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Modular Modification of a Buoyant AUV for
Low-Speed Operation

Christopher Lee Nickell

Abstract

Conventional streamlined autonomous underwater vehicles (AUVs) with a single thruster
and stern planes are typically trimmed to be somewhat buoyant or heavy in water. To
maintain depth, they must generate a constant hydrodynamic force which requires that
they swim at a constant pitch angle. Although tail fins are the typical mechanism for
generating this control moment, they become ineffective at low speeds. To enable an
existing AUV to travel at lower speeds, one may easily incorporate a modular moving
mass actuator. In some cases, it may also be advantageous to include a fixed wing.

The equations of motion and equilibrium conditions to regulate depth are derived, and
the effectiveness and low-speed efficiency of a fixed wing is evaluated. The effect of the
vertical offset of the moving mass is analyzed to establish the relation between the control
angle and the moving mass linear position.

A description of the design of a one degree of freedom moving mass actuator module and
preliminary experiments using the Virginia Tech Miniature AUV is provided. Data is
presented for a series of fixed MMA position experiments as well as a dynamic position
test. The results illustrate the effectiveness of a moving mass actuator at generating low-
speed control moments. With the collected data, parameter identification is performed
to get an estimate of the hydrodynamic parameters.
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Chapter 1

Introduction

Autonomous underwater vehicles (AUVs) are typically trimmed to be slightly heavy or

buoyant. A constant force must be generated to counteract the excess gravitational or

hydrostatic force in order to maintain depth (Fig. 1.1). This force is generated through

T

L

B

v

W

Figure 1.1: A constant downward force is generated to counteract the vehicle positive

buoyancy allowing depth regulation

direct propulsion or through use of the body hydrodynamic lift. Using the body lift

requires the AUV to travel at a constant angle of attack (AoA). The tail fins are used

to generate the necessary moment to maintain the proper AoA but fail at low speed.

A modular moving mass actuator (MMA) can be used to supplement the pitch control

in these conditions. In addition to pitch supplementation, a fixed wing can be used to

lower the operating speed or increase the low-speed efficiency of an AUV by increasing

the effectiveness of the wing-body hydrodynamics.

This thesis will examine alternative methods of attitude control for a positively buoyant

streamlined AUV with a conventional single thruster and stern planes, and describe the

design and implementation of a modular moving mass actuator and wing for pitch and

depth control.
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1.1 Mission

The vehicle velocity and the necessary control to achieve that velocity is set by the

intended mission of the AUV. The complexity and cost of an autonomous system places

high priority on recoverability in the event of a failure. Designing the vehicle to be

positively buoyant ensures vehicle recovery in the event of a mechanical failure or software

flaw. Unfortunately, the introduction of this requirement imposes a constant hydrostatic

force that must be countered for depth regulation. This net buoyancy force is offset

through the use of additional thrusting or manipulation of the wing-body hydrodynamics

(i.e. downward lift) or both.

As velocity decreases, the vehicle hydrodynamic forces begin to wain. To counteract the

vehicle net buoyancy, the magnitude of the opposing hydrodynamic force must remain

the same. This is accomplished through an increase in the vehicle angle of attack. As

velocity continues to decrease, the magnitude of the angle of attack is increased until the

wing-body stalls or the actuator fails to provide enough torque. This lifting force can be

supplemented and stall delayed through the use of a wing. This idea is further explored

in Chapter 5.

We want the vehicle to be as robust to downward velocity changes as possible. The vehicle

top speed is set by the full throttle conditions of the thruster where the lower velocity

limit is the point where depth can no longer be maintained. It is not possible to expand

this point all the way to zero without additional direct forcing or a reballasting of the

vehicle, however extending the minimum speed as low as possible will allow slow passes

of a target or stationkeeping in the presence of a current. An AUV capable of this type

Figure 1.2: Ordnance inspection, mapping, or safe detonation

of maneuver can be used for mine identification and disposal or can be used in harbors

to inspect the hulls of ships for damage or contraband. As the AUV matures the positive

buoyancy requirement may be relaxed opening the vehicle to new missions. If reballasted
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to neutral buoyancy, the AUV might require a large range of pointing accuracy for highly

directional sensors. This allows object identification and inspection using sonar or vision

based sensors. Adding wings and a variable ballast system transforms an AUV into an

energy efficient underwater glider.

1.2 History

To understand low-speed control of an AUV we must first explore previous research

conducted in the development of this class of vehicle. The first appearance of an AUV-

like device can be traced back to Whitehead Automobile “Fish” Torpedoes [1] in Austria

in 1866. This device carried an 18 pound explosive charge and was driven by compressed

air, achieving a speed exceeding 3.0 m
s

over 700 m.

The first true research AUV rose from the need to study arctic underice profiles in the

late 1950s. The Self Propelled Underwater Research Vehicle (SPURV) was developed by

Stan Murphy, Bob Francois, and Terry Ewart of the University of Washington’s Applied

Physic Laboratory. SPURV I became operational in the early 1960s and operated at 2.2
m
s

for 5.5 hours at a depth of 3 km. SPURV communicated acoustically with the surface

and operated autonomously at constant pressure, between two depths, or at a constant

climb or dive angle. Data was taken at constant pressure areas to support wave modelling

[2]. The same vehicle was later used to track horizontal and vertical dye dispersion at

depths up to 1 km for up to 66 hours after release [3]. During the 70’s and 80’s SPURV

II was similarly used to study the dispersion of submarine wakes.

In response to the 1973 sinking of the USS Thresher, the USS Scorpion, and the loss of

an H bomb in Palomares, the Naval Ocean Systems Center, now NRad, began develop-

ment of the Advanced Unmanned Search System (AUSS). Launched in 1983, the AUSS

completed over 114 dives up to a depth of 6 km. Using the newly developed acoustic

communications system that was capable of transmitting video, the AUSS could search

at a rate of 1.5 nmi2

hr
with speeds up to 2.5 m

s
[4]. Additionally, the idea of a network of

smaller free swimming crafts can be traced back at least this far.

The French Research Institute for Exploitation of the Sea, IFREMER, designed Epulard

in 1976, deploying it in 1980. It was acoustically controlled and rated for 6 km where it

supported deep ocean photography. Epulard successfully completed 300 dives between

1980 and 1990 [5].

In the late 80’s and early 90’s interest in AUVs began to significantly pick up. Multiple

acoustically controlled untethered ROV’s began to emerge through the U.S. Advanced
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Research Projects and academic interest.

The Massachusetts Institute of Technology (MIT) developed six Odyssey vehicles that

operated at 1.5 m
s

for up to 6 hours at a 6 km depth. These vehicles were even used

under the ice in 1994 [6]. The Odyssey vehicles were networked together for a series of

experiments to demonstrate the Autonomous Ocean Sampling Network [7].

The Woods Hole Oceanographic Institute (WHOI) designed and created the Autonomous

Benthic Explorer (ABE) in the early 90’s. This vehicle excelled in the near bottom

surveying of the rugged seafloor terrain. The ABE was completely independent of the

surface vessel, freeing the ship to perform other tasks outside of the acoustic range of the

vehicle. It was highly maneuverable in 3 dimensions due to it’s 6 thrusters. The ABE

can operate up to 34 hours at depths up to 5 km and travels approximately 0.75 m
s
.

On a much larger scale International Submarines Engineering, Ltd.’s vehicle Theseus

displaced 8,600 kg and was developed for U.S. and Canadian defense agencies. Theseus

operated at 2.0 m
s

for up to 100 hours at 1 km. In 1996 it was used to lay 190 km of fiber

optic cable under ice [8].

In the late 90’s WHOI introduced REMUS, an AUV displacing 36 kg, to support scientific

objectives from the LEO-15 observatory in Tuckerton, NJ [9]. It could operate for 20

hours at a speed of 1.5 m
s

at up to 100 m depth. Currently their are over 50 REMUS

vehicle used in research institutions all over the world including 9 universities and 3 US

Navy laboratories.

The development of Autosub in the early 90’s by South Hampton Oceanography Center

opened the door to the long duration mission. Travelling at 1.5 m
s

Autosub had a 6 day

operation time at a 1.6 km depth. In 1998 it took data at a depth of 1 km for 50 hours

[10]. Autosub’s high endurance specifications allowed scientists a larger temporal range

of data and further inspired interest in AUV research.

