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Atmospheric trajectory design and entry guidance are highly enabling technologies for hyper-

sonic entry flight missions. Current methodologies are often rooted in certainty equivalence, wherein

optimization is performed on best-estimates of variable or uncertain quantities. The aerospace sci-

ences in general may benefit from improvements to optimal motion planning under uncertainty.

Further, solution methodologies should focus on scalability and practicality, without relying on

implicit root-solving or a priori knowledge of the solution structure. This work leverages principles

of indirect methods in optimal control theory to develop accurate, reliable solution strategies that

transform complex, multi-phase constrained problems into single-phase unconstrained problems.

New developments in regularization methods are shown to greatly simplify construction of the

Hamiltonian boundary value problem without sacrificing solution accuracy. Advances in constraint

regularization using generalized sigmoid functions and differential system extension allow appli-

cation of the new method to a wide range of engineering problems. Classes of ill-posed singular

control problems are also studied with aerospace applications. An indeterminate problem structure

is shown to produce infinite-order singular arcs which the standard convexity conditions fail to

resolve. A relaxation method is developed to produce a nominal trajectory minimizing statistical

variation of the state error covariance about a singular terminal state manifold. These principles are

then applied to numerical predictor-corrector entry guidance algorithms. A consider uncertainty

analysis is shown to maximize probabilistic likelihoods of achieving downrange targeted states from

anticipated measurement conditioning effects. Reformulation of the entry guidance problem for

risk-adverse performance may improve confidence in challenging aeroassist maneuvers such as ae-

rocapture. Impacts of this work on mission design are demonstrated through rapid solution of

complex entry flight problems with uncertainty in system states and parameters.
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Chapter 1

Introduction

1.1 Motivation

Conceptual design of hypersonic entry systems is a critical decision-making process for any

spacecraft destined to pierce the atmosphere of a planet at orbital velocities. Atmospheric entry

is highly enabling for a wide degree of science and exploration missions otherwise intractable with

propulsive orbit insertion [1]. Unfortunately, due to the often unpredictable nature of hypersonic

flight, these missions are subject to considerable uncertainty in the achievable accuracy and relia-

bility of such maneuvers. A considerable effort has been put forth in the literature regarding the

development of online entry guidance algorithms [2–22] designed to continuously re-target down-

range flight conditions. The vast majority of entry guidance work has been developed under the

guise of certainty equivalence [23], wherein uncertain states and parameters are substituted for their

best estimate. This has the effect of greatly reducing the parameter space in optimization, but in

turn degrades the accuracy of predicted future states with imprecise system knowledge. Further,

due to poor dimensional scaling of Monte Carlo simulation methods, uncertainty quantification

(UQ) is generally undertaken asynchronously to trajectory and guidance design. This general ap-

proach has led conceptual trade studies to produce over-designed vehicles with considerable risk

posture, as opposed to leveraging flight-proven heritage entry systems. Coupled with significant

research and development investment timescales required for flagship missions, many high-priority

scientific destinations in the solar system remain unexplored to-date. Improving the reliability of

hypersonic entry flight systems will directly impact planetary exploration and discovery for the
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forseeable future.

The general consensus in the atmospheric flight mechanics community is that the effect of

uncertainty can be mitigated by flying entry guidance in closed-loop. This belief is by no means

unfounded. Successful missions at Mars demonstrated guided entry accuracy on the order of 10

km [24, 25]. However, whereas existing approaches may be sufficient for present needs, future

missions may require landed accuracy on the order of meters. Other highly enabling aeroassist

concepts such as aerocapture remain unproven as a result of disagreement in the research and

engineering community regarding their likelihood of success.

The notion of uncertainty-robust trajectory design may provide a significant path of improve-

ment moving forward. Incorporating models of underlying uncertainty into trajectory optimization

and guidance can greatly improve dispersed performance. Furthermore, because the system must

continuously reacquire its current state from in-situ measurement information, the nominal tra-

jectory can be designed to enhance estimation and control. These benefits come at the cost of

increased complexity in the underlying optimization statement and numerical solution. We are

thus motivated to study tractable, reliable solution methodologies that enhance hypersonic entry

performance under uncertainty. In this work, we are largely concerned with planetary aerocapture,

though the results extend to many other classes of aeroassist missions, including aerobraking and

direct entry.

1.2 Background

1.2.1 Aerocapture Conceptual Design

The future of space exploration calls for advanced technology to accommodate increasingly

large payloads at scientifically interesting destinations in the solar system. Aerocapture is an

aeroassist maneuver to generate considerable attention in the literature [26–29]. The objective

in aerocapture is the dissipation of kinetic energy to capture a space vehicle from an unbounded

approach trajectory into a bounded science observation orbit. Following the atmospheric pass,
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errors in the capture orbit must be corrected using a series of small propulsive maneuvers. The

velocity-loss achieved by the atmospheric pass can be significant depending on the destination and

hyperbolic excess velocity. When compared to fully-propulsive orbit insertion, the maneuver may

provide a 40–80% increase in delivered mass to orbit [27]. Aerocapture is frequently identified as

a highly enabling technology for planetary exploration. Many mission scenarios are prohibitive or

intractable without aerocapture, including Earth aeroassist for human return from Mars, circular

orbits about Jupiter and Saturn, exploration of the ice giants, and orbit insertion at Titan [1].

A common tool in aerocapture mission feasibility assessment is theoretical corridor width

(TCW) [30]. TCW defines the range of entry flight-path angles permitting a successful capture

trajectory using the available control authority of the vehicle. Entry flight-path angles too steep

will shed excess energy and undershoot the target orbit (potentially resulting in direct entry).

Similarly, too-shallow entry flight-path angles will provide insufficient velocity loss, risking an over-

shoot trajectory and possibly unbounded exit orbit. Aerocapture conceptual design relies on TCW

to determine the necessary aerodynamic lift-to-drag ratio (L/D) a vehicle must produce during

atmospheric flight. As a result, the configuration design landscape can vary widely. Earth aero-

capture concepts, such as Lunar or Mars return of high-mass payloads, can leverage significant

improvements in Earth approach navigation demonstrated by the Stardust and Genesis sample re-

turn missions [31,32]. A conservative TCW of 0.4 deg for Earth entry velocities of 11–14 km/s has

been shown to facilitate moderate L/D of 0.1–0.3 [33]. Robotic payloads subject to less stringent

deceleration limits may reduce L/D requirements even further. Moderate L/D is also sufficient

for aerocapture with Mars [34] entry velocities of 4–6 km/s and Venus [35] entry velocities above

11 km/s. Aeroshells producing low to moderate lift, indicative of Apollo-era and Mars Viking

blunt-body designs, have a history of successful atmospheric entry [36]. Entry systems based on

flight-proven heritage technology are significantly more appealing from a cost and risk perspective,

enabling rapid performance evaluation and design based on existing data.

A stark contrast exists for conceptual design of aerocapture missions to relatively unexplored

systems, such as the ice giants, due to numerous sources of uncertainty. Interplanetary transit tra-
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Figure 1.1: Traditional TCW conceptual design for a Neptune aerocapture mission (Heidrich et al.
[37]).

jectories to Neptune, for example, utilize a Venus-Jupiter combined flyby to balance transit time

and delivery performance [38]. A lack of orbital assets at these destinations degrades entry interface

approach navigation accuracy, increasing entry flight-path angle dispersions. Knowledge regarding

the atmosphere and gravity field of Neptune relies partly on data collected by the Voyager 2 flyby

in 1989 [39]. In addition, overshoot risks are evident at missions to the ice giants, where the exit

velocity is close to escape velocity [40]. A trade study on Neptune aerocapture by Lockwood [41]

indicates an L/D of 0.6–0.8 needed for entry velocities in the 28–30 km/s range to accommodate

expected dispersions in delivery flight-path angle and atmospheric guidance reliability. This con-

ceptual design trade is illustrated in Fig. 1.1 for a nominal entry velocity of 29 km/s. Although

entry interface delivery uncertainties could permit moderate-lift vehicles, a large margin in L/D is

included for atmospheric uncertainty and entry guidance performance. A more recent study on ice

giants exploration [42] concludes similar findings for both Uranus and Neptune, noting that recent

advancements in TPS materials may alleviate peak heat rate limitations of previous studies.

As a result of historically high L/D requirements, these missions cannot leverage the proven

flight history of heritage blunt-body entry systems. Instead, aerocapture at these destinations would
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require development of lifting-body vehicles with low technology readiness levels (TRL), ostensibly

spanning a significant design and testing campaign. These factors limit the viability of attempting

aerocapture at the ice giants, especially for first-time flights carrying high-value payloads.

1.2.2 Entry Guidance and Uncertainty Quantification

TCW is useful as a first-order tool for evaluating aerocapture mission feasibility. However,

TCW alone is not an indicator of satisfactory atmospheric flight performance. The overall perfor-

mance of an aerocapture maneuver is highly sensitive to system parameters spanning a range of

engineering disciplines. These parameters may rely on incomplete data or lack Earth-based testing

capabilities. Most aerocapture conceptual design studies have entailed entry guidance to maintain

an acceptable flight envelope. A general illustration of the entry guidance problem for aerocapture

is shown in Fig. 1.2. These strategies typically share a common goal (the precise dissipation of

kinetic energy through aerodynamic force vectoring), though each particular implementation varies

widely.

Hypersonic entry guidance of low-lifting vehicles dates back to the Apollo missions designed

for human return from Lunar orbit [43]. Fixed-trim bank-to-steer guidance strategies have been

flown or planned on many direct entry missions. Guidance strategies for aerocapture have largely

been adapted from direct entry algorithms, building on experience from flight-proven data and

research. The analytical predictor-corrector (APC) method was proposed for Mars Sample Return

(MSR) and Mars aerocapture [44–46]. Another explicit guidance method uses matched asymptotic

solutions to target apogee [47]. Other analytical aerocapture guidance developments include the

terminal point controller (TPC) [40, 48] and the hybrid predictor-corrector aerocapture scheme

(HYPAS) [49–51]. A guidance comparison campaign [52] found the TPC to be more robust than

other existing analytical methods. More recent advancements in aerocapture NPC strategies [53,54]

have demonstrated increased orbit insertion accuracy through numerical integration of the nonlinear

entry dynamics.

The purpose of entry guidance is to recompute a reference flight profile and control after en-
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Figure 1.2: Aerocapture entry guidance prediction problem.

countering perturbations in flight. UQ is frequently performed to assess the dispersed performance

of a guidance algorithm, where simulated trajectories are tested with variable vehicle performance

parameters and environment conditions. Halder [55] gives a comprehensive overview of UQ meth-

ods in hypersonic entry flight. In dispersion analysis, the guidance routine is isolated from “truth”

models and operates its internal prediction logic on nominal states and parameters. The goal of UQ

is to determine the effect of input and model uncertainties on response metrics of interest. Sources

of uncertainty are often classified as aleatory or epistemic [56]. The former refers to irreducible

uncertainty, in which quantities are variable by nature. The latter refers to reducible uncertainty

resulting from a lack of knowledge due to sparse data or subjective probabilistic descriptions [57].

For the hypersonic entry problem, atmospheric density is partly epistemic due to a lack of un-

derstanding of the underlying mechanisms of spatial atmospheric density variations. Parameters

describing the dynamics of an entry vehicle (mass, aerodynamic coefficients, drag area, etc.) may

introduce both aleatory and epistemic uncertainty based on available data and the designer’s knowl-

edge of each subsystem [58]. Algorithmic errors may also be introduced by the internal guidance

routine [52].

The most common UQ technique for atmospheric entry is the Monte Carlo (MC) frame-

work [33, 59, 60]. MC methods simulate a large number of runs with dispersed initial conditions

and system parameters randomly sampled from known probability distributions. A single run is

considered valid if its output is bounded to within a desired interval satisfying trajectory con-
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straints. Uncertainty is estimated by statistical inference of the output time histories of each run.

These methods have the benefit of straightforward implementation and provide a basis for physical

reasoning. However, MC methods have several downfalls, most notably poor numerical scaling and

no statistically consistent method to quantify the evolution of uncertainty [61]. Even with a large

number of runs, there are no guarantees with MC methods to capture every possible realization

of the initial uncertainty distribution. Due to these challenges, MC dispersions are historically

applied “outside the loop.” That is, the nominal control and corresponding trajectory are gener-

ated assuming perfect knowledge of the system state and models. This feature is a commonality

of most existing atmospheric trajectory generation and guidance techniques. Even if current UQ

approaches are sufficiently accurate to quantify output interval dispersions, existing entry guid-

ance methodologies are limited to incorporating uncertainty models outside of the trajectory and

guidance design process.

1.2.3 Optimal Control Theory and Applications

Optimal control is a broad topic encompassing many practical science and engineering prob-

lems. Outside of its common use in aerospace fields, optimal control theory has seen extensive

application including environmental sustainability [62], financial asset allocation [63], biological

models [64], and epidemiology of emerging and reemerging infectious diseases [65, 66], among oth-

ers. Information on the optimal behavior of these systems has broad societal impacts, driving a

continuing need in the research community to improve and innovate reliable, tractable solution

methodologies. Outside of simple, well-behaved systems, iterative numerical methods are required

to solve an optimal control problem (OCP). Solution strategies are often broadly classified as direct

or indirect methods. Direct methods typically discretize the solution domain over a set colloca-

tion nodes [67]. In contrast, indirect methods enforce necessary conditions of optimality through

variational equations [68]. Each approach presents unique opportunities and challenges for the

particular application.

Direct methods transform an OCP into a large-scale parameter optimization problem solved
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by nonlinear programming (NLP). State-of-the-art software packages such as GPOPS-II [69] and

SNOPT [70] have made direct methods highly accessible, owing to their popularity. Direct meth-

ods enjoy many benefits, including reduced sensitivity to initial guess, large domain of attraction,

and ease of implementation in highly-constrained problems [71, 72]. Direct methods are approx-

imate by design, relying on implicit numerical integration of the state equations between nodes.

This approximate nature enables solutions to complex problems without a close initial guess [73].

However, these benefits come at the cost of solution precision and computational complexity with

increasing nodes. Direct methods may also suffer from control “jitter” in sensitive problems due to

discretization errors or improper spacing of collocation nodes [74,75]. Applications requiring rapid

or high precision solutions, such as real-time trajectory optimization and machine learning training

algorithms [76,77], may not benefit from direct methods.

Indirect methods, in contrast, enforce necessary conditions of optimality through the Euler-

Lagrange variational equations [68, 78]. A Hamiltonian boundary value problem (HBVP) is con-

structed from adjoint equations for the costates, with boundary conditions defined at the terminus

of the trajectory. Indirect methods give exact solutions and can require less computational over-

head [79]. Rapid convergence is usually possible with modern BVP solvers given a close initial

guess. Indirect formulations also present unique opportunities for data compression and parallel

computing using multiple shooting [80], making them useful for real-time applications. As with

their direct method counterparts, indirect methods have some setbacks. Indirect methods are no-

toriously sensitive with a much smaller domain of attraction. The less-intuitive nature of costates

makes it difficult to produce a feasible initial guess, though some methodologies exist [81]. Under-

lying assumptions from calculus of variations assume process equations are continuously smooth

and differentiable, limiting their usefulness on data-driven applications. Adjoint equations must

also be constructed through symbolic manipulation to derive conditions for optimality. This pro-

cess has become more automated with indirect software packages [82]. Further advancements in

numerical continuation strategies [83–85] and reduction methods [86] have improved outlooks on

indirect methods and driven continued use within the engineering community.



9

Indirect methods in particular have been shown to greatly enhance hypersonic trajectory

optimization and conceptual design [87–90]. A wide range of design points can be iterated over

by varying problem parameters and trajectory constraints through symbolic manipulation and

numerical continuation techniques. This has been shown to enable rapid trade study development

for vehicle design. Furthermore, optimal control theory has served as the basis for entry guidance

algorithms [21, 91, 92], underpinning its importance in online path planning. Improvements to

indirect methods may also enhance direct methods by virtue of the covector mapping theorem

(CMT) [73, 93]. Continuing developments in the rapid construction and numerical solution of

optimal control problems serves to benefit a wide class of engineering applications.

1.3 Relation to Existing Work

In the traditional indirect approach, constrained solution arcs must be treated separately

and stitched together through solution of a multi-point boundary value problem (MPBVP). This

problem structure is often not known prior to numerical solution, particularly in complex multi-

stage problems. In response, a number of regularization strategies [94–99] have been developed

to overcome these challenges. Generally speaking, regularization involves substituting constrained

quantities with smoothing functions, as well as augmenting error-control terms to increase solution

precision. The methods operate over a numerical continuation interval on small regularization

parameters, such that the original problem structure is retained.

Regularization methodologies have demonstrated considerable promise by eliminating the

need for a priori knowledge of constrained solution arcs. However, current approaches vary widely

in their application and are often problem-specific. For example, logarithmic barrier functions are

studied for a class of control-affine systems with bang-bang control structures in Ref. [94]. The

piecewise-defined control law must distinguish between bang-bang and singular arcs. A topological

smoothing technique for a single-input minimum-time problem is developed in Ref. [95]. The

resulting problem is regular, but requires numerical root-solving to determine the optimal control

policy. More recent approaches utilize geometric sine-cosine orthogonality using trigonometric
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regularization [97, 99]. Trigonometric smoothing can resolve bang-bang and singular arcs in a

uniform fashion. However, the resulting control law is expressed in terms of non-surjective functions,

requiring point-wise application of the Minimum Principle [100] to identify the optimal control.

Limitations of existing approaches may not scale well in complex, high-dimensional problems.

A common feature in optimal control is a singular solution structure. Singular arcs result

from solution segments in which the control imparts no change on the Hamiltonian, leading to an

indeterminate control structure. In many problems, singular arcs are well-posed and can be resolved

through additional convexity conditions on the Hamiltonian [101,102]. However, an interesting fea-

ture occurs when the singular arc presents with infinite order [103]. In this case, the control form

is degenerate, as no further information on the optimal policy can be obtained by successive differ-

entiation of the switching function. This behavior is strongly linked to uniqueness and posedness

of the underlying optimization problem [104]. Though infinite-order singular arcs may seem like a

rare exception, they are sometimes observed in relevant aerospace applications [105–107]. Limited

existing work [108,109] is available on the numerical solution of these problems. Moreover, existing

approaches rely on direct or hybrid direct-indirect solution. These problems would benefit from

improvements to indirect methodologies on infinite-order singular arcs.

Current approaches to the entry guidance problem are strongly rooted in certainty equiva-

lence. Nonetheless, some existing work has begun to reexamine this assumption. Aleatory-epistemic

uncertainty reduction has been attempted for hypersonic entry flight using hybrid coevolutionary

algorithms [58]. The method is applied to design of aerocapture trajectories characterized by uncer-

tainties in atmospheric density, vehicle shape and aerodynamic coefficients using evidence theory.

Reference [110] proposes a blended control predictor-corrector algorithm to confront dispersions

in entry states and atmospheric conditions. Another study applies desensitized optimal control

(DOC) to the entry trajectory optimization problem using direct collocation methods [60]. DOC

attempts to reduce the sensitivity of terminal states with respect to perturbations along the trajec-

tory by minimizing individual entries of the sensitivity matrix. Covariance steering methods have

are applied to the powered descent problem in Ref. [111], where a control input is generated to steer
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an initial state covariance to its desired final distribution. Navigation-enhanced entry trajectory

optimization [112,113] has been shown to reduce terminal state errors due to sensitivities in initial

conditions and parameters. Linear covariance analysis [114] and closed-loop steering laws [115,116]

have been applied to atmospheric entry problems to desensitize closed-loop entry guidance with

stochastic processes. Moving forward, it is important for the research community to continue devel-

oping methods for robust trajectory design in order to enable a broader class of aeroassist missions

to unexplored destinations in the solar system.

1.4 Scope of Thesis

This work develops methodologies for reducing uncertainty in aeroassist problems using ac-

curate and reliable solution methodologies. The statement of this thesis can be summarized as

follows:

A class of problems in optimal control theory exhibit indeterminate solution struc-
tures that can be resolved by projection of statistical error covariances onto singular
terminal manifolds. This work develops tractable solution methodologies for such
problems with relevance to aerospace mission design and entry guidance under
uncertainty.

This statement is supported by the following contributions. Together, these contributions

are expected to enhance atmospheric flight problems with uncertainty, as well as improve outlooks

in the research and engineering community regarding the efficacy and reliability of challenging

aeroassist maneuvers, such as aerocapture. Figure 1.3 illustrates the relationship between each of

these contributions. The relation to existing work is summarized in Table 1.1.

Contribution 1) Generalized indirect optimal control constraint regularization.

Constraints in optimal control problems introduce challenges with traditional indirect methods.

Bang-bang/singular solutions with discontinuous or indefinite control laws add further difficulty

in numerical solutions. Recent efforts in control regularization strategies have sought to overcome

these limitations. Regularization generates a smoothed constraint transformation of a multi-phase

Hamiltonian boundary value problem to a single-phase unconstrained problem. This work develops
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a new approach to regularization using orthogonal error-control saturation functions. The method

is developed for problems in bang-bang/singular form. The method is then applied to problems of

general Hamiltonian structure using system extension and differential control. Applications in state

constraint regularization are discussed. A key feature of the new approach is to eliminate ambiguity

of the control law derived from the first-order necessary conditions of optimality. Results show

desirable stability and convergence in numerical continuation. The method is applied to classical

problems in optimal control, as well as problems of interest in aerospace mission design.

Contribution 2) Auxiliary Covariance Minimization for Ill-posed Singular Control

Problems. Singular arcs are a common feature in optimal control problems when the standard

necessary conditions fail to reveal a candidate control. In some cases, a singular arc can be proven

to be non-optimal and discarded. In other cases, the solution can be resolved through additional

convexity conditions on the Hamiltonian. A less common, but nonetheless interesting, scenario

occurs when the singular arc appears with infinite order. This situation becomes apparent when

the problem definition lacks sufficient information to identify a unique solution. In this work,

we consider conditions under which singular optimal control problems may exhibit indeterminate

behavior due to insufficiency of the cost objective and boundary conditions. The resulting problem

is shown to be singular, but in a degenerate sense in which the necessary conditions yield no new

information. A relaxation approach is developed to repose the problem with augmented covariance

dynamics. Under moderate assumptions on the problem structure, the method permits finite-order

arcs and produces a well-posed problem. The approach has relevance to engineering systems, which

are almost always subject to some level of uncertainty in initial states or parameters. Examples

are provided based on classical problems in optimal control, as well as applications to aerospace

mission design.

Contribution 3) Optimal Information Filtering and NPC Guidance Allocation for

Planetary Aerocapture. Entry flight is a critical mission phase of planetary aeroassist problems.

During atmospheric flight, aleatory-epistemic uncertainty and environmental factors reduce the

accuracy of predicted future states for precision targeting. This problem has been approached
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historically with closed-loop guidance rooted in certainty equivalence. This property separates

estimation and control problems, allowing each to be considered independently. In other concept

studies, an observer model is neglected altogether in favor of assuming perfect state knowledge.

However, a flight system will inevitably have imprecise state information and variability in its

underlying dynamics and measurement models. Systemic uncertainty is a fundamental limitation

of existing entry guidance approaches. This work seeks to overcome these challenges by posing

aerocapture as a robust optimization problem. The cost objective of the maneuver is reformulated

to account for uncertainty in atmospheric structure, vehicle performance parameters, and state

estimation accuracy using an observer-based consider filter. An expected value performance cost

is developed from anticipated measurement conditioning effects. A rapid solution methodology is

illustrated using explicit integration strategies with a parametrized control structure. Results for

a Mars aerocapture concept study show improvement in the post-capture orbit accuracy with low

computational overhead.

Figure 1.3: Flowchart of thesis contributions.
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Table 1.1: Overview of thesis contributions and existing literature.
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1.5 Publications
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bust Aerocapture Trajectory Generation and Guidance,” Journal of Spacecraft and Rockets,

2021. (In press)
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strained Optimal Control Problems,” Journal of Spacecraft and Rockets, 2021. (Under

revision)

J3 Heidrich, C. R., and Holzinger, M. J., “Relaxation of Infinite-Order Singular Arcs by

Auxiliary Covariance Minimization,” Journal of Guidance, Control, and Dynamics, 2021.

(Planned submission)

Conferences

C1 Heidrich, C. R., and Grant, M. J., “Indirect 6-DOF Hypersonic Entry Trajectory Opti-

mization,” AAS Guidance, Navigation and Control Conference, Breckenridge CO, February

2022. (Extended abstract)

C2 Heidrich, C. R., Sparapany, M. J., and Grant, M. J., “Investigation of Control Regulariza-

tion Functions in Bang-Bang/Singular Optimal Control Problems,” AIAA SciTech Forum

and Exposition, Virtual Event, January 2021.

C3 Heidrich, C. R., and Holzinger, M. J., “Robust Optimal Trajectory Design and Guidance for

Planetary Aerocapture,” AAS/AIAA Astrodynamics Specialist Conference, Virtual Event,

August 2020.
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and Drag Modulation Control Strategies for Aerocapture,” AAS Guidance, Navigation and

Control Conference, Breckenridge CO, January 2020.

C5 Heidrich, C. R., and Braun, R. D., “Aerocapture Trajectory Design in Uncertain Entry

Environments,” AIAA SciTech Forum and Exposition, Orlando FL, January 2020.

C6 Heidrich, C. R., Dutta, S., and Braun, R. D., “Modern Aerocapture Guidance to Enable

Reduced-Lift Vehicles at Neptune,” AAS/AIAA Space Flight Mechanics Meeting, Kaana-

pali HI, January 2019.

C7 Heidrich, C. R., and Braun, R. D., “Ballistic Reentry of Lifting Capsules at Earth Using

Bank Rate Modulation,” AIAA Space Forum and Exposition, Orlando FL, September 2017.
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• Heidrich, C. R., and Braun, R. D., “An Accessory Minimization Problem for Robust Nu-
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• Heidrich, C. R., Smith, B. P., and Braun, R. D., “Technology Overview and Assessment for

Small-Scale EDL Systems,” Poster session presented at IPPW-13, Laurel MD, June 2016.

• Heidrich, C. R., and Braun, R. D., “Technologies to Enable Low Mass EDL for Mars

Exploration Payloads,” (Master’s Special Topics), Georgia Institute of Technology, Atlanta

GA, December 2015.



Chapter 2

Generalized Regularization of Constrained Optimal Control Problems

2.1 Regularization and Path Constraint Smoothing Techniques

Constraints in trajectory optimization problems are an important representation of system

performance and solution feasibility. The constraints may be expressed as pure state, control, or

mixed state-control bounds. Constrained problems introduce challenges in constructing and solving

the associated Hamiltonian BVP. A conceptual illustration of constrained trajectory arcs is given in

Fig. 2.1. Using traditional indirect methods, prior knowledge of the number and ordering of multiple

constrained solution arcs is required [78]. The entry and exit behavior must also be specified using

the Weierstrass-Erdmann corner conditions [131], adding further complexity. Outside of simple

problems that provide analytical insight, predicting the constraint structure and order may not be

feasible. Further, over numerical continuation on boundary condition parameters, the structure

of active and inactive constraints may change dynamically. Solution of complex OCP constraints

represents a significant challenge under the traditional indirect approach.

A common feature of some control-constrained OCPs is a bang-bang/singular control law.

This is frequently the case when control terms appear linearly in the optimal control Hamiltonian.

Pontryagin’s Minimum Principle (PMP) [132] may provide a solution based on point-wise mini-

mization of the Hamiltonian. These solutions rely on a switching function, where changes in sign

indicate the instantaneous switching of the control on its upper or lower bound. Further difficulties

are possible when the switching function is zero over a finite time interval, leading to a singular

control. PMP is not well-suited to solving problems of this type, requiring further analysis such
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as the generalized Legendre-Clebsch conditions [133]. Without prior knowledge of the appearance

and order of singular arcs in each control dimension, constructing and solving the representative

multi-point boundary value problem (MPBVP) may prove difficult or infeasible. These challenges

increase rapidly for complex, high-dimensional systems.

A number of methods have been developed over the years in response to limitations of indirect

methods in constrained applications. The focus of these methods is to transform the constrained

OCP to an unconstrained problem using a process termed regularization. Regularization reduces the

original multi-phase Hamiltonian BVP to a single-phase unconstrained problem by replacing con-

straints with appropriate smoothing and error-control terms. For example, early studies [134, 135]

include an energy perturbation term as a quadratic function of the control to the integral cost.

The modified, non-singular problem is repeatedly solved as the error term is gradually reduced

to zero. Another study [95] develops a control smoothing method for a single-input control-affine

system applied to the minimum-time problem. Control smoothing functions have been applied

to constrained control problems [117, 136, 137] to inherently bound quantities in an unconstrained

manner. A further improvement is the Epsilon-Trig method [97, 138] for regularization of control

constraints using trigonometric functions. This method reduces the number of required error pa-

rameters and simplifies the construction and solution process of the augmented problem. A recent

effort is the Unified Trigonometrization Method (UTM) [99], which ties together many useful con-

straint techniques using trigonometric smoothing terms. The UTM can handle affine and mixed

state-control constraints and resolve singular arcs. The UTM produces multiple control options

resulting from necessary conditions, requiring further analysis such as PMP to disambiguate the

control law.

A drawback of indirect methods is the highly problem-specific knowledge needed to construct

the necessary conditions and transform the OCP to its associated Hamiltonian BVP. This is par-

ticularly important in constrained problems where the structure and ordering of constraint arcs

cannot be predicted prior to solution. Moreover, the solution structure may change during numer-

ical solution as constrained arcs become active (or inactive) over a continuation interval. While
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recent constraint regularization methods have shown promise, there remain opportunities for im-

provement. A notable limitation of current methods is ambiguous or implicit nonlinear control

laws, requiring solution using collocation or numerically-expensive root finding operations.

This chapter presents a generalized method for regularization of constrained OCPs using

orthogonal error-control saturation functions. A limitation of current strategies is overcome by

resolving ambiguity in the optimal control law, requiring less effort in constructing and solving the

Hamiltonian BVP. The benefits of this work include 1) flexibility in control regularization function

choices in a generalized approach, 2) introduction of positive-definite integral error terms ensuring

OCP convergence, 3) disambiguation of the optimal control law enabling algebraic substitution, and

4) application to a broad class of OCPs using system extension and generalized path constraint

regularization.

The outline of this chapter is summarized as follows.1 Section 2.2 gives an overview of the

OCP form and theory of indirect methods in optimization. Section 2.3 develops the novel regu-

larization method and derives necessary conditions for optimality. Results are shown for classical

problems in optimal control with known solutions for comparison. Section 2.4 extends the method

to problems of general form using system extension. Section 2.5 illustrates the method for aerospace

systems. Section 2.6 summarizes findings for the chapter.

