (i.e. dψ and dθ values), the Coulomb force

between two test spheres based on the discretized model was calculated for various dψ and
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Figure 2.5: Two spheres with discretized surfaces resulting in discretized surface
charges and their interaction.

dθ values. It should be recalled that when in vacuum (i.e. neglecting plasma effect) and

when the induced charge redistribution effects are neglected the point charge models of the

spheres are valid. Hence, the force calculated from the discretized model is compared with

the point charge model and the percentage error is plotted for various dψ and dθ values as

shown in Figure 2.4. A dψ and dθ value that results in a percentage error of less than 1%

is an acceptable discretization. By using the Figure 2.4, dψ and dθ values are chosen as 10o

or 0.17 radians that result in a percentage error of 0.46% (well within 1%).
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2.3 Discretized Model in Plasma Environment

The Coulomb force experienced by a test charge dq that is at a distance d from a point

charge q in a plasma environment is given by

F = kc
qdq
d2

e
−d
λd (2.7)

where λd is the Debye length. It can inferred from Eq. (2.7) that as the separation distance

d increases, the Coulomb force exponentially decays, and the exponential decay is more

severe when d is greater than the Debye Length λd.

A charged sphere in a plasma environment modeled as an equivalent point charge at

the center of the sphere will not give accurate results. At small Debye lengths, the charge

on the surfaces that are facing each other might be within the Debye length and have a

greater interaction than the charge on the opposite surfaces of the spheres because their

effect might be canceled due the Debye shielding. For calculating the Coulomb force, we

have model the spheres as porous shells and assume that the plasma can seep through.

This assumption might lead us to believe that the point charge approximations will be well

with in acceptable limits. However, this is not true for all situations. When the separation

distances are comparable to the radius of the spheres and at Debye lengths that are less

than the separation distance, the Coulomb force by replacing the spheres with equivalent

point charges at the center would have acutely decayed. But, in reality the charges on the

surface of the spheres that are closest to each other will be well with in the Debye length

and their interaction might result in a net Coulomb force that is significantly higher than

the force calculated using the point charge model. Thus, our main aim of this study is

to identify those regions of separation distance and Debye lengths where the point charge

model fails and a discretized surface model should be used instead.

The Coulomb force between two spheres in plasma environment is given using the dis-
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2.3 Discretized Model in Plasma Environment

cretized model as

Fd =
n∑
i=1

n∑
j=1

kc
dqidqj
|ρj − ρi|3

(ρj − ρi)e
−|ρj−ρi|

λd (2.8)

where the definitions of dqi, ρi, dqj and ρj are the same as in Eq. (2.5). This process is

illustrated in Figure 2.5. The force between two spheres in plasma environment based on

the point charge model is given by

Fp = kc
q1q2

|d|3
de
−|d|
λd (2.9)

where q1 and q2 are the respective total charges on sphere 1 and 2, and |d| is the center to

center separation distance. The percentage error between the two methods is calculated as

Error =
|Fp| − |Fd|
|Fp|

100 (2.10)

The Coulomb forces using the point charge model and discretized model, and the per-

centage error are calculated for various combinations of radii-separation-distances ratios

and separation-distance-Debye-length ratios. Figure 2.6 shows the contour plots for the

percentage error in the Coulomb force calculated using the point charge model and the

discretized surface model for two spheres under plasma screening. In Figure 2.6(a), the

separation distance-Debye length ratio (d/λd) is varied from 0.1 to 1. It can be observed

from this plot that at high separation distance-radius ratio (d/r), the difference between

the point charge model and discretized model is insignificant even when the Debye lengths

are comparable to the separation distance (i.e. at high d/λd ratios). There is considerable

difference when separation distance-Debye length ratio (d/λd) is low and the Debye lengths

are comparable to the separation distance, and in this region the Coulomb force due to the

discretized model is higher than that due to the point charge model. This phenomenon
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Figure 2.6: Contour plots showing the percentage error in the Coulomb force
calculated using the point charge model and the discretized surface model for
two spheres under plasma screening.

is further illustrated in Figure 2.6(b) in which the separation distance-Debye length ratio

(d/λd) varies from 0.1 to 5. At separation distances that are much greater than the Debye
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lengths and at low separation distance-radius ratios (dr ) the difference between the models

is more than 100%.

2.4 Summary

In this chapter we demonstrate that for two spheres that are in the plasma environment,

the difference between the force calculated using the point charge model and the force

calculated using the discretized model is negligible, provided the separation distance is

large compared to the radius of the sphere and the Debye length is large compared to the

separation distance. The point charge model only fails at separation distances that are

close to the radius of the sphere and when the Debye lengths are comparable to or greater

than the separation distance. In these situations the discretized model gives results that

are closer to the actual value. In this dissertation, a point charge model is used for charged

spacecraft.
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3 Reconfiguration of a Two-Craft System in

Free-Space Using Coulomb Forces

3.1 Introduction

The study of electrostatic charging data of the SCATHA spacecraft7 verified that spacecraft

can charge to high voltages in low plasma environments such as GEO, and the electric power

requirement is typically less than 1 Watt. The charged spacecraft can produce electrostatic

Coulomb forces that can be used to increase or decrease the relative distance between the

two craft. Henceforth, this kind of reconfiguration using Coulomb forces is referred as

Coulomb reconfiguration. This novel propellantless reconfiguration concept has many ad-

vantages over conventional thrusters like ion engines. Coulomb propulsion effectively uses

no consumables and is also a clean method of propulsion compared to ion engines, thereby

avoiding the thruster plume contamination issue with neighboring crafts. However, this

Coulomb reconfiguration also has its own set of limitations. The Coulomb electrostatic

force magnitude is inversely proportional to the square of the separation distance. Addi-

tionally, Coulomb force effectiveness is diminished in a space plasma environment due to

the presence of charged plasma particles. The electric field strength drops off exponentially

with increasing separation distance. The severity of this drop is characterized using the De-

bye length.9,10 For low earth orbits (LEO), the Debye length is of the order of millimeters
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3.2 Free-Space Reconfiguration Dynamics

to centimeters, making the Coulomb reconfiguration concept impractical at these low orbit

altitudes. At geostationary orbit (GEO) altitudes or higher, which has a hotter and less

dense plasma environment, the Debye length can vary between 100-1000 meters depending

on the solar activity cycles. The Coulomb reconfiguration concept appears to be feasible at

this altitude.

In this chapter, we study the feasibility and the charge requirements for Coulomb recon-

figuration. The craft are assumed to be in free-space. A bang-bang type of charging is used

to achieve this reconfiguration. Initially, the craft are given a fixed charge of same polarity

and they accelerate away from each other. After a fixed time the polarity is reversed. The

resulting attraction between the craft decelerates their motion and brings them to a com-

plete stop at the required separation distance. For various desired final separation distances

and maneuver times, the fixed charge and the time (switch time) at which their polarity

has to be reversed to achieve the bang-bang reconfiguration are determined. Two scenarios

are investigated when 1) the craft have equal masses and 2) the craft have unequal masses

model as Gluon-Deputy. The effects of the Debye length are included. This chapter is

organized as follows. First, the reconfiguration dynamics are discussed and this is followed

by the bang-bang charging process. Finally, the simulation results and conclusion are given.

3.2 Free-Space Reconfiguration Dynamics

Consider a two-satellite arrangement as shown in Figure 3.1. Let the origin be located at

the center of mass. The distances of craft 1 and craft 2 from the origin are denoted x1 and

x2, respectively. The separation distance between the two craft is d, given by

d = x1 − x2 (3.1)

22



3.2 Free-Space Reconfiguration Dynamics

x2

d

Separation Distance

x1

m2 m1

Coulomb Force

kc
q1q2

d2

craft 1craft 2

Figure 3.1: The two-craft arrangement in free-space.

Since, the origin is located at the center of mass, the center of mass condition dictates that

m1x1 +m2x2 = 0 (3.2)

Therefore, once we know the motion of one craft, the motion of the other craft can be

determined using the above condition. From Eq. (3.1) and Eq. (3.2), the position of the

craft 1 can be written as

x1 = d

(
1 +

m1

m2

)−1

(3.3)

The craft are assumed to be in free space and therefore, no external force is acting on the

formation. The initial internal forces acting on the deputy are the gravitational force of

attraction between the two craft and Coulomb force. The former is given by

Fg = G
m1m2

d2
(3.4)
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3.2 Free-Space Reconfiguration Dynamics

where G is the universal gravity constant and, m1 and m2 are the masses of craft 1 and

craft 2, respectively. The Coulomb force is given by

Fc = kc
q1q2

d2
(3.5)

where kc is the Coulomb constant, and q1 and q2 are the charges of craft 1 and craft 2,

respectively. The force expression in Eq. (3.5) is rewritten using the voltages produced due

to the charges as

Fc =
r1r2

kc

V1V2

d2
e

“
−d
λd

”
(3.6)

where Vi and ri are the voltage and radius of craft i. The exponential decay term is due to

the Debye shielding where λd is the Debye length.

Using Newton’s second law, the equation of motion of craft 1 (m1) is written as

m1ẍ1 = −Gm1m2

d2
+
r1r2

kc

V1V2

d2
e

“
−d
λd

”
(3.7)

Using Eq. (3.3), separation distance d in Eq. (3.7) can be substituted with an expression

in terms of x1. The gravitational force acting on the satellites is small compared to the

Coulomb force, so we can neglect the former, and the equation of motion of craft 1 (m1)

can be rewritten as

m1ẍ1 =
r1r2

kc

V1V2

x2
1

(
1 + m1

m2

)2 e

 
−x1(1+

m1
m2

)
λd

!
(3.8)

Thus, Eq. (3.8) gives the equation of motion for two charged craft in free space that are

one dimensionally restricted.
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Figure 3.2: Schematic representation of the bang-bang charging.

The equation of motion for the two-craft reconfiguration in free space was developed in

the previous section and in this section we discuss the type of charging that will be used.

The main idea behind bang-bang charging is to use a fixed voltage for accelerating the craft,

and reversing the polarity of the fixed voltage after the switch time to decelerate the craft.

Figure 3.2 shows a schematic representation of this kind of charging, where the voltage is

maintained at a constant value V until it reaches the switching time t0, after which the

voltage polarity is reversed.

voltage =

{
V 0 < t 6 t0

−V t0 < t < tmax

(3.9)

For a given separation distance and time (tmax) for achieving this distance, a particular

voltage V and switch time t0 must be found. We start with an initial guess and use the

shooting method to converge to this solution. The initial guess for the switch time is given
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3.3 Bang-Bang Charging
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Figure 3.3: Simulation results for increasing the separation between two satel-
lites of equal masses from 2m to 3m in different maneuver time using bang-bang
charging process.
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3.3 Bang-Bang Charging

by

t0 = tmax/2 (3.10)

Let d̄ be the final desired separation and x̄1 correspond to the position of mass m1 at this

separation distance. Then the initial guess for the product of voltages is given by

V1V2 = 2(x̄1 − x1)t2max
kcd̄

2

r1r2e

“
−d̄
λd

” (3.11)

From Eq. (3.8), it is clear that we have a 1/r2 type of decay for the force acting between

the craft as the separation distance increases. In addition to this decay, there is also an

exponential decay term due to the Debye shielding effect. For these reasons, the initial

conditions in Eq. (3.10) and Eq. (3.11) will not work well when trying to increase the

separation distance by large values. In order to overcome this difficulty, a technique called

homotopy26 is used. In this technique the distances are increased in small incremental steps

and the converged solution (using shooting method) for the previous step is used as the

current initial guess.

Figure 3.3 illustrates the bang-bang charging process for sample maneuvers where the

separation distance between two craft of equal masses is increased from 2 m to 3 m. Fig-

ures 3.3(a), 3.3(b) and 3.3(c), give the voltage, Coulomb force experienced, and the position

time histories of mass m1. It can be seen from the graphs that as the total maneuver time

is increased from 0.1 day to 1 day, the voltage required falls rapidly and the switch time

increases.
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3.3 Bang-Bang Charging

Initial Guess

The homotopies across separation
distances using the results of the
first set of homotopies to propogate.
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CONTOUR PLOTS
The homotopy across maneuver
time using the initial guess.

Figure 3.4: Schematic representation of the homotopies used in generating the
contour plots.
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3.4 Simulation Results

3.4 Simulation Results

The simulations are carried out for two different scenarios. In the first scenario, the two

craft are of equal mass and size. In the second scenario the gluon-deputy arrangement is

used where the gluon is much heavier and larger in size than the deputy craft. Due to

its enormous mass, the distance moved by the gluon will be small and we can consider it

to be stationary. In this case, the total separation distance will be roughly equal to the

distance moved by deputy. Whereas in the equal mass scenario, the two craft will move

equal distances and the total separation distance will be twice the distance moved by any

one of the craft. The various input parameters are given in Table 3.1.

Table 3.1: Input parameters used in simulation of free-space reconfiguration.
Parameter Equal Mass Crafts Gluon-Deputy Crafts

Craft 1 Mass, m1 50 kg 50 kg
Craft 2 Mass, m2 50 kg 1000 kg
Craft 1 Radius, r1 0.5 m 0.5 m
Craft 2 Radius, r2 0.5 m 10 m

Initial Separation distance, d 2 m 15 m

It is mentioned in the previous section that the shooting method and homotopy method

are used in calculating the voltage and switch time for various separation distances and

maneuver times. Before we present the simulated results, let us discuss these methods in a

more detailed fashion and explain how exactly they are used here. Our aim is to generate

the contour plots of the fixed voltage required to carry out these bang-bang maneuvers

for different final separation distance and maneuver time. Figure 3.4 gives the schematic

representation of the homotopies used in generating the contour plots. Initially, for a

small increase in the separation distance in a small time, we use the initial guess in the

shooting method to find the switch time and the fixed voltage. Using this result, the first

set of homotopies are carried out across the maneuver time keeping the separation distance
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Figure 3.5: The switch time and voltage as functions of increase in separation
distance in a constant maneuver time. These voltages and switch times corre-
spond to the gluon-deputy arrangement with a constant maneuver time of 1.0
hour and initial separation distance of 15 m.
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Figure 3.6: The contour plot of the voltage (log) needed to increase the separa-
tion distance of two craft of equal mass, from 2 m to several meters in different
maneuver times, using bang-bang charging.
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Figure 3.7: The contour plot of the voltage (log) needed for a gluon-deputy
satellite arrangement to increase the separation distance from 15 m to several
meters in different maneuver times, using bang-bang charging.
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Figure 3.8: The contour plot of the voltage (log) needed for a gluon-deputy
satellite arrangement to increase the separation distance by 10 m for various
initial separation distances in different maneuver times, using bang-bang charg-
ing.
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3.4 Simulation Results

constant. It should be noted that the homotopy means using the converged results in

the previous case as the initial guess for the current problem and shooting method is the

one that performs the convergence. The other homotopies are performed across the final

separation distance using the results of the first set of homotopies as initial conditions.

In order to understand how the voltage and switch time vary across the separation dis-

tance for a fixed maneuver time, let us study the Figure 3.5. For a fixed maneuver time of 1

hour, Figures 3.5(a) and 3.5(b) give the switch time and voltage, respectively, for the gluon-

deputy arrangement to increase their separation distance from 15 m to various lengths. It

can be observed that the increase in voltage with increase in separation distance is more or

less linear, whereas the switch time t0 decreases exponentially with increase in separation

distance. This exponential decrease is due to the 1/r2 term in the Coulomb force, and

without this term the switch time would be exactly half the total maneuver time. We can

also observe in Figures 3.5(a) that for small separation distances the switch time approaches

0.5 hours, which is half of the 1.0 hour maneuver time. As the final separation distance

increases the switch time approaches zero (i.e. the initial voltage becomes a pulse).

Figure 3.6 shows the contour plots of the voltage required to increase the separation

distance between two craft to several meters in different maneuver times. The craft have

equal mass and the initial separation distance is 2 m. The contour plots are shown for two

different Debye lengths of 100m and 50m. The white patches in the contour plots represent

regions where we are unable to find a converged solution. In the shooting method, we use

the MATLAB function ode45 with absolute and relative tolerances both set to 10−12. As

the final separation distance increases, even though we use homotopy, for certain points

the integration tolerance exceeds the allowed limit. Hence, for these points we are not

able to find converged solutions. Further investigation need to be carried out to find these

solutions. However, the contour plots give the general trend in the voltage requirements.

For example, in Figure 3.6(a) the voltage required to increase the separation distance in 4
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3.5 Summary

hours from 2 m to 5 m is roughly 102.75 volts, and to increase 10 m it is 103.5 volts.

The second set of simulations is for the gluon-deputy arrangement. The specifications of

the gluon and deputy are given in Table 3.1. The initial center-to-center separation distance

between the gluon and the deputy is 15 m. Figure 3.7 gives the simulation result for this

arrangement. The voltage appears similar to the previous case. But, it should be noted

that the gluon due to its large radius is carrying a greater charge for the same voltage levels.

The final simulation is carried out using the same gluon deputy arrangement as given in

Table 3.1. The maneuvers involve increasing the separation distance by 10 m for various

initial separation distance. Figure 3.8 gives the contour plots of the voltage needed for these

maneuvers. Again, the simulation is carried out for two different Debye lengths (100 m and

50 m).

3.5 Summary

The reconfiguration of a two-craft formation in free-space using Coulomb forces is stud-

ied. The bang-bang charging sequence is successfully employed to increase the separation

distances between the craft. The simulation results from both the gluon-deputy arrange-

ment and equal-mass -equal-size arrangement show that the voltages required to carry out

these maneuvers are quite low. These voltages are realizable in practice. This gives us the

impetus to extend this study when the craft are in orbit.
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4 Two-Craft Coulomb Tether Formation

Along Orbit-Radial Direction

4.1 Introduction

A new application of the Coulomb propulsion concept is to use the electrostatic force to

control the separation distance between two physically unconnected craft. Due to the sim-

ilarities with using a tether cable to connect two craft, this concept is called a Coulomb

tether formation. Note that contrary to traditional tethers, the Coulomb tether is capable of

receiving both tensile and compressive forces. Further, the stiffness of the satellite connec-

tion can be controlled through feedback control laws. This will allow for the Coulomb tether

stiffness to be varied with changing mission requirements. Scenarios with two spacecraft

flying only dozens of meters apart are investigated in this chapter. Potential applications

include releasing a sensor or camera unit from the primary spacecraft and holding it at

fixed distance above or below the spacecraft. From this non-Keplerian orbit, the sensor

craft could monitor the spacecraft itself, or perform other scientific measurements.

Coulomb forces cannot be used to change the total inertial formation angular momentum

vector.4,5 As a result, these spacecraft charges cannot be used to reorient a formation as

a whole to a new orientation. An external influence must be used or generated through

thrusters to reorient a Coulomb formation. Spacecraft are not subjected to the same grav-
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4.1 Introduction

itational pull throughout the formation. The sections which are closer to the Earth are

attracted more strongly than those that are further away. This force or gravity gradient27

has been used in stabilizing some satellites. To guarantee linear stability of rigid body

attitudes in orbit, the principal inertias of the body must satisfy well-known constraints.

Typically gravity-gradient stabilized satellites are tall and slender, and aligned with the

local nadir direction. The same concept of stabilization can be extended to the two space-

craft Coulomb tether concept where the craft are assumed to be flying apart by a few dozen

meters. A charge feedback law is employed to stabilize the spacecraft separation distance

(making the formation act as a rigid, slender rod), while the gravity gradient torque is

exploited to assist in stabilizing the formation attitude.

King et. al.8 found analytical solutions for Hill-frame invariant Coulomb formations.

Here spacecraft are placed at specific locations in the rotating Hill frame with specific

electrostatic charges. As a result the Coulomb forces perfectly cancel all natural orbital

accelerations, causing the satellites to remain fixed or static as seen by the Hill frame.