In 1989 through the visionary article of Henry Stommel [11] new branch of underwater

vehicles was born. These underwater gliders are AUVs that utilize a variable ballast

system in conjunction with a wing to glide. This generates a component of thrust pro-

pelling the craft without the use of a conventional propulsion system. These vehicles

incorporate internal actuation through a series of ballast tanks and moving masses to

control the ascent/desent rate and the glide path.

The underwater glider SLOCUM, developed by Webb Research Corporation, was de-

signed and tested in 1991. The glider was comparable in size to REMUS with a displace-

ment of 40 kg. It achieves a horizontal flight speed of approximately 0.25 m
s

at a glide

slope of 40◦. The most recent version uses an energy efficient thermal ballast engine.
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SLOCUM uses a battery pack on a lead screw to fine tune pitch and roll control where

the majority of control is provided through the ballast tanks. Its intended missions in-

clude monitoring an ocean grid over a 5 year period, seeking out and tracking features

of interest, or performing a virtual mooring by profiling the same column of water over

5 years [12].

The underwater glider Spray was developed through Scripps Institution of Oceanography

in conjunction with WHOI as a low cost ($25, 000) research glider. Spray has a horizontal

travel speed of 0.2-0.3 m
s

and communicates at the surface through satellite linkup [13].

In September 2004, Spray travelled nearly 600 miles to Bermuda crossing the gulf stream

making history and taking sensory information as it travelled.

Stommel’s idea quickly flourished as many universities took interest in the development

of underwater gliders. The University of Washington’s Seaglider [14] was developed as a

high endurance oceanographic vehicle. Princeton’s Rogue was designed as a laboratory

scale test platform for dynamic and control research [15].

With the introduction of Spray and REMUS, the dream of an underwater network of glid-

ers and AUVs took a step forward. Low cost miniature AUVs like the Naval Academy’s

USNA-1 [16] and the Virginia Tech Miniature Autonomous Underwater Vehicle (VT-

MAUV) [17] were created as a cost effective research vehicle capable of different missions

and sensor platforms. Through modular design, a fleet of these vehicles (figure 1.3)

could be deployed for use in a variety of missions reducing the overall cost of long term

oceanographic projects.

All of these AUVs operate in low-speed conditions as described by a Reynolds number

less than 107 [18] and were designed to be close to neutrally buoyant to minimize the

external forcing on the vehicle. The majority of these vehicles were controlled through

the use of fins and vectored thrust. With the introduction of the underwater glider,

internal actuation took a more present role as a control method. By evaluating different

methods of depth control for a positively buoyant vehicle, we will identify and choose the

most energy efficient and effective method of control that does not violate the recovery

requirement. Upon picking the control method, a module is designed and constructed to

expand the low-speed functionality of the VTMAUV.
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Figure 1.3: Fleet of VTMAUVs

Photo courtesy: Dr. Daniel Stilwell.
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Chapter 2

Alternative Attitude Control

Methods

To maintain a constant depth, a positively buoyant AUV must generate a continuous

downward force at all times. This force is produced through either direct vertical thrust or

through downward lift. Sections 2.1 and 2.2 will examine two methods of creating direct

external forces for use of attitude and position control, while the remaining sections will

focus on methods of internal actuation that provide control forces or control moments.

2.1 Vectored Thrusting

The easiest method of attitude control is to vector the thrust. This is accomplished

though a mechanical redirection of the induced fluid flow from the jet nozzle or propeller

or through a secondary set of vertically mounted thrusters. These thrusters are placed

to give direct control authority in the body vertical direction. This method requires a

constant fluid flow field where the effectiveness of the propulsor is scaled by the difference

in the ambient fluid velocity and the core velocity of the accelerated fluid material.

Because the craft is positively buoyant a constant opposing force must be maintained to

keep depth. This constant force needs constant power, resulting in a continuous drain on

the battery. This limits the mission duration. Additionally, this artificial flow field may

interfere with the inspection mission by disturbing silt or aerating the water reducing

visibility. More directly this flow field may undesirably interact with the object that the

AUV is trying to inspect. AUVs like the previously mentioned ABE utilized this method

for the added maneuverability benefits when working in rough terrain or around sunken

vessels.
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Figure 2.1: Vectored thrust

2.2 Biomimetic Thrusters

Another method of producing a direct force on the AUV uses movement of the fins,

mimicking swimming aquatic life. In 1993, an oscillating foil was suggested as a method

of propulsion [19]. Later work focused on control using fin movement devices [20]. This

work led to the development of Draper Laboratory’s RoboTuna [21]. Draper Laboratory

uses this robotic tuna as a test platform for research in vortex manipulation of the eddies

formed from this method of propulsion.

A disadvantage to this system of thrust is the impulse nature of the applied force. Forces

created in this manner can fatigue mechanical structures and send vortical waves into

the environment. These pressure waves can disturb the object under inspection, or if

near a surface, can stir up sediment or aerate water reducing visibility. Because of the

mechanical complexity necessary to simulate the bend of fish fin, this device is also

more likely to fail. Finally, continuous power must be applied where a constant force is

required, creating additional drain on the battery under positively buoyant conditions.

2.3 Reaction Wheels/Control Moment Gyros

By moving the control method inside the vehicle, one loses the ability to directly push on

the fluid material. To counteract the vehicle buoyancy one must utilize the hydrodynamic

properties of the wing-body. An angle of attack must be maintained to generate the

necessary force to keep depth. This places emphasis on angular control up to the stall

angle of the AUV.

The first method of internal actuation uses a rotor of significant rotational inertia that is

spun up creating a reaction moment proportional to the acceleration of the rotating mass.

These types of actuators are used as a primary rotational control method on spacecraft
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and can be used to stabilize vehicle motions in underwater vehicles [22]. If fixed in the

Figure 2.2: IAMBUS: Internally Actuated Modular Bodied Untethered Submersible

craft geometry to allow rotation about only one axis the actuator is known as a Reaction

or Momentum Wheel. Allowing a rotation about an axis perpendicular to the axis of spin

allows gyroscopic effects to be utilized. These devices are referred to as Control Moment

Gyros (CMG). These gyroscopic effects generate an out of plane moment increasing the

redundancy of a multiple CMG system [23]. Also once the top speed is reached, the

actuator becomes saturated, no longer able to maintain a torque. Again like the external

methods of actuation, this also requires a constant acceleration to generate a constant

torque. It drains the battery stunting the mission lifetime of the vehicle.

2.4 Buoyancy Engine

A more energy conservative approach to actuator design is to use native environmental

acceleration to create the force or moment needed to maintain depth or orientation. By

displacing additional fluid through inflatable appendages a modification of the buoyancy

force center and magnitude can be implemented. Alternatively, fluid material can be

taken into the vehicle producing a variable point mass at a fixed location. This type of

device, referred to as a ballast actuator, takes ballast from the surrounding medium to

utilize the native material and gravitational field to impart the desired force or moment.

The advantage to this technique lies in the energy cost of use per unit of continuous force

or torque. This creates a very energy efficient actuator. This type of actuator is used

by underwater gliders as a method of glide control and propulsion and a similar device

is included in deep submersibles to maintain neutral buoyancy through small changes in

fluid density. It should be noted that there are inherent dangers associated with bring

an electrolytic fluid into an electronic filled body, however, through the used of careful

design this fear can often be alleviated. This method of attitude control changes the

buoyancy percentage. This change can violate the positive buoyancy requirement which

was imposed so that the vehicle was recoverable in the event of a failure.
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2.5 Moving Mass

One final method uses the idea of modifying the center or gravity by moving a percentage

of the body weight forward or aft for pitch, port or starboard for roll. Moving a section

of mass allows constant torque generation for a given energy input and is independent of

the vehicle velocity. It is isolated from the outside environment resulting in no losses in

efficiency from biological fouling, corrosion, and snagging. The actuator is mechanically

simple, remains energy efficient, and the outside fluid remains undisturbed. The buoy-

ancy percentage remains unmodified, requiring an increase in the body angle of attack to

supplement the body lift at low speed. The moment necessary for this maneuver drives

the mass sizing and the distance moved. This method provides the best constant torque

per unit of control energy without violating the positively buoyant nature of the AUV.

Development of a moving mass actuator is investigated in chapters 4 and 6.
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Chapter 3

Force and Moment Modelling

In order to mathematically model and simulate a vehicle and its dynamic response,

the vehicle forces and moments must first be modelled. Gravitational and hydrostatic

constants depend on the vehicle density, fluid density, and displaced volume. The hy-

drodynamic constants are scaled from nondimensional empirical data through use of a

reference area and length for similar shapes. The thruster is assumed throttled with a

maximum thrust equal to at least the difference in buoyant and weight forces. Proper

sizing is examined in the following chapter.