2.2 Indirect Optimization Variational Approach

A brief overview of indirect methods is presented as a theoretical basis for the remainder of

this work. See Bryson [68] and Stengel [78] for a complete description. An OCP is a functional

minimization problem to optimize a time-varying input u∗(t) producing an optimal state history

x∗(t). The optimal control objective Eq. (2.1a) is presented in Bolza form including integral

and terminal cost terms. The solution must be consistent with the system dynamics Eq. (2.1b)

and initial conditions Eq. (2.1c). The problem may also have constraints on the terminal state

Eq. (2.1d), as well as path inequality constraints Eq. (2.1e). For brevity, we assume a single scalar

1 Please see Appendix F for an acknowledgement regarding this chapter.
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x1

x2

x3

Arc 1

Arc 3

Arc 2

Figure 2.1: Illustration of solution arcs relative to constraint surface c(x1, x2, x3) = 0.

control; however, all expressions can be extended to multiple control variables without loss of

generality. Notation for time-dependency is omitted unless explicitly required.

min
u

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x, u, t) dt (2.1a)

Subject to: ẋ− f(x, u, t) = 0 (2.1b)

x(t0) = x0 (2.1c)

ψ(x(tf ), tf ) = 0 (2.1d)

c(x, u, t) ≤ 0 (2.1e)

Indirect methods leverage the classical calculus of variations approach by appending the dynamics

to the cost objective with a costate vector λ(t). Each costate corresponds to one state equation and

can be interpreted as a time-varying Lagrange multiplier enforcing the system dynamics constraint

in Eq. (2.1b). It is convenient to define the Hamiltonian of the system

H = λTf(x, u, t) + L(x, u, t) (2.2)

The first-order necessary conditions of optimality transform an OCP to a well-defined Hamil-

tonian BVP through adjoint equations on the costates. On trajectory arcs where the constraint
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Eq. (2.1e) is inactive, the following conditions hold

λ̇ = −
(
∂H

∂x

)T

(2.3a)

ẋ =

(
∂H

∂λ

)T

(2.3b)

∂H

∂u
= 0 (2.3c)

λ(tf ) =

(
∂Φ

∂x

)T

t=tf

(2.3d)

where we define the augmented terminal function as

Φ(x(tf ), tf ) = φ(x(tf ), tf ) + νTψ(x(tf ), tf ) (2.4)

The parameter vector ν is a set of Lagrange multipliers adjoined to the cost in order to satisfy

terminal constraints Eq. (2.1d). These parameters are appended to the BVP solver as additional

unknowns. On trajectories where the final time is unspecified, the endpoint is determined implicitly

by the transversality condition (
H +

∂Φ

∂t

)
t=tf

= 0 (2.5)

Equations (2.3a–2.3d) give a well-defined two-point BVP. Boundary conditions are specified on

the states at the initial time t0, whereas boundary conditions on the costates are defined at the

final time tf . Thus, the primary challenge is determining the unknown initial costates λ(t0) and

Lagrange multipliers ν. The necessary condition for u is found from Eq. (2.3c). In the case where

u can be solved for explicitly, the optimal control law is eliminated from the Hamiltonian BVP

through direct substitution. However, in cases where multiple solutions for u exist, further analysis

is required to identify the optimal control.

We note that the classical approach using calculus of variations assumes continuity and

smoothness. These equations are valid for admissible controls on interior solution arcs. However,

in cases where the necessary conditions fail to reveal an optimal control, Pontryagin’s Minimum

Principle (PMP) may yield a solution based on the bounds of the control [132]. PMP can be useful

to disambiguate non-unique control laws resulting from multiple roots of Eq. (2.3c). This principle
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states that the optimal control u∗ at any point minimizes the Hamiltonian compared to any other

control u on the same trajectory.

H(x∗,λ∗, u∗, t) ≤ H(x∗,λ∗, u, t) (2.6)

A problem arises when the necessary condition for u in Eq. (2.3c) gives no new information

on the optimal control law. This is commonly the case when control terms appear linearly in the

Hamiltonian. Suppose the Hamiltonian has the structure

H = H0(x,λ, t) +H1(x,λ, t)u (2.7)

where H0 and H1 terms depend only on states and costates. Taking the necessary condition

Eq. (2.3c) eliminates u and provides no new information on the optimal control, since

∂H

∂u
= H1 (2.8)

In the case where the control is bounded |u| ≤ 1, PMP yields a solution commonly known as

bang-bang/singular form.

u∗ =



−1 if H1 > 0,

+1 if H1 < 0,

indeterminate if H1 = 0

(2.9)

The first two cases of Eq. (2.9) represent a bang-bang solution with instantaneous switching of the

control on its boundary due to changes in the sign of H1. The last case in Eq. (2.9) refers a singular

control solution. PMP is not well-suited to solving problems of this type, as the control imparts no

effect on the optimal control Hamiltonian (and therefore cost).

For a candidate singular control, an optimal singular arc may exist over time interval t ∈

[t1, t2], t1 6= t2 based on the vanishing of a switching function defined as

Hu =
∂H

∂u
= 0 (2.10)

A time derivative of Eq. (2.10) can be taken as

d

dt
Hu =

∂Hu

∂t
+
∂Hu

∂x
ẋ+

∂Hu

∂λ
λ̇+

∂Hu

∂u
u̇ (2.11)
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where the last term vanishes. In some problems, when Eq. (2.10) holds the singular arc can be

resolved from the Legendre-Clebsch generalized convexity condition [133]. Here, successive time

derivatives of Eq. (2.3c) are taken and set equal to zero until the control appears explicitly

d2q

dt2q

(
∂H

∂u

)
= 0 (2.12)

where the integer q is referred to as the order of the singular arc. The convexity condition on the

singular arc is

(−1)q
∂

∂u

[
d2q

dt2q

(
∂H

∂u

)]
≥ 0 (2.13)

If conditions Eq. (2.12) and Eq. (2.13) hold simultaneously over a finite time interval t ∈ [t1, t2], then

the singular arc is optimal. Clearly, derivation of the singular control requires significant algebraic

manipulation. For complex systems, this process can be cumbersome and may not immediately

yield an optimal control law if the singular arc is of higher order.

The preceding discussion of traditional indirect methods serves to illustrate the challenges

accompanying constraints in OCPs. Outside of simple intuitive problems, constructing the Hamil-

tonian BVP and identifying active constraint arcs may be infeasible or require significant trial-and-

error. The benefit of regularization is to forgo this burdensome procedure through approximation.

At the cost of a minor reduction in solution precision, this allows for a large-scale constrained OCP

to be easily constructed and solved using numerical methods. Although the method does not in-

troduce new opportunities for parallelization, solution of the regular problem is easier to construct

and solve in serial computing paradigms.

2.3 Generalization of Bang-bang Optimal Control Regularization

A general, flexible approach is proposed for regularization OCP with bang-bang/singular

form. This method, termed the generalized control regularization method (GCRM), allows for

choice in regularizing functions while ensuring convergence through successive solutions of an aux-

iliary problem. The method replaces bounded control quantities with smoothing functions and

augments a small error-control penalty term to the integral cost. Mall and Grant [97] find that
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Figure 2.2: Illustration of orthogonality in geometric and functional spaces.

geometric orthogonality of sine and cosine terms produces smoothing behavior by avoiding in-

stantaneous switching between bang arcs. This idea can be extended to functional orthogonality,

where the integral product of the control and error-control terms produces optimal smoothing.

This property couples the regularization terms in order to minimize the projected error due to ap-

proximation. These concepts are illustrated in Fig. 2.2. Existing methods use integral error terms

to provide numerical stability. In this work, however, we carefully construct terms to also provide

desirable analytics of the regularized OCP. As opposed to existing methods, the optimal control

law is uniquely determined, enabling direct algebraic substitution into the Hamiltonian BVP to

eliminate the control variable.

To begin, consider the simplest case of Eq. (2.2) with a single scalar control u appearing

linearly. Without loss of generality, we assume the control magnitude is bounded to unity; we

restrict our current case to a scalar unit control for simplicity and clarity of notation. We also

consider the problem with no active path state constraints Eq. (2.1e). The Hamiltonian for this

system takes the form in Eq. (2.14), where dependency of H0 and H1 on states and costates is

implied.

H = H0 +H1u, |u| ≤ 1 (2.14)
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The GCRM replaces all bounded control terms by a smooth, continuously differentiable function

ũ. In addition, an integral error term L̃ is appended to the running cost. A small parameter

ε > 0 is introduced as the regularization parameter. The desired behavior of ε is to converge to the

optimal solution of Eq. (2.1a) with {x, ũ} → {x∗, u∗} in the limit as ε→ 0. The regularized OCP

is summarized as

min
u

J̃ = φ(x(tf ), tf ) +

∫ tf

t0

L(x, ũ(u, ε), t) + L̃(u, ε) dt (2.15a)

Subject to: ẋ− f(x, ũ(u, ε), t) = 0 (2.15b)

x(t0) = x0 (2.15c)

ψ(x(tf ), tf ) = 0 (2.15d)

with ũ : R × R>0 → (−1, 1) and L̃ : R × R>0 → [0,∞) providing regularization over the control

variable u. We assume the terminal cost and boundary conditions do not depend on the control.

The regularized Hamiltonian H̃ is expressed as

H̃ = H0 +H1ũ+ L̃ (2.16)

We now establish a relationship between the regularizing functions ũ and L̃. First, note that

in order to provide the required bounding behavior on the effective control, we require |ũ| ≤ 1.

Application of the necessary condition Eq. (2.3c) to Eq. (2.16) yields

∂H̃

∂u
= H1

∂ũ

∂u
+
∂L̃

∂u
= 0 (2.17)

A key component of the GCRM is the construction of the integral error term to provide useful prop-

erties of the resulting optimal control law. Suppose L̃ is defined relative to the control regularization

function ũ as

L̃(u, ε) =

∫ u

0
ξ

[
∂ũ(ξ, ε)

∂ξ

]
dξ (2.18)

where ξ is a placeholder variable of integration. Using integration by parts gives a simpler expression

L̃ = uũ−
∫
ũ du+ C0 (2.19)
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where C0 is an integration constant. This integration constant will be found later by enforcing the

constraint

L̃(0, ε) = 0 (2.20)

which must hold for any ε > 0. In tandem with the following restrictions on ũ, this definition

ensures L̃ will always introduce a positive-definite running cost. This behavior plays an important

role in convergence behavior of the auxiliary problem. Substituting Eq. (2.18) into the necessary

condition Eq. (2.17) gives

∂H̃

∂u
= (H1 + u)

∂ũ

∂u
= 0 (2.21)

We enforce the additional requirement that ũ be strictly increasing over u such that ∂ũ/∂u > 0.

As a result, the trailing term in Eq. (2.21) is always positive. This resolves the necessary condition

for u with the remarkably simple optimal control law

u∗ = −H1(x∗,λ∗, t) (2.22)

Orthogonality of the control and error-control terms has been shown to produce optimal smoothing

by minimizing the projection of errors due to regularization [95,97]. This property is expressed in

functional form by the integral product

〈
ũ, L̃

〉
=

∫ c

−c
ũL̃du = 0 (2.23)

where c is an arbitrary constant. Orthogonality is ensured through proper choice of regularization

function pairs in the following section.

For perspective, it is helpful to compare the control law Eq. (2.22) to the optimal control

established by PMP in Eq. (2.9). Point-wise application of PMP produces three possible branches

depending on the sign of the switching function H1. In contrast, the GCRM approach reduces

the number of branches to one. Thus, the primary feature of the modified error-control approach

is to smoothly approximate the signum operator on bang arcs. The on-off behavior of bang-bang

solution arcs can introduce errors in variable step size numerical integrators, which is alleviated

in the auxiliary problem. No distinction need be made for singular arcs. The method is capable
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of resolving singular arcs through selection of an appropriate control regularization function ũ and

corresponding error-control term L̃ giving the unique control law in Eq. (2.22).

Before proceeding, it is helpful to outline the assumptions required of the new approach.

First, the system must be cast in bang-bang/singular form for the control law in Eq. (2.22) to

apply. This requires affine control in Eq. (2.1b), although the dynamics may remain nonlinear in

the system states. The integral cost term in Eq. (2.1a), if present, must also contain control terms

appearing linearly. Second, the admissible control must be bounded within a compact set. We

restrict our case to constant upper and lower control bounds, though other approaches may enable

state-dependent bounds [139]. Finally, as presented, the regularization method is designed for a

scalar, single-input system. However, the method is easily generalizable to multiple-input systems.

Application with multiple control variables is demonstrated in the examples to follow.

2.3.1 Regularization Using Control Sigmoid Functions

A candidate control ũ must be developed in order to apply the regularization procedure.

The previously stated requirements are 1) ũ be bounded to unity and 2) ũ be a strictly increasing

function. These together point towards generalized sigmoid functions, which are smooth approxi-

mations of the signum operator. The following example illustrates the regularization procedure for

the arctangent function.

To begin, define the control mapping

ũ = arctan
(u
ε

) 2

π
(2.24)

where a scaling factor 2/π is introduced such that ũ ∈ (−1, 1). The regularization parameter ε is

included in a manner ensuring u and ε remain dimensionally consistent, which can be important

in BVP solvers performing distance and time scale normalization. Using Eq. (2.19), the error term
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L̃ corresponding to the arctangent regularization function is

L̃ = uũ−
∫
ũdu+ C0

= u arctan
(u
ε

) 2

π
− 2

π

∫
arctan

(u
ε

)
du+ C0

= u arctan
(u
ε

) 2

π
− 2

π

(
−1

2
ε log

(
ε2 + u2

)
+ u arctan

(u
ε

))
+ C0

= ε log
(
ε2 + u2

) 1

π
+ C0 (2.25)

The integration constant is found from Eq. (2.20) as

C0 = −ε log
(
ε2
) 1

π
(2.26)

giving the arctangent regularization error-control term

L̃ = ε log

(
1 +

u2

ε2

)
1

π
(2.27)

The Hamiltonian of the smoothed problem then has the form

H̃ = H0 +H1 arctan
(u
ε

) 2

π
+ ε log

(
1 +

u2

ε2

)
1

π
(2.28)

The optimal control law can be verified by substituting Eq. (2.28) into Eq. (2.17).

∂H̃

∂u
=

2

π

ε

u2 + ε2
(H1 + u) = 0 (2.29)

It is easy to verify the following limit behavior of the leading term in Eq. (2.29)

lim
u→0

(
ε

u2 + ε2

)
=

1

ε
, lim

ε→0

(
ε

u2 + ε2

)
= 0 (2.30)

Therefore, the leading term non-zero for u ∈ R given ε > 0. Note that u is now an unconstrained

quantity in optimization and is no longer restricted to |u| ≤ 1. The regularization parameter ε can

become arbitrarily small, but not precisely zero as this will produce an indeterminate case when

u = 0. Given these properties, the leading terms in Eq. (2.3) can be dropped, verifying the optimal

control law of Eq. (2.22). The arctangent regularization function slope is illustrated in Fig. 2.3

for a range of values of the regularization parameter ε. As ε approaches small values, the slope of



29

−1 0 1
u

10−2

10−1

100

101

(∂
/∂
u)

̃ u

Figure 2.3: Arctangent regularization function derivatives for ε = 1 (solid line) to ε = 0.01 (dashed
line).

the regularization function sees a sharp peak at u = 0. This behavior reflects an approximation

of bang-bang switch points. However, because the function is smooth and continuous, this switch

behavior is continuously differentiable, making it more amenable to variable step size numerical

integrators. We note that H1 is no longer a switching function because the auxiliary problem is

regular. However, the solution behavior of H1 in the regularized problem will reflect that of the

true switching function as ε→ 0. This convergence behavior is verified in the following sections.

The formulation of the GCRM leaves flexibility in choice of sigmoid functions. Using a pro-

cess similar to the arctangent function, control and error-control terms for several sigmoid functions

are developed in Table 2.1. Each control smoothing term is scaled to provide unit bounds on ũ.

An associated error-control term L̃ is derived based on definitions in Eq. (2.19) and Eq. (2.20).

For problems with Hamiltonian structure in Eq. (2.14), these function pairs will always produce

a unique control law Eq. (2.22) when substituted into the necessary conditions in Eq. (2.3c). Op-

timization can then be performed over the control variable u in an unconstrained manner, since

the response is inherently bounded. This smoothing effect enforces the upper and lower bounds in

bang-bang problems. The regularization parameter ε provides numerical stability during solution

of the auxiliary problem. The solution procedure typically begins with larger values of ε ≥ 1. Suc-
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Table 2.1: Normalized regularization functions and error-control terms for |u| ≤ 1.

Method Regularization function Error-control term

Arctangent arctan
(
u
ε

)
2
π ε log

(
1 + u2

ε2

)
1
π

Error function erf
(
u
ε

)
ε
(

1− exp
(
−u2

ε2

))
1√
π

Hyperbolic tangent tanh
(
u
ε

)
u tanh

(
u
ε

)
− ε log

(
cosh

(
u
ε

))
Logistic 2

(
1 + exp

(
−u
ε

))−1 − 1 −2ε log
(

1
2

(
1 + exp

(
−u
ε

)))
+ 2u

((
1 + exp

(
−u
ε

))−1 − 1
)

Algebraic
(
u
ε

) (
1 +

(
u2

ε2

))− 1
2

ε

(
1−

(
1 +

(
u2

ε2

))− 1
2

)
Einstein function 1− 2

1+(uε−1) exp(uε )
(exp(uε )−1)

2 2ε

(
1−

(
u
ε

)2 exp(uε )
(exp(uε )−1)

2

)

cessive solutions are then obtained using a numerical continuation procedure with decreasing values

of ε, where the previous solution is used as an initial guess for the current BVP solver iteration.

The shape of each control and error-control function pair in Table 2.1 is illustrated in Fig. 2.4.

Trends are plotted versus the control variable u over a range of ε values. The smoothing effect in

ũ is apparent beginning at an ε of 1. The functions remain upper and lower bounded to unity, but

require larger absolute values of u to approach these bounds. This amplifies the smoothing effect

in the OCP mapping, which has the benefit of reducing sensitivity to errors in the initial solution

guess. Once a solution to this initial Hamiltonian BVP is found, reducing the ε parameter forces the

ũ response closer to the signum function. This emulates the on-off behavior of bang-bang controls

for relatively small changes in u. Trends in the L̃ response also illustrate positive-definiteness of

the error-control terms. This avoids adding a non-zero path cost penalty, which would otherwise

impose an artificial time-minimization objective that may not be present in the original OCP.

Each function pair in Table 2.1 satisfies the orthogonality condition in Eq. (2.23), ensuring

convergence to the original OCP as ε approaches zero. This property is illustrated by comparing

the smoothed Hamiltonian to its expected output prior to regularization. We consider the case

H = 0 and therefore H0 = −H1 in Eq. (2.14). The smoothed Hamiltonian is then computed over

a range of ε values. Figure 2.5 shows the convergence qualities of each regularization function in

Table 2.1. It is immediately clear that each function trends uniformly to the expected Hamiltonian
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Figure 2.4: Control and error-control regularizing functions for ε = 1 (solid line) to ε = 0.01 (dashed
line).



32

10−5 10−2 101

ε

0.00

0.25

0.50

0.75

1.00

H̃

H0 = 1.0

arctan
erf
tanh
logistic
algebraic
einstein

10−5 10−2 101

ε

0.0000

0.0025

0.0050

0.0075

0.0100

H̃

H0 = 0.01

10−5 10−2 101

ε

0.00000

0.00025

0.00050

0.00075

0.00100

H̃

H0 = 0.001

10−5 10−2 101

ε

0.000000

0.000025

0.000050

0.000075

0.000100

H̃

H0 = 0.0001

Figure 2.5: Convergence of smoothed optimal control Hamiltonian over regularization.
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value of zero for decreasing values of the regularization parameter. The Hamiltonian is monotonic

in its convergence with respect to ε, though it is interesting to note that the rate of convergence

differs for each basis function. For example, the arctangent function rapidly attenuates smoothing

errors at higher ε values, but for ε ≤ 10−1 the arctangent shows the slowest rate of convergence.

The hyperbolic tangent appears to provide the lowest approximation errors in comparison, but

this may come at the cost of smaller step size requirements over the continuation interval for

ε. The Einstein function shows numerical instability for decreasing values of H1. This behavior

is attributed to the fact that the regularization function in Table 2.1 produces 0/0 behavior in

the limit as u → 0. This limit exists in theory, but poses numerical anomalies that should be

avoided in optimization. Thus, each function introduces differing numerical behavior that may

prove advantageous or disadvantageous depending on the problem complexity.

The benefits of the new approach are apparent when compared to existing work. Previous

optimal control regularization studies have proposed smoothing functions resulting in ambiguous or

implicit control laws [94,99,136]. This adds an additional layer of complexity, as further analysis is

required to construct the Hamiltonian BVP. With multiple roots of Eq. (2.3c), PMP may be able to

distinguish the optimal control. However, multiple control variables require point-wise evaluation

of PMP along the trajectory for each permutation of potential control solutions. For example, the

UTM [99] produces two control laws for each variable appearing linearly in the Hamiltonian, neces-

sitating application of PMP at each time step for updated values of the adjoint system variables.

See Fig. 2.6. This adds numerical overhead and eliminates the analytical form of the control law.

Similarly, if a control law is defined implicitly, a numerical root-finding algorithm must be employed

at each time step to determine the control, which can be numerically burdensome. If multiple roots

for u exist, optimality and convergence may not always be guaranteed. In contrast, the GCRM

control law is always unique, allowing for direct algebraic substitution into the Hamiltonian BVP

to eliminate the control variables. See Fig. 2.7. This effectively transforms the control-constrained

problem to an unconstrained problem, allowing direct elimination of all control variables. Ap-

pendix A gives a further comparison between the UTM and GCRM control laws. OCPs involving
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multiple control variables in bang-bang/singular form may benefit greatly from disambiguation of

the optimal control law using the GCRM.

2.3.2 Accommodating Arbitrary Control Bounds

Many practical problems impose asymmetric upper and lower bounds on the control, whereas

the preceding developments assume a control bound of unity. There is no loss of generality in this

assumption, as bounds on u can be absorbed into H0 and H1 terms in the Hamiltonian Eq. (2.14).

However, it is helpful to provide a form of the ũ and L̃ functions that can directly accommodate

arbitrary control bounds without performing further analysis into the Hamiltonian structure. This

can be accomplished by defining scaling and offset constants in the control [99]. To this end, we

modify the control mapping function as follows. Define the scaled control mapping ũ′ as

ũ′ = c1ũ+ c0 (2.31)

where c0 and c1 are constants defined relative to the upper and lower bounds on the control. For

the case when u ∈ [umin, umax], these constants are computed as

c0 =
(umax + umin)

2
, c1 =

(umax − umin)

2
(2.32)

A further step is also taken due to the definition of L̃ in Eq. (2.18). Since the scaling constant c1

directly multiplies the control, it must also appear in the error-control term to maintain dimensional

consistency. The scaled error-control term L̃′ is simply

L̃′ = c1L̃ (2.33)

The scaled problem can be related to the unscaled problem as

H̃ ′ = H0 +H1ũ
′ + L̃′

= H0 +H1 (c1ũ+ c0) + c1L̃

= H0 +H1c0 + (H̃ −H0)c1 (2.34)
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Figure 2.6: Structure of UTM optimal control law.

Figure 2.7: Structure of GCRM optimal control law.



36

where H̃ is the unscaled regularized Hamiltonian. It is easy to see that when umax = −umin = 1,

c0 = 0 and c1 = 1, giving H̃ ′ = H̃.

The scaling constants enable application of GCRM to problems with arbitrary upper and

lower control bounds. The scaled expressions also allow direct substitution into existing problems

without consulting the Hamiltonian structure. One final point is made regarding the units of the

regularization parameter ε. Noting the definition of the scaling constants in Eq. (2.32) and the

error-control terms in Table 2.1, the units of ε can be inferred as units of the path cost L divided

by units of the control bound c1. BVP solvers performing distance and time scale normalization

should use these units for ε to ensure proper dimensional scaling.

Given the regularization function pairs in Table 2.1, application of the GCRM to problems in

bang-bang/singular form is straightforward. This can be achieved through substitution of control

terms with a chosen control smoothing function and error-control penalty term. The resulting

control law can then be substituted to produce a well-defined Hamiltonian BVP as a function

of states and costates only. The following examples serve to illustrate the procedure on simple

problems. These problems are chosen to allow for analysis using traditional methods prior to

numerical solution using control regularization.

2.3.3 Example: Van der Pol Oscillator

A well-known classical problem in optimal control is the Van der Pol Oscillator. Several

variants of this problem have been studied in the literature, including minimum-time (James [140],

Maurer [141]) and minimum damping (Vossen [142]) objectives. The former has been proven to

contain no singular arcs, whereas the latter is known to have bang-singular form.

The GCRM is first applied to the minimum-time Van der Pol to illustrate the regularization

procedure for a bang-bang problem. Prior numerical studies of this problem [143] give insight on



37

the optimal solution structure. Consider the following objective and state equations.

J = tf , tf free (2.35)

ẋ1 = x2, ẋ2 = −x1 + x2

(
1− x2

1

)
+ u (2.36)

with initial conditions x1(0) = x2(0) = 1. The stop conditions are enforced by a terminal state

constraint of the form

x1(tf )2 + x2(tf )2 = r2, r = 0.2 (2.37)

The control is bounded to |u| ≤ 1. The Hamiltonian for this problem is constructed as

H = λ1x2 + λ2

(
−x1 + x2

(
1− x2

1

)
+ u
)

(2.38)

The costate dynamics are derived from Eq. (2.3a) as

λ̇1 = −∂H
∂x1

= λ2(1 + 2x1x2) (2.39a)

λ̇2 = −∂H
∂x2

= −λ1 − λ2

(
1− x2

1

)
(2.39b)

The terminal state constraint Eq. (2.37) is adjoined with a Lagrange multiplier νf . The augmented

terminal function is

Φ(x(tf ), tf ) = tf + νf
(
x1(tf )2 + x2(tf )2 − r2

)
(2.40)

leading to boundary conditions on the costates of λ1(tf ) = 2νfx1(tf ) and λ2(tf ) = 2νfx2(tf ).

Applying the necessary condition for u gives

∂H

∂u
= λ2 (2.41)

Since the control u appears linearly in the Hamiltonian Eq. (2.38), the solution is expected to have

bang-bang/singular form.

It is easy to show by contradiction that a singular arc is not optimal in this problem. Suppose

a singular arc exists over some time interval t ∈ [t1, t2] with t2 > t1. Then λ2 = λ̇2 = 0 on this

interval. Substituting into Eq. (2.39b) gives λ1 = 0. The Hamiltonian on the singular arc is

then H = 0. Since H does not depend explicitly on time, we also have Ḣ = 0. However, the
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transversality conditions Eq. (2.5) with Eq. (2.40) indicate that H(tf ) = −1. This contradicts the

original assumption that an optimal singular arcs exists. Therefore the solution has the bang-bang

structure in Eq. (2.42).

u∗ =


−1 if λ2 > 0

+1 if λ2 < 0

(2.42)

Even for simple problems such as the Van der Pol oscillator, traditional indirect methods

require significant analysis to understand the solution form. This analysis may differ based on the

specific problem structure. Moreover, the number and order of bang arcs may not be known prior

to numerical solution. In contrast, the GCRM solves the problem in a much simpler manner. The

arctangent regularization method is applied to the time-optimal Van der Pol problem as follows.

Control terms u are replaced by the smoothing function Eq. (2.24) and the error control term

Eq. (2.27) is augmented to the running cost. The regularized problem is summarized as

J = tf +

∫ tf

0
ε log

(
1 +

u2

ε2

)
1

π
dt, tf free (2.43)

ẋ1 = x2, ẋ2 = −x1 + x2

(
1− x2

1

)
+ arctan

(u
ε

) 2

π
(2.44)

with the preceding initial conditions and terminal state constraint. The scaled arctangent operation

implicitly bounds the control response to unit values, allowing optimization for u to be performed

in an unconstrained manner. The integral path cost ensures numerical stability while producing

the unique optimal control law u∗ = −λ2.

To solve the regularized problem, a numerical continuation procedure is performed on ε,

starting at a value of 10 and ending on a value of 10−6. A bisection method is used over the

continuation interval with equally spaced points on a logarithmic scale. Figure 2.8 shows results

for the minimum-time Van der Pol problem using the arctangent regularization method. Figure 2.8a

shows a phase portrait of x1 and x2 along with a depiction of the radially bounded terminal state

constraint Eq. (2.37). The state response in Fig. 2.8b sees a sharp bend corresponding to the

bang arc switching from -1 to 1. This bend remains continuous over ε due to the regularization

smoothing effect. Figure 2.8c shows the control and switching function time history. A single switch
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Figure 2.8: Minimum-time Van der Pol solution with GCRM arctangent regularization.

is determined to take place at 0.7139 seconds with a final time of 2.8641 seconds. Numerical studies

by Maurer [143] for the time-optimal Van der Pol problem confirm these values, as well as the overall

solution structure consisting of two bang arcs. The GCRM approximates the expected bang-bang

control well, with a rapid transition between the upper and lower bounds on u. This behavior is

important in order to correctly solve for bang arcs without degrading the overall predicted cost due

to approximation.

The GCRM provides a straightforward solution methodology by slight modification of the

problem structure. The solution is obtained without ambiguity in the control law, and application

of PMP is not required. The current example serves to illustrate the application of GCRM to

problems in bang-bang form. The following example concerns problems involving singular arcs,

which require additional analysis using traditional methods.

2.3.4 Example: Sounding Rocket

A common case of the Hamiltonian structure in Eq. (2.14) is a singular arc. This occurs

when the switching function is zero over a finite time interval, and the control imparts no effect on

the Hamiltonian. The GCRM can easily solve such problems through regularization of the singular

control. Consider the sounding rocket problem [144] consisting of vertical flight through a uniform
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density field. The objective is to determine the thrust u to maximize the final altitude z(tf ) subject

to the differential equation

d2z

dt2
+ k

(
dz

dt

)2

+ g = u (2.45)

with z(0) = 0. The control thrust is limited to 0 ≤ u ≤ B. The endpoint is defined implicitly by

the isoperimetric constraint ∫ tf

0
u dt = b (2.46)

which can be interpreted as an energy (or fuel) constraint on the total impulse. The system is cast

into OCP form Eq. (2.1a) by augmenting an auxiliary state x3 to track the integrated control effort

in Eq. (2.46). The problem is summarized as

J = −x1(tf ), tf free (2.47)

ẋ1 = x2, ẋ2 = −kx2
2 − g + u, ẋ3 = u (2.48)

with the required boundary conditions x1(0) = x2(0) = x3(0) = 0 and x3(tf ) = b. The augmented

terminal function Eq. (2.4) can be written as

Φ(x(tf ), tf ) = −x1(tf ) + νf (x3(tf )− b) (2.49)

where incorporation of the terminal state constraint with Lagrange multiplier νf ensures exact

satisfaction of the energy constraint in Eq. (2.46).

We first consider a solution to this problem using the traditional indirect methods approach.

The Hamiltonian for this system is constructed as

H = λ1x2 + λ2

(
−kx2

2 − g + u
)

+ λ3u (2.50)

The costate rates are derived from Eq. (2.3a) as

λ̇1 = −∂H
∂x1

= 0 (2.51a)

λ̇2 = −∂H
∂x2

= −λ1 + 2kλ2x2 (2.51b)

λ̇3 = −∂H
∂x3

= 0 (2.51c)
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with corresponding boundary conditions λ1(tf ) = −1, λ2(tf ) = 0, and λ3(tf ) = νf from Eq. (2.3d)

and Eq. (2.49). Given the costate rates in Eq. (2.51a) and Eq. (2.51c), the boundary conditions

imply constant values λ1 = −1 and λ3 = νf . Application of the necessary condition for u gives

∂H

∂u
= λ2 + λ3 = 0 (2.52)

Since u is eliminated from this expression, the problem is bang-bang/singular. This example does

allow for singular arcs, which can be shown using the generalized convexity condition Eq. (2.13).

Define the shorthand notation Hu := ∂H/∂u. Taking the time derivative of Eq. (2.52) gives

d

dt
(Hu) = λ̇2 + λ̇3

= −λ1 + 2kλ2x2 = 0 (2.53)

Together with the expression for λ1 this implies

λ2 = − 1

2kx2
(2.54)

Taking a second time derivative of Eq. (2.52) gives

d2

dt2
(Hu) = 2kλ2

(
−kx2

2 − g + u
)

= 0 (2.55)

where we leverage the fact that λ̇1 = 0 and λ̇2 = 0 on the singular arc. Equation (2.55) gives the

singular control law

u∗ = kx2
2 + g (2.56)

When considered in the context of the x2 dynamics, this implies ẋ2 = 0. Thus, the singular arc

is a constant-velocity manifold that balances the control thrust with drag and gravity terms. The

Legendre-Clebsch generalized convexity condition Eq. (2.13) is

(−1)
∂

∂u

[
d2

dt2
(Hu)

]
= −2kλ2 =

1

x2
≥ 0 (2.57)

which must hold since x2 > 0. One further insight can be made by noting that, on the singular

arc, the Hamiltonian Eq. (2.50) with control law Eq. (2.56) is

H = −x2 + λ3

(
g + kx2

2

)
= 0 (2.58)
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which, in tandem with Eq. (2.52) and Eq. (2.54), gives a value for the velocity on the singular arc of

x2 =
√
g/k. Substituting into Eq. (2.56) results in a simplified expression u∗ = 2g for the optimal

singular control.

