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Robust Adaptive Estimation for
Autonomous Rendezvous in Elliptical Orbit

Christopher D. Karlgaard

(ABSTRACT)

The development of navigation filters that make use of robust estimation techniques is important
due to the sensitivity of the typical minimum `2 norm techniques, such as the Kalman filter, to
deviations in the assumed underlying probability distribution. In particular, those distributions
with thicker tails than the Gaussian distribution can give rise to erratic filter performance and
inconsistency of results. This dissertation discusses the development of an adaptive discrete-time
robust nonlinear filtering technique based on a recursive form of Huber’s mixed minimum `1/`2 norm
approach to estimation, which is robust with respect to deviations from the assumed Gaussian error
probability distributions inherent to the Kalman filter. This mixed norm approach is applied to
a type of Sigma-Point Kalman filter, known as the Divided Difference Filter, which can capture
second–order effects of nonlinearities in the system and measurement dynamics.

Additionally, if these assumed parameters of the distribution differ greatly from the true param-
eters, then the filter can exhibit large errors and possibly divergence in nonlinear problems. This
behavior is possible even if the true error distributions are Gaussian. To remedy these problems,
adaptive filtering techniques have been introduced in order to automatically tune the Kalman filter
by estimating the measurement and process noise covariances, however these techniques can also
be highly sensitive to the nature of the underlying error distributions. The Huber–based formula-
tions of the filtering problem also make some assumptions regarding the distribution, namely the
approach considers a class of contaminated densities in the neighborhood of the Gaussian density.
Essentially the method assumes that the statistics of the main Gaussian density are known, as
well as the ratio or percentage of the contamination. The technique can be improved upon by the
introduction of a method to adaptively estimate the noise statistics along with the state and state
error covariance matrix. One technique in common use for adaptively estimating the noise statis-
tics in real–time filtering applications is known as covariance matching. The covariance matching
technique is an intuitively appealing approach in which the measurement noise and process noise
covariances are determined in such a way that the true residual covariance matches the theoret-



ically predicted covariance. The true residual covariance is approximated in real time using the
sample covariance, over some finite buffer of stored residuals. The drawback to this approach is
that the presence of outliers and non-Gaussianity can create problems of robustness with the use
of the covariance matching technique. Therefore some additional steps must be taken to identify
the outliers before forming the covariance estimates. In this dissertation, an adaptive scheme is
proposed whereby the filter can estimate the process noise and measurement noise covariance ma-
trices along with the state estimate and state estimate error covariance matrix. The adaptation
technique adopts a robust approach to estimating these covariances that can resist the effects of
outliers. The particular outlier identification method employed in this paper is based on quantities
known as projection statistics, which utilize the sample median and median absolute deviation, and
as a result are highly effective technique for multivariate outlier identification. These projection
statistics are then employed as weights in the covariance matching procedure in order to reduce the
influence of the outliers.

The hybrid robust/adaptive nonlinear filtering methods introduced in this dissertation are ap-
plied to the problem of 6-DOF rendezvous navigation in elliptical orbit. The full nonlinear equations
of relative motion are formulated in spherical coordinates centered on the target orbit. A relatively
simple control law based on feedback linearization is used to track a desired rendezvous trajectory.
The attitude dynamics are parameterized using Modified Rodrigues Parameters, which are advanta-
geous for both control law development and estimation since they constitute a minimal 3-parameter
attitude description. A switching technique which exploits the stereographic projection properties
of the MRP coordinate is utilized to avoid singularities which inevitably arise in minimal attitude
descriptions. This dissertation also introduces the proper covariance transformations associated
with the singularity avoidance switching technique. An attitude control law based on backstepping
is employed to track the target vehicle.

A sensor suite consisting of a generic lidar or optical sensor, an Inertial Measurement Unit,
consisting of accelerometers and gyroscopes, a star tracker, and a horizon sensor are utilized to
provide measurement data to the navigation filters so that the chaser vehicle can estimate its
relative state during the rendezvous maneuver. Several filters are implemented for comparison,
including the Extended Kalman Filter, First and Second–Order Divided Difference Filters and
Huber–based generalizations of these filters that include adaptive techniques for estimating the
noise covariances. Monte-Carlo simulations are presented which include both Gaussian and non-
Gaussian errors, including mismatches in the assumed noise covariances in the navigation filters in
order to illustrate the benefits of the robust/adaptive nonlinear filters. Additionally, computational
burdens of the various filters is compared.
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Chapter 1

Introduction

1.1 Autonomous Rendezvous of Spacecraft

Rendezvous and docking of spacecraft in orbit has been at the forefront of research and technol-
ogy development since the beginning of space flight, continuing to the present day. Spacecraft
rendezvous and docking has in the past played an important role in the exploration of space, in-
cluding both crewed and un-crewed missions. For example, the lunar orbit rendezvous mission
mode was critical to the success of the Apollo program.1 The autonomous rendezvous and docking
of spacecraft in orbit will remain a critical technology for future space exploration missions.2 In-
deed, autonomous rendezvous and docking was named one of several top technologies required for
the future exploration of space in the Exploration Systems Architecture Study.3 Potential future
applications of this technology include robotic sample return missions to the moon and Mars,4

in–space assembly of modular systems,5,6 peer-to-peer refueling within constellations,7 and could
potentially serve as an important backup system in the case of an abort scenario involving crewed
lunar missions.8

Autonomous rendezvous and docking is currently far from being mastered. A recent example in
support of this claim can be found in the failure of the Demonstration of Autonomous Rendezvous
Technology (DART) mission.9 This technology demonstration mission called for the DART space-
craft to rendezvous and conduct various proximity operations, with complete autonomy, with the
Multiple Paths, Beyond-Line-of-Sight Communications (MUBLCOM) satellite. In addition, the
mission goals also included the demonstration of the use of an Advanced Video Guidance Sensor
(AVGS) for relative navigation during proximity operations. The DART spacecraft is shown in
Fig. 1.1 and and Fig. 1.2. The planned proximity operations are shown in Fig. 1.3.

The DART spacecraft was launched on a Pegasus booster on April 15th 2005, and successfully
completed some mid-course maneuvering in preparation for the terminal rendezvous and docking
with the MUBLCOM target satellite. After about 11 hours into the mission, the DART spacecraft
propellant supply was prematurely depleted, ending the mission with only 11 out of 27 rendezvous
and proximity objectives completed.10 The Mishap Investigation Board (MIB) found that the
propellent depletion, and therefore the mission failure, was due primarily to the following factors:10

• Poor relative position initialization in the navigation software
∗http://www.msfc.nasa.gov/news/dart/index.html, March 7th, 2007

1
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Figure 1.1: Artist Rendering of the DART Spacecraft∗

• The introduction of a biased velocity measurement

• Navigation software design that was overly sensitive to erroneous data

• The use incorrect weighting of measurement data in the navigation software

These inadequacies in the DART navigation software led to a buildup of navigation error, which
in turn led to a higher than anticipated rate of thruster firing, thus depleting the propellant supply
and causing the premature termination of the mission. Some additional factors that contributed to
the failure are the guidance system for allowing continual thrusting, as well as faulty calculations
of the remaining propellant supply (DART in fact had about 30% fuel remaining when it had
computed that the fuel was below the limit, thus terminating the mission10).

The DART mishap was not the first instance where navigation sensors and data processing
techniques played a role in rendezvous failures or anomalies. The STS–32 mission in January
1990 experienced higher than expected noise in the rendezvous radar measurements, leading to an
increase in fuel consumption, although the rendezvous mission was ultimately completed success-
fully.14 Investigation into this anomaly found that the radar measurement was biased and was not
properly accounted for in the onboard navigation filter software. In another example, the STS–91
mission in June 1998 experienced a series of errors due to faulty processing of Global Positioning
System (GPS) measurement data.14

†http://www.msfc.nasa.gov/news/dart/index.html, March 7th, 2007
‡http://www.msfc.nasa.gov/news/dart/index.html, March 7th, 2007
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Figure 1.2: DART Spacecraft Configuration†

Figure 1.3: DART Proximity Operations‡

Based on these rendezvous and docking mission failures and anomalies, there is a need for both
improved sensor modeling and the development of navigation filters that are insensitive to data
that does not follow the expected distribution of measurement errors. It is also desirable to develop
filters that can adapt to changes in these error distributions over time. It is therefore the purpose
of this dissertation to develop robust filtering and navigation sensor processing techniques for use
in spacecraft autonomous rendezvous scenarios.
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Figure 1.4: Illustration of the Sensitivity of Least Squares for Point Estimation

1.2 State Estimation

The processing of the various sensor measurements to determine the spacecraft position and ve-
locity relative to the target spacecraft can be accomplished by one of several means. Perhaps the
most basic technique in this area of application is the Kalman filter.15 The Kalman filter is es-
sentially a recursive dynamic weighted least–squares or minimum `2 norm estimation procedure,
and is a maximum likelihood technique assuming that the error statistics follow Gaussian probabil-
ity distributions.17,18 The least–squares method is not a robust estimation technique because the
procedure can fail to perform adequately when the true error statistics follow non-Gaussian proba-
bility distributions, particularly those with much thicker tails than the Gaussian distribution.19,20

Thickly–tailed probability distributions are those with high probability of large errors compared
with the Gaussian distribution. The term robustness in a statistical sense was coined by Box21 to
describe procedures that are insensitive to deviations in the assumed underlying probability distri-
bution from which the data are sampled. Formal definitions of robust estimation can be found in
Refs. 22–25 and will be summarized in Sec. 2.3.2. Intuitively, robustness means that the estimation
error remains bounded for arbitrarily large observation errors.

The sensitivity of least squares can be illustrated with a simple example of a one-dimensional
point estimation problem. Suppose 20 samples are taken with uniform random errors in the interval
[−1, 1], as shown in Fig. 1.4(a). Here, the mean (least squares estimator) and median (least absolute
value estimator) both appear to take on reasonable values, for instance the mean is 0.0962 and the
median is 0.1605. Next, the rightmost data point is shifted to the point x = 100, as shown in
Fig. 1.4(b). In this case, the median value is unchanged whereas the mean is now 5.0539, clearly
not representative of the center of the bulk of the data. In this sense, the sample mean is extremely
sensitive to erroneous data, whereas the median is said to be robust.

The sensitivity of the least squares technique is also present in higher dimensions. For example,
the results of a linear regression problem are shown in Fig. 1.5. In this problem, the data points
have an outlier at x = 25, y = 0. The least squares solution is clearly not a good fit for the bulk
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Figure 1.5: Illustration of the Sensitivity of Least Squares for a Linear Regression
Problem

of the data, while the robust solution is able to tolerate the presence of the outlier. This example
will be discussed in more detail in Sec. 2.7.

1.2.1 Some History of Robust Estimation

The sensitivity of the least squares technique to the true underlying distribution of the data has
been known for quite some time. In fact, in the first publication on least squares, Legendre suggests
rejecting data that appear erroneous before using least squares on the remaining observations.29§

Legendre’s quote from 1805 is29

If among these errors are some which appear too large to be admissible, then
those observations which produced these error will be rejected, as coming
from too faulty experiments, and the unknowns will be determined by means
of the other observations, which will then give much smaller errors.

In other words, Legendre suggests rejecting data that are thicker in the tails than the expected
(Gaussian) distribution. Regarding his independent development of the method of least squares
published in 1809, Gauss stated in 1821 that30

§See Plackett26 and Stigler27 for a description of the discovery of the least squares method, and subsequent

debate between Legendre and Gauss over priority. It is also interesting to note that the least squares technique was

independently discovered by Adrain in 1808,28 before Gauss’s publication on the method.
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The author of the present treatise, who in the year 1797 first investigated
this problem according to the principles of the theory of probability, soon
realized that it was impossible to determine the most probable value of the
unknown quantity, unless the function representing the probability of the er-
rors is known. But since it is not, there is no other recourse than to assume
such a function in a hypothetical fashion. It seemed most natural to him to
take the opposite approach and to look for that function which must be taken
as a base in order that for the simplest of all cases a rule is obtained which
is generally accepted as a good one, namely that the arithmetic mean of sev-
eral observations of equal accuracy for one and the same quantity should be
considered the most accurate value. This implied that the probability of an
error x must be assumed proportional to an exponential expression of the
form e−hhxx, and that then just the same method which he found by other
considerations already a few years earlier, would become necessary in gen-
eral. This method, which afterwards, in particular since 1801, he had almost
daily opportunity to use in diverse astronomical computations, and which in
the meantime also Legendre had happened upon, now is in general use under
the name method of least squares.

It is actually quite shocking that in 1809 Gauss went as far as to claim that the use of the
arithmetic mean (minimum `2 norm) should be regarded as an axiom31

It has been customary certainly to regard as an axiom the hypothesis that if
any quantity has been determined by several direct observations, made under
the same circumstances and with equal care, the arithmetical mean of the
observed values affords the most probable value, if not rigorously, yet very
nearly at least, so that it is always most safe to adhere to it.

Gauss’s claims are questionable, for, even by 1809, it was well known that other estimators
were superior to the mean in certain circumstances. In particular, Laplace had shown in 1774 that
the median was the minimum–variance estimator for the double exponential (now known as the
Laplacian) distribution.32 It is certainly interesting to note that minimum `1 norm methods based
on weighted medians were in use well before the invention of minimum `2 norm methods.33,34 By
his own admission, Gauss proposed the normal (Gaussian) distribution out of pure mathematical
convenience rather than a statistical or experimental analysis some of random process. Therefore,
it should not be expected in reality that any process occurring in nature should be Gaussian. In
fact, an empirical investigation conducted by Bessel in 1818 showed that astronomical observation
data (as one example) was clearly non–Gaussian in nature.35 In spite of this, a great deal of
early estimation theory was rooted in minimum `2 norm techniques, justified mainly by several
elegant mathematical properties of the Gaussian distribution (namely, the Gauss–Markov theorem



1.2. STATE ESTIMATION 7

and the Central Limit Theorem)30 ¶. Robust approaches to estimation at the time amounted to
cleaning the data with some outlier rejection rule, and applying least squares to the remainder.29,36

Newcomb37 seems to have been the first to directly address thickly tailed observational data in
1886 by advocating the use of a mixture of Gaussian densities of differing variance for modeling
the underlying distribution.29,30,36

A rigorous approach to robust data processing was developed by means of Huber’s generalized
maximum likelihood estimation theory, first introduced in Ref. 38 in 1964. Huber proposed a
combined minimum `1 and `2 norm estimation technique, which exhibits robustness with respect
to deviations from the commonly assumed Gaussian probability density functions. In particular,
Huber considered a class of symmetric contaminated distributions in the neighborhood of the
Gaussian, which in some sense can be considered as a generalization of Newcomb’s Gaussian mixture
models. ‖ The Huber–based estimates are robust in the sense that they minimize the maximum
asymptotic estimation variance when applied to contaminated Gaussian densities. The Huber
technique was originally developed as a generalization of maximum likelihood estimation, applied
first to estimating the center of a probability distribution in Ref. 38 and further generalized to
multiple linear regression in Refs. 30,40 and 41.

The Kalman filter is a recursive minimum `2 norm technique and therefore exhibits sensitivity
to deviations in the true underlying error probability distributions.20 For this reason, the Huber
technique has been further extended to dynamic estimation problems. Boncelet and Dickinson42

first proposed to solve the robust filtering problem by means of the Huber technique at each mea-
surement point, by expressing the discrete–time filtering problem as a sequence of linear regression
problems. The authors do not consider the form of the state error covariance matrix update, nor do
they provide any simulation results to demonstrate the benefits of the proposed technique. Kovace-
vic, et al43 follow the work of Ref. 42 and develop a robust filter using the Huber technique applied
to a linear regression problem at each measurement update. Refs. 44–48 express the dynamic fil-
tering problem as a sequential linear regression to be solved by the Huber technique, and apply the
filter to underwater vehicle tracking, power system state estimation, speech processing, and space-
craft rendezvous navigation, respectively. The increase in computation due to the use of the Huber
technique was found in Ref. 48 to be small, specifically on the order of 10%. Ghandi and Mili49

develop a robust Huber-based Kalman filter using a pre-whitening filter for outlier identification.
It should be noted that Refs. 42–49 apply the Huber methodology to linearized filters.

Some other approaches to robust filtering include several ad-hoc techniques for dealing with
observation data that do not follow the assumed Gaussian distribution. In particular, that of
censoring the data such that any observation that differs from the predicted value by some set
threshold is discarded entirely. This approach to robust filtering has numerous disadvantages that
have been known for quite some time,50 notably that the non-continuous weighting function can
lead to non-robust covariance estimates.20,22 Another disadvantage of the censoring method is the
increase in estimation variance due to the fact that information contained within the residual is
discarded entirely and not processed according to a statistical procedure. Another ad-hoc technique

¶The blind adherence to Gaussianity was recently described by Hampel in Ref. 35 as being due to the mathe-

maticians because they believed it to be an empirical fact, and the users of statistics because the belived it to be a

mathematical theorem.
‖It is interesting to note that, in fact, Newcomb39 in 1912 proposed an estimator quite similar in form to that

proposed by Huber, but without rigorous justification (See Ref. 29).
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is to simply inflate the measurement error covariance matrix to account for the perturbing density
that leads to the non-Gaussianity. This method also suffers from several drawbacks, namely that
all measurements processed according to this rule receive decreased weights, not only those that
are to be considered as outliers. This reduction in overall weighting in turn leads to an increase in
the estimation variance.20

Other techniques for robust filtering have been proposed. Sorenson and Alspach51,52 advocate
a Bayesian approach in which the prior and posterior distributions are adaptively approximated
using Gaussian sums. The Gaussian sum methodology yields a robust estimation technique, but at
an extreme cost in computation. Specifically, the number of terms kept in the Gaussian sum grows
exponentially with time. The computation time can be reduced using filter banks and parallel
processing techniques,53–55 but the overall computational complexity across the entire processing
system remains substantial. Recent advances in both Gaussian56 and non–Gaussian57 particle
filtering techniques have done much to reduce the computational burden involving Gaussian sum
techniques, but they still may not feasible for real–time implementation in many applications.
Specifically, the Gaussian particle filter in Ref. 56 can cost between 15 to over 150 times the
computation of the Kalman filter filter in the example problems, depending on the number of
particles. Computational cost for the Gaussian sum particle filter in Ref. 57 are not provided but
are likely to be even greater.

Masreliez and Martin58 develop a robust filter by means of a Bayesian approach in which either
the state noise is Gaussian and the measurement noise is non-Gaussian, or the state noise is non-
Gaussian and the measurement noise is Gaussian. No consideration is made for the case when both
noise sources are non-Gaussian, which is allowed for under the Huber filtering approach. Tsai and
Kurz59 propose an adaptive polynomial approximation technique for robustification of the Kalman
filter. The approach is only applicable to estimation problems where the measurements are uncor-
related, and also only applies to cases where either the measurement or process noise is Gaussian.
Hewer et al60 propose a robust batch prefiltering technique, in which the raw measurement data
are smoothed prior to processing in a standard Kalman filter. Meinhold and Singpurwalla61 also
approach the robust Kalman filtering problem from a Bayesian perspective, but instead advocate
the use of Student–t distributions for approximating the prior and posterior densities, but the re-
sults hold only for scalar systems. Niehsen62 develops a maximum–likelihood filtering technique
based on a generalized Gaussian density.

1.2.2 Adaptive State Estimation

In addition to the form of the error probability density function (the Gaussian), the standard
Kalman filter also assumes that the statistics of the distribution, namely its mean and covariance,
are known quantities. If these assumed parameters of the distribution differ greatly from the true
parameters, then the filter can exhibit large errors and possibly divergence.63 This behavior is true
even if the true error distributions are Gaussian. The Huber–based formulations of the filtering
problem also make some assumptions regarding the distribution. As discussed in the previous
section, the Huber approach considers a class of contaminated densities in the neighborhood of the
Gaussian density. Essentially the Huber approach assumes that the statistics of the main Gaussian
density are known, as well as the ratio or percentage of the contamination (although the filter
makes no assumption of the nature of the contaminating density other than it be symmetric with
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finite variance).
Adaptive filtering techniques have been introduced in which the error statistics are estimated

along with the state in real time, in order to reduce the possibility of divergence and to improve
the filter performance in the presence of unknown statistics of the underlying noise distributions.
There are several approaches to the adaptive state estimation problem. An early review article by
Mehra64 divides these approaches into four basic techniques, namely Bayesian, maximum likelihood,
correlation matching, and covariance matching methods. In the Bayesian case and the maximum
likelihood case, the techniques become extremely complicated as the dimension of the measurement
noise and process noise covariances matrices increase. For this reason, the Bayesian and maximum
likelihood approaches can both be collapsed into a problem of estimating the Kalman gain matrix
directly, without estimating the measurement and process noise covariances matrices, which saves
on a great deal of the computational complexity inherent to the problem. This is approach, however,
is disadvantageous in general since it does not directly permit evaluation of sensor performance or
model uncertainty, which are parameters of interest in obtaining through the measurement and
process noise covariances.

The correlation matching technique operates by attempting to correlate the observed output
of a system to the unknown noise covariances. Methods can be developed using either the au-
tocorrelation of the output or that of the residuals. The approach using the output is generally
more restrictive, so in practice usually the residuals–based approach is preferred. In both cases, the
estimates of the process noise covariance are not unique, and moreover they can only be computed
in steady state conditions.

The covariance matching technique is an intuitively appealing approach in which the measure-
ment noise and process noise covariances are determined in such a way that the true residual
covariance matches the theoretically predicted covariance. The true residual covariance is approx-
imated in real time using the sample covariance, over some finite window of stored residuals. The
solution provided by Mehra64 leads to a non-unique estimate of the process noise covariance, as
with the correlation matching method. For this reason, the author states that, at the time, this
approach has exhibited best success when the process noise covariance is known and one only wishes
to solve for the measurement noise covariance. An example of this approach is given in Ref. 65.

The covariance matching technique is expanded by Myers and Tapley in Ref. 66. In this
approach, the authors are able to determine explicit solutions for both the process noise and the
measurement noise covariances by using empirical estimators based on the sample covariance for
a finite window of stored observations. The authors also introduce a fading memory weighting
parameter in which more recent observations receive more weight than the older observations. The
estimators are derived in batch form, but are manipulated into a recursive form suitable for real–
time implementation. The approach is not computationally intensive, requiring only 12% more cost
than the standard EKF in one sample problem.

Special cases of the Myers–Tapley method appear in the literature. For example, Maybeck et
al67 and Whitmore and Leondes68 propose a covariance matching method to estimate only the
process noise covariance matrix, assuming the measurement noise covariance is known. In contrast,
Hull et al69 devise a special case of the Myers–Tapley method in which the process noise covariance
is known and the measurement noise covariance is estimated in real time.

Few authors have developed combined robust and adaptive approaches to state estimation by
blending the Huber approach for robust estimation with the Myers–Tapley approach for adaptive
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estimation. In particular, Groutage et al70 approach the adaptive state estimation problem by
applying a robust processing technique based on Huber’s generalized maximum likelihood estima-
tion to develop a data smoother. This data smoother has a similar structure to that proposed by
Myers and Tapley. The robust smoother processes outputs from a standard Kalman filter in order
to estimate the process noise variance. The method has a major drawback in that it can only be
applied to scalar dynamic systems. Kirlin and Moghaddamjoo71 develop a similar approach as that
of Ref. 70, but include the estimation of unknown step inputs. The adaptive filter in Ref. 71 is
essentially the same as the Myers–Tapley method, with the difference that robust scale estimates
are used in place of the sample covariance. The approach is more general than that of Ref. 70 in
that both process noise and measurement noise covariances can be estimated. The drawback of
this approach is that the results are valid only for scalar linear systems.

Durovic and Kovacevic72 develop a methodology for estimating the measurement and process
nosie covariances based on robust principles, and include this procedure in a recursive dynamic
Huber filter with linear state dynamics and measurement equations. The approach is essentially a
merger of Ref. 42 and Ref. 70. The proposed filter adaptively estimates the noise statistics along
with the state in a structure similar to that proposed by Myers and Tapley in Ref. 66, however,
the approach is only applicable to scalar measurement and process noise cases. Zou et al73 develop
a robust adaptive signal processing technique based on Huber’s generalized maximum likelihood
estimation with robust adaptive scale estimates used in place of the sample covariance, but the
method is only applicable to scalar input and output noise. To date, combined robust and adaptive
approaches to the dynamic state estimation problem have only been developed for scalar systems.

1.2.3 Recent Advances in State Estimation

This section describes some recent advances in the area of state estimation, that are not necessarily
robust or adaptive in nature, and have been developed using the standard minimum `2 norm
approach to stochastic estimation problems.

One such technique is the Backward Smoothing Extended Kalman Filter (BSEKF),74 which is a
sort of combined filter, smoother, and batch estimator with sliding window of measurement data to
be processed. The BESKF essentially operates by relinearizing previous measurement data about
the state estimates from the most current observation that are propagated back to the individual
measurement points. These relinearized measurement points are then processed according to an
EKF–type minimum `2 norm technique. The simulation results presented in Ref. 74 show that
for a spacecraft attitude estimation problem with a reasonable measurement data frame size, the
computational requirements are over 150 times greater than the standard EKF. Based on this
computational burden, and given the non–robust minimum `2 norm nature of the method, there
does not appear to be any advantage in the use of the BSEKF over, for example, the Gaussian sum
particle filter presented in Ref. 57.

The Two–Step Optimal Estimator (TSOE) is a technique developed initially in Ref. 75 and
further developed in Refs. 76–78. The TSOE operates by dividing the filter update into two sub-
problems to be solved in sequence. The first subproblem is the standard linear Kalman filter,
which can be solved explicitly. The second subproblem treats the solution to the first subproblem
as “measurements” to be processed using an iterative nonlinear least squares method. The product
of this nonlinear second subproblem is then taken as the state estimate following the measurement
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update. The filter as originally developed75 suffered from occasional ill-conditioned covariances
matrices,77 which was remedied in Ref. 78. In Ref. 78, it was found that the TSOE costs about 2-3
times the computation of the EKF for the particular example problem, which is a reasonable penalty
for the nonlinear measurement update processing. However, the state dynamics are assumed to be
linear and the measurement error distribution is assumed to be Gaussian, which implies the TSOE
suffers from the same lack of robustness as the basic Kalman filter.