3.1 Coordinate Frames

A sign convention is first established by defining the vehicle coordinate frames and ro-

tation angles (Fig. 3.1). Three reference frames are used to describe the motion of the

vehicle. The body reference frame is centered on the geometric center (GEO) of the

slender axisymmetric hull with the xb axis running the longitudinal axis of symmetry.

The body vertical component zb, is defined normal to xb in the plane containing the CG.

This coordinate system is used to locate all body fixed locations as well as the moving

mass position. To remain orthonormal yb is defined out the starboard side of the AUV.

We assume planar motion in the longitudinal body x-z plane, equating the orthonormal

yb axis with the Newtonian and velocity y axes.

We define the Newtonian/inertial reference frame by placing zn along the gravitational

vector and aligning the yn vector with yb. By assuming this is Newtonian, we neglect

Coriolis acceleration from the earth’s rotation. This is possible because this acceleration

is much smaller in magnitude when compared to the gravitational acceleration.
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Figure 3.1: Reference frame orientation for subsequent calculations

The velocity reference frame is defined by placing the xv axis along the vehicle velocity

vector and aligning the yv vector with yb. For motions in the longitudinal plane, the body

and Newtonian reference frames are related through a rotation about the common y axis

through the angle θ, the body and velocity frames though the angle of attack (AoA) α,

and the velocity to newtonian through the glide angle γ. Because all of these angles are

measured about the same y-axis, they are related by:

θ = γ + α

Now that a system of coordinates has been defined, it is necessary to identify the reference

areas and lengths in order to scale the empirical hydrodynamic data.

3.2 Geometrical Definitions

General areas and lengths used in the subsequent calculations of this paper follow those

provided in Figure 3.2. The vehicle is assumed a cylindrical slender body of L
r

> 10.

The areas are defined as in the picture, where Ar is the reference area for which the

hydrodynamic coefficients are dimensionalized, Aht is the horizontal tail area, and Ap is

the vehicle planform area. The body length, L, is used for the reference length. The

length variables xc, xm, and xac are the vehicle half length, moment reference location,

and aerodynamic center respectively. The wing, when included, is assumed to be placed

such that the aerodynamic center (AC) of the wing-body is at the half length at low

velocity. This is done to minimize the velocity dependent travel of the AC as well as to

minimize the associated moment.
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Figure 3.2: Reference lengths and areas

3.3 Example Vehicle

In the subsequent calculations it is necessary to define a first iteration of the vehicle

physical constants. The characteristics of the Virginia Tech Miniature Autonomous Un-

derwater Vehicle (VTMAUV) (Fig. 3.3) provide this starting point from which the wing

span and buoyancy factors can be iterated to examine their effect. The values used are:

Characteristic Value

r 1.875 in
L
r

15.5
s
r

1 (No Wings)
B
W

1.02

In the proper range, the effect of these iterated constants will maximize the depth con-

trol efficiency of the AUV, minimizing the expended energy or maximizing the lowest

achievable velocity. However, before this can be done the forces and moments must first
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Figure 3.3: Virginia Tech Miniature Autonomous Underwater Vehicle (VTMAUV)

be correctly defined.

3.4 Forces and Moments
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Figure 3.4: Force diagram for a conventional streamlined AUV

Now that we have identified the reference areas and lengths we begin to model the

vehicle forcing. Figure 3.4 shows a basic force diagram displaying the forces and their

force centers. The center of buoyancy is assumed at the vehicle geometric center, which is

generally an accurate assumption for a pressured axisymmetric hull. The center of gravity

is assumed to be offset from the center of buoyancy creating a constant gravitational

torque defined by:

M cg = rcg ×W =

 rcgx

0

rcgz

×
 0

0

mg

 = −mgrcgx
~jb

Here rcg is defined as the distance between the center of gravity and the center of buoy-

ancy (CB) with components rcgx
, rcgy

, rcgz
in the body frame. This gravitational torque

is the only force that is not directly dependent on the vehicle velocity.

Also effective at low speed is the vehicle thruster. The thrust produced from the propulsor

is proportional to the velocity difference between the vehicle speed and the speed of the



3.4 Forces and Moments 15

thrust slipstream. This ∆v correlates to the change in pressure per unit area created by

the propeller or jet.

The last and most important force group is the hydrodynamics. This group is composed

of the Nwb, Awb, Nht, and Aht forces which act normal and axial to the hydrodynamic

surface. These are related to the longitudinal axis through the angle θ. Understanding

these forces and moments is necessary for predicting the failure speed, which occurs when

the vehicle can no longer counteract the positive net buoyancy of the craft. These forces

are affected by area and placement.

3.4.1 Wing-body Hydrodynamics

We begin by defining the following normal-force and pitching-moment coefficients as

taken from [24] for a slender body with a constant shape over its length:

CNwb
=

Ab

Ar

sin 2α cos
α

2

(
CN

CN0

)
SB

+ ηCdn

Ap

Ar

sin2 α

(
CN

CN0

)
Newt

(3.1)

CAwb
= CAwb0

cos2 α (3.2)

Cmwb
=

{[
∇− Ab(L− xm)

ArX

]
sin 2α cos

α

2

} (
Cm

Cm0

)
SB

+

[
ηCdn

Ap

Ar

(
xm − xc

X

)
sin2 α

](
Cm

Cm0

)
Newt

(3.3)

where (
CN

CN0

)
SB

=

(
Cm

Cm0

)
SB

=
(s

r

)2

+
(r

s

)2

− 1 (3.4)

and (
CN

CN0

)
Newt

=

(
Cm

Cm0

)
Newt

=
3

2

(
s

r
− 1

3

)
(3.5)

Equation 3.3 shows the wing-body destabilizing pitching moment. This hydrodynamic

destabilizing moment varies quadratically with velocity and is offset with a properly sized

horizontal tail. A component of the body lifting force, CNwb
, along with the component

of thrust in the zn direction is responsible for maintaining depth. This lifting force is

maximized though an increase in the wing span, s. The first terms in equations 3.1 and

3.3 represent the contribution from slender-body theory. This is followed by a correction

in the second set of terms for the viscous crossflow and flow separation effects. Terms
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Figure 3.5: Comparison of normal and axial hull force coefficients

denoted with the subscript SB are determined from slender-theory and subsequently

subscripts of Newt are determined from Newtonian theory. The relations stated in 3.4

and 3.5 are valid as long as the cross-sectional shape is constant over the hull length.

The term Cdn is the crossflow drag coefficient for a 2-D circular cylinder normal to an

airstream. For a circular cross section, Cdn is found to be approximately 1.20. Using

this information with the lengths and areas defined in section 3.2, the vehicle wing-body

forcing is plotted in figure 3.5. This figure shows the relative magnitudes of the normal

and axial hull force coefficients. This graph is dominated by the normal force coefficient

and when the vehicle is inclined the component of the normal force in the zn is much

larger than the component of the axial force in the same direction. This allows the axial

force coefficient to be neglected when the two are compared.
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3.4.2 Fin Hydrodynamics

The effect of the horizontal tail plays a role in the overall net hydrodynamic lifting force

on the vehicle. This term scales linearly with the ratio of areas, At

Ar
, resulting in:

CN = CNwb
+

At

Ar

CNht

The equations for CNht
and CAht

are taken from [25] and apply to a two dimensional flat

plate that has been adjusted to fit empirical data.

CNht
=

1

0.222 + 0.283
sin α

(3.6)

and

CAht
= CDf0

cos2 αf (3.7)

The vertical tail force coefficients CNvt and CAvt are defined as:

CNvt =
1

0.222 + 0.283
sin β

(3.8)

and

CAvt = CDf0
cos2 β (3.9)

The term CDf0
is the overall net drag coefficient for a straight and level zero deflection

condition. A comparison of the fin normal and axial forces shown in Figure 3.6 displays

the same dominance of the normal force coefficient over the axial coefficient as with

the wing-body. Using these force coefficient models, the horizontal tail is sized as later

discussed in section 5.2.
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Figure 3.6: Comparison of normal and axial fin force coefficients
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Chapter 4

Moving Mass

In the presence of a gravitational field, movement of an internal mass changes the location

of the system’s center of gravity. This movement creates a gravitational torque on the

body with a magnitude proportional to the amount of mass moved and the distance it

was moved. The moving mass effect can also induce undesirable dynamics through fuel

sloshing [26]. By understanding this effect an energy efficient controller can be developed

for use on an AUV. This chapter will develop the full seven degree of freedom (DOF)

model and restrict movement to longitudinal motion (four DOF) to be later used to

evaluate the depth control ability of the wing-body and moving mass combination.