The approach using traditional indirect methods shows that, although solutions exist on

singular arcs, the requisite analysis can become cumbersome. The sounding rocket example has a

singular arc with order q = 1, but other problems may require further successive time derivatives of

Hu to resolve the control. This process may be intractable with large-scale, complex optimization

problems with multiple state and control variables. In comparison, the GCRM can resolve the

bang-bang/singular arcs in the sounding rocket problem with relative ease. The error function

regularization method is implemented using the ũ and L̃ definitions in Table 2.1. Since the control

bounds are asymmetric, we use the scaling constants c0 = c1 = B/2 in Eq. (2.32). The regularized

problem is summarized as

J = −x1(tf ) +

∫ tf

0
ε
B

2

(
1− exp

(
u2

ε2

))
1√
π

dt, tf free (2.59)

ẋ1 = x2, ẋ2 = −kx2
2 − g +

B

2

(
erf
(u
ε

)
+ 1
)
, ẋ3 =

B

2

(
erf
(u
ε

)
+ 1
)

(2.60)

where optimization is performed over the control variable u. The previous initial conditions and

terminal state constraint remain in effect. Forming the regularized optimal control Hamiltonian

and applying the necessary condition Eq. (2.3c) gives u∗ = −λ2 − λ3. Note that this control law is

globally valid and no distinction need be made over bang-bang versus singular arcs.

Table 2.2: Parameters used in the sounding rocket example.

Parameter g k b B

Value 9.81 m/s2 0.002 m-1 350 m/s 4g

Constants used in this problem are given in Table 2.2. These parameters are chosen to

illustrate the solution form and are not necessarily representative of any physical system. A two-

step numerical continuation procedure is performed. First, the value for b is set to 10 m/s, and a

continuation step is performed to reach its final value of 350 m/s. Since the b parameter dictates
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Figure 2.9: Solution to sounding rocket example using GCRM error function.

the stop conditions of the problem in Eq. (2.46), smaller values correspond to shorter trajectories,

allowing for convergence to an initial feasible solution from a rough initial costate guess. The

second continuation step is performed on the regularization parameter ε, starting with a value of

100 and ending at 10−7. The computed cost of the final converged trajectory is -1143.84 m. This

cost corresponds to the negative of the maximum altitude achieved. The control solution structure

is bang-singular-bang, with computed switch times t1 of 2.726 and t2 of 15.114 seconds.

Figure 2.9 illustrates the state and control histories. The x1 coordinate is divided by a factor

of 10 for plotting purposes. Figure 2.9a shows the state histories. The singular arc is evident at

a velocity of x2 =
√
g/k. The auxiliary state x3 is excluded from these plots, but it is found by

inspection that the boundary condition x3(tf ) = b is exactly met. The altitude ramps up linearly

over the singular arc, which is expected because the velocity remains constant. Figure 2.9b shows

the control and switching function defined by Eq. (2.52). The bang arcs are well-approximated

by the regularization procedure, as well as the singular arc which verifies the singular control law

u∗ = 2g. A further relationship can be found between x2 and the switching function λ2 + λ3 by

noting H = 0 and using the control law from PMP. Using this result, a comparison of the regularized

problem to traditional methods is given in Fig. 2.9c. The expected trend is closely followed by the

GCRM, indicating that the regularization procedure maintains conditions for optimality in the
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Figure 2.10: Optimal control cost over regularization parameter for sounding rocket example.

original OCP. Finally, convergence of the regularized OCP over ε is shown in Fig. 2.10. The cost

is initially higher due to the smoothing effect of the regularizing functions. As the value of ε

decreases, the cost approaches a constant value asymptotically. Values of ε below 10−6 are not

found to decrease the computed cost significantly.

The overall solution structure and accuracy of the regularized problem when compared to the

traditional approach are reliable indicators that an optimal solution is reached. This is confirmed

through comparison to analytical results obtained using traditional methods, as well as the direct

optimization software GPOPS-II [69]. Note that with the GCRM, no prior knowledge regarding

the number and ordering of solution arcs is required, nor is a derivation for the analytical form of

the singular control. The present example serves to validate performance on singular arcs. In next

section, we extend the method to more complex OCP structures representing a broader class of

problems.

2.4 Extension to General Hamiltonian Structures

The preceding developments assume that an OCP has the Hamiltonian form in Eq. (2.14)

with control terms appearing linearly. Many interesting problems do not adhere to this structure,

in which case the GCRM will not yield the unique control law Eq. (2.22). However, an OCP

can be transformed into bang-bang/singular form through a process termed system extension and
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differential control (SEDC). This method maps nonlinear control terms as additional states in the

system, allowing for application of the GCRM functions through auxiliary control variables. An

additional consideration is made for state path constraints, which are required to enforce bounds

on the control variable following system extension.

2.4.1 Nonlinear Control Terms

Consider problem OCP(u) with general Hamiltonian structure

H(u) = h(x,λ, u, t) (2.61)

where the superscript (u) emphasizes that optimization is performed over the control u. Control

terms appearing in transcendental or nonlinear form may result in an ambiguous control structure

for u from Eq. (2.3c). The objective of SEDC is to remove this ambiguity through integration of

the differential rate for u, while simultaneously satisfying optimality conditions. A similar strategy

exists for index reduction of semi-explicit differential-algebraic equations (DAE) [145, 146]. Index

reduction casts a DAE into an ordinary differential equation (ODE) by: 1) appending an algebraic

constraint to the system boundary, and 2) integrating its differential with respect to auxiliary

variables. For example, Antony and Grant [80] use this method to solve implicit expressions for

u in Eq. (2.3c) by integrating an expression for u̇ subject to initial conditions (∂H/∂u)t=t0 = 0.

However, the method still requires a numerical root-finding algorithm to solve Eq. (2.3c) on the

boundary. If multiple roots for u exist, the BVP solver may converge to a suboptimal solution.

In contrast, SEDC ensures optimality for u without solving Eq. (2.3c) directly. Other system

extension approaches have been proposed in Refs. [112, 136, 137, 147], though the approaches are

often problem-specific.

The process is summarized as follows. Suppose the OCP Hamiltonian has terms with u

appearing in nonlinear form Eq. (2.61). Solution of ∂H/∂u = 0 may prove difficult in this case.

Instead, the control variable u is augmented to the system as an additional state, and a new control
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v is defined as its differential rate. The extended problem OCP(v) is written as

min
v

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x, u, t) dt (2.62a)

Subject to: ẋ− f(x, u, t) = 0 (2.62b)

u̇ = v (2.62c)

u(t0), u(tf ) free (2.62d)

With the extended system, optimization is performed over the new control variable v. The Hamil-

tonian is affine in v, enabling application of the GCRM. Unlike the approach in Ref. [80], we need

not append the necessary condition for u to the boundary. The GCRM is instead able to resolve

necessary conditions for v and therefore u as an additional state

One further observation is made regarding solution of Eq. (2.62a) following SEDC. After

transformation to bang-bang/singular form, solution segments on bang arcs are dictated by the

upper and lower bounds on v. Such bounds may not exist in the original problem Eq. (2.61), giving

a suboptimal solution. We show in Appendix B that this control solution must be totally singular.

This behavior can be avoided after regularization by setting arbitrarily large bounds on v, such

that bang arcs are never reached. However, a more practical approach lies in the fact that many

engineering systems have bounds on control actuator rates. In this case, it remains useful to set

v ∈ [vmin, vmax] based on system requirements. In addition, the free condition in Eq. (2.62d) could

instead enforce an initial or final state constraint on u. Thus, SEDC enables solutions to OCPs with

general Hamiltonian structure while modeling more realistic control actuation with physics-based

systems.

2.4.2 Path Constraint Regularization

Path constraints add additional complications using traditional indirect methods. Along

constrained arcs, the optimal control law is determined by the constraint function and its derivatives

along the active arc, instead of the unconstrained necessary condition on u. In addition, the entry

and exit transition of states and costates along constrained arcs must be carefully designed. A full
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discussion of traditional methods with path constraints is outside of the scope of this work. Instead,

we provide a brief summary for context. Suppose a scalar inequality constraint c(x, u, t) ≤ 0 is to

be enforced. Traditional methods append the active constraint to the Hamiltonian with a Lagrange

multiplier µ as

H = λTf(x, u, t) + L(x, u, t) + µc(x, u, t) (2.63)

When the constraint is active, the Lagrange multiplier takes on an effective value µeff , such that

µ =


0 if c(x, u, t) < 0

µeff if c(x, u, t) = 0

(2.64)

The Hamiltonian incorporates this additional (possibly time varying) factor, therefore introducing

piecewise-defined conditions of optimality dependent on whether the constraint is active. Adjoined

constraints effectively split the problem into multiple solution arcs. Each arc must be stitched

together in order to provide a complete solution, adding further challenges in constructing and

solving the Hamiltonian BVP.

The SEDC approach enables application of the GCRM to a broad class of problems. Through

a minor alteration of the OCP structure, the problem is cast into bang-bang/singular form in

terms of the auxiliary control variable v. Bounds on u are neglected because regularization is not

applied to the original control. However, because u is a state in the extended system, bounding

behavior on u can be recovered using standard inequality constraint regularization techniques.

These constraints are enforced through interior penalty functions augmented to the integral cost.

For example, previous studies have utilized trigonometric [99, 148] and logistic [149] smoothing

functions for state constraint regularization. The approach is extended using the GCRM functions

in Table 2.1 as follows.

Consider a scalar inequality constraint in Eq. (2.1e) of the form c(x, t) ∈ [ai, bi], where ai and

bi are the upper and lower constraint bounds, respectively. This expression can be normalized [148]

as

c′(x, t) =
2

bi − ai
c(x, t)− bi + ai

bi − ai
(2.65)
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Table 2.3: Path constraint regularization functions.

Method Path constraint penalty, ζ

Arctangent ε tan2 (πc′/2)
Error functiona εerfinv2 (c′)

Hyperbolic tangent εatanh2 (c′)
Logistic ε log2 ((1 + c′)/(1− c′))

Algebraic εc′2/(1− c′2)
Einstein function undefinedb

aerfinv is the inverse error function.
bThis inverse does not exist.

with c′(x, t) ∈ [−1, 1]. We seek to penalize values of the constraint near the prescribed bounds.

A penalty function ζ : (−1, 1) × R>0 → [0,∞) is augmented to the integral cost, such that the

resulting OCP objective is

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x, u, t) + ζ
(
c′(x, t), ε

)
dt (2.66)

Due to the normalization of c′, an appropriate penalty function can be constructed from each of

the control regularization functions in Table 2.1 as

ζ
(
c′(x, t), ε

)
=

1

ε

[
ũ−1(c′(x, t), ε)

]2
(2.67)

where ũ−1 is the inverse function (not the reciprocal) of each regularizing control term. This

functional form was deduced by noting the bounding behavior of ũ−1 corresponds directly to the

normalization of the path constraint Eq. (2.65). The square of the inverse is taken to ensure

only positive values are augmented to integral cost. Finally, the division by ε ensures dimensional

consistency with the Lagrangian. As a result, ε has the same units as L. Due to limit behavior of ζ,

exact satisfaction of the constraint bound is infeasible as the interior penalty function approaches

infinity. In practice, however, small values of ε will rapidly reduce the push-off factor of the interior

penalty, facilitating a close numerical approximation of the constraint bounds.

Path constraint penalty terms are summarized for the sigmoid functions in Table 2.3. An

inverse function is found for each case suitable for path constraint regularization, with the exception

of the Einstein function. Figure 2.11 illustrates the trend of the penalty function corresponding
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to the arctangent regularization method. For larger values of ε, the interior penalty has a large

push-off factor, which increases the smoothing effect of the path constraint regularization. As the

value of ε is decreased, the bounds are pulled closer to the desired limits of the normalized path

constraint. Thus, the overall effect is to impose large penalties for any state configurations that

approach the path constraint bounds. Note that no prior knowledge of the entry and exit points of

the constraint are required. Instead, the mapping will transition seamlessly between constrained

and unconstrained arcs through the integral penalty effect in ζ.

With SEDC and path constraint regularization, the GCRM can be applied to a wide range

of OCP structures with minimal effort required of the designer. The additional state constraint

penalty functions do not affect the necessary conditions for the control. Thus, the unique optimal

control law Eq. (2.22) will hold following regularization for v. In the next subsection, we show an

example of this procedure for a simple problem with bounded nonlinear control terms.
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Figure 2.11: Arctangent path constraint penalty function for ε = 1 (solid line) to ε = 0.001 (dashed
line).

2.4.3 Example: Time-Energy Optimal Control

Consider a time-energy minimization problem with the objective

J =

∫ tf

0
2 + u2 dt, tf free (2.68)
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and state equation

ẋ = −x+ u (2.69)

The initial and final state is constrained to x(0) = 1.5 and x(tf ) = 0. The control is bounded to |u| ≤

1. We first consider the traditional approach using indirect methods. Forming the Hamiltonian,

H = λ(−x+ u) + 2 + u2 (2.70)

on unconstrained arcs when |u| < 1 the costate rate is

λ̇ = −∂H
∂x

= λ (2.71)

It is immediately apparent that the control u appears in Eq. (2.70) quadratically. The solution for

u is obtained from Eq. (2.3c) as

∂H

∂u
= λ+ 2u = 0 (2.72)

leading to the control law u∗ = −λ/2 when |λ| < 2. Since there is no possibility of singular arcs

in this problem, the solution on control constrained arcs can be determined by PMP. This leads to

the following control structure.

u∗ =



+1 if λ < −2,

−1
2λ if − 2 ≤ λ ≤ 2,

−1 if λ > 2

(2.73)

While application of indirect methods leads to a relatively straightforward expression for u∗, it

remains piecewise continuous and relies on knowledge of the switching function λ. Kirk [150] gives

further details on the costate structure which are omitted here for brevity.

It is demonstrated that SEDC and path constraint methods can be applied to the time-energy

problem to facilitate rapid solution. The control u is appended as a new system state, with a new

auxiliary control variable v. In addition, a path constraint penalty function Eq. (2.67) is augmented

to the integral cost to enforce bounds on u. The problem is then solved using the GCRM. Using
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the hyperbolic tangent functions, the regularized problem structure becomes

J =

∫ tf

0
2 + u2 + v tanh

(
v

ε1

)
− ε1 log

(
cosh

(
v

ε1

))
+ ε2atanh2(u) dt, tf free (2.74)

ẋ = −x+ u, u̇ = tanh

(
v

ε1

)
(2.75)

u(0), u(tf ) free (2.76)

with resulting control law v∗ = −λu, where λu is a costate corresponding to the auxiliary state u. A

distinction is made between ε1 and ε2, which are used for control and path constraint regularization,

respectively. In practice, both regularization parameters will attenuate to similarly small values.

However, separating these parameters allows for tuning to improve numerical convergence, which

may be important in more complex OCPs.

The time-energy problem is solved using a numerical continuation on ε1 and ε2, starting at

values of 100 and ending at 10−7. Results are shown in Fig. 2.12. The control history starts in the

unconstrained region with |λ| < 2, until a time of about 0.6 where the solution transitions to the

control lower bound. The state history in Fig. 2.12a is also shown to coincide with the prescribed

initial and final conditions. Note that the optimal solution is obtained without enforcing any

boundary conditions on u. The optimal control law relationship in Eq. (2.73) is verified in Fig. 2.12b.

The optimal cost is 2.7128 with final time of 0.9825, which match those reported in Ref. [150]. As

with the preceding examples, it is possible to generate a relationship between the state and costate

in the time-energy problem by noting H = 0 and applying the control law Eq. (2.73) given by PMP.

Figure 2.12c shows a comparison of the GCRM results to traditional methods. We note that two

distinct solution arcs are present for λ > 2 and λ ≤ 2. In both the constrained and unconstrained

regions, the numerical results obtained using GCRM closely follow those predicted by traditional

indirect methods. These results indicate the SEDC and path constraint regularization approach is

consistent with solutions to problems with nonlinear control terms in the Hamiltonian structure.
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Figure 2.12: Solution to time-energy example using hyperbolic tangent regularization.

2.5 Application to Aerospace Systems

The benchmark examples illustrate the capability of the GCRM to solve simple problems.

In the following section, a more difficult scenario involving optimal maneuvering of an atmospheric

reentry vehicle is explored to validate the proposed method for engineering analysis.

2.5.1 3-DOF Hypersonic Problem

A practical and often useful problem in optimal control of aerospace systems is trajectory

optimization of an atmospheric flight segment. Although the underlying system is more complex,

this example shows how the GCRM may be applied with little difficulty to complex problems.
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Equations of motion for unpowered flight, ignoring rotation effects of the Earth, are [151]

ḣ = V sin γ (2.77a)

θ̇ =
V cos γ cosψ

r cosφ
(2.77b)

φ̇ =
V cos γ sinψ

r
(2.77c)

V̇ = −D − g sin γ (2.77d)

γ̇ =
1

V

[
L cosσ +

(
V 2

r
− g
)

cos γ

]
(2.77e)

ψ̇ =
1

V

[
L sinσ

cos γ
− V 2

r
cos γ cosψ tanφ

]
(2.77f)

The state variables include geocentric altitude h, longitude θ, latitude φ, velocity magnitude V ,

velocity flight-path angle γ, and velocity heading angle ψ. Convention for flight-path angle is

positive above the local horizontal. Heading angle is defined zero for a heading due East. The bank

angle σ is defined zero for a lift-up orientation in the local vertical plane, and positive producing

a left turn. We make the assumption for a spherical planet such that r = re + h where re is the

radius of the Earth. An inverse-square gravity law g = µ/r2 is assumed with the standard Earth

gravitational coefficient µ. The L and D terms represent the lift and drag acceleration, respectively,

given by

L =
1

2
ρV 2CLAref

m
, D =

1

2
ρV 2CDAref

m
(2.78)

where m is the vehicle mass, ρ is the local atmospheric density, CL and CD are the lift and drag

coefficients, respectively, and Aref is the aerodynamic reference area. The atmospheric density

is assumed to follow an exponential model ρ = ρ0 exp(−h/S), where ρ0 is the reference density

and S is the atmospheric scale height. The lift and drag coefficients are prescribed functions of

angle-of-attack α. An aerodynamic model is adapted from [152] for a lifting-body hypersonic glide

vehicle with peak lift-to-drag ratio of 1.5. A sufficiently accurate approximation of the lift and drag
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Figure 2.13: Lift-to-drag ratio and drag polar for generic hypersonic reentry vehicle.

coefficient curves is

CL = 2.5457α− 0.0448 (2.79)

CD = 3.7677α2 − 0.1427α+ 0.1971 (2.80)

with α in radians. The lift-to-drag performance and drag polar for this simple aerodynamic model

are illustrated in Fig. 2.13. It is also of use to consider the sensed acceleration during reentry η,

which is dictated by lift and drag acceleration terms.

η =
√
L2 +D2 (2.81)

In some cases it may be necessary to constrain the maximum acceleration experienced during

reentry; in this example, however, it is defined merely for informative and plotting purposes.

A reasonable objective is to minimize the integrated control effort in angle-of-attack, stated

as

J =

∫ tf

t0

α2 dt, tf free (2.82)

The endpoint is determined by terminal state constraints on the altitude, longitude, and latitude

as

h(tf ) = 0, θ(tf ) = θf , φ(tf ) = φf (2.83)

The first control variable is angle-of-attack u1 = α, which appears in the equations of motion

through CL and CD. We note that the bank angle σ appears in trigonometric form in Eq. (2.77a),
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introducing ambiguity in the resulting control law when traditional methods are applied. We

implement the SEDC approach by appending σ as an additional state in the system with state

equation

σ̇ = u2 (2.84)

We choose a maximum value of the bank rate such that |u2| ≤ σ̇max. Incorporating bank angle as

an auxiliary state has benefits from an engineering modeling perspective. The bank performance

is limited by control actuation flaps or thrusters with finite time delay between commanded and

actual bank angle. This model allows an additional degree of freedom in modeling such dynamics.

The hypersonic problem structure is summarized in Table 2.4 with initial and final state constraints.

Other constants used in this problem are defined in Table 2.5.

The traditional approach begins with formulating the Hamiltonian of the system

H = λhV sin γ + λθ
V cos γ cosψ

r cosφ
+ λφ

V cos γ sinψ

r
+ λV (−D − g sin γ)

+ λγ
1

V

[
L cosσ +

(
V 2

r
− g
)

cos γ

]
+ λψ

1

V

[
L sinσ

cos γ
− V 2

r
cos γ cosψ tanφ

]
+ λσu2 + α2

(2.85)

Although the state equations are nonlinear with respect to angle-of-attack in the lift and drag

coefficient curves Eq. (2.79), a unique expression for u∗1 results from Eq. (2.3c) as

u∗1 = Arefρ0V
25457

(
λγ cosσ + λψ

sinσ
cos γ

)
+ 1427λV V

75354ArefλV ρ0V 2 − 40000m exp
(
h
H

) (2.86)

A unique control law for angle-of-attack is possible because α terms appear quadratically in the

Hamiltonian and no bounds are enforced. Due to drag penalties at higher angles-of-attack evident

in Fig. 2.13, there is an inherent limiting effect on the angle of attack in order to minimize velocity-

loss. Moreover, the objective Eq. (2.82) will also limit the angle-of-attack to reduce the integrated

control effort. The second control variable u2 appears linearly in Eq. (2.85), leading to the bang-
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Table 2.4: Initial and final state constraints for hypersonic Earth reentry scenario.

State h θ φ V γ ψ σ t

Initial 40 km 0 deg 0 deg 2 km/s -15 deg 0 deg 0 deg 0 s
Final 0 km 2 deg 0.5 deg Free Free Free Free Free

bang/singular control law

u∗2 =



−σ̇max if λσ > 0,

+σ̇max if λσ < 0,

indeterminate if λσ = 0

(2.87)

Due to the highly nonlinear nature of the hypersonic entry problem, it is prohibitive to ascertain

an analytical expression for the switching function for u2 across all solution arcs. This underscores

the utility of regularization in difficult problems.

Table 2.5: Constants for hypersonic Earth reentry scenario.

Parameter Value

Gravity Parameter, µ 3.986× 1014 m3/s2

Reference Density, ρ0 1.2 kg/m3

Scale Height, S 7500 km
Vehicle Mass, m 340.19 kg
Earth Radius, re 6378 km
Reference Area, Aref 0.29186 m2

Max Bank Rate, σ̇max 10 deg/s

The arctangent regularization method is applied to resolve the control form for u2. Intro-

ducing the error-control and penalty terms from Table 2.1 with small parameter ε, the control law

is verified using Eq. (2.17) as u∗2 = −λσ. The numerical continuation methodology used in this

problem is more involved than the previous examples. As demonstrated by Ref. [99], a multi-step

continuation procedure can be used to solve more challenging OCPs starting from rough initial

costates. The continuation begins with a flight-path angle of -88 degrees, indicative of near-vertical

flight straight towards the planet surface. The simulation is run for 0.5 seconds to allow an initial

trajectory to converge. Then a continuation step is performed to bring the final altitude down to
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0 km. Next, continuation to a final downrange angle of 0.01 degrees is performed to start moving

the trajectory towards its forward target. The third continuation step pushes the initial flight-path

angle and final longitude to meet the prescribed constraints in Table 2.4. The next step pushes

the final latitude to 0.5 degrees satisfy cross-range requirements. Finally, a continuation step is

performed on the error parameter ε, starting from an initial value of 101 to a final value 10−5.

Lower values of ε are not found to affect the cost further. Dimensional consistency in the BVP

solver is enforced with units for ε in seconds.

Results for the hypersonic reentry example are shown in Fig. 2.14. These results correspond

to the final converged trajectory following the continuation procedure. The first plot shows the

trajectory of the vehicle in altitude-velocity coordinates. The initial flight-path angle of -15 degrees

puts the vehicle on a relatively steep initial descent, which is reflected by a rapid decline in altitude

in the initial segment of the trajectory. Figure 2.14 also shows the angle-of-attack time history.

In order to meet downrange requirements, the vehicle must initially ramp up angle-of-attack to

generate sufficient aerodynamic lift. This in turn increases aerodynamic drag, resulting in a spike

of 4.2 g’s sensed acceleration at about 30 seconds. Once the trajectory bottoms out, the flight-

path angle rises briefly above the local horizontal providing a loft in the trajectory. The effect of

this loft maneuver is to conserve kinetic energy compared with a more direct entry path towards

the terminal downrange and altitude. Conserving kinetic energy allows for higher velocities later

in the trajectory to produce lift at lower angles-of-attack, reducing the overall integrated control

effort. Although in this problem the angle-of-attack is controlled with no rate constraints, the time

response of α is sufficiently slow as to neglect such constraints.

Figure 2.15 also shows the bank angle rate time history. The initial arc of the solution for u2

is constrained by the upper-bound σ̇max of 10 deg/s. This constraint is reflected in the bank angle

response as it ramps up linearly in time. Upon exiting the initial bang arc, the remaining trajectory

is a singular arc no longer constrained by the control magnitude bound. A lower maximum bank

angle rate could potentially introduce additional constrained solution arcs. The chosen value of σ̇max

will determine the overall solution structure. One obvious benefit of the regularization procedure
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Figure 2.14: Converged trajectory of the 3-DOF hypersonic reentry problem.
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Figure 2.15: Bank rate regularization for 3-DOF hypersonic reentry problem.

is to eliminate any required insight or knowledge of these constrained arcs prior to attempting

numerical solution.

The bank angle rate control incorporates a pseudo-attitude degree of freedom by modeling

the rigid-body response delay of a realistic flight system. For real-time applications, the vehicle will

likely have a known initial bank angle based on current state information. The optimal trajectory

must then account for the bank angle time response through bang arcs in the bank angle rate. Pre-

vious studies directly controlling bank angle neglect this behavior, because no boundary conditions

are present on the control variables. Any initial bank angle configuration could be studied pending

a feasible solution exists. A boundary condition could also be imposed on the final bank angle,

limiting the available cross-range control in the final segment of the trajectory as the bank angle is

forced to its required value.

2.5.2 Keep-out Zone

Path constraints are a common requirement in optimization of aerospace systems. For the

hypersonic 3-DOF entry problem, examples include limits on the maximum sensed acceleration,

aero-thermal heating, or dynamic pressure. These constraints must be enforced over the full trajec-

tory, and will generally become active and inactive across various trajectory segments. To illustrate

the preceding path constraint regularization procedure, a keep-out zone in longitude-latitude co-
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Table 2.6: Parameters used in the keep-out zone constraint.

Parameter θc φc Rmin Rmax

Value 1 deg 0.25 deg 0.35 deg 25 dega

aArbitrary upper bound

ordinates is considered that the vehicle must circumnavigate. Situations such as extreme weather

events or contested airspace may impose constraints of this form.

A radial bound is imposed for a circular keep-out zone defined as

R2
min ≤ (θ − θc)2 + (φ− φc)2 ≤ R2

max (2.88)

where Rmin and Rmax are the lower and upper bounds, respectively, and θc and φc are the centroid

coordinates. Using the scaling constants in Eq. (2.65), the constraint is normalized as

−1 ≤ 2

R2
max −R2

min

(
(θ − θc)2 + (φ− φc)2

)
− R2

max +R2
min

R2
max −R2

min

≤ 1 (2.89)

In practice, only the lower bound Rmin is required to enforce the keep-out constraint. A large arbi-

trary value can be chosen for the upper bound to prevent interference during optimization, though

the value should not be chosen too large as to introduce numerical ill-conditioning. Parameters for

the keep-out zone constraint are summarized in Table 2.6.

The keep-out constraint Eq. (2.88) is implemented using the arctangent method in Table 2.3.

Results are shown in Fig. 2.16 for the unconstrained and constrained scenarios. With the constraint

inactive, the trajectory traverses the keep-out zone in order to reach terminal cross-range while

conserving energy. In comparison, with the constraint active, the vehicle must use a portion of its

initial kinetic energy to perform a bank maneuver outside the keep-out zone. The net effect of this

maneuver is apparent in comparing the altitude-velocity profile of each trajectory (see Fig. 2.17a).

With the constraint active, the trajectory has a less pronounced loft, increasing the velocity-loss

early in the trajectory. As a result, the integrated angle-of-attack in Fig. 2.17b increases order

to meet downrange and cross-range requirements while enforcing the keep-out zone constraint. In

general, active path constraints are expected to reduce the achieved cost. In this case, the integral
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angle-of-attack cost is increased from 3.319 to 13.748 rad2-s with the path constraint active. The

final time is also higher, with the constrained case terminating at 313.6 seconds versus 242.2 seconds

for the unconstrained case. The extra time is necessary as the vehicle must fly a greater total range

to avoid the keep-out zone. Using the GCRM, these operational limitations can be easily augmented

to an OCP structure and solved using numerical continuation.
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Figure 2.16: Ground track of the hypersonic 3-DOF example with keep-out zone.

The hypersonic reentry example illustrates the utility of the control regularization procedure

proposed in this work. Traditional methods in bang-bang/singular control problems require a priori

knowledge regarding the solution structure and number of constrained arcs to solve an OCP. In

addition, traditional methods result in a multi-phase Hamiltonian BVP with corner conditions

on the costates between constrained arcs. Control regularization strategies in general avoid these

issues by reducing the problem to a single-stage unconstrained approximation of the true OCP.

The GCRM functions provide a further benefit over existing methods by simplifying the form of

the control law while maintaining desirable numerical convergence behavior. In addition, because

of the positive-definite form of the error-control penalty function, the smoothed problem retains its

overall structure without imposing an artificial time-minimization objective at larger values of ε.

These methods enable rapid solution of complex, multi-phase OCPs with minimal effort required

of the designer to implement and solve challenging problems.
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Figure 2.17: Performance comparison with keep-out zone constraint.

2.6 Summary

Regularization of OCPs with bang-bang/singular solution structures provides many benefits

over traditional methods. The overall number of trajectory arcs and boundary conditions are

greatly reduced in the smoothed approximation, with only minor degradation of the overall solution

accuracy. No previous knowledge regarding the solution structure and number of constrained arcs is

required. In addition, derivation of the analytical control law in singular control problems, typically

an involved and cumbersome symbolic process, is no longer needed in the regularized problem. This

research improves upon existing methods by modifying the control regularization and associated

error-control terms to provide more desirable characteristics of the smoothed OCP. The primary

benefit of the new method is the elimination of any ambiguity in the optimal control law. This

eliminates the need for point-wise application of the Minimum Principle to identify an optimal

control. The solution maintains its fully-analytical characteristics, with many benefits from an

implementation and programming perspective. Classes of regularization functions are developed

from generalized sigmoid functions with varying numerical convergence behavior, allowing flexibility

in the construction of the constrained OCP. The approach is extended to problems with arbitrary
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Hamiltonian structure using system extension and differential control. Results for benchmark

problems from the literature with known solution structures validate the accuracy of the new

method. A more involved problem regarding hypersonic reentry trajectory optimization illustrates

applicability to practical problems in aerospace engineering.