Another recent advancement is an estimator known as the divided difference filter (DDF), which
is one of several new estimation techniques that are collectively known as sigma–point Kalman
filters (SPKF). The first–order (DD1) and second–order (DD2) divided difference filters79,80 are
generalizations of the filter introduced by Schei81 and are two examples of SPKF–class estimators;
other examples can be found in Refs. 82–85. Like the basic Kalman filter, the SPKFs seek to
determine a state estimate that minimizes the `2–norm of the residuals. The SPKF technique differs
from the standard Kalman filter in the sense that the SPKFs do not linearize the dynamic system
for the propagation, but instead propagate a cluster of points centered around the current estimate
in order to form improved approximations of the conditional mean and covariance. Specifically,
the divided difference filters make use of multidimensional interpolation formulas to approximate
the nonlinear transformations. As a result of this approach, the filters do not require knowledge
or existence of the partial derivatives of the system dynamics and measurement equations. SPKFs
have the additional advantage over the standard Kalman filter in that they can easily be extended
to determine second–order solutions to the minimum `2 norm filtering problem, which increases the
estimation accuracy when the system and/or measurement equations are nonlinear. It is important
to note that the SPKFs use a minimum `2–norm measurement update and are therefore subject to
the same sensitivity to non-Gaussian measurement errors as the Kalman filter. An adaptive SPFK
filter that uses the Myers–Tapley covariance matching technique is proposed in Ref. 86.

The improvement found using a SPKF technique in favor of the Kalman filter can be shown in
the following simple example. Given some transformation z = f (x) where x is a random variable
with known distribution and f (x) is a nonlinear transformation, several methods can be used to
approximate the covariance of the transformed variable z. One technique to determine a highly
accurate approximate solution is a Monte-Carlo approach in which several thousand random choices
of x are generated, with each being propagated through the transformation f (x). Then the sample
covariance of the transformed points can be calculated. This approach gives a good approximation
to the true covariance of variable z but at a usually extreme cost due to the number of calculations
that must be made. On the other extreme, a crude approximation can be found by linearizing
the transformation and using basic matrix transforms to calculate the covariance. This approach,
which is essentially the Kalman filter strategy, works well for nearly linear systems but breaks down
in the presence of nonlinearity. A third approach is to use a Divided–Difference transformation in
which a select few points are propagated through the transformation to calculate the covariance.
In this approach, the transformed covariance is calculated more precisely than that found using a
linearization, but requires far fewer points than the Monte-Carlo method.

This trade off is illustrated in Fig. 1.6. In this example the initial variable x = [x1, x2] where x1

and x2 are mutually uncorrelated Gaussian random variables with unit variance. The transforma-
tion is given by z1 = x1 + x3

1 + x1x2, and z2 = x2 + x3
1 + x1x

3
2 + x1x2. The “true” covariance of the

transformed state z is determined using the Monte-Carlo method shown in Fig. 1.6(a)–(b). In this
case, 10,000 points are selected at random and propagated through the transformation in order to
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(c) Initial Kalman Filter Distribution
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(d) Transformed Kalman Filter Distribution
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(e) Initial Divided Difference Filter Distribution
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Figure 1.6: Illustration of Divided Difference Filter Transformation
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calculate the covariance. Next, a linearized mapping similar to the Kalman filter approach is used
to approximate the transformation, shown in Fig. 1.6(c)–(d). In this case the linear transformation
clearly does not match the “truth” covariance determined using the Monte-Carlo method. Lastly,
the Divided–Difference transformation is used to approximate the transformed covariance, shown in
Fig. 1.6(e)–(f). In this case, only 5 points are used in the propagation, and the resulting covariance
propagation is much more accurate than the linearized result. This example serves to illustrate the
benefits of the DDF over that of the EKF.

1.3 Attitude Estimation

Attitude estimation techniques often make use of quaternions for the representing the attitude, for
several reasons including globally nonsingular kinematics and linear state propagation as discussed
in the previous section.87,88 However, techniques making use of quaternions as state variables
are complicated by the quaternion constraint. The usual approach to satisfying the constraint is
to estimate an error quaternion at each measurement update and then form the true quaternion
estimate from the composition of the estimated error quaternion with the predicted quaternion
based on the state transition matrix. Assuming small errors allows for the first three components of
the quaternion to be estimated independently of the fourth component, which is essentially amounts
to a linearization using small angle assumptions. Recently, constrained filtering approaches have
been investigated by Zanetti and Bishop89 and Majji and Mortari90 (also see Ref. 91). These
approaches use a Lagrange multiplier formulation to solve a constrained filtering problem for all
four components of the error quaternion, rather than using a linearization in order to enforce the
quaternion norm constraint.

Other attitude parameterizations can be used, provided that a singularity avoidance method
is employed to provide a valid attitude description at any condition. One representation with
several attractive features are the Modified Rodrigues Parameters (MRP).92 The MRPs have several
interesting properties. Firstly, the MRPs constitute a minimal three parameter set of variables
that describe the orientation of a rigid body and are nonsingular for any rotation other than
multiples of 2π. Tsiotras and Longuski93 discuss that the MRPs can be viewed as the result of a
stereographic projection of the unit quaternion sphere onto a three-dimensional hyperplane. Schaub
and Junkins94 use this insight to formulate a family of attitude coordinates called the Stereographic
Orientation Parameters (SOP), which contain the MRPs as one particular solution of symmetric
SOPs. As part of this development it is noted that the MRPs are not unique, but rather there are
always two possible MRP sets that can describe a particular orientation. This alternate MRP is
known as the shadow MRP set. The shadow MRP set is singular for zero rotations, but is non-
singular for rotations of 2π. This property allows for the development of a singularity avoidance
method by switching to and from the shadow MRP set. For example, this switching procedure
allows for non–singular optimal attitude control problems to be formulated using a minimal three–
parameter family of MRPs as discussed in Ref. 95, in which an analytical mapping is developed for
the MRP costates.

The application of MRPs to attitude estimation was first explored in Ref. 96 without discussion
of singularity avoidance. Other examples make use of MRPs for representing attitude error rather
than the global attitude, preferring to keep track of the quaternion.97,98 In these cases the MRP
singularity is never encountered in practice but the additional computations to transform the MRP
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error estimate to the quaternion may not always be desirable. The two MRP sets are applied to
attitude estimation problems as a singularity avoidance procedure in Refs. 99–101. In these cases,
the transformation of the covariance matrix at the switching point has been ignored, although it is
not actually required in the particle filtering approach utilized in Ref. 99.

1.4 Contributions

The purpose of this dissertation is to develop robust adaptive state estimation techniques for non-
linear dynamic systems. The robust technique investigated in this research is based on Huber’s
generalized maximum likelihood estimation method, which is further generalized for dynamic filter-
ing problems. A new form of the state update equation for first and second–order divided–difference
filtering is found by recasting the filtering problem into a linear regression problem at each mea-
surement update and solving the resulting system of equations using Huber’s generalized maximum
likelihood theory. A new robust adaptive procedure for real–time tuning of the noise covariances
in the filter is found, as a modified version of the Myers–Tapley covariance matching approach.
This new adaptive technique makes use of multidimensional outlier detection methods to remove
spurious observations in the stored residual sequence in order to compute robust estimates of the
noise covariance matrices.

This dissertation also introduces a covariance transformation to accompany the shadow MRP
mapping for singularity avoidance in attitude estimation problems. The covariance transformation
is introduced for Kalman filtering problems by using a first–order analytical mapping of the MRP
covariance to and from the shadow MRP set. Subsequently, a divided difference covariance trans-
formation is introduced, suitable for the first and second–order divided difference filters introduced
in Refs. 79 and 80. This singularity avoidance technique offers some advantages for spacecraft
attitude estimation problems, not the least of which is the fact that a minimal three parameter set
of attitude variables can be used a globally nonsingular attitude description.

Lastly, the hybrid robust/adaptive nonlinear filtering methods introduced in this dissertation,
along with the MRP attitude formulation, are implemented for 6-DOF rendezvous navigation in
elliptical orbit. Relatively simple control laws based on feedback linearization are implemented,
with these various filtering approaches implemented as observers inside the control loop. These
navigation and control methods are tested in a non-Gaussian simulation setting in order to illustrate
performance robustness of the techniques in situations where typical assumptions inherent to the
navigation state estimation problem are violated.

1.5 Overview

The remainder of this document is divided as follows. Chapter 2 discusses the generalized maximum
likelihood estimation technique as it applies to static linear regression problems. Chapter 3 discusses
the application of the Huber–based estimation technique to dynamic state estimation problems,
including first and second–order filters and adaptive techniques in which the estimator can solve for
the measurement and process noise covariances in real time. Here, outlier identification techniques
are introduced to provide robustness to the adaptive filtering approach in the presence of non-
Gaussian errors. Chapter 4 develops the 6-DOF equations of motion, guidance and control methods,
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and sensor models suitable for the rendezvous problem in elliptical orbits. Chapter 5 provides
simulation results to illustrate the performance of the robust and adaptive filtering methods applied
to spacecraft attitude estimation (including comparisons between quaternion-based approaches and
the MRP-based approach advocated in this dissertation) and to the 6-DOF rendezvous problem in
an elliptical lunar orbit.



Chapter 2

Some Concepts in Regression Theory

2.1 Introduction

The purpose of this section is to review some basic concepts in regression theory. The estimation of
a static linear system will later be shown to be easily extended to discrete-time dynamic estimation.
In this section the linear regression model of the form

y = Hx + w (2.1)

is considered, where y represents the measurement data, x is the variable to be estimated, H rep-
resents the relationship between x and y and is usually called the design matrix, and w represents
the random measurement error.

2.2 Maximum Likelihood Estimation

2.2.1 Overview of the Method

The method of maximum likelihood estimation was introduced by Fisher102 in a series of papers
between 1912 and 1922, although some of the basic ideas had been touched on previously by
Bernoulli103 for semi-circular distributions, and Gauss 104 in connection with an effort to determine
the probability distribution that made the least squares estimate the most probable estimate.30,31

The maximum likelihood method proceeds as follows. Given a sample of m measurement data
y = [y1, · · · , ym]T , let the joint probability density function of the measurement data for a given
value of x be denoted by f(y|x). The likelihood function L is then defined as

L (x;y) = f(y|x) (2.2)

If the observation data are considered to be independent and identically distributed, then the joint
density function is the product of the marginal density functions.105 Also, the density function
reduces to a function only of the residuals between the estimate and the observation data, defined
as ζ = Hx− y. Under these assumptions, the likelihood function takes the form

L (x; y) =
m∏

i=1

f(ζ) (2.3)

16
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The most probable value of x (the mode of the joint distribution) is the value of x that maximizes
the likelihood function. In practice it is more convenient to minimize the natural logarithm of the
likelihood function. Such a value of x can be found by minimizing the cost function

J(x) = −
m∑

i=1

ln [f (ζi)] (2.4)

If the density function is differentiable, then the solution to the maximum likelihood regression
problem can be found from the from the implicit equation

m∑

i=1

φ(ζi)
∂ζi

∂x
= 0 (2.5)

where φ(ζi) = −f ′(ζi)/f(ζi). By defining the function ψ (ζi) = φ(ζi)/ζi, and the matrix Ψ =
diag [ψ (ζi)], the implicit equation can be written in matrix form as

HTΨ (Hx− y) = 0 (2.6)

Note that, in general, the implicit likelihood equation (2.6) is nonlinear, since the matrix Ψ is a
function of x. Solutions of the likelihood equation can be determined by the application standard
iterative techniques for nonlinear systems. The solution of the likelihood equation is the maximum
likelihood estimate for x and is denoted by x̂.

Once the solution of the maximum likelihood method is obtained, the covariance associated
with the estimate can be computed from22

P̂ =
E

(
φ2

)

[E (φ′)]2
(
HT H

)−1
(2.7)

It can be shown that estimators of this form are asymptotically normal with mean x̂ and
covariance P̂ . Further, the estimator is minimum variance and asymptotically unbiased, when
the true measurement error distribution follows the assumed distribution exactly, and when the
assumed distribution is unimodal. See Ref. 106 for further details.

2.2.2 Correlated Residuals

The development of the maximum likelihood estimation method made the assumption that the
residuals were independent and identically distributed. If in fact the residuals are correlated then
the maximum likelihood method is still applicable, but a transformation of variables is required.
If the measurement error covariance matrix is given by R, then the regression problem can be
transformed to uncorrelated coordinates (this transformation is sometimes known as stochastic
decoupling) by defining the new variables

w̃ = R−1/2w (2.8)

ỹ = R−1/2y (2.9)

H̃ = R−1/2H (2.10)

Upon defining the above quantities, the regression problem is transformed into

ỹ = H̃x + w̃ (2.11)
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In the transformed problem, the measurement errors have a covariance matrix given by R̃ = I,
as can be seen by expanding the expectation E

[
w̃w̃T

]
. This fact implies that the transformed

residuals are linearly independent and hence that the standard maximum likelihood method can
be applied to the transformed linear regression problem.

2.2.3 Consistency, Efficiency, and Bias

This section discusses several properties of estimators, namely consistency, efficiency, and bias.
These properties are important qualitative measures of estimator performance.

2.2.3.1 Consistency

An estimator x̂ is said to be consistent if the value of the estimator converges to the true value of the
parameter as the sample size goes toward infinity. Consistency can be expressed mathematically
as

lim
n→∞ x̂ = x (2.12)

where n is the number of observations processed by the estimator x̂.

2.2.3.2 Efficiency

A useful metric for comparing estimators is the relative efficiency, which is the ratio of the maximum
likelihood asymptotic variance and the asymptotic variance of the estimator. If the asymptotic
variance of the maximum likelihood estimator is denoted by P̂MLE , then the asymptotic relative
efficiency is defined as e = P̂MLE/P̂ , where P̂ is the asymptotic variance of the estimator in
question. Note that the best possible asymptotic relative efficiency is e = 1, since the maximum
likelihood estimator is asymptotically minimum variance at the particular distribution.

2.2.3.3 Bias

An estimator x̂ is said to be unbiased if B (x̂) = E (x̂) − x = 0. For a consistent estimator, the
mean–squared error, variance, and bias are related via

E
[
(x̂− x) (x̂− x)T

]
= E

[
(x̂−E (x̂)) (x̂− E (x̂))T

]
+ (E (x̂)− x) (E (x̂)− x)T

= P̂ + B (x̂) B (x̂)T (2.13)

Note that an unbiased estimate implies that the mean-squared error is equal to the variance.

2.2.4 Example: Maximum Likelihood Estimator for the Gaussian Distribution

As an example of maximum likelihood regression, consider the case when the error distributions
are Gaussian. Specifically, when the marginal density function takes the form

f (ζi) =
1√
2πσ

exp
[
− ζ2

i

2σ2

]
(2.14)
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Figure 2.1: Unit Variance Gaussian and Laplacian Distributions

where σ2 is the variance of the distribution. Note that the center of the density is assumed, without
loss of generality, to be located at the origin. With f(ζi) given by Eq. (2.14), the the function φ(ζi)
takes the form

φ (ζi) = −f ′(ζi)
f(ζi)

=
ζi

σ2
(2.15)

and the function ψ(ζi) is clearly ψ(ζi) = 1/σ2, which implies that Ψ =
(
1/σ2

)
I. The implicit

likelihood equation then becomes
HT (Hx− y) = 0 (2.16)

and can be solved to yield the estimate

x̂ =
(
HT H

)−1
HT y (2.17)

which is the familiar least squares or minimum `2 norm solution.
In the correlated multivariate Gaussian case, the maximum likelihood estimate can be written

x̂ =
(
H̃

T
H̃

)−1

H̃
T
y =

(
HT R−1H

)−1
HT R−1y (2.18)

which is the standard weighted least squares solution.

2.2.5 Example: Maximum Likelihood Estimator for the Laplacian Distribution

The maximum likelihood estimator for the Laplacian distribution can be found by first writing the
density function

f (ζi) =
1
2b

exp
[
−|ζi|

b

]
(2.19)

where b is a scale parameter, such that the variance of the distribution is 2b2. The function φ(ζi)
takes the form

φ(ζi) = −f ′(ζi)
f(ζi)

=
sgn (ζi)

b
(2.20)
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In the scalar estimation case, the implicit likelihood equation reduces to

n∑

i=1

sgn (ζi) = 0 (2.21)

which implies that the solution for x̂ is such that half the residuals are negative and half the
residuals are positive. This result is the sample median.

2.3 Generalized Maximum Likelihood Estimation

2.3.1 Overview of the Method

Huber in 196438 introduced a new class of estimation methods known as the generalized maximum
likelihood method, also known as the technique of M -estimation. In this method, one seeks to
minimize a function of the residuals of the form

J (x) =
m∑

i=1

ρ (ζi) (2.22)

where ρ is an arbitrary function. Note that the generalized maximum likelihood method reduces the
standard maximum likelihood method in the special case when ρ(ζi) = − ln [f (ζi)]. The solution
to the generalized maximum likelihood problem can be found from the implicit equation

m∑

i=1

φ(ζi)
∂ζi

∂x
= 0 (2.23)

where φ(ζi) = ρ′(ζi). By defining the function ψ (ζi) = φ(ζi)/ζi, and the matrix Ψ = diag [ψ (ζi)],
the implicit equation can be written in matrix form as

HTΨ (Hx− y) = 0 (2.24)

In generalized maximum likelihood estimation, the function ρ can be chosen to yield an estimator
x̂ with certain desirable properties. A desirable property of the solution of the generalized maximum
likelihood technique is that of robustness with respect to deviations from the assumed underlying
probability distribution.

Huber38 introduces a ρ function of the form

ρ (ζi) =





1
2ζ2

i for |ζi| < γ

γ|ζi| − 1
2γ2 for |ζi| ≥ γ

(2.25)

where γ is a tuning parameter. This ρ function is a blend of the minimum `1 and `2 norm func-
tions, and estimates derived from the use of this ρ function have desirable robustness properties.
Specifically, the estimates minimize the maximum asymptotic estimation variance when applied to
contaminated Gaussian densities. Note that as γ → 0, Eq. (2.25) approaches the `1 norm, which
is equivalent to the median in the scalar case, and that as γ → ∞, Eq. (2.25) approaches the `2

norm, which is equivalent to the mean in the scalar case. The ρ, φ, and ψ functions for the `1, `2,
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and Huber cases are shown in Fig. 2.2 for comparison. Note that the ρ, φ, and ψ functions are
sometimes known as the score, influence, and weight functions, respectively. The analytic forms of
the influence and weighting functions for the Huber estimator are provided as follows.

φ (ζi) =





1 for ζi ≥ γ

ζi for |ζi| < γ

−1 for ζi ≤ −γ

(2.26)

ψ (ζi) =





1 for |ζi| < γ

1/|ζi| for |ζi| ≥ γ

(2.27)

Huber38 shows that the ρ function given in Eq. (2.25) is asymptotically optimally robust in
the ε neighborhood of the Gaussian distribution. Explicitly, if the measurement errors follow a
perturbed Gaussian density function of the form

f(w) =
1− ε√

2π
exp

(
−w2

2

)
+ εg(w) (2.28)

where ε is a perturbing parameter and g(w) is an unknown perturbing density function, then the
M -estimation technique with ρ function given by Eq. (2.25) minimizes the maximum asymptotic
estimation variance in the ε neighborhood of the Gaussian distribution. Further, it can be shown
that estimators of this form are asymptotically normal and unbiased.107

2.3.2 Robustness Concepts and Measures

This section discusses some more formal definitions of robustness of an estimator with respect to
deviations from some assumed underlying probability distribution. These concepts of robustness
of an estimator to such deviations were developed by Hampel,108,109 and are known as qualitative
robustness, global robustness, and local robustness. Local robustness is most important for the
purposes of this dissertation, however a short review of all concepts is provided in the following
sections.

2.3.2.1 Qualitative Robustness

Qualitative robustness considers the impact to the estimator stemming from small deviations from
the assumptions under which it was developed. A statistical procedure that is qualitatively robust
implies that small changes from the assumed model produce small changes on the estimate, where
small changes in the assumed model include cases of large changes to a small subset of the data
(i.e. outliers) or small changes to all the data. A more precise mathematical definition is beyond
the scope of this dissertation but can be found in Refs. 108 and 109. However, it is clear from
discussion and examples presented in previous sections that the least–squares estimation technique
is not qualitatively robust.
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Figure 2.2: Comparison of ρ, φ, and ψ Functions

2.3.2.2 Global Robustness

The concept of global robustness relates to the level of perturbation that the estimator can handle
before breaking down completely. Quantitative measures related to the concept of global robustness
are known as the maximum bias curve and the breakdown point. For a contaminated distribution
of the form G = (1− ε) F +εH, where F is the assumed distribution and H is an unknown contam-
inating distribution, the maximum bias can be represented by bmax (ε) = sup|x̂ (G)− x̂ (F ) |. The
breakdown point describes the maximum value of ε for which the estimator has a finite maximum
bias and is denoted by ε∗. An estimator is not globally robust if ε∗ = 0. Clearly the highest possible
value of ε∗ is 1/2. Least–squares estimation is not globally robust since a single outlier can take
the bias to infinity.
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2.3.2.3 Local Robustness

The concept of local robustness concerns the effect of infinitesimal perturbations from the assumed
model on the bias and variance. A robustness measure related to the concept of local robustness
is known as the influence curve or influence function. The asymptotic influence function in a
one-dimensional case can be written as109

ν (ζ) =
∂x̂ (G)

∂ε

∣∣∣∣
ε=0

=
φ (ζ)

E [φ′ (ζ)]
(2.29)

where G = (1− ε) F +ε∆, ∆ is a unit mass distribution at the point x. Since E [φ′ (ζ)] is a constant,
the asymptotic influence function is proportional to φ (ζ).

The asymptotic bias is locally related to the influence function via b (ε) = |x̂ (G) − x̂ (F ) | ≈
ε|ν (ζi) |. Therefore a locally robust estimator must have a bounded influence function for the bias
to remain finite in the presence of contamination, which in turn implies that φ (ζi) be bounded for
all x. By this definition, the least–squares technique is not locally robust whereas the `1 and Huber
techniques are, as can be gathered from Fig. 2.2.

The influence function for a linear regression estimator is somewhat more complicated and takes
the form109

νi (ζi) =
φ (ζi)

E [φ′ (ζi)]
E

[(
∂ζi

∂x

)(
∂ζi

∂x

)T
]−1

∂ζi

∂x
(2.30)

In the linear regression case, it is important to note that the influence function can be bounded
by an appropriate function φ, but can be unbounded depending on (∂ζi/∂x). Outlying (∂ζi/∂x)
are known as leverage points and will be discussed in following sections. It is important to note
that linear regression estimators with bounded φ functions are indeed locally robust in the absence
of leverage points.

2.3.3 Example of a Gaussian Mixture

To illustrate the advantages of the generalized maximum likelihood techniques, consider for a
moment the scalar estimation problem found by setting H = 1. This problem corresponds with
estimating the center of a probability distribution given a sample of measurements. In this example,
the measurement data are drawn from a mixture of two Gaussian densities given by the function

f(w) =
1− ε√

2π
exp

(
−w2

2

)
+

ε√
2πa

exp
(
− w2

2a2

)
(2.31)

where a2 > 1 is the variance of the perturbing density. The mixture of Gaussian densities in
Eq. 2.31 was first introduced by Newcomb for the purpose of studying heavy–tailed measurement
data.29,37 Since H = 1, the estimation variance is a scalar quantity that simplifies from Eq. (2.7)
as P̂ = E

(
φ2

)
/ [E (φ′)]2. The `1, `2, and Huber estimation variances can be found by carrying

out the the necessary integrals. If the asymptotic variance of the `1, `2, and Huber estimators are
denoted by P̂`1 , P̂`2 , and P̂H , respectively, then the results are

P̂`1 =
π

2

(
1− ε +

ε

a

)−2
(2.32)

P̂`2 = 1 + ε
(
a2 − 1

)
(2.33)
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P̂H =

{
γ2 + (1− ε)

[
(
1− γ2

)
erf

(
γ√
2

)
−

√
2
π

γ exp
(−γ2

2

)]

+ε

[
(
a2 − γ2

)
erf

(
γ√
2a

)
−

√
2
π

aγ exp
(−γ2

2a2

)]}

×
[
(1− ε) erf

(
γ√
2

)
+ εerf

(
γ√
2a

)]−2

(2.34)
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Figure 2.3: Comparison of Asymptotic Relative Efficiencies for Gaussian Mixture

The asymptotic relative efficiencies are shown in Fig. 2.3(a) as a function of the perturbing
parameter ε for fixed a = 5 and γ = 1. The results for the entire range of ε is shown in Fig. 2.3(a)
where just the portion of ε between 0 and 0.03 is shown in Fig. 2.3(b). From the plots in Fig. 2.3
it is apparent that when the data are perfectly Gaussian, the `2 estimator is more efficient than
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either the `1 or the Huber estimator. This behavior is to be expected since the `2 estimator is the
maximum likelihood estimator at the Gaussian distribution. When the perturbing parameter ε is
increased, the `2 efficiency decreases sharply, but the `1 and Huber efficiencies show a more shallow
decrease than the `2 case. The Huber and `1 estimators rapidly show higher efficiencies than the
`2 case as ε increases away from zero. The `1 estimator becomes superior to the `2 estimator at
ε = 0.027 and the Huber estimator becomes superior to the `2 estimator at ε = 0.005. As ε increases
further, the distribution function again becomes nearly Gaussian for which the `2 estimator has the
minimum variance. This example illustrates the point that a small contamination of an assumed
Gaussian model by another distribution will lead to a rapid loss of efficiency of the least squares
method, whereas the Huber estimator exhibits a reduced sensitivity. In fact, the Huber efficiency
is nearly constant across a wide range of ε, illustrating the robustness of the technique.