4.1 Kinematics

Before the dynamics of the moving mass wing-body system can be fully developed the

vehicle’s kinematic model must first be defined. The kinematic model is a description of

the movement of the vehicle geometry. This model is described through a progression

of rotations about different axes. This progression is used to build a rotation matrix

which transforms a vector from one reference frame to another. This rotation matrix R

can be developed by several different methods, each with advantages and disadvantages.

A common method of building this matrix uses three consecutive rotations, denoted as

Euler angles, about a progression of axes. The order in which these rotations occur

determines the ending location in three space. Euler angles give a more physical picture

of the vehicle attitude at small angles, which is why they are more often used than

alternative construction methods like quaternions or direction cosines.

We begin by defining the inertial position vector as b = [x y z] T , the body velocity
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vector as v = [u v w] T , and the body angular velocity vector as Ω = [p q r] T . This

transformation is completed though a rotation about the angles Φ = [θx θy θz]
T so that

the 3-2-1 rotation matrix from the body to newtonian reference frame becomes:

R =

 cos θy cos θz sin θx sin θy cos θz − cos θx sin θz cos θx sin θy cos θz + sin θx sin θz

cos θy sin θz sin θx sin θy sin θz + cos θx cos θz cos θx sin θy sin θz − sin θx cos θz

− sin θy sin θx cos θy cos θx cos θy


(4.1)

For a straight and level initial condition this rotation matrix simplifies to:

R0 = I3×3

The inverse of this rotation matrix is equal to its transpose. For the purpose of sim-

plification we define the ·̂ operator to convert a vector into a skew-symmetric matrix so

that:

a× b = âb =

 0 −ax ay

ax 0 −az

−ay az 0

 bx

by

bz


Using this notation, a description of the attitude kinematics is:

Ṙ = RΩ̂ (4.2)

The angular rate expression becomes: θ̇x

θ̇x

θ̇x

 =

 1 sin θx tan θy cos θx tan θy

0 cos θx − sin θx

0 sin θz sec θy cos θx sec θy

 p

q

r


This matrix has a singularity at θy = ±90◦ but works well for the range of pitch angles

i
j

k

v

b

R

Ω

e1

e2
e3

Figure 4.1: Position and orientation variables
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below the stall angle of the wing-body. The inertial velocity of the vehicle takes the form:

ḃ = Rv (4.3)

The inertial velocity of the point mass mp becomes:

vp = R ṙp

where rp is the vector that describes the body-relative position of the moving mass.

Restricting this movement to act only along the body longitudinal axis, creates the

following vector:

ṙp = rp ~e1 =

 ṙp

0

0

 (4.4)

Here the vector ~e1 is defined as the first column of the identity matrix.

I3×3 =
[

~e1 ~e2 ~e3

]
=

 1 0 0

0 1 0

0 0 1


Now that we have a method of describing the motion of the vehicle we can begin to

evaluate the forced dynamics of the AUV and moving mass.

4.2 Dynamics

We define our state vector as a combination of the vehicle angular momentum Π, the vehi-

cle linear momentum P , and the linear momentum of the point mass Pp

(
s = [ΠT P T P T

p ]T
)
.

Combining the linear and angular velocity vectors with the moving mass velocity ṙp forms

v̄ = [ΩT vT ṙT
p ]T . These terms are related through:

s = Iv̄

Rearranging this equation, the angular, linear, and moving mass velocities are found.

v̄ = I−1s
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Figure 4.2: The hydrodynamic angles

Using the body translation velocities, v = (u v w)T , the hydrodynamic angles are iden-

tified (figure 4.2). The angle of attack is defined as:

α = tan−1
(w

u

)
The sideslip angle is defined as:

β = tan−1
(v

u

)
These two angles define our hydrodynamic velocity reference frame which are used in

conjunction with conventional lift and drag coefficients. It should be noted that because

we are evaluating the x-z planar pitch case, β should be zero as a result of a zero side

velocity v.

Using these angles, we recall the hydrodynamic modelling from sections 3.4.1 and 3.4.2

and are able to assemble the hydrodynamic forcing in the body frame.

F Hydro =

 −Awb − At

Ar
Aht

0

−Nwb − At

Ar
Nht

 (4.5)

The remaining hydrostatic and gravitational external forces are rotated to the body frame

using the transpose of the rotation matrix from equation 4.1. We assume the propulsor

is fixed in the AUV and aligned on the centerline at the rear of the vehicle. Grouping

these forces together yields:

F grav = (mb + mp −mbuoy)gRT ~e3 (4.6)

The total external forcing on the vehicle is therefore a combination of equations 4.5, 4.6,

and the body thrust.

f ext = F aero + F grav + T ~e1 (4.7)

The external moments acting on the AUV are broken down in the following manner:

ΣM ext = Mwb + Mht + M vt + M cg + M p
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The wing-body moment Mwb is taken about xb and is defined in section 3.4.1. It is

derived from slender-body theory and corrected to account for viscous crossflow. The

terms Mht and M vt account for the moments caused by the horizontal and vertical tails

and are defined as:

Mht = r̂ht ×

 CAht

0

CNht

 , M vt = r̂vt ×

 CAvt

0

CNvt


The terms CNht

, CNvt , CAht
, and CAvt are defined in section 3.4.2. The moment due to

an offset CG is:

M cg = r̂cg ×

 0

0

mbg


This moment is the AUV CG offset without influence from the moving mass actuator.

The moment of the moving mass is treated separately and is defined as:

M p = r̂p ×

 0

0

mpg


The thruster is assumed to produce a thrust vector that passes through the point of

rotation. This eliminates any contributions to moment generation from the fixed thruster.

It should be noted that when using a propeller, there is a roll moment equal and opposite

to the moment exerted on the fluid to add vorticity. We ignore this small effect; a

sufficiently low CG will counter the roll moment due to thrust.

With these models of the external force and moments, the forced equations of motion

can be derived. However, before these are developed, it is necessary to accurately model

the moments of inertia as they vary with the moving mass position.

4.2.1 Inertia

The primary function of the moving mass is to act as a rotational control device. For

this reason, the rotational dynamics are of first concern, governed and modified though

the torques on the body. To understand these motions, the mass distribution of the

craft must be evaluated to develop the mass moments of inertia to be used in Newton’s

equations of rotational motion. The inertia tensor is computed in the body frame for

convenience. This body inertia tensor is defined by the vehicle’s cylindrical shape. (The
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vehicle density is assumed constant.)

Ib =

 1
2
mbr

2 0 0

0 1
12

mbL
2 + 1

4
mbr

2 0

0 0 1
12

mbL
2 + 1

4
mbr

2


= mbr

2


1
2

0 0

0 1
12

(
L
r

)2
+ 1

4
0

0 0 1
12

(
L
r

)2
+ 1

4


This moment of inertia works well for a constant density shape where the center of gravity

matches the geometric center. This however is not often the case, resulting in a correction

due to the generalized inertia of the offset CG.

Icg =

 03×3 mbr̂cg 03×1

−mbr̂cg mbI3×3 03×1

01×3 01×3 0

 (4.8)

The moving point mass affects the rotational inertia as well, resulting in:

Ip =

 03×3 mpr̂p mpr̂p~e1

−mpr̂p mpI3×3 mp~e1

−mp~e1
T r̂p mp~e1

T mp

 (4.9)

Combining these terms, the new 7× 7 matrix is:

Isystem =

 Ib −mpr̂pr̂p mbr̂cg + mpr̂p mpr̂p~e1

−mbr̂cg −mpr̂p (mb + mp)I3×3 mp~e1

−mp~e1
T r̂p mp~e1

T mp

 (4.10)

4.2.2 Added Mass and Inertia

When moving, a vehicle must force its way through the fluid medium. The effect of

moving this fluid material around the craft imparts a force that opposes the acceleration.