Chapter 3

Relaxation of Infinite-Order Singular Arcs by Auxiliary Covariance

Minimization

3.1 Optimal Control Uniqueness and Well-Posedness

Underlying many tools of practice in engineering optimization are assumptions for regularity

and well-posedness. One must assume that there exists an admissible control driving the state

from initial conditions to the required terminal set (with final time possibly specified). This can be

interpreted as a controllability requirement of the system. Unfortunately, few existence results in

optimal control are available for application to nonlinear problems [153]. In general, an optimization

statement is considered well-posed in the sense of Hadamard [154] if its solution depends continu-

ously on the variable parameters of problem. Under certain regularity conditions, well-posedness

implies existence and uniqueness of an optimal control [155]. Problems that are not well-posed in

this manner are considered ill-posed. Solution of the indirect formulation frequently depends on

necessary conditions for optimality, meaning well-posedness may not be guaranteed even if a local

minimum is found. This poses particular challenges for ambiguous or indefinite solution forms,

requiring further analysis to reveal the optimal control, if it exists. Thus, we are motivated to

consider cases in which an ill-posed problem may introduce itself under practical considerations.

Furthermore, these problems would benefit from methodologies to repose the Hamiltonian system

to a form admitting unique solvability and regularity conditions.

As discussed in Chapter 2, a common attribute in optimal control of Newtonian systems is

a bang-bang/singular solution structure. This is often the case when control terms appear linearly
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in the Hamiltonian. Bang-bang solutions are characterized by piecewise controls residing on the

boundary of the admissible set, with discontinuities occurring at discrete switch points. If the

Minimum Principle fails to reveal the optimal control over some solution arc, the control structure

is singular [78, 156]. A singular arc produces no variation in the Hamiltonian for a change in

the control, requiring further analysis to resolve the singularity. The classical Legendre-Clebsch (or

Kelley) theorem [102] imposes an additional convexity condition on the Hamiltonian, which is often

sufficient to determine the optimal control law over a singular arc. This condition can be interpreted

as solving for the control that remains on the singular arc. Goh’s necessary condition [101] is a

stronger statement to minimize a so-called accessory minimum problem to regulate the second

variation of the cost along the minimizing arc. These conditions can involve significant symbolic

manipulation and may not always yield an optimal control.

This work primarily concerns indeterminacy due to non-uniqueness of the optimal control

policy. That is, a solution can be found minimizing the objective compatible with all boundary

conditions and constraints, but the solution is not unique. For example, the Lasalle bang-bang

principle for linear systems [157] states that, for any point reachable with admissible controls, the

same point can be reached with bang-bang controls, meaning the bang-bang control is not always

unique. This property has also been extended to classes of nonlinear systems [158]. Upon applica-

tion of traditional indirect methods to such problems, the result may at first appear contradictory.

Ross [159] posits a seemingly trivial variant of the single integrator system, for which traditional

indirect methods yield no solution. In their example, application of the Pontryagin Minimum Prin-

ciple leads to the (false) conclusion that no extremal solution exists. However, further analysis

reveals an “infinite family of globally optimal solutions” consisting of an uncountable set of glob-

ally minimizing state-control pairs. The result is an argument in favor of direct methods; due to

their inherently approximate nature, direct methods are guaranteed to find at least one solution,

whereas the indirect approach finds none. Another result is given by Powers [104] linking unique-

ness of the optimal control to singular arc order. We put forth a rather compelling quote from on

the relationship between arc order and indeterminacy as follows.
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Infinite-order singular optimal controls [...] occur when the optimal control
for the original problem is nonunique. Recall [...] that nonuniqueness problems
were also associated with the order of the problem and the arcs. Intuitively, these
properties indicate that there exists a strong connection between singular problem
and arc order and uniqueness of optimal controls. [104]

Uniqueness of singular controls is also developed by Serovaiskii [160], showing that the Kelley

condition becomes a strict equality (i.e., 0 = 0) for the indeterminate case. Although the solutions

satisfy the Minimum Principle and convexity conditions, they do so trivially.

The concept of infinite-order singularity has persisted in the mathematical community for

some time [161]. However, its relevance to engineering fields is less widespread. This is in part

due to the fact that authors tend to choose well-posed problems for study. Nonetheless, relevant

applications exist. For example, Seywald and Kumar [106] study singular arcs in the minimum-time

spacecraft reorientation problem. The arcs may appear as finite or infinite order, noting in the latter

case that any numerical value for the control is arbitrary so long as the control bounds and final

position constraints are satisfied. The well-known catalyst mixing problem [162,163] admits infinite-

order singular arcs through cyclic derivatives of the switching function. Similar characteristics

have been found in the target guarding problem [107], with application to missile guidance and

other types of pursuer-evader scenarios. Infinite-order arcs for the time-invariant linear-quadratic

problem [105] exhibit the useful property that singular arcs arise from cost functionals of exact

differentials. Application of traditional indirect methods to these types of problems may lead to

erroneous conclusions, warranting further study.

The objectives of this chapter are two-fold. First, we aim to better categorize situations in

which infinite-order singular arcs arise in engineering problems. It turns out these singularities are

not a mathematical oddity, but an indication that a Hamiltonian BVP is ill-posed. We show that

convexity of the Mayer cost objective, coupled with certain reachability conditions on the system

dynamics, leads to the indeterminate case. The arcs are shown to be totally singular, spanning the

entire trajectory. The second objective of this work is to demonstrate a novel relaxation method

for infinite-order singular arcs via an auxiliary covariance minimization problem. The augmented
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problem considers first-order uncertainty propagated about a nominal (or mean) state. Covariance

optimization is a broad topic with application to uncertain asteroid transfers [120, 121], powered

descent guidance [164, 165], and planetary aerocapture [113, 166], among others. Prior studies

often rely on sequential convexification or direct methods in solution, which preclude some of the

analytical intuition provided by indirect methods. The utility of covariance optimization as a

relaxation method for infinite-order singular arcs is not well-studied. As most engineering systems

are subject to some small level of uncertainty in states or parameters, the approach has relevance

to a wide array of practical problems.

Although the field of indirect methods is well-developed, there is no uniform solution pro-

cedure, necessitating various approaches based on the given problem structure. This problem is

further challenging for ill-posed problems wherein the traditional necessary conditions fail to reveal

a solution. In this chapter, we present a novel method for identifying and resolving such problems.

The contributions of this work can be enumerated follows: 1) existence conditions for singular arcs

with infinite local order, 2) identification of singular manifolds with convex Mayer objectives pro-

ducing infinite-order arcs, 3) development of a covariance-augmented relaxation method on singular

arcs, and 4) application to aerospace mission design by improving trajectory optimization under

uncertainty.

The outline of this chapter is summarized as follows. Section 3.2 gives relevant theory on

indirect methods and the minimum principle, as well as notions of order in singular control. Sec-

tion 3.3 develops conditions for a control-affine nonlinear system to exhibit infinite-order singular

arcs. Section 3.4 proposes a relaxation method based on a first-order model of uncertain system

dynamics. Section 3.5 details the numerical solution strategy of the auxiliary problem. Section 3.6

demonstrates application of the relaxation method to classical examples in optimal control theory,

as well as a practical aerospace mission design problem. Finally, Sec. 3.7 concludes the chapter.
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3.2 The Minimum Principle

We begin with a formulation of the indirect problem for general nonlinear systems. The

approach will be applied to a class of OCPs exhibiting indeterminate behavior in the following

sections. Consider the system in Eq. (3.1) with state vector x ∈ Rn, scalar control input u ∈ R,

and dynamics f : Rn × U × [t0, tf ]→ Rn.

ẋ = f(x, u, t), x(t0) = x0 (3.1)

Notation for time dependency is omitted except where required. A general OCP is stated as

Problem 1



min
u

J = φ(x(tf ), tf ) +
∫ tf
t0
L(x, u, t) dt

s.t. x(t0) = x0

u ∈ U

ψ(x(tf ), tf ) = 0

(3.2)

where the admissable controls U ⊂ R are a closed and bounded (i.e., compact) set, and all functions

are assumed smooth and continuously differentiable. The problem is to minimize an integral (or

Lagrange) cost L : Rn ×U × [t0, tf ]→ R and terminal (or Mayer) cost φ : Rn × tf → R, subject to

initial conditions and terminal state constraint ψ : Rn × tf → Rm. The controls are assumed to be

piecewise continuous in U .

3.2.1 Pontryagin Minimum Principle

A useful result for identifying optimal solution candidates of Problem 1 is given by the

celebrated Minimum Principle. This theorem is summarized as follows.

Theorem 1 (Minimum Principle). Let (x∗, u∗) be an optimal state-control trajectory of Problem 1.

Define the Hamiltonian function H : Rn × Rn × U × [t0, tf ] → R with costate vector λ∗ ∈ Rn and

multiplier λ0 ∈ R as follows

H(x∗,λ∗, u∗, t) = λ∗Tf(x∗, u∗, t) + λ0L(x∗, u∗, t) (3.3)
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If there exists a nontrivial vector

(λ∗T(tf ), λ0) 6= 0 ∈ Rn+1 (3.4)

then the following conditions are satisfied

ẋ∗ = Hλ(x∗,λ∗, u∗, t) (3.5a)

λ̇∗ = −Hx(x∗,λ∗, u∗, t) (3.5b)

x∗(t0) = x0 (3.5c)

λ∗T(tf ) = λ0φx(x∗(tf ), tf ) + νTψx(x∗(tf ), tf ) (3.5d)

Furthermore, for all t ∈ [t0, tf ], the Hamiltonian has a global minimizer u∗ ∈ U such that

u∗ = arg min
q∈U

H(x∗,λ∗, q, t) (3.6)

If the final time is free, then the so-called transversality condition must be satisfied

H(x∗(tf ),λ∗(tf ), u∗(tf ), tf ) = −λ0φt(x
∗(tf ), tf )− νψt(x∗(tf ), tf ) (3.7)

Proof. The proof to this theorem is well-known. See Pontryagin and Semenovich [100].

Theorem 1 defines a set of conditions for optimality of a candidate state-control trajectory

pair. When the Minimum Principle is satisfied, the solution of Eq. (3.6) gives conditions for

global optimality. Moreover, the Minimum Principle is a stronger statement than the traditional

Euler-Lagrange variational equations, as the admissible solutions include piecewise-continuous on-

off controls, better known as bang-bang solutions. Extremal trajectories of bang-bang form are

dictated by the boundaries of the admissible control set U , with instantaneous changes occurring

based on the sign of a switching function. A cautionary note on the Minimum Principle is that, as

a necessary condition for optimality, there are no guarantees of existence or uniqueness for general

problems. Cases in which multiple solutions exist may benefit from Eq. (3.6) to single out multiple

possible controls by point-wise minimization of the Hamiltonian over u.
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Equation (3.4) states conditions regarding the normality of a solution. The constant λ0

appears proportionally to the terminal and running cost objectives. Cases where λ0 = 0 are termed

abnormal, meaning the cost is ignored altogether and solutions are fully described by the nature

of the system dynamics and boundary conditions. These cases are uncommon, but nonetheless

important in identifying redundant OCP objectives. Otherwise, with λ0 6= 0, the problem is termed

normal (in the normal case, the abnormal multiplier is usually scaled to unity). The nontriviality

condition of Eq. (3.4) states that the costate vector λ and abnormal multiplier λ0 must not vanish

identically. This situation can be useful to rule out candidate controls as a violation of the Minimum

Principle. This holds even for solution arcs containing controls in the interior of the admissible

set U . Note that, because the adjoint equation for λ is linear in the costates (see Eq. (3.5b)), if

λ and λ0 vanish at any time, they must vanish for all time. Thus, a violation of Eq. (3.4) at any

time precludes optimality of the candidate control. Theorem 1 is a useful tool in identification of

candidate optimal controls. However, in some cases these conditions may not be sufficient to reveal

the optimal control. We discuss such cases in the following sections.

3.2.2 Singular Arcs: Existence and Order

Solution segments for which Theorem 1 fails to reveal an optimal control are referred to as

singular arcs. Powers [103] notes that two distinct qualities can be ascertained about a singular

arc: the problem (or intrinsic) order and the arc (or local) order. The former refers to the number

of successive differentiations of Eq. (2.10) required for the control variable to reappear. The latter

involves the number of differentiations (possibly greater than the problem order) for which the

control law u∗ can be solved on the singular arc without a leading coefficient of zero. The following

definitions are intended to help clarify this distinction.

Definition 1 (Problem Order). Let Problem 1 contain at least one optimal singular arc. Let 2q

be the first total derivative of Eq. (2.10) in which u appears explicitly as

d2q

dt2q
Hu = a(x∗,λ∗, t) + b(x∗,λ∗, t)u (3.8)
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Then, Problem 1 is said to have problem order q. If u never appears in differentiation, the problem

is said to be of infinite order.

It is well-known that u must first appear in an even time derivative of Hu [102]. The expres-

sions for derivatives of Hu are valid along all extremal arcs [104]. Note that the problem order can

be computed a priori as a property of the OCP structure (hence its designation as intrinsic). It is

easy to show that the intrinsic order of problems with affine control in the Hamiltonian must have

order q ≥ 1, and the control appears linearly in (d2q/dt2q)Hu. This useful result will be leveraged

in the following sections.

Motivation for definition of arc order can be seen from the expression for u in Eq. (3.8). On

the state and costate trajectory of any optimal singular arc, there exists a possibility for the leading

coefficient b(x∗,λ∗, t) = 0, leading to indefiniteness of the control. Thus, the following definition is

taken into consideration.

Definition 2 (Arc Order). For an optimal singular subarc of Problem 1 over time interval t ∈

[t1, t2], t2 > t1 the arc order is the smallest integer p ≥ q for which

∂

∂u

[
d2p

dt2p
Hu

]
6= 0 (3.9)

If no derivative exists satisfying Eq. (3.9), the arc is said to have infinite order with p =∞.

It is easy to see that the arc order must be greater than or equal to the problem order,

since u cannot appear before 2q derivatives of Hu. Lewis [104] also notes that, for arcs with local

order greater than the problem order, the control may not appear linearly in (d2p/dt2p)Hu. With

Definitions 1 and 2 in mind, the following convexity condition for optimality of the singular arc is

stated with respect to local order as follows.

Theorem 2 (Generalized Legendre-Clebsch Condition). Let (x∗,λ∗, u∗) be an extremal arc for

control u with local order p over t ∈ [t1, t2], t2 > t1. A necessary condition for optimality of the

singular arc is

(−1)p
∂

∂u

[
d2p

dt2p
Hu

]
≥ 0 (3.10)
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for all t ∈ [t1, t2].

Proof. The proof of this theorem is well-known. See Robbins [102].

This section introduces useful properties of the optimal control Hamiltonian and necessary

conditions for optimality. While singular arcs may seem like an exception rather than a rule, these

solutions are in fact quite common. Studying the optimal behavior of singular arcs can provide

insight on many practical engineering problems. The notion of intrinsic and local order of singular

arcs helps clarify the source of singular arcs, as well as potential avenues for solution.

3.3 A Convexity Condition for Infinite-Order Singular Arcs

This work concerns OCP structures in which the arc order tends to infinity. These scenarios

can be linked to indeterminacy of the necessary conditions for optimality resulting from ill-posed

OCP problem structures. Note that Theorem 1 relies implicitly on an assumption that an optimal

solution exists and is well-posed. Because the Minimum Principle fails to reveal any control policy,

applying the traditional indirect approach yields no new information on the optimal solution. Un-

fortunately, few if any results are available to guarantee uniqueness in general nonlinear problems.

However, under some moderate assumptions, it can be shown that a rather broad class of practical

problems exhibit this indeterminate behavior. We are motivated to examine the underlying sources

of singularity, as well as potential avenues for resolving the problem structure to a more tractable

form for solution.

Some simplifying assumptions about the problem structure are taken to aid in analysis. These

assumptions are mild in nature, and lend well to many practical and useful problems in optimal

control. Consider an autonomous nonlinear system with affine control

ẋ = f(x) + g(x)u, x(t0) = x0 (3.11)

General motion of Newtonian systems is well-described by systems of this form through its constants

of motion [167,168]. If there exists a mapping of system states onto integrals of motion, a canonical
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coordinate transformation of the form in Eq. (3.11) can be found. These integrals may not be

immediately known for complex system dynamics. Fortunately, many practical problems exhibit

such form without loss of generality.

Assumptions are also made regarding the form of applied constraints. Two classes of problems

are considered covering a wide array of applications: end-time fixed, and end-time free with a

partially constrained terminal state. Both cases have relevance in engineering applications. For

simple problems, it may be immediately apparent when an OCP statement and its associated

Hamiltonian BVP are not well-posed. However, for more complex systems, particularly with end-

time free, this distinction may not be obvious. The following existence propositions help outline

conditions under which infinite-order singular arcs may appear.

3.3.1 End-time Fixed

Consider the simplest form of Problem 1 with an unspecified terminal state and fixed end-

time. The problem is stated in terms of the Mayer objective φ : Rn → R with fixed end-time tf .

Problem 2



min
u

J = φ(x(tf ))

s.t. x(t0) = x0

u ∈ U

tf fixed

(3.12)

Because Lagrange and Mayer forms are interchangeable [131], the terminal cost objective is merely

for notational convenience and warrants no loss of generality. Let the Mayer objective be defined

such that a surface S can be constructed in Rn containing the set of all points for which its gradient

is zero.

S = {x1 ∈ Rn | φx(x1) = 0 ∈ Rn} (3.13)

The surface S describes the set of points over a subspace of Rn such that the first-order necessary

conditions for a minimum (or maximum) are met. The dimensionality of this subspace depends on

the structure of the cost objective. If k = 1, the surface represents a regular point, whereas higher
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dimensional k represents a hypersurface in Rn.

Suppose the system permits feasible solutions terminating on S. This assumption requires

a non-empty intersection with the fixed-time reachable set of the system. Though numerical com-

putation of reachable sets is a rich field of study [169,170], these methods are beyond the scope of

this paper. Instead, it is reasonable to postulate that, if such a solution exists, it can can be found

through numerical solution of the Hamiltonian BVP. Under the preceding assumptions regarding

the structure of Problem 2, the main result is summarized as follows.

Proposition 1. Let u∗ ∈ U be an admissible control and let x∗ ∈ Rn be an optimal state trajectory

solution of Problem 2 for t ∈ [t0, tf ] such that x∗(tf ) ∈ S. Then φ∗x(tf ) = 0 ∈ Rn is sufficient for

existence of a singular arc with local order p→∞.

Proof. The proof begins by transforming the Mayer cost to its integral form.

J = φ(x(tf )) = φ(x(t0)) +

∫ tf

t0

φx(f + gu) dt (3.14)

The leading term can be ignored because the initial state is fixed, and the integral cost is L(x, u) =

φx(f + gu). The Hamiltonian for this system is formulated with abnormal multiplier λ0 as

H = λT(f + gu) + λ0φx(f + gu)

= (λT + λ0φx)(f + gu) (3.15)

For the existence of a candidate singular arc, the necessary condition for u requires

Hu = (λT + λ0φx)g = 0 (3.16)

Taking the first time derivative gives

d

dt
Hu = (λ̇T + λ0φxxẋ)g + λ0φxgxẋ

=
(
−λ0φxx(f + gu)− (λT + λ0φx)(fx + gxu) + λ0φxxẋ

)
g + λ0φxgxẋ

= −(λT + λ0φx)(fx + gxu)g + λ0φxgx(f + gu)

= (λT + λ0φx)(gxf − fxg) (3.17)
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For convenience, define σT = λT + λ0φx. Equations Eq. (3.16) and Eq. (3.17) can be rewritten

compactly as

Hu = σT g = 0 (3.18)

d

dt
Hu = σT [f, g] = 0 (3.19)

where [f, g] = (gxf − fxg) is the Lie bracket of f and g. Following the pattern established in

References [171] and [118], higher-order derivatives of Hu can be summarized as

dj

dtj
Hu = σT[f, [f, [...[f, g]]]...]

= σT
[
f, adj−1(f)g

]
(3.20)

for j = 1, 2, ..., p where adj(f)g =
[
f, adj−1(f)g

]
and ad0(f)g = g. Because σ appears linearly in

Hu and all further derivatives, it is sufficient to show that if σ = 0 ∈ Rn then Hu = 0. Noting

Eq. (3.5) and taking a total derivative

σ̇T = λ̇T + λ0φ̇x

= −λ0φxx(f + gu)− (λT + λ0φx)(fx + gxu) + λ0φxx(f + gu)

= −σT(fx + gxu) (3.21)

The terminal state is free, and the boundary conditions on the costates are λ(tf ) = 0 ∈ Rn.

Because φx(tf ) = 0 ∈ Rn, we have σ(tf ) = 0 ∈ Rn on the candidate singular arc. The dynamics

of σ are a linear matrix differential equation, and therefore σ(t) = 0 ∈ Rn for t ∈ [t1, tf ]. Thus, u

will never reappear with a non-zero coefficient in (dj/dtj)Hu for j = 1, 2, ... , and Problem 2 has a

candidate singular arc with local order p→∞.

We make some remarks regarding the utility of Proposition 1. First, the preceding results give

a sufficient condition for existence of an infinite-order arc in Problem 2. That is, if a minimum of

the Mayer objective is reachable in time t = tf , then the local order is infinite. It is also important

to clarify that, when Proposition 1 holds, it provides only a necessary condition for optimality by

Theorem 1. Because the Minimum Principle remains valid on singular arcs, and the abnormal
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multiplier λ0 6= 0, the solution is a potential minimum. However, as the traditional approach

provides no new information on the singular arc through successive differentiation of the switching

function, the solution is degenerate. The following Corollaries provide some useful consequences of

Proposition 1.

Corollary 2.1. A solution of Problem 2 with local order p→∞ is totally singular. That is, Hu = 0

for all t ∈ [t0, tf ].

Proof. It is easy to see that the choice of t1 over integration of σ in Eq. (3.21) is arbitrary. Thus,

we conclude that on the singular arc, Hu = 0 for all t ∈ [t0, tf ].

Corollary 2.2. Let Problem 2 have intrinsic order q → ∞. Then φx(tf ) = 0 ∈ Rn is necessary

and sufficient for existence of a singular arc with local order p→∞.

Proof. The proof for necessity is shown by contradiction. Suppose Problem 2 has a solution such

that φx(tf ) 6= 0 ∈ Rn. Equation (3.5d) requires that λ(tf ) = 0 ∈ Rn. For σ(tf ) = λ(tf ) +

λ0φx(tf ) = 0 ∈ Rn to hold on the singular arc, λ0 = 0. Thus, (λT(tf ), λ0) = 0 ∈ Rn+1. This

constitutes a violation of Theorem 1, contradicting the assumption that φx(tf ) 6= 0 ∈ Rn.

Proposition 1 is a logical finding for cases in which the Mayer objective has a minimum co-

inciding with the reachable set of the system. The infinite local order implies that the necessary

conditions provide insufficient information to resolve the optimal control structure. The solution

instead permits an infinite family of global minimizers satisfying the objective. Because of their ex-

act nature, traditional indirect methods fail to reveal any solution. In addition, this non-uniqueness

problem reduces Theorem 2 to a strict equality [160]. Thus, the necessary conditions hold in an

absolute sense along the optimal singular arc, but the solutions lie within an uncountable set of

optimal policies.

A conceptual illustration of local order is shown in Fig. 3.1. In Fig. 3.1a, for a reachable

footprint of the system at time t = tf , the order is finite if a minimum of the objective function

lies outside this set. In this case, the costates are transverse to the objective function contours at
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the edge of the reachable set. While uniqueness is still not guaranteed, singular arcs must appear

with finite order (greater than or equal to the problem order). In contrast, Fig. 3.1b illustrates a

solution for which the interior of the reachable set contains a minimum of the objective function.

In this case, there is not enough information in the problem to identify any candidate control

because all candidate solutions satisfy the objective. This path-indeterminacy is reflected in the

null costate solution, and the singular arc remains unresolved. In contrast, if the reachable set

of the system does not intersect the target set, the control form reverts to bang-bang/singular

form, and Proposition 1 is ruled out. Although assumptions for reachability are difficult to prove

analytically (outside of simple problems), trajectories can be verified in numerical solution of the

Hamiltonian BVP. The following example is intended to clarify this behavior for a simple system.

3.3.2 Example: 1-D Integrator

The utility of Proposition 1 can be readily verified using an informative example. The

seemingly trivial single integrator problem from Ref. [160] can yield an indeterminate solution

structure. Consider the problem to minimize the objective

J =

∫ 1

0
xudt (3.22)

with state equation

ẋ = u (3.23)

where the control is bounded to |u| ≤ 1. The initial conditions are fixed to x(0) = 0, with the

terminal state free. Applying Theorem 1 with abnormal multiplier λ0 gives

H = λu+ λ0xu = (λ+ λ0x)u (3.24)

with costate dynamics

λ̇ = −∂H
∂x

= −λ0u (3.25)

and boundary conditions λ(1) = 0. Minimizing the Hamiltonian gives the bang-bang form

Hu = λ+ λ0x (3.26)
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(a) p <∞

(b) p→∞

Figure 3.1: Conceptual illustration of finite- and infinite-order arc reachability.
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On a singular arc,

d

dt
Hu = λ̇+ λ0ẋ

= −λ0u+ λ0u = 0 (3.27)

Thus, we are presented with an indeterminate 0 = 0 form, and the control variable will not appear

in higher time derivatives of Hu. The problem then has intrinsic order q →∞. Any singular arcs,

if they exist, will fail to reveal an optimal control policy under the standard necessary conditions.

Further insight on this problem can be gained by noting the cost objective can be recast into

Mayer form as

J =

∫ 1

0
xudt =

∫ 1

0
xẋ dt =

∫ 1

0

1

2

d

dt
(x)2 dt =

1

2
x(1)2 − 1

2
x(0)2

⇒ φ(x(1)) =
1

2
x(1)2 (3.28)

where the initial cost penalty is dropped because x(0) = 0. Because the cost objective is stated in

terms of an exact differential, the problem exhibits a quadratic form penalizing the terminal state

x(1). By Proposition 1 and Corollary 2.2, the singular arc exists if and only if φx = x(1) = 0,

which is satisfied for all control inputs u such that

x(1) =

∫ 1

0
udt = 0 (3.29)

Further, these solutions are global minimizers because the objective Eq. (3.28) is convex. Equa-

tion (3.29) can be interpreted as a controllability requirement for existence of an infinite-order

singular arc in the 1-D integrator. Clearly, this condition is satisfied for any optimal control history

that integrates to zero for t ∈ [0, 1]. The control solution is non-unique, instead belonging to the

family of global optimizers observed by Ross [159]. Figure 3.2 illustrates a subset of these mini-

mizers for this example. Notable symmetry is present in the state and control phase histories. It is

important to note that a solution of bang-bang form can still be found for this example, as pictured

in Fig. 3.2c. However, because the control solution is non-unique, the necessary conditions do not

dictate any one feasible control history.
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(a) Phase portrait (b) State history (c) Control history

Figure 3.2: Symmetry of infinite-order arc solutions in 1-D integrator example.

3.3.3 End-time Free with State Constraint

The preceding results are developed for a fixed end-time with free terminal state. While this

formulation covers a wide range of optimal control problems, it is often the case that the end-time

is kept free in optimization. We next consider a class of problems in which the terminal state is

partially constrained, and the end-time is determined implicitly by the transversality condition of

Theorem 1. The terminal constraints must be satisfied exactly for any feasible solution. Let us

assume that the terminal state constraints do not interfere with the optimal value of the objective.

This assumption requires that any constraints permit terminal state configurations in the target

set S. Let Θ represent a k-dimensional manifold in Rn of state configurations in S compatible with

all terminal constraints for k ≤ n.

Θ = {x ∈ S | ψ1(x) = ψ2(x) = ... = ψm(x) = 0} (3.30)

The end-time free optimization problem is stated as

Problem 2’



min
u

J = φ(x(tf ))

s.t. x(t0) = x0, x(tf ) ∈ Θ

u ∈ U

tf free

(3.31)
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The following extension of Proposition 1 gives existence conditions for singular arcs with

infinite local order for the state-constrained end-time free problem.

Proposition 2. Let u∗ ∈ U be an admissible control and let x∗ ∈ Rn be an optimal state trajectory

solution of Problem 2’ for t ∈ [t0, tf ] such that x∗(tf ) ∈ Θ. Then φ∗x(tf ) = 0 ∈ Rn is sufficient for

existence of a singular arc with local order p→∞.

Proof. See Appendix C.

3.4 Relaxation by Auxiliary Covariance Minimization

The preceding section gives conditions for the existence of singular arcs with infinite order.

This behavior is attributed to cases where the Mayer objective function and constraints are inade-

quate to fully define the optimal control. Although the solutions do not contradict the Minimum

Principle, the indirect approach fails to reveal any optimal control. This indeterminacy introduces

challenges in numerical optimization, as the optimal control law cannot be eliminated from the

Hamiltonian BVP.

It is helpful to consider modifications to these problem structures that will eliminate infinite-

order arcs. For example, an appropriate step could be the minimization of an objective implying

terminal states outside the reachable set of the system. These modifications may include minimum

time or control effort, in many cases uniquely defining the optimal control. However, a notable

underlying factor in aerospace systems is the presence of systemic uncertainty. This uncertainty

may be a result of inaccurate initial state knowledge or measurable uncertainty in parameters of the

system. Traditional filtering and control strategies rely on certainty equivalence, which implies that

estimation and control errors are orthogonal. These properties are well-known for linear systems.

However, it is also the case that, for nonlinear system dynamics or measurement models, uncertainty

propagation is greatly influenced by the mean trajectory [172]. This is sometimes referred to as

the dual control problem [173], which seeks to develop control solutions robust to random inputs

and disturbances. The path-dependent nature of uncertainty propagation for nonlinear systems
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Figure 3.3: Conceptual illustration of auxiliary problem.

provides an outlet for resolving indeterminate problems.

In this section, we propose an auxiliary covariance minimization objective for relaxation of

infinite-order singular arcs. A problem modification is developed to minimize the projection of a

propagated Gaussian error distribution onto the Mayer objective. This problem is illustrated in

Fig. 3.3. The method presents a practical strategy for mitigating uncertainty inherent to opti-

mization of engineering systems. This uncertainty may be derived from historical or in-situ data.

Alternatively, the approach can be interpreted as an artificial augmentation allowing for resolution

of infinite-order singular arcs. The proposed method enables more robust solutions when compared

to those developed from certainty equivalent objectives.

3.4.1 Uncertainty Quantification

Consider a scenario for Problem 1 wherein system states may not be known with absolute

certainty. We seek to construct an appropriate system representation and objective capturing

the effect of propagated uncertainty on output metrics of interest, largely following the procedure

from Ref. [174]. Let x represent a nominal or mean trajectory subject to the dynamics of Eq. (3.1).

Furthermore, suppose the true state of the system xt ∈ Rn cannot be known with absolute certainty

in optimization. A first-order Taylor series approximation of the truth state about the nominal
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state and control is

ẋt = f(x, u, t) +
∂f(x, u, t)

∂x
(xt − x) +O(‖xt − x‖2) (3.32)

Furthermore, let w ∈ Rn represent an additive white Gaussian process in the uncertain system with

noise intensity Q. For small deviations from the mean reference x̃ = xt − x, the error dynamics

are approximated to

˙̃x(t) = A(t)x̃(t) +w(t) (3.33)

whereA(t) is the continuous-time approximation of the nonlinear dynamics sensitivities in Eq. (3.32).

A solution to Eq. (3.33) can be written as

x̃(tf ) = Φ(tf , t0)x̃(t0) +

∫ tf

t0

Φ(tf , τ)w(τ) dτ (3.34)

where Φ(tf , t0) is a state transition matrix (STM) obeying the relations

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In×n (3.35)

Starting with the definition of the error covariance and assuming x̃ and w are uncorrelated gives

P (tf ) = E[x̃(tf )x̃T(tf )]

= Φ(tf , t0)P (t0)ΦT(tf , t0) +

∫ tf

t0

Φ(tf , τ)Q(τ)ΦT(tf , τ) dτ (3.36)

with initial covariance

P (t0) = E[x̃(t0)x̃T(t0)] (3.37)

where Q represents the process noise intensity. Note that Eq. (3.36) fully defines the evolution of

uncertainty at time tf , relative to a first-order Taylor series approximation of the system dynamics.