Fig. 2.3(c) shows the density functions for the Gaussian mixture for ε = 0 (the perfectly Gaussian
case), for ε = 0.005 and for ε = 0.027. The density corresponding to ε = 0.005 can hardly be
distinguished from the perfectly Gaussian case. This plot serves to show that apparently extremely
small deviations from Gaussianity can have a large impact on the efficiency of the least squares
estimator.

The asymptotic relative efficiencies are shown in Fig. 2.3(d) as a function of the perturbing
parameter ε for fixed a = 5 and γ ranging between values of 1.0 and 2.0 in increments of 0.25.
These curves show how the asymptotic efficiency varies with the tuning parameter γ, in particular
the un-contaminated efficiency (ε = 0) and the behavior for moderate contamination levels. It is
interesting to note that the results for small values of γ begin with smaller efficiencies but become
superior for moderate values of ε.
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Figure 2.4: Comparison of Asymptotic Relative Efficiencies for Gaussian Mixture

The plots in Fig. 2.4 show the asymptotic relative efficiencies for the minimum `2 norm case
and for three cases of data censoring. Recall from the previous section that the data censoring
technique simply discards data points with large residuals, rather than processing them according
to a statistical technique such as that introduced by Huber. The censoring technique corresponds
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to a ψ function of the form ψ(ζi) = 1, for |ζi| < k and zero otherwise. The plots in Fig. 2.4 show the
resulting asymptotic relative efficiencies for the minimum `2 norm case and for the data censoring
with k = 1, 2, and 3.

Several important points can be gleaned from the plots in Fig. 2.4 along with comparison to
the results in Fig. 2.3. First, is that the data censoring technique with k = 3 maintains a high
efficiency for small values of the perturbing parameter, and the censoring results for k = 2 and
k = 1 are corresponding lower than as for k = 3. It is interesting to note that the efficiency for the
censoring technique with k = 2 becomes superior to that for k = 3 for ε > 0.02, and stays higher
until well beyond ε = 0.5. The efficiency for data censoring with k = 1 is always lower than the
other cases. It should also be noted that the results for all three censoring cases become lower than
that corresponding to the minimum `2 norm for ε > 0.6. It can be seen by way of comparison to
Fig. 2.3 that the data censoring results appear attractive only for very small contamination levels.
The Huber processing technique provides results with a higher efficiency than the data censoring
techniques for cases beyond this level.

2.3.4 Example of a Gaussian–Cauchy Mixture

As a slightly more extreme example, consider the Gaussian–Cauchy mixture given by the density

f(w) =
1− ε√

2π
exp

(
−w2

2

)
+

ε

π

1
1 + w2

(2.35)

Note that for any ε > 0, the variance of this distribution is infinite. Therefore, the asymptotic
variance of the `2 estimator applied to data drawn from this distribution is also infinite for ε > 0.
The `1 and Huber estimator asymptotic variances are finite and given by

P̂`1 =

[√
2
π

(1− ε) +
2ε

π

]−2

(2.36)

P̂H =

[
γ2 +

2γε

π
+ γ

√
2
π

(ε− 1) exp
(−γ2

2

)
− 2ε

π

(
1 + γ2

)
arctan γ+

(
1− γ2 − ε + γ2ε

)
erf

(
γ√
2

)]
·
[
2ε

π
arctan γ + (1− ε) erf

(
γ√
2

)]−2

(2.37)

The `1 and Huber asymptotic relative efficiencies are shown in Fig. 2.5. Here it is apparent
that the Huber estimation technique performs quite well, even when applied to a problem where
the random measurement errors have infinite variance.

2.3.5 Choice of Tuning Parameter

Figure 2.6(a) shows the influence of the choice of the tuning parameter γ on the asymptotic relative
efficiency of the Huber technique for the Gaussian case (ε = 0). The previous examples have shown
that for a penalty in asymptotic relative efficiency at the model distribution (the Gaussian case),
the relative efficiency is nearly constant in an ε neighborhood of the model distribution. The
efficiency can vary between one for γ = ∞ (the `2 case) and 2/π for γ = 0 (the `1 case). If
the value of the parameter ε is known (even though the density function g(w) of the perturbing
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(b) Optimal Tuning Parameter γ

Figure 2.6: Huber Gaussian Asymptotic Relative Efficiency and Optimal Tuning Pa-
rameter

distribution is unknown), then the best choice of γ has been determined by Huber.30,38 If ε = ε0
is the known perturbing parameter, then the optimal choice of γ, denoted by γ?, is given by the
implicit equation30,38

1
1− ε0

=
1
γ?

√
2
π

exp

[
−(γ?)2

2

]
+ erf

(
γ?

√
2

)
(2.38)

For a given value of ε, estimates computed using γ = γ? maximize the asymptotic relative efficiency
across the range of all possible values of γ.30,38

The optimal value of the tuning parameter γ? is shown as a function of ε0 in Fig. 2.6(b).
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When ε0 = 0 the best tuning parameter is infinite. This value is expected because when ε0 = 0, the
distribution is Gaussian and least squares estimation (γ = ∞) is minimum variance. As ε0 → 1, the
tuning parameter γ? → 0. This behavior suggests that the median is the best choice of estimation
technique when the noise density f(w) = g(w) is completely unknown. However, note that if
ε0 > 1/2 then the model distribution should no longer be taken as Gaussian since the perturbing
density is in fact greater in proportion.

If the perturbing parameter ε is unknown, then the choice of γ is typically motivated by a
desired variance at the model distribution. One common choice is γ = 1.345; for this value the
Huber filter will exhibit estimation error variances that are 5% larger than that of the least squares
method when the measurement error distributions are truly Gaussian. Generally any value of γ

between 1.0 and 2.0 is suggested.38

2.3.6 The Huber Estimator as a Maximum Likelihood Estimator
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Figure 2.7: Unit Variance Gaussian, Laplacian, and Least Favorable Distributions

This section poses the same question as did Gauss to the method of least squares: For what
probability distribution (if any) is the Huber estimator a maximum likelihood estimator? This
question can be answered by simply equating the Huber ρ function to the log-likelihood function,
as ρ (ζi) = − ln [f (ζi)]. This equation can be solved to yield

f (ζi) =
(

1− ε√
2π

)
exp [−ρ (ζi)] (2.39)

where ρ (ζi) is as found in Eq. (2.25) with γ is determined from Eq. (2.38) for a given ε (or the
opposite). The coefficient arises to ensure a unit total area under the density curve. This density
function is known as the least favorable density, and is shown in Fig. 2.7(a) for γ = 1, ε = 0.1428,
along with the unit variance Gaussian and Laplacian densities. A comparison of the theoretical
quantile–quantile plot is shown in Fig. 2.7(b). Clearly the least favorable density is something in
between the Gaussian and the Laplacian, which is in keeping with the fact that the Huber estimator
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is a blended minimum `2 and `1 norm technique, which are the maximum likelihood estimators for
the Gaussian and the Laplacian distribution, respectively.

2.4 Leverage Points

Although the Huber generalized maximum likelihood technique has been proven to exhibit robust-
ness with respect to deviations from an assumed Gaussian error model, an estimator designed using
this approach may still lack robustness in the multiple linear regression case due to leverage points,
as can be seen from the influence function of linear regression estimators shown in Eq. (2.30).
Leverage points are outliers in the design matrix rather than outliers in the measurement errors.
Outliers in the design matrix can artificially give extra weight to the associated measurements,
whose consequences can be catastrophic in the case that an outlier in the measurement error statis-
tics is combined with an outlier in the design matrix. This section discusses the design of estimators
that are robust with respect to leverage points.

In this section, two leverage point identification methods are introduced. The first method is
a classical technique that is based on the weighted Euclidean norm of the separation between a
possible outlier and the sample mean, known as Mahalanobis Distances, introduced in Ref. 114.
The weighting in this method is based on the sample covariance matrix. The second method,
known as Projection Statistics, is a robust approach in which the sample mean and covariance are
replaced by the sample median and the median absolute deviation, respectively. The latter method
is said to be robust because it is insensitive to clusters of outliers, unlike the classical method.

2.4.1 The Mahalanobis Distances

Given a cloud of m points in n dimensions represented by the vectors hi for i = 1, · · · ,m, the
Mahalanobis distances are defined as

Mi =
√(

hi − h̄
)T

C−1
(
hi − h̄

)
(2.40)

where h̄ is the sample mean and C is the sample covariance matrix, given by the equations

h̄ =
1
m

m∑

i=1

hi (2.41)

C =
1

m− 1

m∑

i=1

(
hi − h̄

) (
hi − h̄

)T (2.42)

respectively.
The Mahalanobis distances can also be expressed as the solution to a maximization problem of

the form115

Mi = max
‖v‖=1




∥∥∥hT
i v − 1

m

∑m
j=1 hT

j v
∥∥∥

√
1

m−1

∑m
k=1

(
hT

k v − 1
m

∑m
j=1 hT

j v
)2


 (2.43)

The Mahalanobis Distances represent the surface of an n-dimensional ellipsoid centered at the
sample mean. The square of the Mahalanobis distances follow a χ2 distribution with n degrees of
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freedom, assuming that the input data are Gaussian. Therefore, an outlier identification method
is to consider all points satisfying

Mi >
√

χ2
n,α (2.44)

to be outliers, where α is the probability that a value falls inside the ellipse (for example, α = 0.95).
While the Mahalanobis distances are simple to conceptualize and easy to compute, the method

suffers from sensitivity to clusters of outliers. This sensitivity is due to the masking effect, in
which it is possible to find groups of points with nonzero errors that can sum to produce very
small residuals. The masking effect in the Mahalanobis distances is related to the sensitivity of the
sample mean and covariance, which are not robust estimators. In the case of clustered outliers the
sample mean can be pulled toward their direction and away from the main cluster of data, which
serves also to increase the size of the sample covariance. In effect, these sensitivities serve to hide
or mask the cluster of outliers since their associated Mahalanobis distances will not be larger than
the main group of data. See Refs. 116 and 117 for further information on the masking effect and
sensitivity of the Mahalanobis distances.

Another common leverage point identification scheme is based on the diagonal elements of the
least-squares projection matrix. By substituting the least–squares estimate, x̂ =

(
HT H

)−1
HT y

into Eq. (2.1), then the fitted values of y are given by ŷ = Λy, where

Λ = H
(
HT H

)−1
HT (2.45)

is known as the projection matrix. It can be shown that the diagonal elements of the projection
matrix are directly proportional to the square of the Mahalanobis distance.117 The relationship of
the Mahalanobis distances to the least–squares projection matrix underscores the lack of robust-
ness of the Mahalanobis distances, since the least–squares method is itself non-robust. A robust
alternative for leverage point identification will be discussed next.

2.4.2 Projection Statistics

A robust approach to the problem of outlier identification is to replace the sample mean and
covariance in the equation for the Mahalanobis distances, Eq. 2.43, with the sample median and
the median absolute deviation from the median.115 These estimators of location and scale are
known to be robust with respect to outliers and therefore one may expect that the computation
of a Mahalanobis–like quantity based on these parameters will also be robust with respect to
outliers. These quantities are known as Projection Statistics, and are defined as the solution to the
maximization problem

Pi = max
‖v‖=1

[ ∥∥hT
i v −median

(
hT

j v
)∥∥

c ·median
(∥∥hT

k v −median
(
hT

j v
)∥∥)

]
(2.46)

where c = 1.4826 in the denominator is a correction factor to ensure unbiasedness.24 The maxi-
mization problem can be approximated by considering only the directions that correspond to the
unit vectors of the individual data points relative to the median of the point cloud. An algorithm
for computing the approximate projection statistics is given in Ref. 118 and is repeated below.

Given a matrix H =
[

h1 h2 · · · hm

]
, the projection statistics can be computed by means

of the following procedure.
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1. Let the vector m represent the median of the column space of the matrix H.

2. Compute the unit vectors of the individual data points relative to the median. These unit
vectors are given by vi = (hi −m) /‖hi −m‖ for each i = 1, · · · ,m.

3. Compute the standardized projections si = ‖zi − median (zj) ‖/mad(zi), where zi = hT vi

and mad(zi) = c ·median |zi −median (zj)|.

4. The projection statistics are then found from Pj = maxi (sij), where sij represents the jth

element of si.

Having computed the projection statistics, one could potentially use them directly for multidi-
mensional outlier detection. The projection statistics can also be used to compute robust distances,
Ri, which are defined as a weighted form of the Mahalanobis distances where the weights are a
function of the projection statistics. The robust distances are defined as116

Ri =
√(

hi − h̄r

)T Cr
−1

(
hi − h̄r

)
(2.47)

where h̄r and Cr are a robust mean and covariance matrix, calculated from

h̄r =

[
m∑

i=1

wihi

]
·
[

m∑

i=1

wi

]−1

(2.48)

Cr =

[
m∑

i=1

wi

(
hi − h̄r

) (
hi − h̄r

)T

]
·
[

m∑

i=1

wi

]−1

(2.49)

where wi are weights computed from the projection statistics by means of

wi = min
[

1,
(

χ2
n,α

Pi

)2
]

(2.50)

The robust distances calculated through the projection statistics algorithm grants an improve-
ment in robustness properties without a great increase in computation, depending on the dimen-
sionality of the system in question. In fact, the projection statistics method may be faster to
compute than the classical Mahalanobis distances in high dimensions, since the former does not re-
quire the inversion of the sample covariance matrix. The following example case serves to illustrate
the advantage of projection statistics in leverage point identification.

2.4.3 Simple Example of Leverage Point Identification

To illustrate the advantages of the projection statistics over the classical Mahalanobis distances,
consider a simple example from power system state estimation.119 In the following example, con-
sider the matrix H given by

H =
[

x1 1 −1 0 0 11 −1
y1 0 0 −1 1 −10 −1

]T

(2.51)
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Figure 2.8: Elements of H Matrix

Table 2.1: Comparison of Mi and Pi
(a) x1 = 1, y1 = −1

Point Mi Pi

1 0.26 0.67
2 1.21 0.67
3 0.76 1.35
4 0.71 0.67
5 1.40 1.35
6 2.25 13.49
7 1.54 1.35

(b) x1 = 10, y1 = −10

Point Mi Pi

1 1.47 7.16
2 1.30 0.67
3 0.84 0.75
4 0.75 0.67
5 1.45 1.35
6 1.56 7.57
7 1.53 1.35

The points in this matrix are shown in Fig. 2.8(a) for values x1 = 1, y1 = −1 and in Fig. 2.8(b)
for values x1 = 10, y1 = −10. In the first case, one leverage point exists whereas two leverage points
in a cluster appear in the second case. The Mahalanobis distances and the projection statistics
have been computed for each case and are shown in Table 2.1. If the typical 0.95 χ2 test is used
to identify leverage points, then any value of Mi or Pi that exceeds

(
χ2

2,0.95

)1/2 ≈ 2.45 should be
identified as a leverage point. In the example with x1 = 1, y1 = −1, point 6 is clearly identified
as a leverage point the projection statistics, but the value of the Mahalanobis distance associated
with this point does not exceed the threshold, although it is the largest value. In the case of
x1 = 10, y1 = −10, the situation is worsened because of the clustered leverage points. Here, the
projection statistics correctly identifies the leverage points but the Mahalanobis distances do not.
In fact, the Mahalanobis distances associated with the two leverage points are not any larger than
those associated with the other (non-leverage) points. This behavior is due to the masking effect
of clustered leverage points.
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2.5 Modified Generalized Maximum Likelihood Estimation

The method of generalized maximum likelihood estimation can be modified to provide robustness
against leverage points by means of re-weighting the residuals by functions of the measure of the
spread of the point cloud. Two methods are in common use for providing robustness against
leverage points in linear regression, which are discussed in the following sections.

2.5.1 Mallows Form

The modified generalized maximum likelihood technique with leverage point identification is said
to be in Mallows form120,121 if the cost function is written as

J (x) =
m∑

i=1

wiρ (ζi) (2.52)

where wi are the leverage point weights that are determined according to one of the previously
developed leverage point identification methods.

The solution of the Mallows modified generalized maximum likelihood technique can be found
by solving for the minimum of the cost function by means of the equation

m∑

i=1

wiφ (ζi)
∂ζi

∂x
= 0 (2.53)

where φ(ζi) = ρ′(ζi). By defining the function ψ (ζi) = wiφ(ζi)/ζi, and the matrix Ψ = diag [ψ (ζi)],
the implicit equation can be written in matrix form as

HTΨ (Hx− y) = 0 (2.54)

which is in the same form as Eq. (2.24).
The influence function of a Mallows estimator is given by109

νi (ζi) =
wiφ (ζi)

E [wiφ′ (ζi)]
E

[(
∂ζi

∂x

)(
∂ζi

∂x

)T
]−1

∂ζi

∂x
(2.55)

The Mallows form of the modified generalized maximum likelihood estimation technique, advo-
cated in Refs. 120–123, successfully reduces the weights of leverage points in the linear regression
problem. However, this reduced weighting occurs without concern for the magnitude of the resid-
ual. Therefore, leverage points with a small residual receive the same reduced weighting as leverage
points with a large residual. Generally, leverage points with small residual are termed good lever-
age points whereas those with large residual are termed bad leverage points. In the Mallows form,
both good and bad leverage points receive the same weights, when, in fact, it is desirable that the
good leverage points receive their full weight since they can be pivotal in determining the fit. The
next technique avoids this problem using a different form of the modified generalized maximum
likelihood estimation technique.
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2.5.2 Schweppe Form

The modified generalized maximum likelihood technique with leverage point identification is said
to be in Schweppe form124 if the cost function is written as

J (x) =
m∑

i=1

w2
i ρ

(
ζi

wi

)
(2.56)

where wi are the leverage point weights.
The solution of the Schweppe modified generalized maximum likelihood technique can be found

by solving for the minimum of the cost function by means of the equation
m∑

i=1

wiφ

(
ζi

wi

)
∂ζi

∂x
= 0 (2.57)

where φ(ζi) = ρ′(ζi). By defining the function ψ (ζi/wi) = wiφ(ζi/wi)/ζi, and the matrix Ψ =
diag [ψ (ζi/wi)], the implicit equation can be written in matrix form as

HTΨ (Hx− y) = 0 (2.58)

which is in the same form as Eq. (2.24) and Eq. (2.54).
The influence function of a Schweppe estimator is given by109

νi (ζi) =
wiφ (ζi/wi)

E
[
w2

i φ
′ (ζi/wi)

]E

[(
∂ζi

∂x

)(
∂ζi

∂x

)T
]−1

∂ζi

∂x
(2.59)

The Schweppe form of the modified generalized maximum likelihood estimation technique, ad-
vocated in Refs. 41, 119, 124–126, reduces the weight of leverage points, but only those with large
residuals. If the ρ function is quadratic for small residuals, as is the case with the Huber ρ func-
tion, then the φ function is linear which in turn implies that the weighting function cancels out in
the numerator and denominator of Eq. (2.57). Therefore the data point in question receives the
full weight irrespective of its leverage.119 This cancellation implies that Schweppe estimators only
reject bad leverage points.

2.5.3 Weighting Function

In either the Mallows or Schweppe form of the modified generalized maximum likelihood technique,
the weighting function for leverage point identification can be written using either the Mahalanobis
distances or the projection statistics. In the case of the Mahalanobis distances, the weighting
function takes the form

wi = min
[

1,
(
χ2

n,α/M2
i

) ]
(2.60)

In the case of projection statistics, the weighting function is

wi = min
[

1,
(
χ2

n,α/P2
i

) ]
(2.61)

It is worth noting that very few authors working on estimation problems have considered the
use of the projection statistics for leverage point identification since the introduction in Ref. 115
in 1982. The projections statistics for leverage point identification in regression problems have
appeared in Refs. 115–117,119,126,127.
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2.6 Numerical Solution of the Implicit Likelihood Equation

This section discusses a numerical technique of solving the implicit equation resulting from appli-
cation of the generalized maximum likelihood method. Equation (2.24) can be expanded to yield
HTΨHx = HTΨy, which can be solved for x to give x =

(
HTΨH

)−1
HTΨy. Since the matrix

Ψ depends on the residuals ζi, and hence on x, an iterative solution to Eq. (2.24) is expressed as

x(j+1) =
(
HTΨ(j)H

)−1
HTΨ(j)y (2.62)

where the superscript (j) refers to the iteration index. The method can be initialized by using the
least–squares solution x(0) =

(
HT H

)−1
HT y. The converged value from the iterative procedure is

taken as the state estimate, x̂. This technique is known as iteratively reweighted least–squares,110

and is generally attributed to Beaton and Tukey.111 This iteration will converge if the ψ function
is nonincreasing25 (for ζi > 0), which is the case when using the Huber ρ function in Eq. 2.25.
The algorithm can be iterated until convergence or can be carried out through only one fixed
iteration step, as discussed by Bickel,112 and Rousseeuw and Leroy,24 an approach that captures
the robustness properties of the estimator and also saves on the computational costs associated
with the iterative solution.

When the measurement errors are correlated, they can be transformed to uncorrelated measure-
ments with unit variance by means of the transformations given in Sec. 2.2. The resulting solution
by means of the iteratively reweighted algorithm takes the form

x(j+1) =
(
HT R−1/2Ψ(j)R−1/2H

)−1
HT R−1/2Ψ(j)R−1/2y (2.63)

Note that as γ → ∞, the Huber filtering problem reduces to the least squares estimator.
Specifically, when γ →∞, the matrix Ψ → I, and Eq. (2.24) can be solved exactly in one iteration
step and is equal to the least squares solution.

2.7 Examples in Linear Regression

2.7.1 A Simple Example Without Leverage Points

This section discusses the application of the robust Huber technique to a sample problem drawn
from a simple linear regression involving fitting a line through data points. The Huber technique
is used to estimate the slope and intercept of the line. Fig. 2.9 shows the data points, the least
squares data fit, and four iterations of the Huber estimator for γ = 1.345.

In this case, the data points are shown with black circles, the least squares solution is shown
with the blue line, and the first though fourth iterates of the Huber technique are shown with cyan,
red, magenta, and green lines, respectively. In this problem, it is clear that the Huber technique
effectively reduces the effect of the outlier, and also the convergence of the iteratively re-weighted
least squares technique is clearly demonstrated. It should be noted that this example problem did
not include leverage points, which is the subject of the next example problem.
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Figure 2.9: Data Points and Regression Results for Example Problem

Table 2.2: Linear Regression Solution
Iteration Slope Intercept
Least Squares 0.5455 1.3636
1st Huber Iterate 0.8420 0.4413
2nd Huber Iterate 0.9285 0.2144
3rd Huber Iterate 0.9331 0.2007
4th Huber Iterate 0.9333 0.2000

2.7.2 Example With a Single Bad Leverage Point

This section discusses a similar example problem, but now adds a single leverage point, which
is simultaneously an outlier. The least squares, Huber estimator, Mallows estimator using the
Mahalanobis distances for leverage point identification, Mallows estimator using the projection
statistics for leverage point identification, the Schweppe estimator with both Mahalanobis distances
and projection statistics for leverage point identification are implemented for this problem. The
results of the estimation problem are shown in Fig. 2.10. In this case, the data points are shown
with black circles, the least squares solution is shown with the blue line, the Mallows–Mahalanobis
distance solution is shown with the cyan line, the Schweppe–Mahalanobis distance solution is shown
with the dashed cyan line, the Mallows–Projection statistics solution is shown with the magenta
line, and the Schweppe–Projection statistics solution is shown with the dashed magenta line. The
slope, intercept, and iteration count is shown in Table 2.3.
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Figure 2.10: Data Points and Regression Results for Example Problem With Single
Bad Leverage Point

Table 2.3: Linear Regression Solution With Single Bad Leverage Point
Method Slope Intercept Iterations
Least Squares -0.0029 4.1096 0
Huber technique 0.7515 1.0182 28
Mallows–Mahalanobis distances 0.8005 0.8175 15
Schweppe–Mahalanobis distance 0.8398 0.6563 12
Mallows–Projection statistics 0.9262 0.3023 8
Schweppe–Projection statistics 0.9781 0.0897 6

From these results it is apparent that the Schweppe form of the modified generalized maximum
likelihood technique is superior to the Mallows form, and also that the use of projection statistics
is superior to that of the Mahalanobis distances for the weighting functions used in leverage point
identification. Interestingly, the number of iterations required of the estimator reduces as the
robustness of the estimator increases, using the same convergence tolerance on each particular case
(explicitly, the change in slope and intercept are both less than 10−5). The next section discusses
a similar problem with multiple leverage points.

2.7.3 Examples With Multiple Leverage Points

This section discusses two example problems involving multiple leverage points in the data for the
linear regression problem. The first example involves data with both a good and bad leverage point,
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Table 2.4: Linear Regression Solution With One Good and One Bad Leverage Point
Method Slope Intercept Iterations
Least Squares 0.4275 2.4011 0
Huber technique 0.9563 0.1834 10
Mallows–Mahalanobis distances 0.9563 0.1834 10
Schweppe–Mahalanobis distance 0.9563 0.1834 10
Mallows–Projection statistics 0.9705 0.1219 6
Schweppe–Projection statistics 0.9908 0.0381 5

whereas the second example involves data with two bad leverage points.

2.7.3.1 Example with Good and Bad Leverage Points
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Figure 2.11: Data Points and Regression Results for Example Problem With Good
and Bad Leverage Points

The results of a sample problem with one good and one bad leverage point are shown in
Fig. 2.11. The slope, intercept, and iteration count for this problem is shown in Table 2.4, for
the same group of estimators investigated in the previous example involving one leverage point.
These results illustrate that the estimators based on the Mahalanobis distances for leverage point
identification falls prey to the clustered leverage points in this problem, even though one point is
good and the other is bad, while the estimators based on the projection statistics can successfully
handle the clustered leverage points. Clearly, the results using the Huber estimator alone without
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Figure 2.12: Data Points and Regression Results for Example Problem With Two Bad
Leverage Points

Table 2.5: Linear Regression Solution With Two Bad Leverage Points
Method Slope Intercept Iterations
Least Squares -0.0900 4.4553 0
Huber technique 0.1610 3.4811 12
Mallows–Mahalanobis distances 0.1610 3.4811 12
Schweppe–Mahalanobis distance 0.1610 3.4811 12
Mallows–Projection statistics 0.8404 0.6523 13
Schweppe–Projection statistics 0.9473 0.2153 7

any leverage point identification are identical to those using the Mahalanobis distances in both
the Mallows and Schweppe form, indicated that the Mahalanobis distance–based leverage point
identification method failed to successfully pick out the leverage points in this problem. This
problem also illustrates that the performance of the Mallows estimator is degraded compared with
that of the Schweppe estimator, since the latter can distinguish between good and bad leverage
points.