However, the charge was held constant in their analysis. The discovered open-loop static

Coulomb formations were all found to be unstable. References 1, 8, 2 discuss the static

Coulomb satellite formations and the associated equilibrium charges, but do not address

the stabilization of these formations. In this chapter, stabilization of a simple static Coulomb

structure is discussed for the first time. An active charge feedback control is presented to

stabilize the static 2-craft formation shape and orientation. In order to achieve this goal

we use known stability characteristics of orbital rigid body motion under a gravity gradient

field and examine its applicability to a Coulomb tethered two-spacecraft system. To avoid

the very small plasma Debye lengths found at LEO, the Coulomb tether formation studied

is at GEO. The formation center of mass or chief motion is assumed to be circular. In

formation flying the chief is the reference location about which all other deputy satellites

are flying. The two body Coulomb tether problem considered here can be viewed as a
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Figure 4.1: Rotating Hill coordinate system used to describe the relative posi-
tion of the satellites

sub-problem of the multi-satellite formation flying problem. In future work, attempts will

be made to extend the feedback control discussed here to multi-satellite formations. The

chapter is organized as follows. After discussing the charged spacecraft equations of motion,

the equations are rewritten using spherical coordinates and linearized for small departure

angles relative to an equilibrium attitude. A feedback charge control law is introduced to

stabilize the separation distance, followed by a combined attitude and separation distance

linear stability analysis. A numerical simulation illustrates the results and compares the

linearized performance predictions to the actual nonlinear system response.

4.2 Static (Rigid) Formation Dynamics

To start with, the equations of motion of a cluster of charged spacecraft are briefly reviewed.

The Clohessy-Wiltshire-Hill’s equations28,29 are commonly used for spacecraft formation

studies. These equations express the linearized motion of one satellite relative to a circularly

orbiting reference point or chief location. Note that this chief location does not have to be

actually occupied by a satellite. For the present discussion, the formation chief location
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4.2 Static (Rigid) Formation Dynamics

is set to be equal to the formation center of mass. The various satellites in a formation

are called the deputy satellites. The system of Cartesian coordinates used to describe the

relative motion of a satellite with respect to the chief location is defined in the rotating Hill

orbit frame O : {ôr, ôθ, ôh} as shown in Figure 4.1. The origin of the coordinate system

is chosen to be the formation center of mass or chief location. The Cartesian x, y and z

coordinates are the vector components of the relative position vector

ρ =

O
x

y

z

 (4.1)

along the directions of orbit radial ôr (outward), the orbital velocity vector ôθ, and the

normal vector ôh with respect to the orbit plane. Assuming that the Coulomb formation

contains N satellites, the CW equations of the ith deputy with respect to the chief are

expressed as

ẍi − 2Ωẏi − 3Ω2xi =
kc
mi

N∑
j=1

(xi − xj)
|ρi − ρj |3

qiqje
−|ρi−ρj |/λd j 6= i (4.2a)

ÿi + 2Ωẋi =
kc
mi

N∑
j=1

(yi − yj)
|ρi − ρj |3

qiqje
−|ρi−ρj |/λd j 6= i (4.2b)

z̈i + Ω2zi =
kc
mi

N∑
j=1

(zi − zj)
|ρi − ρj |3

qiqje
−|ρi−ρj |/λd j 6= i (4.2c)

where ρi = (xi, yi, zi)T is the position vector of the ith satellite in Hill frame components, mi

is the satellite mass, and qi is the satellite charge. The chief position vector rc is assumed

to have a constant orbital rate of Ω =
√
GMe/r3

c , where G is the gravity constant and Me

is the Earth’s mass. The parameter kc = 8.99 · 109 Nm2/C2 is the Coulomb’s constant,

while the parameter λd is the Debye length. Because the Coulomb tether formations are
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Figure 4.2: Coulomb tethered two satellite formation with the satellites aligned
along the orbit nadir direction

assumed to be at GEO where the Debye length is much larger than the typical Coulomb

tether length, the Debye length influence is ignored as a higher order term for the remainder

of this chapter. Note that these relative equations of motion of a charged spacecraft contain

linearized orbital dynamics, while retaining the full nonlinear Coulomb force expression. In

fact, it is this nonlinear Coulomb force term that causes the strong and complex coupling

between the spacecraft motions.

The formation geometry of the ideal two-craft Coulomb tether formation is shown in

Figure 4.2. As is shown later in this section, there exists a two-craft static Coulomb for-

mation solution where both masses must be aligned equal distances away from the chief

along the nadir direction. The ideal separation distance is called Lref. If each craft has a

certain charge, then the resulting Coulomb forces will perfectly cancel the linearized orbital

accelerations in the Hill frame. As a result, the two craft would each remain aligned in

the chief nadir direction and perform non-Keplerian motions. To an external observer the

two physically unconnected craft would appear to both be performing perfectly circular

motions, but with a non-Keplerian orbit period for their individual altitudes. The invisible

40



4.2 Static (Rigid) Formation Dynamics

Coulomb tether is applied to get the required inter-spacecraft force, similar to how a cable

tether could provide the required tension between the craft to maintain such non-Keplerian

orbits.

Since the Coulomb tether formation considered has only two spacecraft, the CW equations

in Eq. (4.2) for satellite 1 can be simplified as

ẍ1 − 2Ωẏ1 − 3Ω2x1 =
kc
m1

(x1 − x2)
L3

q1q2 (4.3a)

ÿ1 + 2Ωẋ1 =
kc
m1

(y1 − y2)
L3

q1q2 (4.3b)

z̈1 + Ω2z1 =
kc
m1

(z1 − z2)
L3

q1q2 (4.3c)

where L is the distance between the satellites 1 and 2. As the Hill frame O origin is assumed

to be identical to the formation center of mass, the center of mass condition dictates that4,5

m1ρ1 +m2ρ2 = 0 (4.4)

Thus, by controlling the motion of satellite 1, the motion of the second satellite is also

determined implicitly through the center of mass constraint.

In order for this top-down spacecraft formation to remain statically fixed relative to the

rotating orbit frame O, the CW equations in Eq. (4.3) must be satisfied with zero initial

velocity and acceleration for each vehicle

ẋi = ẍi = ẏi = ÿi = żi = z̈i = 0

For a two-craft Coulomb formation, this is possible if the relative positions are expressed
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4.2 Static (Rigid) Formation Dynamics

through:

m1x1 +m2x2 = 0 (4.5a)

x1 − x2 = L (4.5b)

x1 =
m2

m1 +m2
L (4.5c)

x2 = − m1

m1 +m2
L (4.5d)

y1 = y2 = z1 = z2 = 0 (4.5e)

Substituting the above conditions and constraints in Eq. (4.3), one obtains the following

two spacecraft charge conditions for a static nadir-aligned formation.

kc
m1

q1q2

L2
+ 3Ω2 m2L

m1 +m2
= 0 ⇒ q1q2 = −3Ω2L

3

kc

m1m2

m1 +m2
(4.6a)

kc
m2

q1q2

L2
+ 3Ω2 m1L

m1 +m2
= 0 ⇒ q1q2 = −3Ω2L

3

kc

m1m2

m1 +m2
(4.6b)

The ideal product of charges Qref needed to achieve this static Coulomb formation is

Qref = q1q2 = −3Ω2L
3

kc

m1m2

m1 +m2
(4.7)

Thus, if the satellites are placed at the locations shown in Eq. (4.5), and have the charges

q1 and q2 satisfying Eq. (6.5), then the satellites will appear to be frozen or fixed as seen by

the rotating frame O. Note that this reference charge product term will be negative! This

dictates that the spacecraft charges q1 and q2 will have opposite charge signs. However,

there is an infinite number of charge pairs which satisfy Qref = q1q2. When implementing

charge control strategies in this study, the charge magnitudes are set equal. If one craft

is capable of higher charge levels, it is possible to have unequal charges as long as their

product satisfies the required Q = q1q2 value.
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4.3 Linearized Orbital Perturbation
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Figure 4.3: Euler angles representing the attitude of Coulomb tether with re-
spect to the orbit frame

4.3 Linearized Orbital Perturbation

The constant charge computed in accordance with Eq. (6.5) will only result in the static

nadir formation if there are no position or velocity errors, and no perturbations are present.

Otherwise, the relative separation will become unstable and the satellites will separate.

This problem can be overcome by allowing a suitable variation of charges. In this section,

a relationship between these position and charge states is established by considering small

perturbations about the established reference states.

Let the two-craft formation be treated as if it were a rigid body. Accordingly, consider

a body-fixed coordinate frame B : {b̂1, b̂2, b̂3} where b̂1 is aligned with the relative position

vector ρ1. Note that if the body is at the ideal Coulomb tether orientation where the masses

are aligned exactly along the orbit nadir direction ôr, then the O and B frame orientation

vectors are identical. The relative position vector of mass m1 in body fixed axes is given by

ρ1 =
m2

m1 +m2
Lb̂1 + 0b̂2 + 0b̂3 (4.8)
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4.3 Linearized Orbital Perturbation

Let the 3-2-1 Euler angles (ψ, θ, φ) represent the Coulomb tether B frame attitude relative

to the orbit frame O for small angular perturbations as shown in Figure 4.3. Because point

masses are being considered, the rotation about b̂1 ( angle φ) can be neglected. The direction

cosine matrix [BO(ψ, θ)], which relates the O frame to B frame, is given by

[BO] =


cos θ cosψ cos θ sinψ − sin θ

− sinψ cosψ 0

sin θ cosψ sin θ sinψ cos θ

 (4.9)

Using small angle approximations for the trigonometric functions, the position vector of

mass m1 in O frame can be written as


x1

y1

z1

 = [BO]T


m2

m1+m2
L

0

0

 ≈


m2
m1+m2

L

ψ m2
m1+m2

L

−θ m2
m1+m2

L

 (4.10)

Taking the derivative of this expression, the linearized Hill frame relative velocity coordi-

nates are found to be 
ẋ1

ẏ1

ż1

 ≈ m2

m1 +m2


L̇

ψL̇+ ψ̇L

−θL̇− θ̇L

 (4.11)

The distance L between the two masses m1 and m2 is given by

L2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (4.12)
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4.3 Linearized Orbital Perturbation

Using the center of mass condition in Eq. (4.4), this can be simplified to

L2 =
(
m1 +m2

m2

)2

(x2
1 + y2

1 + z2
1) (4.13)

Differentiating Eq. (4.13) twice and substituting Eq. (4.3) into the resulting expression

yields,

L̇2 + LL̈ =
(
m1 +m2

m2

)2 (
ẋ2

1 + x1

(
2Ωẏ1 + 3Ω2x1 +

kc
m1

(x1 − x2)
L3

Q
)

+ ẏ2
1 + y1

(
− 2Ωẋ1

+
kc
m1

(y1 − y2)
L3

Q
)

+ ż2
1 + z1

(
− Ω2z1 +

kc
m1

(z1 − z2)
L3

Q
))

(4.14)

Transforming the Cartesian coordinates (x1, y1, z1) to spherical coordinates (L,ψ, θ) using

Eq. (4.10) and Eq. (4.11), while neglecting higher order terms in ψ and θ, we get the

linearized differential equation of the separation distance L.

L̈ = (2Ωψ̇ + 3Ω2)L+
kc
m1

Q
1
L2

m1 +m2

m2
(4.15)

Note the following special case. Assume that the charge product term Q is zero (i.e. classical

Keplerian motion), and that the satellites are initially at rest with ψ̇ = 0. In this case the

separation distance equations of motion simplify to

L̈− 3Ω2L = 0

This unstable oscillator equation demonstrates that without any Coulomb force active, this

formation could not remain at the specific nadir locations.

Next the separation distance equations of motion are linearized about small variations in

length δL and small variations in the product charge term δQ. The reference separation

length Lref is determined by the mission requirement. The reference charge product term
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4.3 Linearized Orbital Perturbation

is determined through the Lref choice and the constraint in Eq. (6.5).

L = Lref + δL (4.16a)

Q = Qref + δQ (4.16b)

Substituting these L and Q definitions into Eq. (5.2) and linearizing leads to

δL̈ = (2ΩLref)ψ̇ + (9Ω2)δL+
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ (4.17)

This equation establishes the desired relationship between the additional charge product

δQ required and the change in relative separation of the satellites. It is observed that this

relation is coupled to the body frame yaw rate ψ̇. The Coulomb tether attitude differential

equations will be developed later using angular momentum expressions.

To develop a feedback law to control the separation distance using the Coulomb forces,

the small charge product variation δQ is treated as a control variable. Because the charge

of each craft causes a force along the relative position vector, the Coulomb charges can be

used to control the spacecraft separation distance. By defining

δQ =
m1m2L

2
ref

(m1 +m2) kc
(−C1δL− C2δL̇) (4.18)

the closed-loop separation distance dynamics become

δL̈+ (C1 − 9Ω2)δL+ C2δL̇− (2ΩLref)ψ̇ = 0 (4.19)

This control law provides both proportional and derivative feedback of δL. Because the δL

differential equation does not contain a damping term δL̇, the inclusion of the derivative

feedback is essential to ensure asymptotic convergence. Note that in the absence of the yaw
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4.4 Stability Analysis Using the Gravity Gradient Torque

rate term ψ̇, these closed-loop dynamics would be stable if C1 > 9Ω2 and C2 > 0. However,

due to the coupling with the yaw (in-orbit-plane) rotation, the complete Coulomb tether

motion must be analyzed for stability.

To implement this charge feedback control law, the spacecraft charges q1 and q2 must be

determined. The value of Qref is determined through Eq. (6.5), while the value of δQ is

given by the feedback law expression in Eq. (6.9). Thus, the spacecraft charges q1 and q2

must satisfy

q1q2 = Qref + δQ (4.20)

There are an infinite number of solutions to the above constraint. To keep the charges equal

in magnitude across the craft, the following implementation was used.

q1 =
√
|Qref + δQ| (4.21)

q2 = −q1 (4.22)

Note that here Qref + δQ < 0 because δQ � Qref and Qref < 0. With this charging

convention we find q1 > 0 and q2 < 0.

4.4 Stability Analysis Using the Gravity Gradient Torque

In this section the stability of both the Coulomb tether attitude (ψ, θ) and the separation

distance L is analysed. The gravity gradient torque is included to exert an external torque

onto the Coulomb tether. Let the orbit angular velocity vector relative to the inertial frame

N be given by

ωO/N = Ωôh (4.23)
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4.4 Stability Analysis Using the Gravity Gradient Torque

To develop the tether attitude differential equations of motion, the 2-craft formation is

treated as a continuous body. This is motivated by the stable Coulomb tether formation

acting as a rigid dumbbell spacecraft. The formation inertia matrix is expressed as27

[I] = −m1[ρ̃1][ρ̃1]−m2[ρ̃2][ρ̃2] (4.24)

where [ρ̃1] is a skew-symmetric matrix that is equivalent to the vector cross product operator

a× b ' [ã]b. For the 2-craft Coulomb tether formation, using the center of mass definition

in Eq. (4.4), the inertia matrix is trivially given in the body frame B as

B[I] =


0 0 0

0 I 0

0 0 I

 (4.25)

where

I =
m1m2

m1 +m2
L2 (4.26)

Note that these moments of inertia vary with time due to their dependence on the variable

formation length L. The B-frame derivative of the inertia matrix is

B d
dt

[I] = B


0 0 0

0 İ 0

0 0 İ

 (4.27)

where

İ = 2
m1m2

m1 +m2
LL̇ = 2

m1m2

m1 +m2
(Lref + δL)δL̇ (4.28)
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4.4 Stability Analysis Using the Gravity Gradient Torque

because Lref =constant.

To develop the attitude differential equations, the total inertial angular momentum of

the 2-craft formation is

H = [I](ωB/O + ωO/N ) (4.29)

Because the Coulomb control forces are formation internal forces, one finds that the inertial

derivative of H is equal to the total external torque acting on the system. Euler’s rotational

equation of motion with a time-varying inertia matrix [I] and gravity gradient torque vector

LG is given in body frame B components by

B[I] Bω̇ + B[İ] Bω + B[ω̃] B[I] Bω = BLG (4.30)

where Bω = BωB/N and the notation [ω̃]x ≡ ω × x is used. Using the direction cosine

matrix definition in Eq. (4.9), the orbit angular velocity vector can be written as

BωO/N = [BO]OωO/N =


−Ω sin θ

0

Ω cos θ

 (4.31)

The yaw and pitch rates of the Coulomb tether body frame B relative to the orbit O frame

yield

BωB/O =


− sin θ 0

0 1

cos θ 0


ψ̇
θ̇

 (4.32)
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4.4 Stability Analysis Using the Gravity Gradient Torque

The Coulomb tether body frame angular velocity vector relative to the inertial frame N is

BωB/N = BωB/O + BωO/N =

B
− sin θψ̇ − Ω sin θ

θ̇

cos θψ̇ + Ω cos θ

 (4.33)

Linearizing Eq. (4.33) about small yaw and pitch angles, we get

BωB/N ≈

B
−Ωθ

θ̇

ψ̇ + Ω

 (4.34)

Taking the inertial derivative of this vector and noting that Ω is constant in this application,

the B frame angular acceleration is

Bω̇B/N ≈

B
−Ωθ̇

θ̈

ψ̈

 (4.35)

The gravity gradient torque LG also has to be expressed using the tether coordinates.

The center of mass position vector rc, given in O frame components as

rc =

O
rc

0

0

 (4.36)
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is transformed to the B frame as

rc =

B
rc1

rc2

rc3

 =

B
cos θ cosψ

− sinψ

sin θ cosψ

 rc (4.37)

Reference 27 provides the following expression for the gravity gradient torque:

B
LG1

LG2

LG3

 =
3GMe

r5
c


rc2rc3(I33 − I22)

rc1rc3(I11 − I33)

rc1rc2(I22 − I11)

 (4.38)

After substituting for rci from Eq. (4.37) and using the known value of Ω from Kepler’s

equation, namely,

GMe

r3
c

= Ω2 (4.39)

the linearized gravity gradient torque vector acting on the Coulomb tether body frame is

written as

BLG ∼= 3Ω2


0

−Iθ

−Iψ

 (4.40)

Substituting these results for LG, B[İ], B[I], ωB/N and ω̇B/N back into Euler’s rotational

equations of motion in Eq. (4.30) and after simplifying the algebra, the resulting linearized

attitude dynamics of the Coulomb tether body frame B are written along with the separation
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4.4 Stability Analysis Using the Gravity Gradient Torque

distance differential equation as:

θ̈ + 4Ω2θ = 0 (4.41a)

ψ̈ +
2Ω
Lref

δL̇+ 3Ω2ψ = 0 (4.41b)

δL̈+ C2δL̇− (2ΩLref)ψ̇ + (C1 − 9Ω2)δL = 0 (4.41c)

Thus, Eqs. (4.41a) – (4.41c) are the linearized equations of motion of the Coulomb tether

body about the static nadir reference configuration. It should be noted that only the

linearized δL differential equation was obtained using the Clohessy-Wiltshire-Hill equations,

while the linearized differential equations of ψ and θ were derived from the full formation

angular momentum expression along with Euler’s equation. These equations have terms

that depend on orbital rate Ω which happens to be a small value at GEO. In order to

avoid numerical issues while carrying out numerical integrations, it is desired to have these

equations be independent of Ω. This can be achieved by using the following transformation.

dτ = Ωdt (4.42a)

(∗)′ = d(∗)
dτ

=
1
Ω

d(∗)
dt

(4.42b)

By carrying out the above transformation in Eqs. (4.41a) – (5.5c), the orbit rate Ω inde-

pendent linearized equations of motion of the Coulomb tether body are given by

θ′′ + 4θ = 0 (4.43a)

ψ′′ +
2
Lref

δL′ + 3ψ = 0 (4.43b)

δL′′ + C̃2δL
′ − (2Lref)ψ′ +

(
C̃1 − 9

)
δL = 0 (4.43c)
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4.4 Stability Analysis Using the Gravity Gradient Torque

where C̃2 = (C2/Ω) and C̃1 = (C1/Ω2) are non-dimensionalized feedback gains. It can

be observed from these equations that the out-of-plane motion θ(t) is decoupled and its

equation is that of a simple oscillator. This decoupling is analogous to what occurs with

the linearized rigid body attitude dynamics subject to a gravity gradient torque. Because

the θ(t) motion is not coupled to the tether charge product term δQ, or the separation

distance variation δL, it is not possible to control the pitch motion θ with the Coulomb

charge in this linearized analysis. The yaw motion ψ(t) is coupled with the δL(t) motion

in the form of a driving force, which may make it amenable to asymptotic stabilization by

controlling the charge.