Because of the way that this force behaves, mass and inertia are added to the vehicle

model to produce the equivalent effect. This added mass and inertia depend on the AUV

shape and the fluid density. For a slender axisymmetric vehicle hull, this added mass and

inertia are diagonal and follow the sign convection of standard SNAME notation [27].
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If = −diag {Jf , M f} = −diag {Kṗ, Mq̇, Nṙ, Xu̇, Yv̇, Zẇ}

Models for added mass and inertia vary with the three dimensional shape of the vehicle.

One of the easiest shapes to model is a spheroid. Using the information from [25] the

cylindrical volume is matched to its ellipsoidal equivalent and used as an approximation

to the true axisymmetric hull.

The volume of an ellipsoid is defined as:

∀e =
4

3
abc

where a, b, and c are lengths defined in figure 4.3. Here b = c = r resulting in:

a
c
b

Figure 4.3: Length dimensions for a axisymetric spheroidal volume

∀e =
4

3
πar2 (4.11)

This volume is matched to the volume of the cylindrical hull defined by:

∀c = πr2L (4.12)

where r and L are defined in figure 4.4.

r

L

Figure 4.4: Length dimensions for a cylindrical volume

Equating equations 4.11 and 4.12 it is found that for equivalent volumes the length a of

the spheroid must follow:

a =
3

4
L (4.13)
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This results in a vehicle that is 1.5 times the original length but encompasses the effect

of the rounded nose and tapered tail sections.

Using this relation the following constants can be calculated.

e =

√
1−

(
b

a

)2

α0 =
2 (1− e2)

e3

(
1

2
ln

1 + e

1− e
− e

)

β0 =
1

e2
− 1− e2

2e3
ln

1 + e

1− e

Using these we define:

k1 =
α0

2− α0

k2 =
β0

2− β0

k′ =
e4 (β0 − α0)

(2− e2) [2e2 − (2− e2) (β0 − α0)]

These k-values are used to calculate the diagonal elements of the added mass and inertia

matrix.

Xu̇ = −k1m

Yv̇ = Zẇ = −k2m

Nṙ = Mq̇ = −k′Iy

Kṗ = 0

Combining the wing-body with the fluid inertia yields the system total inertia about the

vehicle geometric center.

I = Isystem + If =

 Ib −mpr̂pr̂p + Jf mbr̂cg + mpr̂p mpr̂p~e1

−mbr̂cg −mpr̂p (mb + mp)I3×3 + M f mp~e1

−mp~e1
T r̂p mp~e1

T mp

 (4.14)

With this inertia matrix as a function of the moving mass position, we can evaluate the

equations of motion of the AUV-moving mass system.
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4.3 Equations of Motion

The equations of motion are derived by computing the momenta of the vehicle-fluid

system and applying Newton’s laws. We define p as the total translational momentum

of the vehicle-fluid system taken with respect to the inertial coordinate frame. Similarly,

π is taken to represent the total angular momentum about the inertial coordinate origin

with respect to the inertial frame. pm is taken as the total translational momentum of

the movable point mass. Using these momenta Newton’s laws state:

ṗ =
I∑

i=1

fexti

π̇ =
I∑

i=1

(xi × fexti
) +

J∑
j=1

mextj
(4.15)

ṗp = mpgk +
K∑

k=1

fint

Here k represents the unit vector that points in the direction of gravity. The term fext

is the total external forcing applied to the system as depicted by equation 4.7. A pure

external torque on the system is represented with the term Mext.

We now define P to be the translational momentum of the fluid-body system with respect

to the body frame. Let Π represent the total angular momentum of the fluid-body system,

and define Pp as the point mass momentum, all with respect to the body reference frame.

p = RP

π = RΠ + b× p (4.16)

pp = RPp

Differentiating equations 4.16 and using the kinematic relations 4.2 and 4.3 yields:

ṗ = R
(
Ṗ + Ω̂P

)
π̇ = R

(
Π̇ + Ω̂Π

)
+ Rv × p + b× ṗ (4.17)

ṗp = R
(
Ṗp + Ω̂Pp

)
Substituting the equations of 4.15 for the time derivatives of the inertial momentum

allows the following set of equations in body coordinates:
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Ṗ = P ×Ω + RT

I∑
i=1

fexti

Π̇ = Π×Ω + P × v + RT

I∑
i=1

((xi − b)× fexti
) + RT

J∑
j=1

mextj

Ṗp = Pp ×Ω + mpgRT k + RT

K∑
k=1

fint (4.18)

Using these equations we can effectively model the system and evaluate the static con-

ditions necessary for depth regulation and low speed control.
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Chapter 5

Hydrodynamic Sizing

Sizing of a streamlined AUV is a balance between payload integration, steady flight op-

timization, and the satisfaction of dynamic maneuverability requirements. This chapter

will focus on the static analysis that goes behind the sizing of the hydrodynamic sur-

faces to optimize the vehicle for low speed depth regulation. Evaluation of the steady

state equilibrium conditions presents a relation between the vehicle geometry and the

low speed flight conditions.

5.1 Equilibrium

An equilibrium motion is a condition where the vehicle velocity is unchanging over time.

Recalling the dynamic equations from Chapter 4.2 we set the time derivatives to zero.

Ṗ = 0 = P ×Ω +
I∑

i=1

Fexti

Π̇ = 0 = Π×Ω + P × v +
J∑

j=1

Mexti

For equilibrium in longitudinal flight, we define Ω = [0 0 0]T and v = [u 0 w]T . Be-

cause the angular velocity vector is zero, the first terms in the previous equations vanish
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resulting in:

I∑
i=1

Fexti
= 0 (5.1)

J∑
j=1

Mexti
= P × v (5.2)

These two equations represent the vector equilibrium motion conditions for the stream-

lined underwater vehicle.

5.1.1 Condition 1: ΣF = 0

We identify the forces and moments on the streamlined AUV as shown in figure 5.1.

Equation 5.1 requires that the sum of forces in the body frame must be zero to maintain

e1

e3

θ α

γ

v

Nwb

Nt

Awb

At T
mb

mpg

g

mbuoyg

Mwb

Figure 5.1: Force diagram for a streamlined AUV

this equilibrium set of states. Taking the summation of forces in the inertial zn direction,

we require ż = 0 for constant depth flight.

(mb + mp −mbuoy) g = (Nwb + Nt) cos θ − (Awb + At) sin θ + T sin θ (5.3)

For simplicity we define:

mT = (mb + mp −mbuoy)

NT = (Nwb + Nt)

AT = (Awb + At)

which reduces equation 5.3 to:

mT g = NT cos θ − AT sin θ + T sin θ (5.4)
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A summation of forces in the inertial xn direction yields the necessary thrust condi-

tion. Using the constant velocity flight condition, V̇ = ẍ = 0, the expression for thrust

becomes:

0 = T cos θ − (Awb + At) cos θ − (Nwb + Nt) sin θ

T = (Awb + At) + (Nwb + Nt) tan θ (5.5)

Inserting equation 5.5 into equation 5.3 yields:

mT g = NT cos θ − AT sin θ + AT sin θ + NT tan θ sin θ

= NT cos θ + NT tan θ sin θ

= NT cos θ
(
1 + tan2 θ

)
= NT cos θ sec2 θ

⇒ NT = mT g cos θ

⇒ q̄ =
mT g cos θ

(CNwb
Ar + CNtAt)

(5.6)

Equation 5.6 relates the angle θ to the equilibrium velocity where we have used the

fact that θ = α for constant depth flight. Defining the dynamic pressure as: q̄ =
1
2
ρ‖v‖2 equation 5.6 can be reordered to develop the following equation for the equilibrium

velocity:

‖v‖ =

√
2mT g cos θ

ρ (CNwb
Ar + CNtAt)

(5.7)

By maximizing the denominator of equation 5.7 we find the smallest possible vehicle

velocity that will maintain constant depth. This portion of the equation contains the

information about the hydrodynamic surfaces and is maximized by increasing the lift

coeffecient per AoA. This is done by adding a wing.

5.1.2 Wing Sizing

To maximize the vehicle lift, wings are used. To increase the lift per AoA we increase

the ratio of wing span to vehicle radius s
r

found in the terms
(

CN

CN0

)
SB

and
(

CN

CN0

)
Newt

in equation 3.1. Adding wings allows the production of higher lift at a lower AoA. By

decreasing the AoA needed to produce the lift force, a lower velocity can be reached

before the stall angle is exceeded. Equation 5.7 is plotted in figure 5.2 for a variety of

wing spans to show the effect of wing sizing on the relationship between equilibrium

velocity and AoA. The increase of wing span shifts the velocity curve down. With the

added wing area, a smaller angle of attack is required to maintain the same velocity.
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Figure 5.2: Velocity with minimum drag location

Unfortunately, adding additional hydrodynamic surfaces also adds drag to the system.