2.7.3.2 Example with Two Bad Leverage Points

The results of a sample problem with two bad leverage points are shown in Fig. 2.12. The slope,
intercept, and iteration count for this problem is shown in Table 2.5. These results illustrate
that the estimators based on the Mahalanobis distances for leverage point identification falls prey
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to the clustered leverage points in this problem, whereas the estimators based on the projection
statistics can successfully handle the clustered leverage points. As in the previous example, the
results using the Huber estimator alone without any leverage point identification are identical to
those using the Mahalanobis distances in both the Mallows and Schweppe form, indicating that the
Mahalanobis distance–based leverage point identification method failed to successfully pick out the
leverage points in this problem. This problem also illustrates that the performance of the Mallows
estimator is degraded compared with that of the Schweppe estimator even for cases with multiple
bad leverage points.



Chapter 3

Dynamic State Estimation

3.1 Introduction

This chapter discusses the problem of estimating the state of the system of ordinary differential
equations

ẋ = f (x,u, v, t) (3.1)

where x is the state vector, u are the deterministic inputs to the system, and v are random inputs
to the system. The mean value of v is v̄ = 0 and its covariance is Q. It is assumed that the state
of the system can be measured at discrete times in the form of a model given as

yk = h (xk) + wk (3.2)

where the subscript k refers to the value of the parameter at time tk, yk is the measurement at
time tk, and wk is the measurement noise at time tk. The mean value of wk is w̄k = 0 and its
covariance is Rk.

3.2 Robust Extended Kalman Filter

The Kalman filter is a well-known technique for estimating the state of systems of differential equa-
tions described in the form provided in Eqs. (3.1–3.2). The filter is a predictor–corrector approach
in which the state predictions are computed by numerical integration of the dynamic model, and
state corrections are obtained by a weighted linear combination of the predicted measurements and
the actual measurements. In this approach, the state and covariance predictions are given as

x̄k = x̂k−1 +
∫ tk

tk−1

f (x, u, v̄, t) dt (3.3)

P̄ k = P̂ k−1 +
∫ tk

tk−1

[
A(x̂(t), t)P̄ (t) + P̄ (t)TA(x̂(t), t)T + B(x̂(t), t)Q(t)B(x̂(t), t)T

]
dt(3.4)

where x̄k is the predicted value of the state at time tk, based on the estimated value of the state
at time tk−1, which is x̂k−1. Similarly, P̄ k is the predicted state error covariance matrix at time tk

41
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and P̂ k−1 is the estimated state error covariance matrix and time tk−1. Also, the matrices A and
B are given by

A(t) =
∂f

∂x

∣∣∣∣
x=x̄(t),v=v̄

(3.5)

B(t) =
∂f

∂v

∣∣∣∣
x=x̄(t),v=v̄

(3.6)

The discrete–time covariance propagation can also be written as

P̄ k+1 = ΦkP̂ kΦT
k + Q̃k (3.7)

where Φk is the state transition matrix and Q̃k is the process noise covariance matrix. Both of
these quantities can be determined jointly through the relation130,141

exp
([ −A BQBT

0 AT

]
δt

)
=

[
X11 X12

0 X22

]
=

[
X11 Φ−1

k Q̃k

0 ΦT
k

]
(3.8)

leading to the result Φk = XT
22 and Q̃k = ΦkX12, where δt = tk+1 − tk. Note that these

relationships and the use of the state transition matrix are approximations that are true only when
the state dynamics matrix is constant. These approximations generally work well when the process
is slowly varying and/or the sampling rate is sufficiently high for a particular problem.

The state correction obtained at the time of the measurement update can be expressed as a
linear regression problem between the predicted state and the observed quantity.128 If the true
value of the state is written as xk and the state prediction error is written as δk = xk − x̄k, then
the state prediction can be expressed as x̄k = xk−δk. By approximating the measurement equation
as

yk ≈ h (x̄k) + Hk (xk − x̄k) (3.9)

the regression problem then takes the form
{

yk − h (x̄k) + Hkx̄k

x̄k

}
=

[
Hk

I

]
xk +

{
wk

−δk

}
(3.10)

where the matrix Hk is defined as

Hk =
∂h

∂x

∣∣∣∣
x=x̄k,w=w̄

(3.11)

By defining the quantities

T k =
[

Rk 0
0 P̄ k

]
(3.12)

zk = T
−1/2
k

{
yk − h (x̄k) + Hkx̄k

x̄k

}
(3.13)

Gk = T
−1/2
k

[
Hk

I

]
(3.14)

ξk = T
−1/2
k

{
wk

−δk

}
(3.15)
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the linear regression problem is transformed to

zk = Gkxk + ξk (3.16)

Note that Eq. (3.16) is in precisely the same form as the linear regression problem given in
Eq.(2.11), which can be solved using the robust Huber generalized maximum–likelihood technique.
Recall from the previous section that the solution of the Huber estimation problem can be written
as the converged solution of the iterative equation

x
(j+1)
k =

(
GT

k Ψ(j)Gk

)−1
GT

k Ψ(j)zk (3.17)

where the superscript (j) refers to the iteration index. The method can be initialized by using
the least–squares (Kalman filter) solution x

(0)
k =

(
GT

k Gk

)−1
GT

k zk. The converged value from the
iterative procedure is taken as the corrected state estimate following a measurement update, x̂k.

Finally, the estimated state estimate error covariance matrix following the measurement update
is computed from

P̂ k =
(
GT

k ΨGk

)−1
(3.18)

using the final value of Ψ corresponding to the converged state estimate.
Due to the particular structure of the matrix Gk, the discrete time dynamic state estimation

technique can be simplified considerably from the static state estimation technique by application
of the matrix inversion lemma.129 It is first useful to decompose the Ψ matrix into two portions
Ψx and Ψy corresponding to the state prediction and measurement prediction residuals so that

Ψ =
[

Ψy 0
0 Ψx

]
(3.19)

The state update equation can be rewritten as

x̂k =
(
GT

k ΨGk

)−1
GT

k Ψzk =
(
G̃

T

k G̃k

)−1
G̃kz̃k (3.20)

where G̃k = Ψ1/2Gk and z̃k = Ψ1/2zk. It follows from Eq. 3.14 that

G̃k = Ψ1/2T
−1/2
k

[
Hk

I

]

=

[
Ψ1/2

y 0
0 Ψ1/2

x

][
R
−1/2
k 0
0 P̄

−1/2
k

][
Hk

I

]

=

[
Ψ1/2

y R
−1/2
k Hk

Ψ1/2
x P̄

−1/2
k

]
(3.21)

Then,

G̃
T

k G̃k =
[

HT
k

(
R
−1/2
k

)T
Ψ1/2

y

(
P̄
−1/2
k

)T
Ψ1/2

x

][
Ψ1/2

y R
−1/2
k Hk

Ψ1/2
x P̄

−1/2
k

]

= HT
k

(
R
−1/2
k

)T
ΨyR

−1/2
k Hk +

(
P̄
−1/2
k

)T
ΨxP̄

−1/2
k

= HT
k R̃

−1

k Hk + ˜̄P−1

k (3.22)
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where R̃k = R
1/2
k Ψ−1

y

(
R

1/2
k

)T
and ˜̄P k = P̄

1/2
k Ψ−1

x

(
P̄

1/2
k

)T
. Since P̂

−1
k = G̃

T

k G̃k, then the
covariance expansion reduces to

P̂ k =
(

HT
k R̃

−1

k Hk + ˜̄P−1

k

)−1

(3.23)

Making use of the matrix inversion lemma, Eq. (3.23) can be reduced to∗

P̂ k = ˜̄P k − ˜̄P kH
T
k

(
Hk

˜̄P kH
T
k + R̃k

)−1
Hk

˜̄P k

=
[
I − ˜̄P kH

T
k

(
Hk

˜̄P kH
T
k + R̃k

)−1
Hk

]
˜̄P k

= [I −KkHk] ˜̄P k (3.24)

where Kk = ˜̄P kH
T
k

(
Hk

˜̄P kH
T
k + R̃k

)−1
is the reweighted Kalman gain matrix.

Next, the state update equation can be manipulated to form

x̂k =
(
G̃

T

k G̃k

)−1
G̃kz̃k

= [I −KkHk] ˜̄P k

[
HT

k

(
R̃
−1/2

k

)T
(

˜̄P−1/2

k

)T ]

×

 R̃

−1/2

k 0

0 ˜̄P−1/2

k




{
yk − h (x̄k) + Hkx̄k

x̄k

}

= [I −KkHk] ˜̄P k

{
HT

k R̃
−1

k [yk − h (x̄k) + Hkx̄k] + ˜̄P−1

k x̄k

}

= [I −KkHk] ˜̄P kH
T
k R̃

−1

k [yk − h (x̄k) + Hkx̄k] + [I −KkHk] x̄k (3.25)

The term [I −KkHk] ˜̄P kH
T
k R̃

−1

k can be further simplified as

[I −KkHk] ˜̄P kH
T
k R̃

−1

k = ˜̄P kH
T
k R̃

−1

k −KkHk
˜̄P kH

T
k R̃

−1

k

= Kk

(
Hk

˜̄P kH
T
k + R̃k

)
R̃
−1

k −KkHk
˜̄P kH

T
k R̃

−1

k

= Kk

[(
Hk

˜̄P kH
T
k + R̃k

)
R̃
−1

k −Hk
˜̄P kH

T
k R̃

−1

k

]

= Kk

[
Hk

˜̄P kH
T
k R̃

−1

k + I −Hk
˜̄P kH

T
k R̃

−1

k

]

= Kk (3.26)

Substituting this result into Eq. (3.25) yields

x̂k = Kk [yk − h (x̄k) + Hkx̄k] + [I −KkHk] x̄k

= Kk [yk − h (x̄k)] + KkHkx̄k + x̄k −KkHkx̄k

= x̄k + Kk [yk − h (x̄k)] (3.27)
∗Recall that the matrix inversion lemma provides the relation (A + BCD)−1 = A−1 −

A−1B (DA−1B + C−1
)−1 DA−1 where A and C are invertible and all matrices have suitable dimensions.

To apply the lemma to Eq. (3.23), let A = ˜̄P−1

k , B = HT
k , C = R̃

−1

k , and D = Hk.
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Substituting the definitions R̃k = R
1/2
k Ψ−1

y

(
R

1/2
k

)T
and ˜̄P k = P̄

1/2
k Ψ−1

x

(
P̄

1/2
k

)T
back into

equations for the state and covariance updates results in the iteratively reweighted Kalman filter
algorithm given by

x̂
(j+1)
k = x̄k + K

(j)
k [yk − h (x̄k)] (3.28)

P̂ k = (I−KkHk) P̄
1/2
k Ψ−1

x P̄
1/2
k (3.29)

where
Kk = P̄

1/2
k Ψ−1

x P̄
1/2
k HT

k

(
HkP̄

1/2
k Ψ−1

x P̄
1/2
k HT

k + R
1/2
k Ψ−1

y R
1/2
k

)−1
(3.30)

Note that as the tuning parameter γ →∞, the matrix Ψ → I and the Huber recursive estima-
tion technique reduces to the familiar Kalman filter solution.

3.3 Robust Divided Difference Filtering

The Divided Difference Filter is one of several new estimation techniques that are collectively known
as Sigma–Point Kalman Filters (SPKF). Like the basic Kalman filter, the SPKFs seek to determine
a state estimate that minimizes the `2–norm of the residuals. The SPKF technique differs from
the basic Kalman filter in that the estimate and covariance propagation prior to determining the
state estimate at the time of the measurement update. The divided difference filter arises from an
alternate approach to the nonlinear state estimation and filtering problem than the EKF. Whereas
the EKF is based on first–order Taylor series approximations, the divided difference filter relies on
multidimensional interpolation formulas to approximate the nonlinear transformations. As a result
of this approach, the filter does not require knowledge or existence of the partial derivatives of the
system dynamics and measurement equations.

The First–Order (DD1) and Second–Order (DD2) Divided Difference Filters79,80 are general-
izations of the filter introduced by Schei,81 and are two examples of SPKF–class estimators; other
examples can be found in Refs. 82–84. This section describes the DD1 and DD2 filters and shows
how the measurement update equation can be modified to provide robustness against deviations
from the assumed Gaussian error model by use of the Huber technique. The filter summary closely
follows that given in Refs. 79 and 80. The filter equations rely upon a discrete representation of
the system dynamics, in which the differential equation in Eq. (3.1) is replaced with a difference
equation of the form

xk+1 = F (xk, vk, tk) (3.31)

and the measurement equation is given by

yk = G (xk, wk, tk) (3.32)

where yk is the measurement at time tk, and wk is the measurement noise at time tk. As in Sec. 3.2,
the mean value of wk is w̄k = 0 and its covariance is the matrix Rk.

The following square-root decompositions of the predicted state covariance, P̄ k, corrected state
covariance, P̂ k, process noise covariance, Qk, and measurement noise covariance, Rk, are defined
as

P̂ k = Ŝxk
Ŝ

T
xk

(3.33)
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P̄ k = S̄xk
S̄

T
xk

(3.34)

Qk = Svk
ST

vk
(3.35)

Rk = Swk
ST

wk
(3.36)

Also, the jth column of s̄xk
is referred to as s̄xkj

; likewise for the other matrices.

3.3.1 Overview of the DD1 Filter

The DD1 filter makes use of first–order divided differences to approximate the system and measure-
ment dynamics rather than the first–order Taylor series expansions used in the EKF. The following
matrices of first–order divided differences are defined as

S′xx̂ki,j
=

1
2c

[
F i

(
x̂ + cŝxj , v̄k, tk

)− F i

(
x̂k − cŝxj , v̄k, tk

)]
(3.37)

S′xvki,j
=

1
2c

[
F i

(
x̂k, v̄k + csvj , tk

)− F i

(
x̂k, v̄k − csvj , tk

)]
(3.38)

S′yx̄ki,j
=

1
2c

[
Gi

(
x̄k + cs̄xj , w̄k, tk

)−Gi

(
x̄k − cs̄xj , w̄k, tk

)]
(3.39)

S′ywki,j
=

1
2c

[
Gi

(
x̄k, w̄k + cswj , tk

)−Gi

(
x̄k, w̄k − cswj , tk

)]
(3.40)

where c the divided–difference perturbing parameter.
The state, state root–covariance, measurement, and measurement root-covariance predictions

are given by

x̄k+1 = F (x̂k, v̄k, tk) (3.41)

S̄xk+1
= H ([

S′xx̂k
S′xvk

])
(3.42)

ȳk = G (x̄k, w̄k, tk) (3.43)

Syk
= H ([

S′yx̄k
S′ywk

])
(3.44)

where H(·) represents a Householder transformation of the argument matrix.79,80

The state and root-covariance measurement update equations are given by

x̂k = x̄k + Kk (yk − ȳk) (3.45)

Ŝxk
= H ([

S̄xk
−KkS

′
yxk

KkS
′
ywk

])
(3.46)

where Kk = S̄xk
S′Tyx̄k

(
Syk

ST
yk

)−1 is the Kalman gain matrix.
The form of the state root-covariance update can be derived by first defining P yk

= Syk
ST

yk
=

S′yx̄k
S′Tyx̄k

+ S′ywk
S′Tywk

, and P x̄yk
= S̄xk

S′Tyx̄k
. Then, it is clear that the gain matrix can be written

as Kk = P x̄yk
P−1

yk
. The state error covariance matrix update can be computed from P̂ k =

P̄ k − KkP yk
KT

k , but in the DD1 implementation it is desirable to update the root-covariance
matrix directly. By noting the identities,

KkP yk
KT

k = P x̄yk
P−1

yk
P yk

KT
k = S̄xk

S′Tyxk
KT

k (3.47)

= KkP
−1
yk

P yk
P T

x̄yk
= KkS

′
yxk

S̄
T
xk

(3.48)

= KkSyk
ST

yk
KT

k = KkS
′
yx̄k

S′Tyx̄k
KT

k + KkS
′
ywk

S′Tywk
KT

k (3.49)
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the state covariance update can be manipulated to form

P̂ k = P̄ k −KkP yk
KT −KkP yk

KT + KkP yk
KT

= S̄xk
S̄

T
xk
− S̄xk

S′Tyxk
KT

k −KkS
′
yxk

S̄
T
xk

+ KkS
′
yx̄k

S′Tyx̄k
KT

k + KkS
′
ywk

S′Tywk
KT

k

=
(
S̄xk

−KkS
′
yxk

) (
S̄xk

−KkS
′
yxk

)T +
(
KkS

′
ywk

) (
KkS

′
ywk

)T (3.50)

Then, the state covariance matrix P̂ k can clearly be factored into P̂ k = Ŝxk
Ŝ

T
xk

, where Ŝxk
takes

the form given in Eq. (3.46).

3.3.2 Overview of the DD2 Filter

The DD2 filter makes use of second–order divided differences to approximate nonlinear transfor-
mation of the state and covariance. The matrices of second–order divided differences are defined
as

S′′xx̂ki,j
=

√
c2 − 1
2c2

[
F i

(
x̂k + cŝxj , v̄k, tk

)
+ F i

(
x̂k − cŝxj , v̄k, tk

)

−2F i (x̂k, v̄k, tk)] (3.51)

S′′xvki,j
=

√
c2 − 1
2c2

[
F i

(
x̂k, v̄k + cswj , tk

)
+ F i

(
x̂k, v̄k − cswj , tk

)

−2F i (x̂k, v̄k, tk)] (3.52)

S′′yx̄ki,j
=

√
c2 − 1
2c2

[
Gi

(
x̄ + cs̄xj , w̄k, tk

)
+ Gi

(
x̄− cs̄xj , w̄k, tk

)

−2Gi (x̄k, w̄k, tk)] (3.53)

S′′ywki,j
=

√
c2 − 1
2c2

[
Gi

(
x̄k, w̄k + cswj , tk

)
+ Gi

(
x̄kw̄k − cswj , tk

)

−2Gi (x̄k, w̄k, tk)] (3.54)

The state, state root–covariance, measurement, and measurement covariance predictions are
given by

x̄k+1 =
(

c2 − nx − nv

c2

)
F (x̂k, v̄k, tk)

+
1

2c2

nx∑

j=1

[
F

(
x̂k + cŝxkj

, v̄k, tk

)
+ F

(
x̂k − cŝxkj

, v̄k, tk

)]

+
1

2c2

nv∑

j=1

[
F

(
x̂k, v̄k + csvkj

, tk

)
+ F

(
x̂k, v̄k − csvkj

, tk

)]
(3.55)

S̄xk+1
= H ([

S′xx̂k
S′xvk

S′′xx̂k
S′′xvk

])
(3.56)

ȳk =
(

c2 − nx − nw

c2

)
G (x̄k, w̄k, tk)

+
1

2c2

nx∑

j=1

[
G

(
x̄k + cs̄xkj

, w̄k, tk

)
+ G

(
x̄k − cs̄xkj

, w̄k, tk

)]
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+
1

2c2

nw∑

j=1

[
G

(
x̄k, w̄k + cswkj

, tk

)
+ G

(
x̄k, w̄k − cswkj

, tk

)]
(3.57)

Syk
= H ([

S′yx̄k
S′ywk

S′′yx̄k
S′′ywk

])
(3.58)

where nx is the size of the state dimension, nv is the size of the process noise dimension, and nw is
the size of the measurement noise dimension.

Lastly, the state and root-covariance update equations are given by

x̂k = x̄k + Kk (yk − ȳk) (3.59)

Ŝxk
= H ([

S̄xk
−KkS

′
yxk

KkS
′
ywk

KkS
′
yxk

KkS
′
ywk

])
(3.60)

where Kk = S̄xk
S′Tyx̄k

(
Syk

ST
yk

)−1 is the Kalman gain matrix.
Note that many of the same state and noise perturbations used to calculate the first–order

divided differences are again used to compute the second–order divided differences. This point has
important implications with regard to the computational costs, suggesting that the DD2 filter may
not require a great deal more computing time than the DD1 filter.

3.3.3 Modification of Measurement Update Equations Using Huber’s Technique

This section discusses how the measurement update equations of the DD1 and DD2 filters can be
solved using the Huber method. To apply this method, it is first required to recast the measurement
update as a regression problem between the observed quantity and the state prediction. Following
Sec. 3.2, the state prediction error can be written as δk = xk − x̄k, then the state prediction can
be expressed as x̄k = xk − δk. By defining the cross–covariance matrix79 P xyk

= S̄xk

(
S′yx̄k

)T and

the matrix Hk = P T
xyk

P̄
−1
k = S′yx̄k

(
S̄

T
xk

)−1
, then the measurement update can then be written in

the form of a linear regression problem in same manner as shown in Sec. 3.2.134

If the measurement update given in Eq. (3.45) is taken as the initial guess for the state estimate,
then a one-step Huber update can be written as

S(1)
yk

= H
([

S′yx̄k
Ψ−1/2

x S′ywk
Ψ−1/2

y

])
(3.61)

K
(1)
k = S̄xk

Ψ−1
x S′Tyx̄k

(
S(1)

yk
S(1)T

yk

)−1
(3.62)

x̂k = x̄k + K
(1)
k (yk − ȳk) (3.63)

Ŝxk
= H

([
S̄xk

Ψ−1/2
x −K

(1)
k S′yxk

Ψ−1/2
x K

(1)
k S′ywk

Ψ−1/2
y

])
(3.64)

The form of the robust DD1 measurement update given in Eqs. (3.61–3.64) can be found
from following a similar procedure for the non-robust case. In the Huber case, note that P yk

=
Syk

ST
yk

= S′yx̄k
Ψ−1

x S′Tyx̄k
+ Sywk

Ψ−1
y ST

ywk
. It then follows that P yk

can be factored to give the
result in Eq. (3.61). The identities given in Eqs. (3.47–3.49) can be rewritten as

KkP yk
KT

k = P x̄yk
P−1

yk
P yk

KT
k = S̄xk

Ψ−1
x S′Tyxk

KT
k (3.65)

= KkP
−1
yk

P yk
P T

x̄yk
= KkS

′
yxk

Ψ−1
x S̄

T
xk

(3.66)

= KkSyk
ST

yk
KT

k = KkS
′
yx̄k

Ψ−1
x S′Tyx̄k

KT
k + KkS

′
ywk

Ψ−1
y S′Tywk

KT
k (3.67)
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Using these results, the state covariance update equation can be found by manipulating the equation

P̂ k = P̄ k −KkP yk
KT −KkP yk

KT + KkP yk
KT

= S̄xk
Ψ−1

x S̄
T
xk
− S̄xk

Ψ−1
x S′Tyxk

KT
k −KkS

′
yxk

Ψ−1
x S̄

T
xk

+KkS
′
yx̄k

Ψ−1
x S′Tyx̄k

KT
k + KkS

′
ywk

Ψ−1
y S′Tywk

KT
k

=
(
S̄xk

Ψ−1/2
x −KkS

′
yxk

Ψ−1/2
x

)(
S̄xk

Ψ−1/2
x −KkS

′
yxk

Ψ−1/2
x

)T

+
(
KkS

′
ywk

Ψ−1/2
y

) (
KkS

′
ywk

Ψ−1/2
y

)T
(3.68)

= H
([

S̄xk
Ψ−1/2

x −KkS
′
yxk

Ψ−1/2
x KkS

′
ywk

Ψ−1/2
y

])
(3.69)

Similarly for the DD2 filter, if the measurement update given in Eq. (3.59) is taken as the initial
guess for the state estimate, then a one-step Huber update can be written as

S(1)
yk

= H
([

S′yx̄k
Ψ−1/2

x S′ywk
Ψ−1/2

y S′′yx̄k
Ψ−1/2

x S′′ywk
Ψ−1/2

y

])
(3.70)

K
(1)
k = S̄xk

Ψ−1
x S′Tyx̄k

(
S(1)

yk
S(1)T

yk

)−1
(3.71)

x̂k = x̄k + K
(1)
k (yk − ȳk) (3.72)

Ŝxk
= H

([
S̄xk

Ψ−1/2
x −K

(1)
k S′yxk

Ψ−1/2
x K

(1)
k S′ywk

Ψ−1/2
y

K
(1)
k S′′yxk

Ψ−1/2
x K

(1)
k S′′ywk

Ψ−1/2
y

])
(3.73)

In each case, Ψx and Ψy are diagonal matrices computed from the Huber ψ function, with
residuals that take the form

ζ =

[
S−1

wk
0

0 S̄
−1
xk

]
·





yk − ȳk

x̂
(0)
k − x̄k





(3.74)

where the superscript (0) refers to the initial state estimate computed from the standard DD1 or
DD2 update.

3.4 Adaptive Filtering For Unknown Noise Statistics

Although the Huber technique has been shown to be beneficial in the presence of contaminated
Gaussian probability distributions, the approach can still be improved upon by including a method
by which the covariance of the main Gaussian distribution can be estimated along with the state
and state error covariance matrix. A technique such as this allows the filter to adaptively tune the
gain matrix to suite either slow changes in the error statistics, or statistics that are not well known.
For example, a rendezvous radar used in a Mars sample return mission is very likely not to behave
in the same manner as tested on the Earth, prior to launch, cruise, entry and descent to the Mars
surface, and then a launch from the surface of Mars back to an Earth–return vehicle.