The values of gain C̃1 and C̃2 can be tuned to meet the stability requirements using

Routh-Hurwitz stability criterion. The characteristic equation for the coupled δL and ψ

equations is

λ4 + C̃2λ
3 + (C̃1 − 2)λ2 + 3C̃2λ+ 3(C̃1 − 9) = 0 (4.44)

While the linearized closed-loop dynamics do depend on the Coulomb tether reference length

Lref, note that the characteristic equation does not. To ensure asymptotic stability, roots

of this equation should have negative real parts. The constraints on the gains C̃1 and C̃2

for meeting this condition are identified by constructing a Routh table and are found to be

C̃1 > 9 (4.45a)

C̃2 > 0 (4.45b)

Incidentally, these constraints also ensure the stability of δL equation ignoring the ψ′ term.

The stability criterion imposes constraints on the choice of the feedback gains C̃1, C̃2

but is not enough to actually decide their values. One needs to look for alternate criteria
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4.4 Stability Analysis Using the Gravity Gradient Torque

for fixing them. One satisfying way would be to fix the gains by demanding conditions of

critical or near critical damping. For ease of discussion, let the feedback gains be expressed

in terms of scaling factor n and α, both taken as positive and real. The gains can be

rewritten as

C̃1 = n > 9 (4.46)

and

C̃2 = α
√
n− 9 (4.47)

The natural frequency of the ψ equation is
√

3 and is not affected by the choice of C̃1

and C̃2, whereas the natural frequency for δL equation is
√

(n− 9). The value of n = 12

will match these frequencies making the ψ′ coupling term in δL equation serve as defacto

damping term. A similar remark applies to the ψ equation. In Eq. (4.47), α = 2 ensures

that the δL equation without the ψ′ term is critically damped. For effective damping with

the inclusion of ψ′ term, the value of α and n need to be modified. However, one expects

the value of α to be in the vicinity of α = 2 and n to be around 12. Hence, root locus plots

for the coupled δL and ψ equations are studied with a range of α values in the vicinity

of α = 2 with n varying between 9 and 20. Figure 4.4 shows the root locus plots for two

different α values . Studying the root locus plots, it can be observed that as the n value

increases beyond 12 the rate of convergence of one of the modes increases and the other

decreases. Therefore, n = 12 is ideal for ensuring good rates of convergence for both the

modes. It is also noted that α = 2.28 resulted in effective damping for the modes.
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Figure 4.4: Root-locus plot of the linearized spherical coordinate differential
equations for different gain α values.

4.5 Numerical Simulation

A numerical simulation is presented to illustrate the performance and stability of a 25 meter

Coulomb tether formation. The simulation parameters are listed in Table 4.1. The initial
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4.5 Numerical Simulation

attitude values are set to ψ = 0.1 radians and θ = 0.1 radians. The separation length error

(Coulomb tether length error) is δL = 0.5 meters. All initial rates are set to zero through

ψ̇ = δL̇ = θ̇ = 0.

The choice of values for the gains C̃1 and C̃2 should not only satisfy the stability criterion

mentioned in Eq. (4.45) but also should be such as to lead to near-ideal damping. Studying

the root locus plots where the parameters n and α are varied, the values n = 12 and

α = 2.28 were chosen. Hence, using Eq. (4.47) the gain C̃2 was found to be 2.28
√

3.

Table 4.1: Input parameters used in orbit-radial simulation
Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99× 109 Nm2

C2

Qref −2.07911 µC2

Ω 7.2915× 10−5 rad/sec
n 12
α 2.28

δL(0) 0.5 m
ψ(0) 0.1 rad
θ(0) 0.1 rad

The Coulomb tether performance is simulated in two different manner. First the linearized

spherical coordinate differential equations are integrated. This simulation illustrates the

linear performance of the charge control. Second, the linearized results are compared with

those obtained from the exact nonlinear equation of motion of the deputy satellites given

by

r̈1 +
µ

r3
1

r1 =
kc
m1

Q

L3
(r1 − r2) (4.48a)

r̈2 +
µ

r3
2

r2 =
kc
m2

Q

L3
(r2 − r1) (4.48b)
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Figure 4.5: Simulation results of integrating either the linearized spherical co-
ordinates differential equations (solid lines) or the nonlinear inertial coordinate
differential equations (dashed lines).

where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial position vectors of the the masses

m1 and m2, while L =
√

(r2 − r1) · (r2 − r1). The gravitational coefficient µ is defined as

µ ≈ GMe. After integrating the motion using inertial Cartesian coordinates, the separation

distance L, as well as the in-plane and out-of-plane angles ψ and θ, are computed in post-

processing using the exact kinematic transformation. The Debye length is kept at zero

during this simulation to study in detail the effects of the relative motion linearization.

Figure 4.5(a) shows the Coulomb tether motion in the linearized spherical coordinates
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(ψ, θ, δL), along with the full nonlinear spherical coordinates shown as dashed lines. With

the presented charge feedback law, both the yaw motion ψ and the separation distance

deviation δL converged to zero. By stabilizing the δL state to zero, the in-plane rotation

ψ(t) also converges to zero. For the set of initial conditions used in this simulation, the δL

and ψ states have converged after about 0.9 orbits. As expected, the pitch motion θ(t) is a

stable sinusoidal motion. Further, Figure 4.5(a) shows that the nonlinear simulation closely

follows the linearized simulation. However, there is one notable difference. The δL states

converge to zero asymptotically in the linearized simulation, while they achieve a steady-

state oscillation in the nonlinear simulation. This difference in behaviour occurs because

the same reference charge product Qref (computed using Eq. (6.5)) is used in both simula-

tions. This charge will achieve a static formation in the linearized CW equations. However,

this charge value will not achieve a static formation in the nonlinear problem. Thus, the

charge feedback control is not actually operating about a proper steady-state charge of the

nonlinear problem. As the δL and ψ tracking errors go to zero, the orbital dynamics will

perturb the system and cause these states to grow again. This persistent disturbance results

in the final steady-state oscillations shown. To implement such a control strategy for an

actual mission, the Qref value would be recomputed numerically for the nonlinear problem.

Even with this deviation, the nonlinear and linear performance predictions compare very

well, thus verifying the presented linearization results.

Figure 4.5(b) shows the spacecraft control charge q1 for both the linearized and full non-

linear simulation models. Both converge to the reference value pertaining to the static

equilibrium. As defined, the control charge q2 is just the negative of q1. Note that the de-

viation from the value of reference charges is small, justifying the linearization assumptions

used. The magnitude of the control charges is in the order of micro-Coulomb which is easily

realizable in practice using charge emission devices.
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4.6 Summary

The concept of a Coulomb (electrostatic) tether is introduced to bind two satellites in a near-

rigid formation. While the Coulomb force cannot directly stabilize the attitude, the gravity

gradient torque is exploited to stabilize the Coulomb tether formation about the orbit radial

direction. The formulation allows for unequal masses. The analysis is based on a linearized

dynamics and charge behavior model whose validity is also shown. It was observed that

a linear charge feedback law in terms of separation distance errors and separation rate is

adequate for stabilizing the separation distance and in-plane angular motion. The control

charges needed are small in the order of micro-Coulombs and realizable in practice.
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5 Orbit Normal and Along-Track Two-Craft

Coulomb Tethers

5.1 Introduction

The previous chapter introduces the concept of a Coulomb tether.30,31 Here a conventional

mechanical tether cable connecting two craft is replaced by an electrostatic force which acts

as a virtual tether. Conventional tethers are limited to tensile forces whereas Coulomb teth-

ers allow both tensile and compressive forces. However, while traditional spacecraft tether

missions consider very large separation distances of multiple kilometers, the Coulomb tether

concept is only viable for separation distances up to about 100 meters because of the elec-

trical field strength drop off. The previous chapter studies the stabilization of the simple

nadir-aligned static 2-craft Coulomb tether structure. Compared to the previous works

on static Coulomb structures,8,13,11,2 Reference 30 is the first study to introduce a charge

feedback law to stabilize a charged spacecraft cluster to a specific shape and orientation.

Coulomb forces are inter-spacecraft forces and cannot control the inertial angular momen-

tum of the formation. Hence, stability characteristics of orbital rigid body motion under a

differential gravity field are applied to a Coulomb tethered two-spacecraft system to develop

an active charge feedback control. With this control the spacecraft separation distance is

maintained at a fixed value, while the coupled formation gravity gradient torque is exploited
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Figure 5.1: Static coulomb tether formation aligned with along-track direction.

to stabilize the tether attitude about the orbit radial direction. Gravity gradient rigid satel-

lites or conventional tethers have only bounded stability along the orbit radial direction.27

In comparison, the feedback control laws for the Coulomb tether regulation30 problem in

the previous chapter guarantee asymptotic stability for separation distance and in-plane

angle. This asymptotic stability is achieved by exploiting the charged relative motion of

the spacecraft and varying the separation distance (virtual tether length).

Similar to the study of rigid axially symmetric body under the influence of the gravity

gradient torque, we know that there are two other relative equilibriums of the charged 2-craft

problem other than the orbit radial or nadir direction. These equilibriums are along the

orbit normal direction, and the along-track direction11 shown in Figure 5.1. In particular,

zero tension is required between the two crafts aligned with the along-track direction to

maintain the static unperturbed formation. On the other hand, repulsive forces are required

to maintaining the cluster along the orbit normal direction. It is worth noting that both zero

tension and compression cases considered are not possible with conventional cable tethers.

This chapter studies the stability of a two-craft formation about along-track and orbit-

normal relative equilibrium configurations. A feedback control law is introduced to asymp-
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Figure 5.2: (3-1) Euler angles describing the Coulomb tether orientation for the
along-track relative equilibria

totically stabilize both the shape and orientation of this cluster. While the charged two-

craft formation aligned along the orbit radial direction could stabilize the cluster using only

Coulomb forces, this study investigates a hybrid feedback control strategy where both con-

ventional thrusters and Coulomb forces are used. The goal is to use the thrusters as little

as possible and make the Coulomb forces provide the bulk of the actuation requirement.

However, to employ small-force thrusters like ion-engines in close proximity to other space-

craft, great care must be taken that the thruster exhaust plume does not impinge on the

neighboring craft. These plumes can be caustic and cause damage to on-board sensors. The

control strategy must be designed such that the thruster is never directed at the 2nd craft.

The formation is studied at GEO where the Debye lengths are large enough to consider

Coulomb spacecraft missions. Reference 14 establishes that the differential solar drag is

the largest disturbance acting on a Coulomb formation at GEO. Therefor, the effects of

differential solar drag on the formation and the ability of the controller to withstand this

disturbance are also studied.
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5.2 Charged Relative Equations of Motion

5.2.1 Along-Track Configuration

This section derives the equations of motion of a 2-craft Coulomb tether that is nominally

aligned with the along-track direction ôθ of the orbit or Hill frame O : {ôr, ôθ, ôh, } shown

in Figure 5.1. This derivation closely follows the derivation of the equations of motion

for craft aligned along the orbit radial direction, which is given in detail in Reference 30.

Figure 5.1 illustrates a static two-craft formation in the orbit velocity direction with a

separation distance of Lref. Let Q = q1q2 be the charge product of the spacecraft charges

qi. The reference charge product Qref required to maintain this static formation can be

computed using the Clohessy-Wiltshire-Hill’s equations27,28,29 for charged spacecraft. The

analytical expression of Qref for the along-track equilibrium is written as13

Qref = 0 (5.1)

The required relative equilibrium charge is zero because this Coulomb tether configuration is

equivalent to a lead-follower spacecraft formation. As a consequence the necessary Coulomb

tether tension is zero. However, this static equilibrium is unstable, similar to a rigid rod

being unstable if aligned with ôθ. The separation distance instability can be stabilized by

continuously varying the charges and generating positive or negative tension within the

Coulomb tether.

Of interest are the coupled separation distance dynamics and the orientation of the

Coulomb tether. Consider the perturbed satellite 1 position (x1, y1, z1) relative to the

equilibrium position. The Coulomb tether is only a 1-dimensional structure and thus only

requires the (3− 1) Euler angles (ψ, φ) to define its orientation relative to the orbit frame

O (Hill frame). The virtual Coulomb structure body frame B : {b̂1, b̂2, b̂3, } is defined such
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5.2 Charged Relative Equations of Motion

that B = O for zero ψ and φ angles, while b̂2 tracks the tether heading. Rotations about b̂2

(θ) can be neglected with point mass assumption of the craft. The Euler angles are illus-

trated in Figure 5.2. Following the same steps as in Reference 30, the differential equation

of motion for the charged separation distance is given by

L̈ = 2Ωψ̇L+
kc
m1

Q
1
L2

m1 +m2

m2
(5.2)

Next the separation distance equations of motion are linearized about small variations in

length δL and small variations in the product charge term δQ. The fixed reference separation

length Lref is determined by the mission requirement. The reference charge product term for

this along-track configuration is known to be zero from Eq. (5.1). The separation distance

L and charge product Q are given by

L = Lref + δL (5.3a)

Q = Qref + δQ (5.3b)

Note that these developments treat the required changes in the charge product δQ as the

control variable. Substituting these definitions of L and Q into Eq. (5.2) and linearizing

leads to

δL̈ = (2ΩLref)ψ̇ +
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ (5.4)

Note that this relationship is coupled to the angular in-orbit-plane rate ψ̇. In order to obtain

an expression for this rate, a stability analysis using the gravity gradient is employed. The

derivation of the expression for angular perturbation closely follows the derivation given in

Reference 30 for the orbit radially aligned Coulomb tether. The linearized attitude dynamics

of the Coulomb tether body frame are written along with the separation distance equation
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5.2 Charged Relative Equations of Motion

as:

φ̈+ Ω2φ = 0 (5.5a)

ψ̈ + 2
Ω
Lref

δL̇− 3Ω2ψ = 0 (5.5b)

δL̈− (2ΩLref)ψ̇ −
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ = 0 (5.5c)

Note that the out-of-plane angle φ is decoupled from the separation distance error δL and

in-plane angle ψ. Further, the linearized φ motion is that of a marginally stable linear

oscillator.

ôh

ôθ

ôr

(x2, y2, z2)

m1

m2

x1

y1
z1

φ

b̂1

b̂2

b̂3

θ

Figure 5.3: (2-1) Euler angles describing the Coulomb tether orientation for the

orbit normal relative equilibria

5.2.2 Orbit Normal Configuration

The derivation of the equations of motion for a two-craft Coulomb tether along orbit normal

direction follows the same steps as those of the along-track equilibrium. The analytical
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5.2 Charged Relative Equations of Motion

expression for the orbit normal relative equilibria charge product Qref is written as13

Qref = q1q2 = Ω2L
3
ref

kc

m1m2

m1 +m2
(5.6)

Note that Qref > 0, which requires a repulsive Coulomb force to establish this charged

equilibrium. A physical structure in this orientation must compensate for compressive

forces, a task conventional tethers are incapable of achieving.

Again, consider small deviations about the equilibrium position and let the (2− 1) Euler

angles (θ, φ) represent the tether body frame B attitude with respect to the orbit frame O.

Here the axis b̂3 tracks the orientation of the orbit-normal tether configuration. The Euler

angles are illustrated in Figure 5.3. Note these angle definitions reflect rotations about the

same body axes b̂i as in the along-track description. However, their zero values are offset

by 90 degrees to reflect the different nominal tether orientation.

The differential equation for the separation distance is given by

L̈ = −Ω2L+
kc
m1

Q
1
L2

m1 +m2

m2
(5.7)

We can observe that the separation distance differential equation in Eq. (5.7) is decoupled

from both the orientation angles θ and φ. The above equation can be further linearized

using Eqs. (5.3) and the Qref definition in Eq. (5.6) to

δL̈ = −(3Ω2)δL+
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ (5.8)

The differential equation for Euler angles can be obtained similar to the along-track devel-

opment. The linearized attitude dynamics of the Coulomb tether are written along with
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5.3 Hybrid Feedback Control Development

the separation distance equation as:

φ̈− Ω2φ− 2Ωθ̇ = 0 (5.9a)

θ̈ − 4Ω2θ + 2Ωφ̇ = 0 (5.9b)

δL̈+ (3Ω2)δL−
(
m1 +m2

m1m2

kc
L2

ref

)
δQ = 0 (5.9c)

Note both the out-of-plane angles θ and φ are coupled, while the charged separation distance

error dynamics is uncoupled in this linearized formulation. Also, one can observe from

Eq. (5.9c) that the separation distance error (δL) is already marginally stable even without

any feedback control through the charge product error term (δQ).

5.3 Hybrid Feedback Control Development

5.3.1 Along-Track Configuration

In this section, we investigate the stability of the linearized along-track equations of motion

given by Eq. (5.5) and develop a hybrid feedback control law that stabilizes the system.

Reading Eq. (5.5) it is clear that the out-of-plane angle φ is fully decoupled from the in-

plane angle ψ and separation distance error δL. The equation of motion for the out-of-plane

angle φ represents a stable simple harmonic oscillator. Next, consider the coupled in-plane

angle ψ and separation distance error δL equations of motion given in Eqs. (5.5b)–(5.5c).

The charges on the craft can be used to control the separation distance since they cause

an electrostatic force along the relative position vector. The charge product variation δQ

is treated as the control variable and the feedback control law is defined as

δQ =
m1m2L

2
ref

(m1 +m2)kc
(−C1δL− C2δL̇) (5.10)
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Here C1 and C2 are the position and velocity gains, respectively. Thus, the closed loop

equations of motion for the coupled ψ and δL system are written as

ψ̈ + 2
Ω
Lref

δL̇− 3Ω2ψ = 0 (5.11a)

δL̈− (2ΩLref)ψ̇ + C1δL+ C2δL̇ = 0 (5.11b)

The in-plane angle ψ is coupled with the δL in the form of a driving force (2 Ω
Lref

δL̇). Hence

we select the gains C1 and C2 using the Routh-Hurwitz stability criterion to asymptotically

stabilize both δL and ψ. The characteristic equation for the equations given in Eq. (5.11)

is

λ4 + C2λ
3 + (C1 + Ω2)λ2 + (−3C2Ω2)λ+ (−3C1Ω2) = 0 (5.12)

In order to ensure asymptotic stability, the real parts of the roots of this characteristic

polynomial should be negative definite. The constraints on the gains that will guarantee

negative definite roots can be identified by constructing a Routh table and are found to be

C2 > 0 (5.13a)

C1 + 4Ω2 > 0 (5.13b)

−12C2Ω4

C1 + 4Ω2
> 0 (5.13c)

There are no real values for gain C1 and C2 that will satisfy all three conditions given in

Eq. (5.13). Hence, the coupled system can not be stabilized with only the Coulomb forces.

In addition to the Coulomb forces, we require some thrust forces acting on both satellites

along the b̂1 axis that stabilize the in-plane angle ψ. These thrust forces can be modeled

as equal and opposite forces with magnitude F1. The thrust force magnitude is the second
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control variable with in-plane angle ψ feedback and it is defined as

F1 =
m1m2

m1 +m2
Lref(K1ψ) (5.14)

where K1 is the in-plane angle feedback gain. These forces introduce a net torque in the ψ

equation and the modified coupled equations of motion are written as

ψ̈ + 2
Ω
Lref

δL̇+ (K1 − 3Ω2)ψ = 0 (5.15a)

δL̈− (2ΩLref)ψ̇ + C1δL+ C2δL̇ = 0 (5.15b)

The characteristic equation for the equations given in Eq. (5.15) is

λ4 + C2λ
3 + (C1 +K1 + Ω2)λ2 + (C2K1 − 3C2Ω2)λ+ (C1K1 − 3C1Ω2) = 0 (5.16)

The constraints on the gains to ensure asymptotic stability are found using the Routh table

to be

C2 > 0 (5.17a)

C1 > −4Ω2 (5.17b)

K1 > 3Ω2 (5.17c)

The constraints given in Eq. (5.17) guarantee asymptotic stability, but we need other criteria

for fixing their values to yield a satisfactory performance. One way of looking at the problem

is to consider the δL equation without the ψ̇ term. For ease of discussion, let us rewrite the
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position and velocity gains in terms of scaling factors n1 and α1 as

C1 = n1Ω2 > −4Ω2 (5.18)

C2 = α1
√
n1Ω (5.19)

The δL equation without the ψ̇ term is critically damped with α1 = 2. The value of α1

needs to be altered for achieving near critical damping for the complete δL equation with

the ψ̇ term. The in-plane angle gain is also rewritten in terms of a scaling factor n2 as

K1 = n2Ω2 > 3Ω2 (5.20)

The natural frequency of the ψ and δL equations are
√
n2 − 3Ω and

√
n1Ω, respectively.