The elements of STM could be augmented to the system state with matrix differential equation

and initial conditions in Eq. (3.35), such as the approach in Ref. [121]. However, a more prudent

approach lies in using symmetry of the error covariance matrix to reduce the number of terms that

must be appended to the Hamiltonian BVP [112]. This behavior will be leveraged in the following

sections.
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It is often the case that a system contains constant parameters that influence the dynamics.

Coupling between model parameters can introduce nonlinearity, even if the original system is linear.

In this section, we illustrate how this property holds even though the parameters do not change

with time. Further, the state error covariance and STM can be partitioned is such a way as to

eliminate a subset of states and constraints. These quantities can instead be treated as constants

in optimization. This decreases the complexity and dimensionality of the resulting Hamiltonian

BVP, particularly when many parameters are present.

Consider the system dynamics

ẋ = f(x,p, u, t), x(t0) = x0 (3.38)

where p ∈ Rq is a set of constant parameters affecting the motion of the system. Consider deviations

about a truth state xt as well as the true value of the parameters pt that are not known in

optimization. In a similar manner as Eq. (3.33),

ẋt ≈ f(x,p, u, t) +
∂f(x,p, u, t)

∂x
(xt − x) +

∂f(x,p, u, t)

∂p
(pt − p) (3.39)

which reduces to

˙̃x(t) = A(t)x̃(t) + E(t)p̃(t) +w(t) (3.40)

where p̃ = pt−p is the parameter error, and A(t) and E(t) are the state and parameter sensitivity

matrices, respectively, from Eq. (3.38). A solution to Eq. (3.40) can be written as

x̃(tf ) = Φ(tf , t0)x̃(t0) + Ψ(tf , t0)p̃+

∫ tf

t0

Φ(tf , τ)w(τ) dτ (3.41)

where Ψ(tf , t0) is the STM representing propagated effects of model parameter variations on x̃.

Next, partition the state error covariance as

P =

Pxx Pxp

Ppx Ppp

 (3.42)

where

Pxx = E[x̃x̃T], Pxp = E[x̃p̃T], Ppp = E[p̃p̃T] (3.43)
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We are interested in computing the terminal state error covariance for optimization. Assuming x̃

and p̃ are uncorrelated with process noise w, the terminal state error covariance is expressed from

Eq. (3.41) as

Pxx(tf ) = Φ(tf , t0)Pxx(t0)ΦT(tf , t0) + Φ(tf , t0)Pxp(t0)ΨT(tf , t0) + Ψ(tf , t0)Ppx(t0)ΦT(tf , t0)

+

∫ tf

t0

Φ(tf , τ)Q(τ)ΦT(tf , τ) dτ (3.44)

In order to compute Eq. (3.44), we require the matrix differential equation governing the

dynamics of each STM. Considering the homogenous dynamics of Eq. (3.41) at time t gives

˙̃x(t) = Φ̇(t, t0)x̃(t0) + Ψ̇(t, t0)p̃ (3.45)

Noting that Eq. (3.41) can be written at time t without process noise as

˙̃x(t) = A(t)x̃+ E(t)p̃

= A(t) (Φ(t, t0)x̃(t0) + Ψ(t, t0)p̃) + E(t)p̃

= A(t)Φ(t, t0)x̃(t0) + (A(t)Ψ(t, t0) + E(t)) p̃ (3.46)

Comparing Eqs. (3.45) and (3.46), the dynamics of each STM are then known as

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In×n (3.47)

Ψ̇(t, t0) = A(t)Ψ(t, t0) + E(t), Ψ(t0, t0) = 0q×q (3.48)

where initial conditions are inferred from Eq. (3.41).

The resulting subproblem is a deterministic representation of the stochastic differential equa-

tion in Eq. (3.32), with the STM integrated along the mean dynamics in Eq. (3.1). The nonlin-

earity of the system couples the nominal trajectory to its error covariance through the continuous

time Jacobian matrices A(t) ≈ A(x(t),p(t), u(t)) and E(t) ≈ E(x(t),p(t), u(t)). Assuming addi-

tive white Gaussian process noise, the intensity matrix Q does not introduce any state-dependent

effects in optimization. However, process noise is retained for consistency and numerical condition-

ing. Future work may consider path-dependent uncertainty propagation due to correlated state or

control-dependent noise in the auxiliary problem.
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3.4.2 Expectation Cost Objective

In order to introduce auxiliary error covariance states, we develop a Mayer objective function

for the extended problem. The preceding section shows that a Mayer objective admits infinite-

order singular arcs if a minimum is reachable subject to the system dynamics and constraints.

Suppose the control objective seeks to minimize a set-point tracking or sum-squared deviation

from a desired target set of terminal states. These functions are sometimes referred to as mean

squared error (MSE) or signal-to-noise measures in robust optimization [175]. We seek to resolve

the singular arc order by penalizing the projection of a propagated Gaussian uncertainty ellipse

onto the deterministic terminal manifold.

Suppose the Mayer objective can be cast into the following form

J = φ(x(tf )) =

κ∑
i=1

1

2
φ̃i(x(tf ))2 (3.49)

where φ̃ : Rn → R defines a loss or penalty function of state deviations with φ̃(x∗(tf )) = 0. An

expectation of Eq. (3.49) results in

κ∑
i=1

E

{
1

2
φ̃i(x(tf ))2

}
=

κ∑
i=1

tr{Wi(x(tf ))P (tf )} (3.50)

where Wi ∈ Rn×n is a weighting matrix composed from the following outer product.

Wi =
[
φ̃T
x φ̃x

]
i

=



φ̃2
x1 φ̃x1 φ̃x2 · · · φ̃x1 φ̃xn

φ̃x2 φ̃x1 φ̃2
x2 · · · φ̃x2 φ̃xn

...
...

. . .
...

φ̃xn φ̃x1 φ̃xn φ̃x2 · · · φ̃2
xn


i

(3.51)

As the matrix trace is a linear operator, the summation in Eq. (3.50) reduces the objective to

J = tr{W (x(tf ))P (tf )}, W =
κ∑
i=1

Wi (3.52)

By construction, W is a positive semidefinite matrix with rank(W ) ≤ κ. Equation (3.50) can

be interpreted as penalizing a projection of the error covariance along the gradient of the penalty

function, or the normal cone to the tangent cone of φ̃ at x(tf ). If the penalty function is linear
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in its arguments, then W is a constant matrix. However, if the penalty function is nonlinear,

the weighting matrix W introduces state-dependent terminal excursions along the target set S for

which the trace of the error covariance must be minimized. This introduces an additional degree

of freedom in optimization.

3.4.3 Auxiliary Problem Definition

In this section, we present a novel method for relaxation of indeterminate control problems

resulting from infinite-order singular arcs. The error covariance dynamics in Eq. (3.54) can be

treated as an extended system with deterministic states, as stochastic perturbation terms have been

removed. If nonlinear effects are present in the error covariance dynamics, the auxiliary problem

can resolve the indeterminate control structure through minimization of the weighted covariance

trace objective Eq. (3.52).

The error covariance solution in Eq. (3.36) introduces an additional n2 states and initial

constraints in optimization for elements of the STM. However, we will leverage the symmetry

property of the error covariance matrix to reduce the dimensionality of the auxiliary problem.

Taking a time derivative of Eq. (3.36) at time t and noting Eq. (3.35) gives

Ṗ (t) = Φ̇(t, t0)P (t0)ΦT(t, t0) + Φ(t, t0)P (t0)Φ̇T(t, t0)

+

∫ t

t0

∂

∂t
Φ(t, τ)Q(τ)ΦT(t, τ) dτ +

∫ t

t0

Φ(t, τ)Q(τ)
∂

∂t
ΦT(t, τ) dτ + Φ(t, t)QΦT(t, t) (3.53)

Noting the STM dynamics in Eq. (3.35) and rearranging terms results in the well-known linear

matrix differential equation for the error covariance dynamics

Ṗ (t) = A(t)P (t) + P (t)A(t)T +Q(t) (3.54)

Similar expressions can be derived for the parameter-extended system in Eq. (3.44), which are omit-

ted for brevity. We will utilize the partitioned system with uncertain parameters in the following

section. The nominal state follows the dynamics in Eq. (3.11) and the error covariance dynamics
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Eq. (3.54). Dropping notation for time dependency, the combined system is expressed as

ẋ = f + gu (3.55)

Ṗ = (fx + gxu)P + P (fx + gxu)T +Q (3.56)

In the auxiliary problem the expectation cost Eq. (3.50) replaces the deterministic Mayer

objective. The original objective is enforced by a terminal state constraint coinciding with target

set S. The approach is applicable to both the end-time fixed and end-time free with partially-

constrained terminal state. We consider the latter here but show examples for both cases. Given

the preceding developments, the end-time free problem is summarized as follows.

Problem 3



min
u

J = tr{W (x(tf ))P (tf )}

s.t. x(t0) = x0, x(tf ) ∈ Θ

P (t0) = P0

u ∈ U

tf free

(3.57)

It is helpful to show that Problem 3 has a similar structure to Problem 2’. The auxiliary problem

system is concatenated into nonlinear state-space form as ẋ

vec(Ṗ )

 =

 f

vec(fxP + PfT
x +Q)

+

 g

vec(gxP + PgT
x )

u (3.58)

where vec(·) is the matrix vectorization operator. More compactly,

ż = F (z) +G(z)u, z(t0) = z0 (3.59)

where zT = [xT, vec(P )T] ∈ Rl is an augmented state vector with initial conditions

z(t0)T = [x(t0)T, vec{P (t0)}T] (3.60)

where l = n(1 + n). The extended mappings are F : Rl → Rl and G : Rl → Rl. The augmented

problem is summarized as follows, where O ∈ Rn2
is the zero set corresponding to the dimensions
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of vec(P ).

Problem 3’



min
u

J = φ(z(tf ))

s.t. z(t0) = z0, z(tf ) ∈ (Θ ∪O)

u ∈ U

tf free

(3.61)

Because the control is affine in the system dynamics, and the initial state is fixed, Problem 3’ and

Problem 2’ have equivalent forms.

We consider the indirect approach to the relaxed problem with augmented error covariance

dynamics by adjoining the covariance dynamics to the Hamiltonian BVP [119,172]. In addition to

the costates λ, we require n2 multipliers to adjoin the covariance states. Define a matrix Λ ∈ Rn×n

of multipliers corresponding to each entry of the matrix differential equation in Eq. (3.54).

Λ =


Λ1 · · ·

...

Λ2 · · · Λn2−1

... · · · Λn2

 (3.62)

The Hamiltonian for this system is constructed as

H = λTẋ+ vec(Λ)Tvec(Ṗ )

= λTẋ+ tr(ΛTṖ )

= λT(f + gu) + tr{ΛT((fxP + PfT
x +Q) + (gxP + PgT

x )u)} (3.63)

where we use the property of the Frobenius inner-product that tr(ATB) = vec(A)Tvec(B) for real

matrices A and B. The costate dynamics for Problem 3 can be written as

λ̇T = −∂H
∂x

= −λT(fx + gxu)− ∂

∂x
tr{ΛT((fxP + PfT

x +Q) + (gxP + PgT
x )u)} (3.64a)

Λ̇ = −∂H
∂P

= −(fT
xΛ + Λfx)− (gT

xΛ + Λgx)u (3.64b)

Because the control u appears linearly in the Hamiltonian, we expect the solution to have

bang-bang singular form. The switching function for Problem 3 is

Hu = λTg + tr{ΛT(gxP + PgT
x )} (3.65)
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Next, consider the existence and order of singular arcs. Noting the objective in Eq. (3.50),

the boundary conditions on the costates are

λ(tf ) = νTψx(x(tf ), tf ) (3.66a)

Λ(tf ) = W (3.66b)

By Proposition 1, φz = 0 ∈ Rl is sufficient for existence of singular arcs with infinite order. For any

weighting matrix W 6= 0 ∈ Rn×n, the boundary conditions for vec(Λ(tf )) 6= 0 ∈ Rn2
immediately

rule out the sufficient condition. Thus, the relaxation method introduces an auxiliary problem to

minimize the propagated state error covariance along the nominal trajectory, and the necessary

conditions will reveal a candidate local minimum using the standard indirect approach.

3.4.4 Example: Uncertain Van der Pol Oscillator

We consider a variant of the example from Sec. 2.3.3 to demonstrate infinite-order singular

arcs. The forced Van der Pol equation is

mẍ+ 2c(x2 − 1)ẋ+ kx = u (3.67)

where m, c, and k are real, positive parameters. For simplicity we set m = k = 1 and c = 0.5. The

system is cast into first-order form with state vector x = [x1, x2]T as

ẋ1 = x2 (3.68a)

ẋ2 = −(x2
1 − 1)x2 − x1 + u (3.68b)

The initial conditions are x1(0) = 1 and x2(0) = 0 with control bound 0 ≤ u ≤ 2. The objective is

to minimize the distance from the origin at fixed end-time tf = π.

J =
1

2
x1(tf )2 +

1

2
x2(tf )2 (3.69)

The traditional approach begins by forming the Hamiltonian

H = λ1x2 + λ2(−(x2
1 − 1)x2 − x1 + u) (3.70)
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The costate differential rates are

λ̇1 = λ2(2x1x2 + 1) (3.71a)

λ̇2 = −λ1 + λ2(x2
1 − 1) (3.71b)

with boundary conditions λ1(tf ) = x1(tf ) and λ2(tf ) = x2(tf ). On a candidate singular arc, the

switching function defined by Eq. (2.10) is

Hu = λ2 = 0 (3.72)

Taking a first derivative gives

d

dt
Hu = λ̇2 = −λ1 + λ22(x2

1 − 1) = 0 (3.73)

which in tandem with Eq. (3.72) implies λ1 = λ2 = 0 on the singular arc. Because the adjoint equa-

tions are linear in the costates, u will never reappear in differentiation with a non-zero coefficient.

Therefore, the singular arc has intrinsic order q →∞. By Proposition 1, an optimal singular arcs

exists if φx(tf ) = (x1(tf ), x2(tf )) = (0, 0). Intuitively, this condition suggests that any initial state

from which the origin is reachable in fixed time tf will produce the singular arc. If the end-time

is varied such that the origin is not reachable, the solution will revert to bang-bang form. In our

case, the problem permits singular arcs and Hu = 0 for all t ∈ [0, π].

Results are generated for the Van der Pol example using the regularization strategy outlined

in Sec. 3.5. Although traditional indirect methods do not yield a candidate control, the numerical

shooting method is able to find a solution given a small non-zero guess for the initial costates.

Figure 3.4 shows a phase portrait and control history for each solution found within the family

of global minimizers. Each solution is consistent with the initial conditions and minimum of the

sum-squared Mayer objective. Furthermore, the control solutions remain well within the upper

and lower control bounds. While it is possible to find bang-bang trajectories satisfying the same

objective, the existence of intermediate singular trajectories rules out the bang-bang solution as a

globally unique control.
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(a) Phase portrait (b) Control

Figure 3.4: Infinite-order singular arc solutions of Van der Pol example.

The auxiliary covariance relaxation method is applied to the Van der Pol example as follows.

A state error covariance matrix P and sensitivity matrix A are constructed as

P =

P11 P12

P12 P22

 , A =

 0 1

−2x1x2 − 1 1− x2
1

 (3.74)

giving from Eq. (3.54) the state error covariance matrix dynamics

Ṗ11 = 2P12 +Q11 (3.75a)

Ṗ12 = P11(−2x1x2 − 1) + P12(1− x2
1) + P22 +Q12 (3.75b)

Ṗ22 = 2P12(−2x1x2 − 1) + 2P22(1− x2
1) +Q22 (3.75c)

The error covariance states are appended to the state equation with initial conditions P11(t0) = 0.12,

P12(t0) = 0, and P22(t0) = 0.052. Process noise intensity terms are included for Q11 = Q12 = 0 and

Q22 = 0.012. Referring to the expectation objective in Eq. (3.52), the weighting matrix is simply

W = I ∈ R2×2 leading to the auxiliary cost

J = tr{P (tf )} = P11(tf ) + P22(tf ) (3.76)
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The terminal states are constrained to x1(tf ) = x2(tf ) = 0 ensuring the nominal state lies within

the target set S = {0, 0}.

Results for the auxiliary Van der Pol problem are illustrated in Fig. 3.5. Two cases are

plotted for comparison. The first is a sample trajectory from the infinite-order arc family that

adheres to the boundary conditions and system dynamics. The second is the auxiliary minimization

objective. In both cases, the error covariance terms are propagated forward with identical initial

conditions for comparison. The control histories and switching functions are plotted in Figs. 3.5a

and 3.5b, respectively. In the infinite-order case, the control remains well within the upper and

lower bounds, and its corresponding switching function remains identically zero as expected. We

emphasize that this solution is one of many possible global minimizers. In contrast, the auxiliary

covariance objective produces a bang-bang control structure with a non-zero switching function for

all time. This evidence supports the utility of the relaxation approach; with the auxiliary objective,

the solution is uniquely determined. Furthermore, the covariance trace in Fig. 3.5c is considerably

reduced from 0.10520 in the singular case to 0.05312 in the auxiliary problem. The net effect is

about a 50% reduction in the expectation cost objective. It is interesting to note that, near time

t = π/4, the covariance trace is actually larger in the auxiliary problem, meaning that the auxiliary

cost is not necessarily lower at every point in time.

Figure 3.6 illustrates a phase portrait of both cases with the projected error covariance

ellipse at equal time intervals of π/10. It is clear that the propagated error covariance matrix

retains a lower trace in solution of the auxiliary problem compared to the indeterminate solutions.

By application of indirect methods with regularization strategies, these solutions can be rapidly

obtained for nonlinear systems. Although the Van der pol example is commonly seen as a theoretical

problem, these results have implications for real-world systems for which optimal motion-planning

can reduce systemic uncertainty.
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(a) Control (b) Switching function (c) Covariance trace

Figure 3.5: Auxiliary minimum solution of Van der Pol example.

Figure 3.6: Phase portrait and error covariance propagation for Van der Pol example.
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Figure 3.7: Numerical continuation homotopy over boundary condition parameters.

3.5 Numerical Solution Strategy for Complex Systems

The indeterminate problem presented in Propositions 1 and 2 introduces several difficulties

in numerical solution. When constructing the indirect formulation, the switching function pro-

vides no new information on the optimal control policy. This in turn means the control variable

u cannot be eliminated from the Hamiltonian BVP. Even in well-posed problems, solutions in

bang-bang/singular form introduce challenges in optimization due to the discontinuous nature of

the controls. These limitations can be overcome via the generalized regularization procedure of

Chapter 2. The Hamiltonian is regular following this transformation, allowing for bounded quan-

tities to be treated in optimization as unconstrained [99,176]. Regularization enables solution over

bang-bang/singular problems without prior knowledge regarding the order and number of arcs.

Regularization produces smooth, continuously differentiable functions that are compatible with

variable step-size numerical integrators. Because the problem is regular, the infinite-order arcs can

be resolved by inputting a non-zero initial costate guess to the BVP solver. The regularization

method enables solutions that are otherwise unattainable under the traditional indirect approach,

with only minor reduction in solution accuracy due to approximation.

A limitation of indirect methods is the small region of convergence in numerical solution
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of the Hamiltonian BVP. Without a close initial trajectory, modern BVP solvers are unlikely to

achieve convergence in complex problems. Though some methodologies exist for estimating initial

costates [177, 178], these approaches are usually highly problem-specific. Homotopy continuation

methods [83,85,179,180] can greatly enhance convergence in complex problems by producing a series

of neighboring BVPs. The method introduces a scalar continuation parameter over constants of the

OCP process equations and boundary conditions. A short initial trajectory is used as a guess for

neighboring solutions. Starting from an initial trajectory, the continuation step pushes the constants

to desired values by solving each BVP with the prior solution as its initial guess. Figure 3.7 shows

a conceptual illustration of a continuation interval for a simple problem. Numerical continuation

methodologies can greatly enhance convergence in complex problems where a feasible initial guess

is difficult to generate.

The auxiliary covariance minimization problem presented in Sec. 3.4 is solved by appending

elements of the covariance dynamics as states in the Hamiltonian BVP. Because the error co-

variance matrix is symmetric, the full vectorization operator contains redundant information that

contributes numerical overhead in optimization. Instead, the half-vectorization operator is used to

extract the unique elements of Pxx and Pxp from Eq. (3.42) along with the corresponding initial

conditions. Parameter uncertainties in Ppp are appended as constants in the BVP solver, reducing

the dimensionality of the problem compared to appending the full error covariance matrix dynam-

ics. Finally, through application of numerical continuation methods, solutions are obtained for

complex engineering problems starting from a rough initial guess.

3.6 Aerospace Mission Design Applications

The auxiliary covariance minimization strategy provides an alternative approach when tra-

ditional indirect methods yield indeterminate solutions. Solution over the extended state-space

produces well-posed solutions with finite singular arc order. In the following examples, we illus-

trate the method in practical aerospace engineering applications.
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3.6.1 Relative Orbit Formation Flying

The relative motion of spacecraft has been extensively studied for on-orbit formation flying

and station keeping [181, 182]. Optimal maneuvering in relative orbital motion is of high import,

as small perturbations can increase station-keeping requirements over successive orbits. Spacecraft

maneuvers are usually subject to strict fuel usage and thrust constraints, leading a number of

studies to develop minimum-fuel impulsive transfer [183,184] and relative orbit element control laws

[185, 186]. Other studies have sought to perform optimal maneuvering for passively-safe satellite

station-keeping and collision avoidance [187–190]. This represents a challenging task, particularly

when observations can only be made with limited resources or time-frames. Periods of time in

which the spacecraft must rely on elapsed state information pose adverse risk if the vehicle cannot

adequately compensate for potential collisions.

In this example, a simple relative motion model with Gaussian uncertainty is studied. For a

class of spacecraft maneuvers, the control structure can produce indeterminate singular arcs. The

auxiliary relaxation method is applied to these cases to demonstrate its utility in spacecraft motion

planning. Further, the method produces open-loop trajectories minimizing the effects of model and

state uncertainty in the relative motion system.

To begin, the Tschauner-Hempel equations [191] describe the relative motion of a deputy (or

follower) satellite with respect to a chief (or leader) satellite placed in an elliptical orbit. With

some moderate assumptions, notably a circular chief orbit and small relative separation distances,

the well-known Clohessy-Wiltshire (CW) [192] equations of motion result. Atmospheric drag terms

may become important at lower atmospheric altitudes due to the integrated effect of perturbing

forces. The CW equations can be modified to include quadratic drag terms [193] for an initially

circular chief orbit, where it is assumed the chief and deputy have identical drag coefficients. The
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Figure 3.8: Relative orbital motion geometry in rotating Hill frame.

equations of motion are stated as

ẍ− 2nẏ − 3(1 + 4b2)n2x = u1 (3.77a)

ÿ + 2nẋ = u2 (3.77b)

z̈ + n2z = u3 (3.77c)

where n is the mean orbit rate defined as

n =

√
µ

a3
(3.78)

for a circular chief orbit with semi-major axis a and gravity parameter µ. The parameter b incor-

porates vehicle shape and aerodynamic properties contributing to aerodynamic drag. The relative

motion states include the radial x, along-track y, and cross-track z components. See Figure 3.8.

The rotating Hill frame is defined attached to the chief spacecraft, with constant orbit rate θ̇ = n.

A reasonable objective of the on-orbit maneuver is to place a spacecraft in a safe holding

orbit. Such applications might include observation black-out windows or abort scenarios, in which

the deputy spacecraft must minimize the probability of a future collision. A well-known feature of

the linear CW dynamics is the secular drift property [194], which describes the along-track drift

rate of the center of motion in the x-y plane. The zero secular drift condition can be stated as

2nx+ ẏ = 0 (3.79)
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which remains compatible with the quadratic drag terms so long as b <
√

3/6 (see Ref. [193]). It is

easy to see that the cross-track dynamics and secular drift decouple the in-plane and out-of-plane

relative motion states. For simplicity, out-of-plane motion is excluded in this example, although

the results still apply to general 3D relative motion case.

Neglecting the cross-track component and casting into state-space form gives

ẋ = Ax+Bu (3.80)

with linear dynamics

A =



0 0 1 0

0 0 0 1

3(1 + 4b2)n2 0 0 2n

0 0 −2n 0


, B =



0 0

0 0

1 0

0 1


(3.81)

x = [x1, x2, x3, x4]T, u = [u1, u2]T (3.82)

where x1 = x, x2 = y, x3 = ẋ, and x4 = ẏ. Consider the objective minimizing secular drift at the

end of a maneuver over one nominal chief orbit

J =
1

2
(2nx1(tf ) + x4(tf ))2, tf = T (3.83)

where T = 2π/n is the orbital period. The maximum thrust in each dimension is limited to

−umax ≤ ui ≤ umax for i = 1, 2. The initial states are fixed as

x(t0) = x0 (3.84)

Following the maneuver, suppose the deputy must be placed in a desired holding orbit with geo-

metric properties [194] √(
6x1(tf ) +

4x4(tf )

n

)2

+

(
2x3(tf )

n

)2

−Ay = 0 (3.85)

x2(tf )−
2x3(tf )

n
− yoff = 0 (3.86)
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where Ay is the maximum amplitude of relative motion in the along-track direction, and yoff is the

desired along-track separation of the relative orbit centroid. The terminal states are otherwise left

free in optimization in order to provide additional degrees of freedom in matching the zero secular

drift condition.

Comparing Eq. (3.83) to the structure of Problem 2, Proposition 2 indicates that a singular

arc with p→∞ exists when the zero-drift condition is met Eq. (3.79). Since (A,B) is a controllable

pair [195], the feasibility of the solution is dictated by the thrust bound umax, where we assume

the terminal constraint is contained in the reachable set. Forming the Hamiltonian for the in-plane

CW equations gives

H = λ1x3 + λ2x4 + λ3(3(1 + 4b2)n2x1 + 2nx4 + u1) + λ4(−2nx3 + u2) (3.87)

with costate dynamics

λ̇1 = −∂H
∂x1

= −3(1 + 4b2)n2λ3 (3.88a)

λ̇2 = −∂H
∂x2

= 0 (3.88b)

λ̇3 = −∂H
∂x3

= 2nλ4 (3.88c)

λ̇4 = −∂H
∂x4

= −λ2 − 2nλ3 (3.88d)

Because control terms u1 and u2 appear linearly in the Hamiltonian, Eq. (3.87), the optimal control

is bang-bang/singular. The structure of the optimal control policies is

u∗i =


+umax, if λi+2 < 0,

−umax, if λi+2 > 0,

indefinite, if λi+2 = 0

i = 1, 2 (3.89)

We are motivated to consider the existence of singular arcs for the in-plane relative motion

system. Considering the switching function for u1 on a singular arc

Hu1 = λ3 = 0 (3.90)
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Successive differentiation gives

d

dt
(Hu1) = λ̇3 = 2nλ4 = 0 (3.91a)

d2

dt2
(Hu1) = 2nλ̇4 = −2n(λ2 + 2nλ3) = 0 (3.91b)

d3

dt3
(Hu1) = −2n(λ̇2 + 2nλ̇3) = −2n(2nλ4) = 0 (3.91c)

Similarly, for the u∗2 control policy,

Hu2 = λ4 = 0 (3.92)

with successive derivatives

d

dt
(Hu2) = λ̇4 = −λ2 − 2nλ3 = 0 (3.93a)

d2

dt2
(Hu2) = −λ̇2 − 2nλ̇3 = −2n(2nλ4) = 0 (3.93b)

Because λ4 appears cyclicly in derivatives of the switching functions for u1 and u2, the control terms

will never reappear in differentiation and the problem has intrinsic order q →∞. By Corollary 2.2,

existence of an infinite-order singular exists if and only if φx = 0, which is precisely the zero secular

drift condition in Eq. (3.79). Thus, solution structure exhibits an indeterminate form.

A family of global optimizers is generated for visualization of the infinite-order singular

relative motion problem. Parameters for this example are adapted from a prior relative motion

study [187]. The reference LEO chief is chosen with a semi-major axis of 6,652 km, giving an

orbital period of 90 minutes. The chief orbit is assumed initially circular with an eccentricity of

zero. The spacecraft is initialized with fixed 100 m radial and 0 m along-track offsets and zero

relative velocities. The final time of the simulation is fixed to tf = T . A maximum thrust limit

of 1.5 mm/s2 is enforced in the radial and along-track components. A nominal value of the drag

parameter b is chosen from Ref. [182] for a chief and deputy spacecraft with mass of 154.4 kg, drag

coefficient of 2.5, and drag area of 1.3 m2. Boundary conditions and parameters used in the relative

motion example are given in Table 3.1. An initial trajectory is propagated forward for one orbit

period with rough initial costate guesses. With fixed end-time, the numerical BVP solver is able
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Table 3.1: State constraints and problem parameters for CW relative motion example.

x (m) y (m) ẋ (m/s) ẏ (m/s) t (s)

Initial 100 0 0 0 0
Final Eqs. (3.85–3.86) T

(a) States

Parameter n (1/s) b Ay (m) yoff (m) umax (mm/s2)

Value 0.0011636 0.02105 250 500 1.5

(b) Parameters

to converge to a local minimum without precise initial costates. The cost objective in Eq. (3.83) is

minimized to ensure the nominal secular drift at the end of the trajectory trends to zero.

A sample of trajectories along the infinite-order arcs is plotted in Fig. 3.9. In Fig. 3.9a,

all trajectories emanate from the fixed initial radial and along-track offsets, terminating on the

250-by-125 m target orbit in Hill frame coordinates. In Fig. 3.9b, the phase portrait indicates that

the terminal relative velocity components vary up to 250 mm/s radial and 650 mm/s along-track

within the family of solutions. The secular drift along each trajectory is driven identically to zero,

and the cost objective of Eq. (3.83) is minimized precisely. This indicates that all solutions produce

combinations of radial offset and along-track velocity that (nominally) eliminate along-track drift

following the maneuver. The target set in this example can be visualized a 2-dimensional manifold

within the state-space that defines a proportional relationship between radial offset and along-track

velocity. This illustrates the concepts presented in Sec. 3.3, which argue that a target set coinciding

with the reachable set of the system produces infinite local order. In other words, minimizing the

drift error alone is not sufficient to resolve the traditional optimality necessary conditions, because

the target set is reachable with end-time fixed and bounded control.

The auxiliary covariance relaxation method is a potential candidate for resolving infinite-

order singular arcs in the planar CW dynamics. Note from Eq. (3.83) that Eq. (3.50) can be
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(a) Relative position (b) Relative velocity

Figure 3.9: Infinite-order singular solution arcs in the CW relation motion example.

expressed as

J =
1

2
φ̃(x(tf )))2 (3.94)

where

φ̃(x(tf ))) = 2nx1(tf ) + x4(tf ) (3.95)

giving the weighting matrix

W =
[
φ̃T
x(tf )φ̃x(tf )

]
=



4n2 0 0 2n

0 0 0 0

0 0 0 0

2n 0 0 1


(3.96)

Note that the dynamics in Eq. (3.81) are linear, removing path-dependency of the covariance

dynamics from the developments of Sec. 3.4.3. However, a parameter uncertainty approach intro-

duces nonlinearity in the system dynamics that can be exploited to resolve the solution structure.

Suppose the chief orbit is not precisely circular, but subject to natural variation in the orbit rate

due to higher-order gravity harmonics, solar radiation pressure, or other perturbations. The mean

orbit rate parameter n is augmented as an uncertain state in the system. This parameter extension

approach could also reflect epistemic uncertainty due to assumptions of the system dynamics, which
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implicitly rely on the underlying assumptions for the CW relative motion dynamics. The auxiliary

problem for the extended state-space is stated as

x = [x1, x2, x3, x4, n] (3.97)

with initial covariance matrix for the extended system

P0 = diag
{
P11(t0), P22(t0), P33(t0), P44(t0), σ2

n

}
(3.98)

and sensitivity matrix

A =



0 0 1 0 0

0 0 0 1 0

n2
(
12b2 + 3

)
0 0 2n 2nx1

(
12b2 + 3

)
+ 2x4

0 0 −2n 0 −2x3

0 0 0 0 0


(3.99)

Observe that the first-order sensitivities of the system incorporate path-dependent evolution of

uncertainty from variation in the mean orbit rate. This behavior is visible in the last column of A,

which includes nonlinear effects in the state error covariance propagation. The weighting matrix W

is augmented with rows and columns of zeros to retain dimensional consistency with the extended

state.