3.4. ADAPTIVE FILTERING FOR UNKNOWN NOISE STATISTICS 50

3.4.1 Myers–Tapley Method

An intuitive approach to adaptive state estimation is proposed by Myers and Tapley.66 In this
approach, the measurement residual sequence is mined to produce estimates of the measurement
noise statistics, and state prediction residuals are mined to compute estimates of the process noise
statistics. The estimators make use of a sliding window of N stored measurement noise and process
noise residuals to compute the noise statistics. In batch form, the estimator for the measurement
noise covariance can be derived by first defining the empirical covariance matrix

Cζ =
1

N − 1

N∑

j=1

(
ζj − ζ̄

) (
ζj − ζ̄

)T (3.75)

where ζj is the jth stored measurement residual, and ζ̄ is the sample mean of the residuals,

ζ̄ =
1
N

N∑

j=1

ζj (3.76)

The expected value of Cζ is66

E [Cζ ] = R +
1
N

N∑

j=1

HjP̄ jH
T
j (3.77)

By substituting Eq. (3.75) into Eq. (3.77), an estimate for the measurement noise covariance
matrix is

R̂ =
1

N − 1

N∑

j=1

[(
ζj − ζ̄

) (
ζj − ζ̄

)T −
(

N − 1
N

)
HjP̄ jH

T
j

]
(3.78)

In order to form estimates for the process noise statistics, the process noise sample is defined
as λj = x̂j − x̄j . Then, the empirical covariance matrix for λ is

Cλ =
1

N − 1

N∑

j=1

(
λj − λ̄

) (
λj − λ̄

)T (3.79)

where

λ̄ =
1
N

N∑

j=1

λj (3.80)

The expected value of Cλ is67 E [Cλ] = KkHkP̄ k = P̄
?
k + Q̃k − P̂ k, where P̄

?
k is the propagated

covariance without the process noise component, given by P̄
?
k = Φk−1P̂ k−1ΦT

k−1 where Φk−1 is
the state transition matrix computed from Eq. (3.8). By manipulating Eq. (3.7), an estimator for
the process noise covariance matrix is

Q̂ =
1

N − 1

N∑

j=1

[(
λj − λ̄

) (
λj − λ̄

)T −
(

N − 1
N

)(
P̄

?
j − P̂ j

)]
(3.81)
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An adaptive filter can function by using some initial guess of the measurement noise and process
noise matrices, storing the residuals for the first N frames, and then updating the covariance
estimates based on Eqs.(3.78) and (3.81) at each subsequent frame.

It is important to note that the Myers–Tapley method for adaptively estimating the measure-
ment noise and process noise covariance matrices make use of the sample mean and covariance
of the stored residuals, which are non–robust estimators. This lack of robustness implies that
the performance Myers–Tapley adaptive method can degrade in the presence of non–Gaussianity.
Therefore it is of interest to develop a modification of the Myers–Tapley approach that is robust
with respect to non–Gaussian distributions, which is the subject of the following section.

3.4.2 Modified Myers–Tapley Method

3.4.2.1 Robust Covariance Estimation

This section discusses a robust modification of the Myers–Tapley adaptive filter in order to protect
against the possible presence of non–Gaussian distributions in the measurement and/or process
noise. The main issue with the Myers–Tapley method is the use of the sample covariance and
the sample mean in forming the noise covariance estimates from the stored residuals. Fortunately,
the technique can be modified to use a robust form of the covariance estimate in computing the
measurement and process noise statistics.

The proposed technique makes use of the leverage point identification methods introduced in
Sec. 2.4. The Myers–Tapley adaptive tuning method can be modified in order to account for non–
Gaussianity by means of using the robust covariance estimates based on the Mahalanobis distances
or the projection statistics of the stored residuals. In particular, the measurement and process
noise covariance estimates can be written as

R̂
?

=

[
N∑

i=1

wζi − 1

]−1

·
[

N∑

i=1

(
wζiζi − ζ̄r

) (
wζiζi − ζ̄r

)T

]

− median
j ∈ N

[(
HjP̄

1/2
j

)
Ψ−1

x

(
HjP̄

1/2
j

)T
]

(3.82)

Q̂ =

[
N∑

i=1

wλi − 1

]−1

·
[

N∑

i=1

(
wλiλi − λ̄r

) (
wλiλi − λ̄r

)T

]

− median
j ∈ N

(
P̄

?
k − P̂ j

)
(3.83)

where wζi
and wλi

are the weights based on the Mahalanobis distances or projection statistics of
the measurement and process noise residuals, respectively, and

ζ̄r =

[
N∑

i=1

wζi

]−1

·
[

N∑

i=1

wζiζi

]
(3.84)

λ̄r =

[
N∑

i=1

wλi

]−1

·
[

N∑

i=1

wλiλi

]
(3.85)
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where wi are weights computed from the statistics by means of

wi = min
[

1,
(
χ2

n,α/M2
i

) ]
(3.86)

or
wi = min

[
1,

(
χ2

n,α/P2
i

) ]
(3.87)

for some specified probability α.
The matrix R̂

?
is related to the measurement noise covariance estimate as

R̂
?

= R̂
1/2

Ψ̄y
−1

(
R̂

1/2
)T

(3.88)

where Ψ̄y
−1 is the median value of the Ψy matrix across the buffer of stored observations and

residuals. The estimate of the measurement noise covariance matrix can be determined from a
square root decomposition of Eq. (3.82). Specifically,

R̂ =
(
R̂

?
)1/2

Ψ̄y

(
R̂

?
)1/2

T (3.89)

Note that in the DD1 and DD2 filter formulation, the quantity
(
HjP̄

1/2
j

)
Ψ−1

x

(
HjP̄

1/2
j

)T

is replaced by S′yx̄k
Ψ−1

x S′yx̄k

T (DD1) and H
([

S′yx̄k
Ψ−1/2

x S′′yx̄k
Ψ−1/2

x

])
(DD2) for the mea-

surement noise covariance estimation. Similarly, the quantity P̄
?
k = Φk−1P̂ k−1ΦT

k−1 is replaced by
S′xx̂k

S′xx̂k

T (DD1) and H ([
S′xx̂k

S′′xx̂k

])
(DD2) for the process noise covariance estimation.

In summary, the proposed modified Myers–Tapley method makes use of a robust technique for
outlier identification and weighting based on the projection statistics in forming the estimates of
the measurement and process noise covariance matrices.

3.4.2.2 Estimation of the Contamination Parameter

The modified Myers–Tapley approach discussed in the previous section can also offer a crude scheme
for estimating the contamination parameter ε by using the weighting parameters relating to the
stored residual data. In particular, a crude estimate of the contamination parameter is

ε̂k = 1− 1
N

N∑

i=1

wζi (3.90)

At each frame where the measurement and process noise covariances are computed, the con-
tamination parameter can be estimated directly from the weighting parameters. Then, the optimal
tuning parameter γ? can be calculated from Eq. (2.38), which is then used within the Huber fil-
ter at each measurement update. Note, however, that it should be expected that the estimated
contamination parameter will in general be biased as in cases of large contamination there will be
some portion of errors drawn from the contaminating distribution that appear to be drawn from
the nominal distribution, in other words false–negatives or the so-called Type II errors in detection
theory. Likewise in cases of small contamination there will be some nonzero quantity of data that
appear as outliers when they are in fact perfectly valid, in other words the Type I error in detection
theory.
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The bias of the contamination parameter is not necessarily problematic, so long as upper and
lower bounds are set on the value of the tuning parameter γ used in the Huber measurement
update. Clearly, the Huber technique is by nature a sub-optimal filter, since the purpose is to find
a filter that is consistent across a range of distributions but not necessarily optimal at any one
in particular. Therefore one could expect the performance of the technique to improve by having
good estimates of the contamination parameter, but so long as the tuning parameter is bounded
by some reasonable value then the robustness properties of the estimator will not be compromised
by such a bias.

3.4.2.3 Fading Memory Filter

In the course of computing the estimates of the measurement and process noise covariance matrices,
as well as the contamination parameter estimates, it is useful to introduction a “forgetting” factor,
kf , in order to smooth the estimate histories. The filter can be implemented as

R̃k = kfR̃k−1 + (1− kf ) R̂k (3.91)

Q̃k = kfQ̃k−1 + (1− kf ) Q̂k (3.92)

ε̃k = kf ε̃k−1 + (1− kf ) ε̂k (3.93)

In this approach, the estimates based on the current set of stored residuals is averaged with
the previous estimate, with kf as a weighting parameter. In general the recommended value of kf

depends on the particular application, but a reasonable range is kf ∈
[

1/2 1
]
.



Chapter 4

Spacecraft Rendezvous Guidance,

Navigation, and Control

4.1 Introduction and Overview

This section describes the development of the 6 degree of freedom (6-DOF) nonlinear equations
of motion for a maneuvering spacecraft with respect to an elliptical reference orbit. Coordinate
systems are defined, which are then used to develop the equations of motion based on Newton–Euler
mechanics. These equations of motion are used to develop nonlinear control methodologies based
on feedback linearization techniques. Sensor models suitable for rendezvous navigation processing
are also introduced in this chapter.

4.2 Coordinate Systems

The development of the 6–DOF rendezvous equations of motion requires the definition of several
coordinate systems. First, a planet–centered inertial frame, I, is introduced. This frame is aligned
with the target spacecraft orbit (assuming no perturbations) such that the x-axis is oriented towards
the periapsis, the z-axis is oriented along the positive orbit normal, and the y-axis completes a
right-handed system. The local, or L, frame has its origin located at the position of the target
spacecraft and is defined such that the z-axis is oriented toward the center of the planet, the y-axis
is oriented along the negative orbit normal, and the x-axis is in the transverse direction, completing
the right-handed system. The I and L frames are illustrated in Fig. 4.1.

The chaser body frame is denoted by B with right-handed axes. It is assumed that the various
sensors carried onboard the chaser spacecraft produce outputs referenced to this body frame. These
sensors are introduced in later sections in this chapter, following the development of the equations
of motion.

54
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Figure 4.1: Illustration of I and L Coordinate Frames

4.3 Rotational Dynamics

4.3.1 Attitude Representations and Kinematics

There are many different attitude representations available in the literature to use for modeling
spacecraft attitude and relative orientation, too numerous to review here in detail. Two attitude
representations in particular are discussed in this chapter for application to the spacecraft ren-
dezvous navigation problem. First, the quaternion representation is discussed, followed by the
modified Rodrigues parameters.

4.3.1.1 Quaternions

The attitude dynamics of spacecraft is well understood and can be represented in many forms.
Perhaps the most attractive form for attitude estimation is the quaternion representation, which
is the smallest non-singular attitude parameterization. The quaternion can be expressed in terms
of the Euler axis, e, and the Euler angle, θ, of the transformation between a reference frame fixed
in the body and the inertial frame. The quaternion elements are defined as q1 = e1 sin (θ/2) , q2 =
e2 sin (θ/2) , q3 = e3 sin (θ/2) , q4 = cos (θ/2). With knowledge of the quaternion elements, the
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transformation matrix T relating the body frame to the inertial frame can be expressed as

T =




1− 2
(
q2
1 + q2

3

)
2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q1q2 − q3q4) 1− 2
(
q2
1 + q2

3

)
2 (q1q4 + q2q3)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) 1− 2
(
q2
1 + q2

2

)


 (4.1)

By defining q = [ q1 q2 q3 q4 ]T it can be seen that the quaternion representation must satisfy
the constraint equation qT q = 1. Quaternions obey the multiplication rules

q′ ⊗ q = Υ
(
q′

)
q = Ξ (q) q′ (4.2)

where

Υ
(
q′

)
=




q′4 q′3 −q′2 q′1
−q′3 q′4 q′1 q′2

q′2 −q′1 q′4 q′3
−q′1 −q′2 −q′3 q′4


 , Ξ (q) =




q4 −q3 q2 q1

q3 q4 −q3 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4


 (4.3)

and the inversion rule q−1 =
[ −q1 −q2 −q3 q4

]T
.

The quaternion kinematic equations can be written as92

q̇ =
1
2
Ω (ω) q (4.4)

where

Ω (ω) =




0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0


 (4.5)

and ω is the angular velocity of the body frame with respect to the inertial frame.
Quaternions have the special property of bilinear kinematics. If high-rate measurements of the

spacecraft angular velocity are available, from a gyroscope system for instance, then the angular
velocity can reasonably be assumed to be constant over the sampling interval. In this case, the
quaternion kinematic equations become constant coefficient ordinary differential equations and
so the solution can be determined from the matrix exponential. Explicitly, the solution for the
predicted quaternion at time k + 1 can be written as140

q̄k+1 =
[
I cos (ω̂k∆t) +

sin (ω̂k∆t/2)
ω̂k

Ω (ω̂k)
]

q̂k (4.6)

where q̂k is the estimated quaternion at time k, q̄k+1 is the predicted quaternion at time k + 1,
and ω̂k = ‖ω̂k‖ is the assumed constant angular velocity between time k and k + 1.

The filtering of the attitude quaternion is complicated by the unit norm constraint. One stan-
dard approach for handling the constraint is to use a multiplicative method for the measurement
update. In this approach, the attitude quaternion is replaced by an error quaternion, δq, which al-
lows for the processing of the error quaternion as a three component vector of small angles, denoted
by δα. In this approach, the quaternion estimate is propagated to the star tracker measurement
at time k by means of Eq. (4.6). Then an error quaternion relating the star tracker measurement
quaternion to the predicted quaternion based on propagation from the previous measurement is
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defined as δq̄k (δᾱk) = qmk
⊗q̄−1

k . The first three components of this error quaternion are processed
as independent small angles with measurement sensitivity matrix H = [ I 0 ].

The small angle error and gyroscope bias estimate error dynamics are given by

δα̇ = −ω̂×δα− δβ + ηω (4.7)

δβ̇ = ηβ (4.8)

where

ω̂× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (4.9)

By setting x = [ δα δβ ]T , then these differential equations are in an appropriate form for
filter implementation. The quaternion and gyroscope bias estimates following the measurement
update are given by q̂k = δq (δα̂k)⊗ q̄k and β̂k = β̄k + δβ̂k.

4.3.1.2 Modified Rodrigues Parameters

The MRPs are defined in terms of the quaternions (q1, q2, q3, q4) as92,94,145–147

σ =
q

1 + q4
= e tan

(
θ

4

)
(4.10)

where q = (q1, q2, q3) is the vector part of the quaternion, q4 is the scalar part of the quaternion, e

is the principal rotation axis, and θ is the principal rotation angle.
The shadow MRP set is defined as92,94

σS = − σ

σT σ
= e tan

(
θ − 2π

4

)
(4.11)

Note that the MRP set σ behaves nearly linearly (with respect to θ) near the zero rotation and
grows infinitely large after a revolution, while the shadow MRP set σS behaves linearly about 2π
and is singular about the zero rotation. Further, while ‖σ‖ < 1 (or > 1), σ describes the short (or
long) rotation back to the origin, the shadow set σS describes the opposite rotation. The MRP and
shadow MRP set can also be described as the inner and outer MRPs,148 respectively, where inner
refers to the MRP set within the unit sphere (‖σ‖ < 1) and outer refers to the MRP set outside
the unit sphere (‖σ‖ > 1). Both inner and outer sets lie on the unit sphere when ‖σ‖ = 1.

As proposed in Ref. 94, the shadow MRP set can be exploited to yield a globally non–singular
attitude description with a minimal three–parameter coordinate set at the expense of a disconti-
nuity. To avoid the singularity, the MRP set is switched to the shadow set before reaching the
singularity. A convenient switching condition is the unit magnitude surface ‖σ‖ = 1, such that
the composite MRP description always satisfies ‖σ(t)‖ ≤ 1. This surface represents all possible
orientations where the body has performed a principal rotation relative to the origin of θ = π. Note
that on this surface there are two possible MRP sets that describe the same attitude.

The coordinate transformation matrix involving the MRPs can be expressed as92

T = I − 4
(
1− σT σ

)

(1 + σT σ)2
σ× +

8

(1 + σT σ)2
(
σ×

)2 (4.12)
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Figure 4.2: MRP Illustration as the Result of a Stereographic Projection

where σ× is the skew-symmetric cross product matrix. MRPs have additive and subtractive com-
position rules,

σ = δσ ⊕ σ0 =

(
1− σT

0 σ0

)
δσ +

(
1− δσT δσ

)
σ0 − 2δσ×σ0

1 +
(
σT

0 σ0

)
(δσT δσ)− 2σT

0 δσ
(4.13)

δσ = σ ª σ0 =

(
1− σT

0 σ0

)
σ − (

1− σT σ
)
σ0 + 2σ×σ0

1 +
(
σT

0 σ0

)
(σT σ)− 2σT

0 σ
(4.14)

(4.15)

Both sets of MRPs satisfy the same kinematic differential equation92

σ̇ =
1
4
B (σ) ω =

1
4

[(
1− σT σ

)
I + 2σ× + 2σσT

]
ω (4.16)

where ω is the angular velocity. The matrix B has the useful property92

B−1 (σ) =
1

1 + σT σ
BT (σ) (4.17)

Another useful property involving the matrix B is155

σT B (σ) ω =
(
1 + σT σ

)
σT ω (4.18)

Aside from providing a non–singular attitude description, another advantage of the combined
MRP set restricted to ‖σ(t)‖ ≤ 1 is that they behave nearly linearly for a large set of orientations.
Figure 4.3 illustrates tan (θ/4) and the linearized θ/4 for rotations up to θ = π.
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Figure 4.3: Illustration of the weakly nonlinear behavior of the MRPs restricted to
‖σ‖ ≤ 1.

Having the analytical mapping between two possible MRP sets allows for two attitude motion
descriptions to be solved simultaneously, using only one integration of the kinematic equations.
After integrating the kinematic equations, the MRP set can be switched if ‖σ‖ ≥ 1 and then
the integration can continue. Note that the mapping in Eq. (4.11) is valid for any non–singular
switching point. This observation allows the integration procedure to avoid the need to track the
‖σ‖ = 1 surface crossing precisely. Instead, the mapping step is performed only if the MRP set
falls outside this surface.

Note that in general, the MRP can switched to the shadow set at any surface of ‖σ‖ ≥ 1.
The shadow MRP mapping cannot be performed at conditions ‖σ‖ < 1. For example, suppose a
switching condition of ‖σ‖ = 1/2 is specified. It follows from Eq. (4.11) that ‖σS‖ = 2. Since
2 > 1/2, the MRP must immediately be switched back again and the cycle continues indefinitely.
The most convenient switching condition is ‖σ‖ ≥ 1 since that corresponds to the principal rotation
angle of π. However there may be certain circumstances where other switching surfaces are favorable
for a particular application. Therefore the covariance transformations developed in the following
section are kept to the general case of any switching surface greater than one.

Note that it is possible to construct other minimal attitude coordinate sets which are even more
linear with respect to the principal rotation angle θ than the MRPs. Reference 149 calls them the
Higher Order Rodrigues Parameters (HORPs). Parameters ϑ can be developed which are written
as

ϑ = e tan
(

θ

2N

)
(4.19)

where N ≥ 1 is an integer value. These HORPs also contain multiple sets of possible values
which can be used to avoid singular attitude descriptions. The MRP covariance mapping methods
developed in this paper could be used for the HORP descriptions as well, but are not developed in
this work.

4.3.1.3 Nonsingular Attitude Filtering Using Modified Rodrigues Parameters

In order to use the MRP shadow set singularity avoidance technique for attitude estimation, a
mapping must also be developed in order to transform the MRP state estimate error covariance
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matrix into the shadow set MRP state estimate error covariance matrix. In previous applications
of the MRPs to attitude estimation problems, the state covariance matrix has implicitly been kept
fixed during this switching to the shadow set.101 The following section describes the application
of the shadow MRP set for singularity avoidance in the Kalman filter, including a first–order
covariance transformation to accompany the MRP singularity avoidance mapping.

During the course of state propagation or following the state update, the state can be switched
to the shadow state if certain conditions are met, namely if ‖σ‖ > σr where σr is a threshold value.
The shadow set transformation is given by xS = λ (x), where

λ (x) =

{
− (

σT σ
)−1

σ

β

}
(4.20)

To examine the covariance transformation at the switching point, let the covariance matrix P̄ k

be decomposed into sub-matrices with the structure

P̄ k =
[

P σσ P σβ

P T
σβ P ββ

]
(4.21)

where P σσ is the covariance matrix of the MRP state, P ββ is the covariance matrix of the bias
state, and P σβ is the cross-correlation matrix between the MRP and the bias state. It follows
that the covariance mapping to the shadow MRP set in the neighborhood of the reference MRP
condition is given by

P̄
S
k = ΛP̄ kΛT =

[
Λ11 0
0 I

] [
P σσ P σb

P T
σβ P ββ

] [
ΛT

11 0
0 I

]

=
[

Λ11P σσΛT
11 Λ11P σβ

P T
σbΛ

T
11 P ββ

]
(4.22)

where

Λ =
∂λ

∂x
=

[ (
2σ−4σσT − σ−2I

)
0

0 I

]
(4.23)

and Λ11 = 2σ−4σσT − σ−2I.
Note that this covariance mapping scales all MRP components. Assume that σ = ‖σ‖ is small,

and the associated covariance components are small as well indicating good attitude knowledge.
Then the corresponding shadow MRP set is stretched toward infinity due to σ being near zero.
The associated covariance matrix for the shadow set is large as well, reflecting the large changes in
coordinate values in the neighborhood of the singularity. The rate bias covariance is held constant
during the MRP mapping, which is expected since the bias estimate itself is held constant in
Eq. (4.20).

Following the development in Ref. 79 and 80, a first–order divided difference transformation of
the state covariance matrix to the shadow state covariance matrix suitable for the DD1 filter is
given by

P̂
S1
k =

1
4c2

n∑

j=1

[
λ

(
x̂k + cŝxj

)− λ
(
x̂k − cŝxj

)] [
λ

(
x̂k + cŝxj

)− λ
(
x̂k − cŝxj

)]T (4.24)
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Similarly the second–order transformation suitable for the DD2 filter is

P̂
S2
k = P̂

S1
k +

c2 − 1
4c4

n∑

j=1

[
λ

(
x̂k + hŝxj

)
+ λ

(
x̂k − cŝxj

)− 2λ (x̂k)
]

· [λ (
x̂k + cŝxj

)
+ λ

(
x̂k − hŝxj

)− 2λ (x̂k)
]T (4.25)

Following these covariance transformations at the switching point, the square–root decomposi-
tions of the state covariance can be calculated from Eqs. (3.33) and (3.34), which are in turn used
to continue the state propagations forward in time according to Eqs. (3.37), (3.39), (3.51), (3.53),
(3.55) and (3.57) until the next measurement update.

4.3.2 Attitude Dynamics

The dynamic equations describing the change in angular momentum are the well–known Euler
equations,

ω̇ = −I−1ω×Iω + I−1τ (4.26)

where ω is the inertial angular velocity of the body, I is the inertia tensor of the vehicle, and τ is
the net control and/or disturbance torque. The relative angular velocity between the chaser and
the L frame is δω = ω − Ω where Ω is the angular velocity of the L frame (with all quantities
represented in the spacecraft B frame). By solving for ω and substituting into Eq. (4.26), the
dynamic equation for the relative angular velocity becomes

δω̇ = −I−1δω×Iδω − I−1δω×IΩ− I−1Ω×Iδω − I−1Ω×IΩ + Ω̇ + I−1τ (4.27)

The angular velocity Ω is given by

Ω = T (σ)





0
−ω0

0



 (4.28)

where σ is the MRP representing the transformation from the L frame to the B frame and ω0 is
the angular velocity of the reference orbit.

4.4 Translational Dynamics

The translation equations of motion for a spacecraft relative to an elliptical Keplerian reference
orbit are well known and can be written as92

ẍ− 2ω0ż − ω̇0z − ω2
0x +

µx
[
x2 + y2 + (r0 − z)2

]3/2
= ux + vx (4.29)

ÿ +
µy

[
x2 + y2 + (r0 − z)2

]3/2
= uy + vy (4.30)

z̈ + 2ω0ẋ + ω̇0x− ω2
0z +

µ

r2
0

− µ (r0 − z)
[
x2 + y2 + (r0 − z)2

]3/2
= uz + vz (4.31)
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r̈0 − r0ω
2
0 +

µ

r2
0

= 0 (4.32)

ω̇0 +
2ṙ0ω0

r0
= 0 (4.33)

Here, x is the in-track position component, z is the position component along the negative radial
direction, and y is the position along the negative orbit normal direction. The variables r0 and
ω0 correspond to the radius and angular velocity of the reference orbit, and µ is the gravitational
parameter of the planet. It is convenient to introduce a transformation of variables such that
the equations of motion are in spherical coordinates centered at the reference point.139 Such a
transformation can be found by setting

x = ρ cosφ cos θ (4.34)

y = ρ sinφ (4.35)

z = −ρ cosφ sin θ (4.36)

where ρ is the range between the target spacecraft and the maneuvering spacecraft, θ is an azimuth
angle in the reference orbit plane measured from the x-axis, positive toward the −z direction, and
φ is an out of plane angle measured from the x − z plane positive toward the y-axis. After the
substitution of this transformation the equations of motion become

ρ̈ =
(
ω0 − θ̇

)2
ρ cos2 φ + ρφ̇2 +

µ

r2
0

sin θ cosφ

− µ (ρ + r0 cosφ sin θ)
(
r2
0 + 2r0ρ cosφ sin θ + ρ2

)3/2
+ uρ + vρ (4.37)

θ̈ = ω̇0 + 2
(
ω0 − θ̇

) ρ̇

ρ
− 2

(
ω0 − θ̇

)
φ̇ tanφ +

µ cos θ sec φ

r2
0ρ

− µr0 cos θ sec φ

ρ
(
r2
0 + 2r0ρ cosφ sin θ + ρ2

)3/2
+ uθ + vθ (4.38)

φ̈ = −1
2

(
ω0 − θ̇

)2
sin 2φ− 2φ̇ρ̇

ρ
− µ sin θ sinφ

r2
0ρ

+
µr0 sin θ sinφ

ρ
(
r2
0 + 2r0ρ cosφ sin θ + ρ2

)3/2
+ uφ + vφ (4.39)

where the control inputs are

uρ = ux cos θ cosφ + uy sinφ− uz sin θ cosφ (4.40)

uθ = −ux

[
2r0ρ sin2 θ +

(
r2
0 + ρ2

)
sin θ sec φ

ρ
(
r2
0 + 2r0ρ cosφ sin θ + ρ2

)
]

−uz

[
2r0ρ cos θ sin θ +

(
r2
0 + ρ2

)
cos θ secφ

ρ
(
r2
0 + 2r0ρ cosφ sin θ + ρ2

)
]

(4.41)

uφ = −ux
cos θ sinφ

ρ
+ uy

cosφ

ρ
+ uz

sin θ sinφ

ρ
(4.42)

with similar relations for the process noise inputs.