When operating at cruise speeds outside of the low-speed regime, this added drag expends

additional energy in cruise, limiting endurance. This total vehicle drag is shown in figure

5.3 where the minimum drag condition at low-speed is identified.
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Figure 5.3: Minimum drag force

The most energy efficient travel condition for a winged vehicle is the point of maximum

lift per unit of drag. This term,
(

L
D

)
max

, varies with velocity and wing span. How this

condition changes with an increasing wing area is explored in figure 5.4.
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Figure 5.4: Lift to drag ratio with velocity

The question now arises, when should a wing be added to supplement the vehicle lift?

To answer this question, we must know the desired lower velocity limit. Looking at the

plot of the lift to drag ratio with AoA (fig. 5.5) we can see that
(

L
D

)
max

occurs at low

AoA (∼ 4◦). For a loiter or low-speed inspection mission, the vehicle will maintain this
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Figure 5.5: Lift to drag ratio with AoA

configuration for an extended period of time where vehicle efficiency will directly affect

the vehicle operable time. In this case, the wing should be sized to yield the maximum

lift to drag ratio at the desired velocity which happens to coincide with the minimum

drag condition. Any speed above this velocity does not need wings to supplement the lift
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and is therefore just adding drag to the system. However, low-speed vehicles that do fall

into these velocity ranges can take advantage of the added lift at smaller AoA to drive

slower and more efficiently.

5.1.3 Condition 2: ΣM = P × v

Now we evaluate the second part of the equilibrium requirement (5.2).

J∑
j=1

Mexti
= P × v (5.8)

The term P × v represents the inviscid flow Munk moment which arises due to the

asymmetric location of the stagnation points. For motion in the longitudinal plane, Px

Py

Pz

 =

 (mb + mp + Mfx)u

0

(mb + mp + Mfz)w

 (5.9)

Substituting into 5.8 we find:

P × v = − ((mb + mp + Mfx)uw − (mb + mp + Mfz)wu)~j

= (Mfz −Mfx) uw~j (5.10)

Since Mfz > Mfx for a slender body, this moment is destabilizing. We now define the

sum of moments about the center of buoyancy in the following fashion:

J∑
j=1

Mexti
= MT + Mp

Here MT is the sum of the hydrostatic and hydrodynamic moments on the vehicle and

Mp represents the moment from the moving mass:

Mp = rp ×mpgRT

 0

0

1

 [0 0 1]T

For a single degree of freedom linear moving mass, rpx represents the travel length, rpy is

assumed zero, and rpz is a constant that affects the pitch and roll stiffness of the vehicle

and is further explained in section 5.1.4. rpx

0

rpz

×mpg

 − sin θ

0

cos θ

 = −mpg (rpx cos θ + rpz sin θ)~j (5.11)
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Equating this to the hydrostatic and hydrodynamic moments about the ~j axis allows a

solution for the mass position (rpx) to be found.

(Mfz −Mfx) uw = MT · e2 −mpg (rpx cos θ + rpz sin θ)

Reordering and solving for rpx yeilds:

rpx =
MT · e2 − (Mfz −Mfx) uw

mpg cos θ
− rpz tan θ (5.12)

This is the relation for the equilibrium position of the moving mass. Moving the mass to

this location ensures that there is no resultant moment on the system.

5.1.4 The effect of rpz

Placing the moving mass below the vehicle lowers the overall center of gravity. With

this low CG, the pitch dynamics can be roughly approximated through the motion of a

pendulum.

θ̈ + bθ̇ +
mgrcgz

Iyy + Ify

sin θ =
ΣMpitch

Iyy + Ify

(5.13)

Here the natural frequency of the undamped oscillation is given by:

ωy =

√
mgrcgz

Iyy + Ify

(5.14)

where the term under the radical is referred to as the pitch stiffness. This stiffness is

directly proportional to the vertical distance from the center of rotation to the CG. A

vehicle in this configuration (fig. 5.6), exhibits a reaction moment that fights propagation

in θ. We now assume that the vehicle CG is coincendent with the CB. If the moving

rp
z

rp

rp
x

Figure 5.6: Low rpz effect

mass track goes though this point (fig. 5.7), the term rpz = 0. In this case, we start the

moving mass at the marginally stable center point coincendent with both the CG and

CB. Any mass movement forward from this point will attempt to bring the vehicle to

a −90◦ pitch to align the moving mass and the vehicle rotation center with the gravity

vector. This characteristic is seen by looking at the moving mass moment equation.

Mp = 0 = rp ×mpgRT [0 0 1]T = mpg (rpx cos θ + rpz sin θ)~j
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Figure 5.7: Low rpz effect

With a zero rpz the pitch moment is zero for all values of rpx at only θ = 90◦,−90◦. With

a nonzero rpz the pitch angle for a zero total moving mass pitch moment is given by:

θmp0 = tan−1

(
−rpx

rpz

)
Having a positive nonzero rpz affects the range of equilibrium pitch angles that is achiev-

able though a change in rpx .

As rpz increases, the maximum controllable pitch angle decreases. This increase in ver-

tical distance magnifies the passive pendulum stability through an increase in the pitch

stiffness. This added stability can hinder rapid maneuverability and saturate hydrody-

namic control surfaces.

Choosing a nominal rpz is a balance of satisfying maneuverability requirements and choos-

ing a maximum controllable pitch angle for the vehicle. Because of the large decrease

in lift upon reaching stall, this is an optimal choice for the largest controllable pitch

angle. Now that we must consider the hydrodynamic moments we recall the evaluation

of equation set 5.12. Requiring the total moment to be zero we find:

rpzoptimal
=

MTstall
· e2 − (Mfz −Mfx) uw

mpg sin θstall

−
rpxmax

tan θstall

A moving mass at this location rpzoptimal
maximizes the controllable pitch angle for the

mass track length for a given velocity.

5.2 Sizing of the Horizontal Tail

We begin by recalling the primary destabilizing pitching moment of the wing-body (eqn.

3.3). This hydrodynamic moment varies quadratically with speed and is offset with a

properly sized horizontal tail exhibiting the same quadratic velocity dependence. The

moment generated from the horizontal tail depends on three factors. The lift curve slope,

CNαt
, modifiable through surface shape, roughness, thickness, etc. specifies the lift per

unit area. The relation of the tail area (At) to the body area (Ar) denotes the proportional

size of the tail lifting surface. Lastly, the longitudinal placement of the horizontal lifting
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surface Lt as compared to the overall vehicle length describes the sign and magnitude of

the moment. Grouping the latter two factors, the vehicle tail volume ratio is defined as:

∀t =
Lt

L

At

Ar

We furthermore define the pitching moment contribution of the horizontal tail as:

Cmt = ∀tCNαt
(α + δe) (5.15)

Assuming that the vehicle moment reference point is coincident with vehicle hydrody-

namic center eliminates all velocity dependent moments except 3.3, which becomes:

Cm =
[(πr

4L

)
sin 2α cos

α

2

] (
Cm

Cm0

)
SB

(5.16)

To minimize drag we prefer a small horizontal tail. For this reason we choose the farthest

stable location for the control surface, Lt = −L
2
. By maximizing this distance, the ratio

of areas can be minimized, resulting in a reduction of hydrodynamic drag at all angles.

Equating 5.15 with 5.16 and solving for ∀t isolates the tail sizing variables from the

nondimensionalized hydrodynamic coefficients.

∀t =
Cmwb

CNt

(5.17)

For a wingless body with a slenderness ratio of 15.5 the results of equation 5.17 are

plotted as figure 5.8. We choose a value of tail volume ratio that will cover the peak of

this plot to ensure at least marginal stability at all angles and all velocities. This value

is chosen as a percentage of the small angle ∀t using the following equation:

∀t = 0.7
π

2

r

L

[(s

r

)2

+
(r

s

)2

− 1

]
(5.18)

With correct sizing of the horizontal tail, the velocity dependent hydrodynamic moments

are minimized with similar moments allowing the moving mass to remain effective under

higher velocities.