If n1 and n2 are chosen in such a way that these frequencies match, then the δL̇ term in

the ψ equation will act as a defacto damping term, and ψ̇ term will damp the δL equation.

The value of n2 is chosen as 6, and this results in a settling time of about 1 day (1 cycle).

For this fixed value of n2, the root locus for the coupled δL and ψ equations is studied for

a range of α1 values in the vicinity of α1 = 2, with n1 varying from 0.1 to 20. Based on

visual observation of the root locus plots the scaling factors are chosen to be α1 = 2.3 and

n1 = 2.97. Figure 5.4 shows the root locus plot for n2 = 6 and α1 = 2.3, with n1 varying

from 0.1 to 20.

As discussed earlier the equation of motion for the out-of-plane angle φ represents a simple

harmonic oscillator. This out-of-plane angle can be asymptotically stabilized by using an

equal and opposite thrust force on both the satellites along the b̂3 axis. The thrust force

magnitude F3 is the third control variable with φ̇ feedback and it is defined as

F3 =
m1m2

m1 +m2
Lref(K2φ̇) (5.21)
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Figure 5.4: Root Locus Plot for Along-Track Configuration with n2 = 6 and

α1 = 2.3.

where K2 is the out-of-plane angle feedback gain. These forces introduce a net torque in

the φ equation and the modified equation of motion are written as

φ̈+ Ω2φ+K2φ̇ = 0 (5.22)

Critical damping is achieved with K2 = 2Ω. Figure 5.5 illustrates the thrusters in action

along the b̂1 and b̂3 axes for the along-track configuration. The thrusting force F1 is acting

along the positive b̂1 direction and the force F3 is acting along the negative b̂3 direction

for the satellite 1. The direction of these forces are in reverse for the satellite 2. Note all

thruster forces are directed in orthogonal directions to the cluster line of sight vector (b̂2)

and thereby avoid any potential plume exhaust impingement issues.

5.3.2 Orbit Normal Configuration

Unlike the along-track configuration, the equation of motion of the separation distance

error δL are decoupled from the angles in the orbit normal configuration. The equations of
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ôh

ôθ

ôr

m1

m2

φ

b̂1

b̂2

b̂3

ψ

F3

F1

F3

F1

Coulomb
Force

Figure 5.5: Figure Illustrating the Thrusters Along b̂1 and b̂3 Axes for Along-
Track Configuration.

motion of the two out-of-plane angles θ and φ are coupled instead. Therefore, the linearized

Coulomb forces can be used to stabilized only the separation distance and some thrust

force is needed to stabilize the angles. From Eq. (5.9c), it is clear that without the charge

product variation (δQ) term the δL equation of motion about the charged orbit-normal

equilibrium represents a stable simple harmonic oscillator. In order to make δL equation

of motion asymptotically stable a separation distance error rate (δL̇) feedback through the

control variable δQ is sufficient. But here we also introduce a separation distance error (δL)

feedback which enables us to control the natural frequency and thereby the settling time.

The feedback control law is given as

δQ =
m1m2L

2
ref

(m1 +m2)kc
(−C1δL− C2δL̇) (5.23)
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where C1 > −3Ω2 and C2 > 0 are the position and velocity feedback gain, respectively.

Now, the closed loop separation distance error equation is written as

δL̈+ (3Ω2 + C1)δL+ C2δL̇ = 0 (5.24)

Fixing C2 = 2
√

3Ω2 + C1 makes the separation distance equation critically damped.

The coupled out-of-plane angles can be stabilized by using thrust forces on both the

satellites. One set of equal and opposite forces with magnitude F1 acts along the b̂1 axis.

The other set of forces with magnitude F2 acts along the b̂2 axis. The feedback control laws

for the thrust force magnitudes are defined as

F1 =
m1m2

m1 +m2
Lref(K2θ) (5.25)

F2 =
m1m2

m1 +m2
Lref(K1φ+K3φ̇) (5.26)

where K1 and K3 are the angle and angle rate gains for φ, and K2 is the angle gain for

θ. It should be noted that the thrust forces F1 and F2 stabilize the out-of-plane angles θ

and φ, respectively. Further, these forces too only act orthogonal to the line of sight vector

of the 2 craft, thus avoiding plume impingement issues. These forces introduce torque into

the angular equations of motion and the augmented coupled closed loop equations are

φ̈− 2Ωθ̇ + (K1 − Ω2)φ+K3φ̇ = 0 (5.27a)

θ̈ + (K2 − 4Ω2)θ + 2Ωφ̇ = 0 (5.27b)

The characteristic equation of the coupled equations of motion given in Eq. (5.27) is

λ4 +K3λ
3 + (K1 +K2 − Ω2)λ2 + (K2K3 − 4K3Ω2)λ

+(K1K2 − 4K1Ω2 −K2Ω2 + 4Ω2) = 0 (5.28)
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The characteristic equation should have roots with negative real parts to guarantee asymp-

totic stability. The Routh-Hurwitz criterion can be used to establish the constraints on

the gains that will result in the characteristic equation given in Eq. (5.28) to have negative

definite roots. The constraints on the gains are

K1 > Ω2 (5.29a)

K2 > 4Ω2 (5.29b)

K3 > 0 (5.29c)

Before we proceed to establish the value of the gains, it is important to note that without

the φ̇ feedback the characteristic equation would have been

λ4 + (K1 +K2 − 2Ω2)λ2 + (K1K2 − 4K1Ω2 −K2Ω2 + 4Ω2) = 0 (5.30)

and one can come up with gains that will only guarantee marginal stability, but not conver-

gence. This justifies the use of angle rate (φ̇ ) feedback for achieving asymptotic stability.

The gain values are fixed in such a way that they guarantee near critical damping. The

gains K1 and K3 are rewritten in terms of scaling factors n and α as

K1 = nΩ2 > Ω2 (5.31)

K3 = α
√

(n− 1)Ω (5.32)

In the φ equation of motion, α = 2 guarantees critical damping if one ignores the θ̇ term.

For fixed values of K2 > 4Ω2, the root locus for the coupled θ and φ equations is studied for

a range of α values in the vicinity of α = 2 with n varying from 1.1 to 10. Based on visual

observation of the root locus plots the gain K2 is chosen to be 5Ω2 and the scaling factors
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are chosen to be α = 2.5 and n = 2.7. Figure. 5.6 shows the root locus plot for K2 = 5Ω2

and α = 2.5, with n varying from 1.1 to 10.
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Figure 5.6: Root Locus Plot for Orbit Normal Configuration with K2 = 5Ω2 and

α = 2.5

5.4 Numerical Simulation

This section presents numerical simulations of the along-track and orbit normal Coulomb

tether formations to illustrate the performance and stability of the presented hybrid feed-

back control strategy. The Coulomb tether performance is simulated in two different man-

ners. First the linearized spherical coordinate differential equations are integrated. This

simulation illustrates the linear performance of the charge control. Second, the linearized

results are compared with those obtained from the exact nonlinear equation of motion of

the deputy satellites given by

r̈1 +
µ

r3
1

r1 =
kc
m1

Q

L3
(r1 − r2) (5.33a)

r̈2 +
µ

r3
2

r2 =
kc
m2

Q

L3
(r2 − r1) (5.33b)
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where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial position vectors of the the masses

m1 and m2, while L =
√

(r2 − r1) · (r2 − r1). The gravitational coefficient µ is defined as

µ ≈ GMe. After integrating the motion using inertial Cartesian coordinates, the separation

distance L, as well as the corresponding angles are computed in post-processing using the

exact kinematic transformation. Finally, the robustness of the control laws is illustrated in

the presence of differential solar perturbation. For all cases the cluster center of mass is

assumed to be a GEO orbit.

5.4.1 Along-Track Configuration

The along-track Coulomb tether with a separation distance of 25 meter is simulated first.

The input parameters are given in Table 5.1. The initial separation distance error (δL) is set

to 0.5 meter and the Euler angles are set to ψ = 0.1 radians and φ = 0.1 radians. All initial

rates are set to zero through ψ̇ = δL̇ = φ̇ = 0. As discussed in the previous section, the gain

values are chosen, based on studying the root locus plot, to be C1 = 2.97Ω2, C2 = 3.9637Ω,

K1 = 6Ω2 and K2 = 2Ω.

Table 5.1: Input parameters used in along-track simulation
Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99× 109 Nm2

C2

Qref 0 µC2

Ω 7.2915× 10−5 rad/sec
C1 2.97Ω2

C2 3.9637Ω
K1 6Ω2

K2 2Ω
δL(0) 0.5 m
ψ(0) 0.1 rad
φ(0) 0.1 rad

76



5.4 Numerical Simulation

Figure 5.7(a) shows the Coulomb tether motion in both linearized spherical coordinates

δL, ψ and φ (continuous line), and the full nonlinear spherical coordinates (dashed lines).

It shows that the nonlinear simulation closely follows the linear simulation, validating the

linearizing assumptions. The charge feedback law augmented with the thrust forces (using

angle and angle rate feedback) ensures the convergence of all states to zero. Figure 5.7(b)

illustrates the control charge on a single spacecraft for both linearized and full nonlinear

simulation models. The reference charge pertaining to static equilibrium for along-track

formation is zero and control charges are converging to this value. Note that the deviation

from the value of reference charges is small, justifying the charge linearization assumptions

used. The magnitude of the control charges is in the order of micro-Coulomb, which is easily

realizable in practice using charge emission devices. Figure 5.7(c) gives the thrusting force

that is required to stabilize the angles. Again, the dashed lines represent the full nonlinear

model and the continuous lines represent the linearized model. The thrust forces can be

generated using conventional thrusters. In the body fixed coordinates, the craft are aligned

along the b̂2 axis and the thrust forces F1 and F2 are acting along the b̂1 and b̂3 directions,

respectively. Thus, the thrusting always takes place perpendicular to the craft orientation,

thereby avoiding plume impingement issues.

5.4.2 Orbit Normal Configuration

The orbit normal Coulomb tether is also simulated with a separation distance of 25 meter

like the along-track configuration. The same spacecraft parameters and nominal separation

distance are used as in Table 5.1. The initial separation distance error, initial Euler angles

and gains are given in Table 5.2. Figures 5.8(a) , 5.8(b), 5.8(c) show the tether motion

(spherical coordinates), charge on a single craft and thrust forces, respectively. Again, the

dashed lines depicting the full nonlinear model closely follow continuous lines depicting the

linearized model. It can be observed from Figure 5.8(a) that the separation distance error is
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Figure 5.7: Simulation results for two craft aligned along the along-track direc-
tion with a separation distance of 25m.
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critically damped and the out-of-plane angles φ and θ asymptotically go to zero. The thrust

forces F1 and F2 are acting in the b̂1 and b̂2 direction with the Coulomb tether aligned along

the b̂3 direction. Thus, plume impingement problems are avoided.

Table 5.2: Input parameters used in orbit normal simulation
Parameter Value Units

Qref 6.9304× 10−13 µC2

C2 2
√

3Ω
K1 2.7Ω2

K3 3.2596Ω
K2 5Ω2

δL(0) 0.5 m
θ(0) 0.06 rad
φ(0) 0.04 rad

5.4.3 Differential Solar Perturbation

At GEO, differential solar drag is the largest disturbance acting on the Coulomb formation.

Hence, full nonlinear model simulation for both along-track and orbit normal configuration

are carried out including the effects of solar drag to study the ability of the controller to

withstand this disturbance. The inertial acceleration vector rs due to the effects of solar

radiation pressure is given as

rs =
−CrAF
mc

r
||r||3

(5.34)

where r is the position vector from the sun to the orbiting planet in AU, m is the mass of

the spacecraft in kg, A is the cross section area of the spacecraft that is facing the sun in

m2. The constant F = 1372.5398 Watts/m2 is the solar radiation flux, c = 2.997× 108 m/s

is the speed of light, and Cr = 1.3 is the radiation pressure coefficient.

The simulation is carried out over a period of 3 days and the Sun’s position is assumed
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Figure 5.8: Simulation results for two craft aligned along the orbit normal
direction with a separation distance of 25m.
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Figure 5.9: The Orientation of the Cylindrical Craft and the Sun’s Position

to be fixed with respect to the Earth fixed inertial coordinates. As shown in Figure 5.9, the

solar rays are assumed to be making an angle of 23o27
′
with respect to the earth’s equatorial

plane to account for the earth’s axial tilt. The craft are modeled as cylinders with radius

of 0.5 m, height of 1 m and mass of 150 kg. For craft 1, the cylindrical surface is constantly

facing the sun resulting in a square cross section area of 1 m2, where as for craft 2, it is the

circular cross section (0.25π m2)of the top of the cylinder that is facing the sun.

Figure 5.10(a) shows the time histories of the spherical coordinates δL, ψ and φ for along-

track Coulomb tether formation with differential solar drag. The coupled states δL and ψ

no longer asymptotically converge to zero, but they are still bounded. The in-plane angle ψ

oscillates with maximum amplitude of ±0.05 radians and the separation distance error δL

oscillations are negligible. The out-of-plane motion φ settles with a constant steady state

offset. This offset can be explained by looking at the linearized φ equation of motion. The φ

equation is decoupled and with a constant external torque due to the differential solar drag,

will result in a steady state offset. Let the constant inertial acceleration vector along the ôh

direction due to solar drag for satellites one and two be rs1(3, 1) and rs2(3, 1), respectively.
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Figure 5.10: Simulation results for two craft aligned along the along-track di-
rection with constant differential solar perturbation.

82



5.4 Numerical Simulation

!1

!0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

Time[Days]

δL [m]

φ [rad]

Le
ng

th
V

ar
ia

ti
on

δL
[m

et
er

s]
θ [rad]

A
ng

le
s

θ
an

d
φ

[R
ad

ia
ns

]

(a) Time histories of length variations δL, out-of-plane rotation angles θ and φ.

0 0.5 1 1.5 2 2.5 3
0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

Time[Days]

C
ha

rg
e

q 1
[µ

C
]

q1ref Spacecarft reference charge
q1 Nonlinear simulation

(b) Spacecraft charge time histories

0 0.5 1 1.5 2 2.5 3
!3

!2

!1

0

1

2

3

4

Time[Days]

Fo
rc

es
[µ

N
]

F1

F2

(c) Spacecraft force time histories

Figure 5.11: Simulation results for two craft aligned along the orbit normal
direction with constant differential solar perturbation.
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The total constant force acting on the satellite formation along the ôh direction is

Fs = m1rs1(3, 1) +m2rs2(3, 1)

The resulting torque due to this force is given by

Ts =
m1

m1 +m2
L(m1rs1(3, 1))− m2

m1 +m2
L(m2rs2(3, 1)) (5.35)

The linearized φ equation for along track configuration (Eq. (5.5a)) can be modified to

incorporate the constant torque given in Eq. (5.35) as

φ̈+ Ω2φ =
1

m1+m2
L(m2

1rs1(3, 1)−m2
2rs2(3, 1))

m1m2
m1+m2

L2
(5.36)

From Eq. (5.36), the analytical expression for steady state offset in the presence of differ-

ential solar drag can be written as

φ =
(m1/m2rs1(3, 1)−m2/m1rs2(3, 1))

LΩ2
(5.37)

For the linearized model the offset was calculated to be −0.0255 radians and it is very close

to the offset observed for the full nonlinear model. Figures 5.10(b) and 5.10(c) give the

spacecraft charge and thrust force time histories, respectively.

Figure 5.11(a) shows the performance of orbit normal Coulomb tether in the presence of

differential solar drag. Again, it can be observed that the states are bounded. On close

observation of the figure one can come to the conclusion that the separation distance error

(δL) is oscillating about an offset at steady state. The linearized separation distance error

(δL) is decopled from the angles and constant differential solar drag acting on the formation

results in a steady state offset for δL. The analytical expression for this steady state δL
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offset can be derived for the linearized model as

δL =
(m1rs1(3, 1)−m2rs2(3, 1))

3m1Ω2
(5.38)

Thus, the linearized model offset for δL is −0.2125 m. The observed steady state offset in

the figure is close to this value and the oscillations can be explained due to the second order

coupling of the separation distance error (δL) with the angles. The oscillations in the δL

result in the oscillations of the spacecraft charge value around the reference charge value,

as seen in Figures 5.11(b). Figures 5.11(c) shows the thrust force time histories.

5.5 Summary

A 2-craft Coulomb tethered structure aligned along the orbit normal or along-track di-

rection cannot be stabilized with only a charge feedback law. But, both Coulomb tether

configurations can be stabilized with a hybrid control of Coulomb forces and conventional

thrusters that stabilize the separation distance and orientation respectively. The control

charges needed are small in the order of micro-Coulombs and realizable in practice. The

thrusting forces required are in the order of micro-Newtons and the thrusting is always done

orthogonal to the Coulomb tether axis, thus avoiding plume exhaust impingement problems.

For the along-track configuration the separation distance and in-plan angle are coupled and

unstable without feedback. An interesting result is that for the orbit-normal configuration

the separation distance is decoupled and marginally stable even without charge feedback,

while the orientation has to be feedback stabilized. Numerical simulations of the full nonlin-

ear motion are carried out to illustrate the results and compare the linearized performance

predictions to the actual nonlinear system response. Finally, the robustness of the controller

to withstand differential solar drag is illustrated through simulations.
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6 Reconfiguration of a Nadir-Pointing

2-Craft Coulomb Tether

6.1 Introduction

In chapter 4, the stabilization of a simple static 2-craft Coulomb tether structure along

the orbit radial direction is studied.30 Compared to the previous works on static Coulomb

structures, this is the first study to introduce a charge feedback law to stabilize a simple

Coulomb structure to a specific shape and orientation. Coulomb forces are inter-spacecraft

forces and can not control the inertial angular momentum of the formation. Hence, stability

characteristics of orbital rigid body motion under a gravity gradient field was applied to

a Coulomb tethered two-spacecraft system to develop an active charge feedback control.

With this control the spacecraft separation distance can be maintained at a fixed value,

while the coupled gravity gradient torque is exploited to stabilize the formation attitude

about the orbit nadir vector. Further, as the separation distance converged to the desired

value, the in-plane rotation angle is shown to converge to zero as well. The out-of-plane

angle is shown to be decoupled from the other modes and not influenced (to first order) by

the spacecraft charges.

This chapter extends this earlier work by investigating how to reconfigure the 2-craft

Coulomb tether formation by forcing the craft to move apart or come closer using the
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6.2 Satellite Reconfiguration Dynamics

Coulomb force and again using the gravity gradient to stabilize the formation. An active

charge feedback law is introduced and the linear stability of the coupled separation distance

and attitude is evaluated for this time-variant system. Based on this analysis, stability

regions for expanding and contracting the two-craft formation are established. In Refer-

ences 32 and 33, the dynamics of a traditional two-craft tether is studied where they develop

length rate laws that guarantee stability. The attitude stability that is achieved is only a

bounded stability. In the current work, with an electrostatic virtual tether replacing the

actual tether, the feedback law attempts to asymptotically stabilize the separation distance

and the in-plane oscillations. The asymptotic stability is achievable due to the virtual tether

which allows both compression and tension and a flexible tether length. The formation is

studied in GEO and the Debye lengths are assumed to be sufficiently large so that the

effects of Debye shielding can be neglected. Finally, numerical simulations illustrate the

analytical stability predictions.

6.2 Satellite Reconfiguration Dynamics

A 2-satellite formation is considered as shown in the Figure 6.1. The center of mass is

assumed to maintain a circular Keplerian orbit and the two satellites are nominally aligned

along the orbit radial direction. In essence, these two charged spacecraft will behave like

a conventional 2-craft tether system, with the exception that this electrostatic tether is

capable both of attractive and repulsive forces. Chapter 4 shows that the relative distance

between the two satellites can be controlled using electrostatic Coulomb forces. A charge

feedback law is used to maintain the relative distance at a constant value. As a result, the

two satellites behave like a long slender nearly rigid body and the differential gravitational

attraction is used to stabilize the attitude of this formation about the orbit radial direction.