4.5. NAVIGATION SENSOR MODELS 63

The translation equations of motion can be written in the form

η̈ = f (η, η̇, t) + u + v (4.43)

where η =
[

ρ θ φ
]T

, u =
[

uρ uθ uφ

]T
and v =

[
vρ vθ vφ

]T
.

4.5 Navigation Sensor Models

Vehicles performing autonomous rendezvous maneuvers must make use of a wide variety of naviga-
tion sensors to estimate the trajectory and perhaps other relevant parameters in order to successfully
complete the mission. Having developed the dynamics of spacecraft rendezvous, this chapter dis-
cusses the modeling of sensor systems whose data can be processed to estimate the relative position,
velocity, and orientation of the chaser vehicle.

4.5.1 Inertial Measurement Unit

An inertial measurement unit (IMU) is a device which measures applied accelerations and angular
rates by using a system of accelerometers and gyroscopes. The mathematical modeling of such a
system can be relatively complex when systematic errors are included in the model.153,154 For the
purposes of real–time error parameter estimation in the navigation filter, reduced–order models
that capture the net error effects are preferred in order to reduce the computational complexity.

4.5.1.1 Gyroscope Model

The gyroscope system can be represented mathematically by using Farrenkopf’s model. In this
model, the sensed angular velocity if expressed as the true angular velocity with an additive bias
and white noise. The bias term is itself a slowly varying parameter driven by white noise. The
model can be expressed as

ω̃ = ω + β + ηω (4.44)

β̇ = ηβ (4.45)

where ω̃ is the sensed inertial angular velocity, ω is the true inertial angular velocity, β is the mea-
surement bias, and ηω and ηβ are unbiased and uncorrelated random vectors with variances given
by σ2

ω and σ2
β, respectively. Discrete–time simulated gyroscope measurements can be generated

according to this model by use of the equations141

ω̃k+1 = ωk +
1
2

(
βk+1 + βk

)
+

(
σ2

ω

∆t
+

1
12

σ2
β∆t

)1/2

nω (4.46)

βk+1 = βk + σβ (∆t)1/2 nβ (4.47)

where k refers to the time increment, ∆t = tk+1 − tk is the sampling interval, and nω and nβ are
unbiased, uncorrelated, unit–variance random vectors.
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4.5.1.2 Accelerometer Model

An accelerometer system measures the accelerations applied to the spacecraft. Typically these
measurements are corrupted by noise in addition to systematic error such as bias, scale factor, and
misalignment. Bias can easily be accounted for by subtracting the accelerometer reading during
quiescent periods of flight without thrust or any other disturbance acceleration. During thrusting
maneuvers, scale factor uncertainties become important. A model for acceleration measurements
including scale factor and noise errors is

ãm = (I + S) am + ηa (4.48)

where am is the true acceleration at the IMU location, ãm is the sensed acceleration, ηa is the
measurement noise, and S is a diagonal matrix of constant scale factor errors. The accelerations
at the vehicle center of mass can be calculated from

a = am − (
ω̇× + ω×ω×

)
rm (4.49)

where a is the center of mass acceleration and rm is the position of the IMU with respect to the
vehicle center of mass.

4.5.2 Star Tracker Sensors

It is assumed that a star tracker or some other generic attitude sensor is available to provide
corrections to the attitude estimates formed by direct numerical integration of the angular velocity
measurements, which are subject to error buildup due to integrating errors in the estimated bias
and the random noise. The star tracker is assumed to output an estimated quaternion that relates
the orientation of the body to the inertial frame. The quaternion estimates are assumed to be
unbiased but with a superimposed random measurement noise. The output from such a sensor can
be expressed as qm = δq (δα)⊗ q where q is the quaternion representing the true orientation, qm

is the measured quaternion, and δq (δα) is an error quaternion parameterized by a random angular
error δα.

Similarly, the attitude sensing device can be assumed to output an estimated MRP that relates
the orientation of the body to the inertial frame. The estimates are assumed to be unbiased but
with a superimposed random measurement noise. The output from such a sensor can be expressed
as σ̃I = σI + δσ where σI is the MRP representing the true orientation of the vehicle with respect
to inertial space, σ̃I is the “measured” MRP, and δσ is an error MRP with covariance matrix
denoted by R. For instance, the measured MRP could be an output from the algorithm described
in Ref. 150, involving vector measurements.

The inertial attitude MRP, σI , can be written as a function of the relative attitude, σ, and the
inertial orbital position angle θ0. First, note that the matrix of the transformation from the I frame
to the L frame can be written as a sequence of two elementary rotations, T 1 (−π/2) ·T 3 (θ0 + π/2)
where T i (ς) represents the matrix for an elementary rotation of angle ς about axis i. Using the
axis-angle representation of the MRP given in Eq. (4.10), the transformation sequence can be
expressed as the composite MRP,

σθ0 =




tan (−π/8)
0
0


⊕




0
0

tan [(1/4) (θ0 + π/2)]



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=
1

1 + tan2 (π/8) tan2 [(1/4) (θ0 + π/2)]




{
tan2 [(1/4) (θ0 + π/2)]− 1

}
tan (π/8)

−2 tan (π/8) tan [(1/4) (θ0 + π/2)][
1− tan2 (π/8)

]
tan [(1/4) (θ0 + π/2)]


 (4.50)

The inertial attitude MRP can then be expressed as σI = σ ⊕ σθ0 .

4.5.3 Laser/Radar Navigation Sensors

A radar or laser sensing system provides range, azimuth, elevation measurements between the
sensor and the target. These measurements can be modeled as

%





cosα cos ε

sinα cos ε

sin ε



 = T (σ) r − δrs (4.51)

where % is the range, α is the azimuth angle, and ε is the elevation angle. Here, r = [x, y, z]T is
the cartesian relative position in the local frame and δrs is the sensor position in the body frame.
Assuming the target spacecraft has either a system of retro-reflectors,157,158 a network of light
emitting diodes (LEDS),156 or a passive geometric sensing system,159 that provides multiple range,
azimuth, and elevation measurements, then the relative attitude between the target and chaser can
also be determined in addition to range and bearing. This relative attitude is modeled in the same
manner as the inertial attitude sensor given in Sec. 4.5.2, namely that σ̃ = σ + δσ where σ̃ is the
“measured” relative MRP, σ is the true relative attitude MRP and δσ is an error MRP.

4.5.4 Orbit Sensor

A wide variety of sensors can be used to estimate the orbit of the spacecraft. For example, Global
Position System (GPS) orbit determination sensors can be used to Earth orbiting and some lunar
orbit cases.160 In other cases, such as lunar orbit, autonomous orbit determination can be accom-
plished using optical sensors and landmark tracking.161 For the purposes of this dissertation, it
is assumed that some general orbit determination sensor is available for use in the state estima-
tor. This sensor is assumed to provide position data in the form of radius r0 and orbit angle θ0

measurements.

4.6 Rendezvous Guidance and Control

This section develops 6-DOF guidance and control schemes for rendezvous in elliptical orbit. These
guidance and control schemes are fairly straightforward, as will be seen presently, but they are ad-
equate for the purposes of illustrating the navigation filter performance during rendezvous maneu-
vers. Considerably more advanced control schemes for spacecraft rendezvous have been published
recently, for instance the adaptive control formulations in Refs. 162 and 163. If required, these
control laws could be implemented to improve performance, however such work is beyond the scope
of this research.
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4.6.1 Translational Guidance and Control

Given a commanded translational reference trajectory, ηc, a translation error state can be defined
as δη = η − ηc. This error state obeys the differential equations

δη̈ = η̈ − η̈c = f (η, η̇, t) + u + v − η̈c (4.52)

This system can be controlled by using a feedback linearization of the form

u = η̈c − f (η, η̇, t)−Kηδη −K η̇δη̇ (4.53)

By substituting Eq. (4.53) into Eq. (4.52), the closed–loop system becomes

δη̈ + Kηδη + K η̇δη̇ = v (4.54)

This closed–loop system is asymptotically stable in the absence of disturbance inputs for any
gain matrices Kη > 0 and K η̇ > 0. These gains can be specified by using a number of different
approaches. For example, an approach based on desired closed–loop damping ratio and natural
frequency is investigated in Ref. 48. Note that non–zero disturbance accelerations result from both
model error and feedback error due to erroneous state estimates from the navigation outputs. This
mixture of deterministic and stochastic disturbances suggests a gain design using a suboptimal H∞
approach. To this end, the closed–loop system can first be written in the standard state space form

ẋt = Atxt + Bt [ut + dt] (4.55)

where xt =
[

δη δη̇
]T

is the translational state, ut is the acceleration input, dt is a disturbance
input, and

At =
[

0 I

0 0

]
, Bt =

[
0
I

]
(4.56)

The infinite horizon full information state feedback H∞ control results from the solution of the
Ricatti equation129

XtAt + AT
t Xt −Xt

(
BtB

T
t −

1
κ2

BtB
T
t

)
Xt + Ct = 0 (4.57)

where Ct is a state error weighting matrix and κ is the the H∞ performance bound. Once the
algebraic Ricatti equation is solved for matrix Xt, the state feedback control law is

ut = −BT
t Xtxt (4.58)

If the state error weighting matrix Ct is chosen to be diagonal, then the state feedback gain
matrix can be decomposed into the following structure to solve for the gains Kη and K η̇,

BT
t Xt =

[
Kη K η̇

]
(4.59)

It is assumed here that a suitable reference trajectory ηc is available to provide the guidance
commands. In general this trajectory can be specified using a multitude of approaches depending
on the specific nature of the rendezvous and docking sequence and path constraints for a particular
spacecraft application. For example, the rendezvous guidance can be formulated as either mini-
mum fuel or minimum time optimal trajectories with path constraints,164 as nonoptimal glideslope
approaches,165 or using non-linear guidance techniques as described in Ref 166.
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4.6.2 Attitude Guidance and Control

Attitude guidance commands are generated by solving for the MRP σc that provides zero azimuth
and elevation angles so that the radar boresight is aligned with the target vehicle. The following
system of nonlinear algebraic equations is solved at each guidance cycle

αc (σc) = 0 (4.60)

εc (σc) = 0 (4.61)

ϕc (σc) = 0 (4.62)

The quantity ϕc specifies the relative roll angle and is defined by

ϕc = yL · zB
=

[
0 1 0

] · T (σ)T · [ 0 0 1
]T

=
8σ2σ3 + 4σ1

(
1− σT σ

)

(1 + σT σ)2
(4.63)

A zero-order hold is applied to the MRP attitude commands in order to generate a MRP rate
command. The rate command is computed using a backward difference derivative between the
current MRP command and the lagged MRP command. The commanded MRP and MRP rate are
the inputs to the attitude control law.

Given the commanded MRP and MRP rate, σc and σ̇c, respectively, an attitude control law to
track these commands can be constructed using the multi–input backstepping method.167 Here, the
control design is split into a sequence of two sub-problems. First, the angular velocity is assumed to
be a control, which is chosen to suitably stabilize the attitude kinematics. Next, torque commands
are generated in order to track the desired angular velocity. In order to construct this controller,
an error MRP is defined as δσ = σªσc. The error MRP obeys the kinematic differential equation

δσ̇ =
1
4
B (δσ) δω (4.64)

Assuming the relative angular rate δω = ν (δσ) can be chosen arbitrarily, a Lyapunov function
can easily be constructed in order to stabilize the relative MRP kinematics. To this end, a candidate
Lyapunov function is

V (δσ) = 2kv ln
(
1 + δσT δσ

)
(4.65)

where kv > 0 is a gain.
Making use of the identity in Eq. (4.18), the candidate Lyapunov function rate is

V̇ =
4kv

1 + δσT δσ
δσT δσ̇ =

kv

1 + δσT δσ
δσT B (δσ) ν (δσ) = kvδσ

T ν (δσ) (4.66)

By choosing the function ν (δσ) = −Kσδσ, where Kσ > 0, the Lyapunov function rate becomes
V̇ = −kvδσ

T Kσδσ < 0. According to Theorem 4.2 in Ref. 167, the relative kinematics are
asymptotically stable with this choice of function ν (δσ) since the function V (δσ) is positive
definite with negative definite rate. Moreover, the origin is exponentially stable as can be seen
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from the following expansion of the kinematics differential equation. The closed-loop kinematics
are

δσ̇ = −1
4
B (δσ) Kσδσ

= −1
2

(
I − δσ× + δσδσT − 1 + δσT δσ

2
I

)
Kσδσ

= −1
4
Kσδσ +

1
2

(
δσ× + δσδσT − 1 + δσT δσ

2
I

)
Kσδσ (4.67)

Clearly the linearization of the closed–loop kinematics is Hurwitz since Kσ > 0, and therefore the
origin δσ = 0 is exponentially stable, in view of Theorem 4.15 in Ref. 167.

Next, control torques must be provided that cause the spacecraft angular velocity to track
the desired angular velocity δω = ν (δσ) = −Kσδσ. An augmented Lyapunov function can be
introduced as

Va (δσ, δω) = V (δσ) +
1
2

[δω − ν (δσ)]T [δω − ν (δσ)] (4.68)

The Lyapunov function rate is

V̇a (δσ, δω) =
∂V

∂δσ
δσ̇ + [δω − ν (δσ)]T

[
δω̇ − ∂ν

∂δσ
δσ̇

]

=
1
4

∂V

∂δσ
B (δσ) ν (δσ) +

1
4

∂V

∂δσ
B (δσ) [δω − ν (δσ)]

+ [δω − ν (δσ)]T
[−I−1δω×Iδω − I−1δω×IΩ− I−1Ω×Iδω

−I−1Ω×IΩ + Ω̇ + I−1τ − 1
4

∂ν

∂δσ
B (δσ) δω

]
(4.69)

By choosing the control input

τ = δω×Iδω + δω×IΩ + Ω×Iδω + Ω×IΩ− IΩ̇
+

1
4
I

∂ν

∂δσ
B (δσ) δω − 1

4
I
[

∂V

∂δσ
B (δσ)

]T

− IKω [δω − ν (δσ)] (4.70)

where Kω > 0, the Lyapunov function rate becomes

V̇a = −δσT Kσδσ − [δω − ν (δσ)]T Kω [δω − ν (δσ)] < 0 (4.71)

Since the function Vs is positive definite and radially unbounded with a negative definite rate, it
follows from Lyapunov’s direct method (Theorem 4.3 in Ref. 167) that the origin of the closed–loop
system is globally asymptotically stable.

By substituting the appropriate expressions for V (δσ) and ν (δσ), the control torque τ is

τ = δω×Iδω + δω×IΩ + Ω×Iδω + Ω×IΩ− IΩ̇
−1

4
IKσB (δσ) δω − kv

2
Iδσ − IKω [δω + Kσδσ] (4.72)

Substituting this control law into Eq. (4.27) and linearizing about (δσ, δω) = (0,0) yields

δσ̇ =
1
4
δω (4.73)

δω̇ = −
(

kv

2
I + KωKσ

)
δσ −

(
Kω +

1
4
Kσ

)
δω (4.74)
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Following a similar logic as that discussed in the translational controller section, the gains can
be chosen according to a suboptimal H∞ controller development. First, the linearized rotational
system can be written in the form

ẋr = Arxr + Br [ur + dr] (4.75)

where xr =
[

δσ δω
]T

is the rotational state, ur is the angular acceleration input, dr is a
disturbance input, and

Ar =
[

0 1
4I

0 0

]
, Br =

[
0
I

]
(4.76)

The H∞ full information state feedback control law is

ur = −BT
r Xrxr (4.77)

where Xr is the solution to a Ricatti equation of the same form shown in Eq. (4.57) corresponding
to the rotational system. By choosing a diagonal state error weighting matrix, the state feedback
gain matrix can be decomposed into

BT
r Xr =

[ (
kv
2 I + KωKσ

) (
Kω + 1

4Kσ

) ]
(4.78)

Note that this approach leaves three unknowns, namely the gains kv, Kσ, and Kω, with only
two equations. The implication is that families of solutions can be obtained for given values of one
parameter. In this work, it is convenient to specify the gain kv and then solve for Kσ and Kω from
Eq. (4.78).



Chapter 5

Simulation Results

This chapter discusses simulation results of the robust and adaptive filtering techniques intro-
duced in Chapter 3. These results include radar tracking of an entry vehicle, adaptive estimation
illustrated using the multiplicative quaternion filtering technique, with both Gaussian and non–
Gaussian noise, attitude filtering using the modified Rodrigues parameters, and finally, the full
6-DOF rendezvous navigation simulation.

5.1 Radar Tracking Problem

This section discusses the application of the robust filters to the problem of estimating the trajectory
of a target using range measurements recorded from a radar tracking station. The example problem
is to estimate the trajectory of a mass falling through an exponential atmosphere with a constant,
yet unknown, drag coefficient. The gravitational acceleration acting on the body is neglected in the
dynamic model. This truncated model is valid for high initial velocities that cause the aerodynamic
acceleration to dominate over the gravitational acceleration. This benchmark nonlinear filtering
problem was initially studied in Ref. 131 and has been repeated numerous times in the literature.
This problem is especially of interest for non–Gaussian estimation problems given the known non–
Gaussian nature of radar noise, including for instance that of glint.60,132 Fig. 5.1 shows the geometry
of the problem.

5.1.1 Dynamic Model and Measurement Equations

The dynamic model for the radar tracking problem described above can be derived by writing

ẋ1 = −x2 (5.1)

ẋ2 = −CDAρ

2m
x2

2 (5.2)

where x1 represents the altitude of the mass, x2 its downward velocity, CD is the drag coefficient,
A is the cross-sectional area, m is the mass, and ρ is the atmospheric density, which is assumed to
follow an exponential function of the form

ρ = ρ0e−ηx1 (5.3)

70
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Figure 5.1: Geometry of Example Problem

where the quantity η is the known constant inverse density scale height. If the aerodynamics of the
target are considered to be an unknown parameter to be estimated in real time, then a third state
variable can be expressed as

x3 =

√
CDAρ0

2m
(5.4)

Here, the square-root of CDAρ0/2m is used since this term must always be positive, in other words
since the quantity x2

3 is always non-negative.
In summary, the complete dynamic model for this problem is expressed as

ẋ1 = −x2 (5.5)

ẋ2 = −x2
3x

2
2e
−ηx1 (5.6)

ẋ3 = 0 (5.7)

The radar measurement equation is

yk =
√

b2 + [x1 (tk)− a]2 + wk (5.8)

where wk represents zero-mean random error, with probability density function f(wk). Random
measurement errors are drawn from the mixture of zero–mean Gaussian probability distributions,
defined by the probability density function

f (wk) =
(

1− ε

σ1

√
2π

)
exp

[
−

(
w2

k

2σ2
1

)]
+

(
ε

σ2

√
2π

)
exp

[
−

(
w2

k

2σ2
2

)]
(5.9)
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Table 5.1: Simulation Parameters
Parameter Value
a, km 30.5
b, km 30.5
η, m−1 1.64 · 10−4

σ1, m 30.5
γ 1.345
c2 3.0

Table 5.2: Initial Conditions
Initial State True Value Estimated Value Standard Deviation
x1(0), km 91.5 91.5 0.31
x2(0), km/s 6.1 6.1 0.06
x3(0), 1/

√
m 0.06 0.01 0.02

where σ1 and σ2 are the standard deviations of the individual Gaussian distributions, and ε is a
perturbing parameter that represents error model contamination. The standard deviations σ1 are
chosen according to Table 5.1 and σ2 is chosen as σ2 = 5σ1. The measurements are assumed to
occur at a frequency of 1 Hz. The model parameters and initial conditions for the problem are
summarized in Table 5.1. The true trajectory for these initial conditions is shown in Fig. 5.2.

5.1.2 Results of Example Problem: Perfect Noise Case

This section discusses the results of applying several filters to the benchmark tracking problem
with both Gaussian and non–Gaussian measurement noise cases. These filters include the EKF,
DD1, DD2, and the robust versions of each using the one–step Huber update. The results of a
Monte–Carlo simulation are shown in the following figures. In this simulation, 2000 trial cases have
been conducted, each case terminating after an elapsed time of 60 s. The results presented in this
subsection are for the case with perfect knowledge of the measurement error variance σ2

1 with no
adaptive tuning.

5.1.2.1 Comparison of Leverage Point Identification Methods

This section discusses the impact of the leverage point identification methods on the state estimates
using the Huber discrete–time filtering technique. Fig. 5.3 shows a comparison of the average state
estimate errors for the case ε = 0, and Fig. 5.4 shows the average state estimate errors for the case
ε = 0.5. In these plots, the estimation errors found by using the projection statistics are shown
in the solid curve, the errors found by using the Mahalanobis distances are shown in the dashed
curve, and estimation errors without using leverage point identification are shown in the dash-dot
curve.

These results show that the leverage point identification does not have a significant impact
on the state estimation accuracy for this problem. In the cases of the Mahalanobis distances,
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Figure 5.2: True Trajectory of Target

the results are exactly equal to the cases that do not use a leverage point identification method.
The cases using projection statistics leads to an increased overall estimation accuracy. In each
case, the leverage point identification using the Mahalanobis distances costs approximately 1%
more computation than the case without a leverage point identification, whereas the case using
projection statistics costs approximately 5% more computation. In this application, the benefits
of the use of projection statistics for detecting and weighting the leverage points does not seem
worth the cost in computation. In problems of higher dimension, however, it is anticipated that
the benefits of the use of projection statistics will increase.

5.1.2.2 Comparison of Filters

The absolute value of the median errors are shown for the case of ε = 0 in Figs. 5.5(a)–(c). In this
case the DD2 filter gives a smaller estimation error than the other robust and nonrobust filters.
The DD1 filter exhibits slightly larger errors than the EKF. These results are not surprising based
on the results given in Ref. 79 and 80. The robust filters do not perform as well as their non-robust
counterparts in this case, because the Huber update does not minimize the `2 norm during the
measurement update. The increase in the estimation error for the robust filters is to be expected in
a perfectly Gaussian simulation since the minimum `2 norm is the maximum likelihood estimator
in this case.

The absolute value of the median errors are shown in Figs. 5.5(d)–(f) for the case ε = 0.5, for
the case where the measurement errors are highly non–Gaussian. In this case, the Huber–EKF
and DD2 filters give comparable results to each other for the position and velocity errors, but the
Huber–EKF gives a smaller error in the estimate of the ballistic parameter. Both Huber–EKF
and DD2 are superior to the EKF and DD1 filter in this case. The Huber–DD2 filter exhibits
the smallest errors, because it captures both nonlinearity and non-Gaussianity. The DD1 and
Huber–DD1 filters do not perform as well as the EKF and the Huber–EKF, respectively, in the
non–Gaussian case, which follows the behavior from the Gaussian case. In the non-Gaussian case,
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Figure 5.3: Estimated Trajectory Errors for ε = 0.0: Comparison of Leverage Point
Identification Methods

six cases of the EKF and two cases of the DD1 methods diverged completely, while the robust
counterparts, Huber-EKF and Huber-DD1 did not exhibit divergence. Divergence problems with
the Kalman filter have been noted previously.133 In this case, the ballistic parameter initialization
is poor, which is compounded by the presence of non-Gaussian errors. The DD2 filter, being a
second–order filter and therefore not as sensitive to initialization, did not diverge in any of the
Monte-Carlo cases, but the median error is clearly reduced by making use of the Huber update
method.

The computational cost associated with implementing the each filter is summarized in Table 5.3.
In this table, the computational costs are divided by the EKF processing time to provide a ratio of
the cost relative to that associated with the EKF. These ratios are based on the median computation
time for each filter during the Monte-Carlo simulation. The results show that the Huber–EKF filter
requires the smallest relative computational cost whereas the DD2 and Huber–DD2 filters require a



5.1. RADAR TRACKING PROBLEM 75

0 10 20 30 40 50 60
−12

−10

−8

−6

−4

−2

0

2

A
lti

tu
de

 E
rr

or
 D

iff
er

en
ce

 [m
]

Time [s]

MD
PS

(a) Estimated Position Errors

0 10 20 30 40 50 60
−25

−20

−15

−10

−5

0

5

10

V
el

oc
ity

 E
rr

or
 D

iff
er

en
ce

 [m
/s

]

Time [s]

MD
PS

(b) Estimated Velocity Errors

0 10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2
x 10

−4

R
oo

t B
al

lis
tic

 C
oe

ffi
ci

en
t E

rr
or

 D
iff

er
en

ce
 [m

−1
/2

]

Time [s]

MD
PS

(c) Estimated Ballistic Coefficient Errors

Figure 5.4: Estimated Trajectory Errors for ε = 0.5: Comparison of Leverage Point
Identification Methods

more: 3.12 and 3.15 times the total computation, respectively. It is not surprising that the Huber–
DD2 filter has the largest cost, because it has the smallest errors for the non-Gaussian case, but it
is interesting to note that the similar levels of accuracy in the non-Gaussian case can be found by
use of the Huber–EKF filter over that of DD2 filter, for only a fraction of the computation time.