5.2 Sizing of the Horizontal Tail 38

0 10 20 30 40 50 60 70 80
0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tail Volume Ratio to Cancel Cm
wb

Angle of Attack, AoA, degrees

H
or

iz
on

ta
l T

ai
l V

ol
um

e 
ra

tio
, ∀

t

Minimum Required
Value of ∀

t

Figure 5.8: Relation between angle of attack and tail volume ratio



39

Chapter 6

Design of a Modular Moving Mass

Actuator

6.1 Sizing and Shape

The moving mass actuator (MMA) was designed as an addition to the VTMAUV and

was sized to be carried beneath the craft with the relative size, shape, and weight of

the YSI payload sensor. This sized the approximate slenderness ratio and length of the

moving mass controller. Iterations were taken from this point to size the actuator to

operate effectively and safely. It was necessary to match the buoyancy percentage of the

actuator to that of the vehicle to minimize any extra gravitational and buoyant forces.

The buoyancy force of the slender cylindrical hull vehicle is defined as follows:

B

W
=

πr2Lρg

W

which for the VTMAUV was approximately:

B

W
'

1
4
π

(
3.75
12

)2 (
24
12

)
∗ 62.4

5.52
= 1.73

The actuator itself is approximately 21 inches in length with an outer diameter of 1.75

inches resulting in a buoyancy force of:

Baddon '
1

4
π

(
1.75

12

)2 (
21

12

)
∗ 62.4 = 1.82 lbs
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Using this buoyancy force we can calculate how much the modular addition must weigh

to maintain the same buoyancy ratio as the vehicle.

Waddon '
Baddon(

B
W

) =
1.82

1.73
= 1.05 lbs

This is the necessary weight for the craft to maintain the same buoyancy factor as the

vehicle. The VTMAUV was designed to carry a heavy payload, and because of this,

the weight requirement is not a critical issue, provided the sum of the moving mass and

vehicle system remains positively buoyant. If the actuator is developed with a higher

net buoyancy than the craft, the actuator in conjunction with the craft would become

more buoyant, adversely affecting the lower velocity limit. Adding additional positive

buoyancy low on the craft will also lower the center of buoyancy creating a loss of roll

stability.

Figure 6.1: Assembled moving mass

6.2 Materials

The MMA was designed for the same depth and environment as the VTMAUV and

because of this, uses many of the same types of materials. The outside casing is the only

material that interacts with the fluid medium. Compressive effects from depth, as well

as corrosive effects must be considered in material selection. A clear acrylic tube of 1.75

inches outer diameter and 1.5 inches inner diameter was used for this purpose. The hull

transparency allows the user to visually inspect the apparatus allowing problems to be

quickly identified on a test stand if they occur. A 10-pin wet-mateable connector is used
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to communicate with the craft through RS232 serial protocol. This connector is sealed

from leaking through a pressure fitting that screws into the rear end cap. The forward

and aft end caps are both opaque delrin and, like the acrylic, are chemically inert in

water. These caps are sealed with O-rings to prevent any leaking at depth.

The primary drive is an ACME stainless steel lead screw. The ACME lead nuts used to

position and hold the mass are brass, primarily used for its density and self lubricating

properties. Anodized aluminum rods run the mass area to keep the brass nuts from

turning with the lead screw. The nylon spacers provide a solid mounting location for the

brass gear train in the aft and the titanium gear train in the front. The titanium gears

were cannibalized from a HiTec high torque servo motor from which the servo motor and

circuit board were used.

Front  

Lead  Pot  

Lead

Servo

Rear

Storage  
Electronic

Nut  

Acme  Screw

TrainGear   TrainGear   

Motor

Figure 6.2: Part breakdown of MMA

6.3 Mechanism

Creating a linear motion using a rotating motor is accomplished using a lead screw and

two geared transmissions. A 3 turns per inch, 1
4

inch diameter ACME lead screw was

used to move the mass. Two brass machinable round nuts were cut to 1
2

inch thickness

and notches were placed to follow anodized aluminum guardrails that prevented the mass

assembly from rotating with the lead screw. These two round nuts guide the mass along

the track by sandwiching the mass and bolting to each other. To minimize the amount

of mass needed, the mass must be moved as far as possible from the center of rotation

to induce a larger pitching moment, therefore the travellable length of the mass must be

maximized.

6.3.1 Front Transmission

The primary limitation of the moving mass travel length is the 10-turn potentiometer. If

hooked directly to the lead screw the hard limits on the potentiometer would only allow
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about 31
3

inches of travel. The solution to allowing the mass to move farther is to design

a geared transmission between the lead screw and the potentiometer. This gearing ratio

is determined by the desired travel length, the gears available, and the physical sizing

restrictions inherent from operating in a sealed vessel. Figure 6.3 shows the designed

transmission as well as the gears used. All of the gears are made of brass. They were

18

24

12

12

Potentiometer

3 Turns Inch

LeadScrew 10 Turn 

Figure 6.3: Front gearing to maximize travel length (numbers shown are number of gear

teeth)

purchased in 12, 18, and 24 tooth sizes with a 48 pitch. One 18 and one 12 tooth gear

were fastened together to ensure that they would rotate at the same rate. This double

gear does not change the gearing ratio but instead links the remaining gears while keeping

the overall total gear-face area minimized. The total travel length is calculated using the

following equation:

10 turns

(
24

12

) (
18

12

) (
1

3 turns
inch

)
= 10 inches

The track has an overall length of 141
4

inches leaving 21
8

inches of free space on either

side of the extremes. Using all of this space yields a total overall mass length of 33
4

inches. The masses used were constructed in the shape shown in figure 6.4 so that they

could be inserted sideways between the guiding rods and turned 90◦ to lock into the right

location. These masses are suspended on two small rods that connect the two brass nuts

Figure 6.4: Shape of mass segments

and are secured with a small pin at each end. This method was chosen to prevent extra

bending on the nuts themselves which increases the possibility of binding in the system.
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These small rods keep the mass sections off of the lead screw and distribute the load

between the two lead nuts. Now that the length and mass movement properties have

been addressed it is necessary to magnify the torque of the motor so that the system can

be driven.

6.3.2 Rear Transmission

The rear transmission is primarily designed to amplify motor torque so that the system

can overcome inherent frictional losses. This set of gears use the titanium gears from the

cannibalized HiTec high torque servo motor. This fact limited the assembly options due

to the limited size and number of each gear. Using the provided materials, the smallest

outer diameter and highest torque magnification was created allowing the highest possible

magnification of torque. This front transmission is shown in Figure 6.5. The number of

50

3 

34

10

11

Motor
Turns Inch

LeadScrew 

Figure 6.5: Rear gearing to increase motor torque (numbers shown are number of gear

teeth)

teeth were counted on each gear and matched with the gears of a compatible pitch. The

torque amplification was calculated by looking at the number of motor turns necessary

for the shaft to turn once: (
34

11

) (
50

10

)
=

170

11
' 15.45

The torque of the motor is amplified approximately 15.5 times. The HiTec high torque

servo motor originally had a torque value of 250 oz-in at 4.8 volts after being run though

a gearing ratio of 49.93. By reconfiguring the gears we now maintain approximately

30 percent of that torque resulting in a torque of 77.36 oz-in with a 4.8 volt power

input or 103.04 oz-in with a 6 volt power input. The Acme lead screw was specifically

chosen because of the low frictional torque between the screw and nut. This friction is

the primary opposing torque and when combined with the frictional losses in the gears

themselves presents the overall torque that the motor must overcome.
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6.4 Electronics

The primary electronic hardware was cannibalized from the Hitec high torque servo mo-

tor. Using the embedded driver chip, the potentiometer was replaced with a multiturn

potentiometer, minimizing the gearing ratio needed to achieve a reasonable travel dis-

tance. This servo motor takes a pulse width modulated signal and the driver chip relates

the width of the pulse to a certain value on the potentiometer. The motor then operates

in the appropriate direction until the commanded potentiometer value is reached. To

interface between the computer of the mother vessel and the modified servo motor, an

Object Oriented PIC (OOPic) microprocessor was utilized. This OOPic can be seen in

Figure 6.6. Accepting a RS232 serial connection from the mother vessel, the actuator

Figure 6.6: The Object Oriented Pic C variant (OOPic-C))

runs though the Basic code shown in Appendix 8.1. The smallest form of the OOPic is

used (C variant) because it was the only chip that could provide the level of programming

preferred while occupying a relatively small volume. This chip accepts a direct RS232

9 volt signal internally converting to the lower 5 volt TTL language for the chip level

communication. The RS232 form of communication is preferred over direct TTL com-

munication for the stability of the signal over long distances. The OOPIC additionally

accepts digital and analog sensory inputs that can be utilized for a variety of sensory

platforms. One of these analog connections was connected in line with the variable volt-

age line on the potentiometer so that some position identification can be read directly

back to the mothership.