From this point onwards, this will be referred to as the Coulomb tether regulation problem.
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ôh

ôθ

ôr

Craft Initial Positions

Craft Final Positions

Coulomb Force

Center of Mass in a 
Circular Keplerian Orbit

Figure 6.1: A simple Coulomb tracking illustration.

These concepts are extended for the time varying Coulomb tether length tracking problem.

The main aim in the tracking (reconfiguration) problem is to increase or decrease the rel-

ative distance between the satellites by forcing them to move relative to each other along

a prescribed path. This static Coulomb structure reconfiguration is to be accomplished

without loosing altitude stability.

The Clohessy-Wiltshire-Hill’s equations27,28,29 for one of the spacecraft in the 2-craft
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6.2 Satellite Reconfiguration Dynamics

ôh

ôθ

ôrrc

circular center
of mass motion

m1

m2

L

x1
y1

z1

ψ θ

φ

b̂1

b̂2

b̂3

Figure 6.2: Coulomb Tethered Two Satellite Formation with the Satellites
Aligned Along the Orbit Nadir Direction

Coulomb tether formation as shown in Figure 6.2 is given by

ẍ1 − 2Ωẏ1 − 3Ω2x1 =
kc
m1

(x1 − x2)
L3

q1q2 (6.1a)

ÿ1 + 2Ωẋ1 =
kc
m1

(y1 − y2)
L3

q1q2 (6.1b)

z̈1 + Ω2z1 =
kc
m1

(z1 − z2)
L3

q1q2 (6.1c)

where (xi, yi, zi)T is the position vector of the ith satellite in Hill frame components, m1

and q1 are the mass and charge of satellite 1, and L is the distance between the satellites 1

and 2. The constant chief orbital rate is given by Ω =
√
µ/r3

c , where µ is the gravitational

coefficient and rc is center of mass position vector. The parameter kc = 8.99 · 109 Nm2/C2

is the Coulomb constant. As the Hill frame origin is set to be identical to the formation

center of mass, the motion of the 2nd craft can be found by noting that the center of mass

vector is constant due to conservation of linear momentum. This yields4,5

m1ρ1 +m2ρ2 = 0 (6.2)
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6.2 Satellite Reconfiguration Dynamics

The differential equation of the separation distance L, between the two satellites is given

by30

L̈ = (2Ωψ̇ + 3Ω2)L+
kc
m1

Q
1
L2

m1 +m2

m2
(6.3)

For the Coulomb tether regulation problem, L is the sum of a constant reference length

Lref and a small varying length δL. Similarly, let Q be the sum of Qref, which is the ideal

constant charge needed to maintain the satellites in a rigid formation of length Lref, and a

small charge variation δQ.

L(t) = Lref + δL(t) (6.4a)

Q(t) = Qref + δQ(t) (6.4b)

The reference charge Qref is a function of Lref and is computed analytically from the

linearized Hill frame equations. The analytical expression for Qref is written as30,13

Qref = −3Ω2L
3

kc

m1m2

m1 +m2
(6.5)

It should be noted that in the Coulomb tether regulation problem Lref is constant and the

differential equation given in Eq. (6.3) is linearized by assuming a small δL separation dis-

tance error. This can be slightly modified to accommodate the Coulomb tracking problem.

The reference Coulomb structure length Lref(t) is made time varying, but the separation

distance errors δL(t) are still assumed to be small.

L(t) = Lref(t) + δL(t) (6.6a)

Q(t) = Qref(t) + δQ(t) (6.6b)
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6.2 Satellite Reconfiguration Dynamics

Here Lref(t) is the time varying reference separation distance and Qref(t) is the correspond-

ing reference charge which can be calculated using Eq. (6.5). Substituting the assumptions

in Eq. (6.6) into Eq. (6.3) and linearizing assuming small δL yields

δL̈ = −L̈ref + 2ΩLrefψ̇ + 9Ω2δL+
kc
m1

δQ
1
L2

ref

m1 +m2

m2
(6.7)

This equation establishes the relation between the additional charge δQ required and the

change in relative separation of the satellites. Note that this relation is coupled to the

angular in-plane perturbation rate ψ̇. In order to obtain an expression for this, a stability

analysis using the gravity gradient is employed. The derivation of the expression for angular

perturbation closely follows the derivation given in Ref. 30 for the Coulomb regulation

problem. The linearized attitude dynamics of the Coulomb tether body frame are written

along with the separation distance equation as:

θ̈ +
2L̇ref

Lref
θ̇ + 4Ω2θ = 0 (6.8a)

ψ̈ +
2L̇ref

Lref
ψ̇ +

2Ω
Lref

δL̇− 2L̇ref

L2
ref

ΩδL+
2L̇ref

Lref
Ω + 3Ω2ψ = 0 (6.8b)

δL̈+ L̈ref − 2ΩLrefψ̇ − 9Ω2δL− kc
m1

δQ
1
L2

ref

m1 +m2

m2
= 0 (6.8c)

Thus, Eq. (6.8a) – (6.8c) are the linearized equations of motion of the Coulomb tracking

about the static nadir reference configuration. Only the linearized δL differential equation

was obtained using the Clohessy-Wiltshire-Hill equations, while the linearized differential

equations of ψ and θ were derived from the full formation angular momentum expression

along with Euler’s equation. Compared to the regulation problem, these differential equa-

tions are non-autonomous and depend explicitly on time through Lref(t). This greatly

complicates the stability analysis of any feedback control law.

Let the charge product variation δQ be the control signal. The Coulomb regulation
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6.2 Satellite Reconfiguration Dynamics

feedback control is then modified to incorporate a time-varying Lref(t) term.

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (6.9)

The constants C1 and C2 are the position and velocity feedback gains. Incorporating this

feedback law in to the δL differential equation in Eq. (6.8c) yields the following closed-loop

separation distance dynamics:

δL̈+ L̈ref − 2ΩLrefψ̇ + (C1 − 9Ω2)δL+ C2δL̇ = 0 (6.10)

It can be observed that the linearized equations in Eq. (6.8a) – (6.8c) depend on the mean

orbit rate n which has a very small value at GEO. In order to eliminate the numerical issues

that might arise while integrating due to the small n value, the following normalization

transformation is employed to make these equations independent of n.

dτ = Ωdt (6.11a)

(∗)′ = d(∗)
dτ

=
1
Ω

d(∗)
dt

(6.11b)

The orbit rate independent form of the linearized equations in Eq. (6.8a) – (6.8c) are written

as

θ′′ +
2L′ref

Lref
θ′ + 4θ = 0 (6.12a)

ψ′′ +
2L′ref

Lref
ψ′ +

2
Lref

δL′ −
2L′ref

L2
ref

δL+
2L′ref

Lref
+ 3ψ = 0 (6.12b)

δL′′ + L′′ref − 2Lrefψ
′ + (C̃1 − 9)δL+ C̃2δL

′ = 0 (6.12c)

where C̃2 = (C2/Ω) and C̃1 = (C1/Ω2) are non-dimensionalized feedback gains. These
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6.3 Stability Analysis

equations show that the out-of-plane motion θ(t) is decoupled from the charge product

term δQ and separation distance variation δL(t). Therefore, it is not possible to control

the out-of-plane motion using charge control in this linearized analysis. However, the in-

plane motion ψ(t) is coupled to the δL(t) motion in the form of a driving force and hence,

requiring a coupled in-plane attitude and separation distance stability analysis.

6.3 Stability Analysis

With time varying Lref(t), the equations of motion are linear and time dependent. Rosen-

brock34 shows that the linear time-dependent system given by ẋ = A(t)x is asymptotically

stable if the frozen system for each t is stable and the rate of change of A(t) is very small.

Reference 34 also establishes a bound for A′(t) when A(t) is in the control canonical form.

The stability of the 2-craft Coulomb tether formation with varying reference length is an-

alyzed using this method. The coupled δL and ψ equations in Eq. (6.12b) – (6.12c) are

written in the state space form as



ψ′

ψ′′

δL′

δL′′


=



0 1 0 0

−3 −2L′ref
Lref

2L′ref

L2
ref

− 2
Lref

0 0 0 1

0 2Lref 9− C̃1 −C̃2


︸ ︷︷ ︸

A(t)



ψ

ψ′

δL

δL′


+



0

−2L′ref
Lref

0

−L′′ref


︸ ︷︷ ︸

d(t)

(6.13)

The square matrix in the above equation is A(t) and the time dependency in this matrix

is due to the terms Lref and L′ref. The stability of the system greatly depends on the

rate at which Lref is varied. The rate of change of reference length L′ref, can be chosen

according to the mission requirement or design. Of interest is how large L′ref can be while still

guaranteeing stability. From Eq. (6.13), it can be observed that there is a state independent
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6.3 Stability Analysis

term d(t) which only depends on the specified rate of change of reference length (L′ref). This

term in the equation of motion will lead to a steady state offset as long as Lref is time varying.

The analytical expression for the steady state offset is given as follows

 ψoffset

δLoffset

 =

−2L′ref
3Lref

+ 2L′refL
′′
ref

3(−9+3C̃1)L2
ref

L′′ref

(−9+3C̃1)

 =

− 2L̇ref
3ΩLref

+ 2L̇refL̈ref

3Ω(−9Ω2+3C1)L2
ref

L̈ref
(−9Ω2+3C1)

 (6.14)

Before fixing the limits for L′ref, the values for gains are chosen such that the A(t) matrix is

Hurwitz at any given time t. This does not guarantee stability for a time varying system, but

this is a necessary step for the Rosenbrock stability conditions. In the regulation problem

the feedback gains were expressed in terms of scaling factor c and α. Since this work is an

extension of the regulation problem, the same scaling factor for the gains are chosen. They

can be written as

C̃1 = c (6.15)

and

C̃2 = α
√
c− 9 (6.16)

The characteristic equation of the A(t) matrix is given by

λ4 + (C̃2 + 2
L′ref

Lref
)λ3 + (C̃1 + 2C̃2

L′ref

Lref
− 2)λ2 + (3C̃2 − 22

L′ref

Lref
+ 2C̃1

L′ref

Lref
)λ

+ 3(C̃1 − 9) = 0 (6.17)

Let k = L′ref/Lref be a time varying coefficient which is determined through the chosen

reference separation time history Lref(t). With this simplification the characteristic equation
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of A(t) becomes

λ4 + (C̃2 + 2k)λ3 + (C̃1 + 2C̃2k − 2)λ2 + (3C̃2 − 22k + 2C̃1k)λ+ 3(C̃1 − 9) = 0 (6.18)

To ensure stability, roots of the characteristic equation should have negative real parts

(Hurwitz matrix). This requirement is satisfied using the Routh-Hurwitz stability criterion.

Based on this criterion it is established that C̃1 should have a value greater than 9 and

the range of possible values for k and α for certain fixed C̃1 is shown in Figure 6.3. The

shaded region illustrates the possible values of k and α that guarantee that roots of the

characteristic equation (i.e. the eigenvalues of the matrix A(t)) have negative real parts.

It can be observed from Figure 6.3 that for C̃1 > 10 there is no bounds on k when we

are expanding the separation distance. But, for contracting or decreasing the separation

distance (i.e. −k) we have a tight limit on k. The α value is fixed such that we have a

maximum range of k. From Figures 6.3(b) and 6.3(c), the values of α are taken as 1.4 and

0.9 for the C̃1 values of 12 and 14, respectively.

By satisfying the Routh-Hurwitz criterion, the eigenvalues of A(t) at any fixed time t will

always be in the left half of the plane. This is not sufficient to guarantee stability of the

system. The sufficient condition is that rate of change of A(t) be very small. Rosenbrock34

established bounds for this rate of change and stated it as a theorem when A(t) is in the

control canonical form (Ac(t)). For the sake of continuity the theorem is stated here, but

the reader should refer to Reference 34 for the detailed derivation of the theorem. Let the

matrix R be defined as

R = SATc +AcS − S′ + ηI < 0 (6.19)

(Sij) =
n∑
k=1

λi−1
k λ̄j−1

k (6.20)
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Figure 6.3: Plots showing the regions that satisfy the Routh Hurwitz stability
criterion. 96



6.3 Stability Analysis

where Sij are the elements of the S matrix, λk and λ̄k are the eigenvalues and its conjugate,

S′ is the derivative of S and η > 0 is some arbitrary constant. When all the eigen values

of Ac are distinct and in the left half of the plane at any given instant of time, and R

is negative definite throughout the maneuver, the system is asymptotically stable about

x = 0. For the 2-craft Coulomb tether problem, this requires the time varying reference

separation distance Lref(t) to be carefully chosen so that the R is negative definite at all

times. This theorem is based on the fact that for a matrix in the control canonical form,

the eigenvalues are uniquely related to the elements of the matrix and hence, the bounds

on the rate of change of the matrix can be replaced by bounds on the rate of change of the

eigenvalues. Some more details about the S matrix are given in the following equation.

S = HH∗ (6.21)

where H is the is the eigenvector matrix and H∗ is the transposed complex conjugate of H.

The matrix H is defined as

H =



1 1 · · · 1

λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n


(6.22)

Studying the characteristic equation in Eq. (6.18), note that if L′ref(t) is chosen such that

the coefficient k = L′ref/Lref is constant, then the eigenvalues of Ac(t) are also constant.

For this special case the Rosenbrock stability conditions on the rate of change of A(t)

are trivially satisfied, and the overall stability is determined through the Routh-Hurwitz

stability conditions. However, having a constant k coefficient is not a practical maneuver
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6.3 Stability Analysis

because it requires exponential expansion or contraction.

The A(t) matrix in Eq. (6.13) is not in the control canonical form, but it can be trans-

formed in a control canonical form using a similarity transformation ξ = Tx which yields

the differential vector equation

ξ′ = Ac(t)ξ (6.23)

It should be noted that the characteristic equation of the transformed matrix Ac(t) is

the same as the original matrix A(t). Hence, the values of gains chosen earlier will keep

the eigenvalues in the left half plane. For this transformed matrix we can establish the

bounds on Lref and L′ref which guarantee that the matrix R remains negative definite. The

transformed states ξ are linear combinations of the original states x. Therefore, if the

transformed states are stable then the original states are also stable. The control canonical

form of the matrix (Ac(t)) for the given matrix A(t) can be easily written by observing the

characteristic equation. It is given by

Ac(t) =



0 1 0 0

0 0 1 0

0 0 0 1

−3(C̃1 − 9) −(3C̃2 − 22k + 2C̃1k) −(C̃1 + 2C̃2k − 2) −(C̃2 + 2k)


(6.24)

Because Ac(t) is a 4 × 4 matrix, analytically finding the expression for eigenvalues and

using them in the inequality in Eq. 6.19 is very challenging. The resulting expressions are

too complex to be insightful. Instead the feasible values of Lref and L′ref that satisfies the

inequality in Eq. 6.19 for the chosen values of C̃1 and α are identified numerically. These

feasible values are shown in Figure 6.4. The plots can be used to specify the reference

trajectory Lref(t). Kulla35 has developed a critical limit for the ratio L′(t)/L(t) which
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Figure 6.4: Plots showing the regions that satisfy the Routh Hurwitz stability
criterion and Rosenbrock bounds.
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guarantees stability for a traditional tethered two-craft system. This critical limit is given

as

L′(t)/L(t) = L̇(t)/(ΩL(t)) ≤ 0.75 (6.25)

This limit comes from a trigonometric constraint while balancing the Coriolis forces by the

gravity gradient forces. The identified feasible values of Lref and L′ref for the current two

craft virtual tether problem have linear constraint boundaries similar to the Kulla critical

limit. The Coulomb tether problem is significantly different as a virtual tether allows both

tension and compression, and the stability depends on the feedback gains. In comparison,

the classical nadir-pointing tether reconfiguration problem requires tension at all times and

only depends on the length rate L̇.

6.4 Numerical Simulation

To illustrate the performance and stability of Coulomb tether reconfiguration maneuvers,

the following numerical simulations are performed. The simulation parameters that used

are listed in Table 6.1. The initial attitude values are set to ψ = 0.1 radians and θ = 0.1

rad. The separation length error (Coulomb tether length error) is δL = 0.5 meters. All

initial rates are set to zero through ψ̇ = δL̇ = θ̇ = 0. Two sets of maneuvers, expanding

the Coulomb tether formation from 25m to 35m in 1.8 days and contracting the formation

from a separation distance of 25m to 15m, are shown.

The Coulomb tether performance is simulated in two different manners. First the lin-

earized spherical coordinate differential equations are integrated. This simulation illustrates

the charge control performance operating on the linearized dynamical system. Second, the

exact nonlinear equations of motion of the deputy satellites are solved using the same charge

feedback control, and compared to the performance of the linearized dynamical system. The

100



6.4 Numerical Simulation

Table 6.1: Input parameters used in orbit-radial reconfiguration simulation
Parameter Value Units

m1 150 kg
m2 150 kg
kc 8.99× 109 Nm2

C2

Ω 7.2915× 10−5 rad/sec
δL(0) 0.5 m
ψ(0) 0.1 rad
θ(0) 0.1 rad

nonlinear deputy equations are given through Cowell’s equations

r̈1 +
µ

r3
1

r1 =
kc
m1

Q

L(t)3
(r1 − r2) (6.26a)

r̈2 +
µ

r3
2

r2 =
kc
m2

Q

L(t)3
(r2 − r1) (6.26b)

where r1 = rc+ρ1 and r2 = rc+ρ2 are the inertial position vectors of the the masses m1 and

m2, while L =
√

(r2 − r1) · (r2 − r1). The vector rc denotes the position of the formation

center of mass or chief location. The gravitational coefficient µ is defined as µ ≈ GMe.

After integrating the motion using inertial Cartesian coordinates, the separation distance

L, as well as the in-plane and out-of-plane angles ψ and θ, are computed in post-processing

using the exact kinematic transformation.

Figure 6.5(a) shows the Coulomb tether motion for increasing the separation distance

from 25m to 35m in the linearized spherical coordinates (ψ, θ, δL), along with the full

nonlinear spherical coordinates shown as continuous lines. The expansion is done in 1.8

days and this corresponds to a constant L′ref of 0.88. After 1.8 days, the L′ref is zero and

the formation is allowed to stabilize about the final separation distance. The feedback

gains are C̃1 = 12 and α = 1.4. With the presented charge feedback law, both the yaw

motion ψ and the separation distance deviation δL converge to zero. By stabilizing the
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Figure 6.5: Simulation results for expanding the spacecraft separation distance
from 25m to 35m in 1.8 days. The feedback gains are C̃1 = 12 and α = 1.4.
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Figure 6.7: Simulation results for contracting the spacecraft separation distance
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δL state to zero, the in-plane rotation ψ(t) also converges to zero. As expected, the pitch

motion θ(t) was a stable sinusoidal motion, decoupled from the controlled in-plane orbital

motion. Further, Figure 6.5(a) shows that the nonlinear simulation closely follows the

linearized simulation, validating the linearizing assumption and illustrating robustness to

the unmodelled dynamics. Since L′ref is constant, there is no steady state offset for δL and

the offset for ψ is very small (order of 10−2 rad) and hence, not visible in the graph.

Figure 6.5(b) shows the spacecraft control charge q1 (on craft 1) for both the linearized

and full nonlinear simulation models. Both are converging to the reference value pertaining

to the static equilibrium at each instant of time. Note that the deviation from the value of

reference charges is small, justifying the linearization assumptions used. The magnitude of

the control charges is in the order of micro-Coulomb which is easily realizable in practice

using charge emission devices. The charge on craft 2 will be equal and opposite to the

charge on craft 1.

In order to illustrate how well the system is tracking the prescribed reference trajectory

Lref(t), the time histories of separation distance L(t) and the time histories of rate of change

of separation distance L̇(t) are shown in Figure 6.6(a) and Figure 6.6(b), respectively.