The results show that for perfectly Gaussian error distributions the standard DD2 filter exhibits
the lowest estimation error time history, which was the expected outcome based on previously
published results. The DD1 filter exhibited slightly larger estimation errors than that of the EKF.
The filters with the Huber update technique produced larger errors than the standard update,
since the standard form of the update is a the maximum likelihood estimate for the perfectly
Gaussian case. However, for non–Gaussian error distributions, the modified filters with the Huber
update outperformed the standard filters. The modified DD2 filter with the Huber update equation
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Figure 5.5: Estimated Trajectory Errors for ε = 0

Table 5.3: EKF-Relative Computation Ratios
Filter Computation Ratio
H-EKF 1.08
DD1 2.95
H-DD1 3.14
DD2 3.02
H-DD2 3.19

exhibited the smallest errors in the non-Gaussian numerical simulations conducted. The Huber-
EKF and the Huber-DD1 filters were able to mitigate divergence problems in their non-robust
counterparts.
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Figure 5.6: Estimated Trajectory Errors for ε = 0.5

Comparisons of the computational costs associated with each filter show that the Huber–EKF
filter is able to process data at a rate approximately three times faster than the standard DD2
filter, and produces similar accuracy levels in the non–Gaussian case. Therefore, for non-Gaussian
cases, the Huber–EKF filter is superior to the standard DD2 filter. If computation costs are not a
concern for the particular application, then the Huber–DD2 filter exhibits the best performance.

5.2 Adaptive Multiplicative Quaternion Filtering

This section describes the results of the application of the filtering techniques discussed in pre-
vious sections to the spacecraft attitude estimation problem using gyroscopes and star trackers.
The standard Kalman filter, Myers–Tapley adaptive Kalman filter, Huber filter, and the proposed
modified Myers–Tapley adaptive Huber filter are applied to the attitude estimation problem. The
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example includes both Gaussian and non–Gaussian noise densities with unknown statistics.
In this example, the true spacecraft angular velocity is ω = [ ω0 ω0 ω0 ]T , for ω0 = 10−3 rad/s.

The angular velocity is sampled at a rate of 10 Hz, with star tracker updates at a rate of 1 Hz.
Noise samples for the gyroscope and star tracker measurements are drawn from a mixture model
with a probability density function of the form

f(w) =
1− ε√

2π
exp

(
−w2

2

)
+

ε

2b
exp

(
−|w|

b

)
(5.10)

where b = 5/
√

2.
Note that this density is a mixture of a nominal Gaussian with a Laplacian contaminating

density. A comparison of the probability density and distribution functions for the cases ε = 0
(no contamination) and ε = 0.1 (with 10 % contamination) is shown in Fig. 5.7. A comparison of
pure Gaussian with the contaminated Gaussian densities is shown in Fig. 5.7(a), the distribution
functions are shown in Fig. 5.7(b), and a quantile–quantile plot (or QQ plot) in Fig. 5.7(c). From the
density function and distribution function plots it is not entirely obvious that the contaminating
density is in fact non-Gaussian; it appears to have Gaussian characteristics but with a larger
variance. The differences between the two distributions is much more apparent in the QQ plot in
Fig. 5.7(c). A QQ plot is a plot of the scaled ordered data against the quantiles of a comparison
distribution. Since the data are scaled prior to creating the plot, the result is independent of the
variance, rendering only the shape of the distribution to be important. A linear result with unit
slope indicates that the data follows the same distribution as the comparison distribution (the
Gaussian, in this case). The QQ plot of the contaminated Gaussian indicates that the data follows
a roughly Gaussian distribution in the middle ranges but with a greater thickness in the extremes.
This result indicates that the contaminated distribution has a higher probability of generating
extreme points.

The sensor uncertainty specifications are σ2
ω = 2.25 · 10−13 rad2/s, σ2

β = 2.25 · 10−19 rad2/s3,
and σ2

s = 3.81 · 10−8 rad2. It is assumed that the known sensor uncertainties differ from the true
sensor uncertainties by a factor of 50% of the standard deviation. In addition, the star tracker
measurement errors are initially assumed to be uncorrelated in each axis whereas the true errors
are correlated with a correlation coefficient of 0.5 in each axis.

The Huber filter and adaptive Huber filter use an initial value for the tuning parameter of
γ = 1.5. The tuning parameter is specified to be bounded such that 1 ≤ γ ≤ 2 within the adaptive
Huber filter. The adaptive filtering techniques are implemented in such a way that they begin
estimating the noise statistics after 25 samples and store up to a specified maximum threshold of
observations. This maximum threshold is varied in later sections to show the improvements that
can be achieved through larger samples. The adaptive filtering techniques use a value kf = 0.9 to
smooth the covariance and contamination parameters estimates.

5.2.1 Gaussian Simulation

This section describes the results of a 2000 case Monte-Carlo simulation involving pure Gaussian
random errors (ε = 0) with the specified noise variances discussed in the previous section. The
adaptive filtering techniques make use of a maximum buffer size of 100 observations in forming the
estimates of the process and measurement noise covariance matrices.
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Figure 5.7: Comparison of Probability Density and Distribution Functions for ε = 0
and ε = 0.1

The results in the form of root mean square (RMS) errors are shown in Fig. 5.8. The total
attitude angle RMS error is shown in Fig. 5.8(a), the vector norm of the gyroscope bias RMS error
is shown in Fig. 5.8(b). The error in the RMS error prediction of the total attitude angle is shown
in Fig. 5.8(c), and that of the gyroscope bias is shown in Fig. 5.8(d). The (1,1) component of
the star tracker variance estimate RMS error is shown in Fig. 5.8(e), and the RMS error of the
contamination parameter estimate is shown in Fig. 5.8(f). In each case, the Kalman filter results
are shown with the blue curve, the adaptive Kalman filter results are shown with the cyan curve,
and the Huber filter results are shown with the red curve. For the adaptive Huber filter cases, the
filter based on the projection statistics is shown with the magenta curve while that based on the
Mahalanobis distances is shown with the green curve.

In this case, the attitude angle errors are not significantly different between the various tech-
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Figure 5.8: Gaussian Simulation RMS Errors
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niques even though the measurement statistics assumed by the filters are erroneous. The Kalman
and adaptive Kalman filter provide similar performance, slightly superior to the Huber approaches,
which is to be expected since the errors are perfectly Gaussian. The adaptive Huber filters show
slightly better performance than the non–adaptive case. The adaptive Huber filter based on the
Mahalanobis distances performs better than that based on the projection statistics, which is to
be expected since the sample mean and covariance used in computing the Mahalanobis distances
are maximum likelihood estimates for perfectly Gaussian problems. The same trends and relative
performance between filters is shown in the gyroscope bias RMS error.

The comparison of the error predictions in Figs. 5.8(c) and (d) show that the adaptive Kalman
filter outperforms the other filters for both the attitude error prediction and rate bias error predic-
tion. The predicted error estimates of the Huber–based adaptive filters are similar, and superior
to the non–adaptive Huber and Kalman filters. The improved estimates of the attitude and bias
errors for the adaptive filters is to be expected since these filters attain an improved knowledge of
the measurement and process noise covariances. Naturally, the adaptive Kalman filter is superior
since this problem is Gaussian.

The R̃k(1, 1) RMS error results in Fig. 5.8(e) show that the adaptive filters are able to reduce
the error in the assumed measurement statistics. The adaptive Kalman filter shows superior per-
formance than the adaptive Huber filter for this case, which is expected since the errors are purely
Gaussian in nature. For the same reason, the adaptive Huber filter based on the Mahalanobis
distances is superior to that based on the projection statistics. In passing it should be mentioned
that the other components of the measurement and process noise covariance estimates exhibit the
same behavior as the R̃k(1, 1) estimate, and therefore only this one particular quantity is shown as
an example.

Finally, the contamination parameter RMS error shows that the adaptive Huber filter is able
to reduce the error in the assumed contamination parameter by means of the formula based on
the robust weighting parameters in Eq. 3.90. Note that the adaptive Huber filter is the only filter
investigated in this dissertation that can estimate the contamination parameter, which is evident
from the fact that the other filter results show a constant RMS error. In this case, both the Kalman
and adaptive Kalman filter show no error in the contamination parameter estimate, as these filters
implicitly assume the errors are Gaussian and this simulation was conducted with only Gaussian
errors. The Huber filter shows a constant RMS error at the value of the contamination parameter
corresponding to the tuning parameter γ = 1.5. Due to Gaussianity, the adaptive Huber filter
based on the Mahalanobis distances is superior to the filter based on the projection statistics.

5.2.2 Non–Gaussian Simulation

This section describes the results of a 2000 case Monte-Carlo simulation involving non–Gaussian
errors, specifically for the mixture model in Eq. (5.10) with ε = 0.1. The RMS error results
corresponding to this simulation are shown in Fig. 5.9. The adaptive filters again use a buffer size
of N = 100 stored residuals in order to compute the measurement and process noise covariance
matrices.

For this case, the total attitude RMS errors clearly show the superiority of the Huber–based
filtering methods. The adaptive Huber method exhibits the smallest RMS error, followed by the
non–adaptive Huber method. The projection statistics-based adaptive Huber filter is superior
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Figure 5.9: Contaminated Gaussian Simulation RMS Errors
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Table 5.4: Comparison of Identification Techniques for Clustered Outliers
Point Mi Pi

A 24.07 166.53
B 22.15 166.96
C 18.22 126.07

to the filter based on the Mahalanobis distances, due to the non–Gaussianity in this example.
Interestingly, the standard, non–adaptive Kalman filter exhibits smaller errors than that of the
adaptive Kalman filter. This behavior is explored in more detail below. As with the previous case,
the same trends seen in the attitude angle error appear in the gyroscope bias estimate RMS error,
as expected.

The predicted attitude and bias estimate errors show that the adaptive Huber–based filters
are better predictors of the estimation errors than the other filters for the non–Gaussian case. As
expected, the filter based on the projection statistics performs the best for both the attitude and
bias error prediction. Of the non–adaptive filters, the Huber filter exhibits a better error prediction
than the Kalman filter.

The RMS error in the R̃k(1, 1) estimate is quite interesting. Here, the adaptive Huber technique
based on the projection statistics is able to reduce the error associated with the assumed measure-
ment noise covariance, whereas the adaptive Huber filter using the Mahalanobis distances and the
adaptive Kalman technique exhibit an increased error. This increase in the measurement noise error
is the cause of the increased error in the attitude angle estimate as previously noted. Essentially,
the adaptive Kalman technique associates the contaminated measurements with an increase in the
measurement covariance, therefore causing the assumed covariance to inflate in order to account for
the contamination. This covariance inflation is known to cause an increase in the estimation error
due to the fact that all measurements are processed as if they were outliers, receiving less weight,
than a technique that is able to distinguish outlying measurements and weight them accordingly.20

Likewise, the adaptive Huber technique using the Mahalanobis distances suffers from the inherent
limitations of the sample mean and covariance when applied to non-Gaussian problems.

As discussed in the previous section, the only technique described in this dissertation to adap-
tively estimate the contamination parameter associated with the noise densities are the adaptive
Huber-based filters. In the non–Gaussian case, the adaptive Huber filter is successfully able to the
reduce the error in the assumed contamination parameter. However, the results of the filter based
on the projection statistics is far superior to that of the Mahalanobis distances. Essentially, the filter
based on the Mahalanobis distances attempts to find a compromise between the crude covariance
inflation of the adaptive Kalman filter and the Huber filter. The result is that the contamination
parameter estimate error does not improve substantially over that of the non–adaptive Huber filter,
and the covariance estimate inflates slightly but not to the extent of the adaptive Kalman filter.
All other filters assume (explicitly or implicitly) a constant contamination parameter. In the case
of the adaptive and non–adaptive Kalman filters, the contamination is assumed to be zero, thus the
error is constant at 0.1 for this case. The Huber filter error again corresponds to the assumption
leading to the tuning parameter γ = 1.5.

Figure 5.10 shows a scatter plot of the stored measurement residuals from the adaptive Huber
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Figure 5.10: Example of Clustered Outliers in Adaptive Filter

technique, from an arbitrary stopping point in a non-Gaussian simulation, projected into the (2,3)
plane. This sample includes 100 measurement residuals, with several apparent outliers. In particu-
lar, a group of 3 outliers appears in a cluster as indicated in the plot. The Mahalanobis Distances
and Projection Statistics have been computed for this set of residuals, and the values correspond-
ing to the clustered outliers is shown in Table 5.4. Compared with the χ2

3,0.95 = 7.81 threshold,
both methods are able to detect the clustered outliers in this example. However, the Projection
Statistics is not influenced by the clustering and assigns these point much smaller weights than the
Mahalanobis Distances. The Projection Statistics provide a better estimate of the contamination
parameter, giving a value of 0.104, opposed to the estimate based on the Mahalanobis Distances of
0.051, for this set of residuals.

5.2.3 Sensitivity to the Adaptive Filter Buffer Size

The previous two sections have discussed the application of the various filtering techniques to
both Gaussian and non–Gaussian cases, using a maximum buffer size of 100 stored residuals for
the adaptive filters. This section explores the trade off in performance found by using a smaller
buffer size, with the expectation that processing a smaller number of stored residuals reduces the
computational costs of the filter. Additional 2000 case Monte–Carlo studies were conducted for
N = 50 and N = 25 for the cases ε = 0 and ε = 0.1.

Figure 5.11 shows the results of the attitude angle RMS error for each adaptive filter investigated
for this problem. Each subplot shows the result of a particular filter for a range of N for the given
value of ε. For instance, Fig. 5.11(a) shows results for the adaptive Kalman filter for a range of
N and for ε = 0. These results show that, for this particular problem, the buffer size can be
made as low as N = 25 without severe degradation in the filter performance for the attitude error
estimates. It is also interesting to note that the scales are all the same in each subplot in Fig. 5.11,
and the sensitivity of the adaptive Kalman filter can clearly been detected for the ε = 0.1 case
compared with the ε = 0.0 results. Likewise, the insensitivity of the Huber–based approaches is
readily apparent.



5.2. ADAPTIVE MULTIPLICATIVE QUATERNION FILTERING 85

0 100 200 300 400 500

10
−2

10
−1

T
ot

al
 A

tti
tu

de
 A

ng
le

 R
M

S
 E

rr
or

 [d
eg

]

Time [s]

AKF, N=100
AKF, N=50 
AKF, N=25 

(a) Attitude Angle RMS Error: AKF (ε = 0)
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(b) Attitude Angle RMS Error: AKF (ε = 0.1)
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(c) Attitude Angle RMS Error: AHF–MD (ε = 0)
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(d) Attitude Angle RMS Error: AHF–MD (ε = 0.1)
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(e) Attitude Angle RMS Error: AHF–PS (ε = 0)
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(f) Attitude Angle RMS Error: AHF–PS (ε = 0.1)

Figure 5.11: Attitude Angle RMS Errors for Varying Buffer Size
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(a) R̃k(1, 1) RMS Error: AKF (ε = 0)
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(b) R̃k(1, 1) RMS Error: AKF (ε = 0.1)
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(c) R̃k(1, 1) RMS Error: AHF–MD (ε = 0)
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(d) R̃k(1, 1) RMS Error: AHF–MD (ε = 0.1)
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(e) R̃k(1, 1) RMS Error: AHF–PS (ε = 0)
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(f) R̃k(1, 1) RMS Error: AHF–PS (ε = 0.1)

Figure 5.12: R11 RMS Errors for Varying Buffer Size
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(a) Contamination Parameter RMS Error (ε = 0)
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(b) Contamination Parameter RMS Error (ε = 0.1)

Figure 5.13: Contamination Parameter RMS Errors for Varying Buffer Size

Figure 5.12 shows the R̃k(1, 1) RMS errors for the adaptive filters for a range of N for both
Gaussian and non–Gaussian cases. Differences are apparent in the filter performance depending
on the type of filter and the parameter N , which controls the amount of data used in the adaptive
filters for estimating the covariance matrices. In all cases, the R11 RMS error decreases as the
parameter N is increased.

Figure 5.13 shows the contamination parameter estimates for the Huber filters based on the
Mahalanobis Distances and the Projection Statistics. These results show interesting behavior in
estimates based on the Mahalanobis distances in that they are actually more accurate for smaller
sample sizes in the case of no contamination. This effect implies that the Mahalanobis distances
tend to be optimistic regarding the contamination in small samples. This phenomenon is another
well known limitation of the Mahalanobis distances: the small sample Mahalanobis distances tend
to regard the entire sample as Gaussian, thus setting a lower contamination ratio, which in the
Gaussian case leads to a lower error level.116 In the non–Gaussian case, the opposite trend occurs
and the error increases since the true distribution has nonzero contamination. The estimates based
on the projection statistics are not as accurate for Gaussian cases but they do follow the expected
trends of increasing accuracy with an increasing buffer size. In the small sample case (N=25)
without contamination, the projection statistics tend to over predict the ratio of contamination.

5.2.4 Computational Costs

Based on the results shown in the previous section, the Huber–based filtering methods show a clear
advantage over traditional Kalman filter methods when applied to contaminated Gaussian measure-
ment distributions. In the Gaussian case, the Huber–based methods do not suffer appreciably from
any kind of mistuning associated with incorrect assumptions regarding the true underlying statistics
of the problem. This section compares the computational costs associated with the Huber–based
approaches compared with the Kalman filtering techniques. Table 5.5 shows the computational
costs for each filter discussed in this dissertation. Here, the computational time is divided by
that corresponding to the standard Kalman filter in order to provide a relative comparison of the
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Table 5.5: Relative Computation Ratios
Filter Nonadaptive N=25 N = 50 N = 100
Kalman Filter 1.00 – – –
Adaptive Kalman Filter – 1.13 1.16 1.24
Huber Filter 1.33 – – –
Adaptive Huber Filter (Mahalanobis Distances) – 1.75 1.89 2.15
Adaptive Huber Filter (Projection Statistics) – 2.86 4.29 7.18

computational burden associated with the particular filter.
For this problem, the adaptive Kalman filter and the Huber filter are comparable in compu-

tational cost relative to the standard Kalman filter. The adaptive Huber filters proposed in this
dissertation require more computation, well beyond that of the adaptive Kalman filter or the non-
adaptive Huber filter as can be seen from Table 5.3. As expected, the computation associated
with the adaptive filters is reduced as the buffer size reduced. Note that the computational cost
of the filter based on the projection statistics is reduced at a higher rate than the filter based on
the Mahalanobis distances. The adaptive Huber filter based on the projection statistics has good
properties when applied to contaminated Gaussian distributions, however, one must trade off the
computational costs to determine the feasibility of implementing the technique for any particular
application.

5.3 Attitude Filtering Using Modified Rodrigues Parameters

This section describes an example problem that illustrates the MRP–based estimation techniques
using the shadow set transformation for singularity avoidance. In this problem, consider a spacecraft
rotating with an angular velocity of 1 deg/s about the body z-axis over a period of 1000 s. The
simulation parameters are shown in Table 5.6. The true principal rotation angle and true MRP time
history are shown in Fig. 5.14. Note that there are several shadow set transformations apparent in
Fig. 5.14(b) in order to keep the MRP value within the unit sphere.

The results of a 2000 case Monte-Carlo simulation are shown Fig. 5.15. Figure 5.15(a) shows the
root mean square (RMS) total attitude angle error and Fig. 5.15(b) shows RMS of the norm of the
gyroscope bias estimate error. The Monte-Carlo simulations involve five filtering techniques: a stan-
dard Quaternion Multiplicative Extended Kalman Filter (QM-EKF),87 a Quaternion Constrained
Extended Kalman Filter (QC-EKF),90 an extended Kalman filter based on the MRP formulation
discussed in this dissertation (MRP-EKF), and first and second–order divided difference filters
using the MRP formulation (MRP-DD1 and MRP-DD2, respectively). In these plots, the RMS
errors of the filters are shown in the solid curves while the predicted RMS error based on the filter
covariance matrix are shown in the dashed curves. In this case, the QM–EKF and the MRP–EKF
exhibit nearly the same overall performance. This result is not a surprise because both filters in-
volve similar first–order approximations of the state dynamics and measurement noise. However,
it can be seen in the detailed plot over the first 50 s of the simulation, Fig. 5.15(c) and (d), that
the MRP–EKF converges faster than the QM–EKF to the steady state error level. This enhanced
convergence rate is due to the fact that the MRP formulation does not require a linearization in
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Figure 5.14: True Principal Rotation Angle and MRPs

Table 5.6: Simulation Parameters
Variable Value
Gyroscope Sample Rate 10 Hz
MRP Sample Rate 1 Hz
σ2

ω 10−13 rad2/s
σ2

β 10−15 rad2/s3

σ2
s 7.16·10−5 rad2

P̂ σσ0 diag
([

0.0122 0.0122 0.0122
])

rad2

P̂ ββ0 diag
([

2.35 2.35 2.35
]) · 10−9 rad2/s2

P̂ σβ0 0 rad2/s
σ0

[
0 0 0

]T
rad

β0

[
0 0 0

]T
rad/s

order to enforce the quaternion norm constraint. Similarly, the QC–EKF converges to the steady
state error faster then the QM–EKF over all, though its initial convergence rate is slower. The
MRP–DD1 filter does not meet the same level of performance as that of the MRP–EKF case. This
result is not particularly bothersome since the DD1 filter performance is usually worse than that
of the EKF as seen in Refs. 79, 80 and 134. The MRP–DD2 filter exhibits the best performance
overall, which is to be expected since it is a second–order filter and as a result can better capture the
system nonlinearities. The uncertainty predictions based on the covariance matrix do not match
the actual RMS for any of the filter results. The uncertainties can be tuned to better match the
actual performance either offline or by using an adaptive approach to estimate the process noise
covariance.66

As discussed in earlier sections, the MRP switching condition can occur for any value of σr ≥ 1.
Figure 5.16 shows the estimator performance for values of σr ranging from 1 to 1000. The results are
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(a) Attitude Angle Estimation Error
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(b) Gyroscope Bias Estimation Error

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

Time [s]

A
tti

tu
de

 E
rr

or
 [d

eg
]

 

 

QM−EKF RMS Error
QM−EKF RMS Prediction
QC−EKF RMS Error
QC−EKF RMS Prediction
MRP−EKF RMS Error
MRP−EKF RMS Prediction
MRP−DD1 RMS Error
MRP−DD1 RMS Prediction
MRP−DD2 RMS Error
MRP−DD2 RMS Prediction

(c) Attitude Angle Estimation Error (Detail)

0 10 20 30 40 50
10

−1

10
0

10
1

10
2

10
3

10
4

Time [s]

G
yr

o 
B

ia
s 

E
rr

or
 [d

eg
/h

r]

 

 

QM−EKF RMS Error
QM−EKF RMS Prediction
QC−EKF RMS Error
QC−EKF RMS Prediction
MRP−EKF RMS Error
MRP−EKF RMS Prediction
MRP−DD1 RMS Error
MRP−DD1 RMS Prediction
MRP−DD2 RMS Error
MRP−DD2 RMS Prediction

(d) Gyroscope Bias Estimation Error (Detail)

Figure 5.15: Comparison of MRP-based filters and Quaternion–based filter

shown only for the EKF formulation of the MRP attitude filter. Clearly the estimator performance
degrades as the switching surface grows in magnitude, and it can be inferred from the results
that the limiting case σr → ∞ leads to infinite estimation error since the MRP is reaching the
neighborhood of the singularity. Similar trends occur for the DD1 and DD2 formulations. Based
on these results there does not seem to be any benefit for using a MRP switching surface greater
than the unit sphere but for some particular applications it may be preferable to do so. Having a
general MRP covariance switching solution, however, also use to switch at any time where ‖σ‖ > 1.
It is not required to intercept the ‖σ‖ = 1 surface precisely, making the numerical implementation
far easier.

Previous applications of the MRP singularity avoidance based on the shadow set transformation
have neglected the covariance mapping associated with the transformation. Fig. 5.17 shows a
comparison of the MRP–based EKF with and without the covariance transformation to illustrate
the issues associated with neglecting the transformation. At the first switching point a sharp bend
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Figure 5.16: Comparison of MRP-based filter with varying σr
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Figure 5.17: Comparison of MRP-based filter with and without the covariance trans-
formation

can clearly be seen in the case without the covariance transformation after which the estimator
performance is degraded relative to the case that includes the proper covariance transformation.
This bend is due to the fact that elements of the covariance matrix must change sign during the
shadow mapping since the MRP state representation changes sign during the mapping. Therefore
the estimates that neglect the covariance transformation develop systematic error and are no longer
optimal. The results are shown only for the EKF–based filter, similar behavior is found for the
DD1 and DD2 filters.

Table 5.7 shows a comparison of the computational costs of each filter applied to this prob-
lem. The mean computation time is calculated for each Monte-Carlo set and then divided by the
QM–EKF time to provide a relative cost comparison ratio. Also the standard deviation of the com-
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Table 5.7: Computational Cost
Filter Mean Computation Time Standard Deviation
QM–EKF 1.000 0.015
QC–EKF 1.089 0.029
MRP–EKF 0.977 0.024
MRP–DD1 10.795 0.316
MRP–DD2 11.062 0.274

putation times are provided to show the confidence intervals. The MRP–based EKF formulation
described in this dissertation requires slightly less computation on average than the quaternion–
based EKF. These cost savings are consistent with the results of Ref. 152, which found a reduced
computation using the Rodrigues parameters for attitude estimation compared with the quaternion
filter. The DD1 and DD2 filters require roughly the same computational cost which is consistent
with Ref. 134. In this case the divided difference filters are each about an order of magnitude more
expensive than the EKF.

5.4 Rendezvous Navigation in Elliptical Orbit

5.4.1 Overview and Simulation Setup

This section described the application of the robust/adaptive filtering algorithms to the problem of
6-DOF rendezvous navigation and control in elliptical orbit. Here, the navigation filters are used
“real–time” inside the control loop as state observers. The previous examples have considered only
open loop estimation problems where the state estimator does not interact with the dynamics of
the problem.