W ′ =

 W 04×1

01×4 0

 (3.100)

Next, restate the auxiliary objective for the relative motion example as

J = tr{W ′P (tf )} = 2P14n+ P44 + 2n(2P11n+ P14) (3.101)

with initial constraint P (t0) = P0 and auxiliary dynamics in Eq. (3.54). Further, we impose the

terminal constraint φ̃(x(tf )) = 0 on the nominal trajectory to terminate on the target set. This

ensures the zero secular drift condition is exactly satisfied in solution of the auxiliary problem.

Auxiliary states and parameters for the relative motion example are summarized in Table 3.2.

These states represent the components of the augmented error covariance dynamics. Process noise
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Table 3.2: Auxiliary states and problem parameters for relative motion example. Initial correlated
uncertainties are assumed zero.

P11 (m2) P22 (m2) P33 (m2/s2) P33 (m2/s2) σ2
n (1/s2)

Initial 0.012 0.012 0.0012 0.0012 (0.0075n)2

Final free free free free free

(a) Auxiliary states

Parameter Q11 (m/s) Q22 (m/s) Q33 (m/s2) Q44 (m/s2)

Value 0 0 2× 10−5 2× 10−5

(b) Auxiliary parameters

is omitted from the kinematic equations for x and y. Velocity states are augmented with an

artificial noise intensity of 2 × 10−5 m/s2 from Ref. [187]. Results are generated through the

numerical solution procedure in Sec. 3.5. The augmented states are appended to the BVP solver,

where symmetry in the covariance matrix is leveraged to eliminate the lower triangular entries. A

numerical continuation procedure is performed on the terminal along-track constraint and secular

drift constraint. In order to provide a meaningful basis for comparison, the auxiliary solution is

compared to a sample of the infinite-order singular solution set. One such trajectory includes the

minimum control (or fuel) solution, which is obtained by minimizing the sum-square integrated

control effort. This objective is often pursued in order to minimize propellant usage during the

maneuver. This provides a relevant metric for comparison to solution of the auxiliary problem.

Figure 3.10 illustrates nominal trajectories for the minimum fuel objective and auxiliary

covariance minimization objective. The target orbit properties of Eq. (3.85) and Eq. (3.85) are

plotted as a dashed line in each plot. The relative position trajectories in Fig. 3.10a show the

initial and terminal constraints to be satisfied, as both solutions end on the desired target reference

ellipse as in the singular solution case. Both trajectories circumnavigate about the origin with

sufficient separation distance, although this constraint is not explicitly enforced. This behavior is

desirable for a chief spacecraft placed at the origin in order to reduce collision probability. The
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(a) Relative position (b) Relative velocity

(c) Secular drift (d) Along-track centroid

Figure 3.10: Infinite-order singular solution arcs in the CW relation motion example.
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velocity phase portrait for each solution is given in Fig. 3.10b. Constraints on the terminal velocity

are also satisfied. However, it is interesting to note that the minimum fuel transfer sees lower

excursions in the relative velocity, taking a path interior to the auxiliary minimum solution. The

auxiliary solution utilizes 0.501 m/s of integrated ∆V , versus 0.456 m/s in the minimum control

effort solution; an increase of about 10%. The nominal secular drift and along-track centroid are

illustrated in Figures 3.10c and 3.10d, respectively. Both conditions are matched, indicating a

feasible solution is found.

The preceding results for the relative motion example illustrate that, given perfect system

state and dynamics knowledge, the relative motion example produces a family of trajectories ter-

minating with zero secular drift. However, these trajectories will not perform identically given

imprecise system state knowledge or uncertain parameters. For each solution, a state error covari-

ance is propagated with identical initial conditions and uncertainty. Position and velocity time

histories are shown in Fig. 3.11. Referring to Eq. (3.101), the secular drift error is minimized by

decreasing terminal errors in radial position x and along-track velocity ẏ, as well as the correla-

tion between each. In Fig. 3.11a, the radial position error ends moderately lower for the auxiliary

problem solution, whereas the minimum fuel solution has higher errors in the x coordinate. The op-

posite trend is noted in the along-track position error, which is actually lower for the minimum fuel

solution. Similarly, in Fig. 3.11b the terminal radial velocity error is much higher in the auxiliary

problem, but the along-track velocity error is decreased. Uncertainty in some state-space dimen-

sions is increased in order to push uncertainty away from the singular manifold, in turn reducing

the statistical variation of along-track drift. However, this benefit comes at the cost of increasing

uncertainty in other dimensions of the problem.

Figure 3.12a shows errors in the secular drift terms. Both solutions begin with the same drift

uncertainty, because the initial covariance is fully constrained. In Fig. 3.12a, the auxiliary solution

sees a higher peak at about 0.6 orbits in comparison to the minimum fuel solution. However,

the terminal drift error is moderately reduced, indicating that the solution is a local minimum of

the cost objective in Eq. (3.101). This concept is further illustrated by Fig. 3.12, which shows the
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(a) Relative position

(b) Relative velocity

Figure 3.11: Propagated position and velocity errors for relative motion example.

(a) Secular drift error (b) Secular drift error

Figure 3.12: Terminal state error covariances projected onto zero-drift target manifold.
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Figure 3.13: Propagated unforced radial and along-track relative motion for 5 chief orbits.

terminal state error covariance ellipses in x and ẏ coordinates. In addition, the desired target set for

zero secular drift is illustrated as a solid line. In the minimum fuel solution, the semi-major axis of

the state error covariance ellipse is rotated partly away from the nominal drift line. The projection

of these errors away from the singular manifold produces higher uncertainty in the drift error,

even though the nominal state terminates precisely on the manifold. In comparison, the auxiliary

solution has the benefit of aligning the axes of the covariance ellipse precisely with the zero-drift

condition. This reduces the projection of errors away from the singular manifold, resulting in lower

expected drift after the relative orbit maneuver window. These results indicate that, although the

CW dynamics are linear in the state variables, parameter uncertainties can introduce nonlinearity

that resolves the infinite-order singular arc. Further, these solutions are robust to uncertainty in the

orbit rate parameter, which could vary due to a non-circular chief orbit or external perturbations.

Although aerodynamic drag will circularize the chief orbit over time, these effects will also affect

the mean orbit rate.

Finally, Fig. 3.13 shows an uncontrolled propagation of the deputy terminal state error co-

variances following each maneuver. These are computed for five nominal chief orbits using a Monte

Carlo sampling approach with 250 runs. Both solutions produce the desired orbit in the nominal



110

case with zero secular drift. However, after five orbits, the minimum fuel solutions start to diverge

rapidly, with many cases ending far beyond the initial along-track offset. In comparison, the aux-

iliary problem moderately desensitizes the maneuver and reduces the secular drift. A conclusion

of these results is that, although the auxiliary minimum requires slightly higher ∆V during the

maneuver, the resulting uncontrolled trajectories are likely to see lower along-track drift. This will

in turn lower station-keeping requirements, meaning overall ∆V usage post-maneuver may actually

be lower when considering future chief orbits. This example illustrates concepts regarding error

covariance projection onto singular manifolds to produce minimum-drift relative orbits. Through

application of the auxiliary covariance relaxation method and control regularization, solutions can

be rapidly obtained using indirect methods with little effort required of the designer regarding

knowledge of the solution structure.

3.6.2 Planetary Aerocapture

Aerocapture is an aeroassist strategy proposed in the literature [1,196] consisting of a single

pass through the upper atmosphere of a planetary body. The velocity-loss produced by aerody-

namic drag forces during entry is designed to dissipate orbital energy and capture the spacecraft

from an unbounded approach trajectory. An illustration of such a maneuver is given in Fig. 3.14.

Accumulative errors during entry flight will degrade the accuracy of the exit orbit, requiring larger

propellant mass margins for ∆V correction burns. As a result, the capability to precisely capture a

spacecraft into its desired orbit at atmospheric exit interface directly impacts usable delivered pay-

load. Optimal information regarding these atmospheric flight segments is an enhancing technology

for aerocapture.

Reference [91] develops a closed-loop guidance scheme for bank angle modulated aerocapture

from application of the Minimum Principle. Their findings indicate that aerocapture permits only

bang-bang solution structures, where singular arcs are ruled out. This result serves as the basis for

the closed-loop numerical predictor-corrector guidance algorithm in Ref. [91]. In the first phase, the

vehicle is initially commanded to fly a lift-up orientation in order to increase the periapsis altitude.
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Figure 3.14: Illustration of aerocapture maneuver with single-burn ∆V .

The net effect of this phase is to decrease the nominal ∆V magnitude for an exo-atmospheric

periapsis raise burn [53]. Findings for bang-bang aerocapture trajectories have been widely cited

as a basis for convex optimization algorithms [197, 198], direct force control (DFC) [123, 199], and

drag modulation for aerocapture [200].

While optimal control solutions in aerocapture are well-studied, previous work is largely

rooted in certainty equivalent cost objectives. These strategies rely on closed-loop control to

mitigate the inherent uncertainty encountered during atmospheric flight. In this example, we

demonstrate that the nonlinearity inherent to such problems can be leveraged to produce optimal

trajectories minimizing uncertainty, rather than deterministic objectives. Furthermore, we show

that a class of aerocapture problems do permit singular arcs; however, the singular arcs appear

with infinite local order, leading to an ill-posed problem structure. We consider such cases and

apply the auxiliary relaxation method to demonstrate its utility in aerospace mission design.

Mission concepts for aerocapture often employ vehicle concepts leveraging heritage entry

systems. Flight-proven technologies such as the successful Mars Science Laboratory (MSL) demon-

strated guided entry by modulating its bank angle to target a predicted downrange [18]. Bank angle

control essentially amounts to fixed-trim steering of the aerodynamic lift vector in the longitudinal

plane. These dynamics are frequently used in first-order analysis of aerocapture performance using
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the longitudinal motion of the vehicle. Neglecting planetary rotation effects and assuming a simple

radial gravity model, planar motion for unpowered atmospheric flight is described by geocentric

radius r, velocity magnitude V , and flight-path angle γ. The system is summarized as

ṙ = V sin γ (3.102a)

V̇ = −D − µ

r2
sin γ (3.102b)

γ̇ =
1

V

(
Lu+

(
V 2 − µ

r

) 1

r
cos γ

)
(3.102c)

with initial conditions r(t0) = r0, V (t0) = V0, and γ(t0) = γ0, as well as a terminal constraint

r(tf ) = rf at the atmospheric exit interface radius. L and D are lift and drag acceleration terms,

respectively, from Eq. (2.78). The atmospheric density model is assumed to follow an exponential

profile ρ = ρ0 exp(−h/S), where S is the atmospheric scale height and ρ0 is the reference density.

Altitude is calculated as h = r−Rp where Rp is the radius of the planet. The control u corresponds

to the cosine of the bank angle, which represents the component of lift projected into the vertical

plane. Inherent boundedness of u is equivalent to the control constraint |u| ≤ 1.

Previous studies [91,196,198] develop cost functions for aerocapture with respect to terminal

states. Upon reaching the atmospheric exit interface, no external forces other than gravity act on

the vehicle. Under the assumption of Keplerian motion, the properties of the final orbit are fully

defined by the exit state of the vehicle. Suppose the objective in Fig. 3.14 is to target a semi-major

axis a defined as

a(tf ) =
µ

2 µ
r(tf ) − V (tf )2

(3.103)

A common objective is to minimize the ∆V cost associated with errors in the final semi-major

axis. However, as noted by Bryson [68], states that are fully constrained in optimization can be

eliminated from the cost function. Because the exit interface altitude fully defines the terminal

radius, Eq. (3.103) reduces to a velocity-matching condition. We are then motivated to consider

the following objective for aerocapture

J =
1

2
(V (tf )− Vf )2 (3.104)
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where Vf is the target velocity giving the precise semi-major axis target at the prescribed exit

radius.

The Hamiltonian for this system is formulated as

H = λrV sin γ + λV

(
−D − µ

r2
sin γ

)
+ λγ

1

V

(
Lu+

(
V 2 − µ

r

) 1

r
cos γ

)
(3.105)

Because the final time is free, the transversality condition Eq. (3.7) defines the stop conditions of

the simulation with H(tf ) = 0. The control u appears linearly in the Hamiltonian, indicating the

solution is bang-bang/singular form. The costate dynamics are summarized as

λ̇r = −∂H
∂r

= −λV
(
−∂D
∂r

+ 2
µ

r3
sin γ

)
− λγ

1

V

(
∂L

∂r
u+ 2

µ

r3
cos γ

)
(3.106a)

λ̇V = −∂H
∂V

= −λr sin γ − λV
(
−∂D
∂V

)
− λγ

∂γ̇

∂V
(3.106b)

λ̇γ = −∂H
∂γ

= −λrV cos γ − λV
(
− µ
r2

cos γ
)
− λγ

1

V

((µ
r
− V 2

) 1

r
sin γ

)
(3.106c)

where

∂γ̇

∂V
=

1

V

(
∂L

∂V
u+ 2V

1

r
cos γ

)
− 1

V 2

(
Lu+

(
V 2 − µ

r

) 1

r
cos γ

)
(3.107)

The boundary conditions on the costates are λr(tf ) = ν, λV (tf ) = V (tf ) − Vf , and λγ(tf ) = 0,

where ν is a Lagrange multiplier appending the terminal radius constraint.

On a candidate singular arc the switching function is

Hu =
L

V
λγ = 0 (3.108)

which reduces to λγ = 0 since L and V are positive quantities. Consider the velocity-matching

condition in Eq. (3.104) for the case when the target velocity Vf is reachable with open end-time.

If the solution is a feasible trajectory satisfying all constraints of the problem, by Proposition 2

the solution is a singular arc with local order p → ∞. In tandem with the boundary condition

λγ(tf ) = 0, this implies that all solutions must terminate on a singular arc. In fact, this is precisely

the degenerate case λ(t) = 0 ∈ Rn for all t ∈ [t0, tf ] identified in Ref. [91]. Thus, we conclude

that singular arcs in aerocapture are an indeterminate control problem, since the optimal trajectory
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Table 3.3: State constraints and problem parameters for Mars aerocapture example.

h (km) V (km/s) γ (deg) t (s)

Initial 120 7.150 -12 0
Final 120 free free free

(a) States

Parameter µ (km3/s2) Rp (km) ρ0 (kg/m3) S (km) m (kg) Aref (m2) CL CD
Value 4.2830× 104 3,398.2 0.0172 9.47 7,387.3 16.9823 0.4 1.25

(b) Parameters

belongs to a family of global minimizers. However, Theorem 1 is not violated because the abnormal

multiplier λ0 6= 0.

The auxiliary covariance relaxation method is applied to the aerocapture problem to resolve

the infinite-order singular arc solutions. The unique elements of the error covariance are augmented

to the system state. The sensitivity and error covariance dynamics are omitted here for brevity.

These expressions will be further considered in Chapter 4. For the velocity-matching objective in

Eq. (3.104), the corresponding expectation cost is

J = PV V (tf ) (3.109)

with initial conditions P (t0) = P0 and additional terminal constraint V (tf ) = Vf . With this

problem structure formulated, we show the following results regarding the utility of the auxiliary

covariance relaxation method for the aerocapture mission design problem.

Results for the Mars aerocapture example are generated using the states and problem pa-

rameters listed in Table 3.3. These quantities are taken from a previous study [196] or otherwise

chosen based on engineering judgement. A continuation methodology is developed to converge to a

final solution without prior knowledge of the initial costates. First, a short trajectory of 0.5 seconds

is propagated forward in time to provide an initial guess to the BVP solver. The problem is then

solved for a final altitude of zero. Once this initial trajectory is obtained, the final altitude is pushed

to 120 km over a continuation interval on rf . This continuation step is illustrated in Fig. 3.15. The
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(a) Velocity-altitude profile (b) Flight-path angle

Figure 3.15: Continuation interval over final radius rf in aerocapture example.

initial trajectory propagated to ground level initially undershoots the target velocity in Fig. 3.15a.

These initial solutions are direct entry trajectories, evident in Fig. 3.15b as the final flight-path

angle remains below the local horizontal. Over the continuation interval, the higher terminal radius

allows for the precise velocity-matching condition to be met, resulting in recognizable aerocapture

trajectories exiting the atmosphere.

Figure 3.16 illustrates the family of global minimizers satisfying the semi-major targeting

problem. In Fig. 3.16a The solutions are comparable to a theoretical corridor width dictated

by the vehicle lift-to-drag ratio. Figure 3.16b shows the control solutions over the singular arc.

While the solutions are optimal, they do not remain on the bound of the control set U , which

is indicative of singular arcs. Note that a bang-bang solution satisfying the velocity-matching

condition is also feasible, but the solution would not be a unique global minimizer. Moreover, since

the control bounds are inactive, increasing the control authority cannot further reduce the cost

objective. Figure 3.17 shows a 3-dimensional phase portrait of the infinite-order solution family.

From this plot, it is clear that the terminal radius constraint and velocity-matching condition are

met. However, the trajectories terminate along a range of different flight-path angles because
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(a) Velocity-altitude profile (b) Control

Figure 3.16: Illustrative subset of infinite-order singular arcs in aerocapture example.

γ(tf ) is free in optimization. These results support the notion that optimal singular arcs exist in

aerocapture problems. Other cost objectives, such as those involving periapsis altitude or out-of-

plane orbital elements, may revert to bang-bang form if the solution lies outside the boundary of

the reachable set.

The auxiliary covariance relaxation method is applied to the aerocapture to study the be-

havior of solutions optimizing the weighted trace objective in Eq. (3.109). The additional states

and parameters used in the auxiliary problem are summarized in Table 3.4.

As with the preceding example, we compare the solution of the minimum covariance objective

to that obtained from the family of infinite-order arcs. Figure 3.18 shows relevant quantities for

both cases. The control history Fig. 3.18a for the singular problem remains well within the control

upper and lower bound. The corresponding switching function in Fig. 3.18b remain identically zero,

indicating a totally singular solution as expected. In comparison, the auxiliary problem generates a

well-posed control solution with controls remaining near the bounds of the admissible set U . Finally,

Fig. 3.18c illustrates the velocity-altitude corridor of each solution. For clarity, the trajectory is

plotted up to an altitude of 80 km. The auxiliary solution tends to dive deeper into the atmosphere,
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Figure 3.17: Phase-space portrait of infinite-order singular arcs in aerocapture example.
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Table 3.4: Auxiliary states and problem parameters for Mars aerocapture example. Initial corre-
lated uncertainties are assumed zero.

P11 (m2) P22 (m2/s2) P33 (deg2)

Initial 1 0.12 0.012

Final free free free

(a) Auxiliary states

Parameter Q11 (m/s) Q22 (m/s2) Q33 (deg/s)

Value 0 0.01 0.001

(b) Auxiliary parameters

which is evident from the initial control segment when u = −1.

While the auxiliary solutions appear to be bang-bang, we remark on several features of

Fig. 3.18. First, the ends of the trajectory show difficulty in convergence of the control. This

behavior is likely due to fact that the trajectory begins and ends at high altitudes where the

atmospheric density is extremely sparse. In turn, this provides inadequate dynamic pressure to

generate aerodynamic forces and therefore impart change on the optimal cost. These segments of

the trajectory are nearly singular, since the magnitude of L is near zero. Second, a value for the

regularization parameter ε of 10−3 is the smallest value to converge in the boundary value problem.

Further decreasing ε would eliminate control smoothing effects noticeable at the corners of the

bang arcs. For smaller values of ε, these will appear as sharp corners. Fortunately, such smoothing

effects are largely superficial, with negligible impact on the solution structure and predicted cost.

The control solutions of the auxiliary problem in Figure 3.18 are in contrast to the typical

entry guidance problem. That is, the initial control segment lies on the lower bound where u = −1,

which corresponds to a lift-down bank angle configuration. These configurations are typically

avoided in order to limit the possibility of flying too steep and producing significant inertial or

aerothermal impulse. As evident in the solution of the error covariance dynamics, these trajectories

may in fact provide more robust solutions given initial state uncertainty. One explanation for
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(a) Control (b) Switching function (c) Velocity-altitude profiles

Figure 3.18: Auxiliary minimum solution of aerocapture example.

this behavior is the fact that the initial dive into the atmosphere produces an overall shorter

trajectory. This in turn limits the time span over which the error covariance can propagate and

grow. This provides only a partial explanation, however, as evidenced in Fig. 3.19. The propagated

uncertainties in each state component are plotted for both the singular and auxiliary problem. In

the singular case, the trajectory is significantly longer as the vehicle flies higher in the atmosphere.

When comparing the two trends, it is apparent that the final time is only partly responsible for

the reduction in terminal velocity uncertainty. The main impulse in velocity error occurs around

100 seconds, after which time the velocity uncertainty tapers off leading to atmospheric exit. Thus,

although the auxiliary problem produces a larger drag impulse, the indirect formulation finds a

solution minimizing the propagated error covariance equations (and not the final time).

The terminal state error covariance ellipses are plotted for each case in Fig. 3.20. It is

interesting to note that, while only velocity uncertainty appears in the auxiliary objective 3.109,

both velocity and altitude errors are reduced considerably. In addition, a stronger correlation

is observed between the two states for the auxiliary problem. This result illustrates the utility

of the relaxation method in mitigating uncertainty using optimal control theory. The original

aerocapture velocity-matching condition provides insufficient information to resolve the optimal
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(a) Radius (b) Velocity (c) Flight-path angle

Figure 3.19: Propagated error covariance 2-σ bounds for auxiliary solution to aerocapture example.

Figure 3.20: Propagated uncertainty 2-σ error ellipses for auxiliary solution to aerocapture example.
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control. By extending the system dynamics to include the effects of propagated uncertainty, the

indirect approach finds a local minimum that remains consistent with all boundary conditions.

The preceding results illustrate optimal solutions for the aerocapture problem with fixed ini-

tial states. Given an initial state error covariance estimate, the strategy could be used to produce

a nominal trajectory minimizing the future effects of propagated uncertainty. The cost objective

focuses on minimizing velocity uncertainty at the end of the atmospheric pass, but more compli-

cated objectives could be included. Another useful application of the indirect approach is rapid

conceptual design through numerical continuation [88]. Once an initial solution is obtained, prob-

lem parameters can be rapidly iterated over in neighboring BVPs. This method can be used to

produce tradespace plots over a range of vehicle performance parameters. This approach is uti-

lized to demonstrate rapid risk-adverse conceptual design for aerocapture. That is, the optimal

converged solutions for each design point can include the propagated effects of uncertainty. In addi-

tion, these results allow for identification of optimal entry conditions and vehicle shape parameters

that minimize uncertainty over the atmospheric pass.

Conceptual design results are generated for a modified case of the preceding aerocapture

problem. First, the initial flight-path angle constraint is removed, allowing for freedom in deter-

mining its optimal value. Initial altitude and velocity magnitude remain fixed. Second, a parameter

extension approach is taken to include effects of propagated uncertainty in the lift and drag coef-

ficients. Errors in the aerodynamic coefficients are assumed normally-distributed with a 3-σ range

of ±4.5%. An initial solution is obtained using the preceding numerical continuation strategy on

terminal altitude. Given the initial solution, the problem is then solved successively over a product-

space of initial velocity and ballistic coefficient. These quantities represent design parameters that

influence entry performance and vehicle shape.

Quantities of interest in the aerocapture conceptual design tradespace are computed for

infinite-order singular trajectories in Fig. 3.21 and auxiliary-minimum solutions in Fig. 3.22. The

optimal entry flight-path angle is shown for ballistic coefficients ranging from 100 to 500 kg/m2 and

entry velocities ranging 6 to 8 km/s. In the auxiliary problem, the optimal entry flight-path angle
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Figure 3.21: Aerocapture conceptual design tradespace for singular solutions.
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Figure 3.22: Aerocapture conceptual design tradespace for auxiliary minimum solution.
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at each design point is determined by minimizing propagated effects of aerodynamic uncertainty.

In addition, the time of flight decreases with higher entry velocity and lower ballistic coefficient.

Intuitively speaking, a lower ballistic coefficient produces greater drag, in turn providing a greater

impulse over the atmospheric pass. Uncertainties in the exit radius, velocity, and flight-path angle

show interesting trends. The radius uncertainty increases with both velocity and ballistic coefficient.

However, the final velocity error is almost entirely dictated by the entry velocity. Lower velocities

tend to reduce the propagated effects the aerodynamic coefficient errors. Similarly, error in the semi-

major axis is largely determined by velocity errors, showing a similar trend. The tradespace plot

illustrates an extension of rapid conceptual design methodologies applied to minimizing uncertainty

in aerocapture.

3.7 Summary

This chapter studies a class of problems containing arcs with infinite local order. These

arcs are linked to a reachable subspace minimizing the Mayer objective with admissible controls.

Existence conditions are developed for problems with a free terminal state and fixed end-time, as

well as a partially-constrained terminal state with free end-time. In the latter case, it is assumed

that the terminal constraints do not interfere with the minimum cost in optimization. The resulting

problem is shown to produce degenerate control structures for which a family of global minimizers

can be found. A novel relaxation method is proposed for optimal control solution structures with

this indeterminate form. The linearized error covariance dynamics are appended to the system

state with appropriate boundary conditions and cost objectives. The extended problem is shown to

permit finite-order arcs by exploiting the effect of nonlinearity in the system on the propagation of

uncertainty. The solution can be solved using regularization and numerical homotopy continuation

methodologies. Results are shown for classical examples in optimal control, as well as a practical

engineering application involving planetary aerocapture. These results aid in the design of optimal

entry conditions and vehicle performance parameters for risk-adverse atmospheric entry problems.



Chapter 4

Optimal Information Filtering for Planetary Aerocapture

4.1 Entry Guidance Perspective

Recent advancements in NPC guidance have increased confidence in aerocapture, though

there remain avenues for improvement. This chapter in particular concerns the coupling between

state estimation and entry guidance. In traditional approaches, entry guidance UQ is performed

“outside-the-loop,” where a reference trajectory and guidance algorithm are designed based on

nominal values of variable quantities. In some applications, this assumption may hold because of

two important principles in control and estimation theory: the separation principle and the certainty

equivalence principle [201]. The separation principle states that control and estimation errors are

orthogonal. The certainty equivalence principle is an extension of the separation principle to state

that the optimization problem with imperfect state knowledge can be solved in a deterministic

manner by substituting an uncertain state with its best estimate. A caveat to these conditions,

however, lies in the fact the separation principle can hold while certainty equivalence does not [202].

For example, certainty equivalence may not hold when the optimization objective is a function of a

state estimate error covariance. In atmospheric entry flight, control objectives operating solely on

deterministic values may not produce optimal behavior in dispersion analysis. A reformulation of

aerocapture objectives, embodied by the governing OCP, is needed to better understand optimal

atmospheric trajectories in the presence of uncertainty.

Methodologies in robust optimization attempt to incorporate models of uncertainty into an

optimal control objective. One approach is to consider the worst case scenario, minimizing the



126

probability of crossing a threshold of extreme edge cases [175]. Another approach is the sensitivity

robustness method [203], where the cost is split into a multi objective problem to minimize a

deterministic cost and a weighted sum of sensitivities. Other studies use a weighted sum approach

to simultaneously minimize both the expected value of a cost and its variance about the mean

[204]. These strategies may require user-defined weighting parameters that rely on subjectivity or

intuition, and they may not provide a statistically consistent analysis. In this work, a distributional

approach is taken to minimize the mean square deviation (MSD) about a deterministic-optimal

terminal state. This provides a statistically consistent analysis to minimize both a mean drift and

variance relative to the desired terminal state. The MSD approach does away with any ambiguous

weighting parameters, and instead relies on the functional form of the optimal cost measure and

underlying probability distribution. These objectives are aligned with the auxiliary covariance

problem outlined in Chapter 3, where it is shown that aerocapture problems exhibit infinite-order

singular arcs.

Conceptual design in aerocapture has routinely relied on certainty equivalent guidance perfor-

mance, potentially leading to over-designed vehicles unattractive from a cost and risk perspective.

The absence of a cohesive methodology for mitigating uncertainty through atmospheric trajectory

design and guidance represents a gap in current research. The primary focus of this work is to

bridge this gap through the treatment of uncertainty in hypersonic entry flight problems. This in-

formation can provide valuable input on the trajectory planning and entry guidance design process.

This work is primarily concerned with the guidance prediction step, in which a feasible trajectory

must be found to meet downrange conditions. The approach enables optimal tuning and allocation

of guidance parameters for entry problems with insufficient state knowledge for precision targeting.

The novel contributions of this chapter are enumerated as follows: 1) reformulation of aeroas-

sist objectives accounting for Gaussian uncertainty, 2) development of an atmospheric density model

representative of scientific data and consistent with consider filtering and linear covariance analy-

ses, 3) optimal allocation of guidance parameters based on robust optimization principles, and 4)

validation of dispersed atmospheric trajectories using statistical ranking and consistency methods.
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A rapid solution method is illustrated for a representative example of aerocapture at Mars. The

results inform existing and future entry guidance methods, providing a path of improvement for

missions to unexplored and challenging destinations in the solar system.

This chapter is organized as follows. Section 4.2 introduces concepts in robust optimiza-

tion and estimation of dynamic systems. The methods are stated generally and then simplified

for applications in consider filtering. Section 4.3 develops process equations and optimal control

objectives as applied to planetary aerocapture guidance. A minor contribution of the section is

the development of a MarsGRAM-derived atmospheric data compression model that accurately

describes altitude-dependent density perturbations. A parametric control model is developed and

a numerical solution strategy is outlined. Section 4.4 applies the new methodology to a baseline

aerocapture mission concept with uncertainty in states and environmental parameters. On-line

filtering applications are discussed. Finally, Sec. 4.5 summarizes findings for the chapter.

4.2 Observer-based Trajectory Design and Guidance

4.2.1 Robust Optimization of Dynamic Systems

We first provide an outline of relevant theory regarding optimization of uncertain systems as

a mathematical basis for the remainder of this chapter. Robust optimization involves modification

of a deterministic cost objective to incorporate effects of uncertainty. We develop a distributional

cost using expected value measures. To begin, consider a nonlinear system with a general dynamics

model

ẋ = f(x,p, u, t) + Γw (4.1)

where x ∈ Rn is the system state vector, p ∈ Rq is set of parameters, u ∈ R is a scalar control

input, Γ ∈ Rn×r is a process noise mapping, and w ∈ Rr is an additive white Gaussian process.

The shorthand notation w ∼ N (0, Q) refers to property

E[w] = 0 (4.2)

E[w(t)wT(τ)] = Q(t)δ(t− τ) (4.3)
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The parameters p do not evolve with time but will influence the motion of system through coupling

in dynamics and measurement equations. Assume the system receives sampled-data measurement

inputs of the form

yk = h(xk,p, tk) + vk (4.4)

where yk ∈ Rm is a measurement vector and vk ∈ Rp represents measurement noise with vk ∼

N (0, Rk). At any epoch, the augmented state is not exactly known, instead belonging to a joint

probability density function (PDF) fXP (x,p, t). As new measurement information is received, the

joint PDF is conditioned on the information set Λ[t0, t] which includes a sequence of measurement

realizations yi, i = 1, ..., k between t0 and t.

Λ[t0, t] = {y1,y2, ...,yk} (4.5)

Problems of interest in this work are Mayer objectives depending only on the terminal state

of the system. A distributional cost objective in robust optimization minimizes the expected value

of a performance measure J with respect to the uncertainty distribution,

J = E{φ[x(tf ), tf ] | fXP (x(t0),p, t0), Λ[t0, tf ]} (4.6)

where φ : Rn × R −→ R maps terminal state values to the desired performance metric [78]. The

cost index φ is assumed to depend only on the distribution of terminal states, not parameters. The

joint PDF fX(x, t) of the system states can be found at time t by marginalizing out parameters pi

over respective domains Di

fX(x, t) =

∫
D1

...