Figure 6.6(a) shows that the reference separation distance (Lref(t)) increases linearly until

1.8 days before settling to a constant value and both the linear and inertial nonlinear

simulations track the reference separation distance closely. Figure 6.6(b) illustrates that

the rate of change of the reference separation distance (L̇ref(t)) is a discrete step change. In

the linear and inertial nonlinear simulations the formation is assumed to be static to begin

with and hence, their rate of change of separation distance (L̇(t)) are zero initially. But

they converge with the reference rate L̇ref(t) within 1.2 days. A faster convergence can be

achieved by replacing the sharp corners of the reference rate (infinite reference acceleration)

with a smooth polynomial function or spline (finite reference acceleration).

Figure 6.7(a) and Figure 6.7(b) show Coulomb tether motion and charge time histories
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Figure 6.8: Simulation results for expanding the spacecraft separation distance
from 25m to 35m in 1.8 days. The feedback gains are C̃1 = 14 and α = 0.9.

106



6.4 Numerical Simulation

!1

!0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

Time [Days]

ψ [rad]
θ [rad]

δL [m]Le
ng

th
V
ar

ia
ti
on

δL
[M

et
er

s]

A
ng

le
s

ψ
an

d
θ

[R
ad

ia
ns

]

Nonlinear Inertial Simulation
Linear Spherical Coord. Simulation

(a) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rota-
tion angle θ.

0 0.5 1 1.5 2 2.5 3

0.8

1

1.2

1.4

1.6

q 1
C

ha
rg

e
[µ

C
]

q1r

q1r Spacecraft Reference Charge

q1 Nonlinear Inertial Simulation

q1 Linear Spherical Coord. Simulation

Time [Days]

(b) Spacecraft charge time histories

Figure 6.9: Simulation results for contracting the spacecraft separation distance
from 25m to 15m in 1.8 days. The feedback gains are C̃1 = 14 and α = 0.9.
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for decreasing the separation distance from 25m to 15m. Contractions are more challeng-

ing because the angular momentum will cause to destabilize the in-plane attitude motion.

The maneuvers must be performed slow enough to allow the gravity gradient to maintain

stability. Again the maneuver is done in 1.8 days which means L′ref is −0.88 and the gains

are same as above expansion maneuver. These two sets of maneuvers are repeated for the

gain values C̃1 = 14 and α = 0.9 and, Figure 6.8 and Figure 6.9 illustrate their time histo-

ries. It can be observed from these two graphs that even though the system is stable, the

performance could potentially be improved by tuning the feedback gains.

6.5 Summary

A charge feedback control law for reconfiguring a 2-craft Coulomb tether formation with

time varying length is given. The 2-craft system forms a simple virtual Coulomb structure

where the electrostatic force replaces the conventional tether cable. Previous work only con-

sidered stabilizing a static structure with a fixed length. This paper discusses an expanded

feedback control law which allows for the Coulomb tether length to vary with time. During

these maneuvers care is taken to ensure that the gravity gradient torque is still sufficient

to stabilize the in-plane attitude of the nadir pointing formation. The stability regions

for expanding and contracting the formation are established through linearization of the

motion and by applying criteria developed by Rosenbrock for linear time-varying systems.

Contracting the virtual structure is more difficult to perform while guaranteeing stability.

The system angular momentum will cause any in-plane angular motion to increase with de-

creasing tether length. The magnitude of the local gravity gradient limits the rate at which

the separation distance can be reduced. In contrast, expanding the virtual structure length

is easier because the angular momentum helps contain in-plane rotation. The out-of-plane

motion of the craft is decoupled from the in-plane motion with the linearized dynamics,
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and not controllable with the Coulomb forces. Numerical simulations of the full nonlinear

motion are carried out to illustrate the results and compare the linearized performance

predictions to the actual nonlinear system response.
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7 Analytical Solution for Out-of-Plane

Motion Using Bessel Functions

7.1 Introduction

In the previous chapter, the reconfiguration of a two craft Coulomb tether aligned along

the orbit radial direction is presented in detail. The linearized equations of motion (EOM)

for this configuration reveals that the out-of-plane angle (θ) is decoupled from the in-plane

angle (ψ) and the separation distance error (δL). Hence, out-of-plane angle can not be

actively controlled by the Coulomb force. This issue with the out-of-plane angle is also

true for the regulation problem. But, for the regulation problem the out-of-plane angle

EOM is a time-invarient second order differential equation that results in a stable simple

harmonic oscillation motion for θ. Whereas, for the reconfiguration problem the EOM is a

second order differential equation with time dependent terms. The time dependent terms are

prescribed the reference length (Lref) and reference length rate (L̇ref). Depending on whether

one is expanding (positive L̇ref) or contracting (negative L̇ref) the two craft formation,

the initial out-of-plane angle oscillations will decrease or increase, respectively. We are

keenly interested in studying the contracting operation which has potential applications

in space structure’s docking operations. These docking operations might require the final

angular oscillations to be with in certain limits. The in-plane angle can be asymptotically
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controlled by using the Coulomb force. This now leaves the out-of-plane angle and we are

interested in developing certain bounds on the initial out-of-plane oscillation such that the

finial oscillation will be within the prescribed limits.

In this chapter, we develop analytical solutions for out-of-plane angle EOM when the

reference length rate (L̇ref) is a constant. This analytical solution is derived using the Bessel

function36 and the final general solution does depend on the initial conditions. Based on

this solution the bounds on the initial conditions (initial out-of-plane angle) have been

established to keep the oscillations, at the end of the operation, with in the prescribed

limits. This chapter is organized as follows. First, the analytical solution for the linearized

out-of-plane angle EOM is derived and this followed by establishing the bounds on the initial

out-of-plane angle. Finally, numeric simulations are carried out to illustrate the results.

7.2 Analytical Solution Derivation

The equation of motion for the out-of-plane angular motion is given by

θ̈ + 2
L̇ref

Lref
θ̇ + 4Ω2θ = 0 (7.1)

For a constant reference length rate (L̇ref), the reference length can be written as

Lref(t) = L0 + L̇ref t (7.2)

where L0 is the initial reference separation distance and t is the time. Substituting Eq. (7.2)

back into the out-of-plane equation of motion given in Eq. (7.1) results in

θ̈ + 2
L̇ref

L0 + L̇ref t
θ̇ + 4Ω2θ = 0 (7.3)
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An analytical solution for the equation of motion given in Eq. (7.3) can be obtained by

transforming the equation to the Bessel equation.36 Define a new variable z as follows

z = L0 + L̇ref t (7.4)

dz = L̇ref dt (7.5)

dz

dt
= L̇ref (7.6)

Substituting this new variable given in Eq. (7.4) into Eq. (7.3), and changing the derivatives

with respect to t (time) to derivatives with respect to z results in

d2θ

dz2
L̇2

ref + 2
L̇ref

z

dθ

dz
L̇ref + 4Ω2θ = 0

d2θ

dz2
+

2
z

dθ

dz
+

4Ω2

L̇2
ref

θ = 0

d2θ

dz2
+

2
z

dθ

dz
+ k2θ = 0 (7.7)

where k = 2Ω
L̇ref

. The transformed equation in Eq. (7.7) is still not in the standard Bessel

equation form and needs one more transformation. Assume, the out-of-plane angle θ to be

of the form

θ = z−
1
2 y(z) (7.8)

Now, the first and second derivative of θ with respect to z can be written as

dθ

dz
= z−

1
2
dy

dz
− 1

2
yz−

3
2 (7.9)

d2θ

dz2
= z−

1
2
d2y

dz2
− z−

3
2
dy

dz
+

3
4
yz−

5
2 (7.10)
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Using Eq. (7.8), Eq. (7.9) and Eq. (7.10), the θ equation of motion given in Eq. (7.7) can

be transformed as

d2y

dz2
+

1
z

dy

dz
+
(
k2 − (1/2)2

z2

)
y = 0 (7.11)

The standard form of the Bessel equation given in reference [36] is as follows

d2y

dz2
+

1
z

dy

dz
+
(
k2 − v2

z2

)
y = 0 (7.12)

and the complete solution for Eq. (7.12) when v is non-integral, is given by

y = AJv(kz) +BJ−v(kz) (7.13)

where A and B are constants whose values can be determined using initial conditions. The

Bessel functions Jv(kz) and J−v(kz) are given by

Jv =
∞∑
r=o

(
(−1)r

(
1
2kz
)v+2r

r!Γ(v + r + 1)

)
(7.14)

J−v =
∞∑
r=o

(
(−1)r

(
1
2kz
)−v+2r

r!Γ(−v + r + 1)

)
(7.15)

where Γ(∗) is the Gamma function defined as

Γ(z) =
∫ ∞

0
e−ttz−1dt (7.16)

By comparing the equation of motion (EOM) given in Eq. (7.11) and the standard Bessel

equation given in Eq. (7.12), the analytical solution for the EOM can be written as

y = AJ1/2(kz) +BJ−1/2(kz) (7.17)
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The Bessel function J1/2(kz) can be written using Eq. (7.14) as

J1/2(kz) =

(
1
2kz
)1/2

Γ(3/2)

{
1− (kz)2

2.3
+

(kz)4

2.3.4.5
− · · ·

}
(7.18)

The value of the function Γ(3/2) is calculated to be 1
2π

1
2 . Using this value and rearranging

Eq. (7.18), one arrives at

J1/2(kz) =
(

2
πkz

)1/2{
kz − (kz)3

2.3
+

(kz)5

2.3.4.5
− · · ·

}
J1/2(kz) =

(
2
πkz

)1/2

sin(kz) (7.19)

Similarly, the expression for the J−1/2(kz) boils down to

J−1/2(kz) =
(

2
πkz

)1/2

cos(kz) (7.20)

The analytical solution for the out-of-plane angular motion θ can be written by combining

Eq. (7.8) , Eq. (7.17), Eq. (7.19) and Eq. (7.20) as

θ = z−
1
2

(
A

(
2
πkz

)1/2

sin(kz) +B

(
2
πkz

)1/2

cos(kz)

)
(7.21)

Substituting back the definitions of z and k in Eq. (7.21), one arrives at the expression for

θ as a function of time t, which is written as

θ(t) =

(
L̇ref

πΩ

)1/2
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref

+ 2Ωt
)

+B cos
(

2ΩL0

L̇ref

+ 2Ωt
))

(7.22)

The term
(
L̇ref
πΩ

)1/2
is a constant and can be absorbed in to the arbitrary constants A and
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B. Therefore, Eq. (7.22) can be rewritten as

θ(t) =
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref

+ 2Ωt
)

+B cos
(

2ΩL0

L̇ref

+ 2Ωt
))

(7.23)

The arbitrary constants A and B can be evaluated using the initial conditions and the an-

alytical solution given in Eq. (7.23) can be further simplified using trigonometric identities.

7.3 Initial Conditions

Let the out-of-plane angle (θ) and its rate (θ̇) at t = 0 be

θ(0) = θ0 (7.24)

θ̇(0) = θ̇0 (7.25)

From Eq. (7.23), the expression for θ at t = 0 can be written as

θ(0) =
1
L0

(
A sin

(
2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

))
(7.26)

Comparing Eq. (7.24) and Eq. (7.26), one can write

A sin
(

2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

)
= L0θ0 (7.27)

Taking the time derivative of Eq. (7.23), one gets the expression for angle rate (θ̇) as

θ̇(t) =
−L̇ref

(L0 + L̇ref t)2

[
A sin

(
2ΩL0

L̇ref

+ 2Ωt
)

+B cos
(

2ΩL0

L̇ref

+ 2Ωt
)]

+
2Ω

L0 + L̇ref t

[
A cos

(
2ΩL0

L̇ref

+ 2Ωt
)
−B sin

(
2ΩL0

L̇ref

+ 2Ωt
)]

(7.28)
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The expression for θ̇(t) at t = 0 can be derived from Eq. (7.28) as

θ̇(0) =
−L̇ref

L2
0

[
A sin

(
2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

)]
+

2Ω
L0

[
A cos

(
2ΩL0

L̇ref

)
−B sin

(
2ΩL0

L̇ref

)]
(7.29)

Again, by comparing Eq. (7.29) and the initial condition given in Eq. (7.25), one can write

A

[
−L̇ref

L2
0

sin
(

2ΩL0

L̇ref

)
+

2Ω
L0

cos
(

2ΩL0

L̇ref

)]
+ B

[
−L̇ref

L2
0

cos
(

2ΩL0

L̇ref

)
− 2Ω
L0

sin
(

2ΩL0

L̇ref

)]
= θ̇0 (7.30)

Solving equations Eq. (7.27) and Eq. (7.30) for A and B gives

A
B

 =

 sin
(

2ΩL0

L̇ref

)
cos
(

2ΩL0

L̇ref

)
−L̇ref

L2
0

sin
(

2ΩL0

L̇ref

)
+ 2Ω

L0
cos
(

2ΩL0

L̇ref

)
−L̇ref

L2
0

cos
(

2ΩL0

L̇ref

)
− 2Ω

L0
sin
(

2ΩL0

L̇ref

)

−1

L0θ0

θ̇0

 (7.31)

⇒ A =

(
L̇refθ0 + L0θ̇0

2Ω

)
cos
(

2ΩL0

L̇ref

)
+ L0θ0 sin

(
2ΩL0

L̇ref

)
(7.32)

⇒ B = −

(
L̇refθ0 + L0θ̇0

2Ω

)
sin
(

2ΩL0

L̇ref

)
+ L0θ0 cos

(
2ΩL0

L̇ref

)
(7.33)

Thus, Eq. (7.32) and Eq. (7.33) give the expressions for the arbitrary constants A and B.

The analytical solution given in Eq. (7.23) can be further simplified into a single trigono-
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metric function with a phase angle and amplitude. Recall the trigonometric identity

A sin θ +B cos θ =
√
A2 +B2 cos

(
θ − tan−1

(
A

B

))
(7.34)

One can easily prove this identity by multiplying and dividing the left hand side (LHS) of

the equation by
√
A2 +B2. The proof is given below.

A sin θ +B cos θ =
√
A2 +B2

√
A2 +B2

(A sin θ +B cos θ)

=
√
A2 +B2

(
A√

A2 +B2
sin θ +

B√
A2 +B2

cos θ
)

=
√
A2 +B2 (sinφ sin θ + cosφ cos θ) (7.35)

where φ is given by

φ = tan−1

(
A

B

)

Using the trigonometric identity cos (x− y) = cosx cos y+ sinx sin y in Eq. (7.35), one gets

A sin θ +B cos θ =
√
A2 +B2 cos (θ − φ)

=
√
A2 +B2 cos

(
θ − tan−1

(
A

B

))

Now, using the trigonometric identity given in Eq. (7.34), the analytical expression for

θ(t) given in Eq. (7.23) can be rewritten as

θ(t) =
1

L0 + L̇ref t

√
A2 +B2 cos

(
2ΩL0

L̇ref

+ 2Ωt− tan−1

(
A

B

))
(7.36)

Therefore, Eq. (7.36) gives the final form of the analytical solution with constants A and B

defined in Eq. (7.32) and Eq. (7.33).
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7.4 Bounds on Initial Out-Of-Plane Angle

7.4 Bounds on Initial Out-Of-Plane Angle

By studying Eq. (7.36), one can write the time varying amplitude of the out-of-plane angle

θ as

[θ(t)]amp =
1

L0 + L̇ref t

√
A2 +B2 (7.37)

The amplitude expression in Eq. (7.37) can be further simplified by substituting the expres-

sions for A and B from Eq. (7.32) and Eq. (7.33). The simplified amplitude expression in

terms of initial out-of-plane angle θ0 and initial rate θ̇0 is given by

[θ(t)]amp =
1

L0 + L̇ref t

( L̇refθ0 + L0θ̇0

2Ω

)2

+ (L0θ0)2

 1
2

(7.38)

Note, all that we have derived till now in this chapter holds good for any general reconfig-

uration problem in the orbit radial direction. That is, the analytical solution using Bessel

functions and the time-varying amplitude expression holds good for both expansion and

contraction of the separation distance between the two satellites. It was shown in the previ-

ous chapter that during expansion the out-of-plane oscillations are reduced due to angular

momentum conservation. Therefore, regardless of the initial out-of-plane angle at the be-

ginning of the expansion, one is guaranteed to have a smaller out-of-plane oscillation at the

end of the operation. The vise-versa is true for contracting the 2-craft Coulomb tether.

The initial out-of-plane oscillation will increase as the satellites are brought closer due to

conservation of angular momentum. We are interested in establishing a bound on the initial

oscillation so that the final oscillations at the end of the contraction will be with in certain

limits. Let the maximum initial out-of-plane oscillation be θ0max and at this angle value the

angular rate will be zero. Using this information the amplitude expression in Eq. (7.38) can

118



7.5 Numerical Simulations

be rewritten as

[θ(t)]amp =
θ0max

L0 + L̇ref t

( L̇ref

2Ω

)2

+ (L0)2

 1
2

(7.39)

For the given initial and final separation distances, and the constant rate of change of

separation distance (L̇ref), the total time involved for the contraction operation can be

determined. Let this time is given by tmax. The desired bound on the out-of-plane oscillation

amplitude at the end of the time tmax is given by [θ(tmax)]amp. Inserting these values in

Eq. (7.39) results in

[θ(tmax)]amp >
θ0max

L0 + L̇ref tmax

( L̇ref

2Ω

)2

+ (L0)2

 1
2

(7.40)

Rearranging Eq. (7.40) by keeping θ0max on one side and taking the remaining terms to the

other side gives

θ0max 6 [θ(tmax)]amp
(L0 + L̇ref tmax)√(

L̇ref
2Ω

)2
+ (L0)2

(7.41)

The inequality given in Eq. (7.41) establishes the bounds on the initial out-of-plane angle

value and satisfying this inequality will lead to an final out-of-plane oscillation that is less

than the permissible value of [θ(tmax)]amp.

7.5 Numerical Simulations

In this section, numeric simulations are carried out to illustrate the analytical solution and

to verify the final out-of-plane oscillation predictions. We will concentrate on the maneuver

involving the contraction of the separation distance between the two satellites. The initial
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7.5 Numerical Simulations

out-of-plane angle and angle rate are set to θ = 0.1 radians and θ̇ = 0 rad/sec, respectively.

The satellites are assumed to be in GEO and hence, the mean orbit rate value is taken to be

Ω = 7.2915× 10−5 rad/sec. The satellite formation is contracted from an initial separation

distance of 25 m to 15 m in 1.8 days. The out-of-plane angle (θ) time history and amplitude

of the oscillation (shown as bounds), found using the equations Eq. (7.23) and Eq. (7.38),

are illustrated in Figure 7.1.
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Figure 7.1: The time histories of the out-of-plane angular motion (θ) using
analytical solution with the amplitude as bounds.

The out-of-plane angle equation of motion shown in Eq. (7.1) is the linearized decoupled

equation. As in the previous chapter, we compare its performance with the full nonlinear

equation given by the Cowell’s equation. The initial conditions and gains used are same as

in previous chapter and are given in Table. 6.1. Again, the satellite formation is contracted

from an initial separation distance of 25 m to 15 m in 1.8 days. The results of this simula-

tion are illustrated in the Figure 7.2. It can be observed from the figure that the analytical

solution of the linearized equation for the out-of-plane angle (θ) closely follows the actual

out-of-plane angle time history obtained by simulating the full nonlinear equation. There-

fore, the analytical solution for the linearized equation can be used to set bounds on the
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7.5 Numerical Simulations

initial condition (θ(0) and θ̇(0)) so that the final out-of-plane angle is with in prescribed

limits.
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Figure 7.2: The time histories of the out-of-plane angular motion (θ) using the
analytical solution and by simulating the full nonlinear equation.

From Figure 7.2, one can conclude that the final oscillation amplitude or peak out-of-plane

angle after the completion of the contraction will be around 0.17 rad. We now calculate the

bound on the initial θ value so that the final oscillation will be not exceed 0.1 rad. Using

Eq. (7.38) and substituting the corresponding values gives

θ0max 6 [θ(tmax)]amp
(L0 + L̇ref tmax)√(

L̇ref
2Ω

)2
+ (L0)2

6 (0.1)

25− 6.43× 10−5 × 1.56× 105√(
−6.43×10−5

2×7.2915×10−5

)2
+ (25)2


6 0.06 rad (7.42)

Now, the simulation of the maneuver carried out previously and illustrated in Figure 7.2,

is again carried out with initial conditions θ(0) = 0.06 rad and θ̇(0) = 0 rad/sec. The
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7.5 Numerical Simulations

simulation results are illustrated in Figure 7.3. It can be seen from the figure that the final

out-of-plane angular oscillation amplitude is 0.1 radians as expected.
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Figure 7.3: The time histories of the out-of-plane angular motion (θ) using the
analytical solution and by simulating the full nonlinear equation. The initial
θ value is 0.06 radians, resulting in the final out-of-plane angular oscillation
amplitude of 0.1 radians.