The specific example discussed in this section involves terminal rendezvous maneuver in a 15km
by 75km altitude lunar orbit. This orbit is typical of intermediate phasing orbit during ascent from
the lunar surface. Hypothetically, the lunar ascent vehicle could have failed, leaving it stranded
in such an orbit. Therefore, a CEV/Orion-like vehicle must maneuver from a circular parking
orbit, typically 100km altitude, to rendezvous with the lunar ascent vehicle. This problem assumes
that the midcourse maneuvering and phasing has already been accomplished such that the initial
conditions of the maneuvering vehicle are 1km behind the target vehicle in the in-track direction.
The rendezvous trajectory begins with a constant closure rate from 1km to 100m over a duration of
half an orbital period (in this problem, one orbital period is approximately 113 minutes). At this
point, the vehicle is commanded to execute a circumnavigation of the target vehicle at a constant
range of 100m over one orbital period. Finally, the vehicle executes a glideslope maneuver using
a Space Shuttle–based exponentially decaying range rate guidance scheme170 with decay rate of
0.2% over a time span of half an orbital period. These guidance commands are shown in Fig. 5.18.
Attitude commands are generated as discussed in Sec. 4.6.2, in which commands are given such
that the vehicle remains pointed at the target throughout the maneuver. In a nominal scenario
with no out of plane motion, the attitude commands are purely in the pitch plane, resulting in
MRP and MRP-rate commands shown in Fig. 5.19. Note that the MRPs are used exclusively
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for the attitude representation in this problem, making use of the singularity avoidance methods
discussed in Sec. 4.3.1.3 for globally non-singular attitude estimation. The guidance commands
are generated at a rate of 4 Hz. The control laws and navigation filter update rates are at 4 Hz.
The inertial navigation sensors operate at 20 Hz. The controller gains are computed according to
the H∞ development discussed in Sec. 4.6. The translational gains are computed using the state
error weighting matrix Ct =

(
103

)
I and the rotational gains are computed using Cr = I, with

kv = 1 s−2. In both cases, the H∞ performance bound is set to κ = 5. Control force and torque
limits were set to 1779.2 N and and 5337.6 Nm, respectively.

The nominal vehicle mass properties correspond to a total mass of 1.1·105 kg with inertia tensor
given by

I = 104 ·



2.9441 0.0368 0.3680
0.0368 3.6801 0.0074
0.3680 0.0074 3.6801


 kg ·m2 (5.11)

Monte-Carlo simulations have been conducted for this problem for several different navigation
filters. In particular, the extended Kalman filter and first and second order divided difference
filters, including Huber implementations, Myers–Tapley adaptive implementations, and combined
Huber–Myers–Tapley adaptive filtering methods. Results are shown in the following subsections
for both Gaussian and non-Gaussian cases.

5.4.2 Gaussian Simulation

Rendezvous simulation conducted with pure Gaussian errors are described in this section. The
initial conditions of the maneuvering vehicle are at the time of perilune passage of the target
vehicle and are provided in Table 5.8. Table 5.8 shows the true value of the initial conditions, the
estimate of the initial conditions for filter initialization, and the components of the initial variance
matrix for filter initialization. The initial state errors are uncorrelated in this simulation. The
vehicle mass properties are dispersed by multiplying the total mass by a Gaussian random variable
with standard deviation of 0.5% and a inertia tensor uncertainty by the mass multiplier coupled
with a uncorrelated random axis uncertainty with 0.5 deg standard deviation in yaw-pitch-roll Euler
angles.

The navigation sensor uncertainties are summarized in Table 5.9, which shows the measurement
standard deviations for the gyro parameters (ηω and ηβ), the accelerometer errors (ηa and S), the
rendezvous lidar sensor errors (%, α, ε, and δσ), the star tracker errors (δσI) and the orbit sensor
errors (r0 and θ0). For this simulation, the errors are cast as uncorrelated Gaussian random
numbers with standard deviations given in Table 5.9. The filter measurement noise and process
noise matrices are set according to the sensor errors in Table 5.9 without error in the assumed values.
In this simulation, the accelerometer scale factor errors are not modeled in the filter formulation
as state variables in order to provide a mismatch between the true measurements and the modeled
measurements in the filter.

Figures 5.20–5.22 show the results of 100 Monte-Carlo cases involving Gaussian errors. In these
cases, the navigation system is operating in pure-inertial mode, in which no measurement data
are processing in the navigation filter to improve accuracy and reduce the drift inherent in inertial
navigation systems. Figure 5.20 shows the position and velocity RMS error, Fig. 5.21 shows the
attitude and gyro bias RMS errors, and Fig. (5.22) shows the orbital position and velocity RMS
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Table 5.8: Initial Conditions
Initial State Mean Standard Deviation

ρ(0), km 1.0 0.005
θ(0), deg 180.0 0.25
φ(0), deg 0.0 0.25

ρ̇(0), m/sec -0.266 0.05
θ̇(0), deg/sec 0.0 0.003
φ̇(0), deg/sec 0.0 0.003

σ1, rad 0.0 0.0175
σ2, rad 0.0 0.0175
σ3, rad 0.0 0.0175

β1, deg/hr 0.0 1.0
β2, deg/hr 0.0 1.0
β3, deg/hr 0.0 1.0

r0, km 1753.1 0.01
θ0, deg 0.0 0.001
ṙ0, m/s 0.0 1.0 · 10−5

θ̇0, deg/s 9.619 · 10−5 1.0 · 10−5

Table 5.9: Sensor Specifications
Measurement Standard Deviation

ηω, deg/s 1.8 · 10−5 I

ηβ, deg/s2 1.8 · 10−8 I

ηa, m/s2 0.1 I

S, ppm 500
%, m 0.1

α, deg 0.05
ε, deg 0.05

δσ, deg 0.05 I

δσI , deg 0.05 I

r0, m 0.1
θ0, deg 3.3 · 10−5
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errors. These figures clearly indicate that the rendezvous maneuver cannot be accomplished without
processing measurement data in the filter due to the large buildup of error in the navigation solution.

Figures 5.23–5.28 show the RMS error results of the Gaussian simulation involving the use of
several navigation filters for processing measurement data to aid the pure inertial solution. Results
are shown from the first and second order divided difference filters (DD1 and DD2), including
Huber implementations (H-DD1 and H-DD2), Myers–Tapley adaptive implementations (A-DD1
and A-DD2), and combined Huber–Myers–Tapley adaptive filtering methods (AH-DD1 and AH-
DD2). The adaptive filters use a buffer size of 500 samples in the procedures to estimate the
measurement and process noise covariances. Results from the Extended Kalman Filter approaches
are essentially identical to the first–order divided difference filtering approaches, both being first-
order filters, and therefore are omitted from the RMS error plots in an effort to keep the results
clear. In Figures 5.23–5.28, the DD1 results are shown with the blue curve, the DD1 results with
the red curve, the H-DD1 results in cyan, the H-DD2 results in magenta, the A-DD1 results in
green, and A-DD2 results in yellow, the AH-DD1 results in the solid black curve, and the AH-DD2
results in the dashed black curve.

Figure 5.23 shows the position RMS error results. The left column shows the actual RMS error
plots for the position variables ρ, θ, and φ while the right column shows the predicted RMS errors
based on the filter covariance matrix. Although the differences between the performance various
filters in this case is small, it is possible to discern a slightly better performance in the Gaussian-
based filters such as the DD1 and DD2. Note in this simulation that the measurement and process
noise cases were initialized without error. Therefore, the adaptive filters do not perform as well
as the non-adaptive filters since their measurement and process noise covariances are not exact
estimates due to the finite sample sizes used in the buffering technique.

The predicted RMS error results show the trend that the adaptive Gaussian filters (A-DD1
and A-DD2) exhibit the smallest error prediction. This trend is due to the adaptive tuning of the
filter in real time, which has the effect of reducing the state covariance matrix. This reduction is
erroneous however, since the actual RMS error results are higher due to the introduction of error
into the measurement and process noise covariances. The Huber–based filters (H-DD1 and H-DD2)
correctly predict that the RMS error should be higher than the other filters. The adaptive Huber
filters (AH-DD1 and AH-DD2) have a slightly lower RMS error prediction than the non-adaptive
Huber filters due to the adaptive tuning.

The actual RMS error and predicted RMS error results for the velocity variables ρ̇, θ̇, and φ̇ is
shown in Fig. 5.24. As in the position plots, the actual RMS error from the Monte-Carlo simulation
is shown on the left column and the predicted RMS error is shown in the right column. As expected,
the velocity performance trends between the various filters matches with the position performance
trends.

The MRP attitude RMS errors are shown in Fig. 5.25. As in the previous results, the differences
between the various filters is small yet it can be seen that the Gaussian filters perform slightly better
than their non–Gaussian counterparts. In particular the adaptive filters tend to under predict the
accuracy of the attitude solution. The adaptive DD1 filters exhibit the lowest RMS predictions,
which is consistent with recent analytical results that conclude that the DD1 filter can produce
overly optimistic covariance estimates.171 The MRP shadow set switching point for the singularity
avoidance can be seen in the RMS error prediction plots at the time of approximately 1.9 hrs. The
rate bias estimate RMS errors are shown in Fig. 5.26. Expectedly, the rate bias RMS trends follow
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the MRP attitude RMS error trends.
The RMS errors of the reference orbit position estimates are shown in Fig. 5.27, and those for

the orbit velocity estimates are shown in Fig. 5.28. These results follow similar trends observed in
the relative position, velocity, and attitude estimates.

Figure 5.29 shows a comparison of results for the adaptive filters investigated in this study.
Figure 5.29(a) shows the RMS estimation error of the (1,1) component of the measurement noise
covariance matrix, which corresponds to the range measurement from the lidar sensor. Here, the A-
DD2 exhibits the best performance, which is expected since the errors are purely Gaussian and since
the DD2 filter has the benefits of capturing second–order terms in the state covariance estimates.
The Huber–based estimates exhibit higher errors due to the reduced statistical efficiency of the
projection statistics algorithm for purely Gaussian errors. Similarly, the RMS error of the (5,5)
component of the measurement noise covariance matrix is shown in Fig. 5.29(b). This element
corresponds to an inertial star tracker MRP measurement. The A-DD1 and A-DD2 estimates
of this parameter are nearly identical, with both estimates being superior to the Huber–based
estimates. Figure 5.29(c) shows the (1,1) component of the process noise covariance estimate. In
this case differences between the various adaptive filters is not as obvious, thought the A-DD2 filter
shows slightly better performance than the others. Figure 5.29(d) shows the results of estimating
the contamination parameter in the Huber–based adaptive filters. Here, both filters AH-DD1 and
AH-DD2 are able to reduce the error in the assumed contamination parameter.

Finally, the closed-loop system performance results are shown in Fig. 5.30. These plots show
the true position and attitude RMS error results in the left and right columns, respectively. The
relative performance of the system is not significantly different between the various filters, although
Gaussian filters DD1 and DD2 show slight improvement. This result is expected since the errors
are purely Gaussian and the filters have perfect knowledge of the measurement and process noise
covariance matrices.

To summarize the results of the Gaussian simulation, the overall trends follow the expectation
that the Gaussian DD1 and DD2 filters should have the best overall performance since the errors
in the simulation are purely Gaussian and these filters have perfect knowledge of the measurement
and process noise covariance matrices. However, the differences between the various filters is fairly
small, implying that for the benign Gaussian case the navigation filters are almost identical in
overall performance.
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Figure 5.18: Translational Guidance Commands
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Figure 5.19: Attitude Guidance Commands
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Figure 5.20: Pure Inertial Navigation Results: Position and Velocity
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Figure 5.21: Pure Inertial Navigation Results: Attitude and Rate Bias
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Figure 5.22: Pure Inertial Navigation Results: Orbit
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Figure 5.23: Gaussian Simulation Results: Position
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Figure 5.24: Gaussian Simulation Results: Velocity
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Figure 5.25: Gaussian Simulation Results: Attitude
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Figure 5.26: Gaussian Simulation Results: Rate Bias
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Figure 5.27: Gaussian Simulation Results: Orbit Position
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Figure 5.28: Gaussian Simulation Results: Orbit Velocity
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Figure 5.29: Gaussian Simulation Results: Covariance and Contamination
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Figure 5.30: Gaussian Simulation Results: Closed–Loop System Performance
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5.4.3 Non-Gaussian Simulation

This section describes the results of Monte-Carlo simulations conducted for the same rendezvous
scenario as described in the previous section, but with non-Gaussian noise components. In this
case, the noise samples are drawn from a Gaussian mixture model with 15% contamination from
the higher variance distribution. In an effort to stress the filters, the standard deviations of the
primary Gaussian density of the mixture model were set to ten times the values provided in Ta-
ble 5.9, with the contaminating densities an additional five times higher. Additionally, the true
standard deviations are scaled according to a uniform distribution to be up to twice as high as the
assumed standard deviations in the navigation filter, and uniform random correlation coefficients
were assigned to the true errors on each run. The mean initial conditions of this simulation is
the same as that given in Table 5.8, but the true random initial errors are generated according
to a randomly correlated covariance matrix with standard deviations set to ten times the value in
Table 5.8.

The RMS errors of the position variables are shown in Fig. 5.31. As in the previous section,
the actual RMS errors calculated from the Monte-Carlo simulation are shown in the left column
whereas the mean predicted RMS errors based on the state covariance matrix are shown in the right
column. In this non-Gaussian problem, the differences between the various filters becomes much
more apparent. In particular the non-robust filters suffer greatly from the contamination present
in this simulation. In the range variable ρ, the DD1 filters shows the worst overall performance,
closely followed by the DD2 filter. Interestingly, the A-DD1 filters exhibits large errors over the
first 0.5 hrs of the simulation before finally settling to the steady state error. The A-DD2 filter
benefits from the inclusion of second-order terms in the system and measurement dynamics and
as a result, does not exhibit the large initial errors. The A-DD2 shows similar performance to the
the Huber-based filters, H-DD1 and H-DD2, which are nearly identical in this problem, with the
differences between these two filters being comparable to the differences between the Gaussian DD1
and DD2 filters, though the RMS errors are smaller by roughly 25%. The best performing filters
are the AH-DD1 and AH-DD2 filters, which are essentially identical in this variable. The predicted
RMS errors show that the Gaussian filters DD1 and DD2 produce highly optimistic error estimates,
having the smallest error predictions yet the largest actual RMS error. The non-adaptive Huber
estimates, H-DD1 and H-DD2, correctly show slightly larger error estimates. The adaptive filter
A-DD1 has large initial error estimates, which correctly reflect the large actual errors although the
magnitudes are quite different, with the predicted error being much smaller in magnitude. The A-
DD2, AH-DD1, and AH-DD2 filters produce the most accurate error predictions in this particular
variable. These same trends can be observed in the other position variables θ and φ, as shown in
Fig. 5.31, as well as the velocity variables shown in Fig. 5.32.

The MRP attitude RMS error components are shown in Fig. (5.33). Here the DD1 filter exhibits
large attitude errors over the first hour of the simulation. The DD1 filter also has poor covariance
performance in the sense that the actual attitude errors are large yet the predicted errors are the
smallest of all the filters implemented for this example. The A-DD1 and A-DD2 filters also exhibit
large errors but for the most part they are superior to the DD1 filter. The robust AH-DD2, AH-
DD1, H-DD2, and H-DD1 filters exhibit the best attitude estimation performance. The adaptive
filters have higher covariance estimates which better match the actual filter performance. These
same trends and relative performance comparisons are also evident in the rate bias estimation errors
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shown in Fig. (5.34).
The reference orbit position estimates are shown in Fig. (5.35). Here the A-DD1 and DD1

filters exhibit the worst overall performance. The adaptive Huber–based filters AH-DD1 and AH-
DD2 filters perform the best. The nonadaptive Huber–based filters H-DD1 and H-DD2 have similar
performance to the adaptive counterparts but with slightly higher errors. The H-DD2 and AH-DD2
filters reach their steady state errors much more rapidly than the other filters due to the inclusion
of second–order terms in the filter. This behavior is even more apparent in the velocity components
shown in Fig. (5.36).

Results of the covariance and contamination estimation for the adaptive filters are shown in
Fig. (5.37). The same covariance elements are chosen for comparison here as in the Gaussian
simulation results shown in Fig. (5.29), namely the (1,1) and (5,5) element of the measurement
covariance matrix, the (1,1) element of the process noise covariance matrix, and the contamination
parameter estimate. The RMS errors in these plots indicate that the A-DD1 filter has relatively
inaccurate covariance estimates over the first 0.5 hrs of simulation time for range measurement
error and the range process noise. Once converged to its steady state error level the magnitudes
remain higher than the A-DD2 filter, which is expected since the A-DD2 filter has the benefit of
second-order terms in the process and measurement transformations. The AH-DD1 and AH-DD2
filters are nearly identical in performance with the AH-DD2 filter performing slightly better.

The closed-loop system performance results are shown in Fig. (5.38). Here it can be seen that
the DD1, DD2, A-DD1, and H-DD1 filter results have poor performance and essentially diverge in
the presence of the non-Gaussian noise. The A-DD2 filter also gives erratic performance, which is
more apparent in the attitude response. The H-DD2, AH-DD1, and AH-DD2 filters exhibit the
best performance and are essentially able to successfully execute the rendezvous maneuver even
in the presence of a high degree of non-Gaussian noise with uncertain statistics. This result is
interesting since the H-DD2 filter is non-adaptive it is still better able to cope with the errors than
the other filters investigated in this study.
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Figure 5.31: Non-Gaussian Simulation Results: Position



5.4. RENDEZVOUS NAVIGATION IN ELLIPTICAL ORBIT 113

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

Time [h]

(d
/d

t)
 ρ

 R
M

S
 E

rr
or

 [c
m

/s
]

 

 

DD1
DD2
H−DD1
H−DD2
A−DD1
A−DD2
AH−DD1
AH−DD2

(a) ρ̇ RMS Error

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

Time [h]

(d
/d

t)
 ρ

 1
−σ

 E
rr

or
 P

re
di

ct
io

n 
[m

m
/s

]

(b) ρ̇ RMS Error Prediction

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

(d
/d

t)
 θ

 R
M

S
 E

rr
o

r 
[d

eg
/s

]

(c) θ̇ RMS Error

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

(d
/d

t)
 θ

 1
−σ

 E
rr

or
 P

re
di

ct
io

n 
[m

de
g/

s]

(d) θ̇ RMS Error Prediction

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

(d
/d

t)
 φ

 R
M

S
 E

rr
o

r 
[m

d
eg

/s
]

(e) φ̇ RMS Error

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [h]

(d
/d

t)
 φ

 1
−σ

 E
rr

or
 P

re
di

ct
io

n 
[m

de
g/

s]

(f) φ̇ RMS Error Prediction

Figure 5.32: Non-Gaussian Simulation Results: Velocity
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Figure 5.33: Non-Gaussian Simulation Results: Attitude
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Figure 5.34: Non-Gaussian Simulation Results: Rate Bias
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Figure 5.35: Non-Gaussian Simulation Results: Orbit Position
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Figure 5.36: Non-Gaussian Simulation Results: Orbit Velocity
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Figure 5.37: Non-Gaussian Simulation Results: Covariance and Contamination



5.4. RENDEZVOUS NAVIGATION IN ELLIPTICAL ORBIT 119

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

Time [h]

ρ c T
ra

ck
in

g
 E

rr
o

r 
[k

m
]

(a) ρc RMS Error

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

Time [h]

σ 1 c T
ra

ck
in

g 
E

rr
or

 [m
ra

d]

 

 

DD1
DD2
H−DD1
H−DD2
A−DD1
A−DD2
AH−DD1
AH−DD2

(b) σ1c RMS Error

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

Time [h]

θ c T
ra

ck
in

g
 E

rr
o

r 
[m

ra
d

]

(c) θc RMS Error

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

Time [h]

σ 2 c T
ra

ck
in

g
 E

rr
o

r 
[m

ra
d

]

(d) σ2c RMS Error

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

Time [h]

φ c T
ra

ck
in

g
 E

rr
o

r 
[m

ra
d

]

(e) φc RMS Error

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

Time [h]

σ 3 c T
ra

ck
in

g
 E

rr
o

r 
[m

ra
d

]

(f) σ3c RMS Error

Figure 5.38: Non-Gaussian Simulation Results: Closed–Loop System Performance
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Table 5.10: Computational Time Comparisons
Filter EKF DD1 DD2

Kalman 1.000 1.938 2.124
Huber-Kalman 1.066 2.086 2.272

Adaptive-Kalman 1.526 2.302 2.526
Adaptive-Huber-Kalman 2.961 4.330 4.659

5.4.4 Computational Comparisons

The relative computational costs of the various filters is provided in Table 5.10. Here, the median
computational time is computed for each filter and then normalized by the EKF median compu-
tational time to provide a relative cost comparison. The trends observed follow closely with those
provided in previous sections. In particular, the DD1 and DD2 filters cost roughly twice that of the
EKF. The DD2 filter costs only slightly more than the DD1 filter. The Huber-based filters each cost
roughly 7% more than the standard Kalman implementations. In the adaptive case, the adaptive
Huber filters cost roughly 80% more than the standard Myers-Tapley adaptive implementations.

5.4.5 Summary

In summary, this section provided numerical examples of the robust/adaptive filters applied to
the elliptical orbit rendezvous problem for both Gaussian and non-Gaussian noise cases. In the
Gaussian case, the performance of the robust filters was found to be nearly the same as that
of the standard Kalman type implementations. For the non-Gaussian case, however, the robust
filters performed considerably better than the Kalman implementations. The closed-loop system
performance results indicate that the DD1, DD2, A-DD1, A-DD2, and H-DD1 filters produced poor
rendezvous maneuvering results whereas the H-DD2, AH-DD1, and AH-DD2 filters were able to
perform much more successfully. The performance of the H-DD2 filter is especially interesting since
it is able to successfully navigate even with erroneous assumed values of the noise statistics and
is able to do so with a lower computational cost. The adaptive-Huber filters do provide the extra
capabilities to estimate the noise statistics and contamination levels which, aside from robustness
considerations, are of interest for sensor performance evaluation and depending on the application
the extra computational costs may be deemed worthwhile.



Chapter 6

Conclusions

This dissertation discusses the development of an adaptive discrete-time robust filtering technique
based on a recursive form of Huber’s mixed minimum `1/`2 norm approach, which is robust with
respect to deviations from the assumed Gaussian error probability distributions inherent to the
Kalman filter. The recursive estimation procedures are developed by recasting the discrete-time
filtering problem into the form of a linear regression between the state prediction and the observed
quantity, to be solved at each measurement update. The robust estimation approach is developed
and applied to both the standard Extended Kalman Filter as well to the First and Second–Order
Divided Difference Filter framework, which is an example of a relatively new class of nonlinear filter
called the Sigma-Point Kalman Filter. The research described in this dissertation marks the first
instance of Huber’s robust estimation technique to nonlinear filters of this type.

Additionally, adaptive schemes based on generalized covariance matching is introduced whereby
the filter can estimate the process noise and measurement noise covariance matrices along with the
state estimate and state estimate error covariance matrix using a buffer of stored residuals. The
adaptation technique adopts a robust approach to estimating these covariances that can resist the
effects of outliers, based on the use of projection statistics, which have been previously developed
for robust outlier identification as generalizations of the classical Mahalanobis distance measures
but have not been applied to the adaptive state estimation problem in such a manner before.

The robust filters were applied to several benchmark problems, including the estimation of the
trajectory of an entry body from discrete–time, noisy range measurement data provided by a radar
tracking system and the Multiplicative Quaternion attitude estimation problem. The simulations
are conducted using Monte–Carlo techniques with both Gaussian and non–Gaussian error distri-
butions in order to asses the performance of the filtering techniques. The results show that the
proposed adaptive Huber filer can achieve greater accuracies than the Kalman filter in situations
where unexpected non–Gaussian contaminating noise is present. The amount of improvement de-
pends on the ratio of contamination but for the case of the 10% contamination, the adaptive Huber
technique can improve accuracies of the Kalman filter by 50% or better. Furthermore, the adaptive
Huber-based filters can successfully estimate the noise covariances in the non-Gaussian case as well
as the contamination ratio whereas the adaptive Kalman filter is not capable of doing so. Therefore,
the adaptive Huber filter has better consistency and is self–tuning.

Next, the hybrid robust/adaptive filtering approaches were applied to the 6 degree of freedom
elliptical orbit rendezvous problem. In this problem, the navigation filters are used “real–time”
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inside the control loop as state observers whereas the previous examples have considered only open
loop estimation problems where the state estimator does not interact with the dynamics of the
problem. The full nonlinear equations of relative motion are formulated in spherical coordinates
centered on the target orbit. A relatively simple control law based on feedback linearization is used
to track a desired rendezvous trajectory. The attitude dynamics are parameterized using Modified
Rodrigues Parameters, which are advantageous for both control law development and estimation
since they constitute a minimal 3-parameter attitude description. A switching technique which
exploits the stereographic projection properties of the MRP coordinate is utilized to avoid singu-
larities which inevitably arise in minimal attitude descriptions. This dissertation also introduces the
proper covariance transformations associated with the singularity avoidance switching technique,
which provides a novel means for globally non-singular attitude estimation with a minimal attitude
description. An attitude control law based on backstepping is employed to track the target vehicle.

A sensor suite consisting of a generic lidar or optical sensor, an Inertial Measurement Unit,
consisting of accelerometers and gyroscopes, a star tracker, and a horizon sensor are utilized to
provide measurement data to the navigation filters so that the chaser vehicle can estimate its
relative state during the rendezvous maneuver. Several filters will be implemented for comparison,
including the Extended Kalman Filter, First and Second–Order Divided Difference Filters and
Huber–based generalizations of these filters that include adaptive techniques for estimating the
noise covariances. Monte-Carlo simulations are presented which include both Gaussian and non-
Gaussian errors, including mismatches in the assumed noise covariances in the navigation filters in
order to illustrate the benefits of the robust/adaptive nonlinear filters. Additionally, computational
burdens of the various filters is compared. The results indicate that the robust filters give rise to
essentially the same closed-loop performance as their non-robust counterparts for purely Gaussian
noise simulations. However for the non-Gaussian problem, the results of the hybrid robust/adaptive
filters is superior to the non-robust filters by a considerable margin.

It is anticipated that the techniques introduced in this dissertation will be beneficial to a wide
range of linear and non-linear filtering, estimation, navigation, and sensor fusion problems in order
to reduce the sensitivity of the technique with respect to non-Gaussian noise components with
uncertain statistics. Also the globally non-singular technique for attitude estimation using Modified
Rodrigues Parameters is applicable to a variety of applications including spacecraft and aircraft
attitude estimation.
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