∫
Dq
fXP (x,p, t) dp1...dpq (4.7)

The distributional cost objective in Eq. (4.6) can be interpreted as the optimal solution

“on-the-average.” Although J depends only on values of system states, the expectation operator

accounts for uncertainty in parameters by propagation of the augmented joint-PDF of x and p

from initial time t0 to final time tf . The effect of parameter uncertainty is seen through coupling

within the augmented state PDF. At any arbitrary time t1 > t0, only the realized information
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set Λ[t0, t1] is known. The primary challenge then lies in predicting the conditioning effect over

t ∈ [t1, tf ]. Using standard tools in estimation filtering, this conditioning effect can be predicted

well using linear covariance analysis. In the following sections, some minor approximations are

taken to reduce Eq. (4.6) to a more tractable form for solution.

4.2.2 Covariance Approximation of the Distributional Cost Measure

The expectation measure in Eq. (4.6) presents a challenge due to the nature of the nonlinear

dynamics with augmented state PDF and noise perturbations. It is prudent to develop a modified

cost measure utilizing readily-available quantities, such as statistical moments of the state proba-

bility distribution, while maintaining the overall structure and behavior of the original objective.

This task can be achieved by noting a common feature of the cost measures in aeroassist problems

is to minimize the MSD about a desired terminal state. Ref. [166] found most practical aeroassist

cost objectives exhibit this form. We define a mapping φ̃ : Rn×Rn×R −→ R, which can be seen as

a loss function with respect to x about a desired state x∗ ∈ Rn.

φ[x(tf ), tf ] = φ̃2[x(tf ),x∗, tf ] (4.8)

Further motivation for this functional form is provided in Sec. 4.3. Defining the shorthand notation

of partial derivatives

φ∗ := φx=x∗ (4.9a)

φ∗x :=

(
∂φ

∂x

)
x=x∗

(4.9b)

φ∗xx :=

[
∂φ

∂xi∂xj

]
x=x∗

(4.9c)

A Taylor series expansion of Eq. (4.8) up to second order can be written as

φ = φ∗ + φ∗x(x− x∗) +
1

2
(x− x∗)Tφ∗xx(x− x∗) +O(‖x− x∗‖3) (4.10)

Using Eq. (4.8), the partial derivatives in Eq. (4.10) can be expressed as φx = 2φ̃φ̃x and φxx =

2φ̃T
x φ̃x + 2φ̃φ̃xx. Ignoring higher order terms and substituting into Eq. (4.10) at x = x∗ gives

φ̃2 ≈ φ̃∗2 + 2φ̃∗φ̃∗x(x− x∗) +
1

2
(x− x∗)T(2φ̃∗Tx φ̃∗x + 2φ̃∗φ̃∗xx)(x− x∗) (4.11)
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Suppose the desired terminal state x∗ has the property φ̃∗ = 0. The expansion of Eq. (4.11) reduces

to

φ̃2 = (x− x∗)TW (x− x∗) (4.12)

where

W = φ̃∗Tx φ̃∗x (4.13)

Thus, the original nonlinear objective can be approximated as a quadratic function of the deviation

about a desired reference state x∗. The weighting matrix W takes into account the functional form

of Eq. (4.8) to provide a relative weighting of each state component in the cost objective. This

analysis remains valid to second order, as the assumption φ̃∗ = 0 eliminates first-order terms in the

expansion. Taking the expectation of Eq. (4.12) gives

E[(x− x∗)TW (x− x∗)] = E[xTWx− 2xTWx∗ + x∗TWx∗]

= E[xTWx]− 2E[xT]Wx∗ + x∗TWx∗ (4.14)

The first term in the preceding equation can be expanded by interchanging the expectation operator

and noting the invariance property of the trace under cyclic permutations.

E[xTWx] = E[tr(xTWx)]

= E[tr(WxxT)]

= tr(WE[xxT]) (4.15)

Next, starting with the definition of the state covariance matrix

Pxx = E[(x− E[x])(x− E[x])T]

= E[xxT]− E[x]E[xT] (4.16)

Solving Eq. (4.16) for E[xxT] and substituting into Eq. (4.15) gives

E[xTWx] = tr{WPxx +WE[x]E[xT]}

= tr(WPxx) + E[xT]WE[x] (4.17)
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Finally, including Eq. (4.17) in Eq. (4.14) gives a reduced expression for the expected value of the

cost index

J = E[(x− x∗)TW (x− x∗)]

= tr(WPxx) + E[xT]WE[x]− 2E[xT]Wx∗ + x∗TWx∗

= tr(WPxx) + (E[x]− x∗)TW (E[x]− x∗) (4.18)

The new objective in Eq. (4.18) is a significant reduction compared to the original statement

in Eq. (4.6). Instead of tracking the full statistical distribution of the augmented state, the new

cost measure requires only the mean and covariance of the joint state PDF. In addition, it becomes

necessary to only track statistical moments instead of the full state probability distribution. This

property will be leveraged later for rapid solution of the modified objective.

Note that no assumptions on the underlying form of the joint PDF are assumed; because

the Mayer cost has a quadratic form (see Eq. (4.12)), the expectation can be evaluated based

only on the first and second central statistical moments of x, even if the uncertainty itself is non-

Gaussian. However, we will shortly make the assumption that the uncertainty distribution remains

approximately normal and exhibits the Markov property [205]. In this case, the information set

Eq. (4.5) reduces to

Λ[t0, t] = {x̂k, Pxxk} (4.19)

where x̂k ∈ Rn is the current state estimate produced by sequential or batch filter and Pxxk ∈ Rn×n

is its associated post-update estimation error covariance. The approach eliminates the need for

user-defined weighting parameters often found in distributional robust optimization approaches

such as weighted-sum and ε-constraint techniques [204].

Equation (4.18) can be interpreted as a multi-objective statement to simultaneously minimize

mean drift from a desired terminal state x∗ along with variation of x about its mean. In the case

where the mean objective E[x] = x∗ is exactly satisfied, the problem reduces to minimizing a

weighted trace of the final covariance. It is also helpful to note that, because W and Pxx are

symmetric positive semi-definite matrices, their product will produce a positive semi-definitive
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Low Sensitivity

High Sensitivity

Figure 4.1: Illustrative sensitivity of final covariance with equivalent optimality of mean states.

matrix. Thus, the weighted trace approach accounts for components of the final state estimate

covariance relative to sensitive directions in the objective space of Eq. (4.8). This property is

illustrated in Fig. 4.1 for two trajectories with equivalent mean optimality. Uncertainty components

in sensitive directions of the cost function are penalized more than less-sensitive directions. The

weighting matrix W accounts for the relative orientation of the covariance matrix with respect

to the Mayer objective function contours. In summary, the modified cost in Eq. (4.18) retains

information from the original expectation objective of Eq. (4.6) in terms of the state mean and

estimation error covariance, often considered readily-available quantities.

4.2.3 Discrete-time Extended Consider Kalman Filtering

Equation (4.18) transcribes the original optimization objective as a function of the joint

PDF of x. Solving this problem requires propagating statistical moments of the joint PDF of

x from the current time to the final time tf . The Extended Kalman Filter (EKF) [174, 206] is

a well-known tool in nonlinear estimation. The EKF has seen use in hypersonic entry trajectory

reconstruction problems [129,207]. In many scenarios, however, parameters describing the dynamics

or measurement models of a system may not be known perfectly. The underlying uncertainty in such

quantities can degrade performance or lead to filter divergence if left unaccounted for. Conversely,

adding too many states to the filter can lead to burdensome computational requirements that
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cannot be met. These parameters can instead be included as consider variables in the Kalman

filter [208]. Errors in parameters are reflected in the associated covariance update equations of

the consider filter, while nominal parameter estimates remain static. We leverage the extended

consider Kalman filter (ECKF) in this work to predict propagated uncertainty due to dynamics

and measurement updates. While the ECKF may not be desirable for on-board estimation, it is a

useful analysis tool for studying uncertainty due to errors in (possibly) unobservable parameters.

Construction of the ECKF equations is briefly summarized as follows. Uncertainty in system

parameters p is encapsulated by a consider covariance matrix Ppp ∈ Rq×q and correlation Pxpk ∈

Rn×q, where Pxpk = PT
pxk

.

Ppp = E[(p− p̄)(p− p̄)T] (4.20a)

Pxpk = E[(xk − x̂k)(p− p̄)T] (4.20b)

The system dynamic equations are linearized about the current state estimate mean and nominal

parameters as

x̃k+1 = Φkx̃k + Ψkp̃+wk (4.21)

where x̃k = xk − x̂k and p̃ = p − p̄ are the deviations of each quantity from its respective

mean estimate. Discrete-time sensitivity matrices are required in practical estimation problems

implemented on a digital computer. These matrices are approximated from the continuous-time

Jacobian matrices Axk and Apk over a sufficiently small sampling period ∆t as

Φk = [In×n] +Axk∆t+O(∆t2) (4.22a)

Ψk = Apk∆t+O(∆t2) (4.22b)

where

Axk =

[
∂f

∂x

]
x̂k,p̄,uk

(4.23a)

Apk =

[
∂f

∂p

]
x̂k,p̄,uk

(4.23b)
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Similarly, the measurement model in Eq. (4.4) is linearized about the current state estimate mean

as

ỹk = Hxk x̃k +Hpk p̃+ vk (4.24)

where

Hxk =

[
∂h

∂x

]
x̂k,p̄

(4.25a)

Hpk =

[
∂h

∂p

]
x̂k,p̄

(4.25b)

We note that whereas the parameter vector p is (by definition) constant, its dynamics and mea-

surement sensitivity matrices Ψk and Hpk may change at each epoch due to the influence of system

states. The preceding discrete-time sensitivity matrices allow for calculation of both the time

propagation and measurement update steps.

The ECKF update equations are briefly summarized as follows, largely following Ref. [174].

First, the filter is initialized with nominal state and parameter estimates, as well as estimation

error covariance matrices as

x̂(t0) = x̂0 (4.26a)

Pxx(t0) = E[(x(t0)− x̂0)(x(t0)− x̂0)T] (4.26b)

Pxp(t0) = E[(x(t0)− x̂0)(p− p̄)T] (4.26c)

Ppp = E[(p− p̄)(p− p̄)T] (4.26d)

Between measurement epochs tk and tk+1, the mean update equation follows the dynamics of

Eq. (4.1) with no process noise.

x̂−k+1 =

∫ tk+1

tk

f(x̂(τ), p̄, u(τ), τ) dτ + x̂+
k (4.27)

Update steps for estimation covariance and cross-covariance are summarized as follows

P−xxk+1
= ΦkP

+
xxk

ΦT
k + ΦkP

+
xpk

ΨT
k + ΨkP

+
pxk

ΦT
k + ΨkPppΨ

T
k + ΓkQkΓ

T
k (4.28a)

P−xpk+1
= ΦkP

+
xpk

+ ΨkPpp (4.28b)
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Next, the state estimate measurement update can be found as

x̂+
k+1 = x̂−k+1 +Kk+1(yk+1 − h(x̂−k+1, p̄, tk+1)) (4.29)

The Kalman gain matrix Kk+1 is calculated as

Kk+1 = (P−xxk+1
HT
xk+1

+ P−xpk+1
HT
pk+1

)(Hxk+1
P−xxk+1

HT
xk+1

+Hxk+1
P−xpk+1

HT
pk+1

+Hpk+1
P−pxk+1

HT
xk+1

+Hpk+1
P−ppk+1

HT
pk+1

+Rk+1)−1 (4.30)

Finally, the covariance matrix measurement update equations are

P+
xxk+1

= (In×n −Kk+1Hxk+1
)P−xxk+1

−Kk+1Hpk+1
P−pxk+1

(4.31a)

P+
xpk+1

= (In×n −Kk+1Hxk+1
)P−xpk+1

−Kk+1Hpk+1
Ppp (4.31b)

Following initialization, the dynamics and measurement update steps are repeated until a stop

time is reached. A convenient property of the measurement covariance update steps in Eqs. (4.31a)

and (4.31b) is that they do not depend on the measurement residual directly. Thus, the update

equations can anticipate future measurement conditioning effects relative to a propagated mean

state. Coupled with analytical expressions for the sensitivity matrices, this enables solution of the

robust optimization objective.

The primary assumption in applying the consider filter is for Gaussian uncertainty in the

system state and parameters. This uncertainty may be correlated, but non-Gaussian distributions

are not captured by the ECKF. The form of the cost function in Eq. (4.8) represents another

assumption, which is required for the expectation in Eq. (4.17) as a function of the state mean and

estimate covariance. This form minimizes a sum-square error (SSE) function of terminal states,

which is common for set-point tracking or Mayer objectives. However, other practical cost metrics

may not conform to this assumption. Finally, by appending the state error covariance of the

consider filter to the system, the problems scales quadratically with the number of states. The

computational requirements are then increased with the augmented system. In order to reduce the

numerical overhead in the augmented system, an assumptions for a fixed solution form is proposed
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in the following section. This step is taken to improve feasibility and convergence for on-line

guidance applications.

4.2.4 Parametric Control Solution

Determining a feasible solution subject to the ECKF covariance update equations is a non-

trivial task. A potential option is to numerically solve the OCP using nonlinear programming

(NLP) with direct collocation. NLP methods often require significant computational effort and an

initial solution guess, making them particularly difficult for on-line guidance applications. In this

work, however, we take a less arduous approach by utilizing a parametric control solution [78].

A parametric control fixes the functional form of a solution and reduces the problem to a set of

decision variables, denoted k ∈ Rnk , that define its magnitude and phase.

u = u(t,k) (4.32)

Optimization over the decision variables can be performed in a similar manner to direct

methods, which discretize the control solution in time over a large number of collocation points.

However, the computational effort of the parametric control solution is significantly lower as fewer

optimization variables are present. We note that the functional form of a control may not permit

globally optimal minima. For this work, a solution form is chosen inspired by bang-bang optimal

control arguments [209] in aerocapture problems. These solution structures provide sufficient de-

grees of freedom in this problem, and they also give insight on optimal parameter tuning of existing

entry guidance methods.

Given a parametric control solution in Eq. (4.32), we summarize the robust optimization
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problem to be solved as follows.

min
k

tr(WPxx(tf )) + (x̂(tf )− x∗)TW (x̂(tf )− x∗) (4.33a)

Subject to: ψ[x̂(tf ), tf ] = 0 (4.33b)

uTu− 1 ≤ 0 (4.33c)

tf free (4.33d)

The problem is subject to system dynamics, terminal state constraint ψ : Rn × R −→ R, control

magnitude bounds, and end-time free conditions. The terminal state constraint is assumed not to

interfere with the optimal cost. It should be noted that uncertainty in the system states prevents

satisfying the constraint exactly; however, it can be enforced by requiring the mean state to lie on

the terminal constraint manifold. With an end-time free condition, the terminal state constraint

implicitly defines the stop conditions of the problem, usually based on a predefined threshold of

system states.

4.3 Application to Aerocapture

4.3.1 Process and Measurement Models

A planar model of the planetary entry vehicle dynamics [91] is given in Eqs. (4.34a–4.34c).

These equations neglect planetary rotation effects and assume a simple radially-varying gravity

model. The system states include geocentric position r, planet-relative velocity magnitude V ,

planet-relative velocity flight-path angle γ. Convention for flight-path angle is positive above the

local horizontal.

ṙ = V sin γ (4.34a)

V̇ = −D − µ

r2
sin γ (4.34b)

γ̇ =
1

V

(
L cosσ − µ

r2
cos γ +

V 2

r
cos γ

)
(4.34c)
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The lift L and drag D acceleration terms are

L =
1

2
ρV 2

(
CLA

m

)
(4.35)

D =
1

2
ρV 2

(
CDA

m

)
(4.36)

where ρ is the atmospheric density, CL and CD are the aerodynamic lift and drag coefficients,

respectively, and m is the vehicle mass. The control input is bank angle σ representing a rotation

of the lift force about its velocity vector. Bank angle is defined as zero for a full lift-up orientation

in the vertical plane, and positive for a right-wing-down rotation. In the absence of planetary

rotation effects, the inertial and relative velocity magnitude and flight-path angle coincide.

An observer is assumed to provide new state information from sensor data during atmospheric

flight. A reasonable model is the sensed acceleration magnitude [207], which is dictated by the net

aerodynamic force on the vehicle. This information would be readily available from accelerometers

mounted to the body axes of a vehicle. We assume a simple measurement model to be the magnitude

of the lift and drag acceleration as

h(xk,p, tk) =
√
L2 +D2 (4.37)

The partial derivatives with respect to the entry vehicle dynamics are generated using the symbolic

toolbox in MATLAB. These are given in Appendix D.

The measurement model is assumed a function of several consider parameters, most impor-

tantly aerodynamic and atmospheric quantities. Though certain approaches exist for atmospheric

estimation, these methods operate in a deterministic manner and are unable to decouple aerody-

namic and atmospheric uncertainty. More intricate sensor data based on pressure sensors on the

vehicle forebody may provide additional state information [130], but for the purpose of this work

the sensed acceleration model in Eq. (4.37) is sufficient to represent anticipated measurement effects

during entry. Further information on traditional atmospheric estimation methods is provided in

Appendix E.
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4.3.2 Optimal Control Objectives

Optimization objectives should reflect the overall goal of an aerocapture maneuver, which

typically involve properties of the post-capture orbit. The accuracy of this orbit is important as it

dictates the overall ∆V budget needed to correct for targeting errors during the atmospheric pass.

Under Keplerian motion, the orbital properties following the atmospheric pass are well-defined at

the exit interface. An objective can be formulated to minimize the apoapsis error [122], with the

goal of matching a desired apoapsis radius r∗a as

φ̃[x(tf ), tf ] = ra(tf )− r∗a (4.38)

The apoapsis radius can be calculated from

ra(tf ) = a(tf )(1 + e(tf )) (4.39)

Semi-major axis a can be computed from the radial position r and velocity magnitude V at the

final time as

a(tf ) =
µ

2µ/r(tf )− V (tf )2
(4.40)

In addition, e is the orbital eccentricity related to r, V , and γ as

e(tf ) =

√
1−

r2(tf )V 2(tf ) cos2 γ(tf )

µa(tf )
(4.41)

Another practical approach consists of the combined ∆V cost of a two-burn correction [91].

The burns include a periapsis raise ∆V1 performed at the first apoapsis crossing, followed by an

apoapsis correction ∆V2 at the next periapsis. Since vehicle mass dedicated to ∆V margins reduces

useful delivered mass to orbit, these propulsive burns dictate the overall efficiency of the maneuver.

The corresponding cost function involves the total in-plane ∆V budget with respect to a desired

apoapsis radius r∗a and periapsis radius r∗p. Since the goal is to minimize the magnitude of each

burn, the cost can be posed as the sum-squared of the series of correction burns. The objective is

summarized as follows

∆Vtotal = |∆V1|+ |∆V2| (4.42)
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Figure 4.2: Exit interface orbital parameters for select aerocapture mission concepts (Heidrich
et al. [166]).

where

∆V1 =
√

2µ

(√
1

ra
− 1

ra + r∗p
−
√

1

ra
− 1

2a

)
(4.43a)

∆V2 =
√

2µ

(√
1

r∗p
− 1

r∗a + r∗p
−
√

1

r∗p
− 1

ra + r∗p

)
(4.43b)

For this study, only the apoapsis radius targeting cost index is considered, though other cost

metrics may be important depending on mission criteria. The weighting matrix is needed in order

to evaluate the robust cost measure of Eq. (4.33a). Referring to the definition in Eq. (4.13), the

partial derivatives of Eq. (4.39) are evaluated with respect to each state to give the weighting matrix

W . These derivatives are obtained using the symbolic toolbox in MATLAB.

Figure 4.2 illustrates relationships between terminal flight-path angle and velocity for several

aerocapture concept missions. At atmospheric exit, inertial velocity strongly influences apoapsis

radius, whereas inertial flight-path angle largely influences periapsis radius. It is apparent that

apoapsis radius errors of zero are generally feasible in aerocapture. On the other hand, a periapsis

radius above the atmospheric interface altitude is not reachable. During the aerocapture pass, flight-

path angle passes through zero (from negative to positive), leaving the vehicle close to periapsis at
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atmospheric exit. Practically speaking, it is not possible to raise the periapsis out of the atmosphere

and still exit with a positive flight-path angle. Therefore, cost functions involving periapsis radius

error (or ∆V ) fall into the category of bang-bang control, since the target set S is not reachable.

A broad class of problems, however, fall into the degenerate singular control form, such as the

apoapsis or semi-major axis targeting problem.

4.3.3 Consider Parameter Uncertainty Models

Constructing the ECKF process and model equations for aerocapture requires information

on the underlying sources of uncertainty. Moreover, the UQ models must also be consistent with

underlying assumptions in the ECKF, namely that the estimates of each parameter remain con-

stant and normally distributed. Two major sources of uncertainty in atmospheric entry problems

are atmospheric variability and aerodynamic coefficients [130, 210]. Traditional density estimation

methodologies cannot estimate both quantities simultaneously. Thus, treatment of these quanti-

ties as consider parameters in an ECKF is a reasonable model of unobservable coupling between

atmospheric and aerodynamic uncertainty.

Atmospheric properties play an important role in quantifying performance margins and ro-

bustness in entry flight problems. Lift and drag forces are determined by aerodynamic pressure and

therefore the local altitude-density relationship of a planet’s atmosphere. Any entry guidance ap-

proach can expect improved performance with better understanding of the atmosphere. However,

inherent variability, as well as short-term and seasonal variations of the atmospheric structure pre-

clude exact knowledge of the environment prior to entry. MarsGRAM [211] is currently considered

a state-of-the-art model for quantifying atmospheric variations. The program provides a nominal

mean density profile and dispersed atmospheric profiles with respect to latitudinal and temporal

behavior. Secondary effects can also be modeled in the MarsGRAM software; these include winds,

horizontal variation along a flight-path at fixed altitudes, and high-frequency variations. However,

such effects are often minor compared to the primary altitude-density variations dictating the bulk

structure of the atmospheric uncertainty.
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Previous studies have approached the atmospheric UQ problem using Monte Carlo meth-

ods [5]. In these studies, a large number of runs are performed in which the guidance operates on

a nominal GRAM density profile, while the outer loop of the simulation operates on a dispersed

“truth” model. More recent efforts have approached atmospheric uncertainty using Gaussian pro-

cesses [115], machine learning algorithms [212], or other advanced methods such as the Ensemble

Correlation Filter [213]. However, these strategies are not immediately applicable to linear covari-

ance analysis as required by the ECKF.

We propose a new approach to atmospheric uncertainty modeling to overcome limitations of

GRAM data to estimation filtering. Under some mild assumptions, the atmospheric variability as

a function of altitude is represented as a set of independent normally-distributed constants. These

constants are included as consider parameters in the ECKF update equations. This allows for

rapid propagation of uncertainty due to density variations without the need for computationally

intensive simulation of GRAM data. First, consider a variation of the true density profile ρ relative

to a nominal value ρ̄. The difference between these quantities is a small perturbation δρ defined

as a percent difference from mean density [211, 214]. The true density profile at each altitude is

described by

ρ = ρ̄(1 + δρ) (4.44)

The dependence of both ρ and δρ on altitude h is implied, where we ignore longitudinal and

latitudinal variations. A common expression for the nominal density profile is an exponential

model

ρ̄ = ρ0 exp

(
− h
H

)
(4.45)

where ρ0 is the reference surface density and H is the density scale height. Suppose the true density

variations can be accounted for with δηi, i = 1, ..., l polynomial expansion terms about the nominal

profile. The density perturbation is expressed as

δρ = δη1 + δη2

(
h

he

)
+ ...+ δηl

(
h

he

)l−1

(4.46)

where he is a scaling parameter to provide numerical stability. For this work, an he of 125 km
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(the atmospheric entry interface altitude) works well. We assume δηi ∼ N (0, σ2
δηi

) are a set of

independent random variables reflecting inherent randomness in the density process. The total

density is expressed as

ρ = ρ0 exp

(
− h
H

)(
1 + δη1 + δη2

(
h

he

)
+ ...+ δηl

(
h

he

)l−1
)

(4.47)

We note that δηi = 0 in Eq. (4.47) returns the nominal profile Eq. (4.45). The consider parameter

matrix for atmospheric uncertainty is

Ppp = E[δηδηT] = diag(δη1, ..., δηl) (4.48)

A least-squares fitting of dispersed atmospheric density data is performed to estimate the δηi

perturbation parameters with respect to data generated by the built-in Monte Carlo functionality of

the MarsGRAM software. Values are based on 1,000 GRAM profiles with 100 m altitude steps. See

Fig. 4.4. Three density perturbation terms prove sufficient to represent the MarsGRAM altitude-

dependent density variations to within a high degree of accuracy. See Sec. 4.4 for these values.

An individual dispersion profile is illustrated in Fig. 4.3 along with the upper and lower

2-σ bounds of the GRAM data. The polynomial series perturbation model is compared to an

exponential density perturbation model [215], which models reference density and scale height as

variable parameters. The predicted bounds for each model are indicated with dashed lines. The

polynomial model in Eq. (4.47) is a close representation of true variations in atmospheric density,

whereas the exponential model lacks the structural form to accurately predict density variations,

particularly at higher altitudes. This model is not valid above altitudes of about 125 km, at which

point perturbations may grow large enough to generate negative density values. Across the range

of applicable altitudes in this problem, the polynomial model allows for density uncertainty to be

carried forward via the ECKF update equations.

The approach assumes adequate knowledge of the density uncertainty is available to the

designer. Performance is expected to decrease if the atmospheric density uncertainty deviates sig-

nificantly from predicted values. The nominal profile is also assumed fixed, whereas the encountered
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density is likely to change with day-of flight conditions and spatial variations. The true density is

unlikely to be a zero-mean process, as required in this analysis. However, atmospheric estimation

techniques may improve these limitations by providing an estimate of the mean profile. In addition,

there may exist an opportunity to append atmospheric model parameters in Eq. (4.47) as states

in the estimation filter. For the purposes of this study, these quantities are assumed unobservable,

though future work may consider density estimation in tandem with optimal trajectory design.

In addition to atmospheric uncertainty, inherent volatility in aerodynamic performance during

hypersonic entry flight plays a major role in dispersion analysis. The aerodynamic forces on the

vehicle are dictated by lift and drag coefficients CL and CD, and possibly pitching moment Cm.

While aerodynamic UQ is an important aspect of entry guidance performance, a full analysis of

this uncertainty is beyond the scope of this paper. Instead, we assume the aerodynamic coefficients

as normally distributed static parameters. Previous work regarding guided entry at Mars [216]

take a similar approach to aerodynamic uncertainty. This approach allows for aerodynamic model

uncertainty to be incorporated into an ECKF through consider parameter analysis.

4.3.4 Bang-bang Parametric Control

A solution strategy for Eq. (4.33a) is outlined in Sec. 3.2 utilizing a parametric control. The

functional form for u must be chosen carefully to permit admissible solutions adhering to problem

constraints. For example, FNPAG [91] uses a bang-bang control in its algorithmic structure, which

consists of two phases. In the first phase, σd is held constant while the vehicle commands an initial

bank angle σ0. This value is typically chosen as a shallow bank angle in order to provide a raise

in periapsis radius while avoiding steeper reentry trajectories. At each guidance call, the optimal

switch time ts is recalculated from the current state with σd and σ0 fixed such that the apoapsis

targeting condition in Eq. (4.39) or ∆V cost in Eq. (4.42) is met. Once ts is predicted to take

place within the next guidance cycle, the algorithm switches to Phase 2. The second phase is a

bank-to-steer strategy that continuously updates the bank angle σd based on the previous targeting

conditions. This is repeated until the vehicle reaches atmospheric exit or other stop conditions.
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Figure 4.3: Density perturbation models from MarsGRAM dispersion data.
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Figure 4.5: Representative bang-bang bank angle control profile with single switch time.

The bang-bang bank angle control profile [91] is a viable candidate for a parametric control

solution of the robust optimization objective. This open-loop control structure is illustrated in

Fig. 4.5. The control form is described by a set of shape parameters σ0, σd, and ts such that

u∗(t,k) =


cosσ0 if t ≤ ts

cosσd if t > ts

(4.49)

k = [σ0, σd, ts]
T (4.50)

Note that Eq. (4.49) is not a true bang-bang control since 0 < σ0 < σd < 180◦ are interior points of

the control bounds. However, as shown in Sec. 4.4, this functional form permits sufficient degrees

of freedom to find local minima.

Although the dimension of the optimization search space is drastically reduced, determining

the decision variables k in real-time (such on a flight computer as a synchronous guidance routine)

may still pose challenges. To alleviate this issue, σ0 is set to 15 degrees, corresponding to a fixed

initial bank angle. This value is sufficient to provide a near lift-up lofting trajectory, while leaving

margin for cross range control if required. The bank angle switch σd is then treated as a trade

parameter. This leaves switch time ts as the remaining unknown in the control solution. With
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a fixed functional form, direct solution is achieved through numerical integration of the equations

of motion in a 4th-order Runge-Kutta integrator. A bisection root-finding method is employed to

solve for ts given σd and σ0, thus fully defining the decision variables k. This method is applied

to solve Eq. (4.33a). We note that this solution is open-loop; a closed-loop implementation could

continue to update guidance parameters at predetermined time increments. In this study, only the

open-loop solution is studied in order to allocate guidance parameters k for optimal prediction of

future states.

4.4 Results

4.4.1 Mars Aerocapture Mission

Solution of the robust optimization procedure is illustrated for a Mars aerocapture study in

order to demonstrate its utility in mission design. Low arrival velocities for small spacecraft at Mars

typically enable propulsive orbit insertion with modest mass requirements. However, larger vehicles

may see improved scaling and mass-savings using aerocapture. These entry systems are expected to

support Earth return missions such as the Mars Sample Return (MSR) program using flight-proven

heritage entry technologies. A multi-center NASA study [196] identified potential vehicle concepts

for delivering spacecraft into Mars orbit using aerocapture. Problem parameters are assumed for

a 4.65 m diameter 70 degree sphere-cone forebody aeroshell. The vehicle has a ballistic coefficient

of 300 kg/m2, entry mass of 7,387 kg, and reference area of 16.98 m2. The vehicle is trimmed

at an angle-of-attack of 16 degrees producing a hypersonic lift-to-drag ratio (L/D) of 0.24. The

aerocapture target is a 500 km altitude circular orbit.

The nominal entry state is given in Table 4.1 along with corresponding uncertainties in each

state component at the entry interface epoch. Uncertainty in the initial position and velocity

represents interplanetary entry interface delivery errors at Mars. Consider parameters are given

in Table 4.1 for the corresponding atmosphere and aerodynamic models discussed in Sec. 4.3.

These models are a reasonable approximation of entry environment uncertainty at Mars. However,
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Table 4.1: Initial state and parameter uncertainties for Mars aerocapture mission.

Quantity Nominal Uncertainty, 1-σ

Initial States
Geocentric radius, r 3521 km 1700 m
Velocity, V 7.150 km/s 70 m/s
Flight-path angle, γ -12.731 deg 0.1 deg

Consider Parameters
Drag coefficient, CD 1.45 ±7.5%
Lift coefficient, CL 0.348 ±7.5%
Density perturbation, ηi 0 {0.0237, 0.0453, 0.4094}

Process Noise
Geocentric radius, Q11 0 0
Velocity, Q22 0 0.001 m/s
Flight-path angle, Q33 0 0.0275 deg

the number of parameters could be greatly increased to incorporate numerous other sources of

uncertainty if needed. Measurement noise is based on an accelerometer root mean square (RMS)

intensity value of 1,500 µg-rms [207]. Measurements are processed at a rate of 20 Hz, with a main

simulation integration rate of 100 Hz. An additive process noise covariance matrix Q is constructed

based on a previous study [129] of reentry trajectory estimation at Mars. Process noise is excluded

from the kinematic equation for radius, as these relationships are generally well-understood. Bank

angle lower and upper bounds of 15 and 165 degrees, respectively, are enforced to conserve bank

angle margin for out-of-plane motion. A full discussion of cross-range control is outside the scope

of this work, but these margins are typically sufficient to ensure lateral targeting needs.