By observing the expression given for the final amplitude in Eq. (7.39), one can see that

it also depends on the initial separation distance L0 and the constant rate of change of

reference length L̇ref. The changes in the final oscillation amplitude for different L̇ref shown

in figure 7.4. The contraction maneuver performed with different L̇ref involved contracting

an initial separation distance of 25 m to 10 m and the initial out-of-plane angle error

is 0.1 radians. From the figure it can be seen that the final amplitude increases with

the contraction rate, as one would expect. Figure 7.5 illustrates behavior of the final

oscillation amplitude for different initial separation distances. In all the cases, the formation

is contracted by 10 m in 2 days and the initial out-of-plane angle error is 0.1 radians. The

figure shows that the final oscillation amplitude is high for small initial separation distances

and drops of significantly for large initial separation distances.

122



7.6 Summary

1 2 3 4 5 6 7 8 9 10
0.1667

0.1667

0.1667

0.1667

0.1667

0.1668

F
in

al
A

m
pl

it
ud

e
[θ

(t
m

a
x
)]

a
m

p
[r

ad
ia

ns
]

Reference Length Rate L̇ref [m/days]

Figure 7.4: The final out-of-plane amplitude for different rate of contraction. In
all the cases, the formation with initial separation distance of 25 m is contracted
by 10 m and the initial out-of-plane angle error is 0.1 radians.
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Figure 7.5: The final out-of-plane amplitude for different initial separation dis-
tance. In all the cases, the formation is contracted by 10 m in 2 days and the
initial out-of-plane angle error is 0.1 radians.

7.6 Summary

The analytical solution for the linearized out-of-plane angle (θ) equation of motion for the

reconfiguration problem is successfully developed using the Bessel functions. This solution
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7.6 Summary

is used to come up with bounds on the initial out-of-plane angle so that the out-of-plane

angular oscillations is with in the prescribed limit at the end of the contraction operation.

Numerical simulations of the full nonlinear motion are carried out to illustrate the results

and compare the linearized performance predictions to the actual nonlinear system response.
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8 Smooth Transition of Discontinuity in

Reference Length Rate

8.1 Introduction

In Chapter 5, the reconfiguration of a Coulomb tether aligned along the orbit radial direction

is studied in detail. The reconfiguration is an extension of the regulation problem studied in

chapter 4, and the key difference being that the reference length (Lref) is made time varying.

The reference length rate (L̇ref) is user prescribed and bounds on it for maintaining stability

has been identified using linear stability analysis. In the simulations that follow, a constant

reference length rate (L̇ref) is used for expanding or contracting the formation. A Dirac

delta function in the beginning of the maneuver facilitates the reference length rate to

reach a constant value from zero instantaneously, and a similar function in the end of the

maneuver facilitates the converse. The Dirac delta function results in an infinite acceleration

at the point of transition which the finite Coulomb forces will not be able to produce. That

is, one can not have infinite charge to produce the required infinite Coulomb force. This

infinite acceleration results in noticeable oscillations in separation distance error (δL) which

is asymptotically stabilized by the feedback term in the due course of time.

Our goal is to eliminate or reduce this oscillation of δL at the points of transition of

reference length rate. In the absence of these oscillations the separation distance between
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8.2 Smooth Transition Function

the two craft will closely follow the prescribed reference length time histories. The reduction

in oscillation is achieved by using a smooth transition function for the reference length rate

instead of the dirac delta function and by adding the finite acceleration of the reference

length (L̈ref) to the reference charge product Qref. This chapter is organized as follows.

First, the smooth transition function is defined, followed by adapting this function for the

reference length rate problem. Finally, numerical simulations illustrate the results.

8.2 Smooth Transition Function

Let us assume the function F (t) jumps from zero to one at the point t = t0. The expression

for the smoothed representation of the jump discontinuity is discussed in this section. This

function is based on the hyperbolic tangent function tanh (x). To represent a value jumping

up at t = t0, use

F (t) =
1
2

+
1
2

tanh
(
t− t0
σ

)
(8.1)

The hyperbolic tangent function used in Eq. (8.1) is a monotonically growing one with the

value approaching −1 as t→ −∞ and approaching +1 as t→∞ . A plot of this function

is shown in Figure 8.1 and the plot shows that it is symmetric about the point t = t0. An

examination of the plot also shows that appreciable change in the value of the hyperbolic

tangent function occurs while t lies in the interval (t0−16σ) and (t0 +16σ). In fact, because

of the finite precision involved in computing, the value of hyperbolic tangent function will

get rounded off to +1 for values of t beyond (t0 + 16σ), and to −1 for values of t below

(t0 − 16σ).

Now consider the smooth transition function given in Eq. (8.1). Figure 8.2 illustrates

the function behavior over the time interval (t0 − 16σ) and (t0 + 16σ). Note, this time

interval is chosen since the smooth transition function depends on the hyperbolic tangent
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Figure 8.1: Time history of the hyperbolic tangent function.

and appreciable change in hyperbolic tangent is in this interval. It is clear from the plot that

F (t) would vary between 0 and 1 over the interval (t0 − 16σ) and (t0 + 16σ). The interval

can be made as small as desired by choosing an appropriate value of σ, thus enabling the

smoothed representation of function jumping from 0 to 1 at t = t0. Moreover, t = t0 is a

point of inflection with the value of the function equal to 1/2 . The function 1.0−F (t) can

be used to represent sudden fall from 1 to 0.

Function F (t) is differentiable to any order, and the derivatives of all orders would tend to

zero practically at (t0±16σ). This matches near ideally the characteristics of the constancy

function before and after the jump. The time derivative of function F (t) is obtained using

the identity sech2(x) = 1.0− tanh2 (x), as

Ḟ (t) =
1

2σ
sech2

(
t− t0
σ

)
(8.2)

The derivative of F (t) given in Eq. (8.2) is plotted in Figure 8.3. It can be seen from the
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Figure 8.2: Time history of the smooth transition function F (t).

plot that the Ḟ (t) reaches its maximum value at t = t0.

8.3 Reference Length Rate Transition Function

In this section, we adapt the smooth transition function defined in the previous section, to

fit the reference length rate transition problem. The time interval needed for making this

transition is identified using the maximum charge available in the crafts. Let the constant

reference length rate be given by KL. The function representing the smooth transition of

the reference length rate from zero to KL is given by

L̇ref(t) = KL

(
1
2

+
1
2

tanh
(
t− t0
σ

))
(8.3)

where t0 is the point of transition and this smooth transition takes place between the time

interval (t0 − 16σ) to (t0 + 16σ). The reference length acceleration at any given point of
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Figure 8.3: Time history of the time derivative of the smooth transition function
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time is given by

L̈ref(t) =
KL

2σ
sech2

(
t− t0
σ

)
(8.4)

The maximum acceleration will be at t = t0 and is written as

L̈ref(t) =
KL

2σ
(8.5)

The change in reference length during this smooth transition can be found out by integrating

Eq. (8.3) over the time period (t0 − 16σ) to (t0 + 16σ). The expression for this change in

reference length is given as

Lref = KL

[
1
2
t+

1
2

ln
(

cosh
(
t− t0
σ

))]t0+16σ

t0−16σ

(8.6)

Now, one has to identify the time period over which this transition should take place. In
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other words, one has to identify the value of the quantity σ. The limiting factor for sigma

will be the maximum available charge. Consider the equation of motion of the separation

distance between two craft given below

L̈ = (2nψ̇ + 3Ω2)L+
kc
m1

Q
1
L2

m1 +m2

m2
(8.7)

where L is the separation distance, Q is the charge product, Ω is the mean orbit rate, kc is

the Coulomb constant and mi is the mass of each craft. For an ideal equilibrium case, the

in-plane angle rate (φ̇) will be zero and separation distance L will follow Lref. Implementing

this ideal scenario in Eq. (8.7) results in

L̈ref = 3Ω2Lref +
kc
m1

Q
1
L2

ref

m1 +m2

m2
(8.8)

Substituting the maximum reference length acceleration from Eq. (8.5) in to Eq. (8.8) and

by approximating Lref as initial separation length L0, gives

KL

2σ
= 3Ω2L0 +

kc
m1

Q
1
L2

0

m1 +m2

m2
(8.9)

Note, the reference length (Lref(t0)) at maximum reference acceleration (t = t0) is ideally

found by integrating the reference length rate (L̇ref). To avoid the complex integral during

the computation of σ, we are using the initial separation distance L0. Similarly, while

finding the σ needed at the end of the maneuver, the final separation distance (Lf ) will be

used an approximation. Let the maximum available charge product be Qmax. Using this

information in Eq. (8.9) and rearranging the equation gives the minimum σ required as

σmin =
KL

6Ω2L0 + 2 kc
m1
Q 1
L2

0

m1+m2
m2

(8.10)
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In all our simulations, we will use at least twice this minimum σ, so that our charge re-

quirement is well with in the limit at any given time.

The reference charge product (Qref) used here is also slightly different from the one used

in chapter 5. Usually, the reference charge product Qref is calculated by setting the left

hand side of the equation Eq. (8.8) to zero. That is, the reference length acceleration L̈ref is

set to zero. Instead, in this chapter we will incorporate it in to the reference charge product.

The new reference charge product is given as

Qref =
L2

ref

kc

m1m2

m1 +m2
(L̈ref − 3Ω2Lref) (8.11)

This reference charge product could not be used in chapter 5 as the reference length accel-

eration (L̈ref) shot to infinity due to the dirac delta function.

8.4 Numerical Simulation

In this section, the performance of the reference length rate transition function and the

new reference charge product is illustrated using simulations. Consider a maneuver similar

to chapter 5 simulations, of expanding the Coulomb tether formation from 25m to 35m in

1.8 days. The simulation parameters that used are listed in Table 8.1. The initial attitude

values (ψ(0), θ(0)) and the separation length error (δL(0)) value are set to zero. All initial

rates are also set to zero through ψ̇ = δL̇ = θ̇ = 0. In the reconfiguration simulations in

chapter 5, the oscillations are due to both initial condition errors and the sudden jumps in

reference length (Lref) rate due to the dirac delta function. In order to isolate and show

that the oscillations due to the latter have been eliminated, the initial conditions are all

taken to be zero.

Before going to the simulation, one has calculate the necessary σ values. Initially, at the

start of the reconfiguration the reference length is 25 m and the maximum available charge
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Table 8.1: Input parameters used in orbit-radial reconfiguration simulation with
smooth transition

Parameter Value Units
m1 150 kg
m2 150 kg
kc 8.99× 109 Nm2/C2

Ω 7.2915× 10−5 rad/sec
δL(0) 0.0 m
ψ(0) 0.0 rad
θ(0) 0.0 rad
C̃1 12
C̃2 2.4249

on each craft be 5 µC. The minimum required σ can be calculated using Eq. (8.10) as

σ1min = 6.1905

Similarly, the minimum σ value needed at the end of reconfiguration can be calculated using

the final separation distance of 35 m as σ2min = 10.70. We will take σ1 = 15 and σ2 = 25

which are more than twice the minimum required.

As in chapter 5 the Coulomb tether performance is simulated in two different manners.

First the linearized spherical coordinate differential equations are integrated. Second, the

exact nonlinear equations of motion of the deputy satellites are solved using the same charge

feedback control, and compared to the performance of the linearized dynamical system.

The nonlinear deputy equations are given through Cowell’s equations and the spherical

coordinates are computed back in post-processing using the exact kinematic transformation.

Figure 8.4(a) shows the Coulomb tether motion for increasing the separation distance

from 25m to 35m in the linearized spherical coordinates (ψ, θ, δL), along with the full

nonlinear spherical coordinates shown as dotted lines. The expansion is done in 1.8 days.
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(a) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rota-
tion angle θ.
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Figure 8.4: Simulation results for expanding the spacecraft separation distance
from 25m to 35m in 1.8 days. The feedback gains are C̃1 = 12 and C̃2 = 2.4249.

It can be seen from the figure that the oscillations in the in-plane angle (ψ) and separation

distance error (δL) are significantly reduced. The in-plane angle is coupled to the separation

distance error equation through the in-plane angle rate (ψ̇), which is not modeled in to the

reference charge. This is the reason for the initial oscillation even thought the initial error in

the states are zero. The out-of-plane angle (θ) is constantly zero since it is decoupled from
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8.4 Numerical Simulation
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Figure 8.5: Simulation results for expanding the spacecraft separation distance
from 25m to 35m in 1.8 days. The feedback gains are C̃1 = 12 and C̃2 = 2.4249.

the other two states and its initial states are zero to begin with. Figure 8.4(b) shows the

spacecraft control charge q1 (on craft 1) for both the linearized and full nonlinear simulation

models. Both are nearly on top of the reference value pertaining to the static equilibrium

at each instant of time. The spikes in control charge observed in the graph are due to the

finite reference length accelerations during the smooth reference length rate transition.
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8.5 Summary

In order to illustrate how well the system is tracking the prescribed reference trajectory

Lref(t), the time histories of separation distance L(t) and the time histories of rate of change

of separation distance L̇(t) are shown in Figure 8.5(a) and Figure 8.5(b) , respectively.

Figure 8.5(a) shows that the reference separation distance (Lref(t)) increases linearly until

1.8 days before settling to a constant value and both the linear and inertial nonlinear

simulations track the reference separation distance perfectly. Figure 8.5(b) illustrates that

the rate of change of the reference separation distance (L̇ref(t)) is a smoothed representation

of a discrete step change.

8.5 Summary

A smooth transition function is used in the beginning and end of the prescribed reference

length rate. This eliminates the abrupt increase or decrease of the reference length rate

resulting in a finite acceleration at the points of transition. This finite reference length

acceleration has been added to the reference charge product term to achieve near perfect

tracking. Simulation results in the end validate the claim.
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9 Reconfiguration Along Orbit-Normal and

Along-Track Equilibrium

9.1 Introduction

The reconfiguration of a two-craft formation aligned along the orbit radial direction is

presented in detail in chapter 6. Analogously, the reconfiguration of two-craft Coulomb

formation aligned along the orbit-normal and along-track direction is studied in this chapter.

With this study, the two-craft Coulomb structure regulation and reconfiguration study along

all three equilibria will be complete. Similar to the orbit radial direction reconfiguration, this

study is also an extension of the along-track and orbit-normal regulation problem studied

in Chapter 5. An hybrid control strategy using both Coulomb forces and conventional

thrusters is introduced and the linear stability of the time variant system is studied based on

the method deviced by Rosenbrock.34 Based on this analysis, stability regions for expanding

and contracting the two-craft formations are established. As in the previous studies, the

formation is studied in GEO and the Debye lengths are assumed to be sufficiently large so

that the effects of Debye shielding can be neglected. Finally, numerical simulations illustrate

the analytical stability predictions.
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9.2 Reconfiguration Dynamics

9.2 Reconfiguration Dynamics

9.2.1 Along-Track Configuration

This section derives the equations of motion for reconfiguring a 2-craft Coulomb tether

which is nominally aligned with the along-track direction ôθ of the orbit or Hill frame

O : {ôr, ôθ, ôh, }. This derivation closely follows the derivation of the equations of motion

for along-track formation given in Chapter 5. The differential equation of motion for the

separation distance L between the craft is given by

L̈ = 2Ωψ̇L+
kc
m1

Q
1
L2

m1 +m2

m2
(9.1)

where Q = q1q2 is the charge product of the spacecraft charges and ψ̇ in-plane angular rate.

Next the separation distance equations of motion are linearized about small variations in

length δL and small variations in the product charge term δQ. Unlike the regulation problem

the reference separation length Lref is not constant, but is made time varying. The reference

charge product term for this along-track configuration is known to be zero.

L(t) = Lref(t) + δL(t) (9.2a)

Q(t) = Qref(t) + δQ(t) = δQ(t) (9.2b)

Substituting these L and Q definitions into Eq. (9.1) and linearizing leads to

δL̈ = (2ΩLref)ψ̇ +
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ− L̈ref (9.3)

Note that this relationship is coupled to the angular in-orbit-plane rate ψ̇. In order to

obtain an expression for this, a stability analysis using the gravity gradient is employed.

The linearized attitude dynamics of the Coulomb tether body frame are written along with
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9.2 Reconfiguration Dynamics

the separation distance equation as:

φ̈+ 2
L̇ref

Lref
φ̇+ Ω2φ = 0 (9.4a)

ψ̈ + 2
L̇ref

Lref
Ω + 2

L̇ref

Lref
ψ̇ − 2

L̇ref

Lref
ΩδL+ 2

Ω
Lref

δL̇− 3Ω2ψ = 0 (9.4b)

δL̈+ L̈ref − (2ΩLref)ψ̇ −
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ = 0 (9.4c)

Note that the out-of-plane angle φ is decoupled from the separation distance error δL and

in-plane angle ψ. The charge product variation δQ is treated as the control variable and

the feedback control law is defined as

δQ =
m1m2L

2
ref

(m1 +m2)kc
(−C1δL− C2δL̇) (9.5)

where C1 and C2 are the position and velocity feedback gain. Recall fram chapter 5 that

Coulomb forces alone are not sufficient to guarantee asymptotic stability for this formation

and one requires thrusting along the b̂1 and b̂3 axes. The thrust force feedback law are given

by

F1 =
m1m2

m1 +m2
Lref(K1ψ) (9.6)

F3 =
m1m2

m1 +m2
Lref(K2φ̇) (9.7)

where K1 and K2 are the in-plane and out-of-plane angle feedback gain.. By introducing

these forces and charge control law back in to the equations given in Eq. (9.4), the augmented
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9.2 Reconfiguration Dynamics

equations of motion are written as

φ̈+

(
2
L̇ref

Lref
+K2

)
φ̇+ Ω2φ = 0 (9.8a)

ψ̈ + 2
L̇ref

Lref
Ω + 2

L̇ref

Lref
ψ̇ − 2

L̇ref

Lref
ΩδL+ 2

Ω
Lref

δL̇+ (K1 − 3Ω2)ψ = 0 (9.8b)

δL̈+ L̈ref − (2ΩLref)ψ̇ + C1δL+ C2δL̇ = 0 (9.8c)

The following normalization transformation is employed to make these equations indepen-

dent of Ω.

dτ = Ωdt (9.9a)

(∗)′ = d(∗)
dτ

=
1
Ω

d(∗)
dt

(9.9b)

The orbit rate independent form of the linearized equations in Eq. (9.8a) – (9.8c) are written

as

φ′′ +

(
2
L
′
ref

Lref
+ K̃2

)
φ′ + φ = 0 (9.10a)

ψ′′ + 2
L
′
ref

Lref
+ 2

L
′
ref

Lref
ψ
′ − 2

L
′
ref

Lref
δL+

2
Lref

δL′ + (K̃1 − 3)ψ = 0 (9.10b)

δL′′ + L
′′
ref − (2Lref)ψ

′
+ C̃1δL+ C̃2δL

′
= 0 (9.10c)

where C̃1 = C1/Ω2, C̃2 = C2/Ω, K̃1 = K1/Ω2 and K̃2 = K2/Ω are the non-dimensionalized

gains.