4.4.2 Numerical Results and Discussion

A nominal trajectory for the Mars aerocapture mission is shown in Fig. 4.6. The trajectory

corresponds to a chosen bank angle switch σd of 90 degrees with a calculated switch time ts of 120.01

seconds. At this value of σd, the component of lift in the vertical flight plane is forced to zero.

Thus, this trajectory could be interpreted as a midpoint value of the bank angle switch parameter.

These values for σd and ts result in an exit trajectory with the precise 500 km altitude apoapsis

radius axis. In Fig. 4.6, the velocity-altitude profile starts at an initial velocity of 7.15 km/s and is
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dissipated through aerodynamic forces to the required velocity of about 3.53 km/s. The minimum

capture altitude remains above 25 km, on par with similar Mars studies [53]. The peak dynamic

pressure occurs at about 100 seconds. The vehicle reaches periapsis crossing at approximately the

same time. Finally, Fig. 4.6 illustrates the orbit energy during the atmospheric pass. The target

orbit corresponding to the desired apoapsis radius is also shown, indicating that the vehicle reaches

precise exit conditions on the nominal trajectory. While these parameters satisfy the certainty

equivalent objective of the aerocapture pass, further analysis will reveal the robust optimal bank

angle switch subject to uncertainty in system states and parameters.

A time history of the ECKF estimation performance along the nominal trajectory is shown in

Fig. 4.7. Each subplot illustrates filter performance with various contributing sources of uncertainty.

Figure 4.7a shows estimation error with state uncertainty alone. This behavior is identical to the

baseline EKF with no parameter uncertainty models. The plots show a 2-σ bound of the state

estimate error, as well a particle sampling using 500 simulation runs to validate filter consistency.

The radius uncertainty starts just above 2 km but rapidly declines prior to peak dynamic pressure.

This indicates the radius state is largely observable throughout the atmospheric pass, even with

larger initial uncertainty. The velocity magnitude takes longer to converge to a lower bound. The

flight-path angle uncertainty has an opposite trend, and appears to grow initially. Poor observability

characteristics of the flight-path angle are evident when process and measurement noise terms

dominate higher in the atmosphere, which is visible in the initial and final legs of the trajectory as

the error bounds increase. Uncertainty in all states will factor into the dispersed performance due to

dynamic coupling in Eqs. (4.34a–4.34c). Figure 4.7b shows the ECKF performance with parameter

uncertainty and no initial state uncertainty. The effect of parameter uncertainty is seen later

in the trajectory as opposed to Fig. 4.7a. This behavior is explained by the fact the parameter

uncertainties in Table 4.1 appear in the measurement and dynamics equations proportional to

dynamic pressure. Thus, at higher altitudes parameter uncertainty has less influence. Finally,

Fig. 4.7c shows the combined state and parameter uncertainty as coalesced by the ECKF. The filter

achieves considerably lower estimation accuracy, particularly with the radius and velocity states
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Figure 4.6: Nominal Mars aerocapture trajectory (σd = 90 deg). Target orbit energy shown as
dashed line.
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(a) State uncertainty

(b) Parameter uncertainty

(c) Combined uncertainty

Figure 4.7: ECKF estimation error residuals (σd = 90 deg).



152

40 60 80 100 120

Bank angle switch (deg)

0

5

10
R

ad
iu

s 
(k

m
)

(a) Radius error

40 60 80 100 120

Bank angle switch (deg)

0

20

40

60

80

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity error

40 60 80 100 120

Bank angle switch (deg)

0

0.5

1

F
li

g
h

t-
p

at
h

 a
n

g
le

 (
d

eg
)

State uncertainty

Parameter uncertainty

Combined uncertainty

(c) Flight-path angle error

Figure 4.8: ECKF 2-σ exit state estimate uncertainty as a function of bank angle switch.

which are critical to precision of the exit orbit. These results illustrate the expected performance

of the ECKF with uncertainty in the underlying dynamics and measurement models. The coupling

of these uncertainties in the system dynamics may preclude perfect state knowledge as a viable

assumption on entry problems with limited measurement information.

Imprecise state information during entry will inevitably degrade dispersed capture perfor-

mance and hinder the ability of on-board guidance to predict future states. The robust optimiza-

tion cost in Eq. (4.18) provides an alternative objective for aerocapture, with the goal of reducing

the statistical deviation from a target state. A trade is performed across the bank angle switch

parameter σd for the robust cost problem, where the initial bank command σ0 remains fixed at

15 degrees for each solution. Figure 4.8 shows the ECKF terminal state error 2-σ bounds versus

bank angle switch. The state errors are influenced by the bank angle switch, as a switch timed

too early or too late may result in more rapid growth of uncertainty. The radius and flight-path

angle states appear to suggest a steeper bank angle switch to minimize error bounds, whereas the

velocity uncertainty is minimized at a bank angle switch of about 60 degrees.

Figure 4.9 shows the combined effect of this uncertainty on the overall apoapsis radius cost

objective. An optimal bank angle switch is found at 60 degrees to provide a robust solution. The

switch time corresponding to this σd occurs at about 105 seconds in Fig. 4.10. Time of maximum

dynamic pressure (max-Q) shown as dashed line for Nominal entry flight-path angle of -12.731 deg.
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Figure 4.11: Time history of bank angle input for chosen σd cases.

Note that Fig. 4.10 illustrates optimal switch times for the nominal entry state. A perturbation in

the initial flight-path angle or velocity will give a different switch time relationship. An interesting

feature of Fig. 4.9 is that, in the case of parameter uncertainty alone, the robust cost points

to a shallower bank angle switch of 40 degrees. Previous studies on NPC guidance [91] suggest

shallower σd values will provide robust performance by conserving bank angle margin for later in

the trajectory. However, as evident from Fig. 4.9, the robust solution may require a steeper bank

angle switch to produce better measurements for estimation filtering. The robust optimal solution

can therefore be interpreted as providing the most information over a full aerocapture pass. This

mindset is in contrast to certainty equivalent NPC strategies, which treat σd as a tuning parameter

with an inversely proportional tradeoff between performance and robustness.

The tradeoff of σd versus the robust cost objective provides a metric for evaluating dispersed

aerocapture trajectories. To further illustrate this point, a 2,500 run Monte Carlo simulation of the

dispersed ECKF performance is shown for two selected σd values of 40 and 60 degrees. These values

correspond to the worst and best-case solutions in Fig. 4.9 for the combined uncertainty. Statistical

distributions at the exit interface are plotted for both bank angle switch values in Fig. 4.12. Both

cases remain approximately normally-distributed, satisfying the underlying assumptions for nor-
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(a) σd = 40 deg (b) σd = 60 deg

Figure 4.12: Terminal state error distribution at atmospheric exit interface.
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Figure 4.13: Apoapsis targeting for selected bank angle switch values.

mality in the ECKF update equations. The final states appear strongly correlated even though the

initial uncertainty is uncorrelated. The output state distribution is much wider for the non-optimal

σd solution in Fig. 4.12a, whereas in Fig. 4.12b the distribution bounds are moderately reduced.

Existing strategies predict future states of the vehicle by propagated the nominal state and

parameter values within a numerical optimizer [15, 20]. Thus, results for an unfiltered case fa-

cilitate comparison to the current state of the art in guidance prediction. In the unfiltered case,

measurement and consider parameter conditioning effects are omitted. The initial state uncertainty

probability distribution is then propagated as a pure prediction problem with σd of 90 degrees. Fig-

ure 4.13 shows quartiles of apoapsis radius errors for the filtered and unfiltered cases. In the filtered

case, both are approximately zero mean, but the optimal σd of 60 degrees indicates a much tighter

distribution of apoapsis error. Moreover, fewer outliers are found for the optimal bank angle switch.

Figure 4.13 shows that the non-optimal σd of 40 degrees produces outliers in the overshoot

direction. These cases represent nonlinear effects that are not adequately modeled by the linear

covariance update equations. However, the optimal σd of 60 degrees results in fewer outliers,

remaining close to the nominal estimate consistent with these assumptions. Thus, an additional

benefit of the robust optimization approach is to reduce filter divergence in outlier cases. This
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σd (deg) Failed Cases 95% – ∆V (m/s) 99.5% – ∆V (m/s)

40 61 213.3 238.0
60 0 167.3 173.2

90 (unfiltered) 850 479.9 672.7

Table 4.2: Monte Carlo simulation statistics for ECKF and unfiltered cases.

comparison illustrates the contrast with existing approaches relying on certainty equivalence.

Table 4.2 gives capture rate and predicted ∆V performance for each bank angle switch case.

A significantly higher rate of failed runs is evident in the unfiltered case, resulting from direct

entry trajectories that fail to reach orbit. The direct entry cases are removed from simulation

results before computing ∆V statistics, as these runs are not feasible solutions of the aerocapture

problem. Figure 4.14 shows the cumulative ∆V performance for both the filtered and unfiltered

cases. The unfiltered cases see rapid uncertainty growth, with a comparatively high number of

overshoot trajectories. These runs provide insufficient velocity-loss to capture into the target orbit

apoapsis radius. The optimal bank angle switch of 60 degrees gives an overall lower expected total

∆V , with the cumulative distribution showing strong stochastic dominance over the 40 degree bank

angle switch case. These results indicate that the robust optimization procedure can moderately

improve prediction accuracy in aerocapture.
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Figure 4.14: Comparison of ∆V performance for selected bank angle switch values.
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4.5 Summary

Successful guided entry requires precise knowledge of system states, environmental conditions,

and vehicle performance parameters. Errors in these quantities directly impact the capability of

any guidance algorithm to precisely target desired exit conditions. Existing strategies are strongly

rooted in certainty equivalence, with the assumption that running closed-loop is sufficient to mit-

igate the influence of imperfect system knowledge. This work introduces a novel framework for

incorporating uncertainty in entry flight problems into an overall optimization objective. A ro-

bust cost index is proposed for general problems in aeroassist. The ECKF equations are used for

propagating state and parameter uncertainties, as well as for predicting the conditioning effect

of future measurements on the estimation error covariance. Models of uncertainty in entry flight

problems are developed, including a novel density perturbation model derived from MarsGRAM

data. Results are generated for a representative Mars mission concept subject to uncertainty in

initial states, atmospheric density structure, and vehicle aerodynamic coefficients. Utilizing the

robust optimization procedure moderately desensitizes the guidance prediction error, therefore de-

creasing the necessary ∆V budget by about 50%. These findings have application to robust tuning

of existing NPC guidance strategies. This work is expected to better inform mission design for a

wide class of aeroassist problems, including aerocapture, and may enable improved performance of

entry guidance under uncertainty.



Chapter 5

Conclusions and Future Work

Optimal control represents a challenging, yet informative field within aerospace engineering.

Indirect methods provide high solution precision and reveal deeper mathematical insights not avail-

able with direct methods. Further, these methods enable solution of complex, high-dimensional

systems that represent real problems faced by aerospace designers today. In practice, numerical so-

lution of the resulting Hamiltonian BVP from indirect methods presents numerous challenges, par-

ticularly in constrained problems when the solution structure cannot be known a priori. Tractable

solution methodologies for indirect methods are key to improving their reliability and range of

application. Improvements to numerical homotopy and regularization methods will continue to

positively impact the state-of-the-art for the foreseeable future.

Uncertainty in atmospheric entry flight has dampened aeroassist mission outlook, particu-

larly for highly-enabling maneuvers such as aerocapture. Risk assessment of these missions has

historically relied on certainty-equivalent guidance and TCW for conceptual design. As a result,

the parameter design space is often restricted to high L/D vehicles with low TRL, particularly for

missions to the outer planets where the navigated delivery accuracy and environmental models are

not known with high confidence. Large strides in entry technology advancements are needed to

visit these challenging destinations. Scientific exploration in the solar system can provide critical

information regarding planetary formation and origins. Thus, enhancing technologies to improve

reliability of entry systems with lower risk posture provides greater benefits to society, beyond

academic and engineering interest alone.
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Chapter 2 develops a novel regularization method for constrained optimal control problems.

The main feature of the new approach is to produce a fully-analytical control law following substi-

tution of control smoothing and error-control terms. This useful property is not typical to existing

approaches. The control variables are restated in terms of states and costates alone, enabling elim-

ination from the Hamiltonian BVP by direct substitution. Functional orthogonality is ensured,

in turn minimizing projected errors due to smoothing. The method is non-intrusive and easy to

implement. In addition, the method forgoes point-wise application of the Minimum Principle along

the trajectory, reducing numerical overhead and programmatic complexity. Desirable numerical

convergence behavior is observed for simple examples with known solutions, as well as more com-

plex aerospace systems. A differential extension approach enables application of the new method

to a broad class of problems. Novel path constraint barrier functions are also studied. These con-

tributions greatly improve the applicability of indirect methods in complex problems by removing

any burden on the designer to derive complicated control laws or constraint multipliers.

Chapter 3 examines a special case of OCP structure in which the necessary conditions fail to

reveal an optimal control policy. This behavior is linked to singular arcs appearing with infinite local

order. Existence conditions are developed based on the concept of reachable singular manifolds.

The terminal objective must be stated such that a global minimum resides in the reachable set

of the system using admissible controls. This in turns causes the standard necessary conditions

to break down. Because of the exact nature of indirect methods, no solution is produced even

though a family of global optimizers can be found. We develop a novel relaxation method based

a first-order local error covariance propagated about the nominal state. Although the dimension

of the optimization problem is increased, the regularization approach lends well to solving these

problems. The relaxation method resolves infinite-order singularities and produces a well-posed

OCP structure. Further, the work has relevance to engineering problems, as real-world systems are

usually subject to some level of uncertainty. Results show moderately reduced uncertainty due to

propagated initial state and parameter errors for several relevant applications.

Chapter 4 explores connections between state estimation and entry guidance for planetary
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aerocapture. Optimal allocation of guidance parameters is posed as a robust optimization problem.

Measurement conditioning effects can be predicted well by propagating the discrete-time consider-

EKF equations. The approach effectively enhances state estimation through trajectory design.

Solutions are obtained using a parameterized control structure and explicit integration methods,

reflecting the current state-of-the-art in NPC guidance. The bank angle switch parameter can

strongly influence terminal state uncertainty. An optimal bank angle switch value can be found

minimizing the propagated errors due to atmospheric structure, parameter uncertainty, and state

estimation error. This is in contrast to current approaches, which posit the bank angle switch

as a monotonic tradeoff between performance and robustness. Results for a Mars aerocapture

mission illustrate coupling between atmospheric trajectory design and estimation accuracy in entry

guidance.

Innovations in the construction and solution of complex optimization problems benefit the

aerospace sciences from many perspectives. Regularization applies to a broad class of OCP struc-

tures and greatly reduces the complexity required of the designer. By removing the need for

prior knowledge of the constraint structure and junction points, the resulting Hamiltonian BVP

has a much simpler construction and solution process. The generalized regularization method

enables application with optimization software libraries and numerical BVP solvers that require

fully-analytical process equations and boundary condition Jacobians. Advancements that reduce

complexity and improve ease of implementation make the field more approachable, increasing the

likelihood of wider adaptation in the research and engineering community. Similarly, the auxiliary

relaxation method provides a set of necessary conditions for resolving ill-posed problem structures

that may appear in practical problems. By minimizing projections of the propagated uncertainty

covariance about singular manifolds, characteristics of the original problem are retained. The relax-

ation approach enables the generation of precise and robust trajectories that can improve system

performance for uncertain operating conditions. Finally, advancements to state-of-the-art in atmo-

spheric flight mechanics and entry guidance will benefit mission design for challenging destinations

in the solar system. Estimation-enhanced guidance can improve entry guidance prediction accuracy
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and increase confidence in aeroassist mission capability.

Future work could consider further generalization of the regularization methods developed

in this thesis. For example, error-control terms could apply to nonlinear controls directly, without

utilizing differential system extension. This process should retain the fully-analytic character of

the optimal control policy, without relying on point-wise application of the Minimum Principle.

Certain boundary conditions can also introduce irregularities in the control solution on the bound-

ary following regularization, warranting further study. Regarding the infinite-order singular arc

relaxation method, nonlinear or non-Gaussian uncertainty could be used in the auxiliary problem,

or advanced propagation techniques such as particle filtering or unscented transforms. Another

area for improvement includes solution of the NPC guidance strategy in on-line applications. The

robust prediction framework should be studied for improving prediction accuracy in closed-loop.

Finally, there exists current literature regarding optimal costate estimation through deep learning

neural networks. These principles could be applied to the auxiliary relaxation problem for rapid

estimation of optimal costates of the covariance dynamics along singular manifolds. Deep learn-

ing for online trajectory generation using indirect methods could greatly benefit robust trajectory

design under uncertainty.
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Appendix A

Relating UTM and GCRM Control Laws

The uniform trigonometrization method (UTM) [99] is a strategy representing the current

state-of-the-art in OCP constraint regularization. The method leverages trigonometric functions,

notably for control terms appearing in linear and in nonlinear form, as well as state path constraints.

A drawback of current approaches lies in the fact that the UTM optimal control law is not uniquely

determined. The piecewise control structure can be resolved using PMP to select the control input

minimizing the Hamiltonian at each time step. However, PMP must be applied at each instant along

the trajectory. This introduces numerical and implementation overhead. Moreover, it eliminates

the analytical form of the control, requiring programmatic logic to calculate the Hamiltonian for

each possible control permutation. The proposed GCRM regularization functions have the major

benefit of resolving the ambiguity in the control structure through sigmoid functions. This is in

contrast to the trigonometric terms utilized by UTM, which are bounded to unity but not monotonic

in their arguments.

In this section, we summarize issues regarding quadrant ambiguity of the optimal control

solution. We also draw a parallel between the GCRM and UTM control laws, and show that the

two methods can be related. The major distinction is that the GCRM control law is uniquely

determined, without application of PMP. Upon application of the necessary condition ∂H/∂u = 0,

it is typical to solve for the control in terms of states and costates and substitute the expression

back into the problem. This step eliminates u and results in a well-defined two-point Hamiltonian

BVP. An interesting observation is that, upon substituting the UTM optimal control solution back
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into the Hamiltonian, the control takes a similar form to the algebraic regularization function in

Table 2.1. This is shown by substituting the UTM error-control and penalty terms into Eq. (2.16).

We limit our case to a single scalar control input, but the results apply to an arbitrary number of

control terms.

The UTM performs regularization by replacing control terms with a sine-smoothing function

and augmenting the integral cost with a cosine penalty factor. The regularized Hamiltonian for

UTM can be written as

H̃UTM = H0 +H1 sinu+ ε cosu (A.1)

The optimal control law is then derived as

∂H̃UTM

∂u
= 0 = H1 cosu− ε sinu (A.2)

resulting in the possible control branches

u∗UTM =

 arctan
(
H1
ε

)
arctan

(
H1
ε

)
+ π

(A.3)

For a single-input system, two control laws are possible, leaving to the user the task of checking

which option is optimal or converges. For l controls, the possible combinations will grow by a factor

of 2l, introducing further complexity in constructing and solving the Hamiltonian BVP.

We are interested in relating the UTM and GCRM control laws. Noting the following rela-

tionships for an arbitrary variable X

sin (arctan(X)) =
X√

X2 + 1
(A.4a)

cos (arctan(X)) =
1√

X2 + 1
(A.4b)

The possible form of the Hamiltonian for the UTM sine and cosine terms is then

H̃UTM =


H0 +H1

(
H1
ε

)
√(

H1
ε

)2
+1

+ ε 1√(
H1
ε

)2
+1

H0 −H1

(
H1
ε

)
√(

H1
ε

)2
+1

− ε 1√(
H1
ε

)2
+1

(A.5)
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The negative signs in the second expression in Eq. (A.5) are a result of the additive π term. Com-

paring to the expressions in Table 2.1, it is apparent that, after substituting the UTM optimal

control back into the Hamiltonian, it is functionally similar to the algebraic regularization func-

tion. In addition, for H1 6= 0, the second control option is always optimal since it will minimize

H̃UTM regardless of the sign of H1. However, the ambiguity is not fully resolved on singular arcs.

In addition, the associated penalty term in Eq. (A.5) is a non-positive-definite term, resulting in

an artificial time-minimization objective appended to the running cost. By selection of the GCRM

error-control and associated penalty terms, the ambiguity can be fully resolved while greatly sim-

plifying the optimal control expression.
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Singular Controls and Differential Extension

The system extension differential control (SEDC) problem involves augmenting control vari-

ables as additional states in the Hamiltonian BVP. The optimal control policy for the extended

system is considered in this section. We show that a solution of OCP(v) corresponding to a mini-

mum of OCP(u) must be totally singular. To begin, we establish an equivalency between the two

problem structures. The extended problem has Hamiltonian

H(v) = h(x,λ, u, t) + λuv (B.1)

where λu is a costate corresponding to the auxiliary state u with dynamics

λ̇u = −∂h
∂u

(B.2)

Let {x∗,λ, u∗} be an optimal trajectory of OCP(u) such that

∂2

∂u2
[h(x∗,λ∗, u∗, t)] ≥ 0 (B.3)

At the final time, the Hamiltonian for OCP(v) is

H(v)(tf ) = h(x(tf ),λ(tf ), u(tf ), tf ) + λu(tf )v(tf ) (B.4)

From Eq. (2.62d), the costate boundary conditions are λu(tf ) = 0, which implies H(v)(tf ) =

h(x(tf ),λ(tf ), u(tf ), tf ). Next, taking a time derivative of Eq. (B.1) and noting Eq. (B.2) gives

Ḣ(v) = ḣ+ λ̇uv + λuv̇

=
∂h

∂x
ẋ+

∂h

∂λ
λ̇︸ ︷︷ ︸

=0

+
∂h

∂u
u̇− ∂h

∂u
v︸ ︷︷ ︸

=0

+λuv̇ = 0 (B.5)
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where the last equality results from minimization of the Hamiltonian function. This is true even if v

is on the boundary of the admissible control set, since λu and v̇ are transversal (see Geering [217, pp.

36]). Equations (B.4) and (B.5) imply on the optimal trajectory,

λuv = 0 (B.6)

The Hamiltonian functions are therefore equal for all time. On a singular arc,

H(v)
v = λu = 0 (B.7)

and time derivatives of the switching function give

d

dt
H(v)
v = λ̇u = −∂h

∂u
= 0 (B.8a)

d2

dt2
H(v)
v = − ∂

∂x

(
∂h

∂u

)
ẋ− ∂

∂λ

(
∂h

∂u

)
λ̇−

(
∂2h

∂u2

)
v = 0 (B.8b)

Application of the Legendre-Clebsch convexity condition, Eq. (2.13), requires

(−1)
∂

∂v

[
d2

dt2

(
H(v)
v

)]
=
∂2h

∂u2
≥ 0 (B.9)

which is precisely the condition stated in Eq. (B.3), since u∗ is a minimum of OCP(u). Because

λu(tf ) = 0, Eqs. (B.6) and (B.8a) imply that λu = 0. Therefore, the optimal solution of OCP(v)

utilizing the SEDC approach is totally singular.
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Proof of Proposition 2

The proof proceeds in a similar manner as Proposition 1. The transversality conditions

Eq. (3.5d) dictate the boundary conditions

λ(tf ) = νTψx(tf ) (C.1)

with terminal multipliers ν ∈ Rm. Let us assume rank (ψx(tf )) = m with m ≤ n such that

ψx,i, i = 1, . . . ,m are linearly independent.

The terminal multipliers ν remain to be found. We do so following the so-called influence

function approach from Bryson [68, pp. 55–59] and Stengel [78, pp. 224-226]. Let λ(J) ∈ Rn be an

optimal costate solution of Problem 2 neglecting the terminal state constraint. The Hamiltonian

H(J) for the unconstrained problem is

H(J) = (λ(J))T(f + gu) + λ0φx(f + gu) (C.2)

with λ(J)(tf ) = 0 ∈ Rn. A first variation in the cost can be expressed as

δJ = (λ(J)(t0))Tδx(t0) +

∫ tf

t0

∂H(J)

∂u
δudt

=

∫ tf

t0

(
(λ(J))T + λ0φx

)
gδudt (C.3)

where δx(t0) = 0 ∈ Rn for a fixed initial state. Using the influence function approach, a suitable

variation is constructed to satisfy the terminal constraints while minimizing the objective such that

δJ ≤ 0.



184

Next, let λ(i) ∈ Rn represent a costate solution zeroing the terminal constraint ψi(tf ) = 0, i =

1, . . . ,m without regard to the optimal cost objective. The Hamiltonian H(i) for the constraint

alone is

H(i) = (λ(i))T(f + gu) (C.4)

A first variation in the terminal state is expressed as

δψi(tf ) =

∫ tf

t0

∂H(i)

∂u
δu(t) dt =

∫ tf

t0

(λ(i))Tgδudt (C.5)

For the i-th terminal multiplier νi, define the augmented cost

J ′ = J + νiψi(tf ) (C.6)

Substituting Eqs. (C.3) and (C.5) gives the first variation in J ′ as

δJ ′ = δJ + νiδψi(tf ) =

∫ tf

t0

(
(νiλ

(i) + λ(J))T + λ0φx

)
gδudt (C.7)

By choice, let the variation in the control be

δu = −εgT(νiλ
(i) + λ(J) + λ0φ

T
x) (C.8)

for some arbitrary ε ∈ R>0. Equation (C.7) can then be restated compactly as

δJ + νiδψi(tf ) = −
∫ tf

t0

ε‖δu‖2 dt (C.9)

which clearly gives a decreasing (or stationary) value in the augmented cost. Using Eq. (C.8) in

Eq. (C.5) gives an expression for the terminal multipliers minimizing each of the terminal constraints

ψj for j = 1, . . . ,m.

δψj(tf ) = −ε
∫ tf

t0

(λ(i))TggT(νjλ
(j) + λ(J) + λ0φ

T
x) dt = 0 (C.10)

or

νj

∫ tf

t0

(λ(i))TggTλ(j) dt︸ ︷︷ ︸
Qi,j

+

∫ tf

t0

(λ(i))TggT(λ(J) + λ0φ
T
x) dt︸ ︷︷ ︸

bi

= 0 (C.11)
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resulting in the system of equations

Qi,jνj + bi = 0, i, j = 1, . . . ,m (C.12)

Concatenating Eq. (C.12) into a linear matrix equation gives an expression for the terminal multi-

pliers

ν = Q−1b (C.13)

where

Q =


Q1,1 · · · Q1,m

...
. . .

...

Qm,1 · · · Qm,m

 , b =


b1

...

bm

 (C.14)

Invertibility of the Q matrix can be interpreted as a controllability condition [68], wherein terminal

constraints must be satisfied with admissible controls. This property is ensured by the assumption

x(tf ) ∈ Θ, such that the target set Θ is in the reachable set of the system.

Finally, we are motivated to examine the bi expressions in Eq. (C.11). In a similar fashion to

Proposition 1, define σ(J) = λ(J) + λ0φ
T
x . We express bi as

bi =

∫ tf

t0

(λ(i))TggTσ(J) dt (C.15)

As in Eq. (3.21), the dynamics can be expressed as σ̇(J) = (fx+gxu)Tσ(J) with boundary conditions

σ(J)(tf ) = λ(J)(tf ) + λ0φ
T
x(tf ) = 0 ∈ Rn. Thus, σ(J)(t) = 0 ∈ Rn for all t ∈ [t0, tf ] and therefore

bi = 0 for i = 1, . . . ,m. Observing Eq. (C.13), this gives the trivial solution for the terminal

multipliers ν = Q−1b = 0 ∈ Rm. This in turn requires λ(tf ) = νTψx(tf ) = 0 ∈ Rn and

λ(t) = 0 ∈ Rn for all t ∈ [t0, tf ] with λ0 6= 0. As developed in Proposition 1 this requires p → ∞,

completing the proof.



Appendix D

Linearized Dynamics and Measurement Models

The ECKF update equations require computation of discrete-time dynamics and measure-

ment sensitivities in Eqs. (4.22a) and (4.22b). These are computed from the continuous-time

jacobian matrices. The atmospheric density is assumed to be a function of altitude and perturba-

tion parameters such that ρ = ρ (h, δη1, ..., δηl). Given the state vector xk = [r, V, γ]T and consider

parameters p = [CL, CD, δη1, ..., δηl], the state sensitivity matrices are computed as follows.

Axk =


0 sin γ V cos γ

2µ sin γ
r3

− ACD V
2 ∂ρ
∂r

2m −ACD V ρ
m −µ cos γ

r2

ACL uV
2 r3 ∂ρ

∂r
−2m cos γ V 2 r+4mµ cos γ

2V mr3
2mµ cos γ+2V 2mr cos γ+ACL V

2 r2 u ρ
2V 2mr2

sin γ (µ−V 2 r)
V r2


(D.1)

Apk =


0 0 0 ... 0

0 −AV 2 ρ
2m −

ACD V
2 ∂ρ
∂δη1

2m ... −
ACD V

2 ∂ρ
∂δηl

2m

AV uρ
2m 0

ACL V u
∂ρ
∂δη1

2m ...
ACL V u

∂ρ
∂δηl

2m

 (D.2)

Similarly, the measurement model sensitivity matrices are

Hxk =

[
AV 2 ∂ρ

∂r

√
CD

2+CL
2

2m
AV ρ
√
CD

2+CL
2

m 0

]
(D.3)

Hpk =

[
ACL V

2 ρ

2m
√
CD

2+CL
2

ACD V
2 ρ

2m
√
CD

2+CL
2

AV 2 ∂ρ
∂δη1

√
CD

2+CL
2

2m ...
AV 2 ∂ρ

∂δηl

√
CD

2+CL
2

2m

]
(D.4)
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Sensitivities of the density profile are also required. Noting the definition of the density

perturbation in Eq. (4.44), the sensitivity with respect to radius can be computed as

∂ρ

∂r
≈ ∂ρ

∂h
=
∂ρ̄

∂h
(1 + δρ) + ρ̄

∂δρ

∂h
(D.5)

with

∂ρ̄

∂h
= −ρ0

H
exp

(
− h
H

)
∂δρ

∂h
=

1

he

(
δη2 + ...+ δηl

(
h

he

)l−2
)

(D.6a)

Since the nominal profile does not depend on the density perturbation terms, the sensitivities with

respect to δηi are

∂ρ

∂δηi
= ρ̄

∂δρ

∂δηi
(D.7)

with

∂δρ

∂δηi
=

(
h

he

)i−1

(D.8)

These expressions complete the necessary components of all sensitivities for the studied state and

consider parameters. In general, computation of these matrices analytically will improve numerical

stability in comparison to finite difference equations. These expressions can be easily extended to

additional states, parameters, or measurement models using the same approach.



Appendix E

Traditional Atmospheric Estimation

The sensed acceleration model in Eq. (4.37) is functionally similar to traditional approaches

for density estimation during reentry. These calculate a density estimate ρest in a deterministic

manner by equating the expected and measured aerodynamic drag acceleration [218].

ρest =
2masens
V 2
r CDA

(E.1)

These strategies may update the density ratio on-board using a first-order fading memory filter to

average out noisy behavior of the density estimate. While often practical for closed-loop guidance

applications, traditional atmospheric estimation methods do not account for uncertainty in the

atmospheric model, mass, or aerodynamic coefficients. In contrast, the ECKF update equations use

current knowledge of the state uncertainty and noise intensity to minimize the sum square residual

of the estimate errors. This represents the best-available knowledge at any given measurement

epoch, even though the density is not measured directly.
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