9.2.2 Orbit Normal Configuration

The derivation of the equations of motion for reconfiguration of 2-craft Coulomb tether

along orbit normal direction follows the same steps as those of the along-track equilibrium.
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9.2 Reconfiguration Dynamics

One key difference is that the analytical expression for the orbit normal reference charge

product Qref is not zero and is given by13

Qref(t) = q1q2 = Ω2L
3
ref(t)
kc

m1m2

m1 +m2
(9.11)

The differential equation for the separation distance is given by

L̈ = −Ω2L+
kc
m1

Q
1
L2

m1 +m2

m2
(9.12)

The above equation can be further linearized using Eqs. (9.2) and the Qref definition in

Eq. (9.11) to

δL̈ = −(3Ω2)δL+
(
kc
m1

1
L2

ref

m1 +m2

m2

)
δQ− L̈ref (9.13)

The spherical coordinate representation of this formation involves two Euler angles θ and

φ, which are decoupled from the separation distance differential equation. The differential

equation for Euler angles can be obtained similar to the along-track development. The

linearized attitude dynamics of the Coulomb tether are written along with the separation

distance equation as:

φ̈− Ω2φ− 2Ωθ̇ + 2
L̇ref

Lref
(φ̇− Ωθ) = 0 (9.14a)

θ̈ − 4Ω2θ + 2Ωφ̇+ 2
L̇ref

Lref
(θ̇ + Ωφ) = 0 (9.14b)

δL̈+ L̈ref + (3Ω2)δL−
(
m1 +m2

m1m2

kc
L2

ref

)
δQ = 0 (9.14c)

As shown in chapter 5, δQ will be one of the control signals and we will introduce two

thrust forces along the b̂1 and b̂2 axes that will stabilize the angles. The feedback control
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9.3 Stability Analysis

laws for the charge product error term and thrust forces are given by

δQ =
m1m2L

2
ref

(m1 +m2)kc
(−C1δL− C2δL̇) (9.15)

F1 =
m1m2

m1 +m2
Lref(K2θ) (9.16)

F2 =
m1m2

m1 +m2
Lref(K1φ+K3φ̇) (9.17)

where C1 and C2 are the position and velocity feedback gain, K1 and K2 are the out-of-

plane angle feedback gain, and K3 is the angle rate feedback gain. By introducing these

feedback laws in Eqs. (9.14a)–(9.14c) and using the transformation given in Eq. (9.9), one

can get the final non-dimentional form of the equation of motion as

φ′′ + (K̃1 − 1)φ− 2θ′ + K̃3φ
′ + 2

L
′
ref

Lref
(φ′ − θ) = 0 (9.18a)

θ′′ + (K̃2 − 4)θ + 2φ′ + 2
L
′
ref

Lref
(θ′ + φ) = 0 (9.18b)

δL′′ + L
′′
ref + (3 + C̃1)δL+ C̃2δL

′ = 0 (9.18c)

where C̃1 = C1/Ω2, C̃2 = C2/Ω, K̃1 = K1/Ω2, K̃2 = K2/Ω2 and K̃3 = K3/Ω are the

non-dimensionalized gains.

9.3 Stability Analysis

The stability analysis for the time varying equations of motion derived in the previous

section will be carried out using the method put forward by Rosenbrock.34 This method is

discussed in detail in chapter 6 and is explained here for the sake of continuity. A linear

time-dependent system given by ẋ = A(t)x is asymptotically stable if the frozen system for

each t is stable and the rate of change of A(t) is very small. Rosenbrock34 has established

bounds on this rate of change of A(t) when A(t) is in the control canonical form.
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9.3 Stability Analysis

9.3.1 Along-Track Formation

The coupled δL and ψ equations in Eq. (9.10b)– (9.10c) are written in the state space form

as 

ψ′

ψ′′

δL′

δL′′


=



0 1 0 0

3− K̃1 −2L
′
ref

Lref
2L
′
ref

L2
ref
− 2
Lref

0 0 0 1

0 2Lref −C̃1 −C̃2


︸ ︷︷ ︸

A(t)



ψ

ψ′

δL

δL′


+



0

−2L′ref
Lref

0

−L′′ref


︸ ︷︷ ︸

d(t)

(9.19)

The square matrix in the above equation is A(t) and the time dependency in this matrix is

due to the terms Lref and L′ref. The stability of the system greatly depends on the rate at

which Lref is varied. The limits on how large L′ref can be while still guaranteeing stability,

will be established later in this section. From Eq. (9.19), it can be observed that there is a

state independent term d(t) which will lead to a steady state offset as long as Lref is time

varying. The analytical expression for the steady state offset is given as follows

 ψoffset

δLoffset

 =

− 2L′ref

(K̃1−3)Lref
+ 2L′refL

′′
ref

(K̃1−3)C̃1L2
ref

L′′ref

C̃1

 =

− 2ΩL̇ref
(K1−3Ω2)Lref

+ 2ΩL̇refL̈ref

(K1−3Ω2)C1L2
ref

L̈ref
C1

 (9.20)

Initially, the characteristic equation of A(t) matrix is studied to identify the gains that

will make the matrix Hurwitz. The characteristic equation is given by

λ4 + (C̃2 + 2k)λ3 + (C̃1 + K̃1 + 2kC̃2 + 1)λ2 + (C̃2K̃1 − 3C̃2 + 2kC̃1 − 4k)λ

+ (−3C̃1 + C̃1K̃1) = 0 (9.21)

where k = L′ref

L2
ref

is a time varying coefficient. In the along-track regulation problem given in
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9.3 Stability Analysis

chapter 5, the gain values are determined to be K̃1 = 6 and C̃1 = 2.97. Since, this work is

an extension of the regulation problem, the same gains can be used here. The velocity gain

C̃2 is defined using a scaling factor as shown below.

C̃2 = α

√
C̃1

Substituting these gains back in to Eq. (9.21) results in a characteristic equation whose

coefficients are a function of k and α. The range of values of k and α that guarantee negative

definite roots for the characteristic equation can be found out using Routh-Hurwitz stability

criterion. The shaded region in Figure 9.1 shows the possible values of k and α for the fixed

gain values of K̃1 = 6 and C̃1 = 2.97. It can be seen from the figure that the positive k

indicating expansion is always stable, whereas negative k (contraction) has a tight bound.

The value of α is chosen as 1.8 since k has maximum range at this α value.
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Figure 9.1: Plot showing the regions that satisfy the Routh Hurwitz stability
criterion for along-track formation. The gain values are K̃1 = 6 and C̃1 = 2.97.

By satisfying the Routh-Hurwitz criterion, the eigenvalues of A(t) at any fixed time t will

always be in the left half of the plane. This is not sufficient to guarantee stability of the

system. The sufficient condition is that rate of change of A(t) be very small. Rosenbrock34
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Figure 9.2: Plot showing the regions that satisfy the Routh Hurwitz stability
criterion and Rosenbrock bounds for along-track formation.

established bounds for this rate of change and stated it as a theorem when A(t) is in

the control canonical form (Ac(t)). The reader is referred to chapter 6 for details of the

theorem. The A(t) matrix in Eq. (9.19) is not in the control canonical form, but it can

be transformed in a control canonical form using a similarity transformation. Using this

transformed matrix the feasible values of Lref and L′ref that satisfies the Rosenbrock theorem,

for the chosen values of K̃1, C̃1 and α are identified numerically. These feasible values are

shown in Figure 9.2. This plot can be used to specify the reference trajectory Lref(t).

The out-of-plane angle (φ) is decoupled from the other two states. By studying the equa-

tion of motion given in Eq. (9.10a), one can conclude that in the absence of angle rate

feedback the out-of-plane angle will have a sinusoidal motion. The amplitude of oscilla-

tion will increase or decreases depending whether the satellite formation is contracted or

expanded. For the regulation problem, the feedback gain value is chosen as K̃2 = 2, and

this guaranteed asymptotic convergence. We will retain the same gain value for the current

reconfiguration problem.
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9.3.2 Orbit-Normal Formation

The linearized equations of motion for the orbit-normal configuration given in Eq. (9.18a)–

(9.18c) show that the separation distance error (δL) equation is decoupled from the two out-

of-plane equations of motion. It can be seen from Eq. (9.18c) that the separation distance

error (δL) will have a steady state offset due to the reference length acceleration (L
′′
ref).

Other than this offset, reconfiguration will not have any significant effect on the stability of

the separation distance. Therefore, we will retain the same gain values determined in the

regulation problem given in chapter 5. The values for position and velocity gains are taken

as C̃1 = 0 and C̃2 = 2
√

3.

However, the stability of the coupled out-of-plane angles (φ and θ) will depend on the

rate of expansion or contraction of the formation. Their stability is studied in this section

using the Rosenbrock technique and this study closely follows along-track configuration

stability analysis. The equations of motion of the coupled out-of-plane angles given in

Eq. (9.18a)–(9.18b) can be written in the matrix form as



φ′

φ′′

θ′

θ′′


=



0 1 0 0

(1− K̃1) −
(
K̃3 + 2L

′
ref

Lref

)
2L
′
ref

L2
ref

2

0 0 0 1

−2L
′
ref

Lref
−2 (4− K̃2) −2L

′
ref

Lref





φ

φ′

θ

θ′


(9.22)

The corresponding characteristic equation for the matrix given in Eq. (9.22) can be written

as

λ4 +(K̃3 +4k)λ3 +(K̃1 + K̃2 +2kK̃3 +4k2−1)λ2 +(−4K̃3 + K̃2K̃3 +2kK̃2 +2kK̃1−2k)λ

+ (4− 4K̃1 + K̃1K̃2 − K̃2) = 0 (9.23)
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where k = L′ref

L2
ref

is a time varying coefficient. Again, we will retain the gain values from the

regulation problem and their values are given by K̃1 = 2.7 and K̃2 = 5. The angle rate gain

K̃3 is defined using a scaling factor α as

K̃3 = α

√
K̃1

Substituting these gains back in to Eq. (9.23) results in a much simplified characteristic

equation. The the real parts of the roots of this characteristic equation should be negative

for the system to be Hurwitz. The range of values of k and α that guarantee negative roots

for the characteristic equation can be found out using Routh-Hurwitz stability criterion.

The shaded region in Figure 9.3 shows the possible values of k and α for the fixed gain

values of K̃1 = 2.7 and K̃2 = 5. The value of α is chosen as 3.6 since k has maximum range

both in the positive and negative direction at this α value.
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Figure 9.3: Plot showing the regions that satisfy the Routh Hurwitz stability
criterion for orbit-normal formation. The gain values are K̃1 = 2.7 and K̃2 = 5.

Similar to the along-track configuration the feasible values of Lref and L′ref that satisfies

the Rosenbrock theorem, for the chosen values of K̃1, K̃2 and α are identified numerically.

These feasible values are shown in Figure 9.4. This plot can be used to specify the reference

trajectory Lref(t).
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Figure 9.4: Plot showing the regions that satisfy the Routh Hurwitz stability
criterion and Rosenbrock bounds for orbit-normal formation.

9.4 Numerical Simulations

Numerical simulations illustrating the reconfiguration maneuvers of the along-track and

orbit normal Coulomb tether formations are presented in this section. These simulations

serve to validate the performance and stability of the feedback control strategy when the

reconfiguration rate are with in the established bounds. Analogous to all the other simu-

lations in this dissertation, the Coulomb tether performance is simulated in two different

manners. First the linearized spherical coordinate differential equations are integrated. This

simulation illustrates the linear performance of the charge control. Second, the linearized

results are compared with those obtained from the exact nonlinear equation of motion of

the deputy satellites given by

r̈1 +
µ

r3
1

r1 =
kc
m1

Q

L3
(r1 − r2) (9.24a)

r̈2 +
µ

r3
2

r2 =
kc
m2

Q

L3
(r2 − r1) (9.24b)
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9.4 Numerical Simulations

where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial position vectors of the the masses

m1 and m2, while L =
√

(r2 − r1) · (r2 − r1). The gravitational coefficient µ is defined as

µ ≈ GMe. After integrating the motion using inertial Cartesian coordinates, the separation

distance L, as well as the corresponding angles are computed in post-processing using the

exact kinematic transformation. For all cases the cluster center of mass is assumed to be a

GEO orbit.

9.4.1 Along-Track Configuration

The simulation parameters that used are listed in Table 9.1. The initial attitude values are

set to ψ = 0.1 radians and φ = 0.1 rad. The separation length error (Coulomb tether length

error) is δL = 0.5 meters. All initial rates are set to zero through ψ̇ = δL̇ = φ̇ = 0. Two

sets of maneuvers, expanding the Coulomb tether formation from 25m to 35m in 1.8 days

and contracting the formation from a separation distance of 25m to 15m, are shown.

Table 9.1: Input parameters used in along-track reconfiguration simulation
Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99× 109 Nm2

C2

Qref 0 µC2

Ω 7.2915× 10−5 rad/sec
C1 2.97Ω2

C2 3.9637Ω
K1 6Ω2

K2 2Ω
δL(0) 0.5 m
ψ(0) 0.1 rad
φ(0) 0.1 rad

The Coulomb tether motion for increasing the separation distance from 25m to 35m is
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Figure 9.5: Simulation results for expanding the separation distance of an along-
track formation from 25 m to 35 m. The feedback gains are C̃1 = 2.97, C̃2 = 3.10,
K̃1 = 6 and K̃2 = 2.
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Figure 9.6: Simulation results for contracting the separation distance of an
along-track formation from 25 m to 15 m. The feedback gains are C̃1 = 2.97,
C̃2 = 3.10, K̃1 = 6 and K̃2 = 2.
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9.4 Numerical Simulations

shown in Figure 9.5(a). The continuous lines represent the states in linearized spherical

coordinates (ψ, θ, δL), and the states in full nonlinear spherical coordinates are shown as

dotted lines. The expansion is done in 1.8 days and this corresponds to a constant L′ref

of 0.88. After 1.8 days, the L′ref is zero and the formation is allowed to stabilize about

the final separation distance. The feedback gains are C̃1 = 2.97, C̃2 = 3.10, K̃1 = 6 and

K̃2 = 2. With the presented charge feedback law, the states all converge to zero. At

the end of 1.8 days, the constant reference length rate L̇ref abruptly goes to zero and this

results in noticeable oscillations which converge with time. Further, the figure shows that

the nonlinear simulation closely follows the linearized simulation, validating the linearizing

assumption and illustrating robustness to the unmodelled dynamics. Figure 9.5(b) shows the

spacecraft control charge q1 (on craft 1) for both the linearized and full nonlinear simulation

models. Both are converging to the reference value pertaining to the static equilibrium at

each instant of time. Note that the deviation from the value of reference charges is small,

justifying the linearization assumptions used. A spike in the charge required at the end of

1.8 days is due to the abrupt drop of constant reference length rate to zero. The magnitude

of the control charges is in the order of micro-Coulomb which is easily realizable in practice

using charge emission devices. Figure 9.5(c) shows the thrusting force required along the b̂1

and b̂3 direction. The force required for both the linearized and nonlinear model are nearly

identical.

Figure 9.6 shows the Coulomb tether motion, charge and thrust force time histories for

decreasing the separation distance from 25m to 15m. Contractions are more challenging

because the angular motions will increase due to conservation of angular momentum. Again

the maneuver is done in 1.8 days which means L′ref is −0.88 and the gains are same as above

expansion maneuver. The figure illustrates that the system is stable and the reconfiguration

goals are successfully met.
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9.4.2 Orbit-Normal Formation

Table 9.2: Input parameters used in orbit normal reconfiguration simulation
Parameter Value Units

Qref 6.9304× 10−13 µC2

C2 2
√

3Ω
K1 2.7Ω2

K3 3.2596Ω
K2 5Ω2

δL(0) 0.5 m
θ(0) 0.06 rad
φ(0) 0.04 rad

The same set of expansion and contraction maneuver are performed for the orbit-normal

configuration. The simulation parameters that used are listed in Table 9.2. The initial

attitude values are set to θ = 0.06 radians and φ = 0.04 rad. The separation length error

(Coulomb tether length error) is δL = 0.5 meters. All initial rates are set to zero through

φ̇ = δL̇ = θ̇ = 0. Figure 9.7 and Figure 9.8 give the system response for expanding the

Coulomb tether formation from 25m to 35m in 1.8 days, and contracting the formation

from a separation distance of 25m to 15m, respectively. In both the simulations, the states

do converge asymptotically to zero. The nonlinear system response closely follows the

linearized system, thus validating the linearization assumptions.

9.5 Summary

A charge feedback control law for reconfiguring a 2-craft Coulomb tether formation along the

orbit-normal and along-track direction is given. With this work, the study of reconfiguration

of 2-craft Coulomb tether along all three equilibrium is complete. The control law used is

here is a hybrid of Coulomb forces and conventional thrust forces, and is similar to the

one developed for the regulation problem. Like in orbit-radial direction reconfiguration, the
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Figure 9.7: Simulation results for expanding the separation distance of an orbit-
normal formation from 25 m to 35 m. The feedback gains are C̃1 = 0, C̃2 = 3.4641,
K̃1 = 2.7, K̃2 = 5 and K̃3 = 4.6938.
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Figure 9.8: Simulation results for contracting the separation distance of an
orbit-normal formation from 25 m to 15 m. The feedback gains are C̃1 = 0,
C̃2 = 3.4641, K̃1 = 2.7, K̃2 = 5 and K̃3 = 4.6938.
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9.5 Summary

contraction maneuver is found to be more challenging since the angular motions increase

due to the conservation of angular momentum. Numerical simulations of the full nonlinear

motion are carried out to illustrate the results and compare the linearized performance

predictions to the actual nonlinear system response.
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10 Conclusion

The concept of a Coulomb (electrostatic) tether is introduced to bind two satellites in a

near-rigid formation. It is shown through numerical analysis that the point charge model

for charged spheres can be used for calculating the Coulomb force, provided the separation

distances are large compared to the radius of the sphere and the Debye length is very large

compared to the separation distance. Thus validating the point charge model for charged

sphere used in the entire dissertation. First, the stability of a 2-craft Coulomb tether along

the orbit-radial (orbit-nadir) direction is analyzed based on a linearized dynamics and charge

behavior model whose validity is also shown. While the Coulomb force cannot directly

stabilize the attitude, the gravity gradient torque is exploited to stabilize the Coulomb tether

formation about the orbit radial direction. It is observed that a linear charge feedback law

in terms of separation distance errors and separation rate is adequate for stabilizing the

separation distance and in-plane angular motion. The control charges needed are small in

the order of micro-Coulombs and realizable in practice

Unlike the orbit-radial configuration, a 2-craft Coulomb tethered structure aligned along

the orbit normal or along-track direction cannot be stabilized with only a charge feedback

law. But, both Coulomb tether configurations can be stabilized with a hybrid control of

Coulomb forces and conventional thrusters that stabilize the separation distance and orien-

tation respectively. The control charges needed are small in the order of micro-Coulombs

and realizable in practice. The thrusting forces required are in the order of micro-Newtons
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10 Conclusion

and the thrusting is always done orthogonal to the Coulomb tether axis, thus avoiding

plume exhaust impingement problems. For the along-track configuration the separation

distance and in-plan angle are coupled and unstable without feedback. An interesting re-

sult is that for the orbit-normal configuration the separation distance is decoupled and

marginally stable even without charge feedback, while the orientation has to be feedback

stabilized.

The study of reconfiguration of 2-craft in free space using Coulomb force showed that the

charge required are small and realizable in practice. Thus, providing the impetus to study

the reconfiguration of 2-craft Coulomb formation in orbit. A charge feedback control law

for reconfiguring a 2-craft Coulomb tether formation aligned along orbit-radial direction is

successfully derived. During these maneuvers care is taken to ensure that the gravity gradi-

ent torque is still sufficient to stabilize the in-plane attitude of the nadir pointing formation.

The stability regions for expanding and contracting the formation are established through

linearization of the motion and by applying criteria developed by Rosenbrock for linear

time-varying systems. Contracting the virtual structure is more difficult to perform while

guaranteeing stability. The system angular momentum will cause any in-plane angular mo-

tion to increase with decreasing tether length. The magnitude of the local gravity gradient

limits the rate at which the separation distance can be reduced. In contrast, expanding

the virtual structure length is easier because the angular momentum helps contain in-plane

rotation. The out-of-plane motion of the craft is decoupled from the in-plane motion with

the linearized dynamics, and not controllable with the Coulomb forces. However, the an-

alytical solution for the out-of-plane angle equation of motion when the reference length

rate is constant, is successfully developed using the Bessel functions. This solution is used

to come up with bounds on the initial out-of-plane angle so that the out-of-plane angular

oscillations is with in the prescribed limit at the end of the contraction operation. The jump

discontinuity in the reference length rate has been smoothed using a transition function.
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10 Conclusion

A hybrid feedback control for reconfiguration of 2-craft formation in the along-track and

orbit-normal direction has also been developed. Numerical simulations of the full nonlinear

motion are carried out for all control laws to illustrate the results and compare the linearized

performance predictions to the actual nonlinear system response.
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