The code in appendix 8.1 accepts a 0-63 integer command corresponding with 64 stations

along the travel length of the mass. If an integer value 0-63 is sent though the RS232

line the modified servo will move to the corresponding location. A value outside of this

range, such as 64, will instead request the current location of the mass from the system.

This is a method of checking to ensure that the mass arrived at the correct location. A

green light emitting diode (LED) is connected to the 31st digital I/O line and is turned

on when the motor is commanded to move. This provides a method of checking that

the code is running if troubleshooting is needed. The electronic circuit board that ties

these components together is shown in Figure 6.7. Using a 10-pin wet-mateable male

connector, the actuator is linked to the mothership. Only 4 of the 10 available lines are



6.4 Electronics 45

Figure 6.7: Electric circuit diagram for electronics

used following the pinout found in table 6.1.

Table 6.1: Pinout for actuator connection interface

Pin Connection

5 5 volt power

6 Rx, RS232 Receive

7 Tx, RS232 Transmit

8 Ground

Here the 5 volt source powers both the OOPic and the motor from the onboard power

of the mothership. To minimize the actuator’s impact on the battery life of its host

vehicle, the actuator only draws significant power while moving. When the mass reaches

its destination the motor is powered down while the OOPic waits for the next command.

Because the servo motor and the OOPic use a common power source, two additional

electrical issues must be addressed. A DC motor uses principles of electromagnetics to

create a magnetic field that spins a core of metal windings thus turning a shaft. When

the power is cut on the motor, these windings maintain some rotational inertia, and

continue to spin until brought to a stop through frictional losses. While the motor

spins its generates a voltage that, if not blocked or dissipated, travels back to the power

source. This is referred to as back-emf and can be detrimental to a system that can

not accommodate the reversal of voltage. Most rechargeable battery types can handle

this phenomenon with little problem by absorbing the excess energy from the motor. If
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back-emf becomes a problem it is most often eliminated though use of a diode and a

system of resistors.

The second problem that needs attention is the voltage spike associated with a command

to the motor. Certain battery types such as the new Lithium-Ion batteries have current

limiting embedded chips that cut power if a voltage spike exceeds some limit. If this

occurs, power is severed from the craft often rebooting the system, losing information,

control, and time. This can be avoided by using batteries that can absorb these voltage

spikes. Examples of these types of batteries include Nickel-Metal-Hydride (NiMHs) and

Nickel-Cadmium (NiCADs) batteries. These don’t have as high of an overall power

density as the Lithium-Ion but are more robust to electric deviations.
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Chapter 7

Experimental Testing

Testing of the moving mass actuator was performed with the VTMAUV in Panama City,

Florida on June 24th 2005. The MMA was secured below the AUV and ballasted so that

the assembly sits level in the water with the moving mass centered at position 30. To

verify that the VTMAUV could operate over the entire range of moving mass positions,

the vehicle was commanded to swim at it’s nominal speed of 1 m/s and to maintain

a depth of 1.5 meters in a series of experiments for which the moving mass was fixed

at various locations. After verifying that the VTMAUV remained controllable through

all MMA positions a dynamic test was performed. In all experiments, a separate PID

feedback loop actuated the fins to maintain the specified depth.

7.1 Fixed MMA Positions

A series of 14 runs were performed with the moving mass fixed at 7 known positions.

In each test the depth, fin commands, and attitude histories were recorded. These time

dependent states were plotted in the manner shown in figure 7.1 where the cruise steady-

state values were identified. Once the VTMAUV achieved a steady-state depth, the state

histories were filtered and cut to incorporate only the sections of cruise. These sections

are plotted and appear as in figure 7.2. Upon reaching this range of values, the resulting

equilibrium pitch, roll, and fin deflections were averaged. These approximate equilibrium

averages are shown for each mass location in table 7.1. The three fin configuration of the

VTMAUV is shown in figure 7.3. The discrepancy between Fina and Finb is due to the

induced roll moment from the propeller. As the moving mass travels from its rearmost

location forward, the fins compensate for the added CG offset. As seen in figure 7.4, the

PID-controlled fins compensate for the changing gravitational moment.
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Figure 7.1: Full set of unfiltered dynamic data taken with MMA at position 30. (In the

top plot, the solid line represents Fina, the dashed line represents Finb, and the dotted

line represents Finc. In the bottom plot, the solid line represents pitch angle and the

dotted line represents roll angle.)

Table 7.1: Equilibrium conditions at mass locations
MMA Location Depth Pitch Roll Fina Finb Finc

2 1.50 -11.30 -4.47 10.08 11.72 -4.61

10 1.50 -9.81 -4.54 5.84 8.20 -1.09

20 1.50 -8.26 -5.05 4.33 4.02 3.09

30 1.50 -7.85 -6.16 -0.81 -2.66 9.76

40 1.50 -6.48 -5.44 -1.54 -5.76 12.86

50 1.50 -5.70 -6.72 -3.55 -8.28 15.38

60 1.54 -5.59 -8.58 -6.61 -11.15 18.26

The vehicle is trimmed so that, for a moving mass location of 30, the CG is longitudinally

aligned with the CB. Smaller (more rearward) mass locations generate a nose-up gravi-

tational moment which must be countered by the the tail fins to maintain a nose-down

attitude. Larger (more forward) mass locations require less moment of the tail fins up

to the point where the nose-down attitude exceeds the trim condition, at which point

the fins must generate a nose-up moment. At this critical mass location, the fins become

unnecessary as the entire equilibrium pitch control moment is generated by the MMA.

This observation is particularly important for control at lower speeds, where the fins

might be incapable of generating the necessary equilibrium pitch control moment.
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Figure 7.2: Filtered and trimmed dynamic data taken with MMA at position 30. (In the

top plot, the solid line represents Fina, the dashed line represents Finb, and the dotted

line represents Finc. In the bottom plot, the solid line represents pitch angle and the

dotted line represents roll angle.)
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Figure 7.3: VTMAUV fin orientation,viewed from the front.

7.2 Dynamic Run

The vehicle was next programmed to maintain depth with the moving mass at its

rearward-most position, allowing sufficient time to achieve steady state, after which the

mass was slewed to its forward-most location. Again the vehicle was programmed to

travel at its design speed of 1 m/s. The control, depth, and attitude histories are shown

in Fig. 7.5, where the vertical dashed line indicates the beginning of the moving mass

transition. As the mass moves forward, the vehicle pitches nose-down and dives slightly.

Eventually, once the mass has reached its forward-most position, the PID depth con-

troller brings the vehicle back to its specified depth. Initially, the tail fins are deflected

leading edge up to generate a nose-down moment. The local lift generated by the fins

is therefore upward and must be opposed by additional down force on the vehicle hull.

Thus, the trim pitch angle is more negative at the beginning of the experiment. As the

tail fins adjust to the forward-moving CG, they generate less upward force and, eventu-

ally, begin generating downward force. As a result, the equilibrium pitch angle becomes
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Figure 7.4: Equilibrium fin locations with commanded MMA locations. (The solid line

represents a linear fit to the Fina. The dashed line represents a linear fit to the Finb.

The dash-dotted line represents a linear fit to the Finc.)

less negative because less down force must be generated by the hull.

From one point of view, the dynamic data shown in Fig. 7.5 illustrate the VTMAUV

depth controller’s ability to reject steady pitch disturbances. Viewed another way, the

data illustrate the MMA’s effectiveness at generating a pitch control moment. Moreover,

because this control moment is independent of vehicle speed, the MMA should also be

effective for depth control at low speeds.

7.3 Diving

An added advantage to dynamically controlling the vehicle center of gravity becomes

apparent when trying to autonomously submerge a positively buoyant AUV. The VT-

MAUV currently dives by reversing the propeller and driving backwards until enough

of the propeller is submerged to pull the vehicle underwater. The vehicle the reverses

thrust to drive forward. Using the moving mass in a rear position during this section of

the vehicle flight profile adds a gravitational moment that aids in the submersion of the

propeller. In the case of the VTMAUV, the MMA in the rearmost position fully sub-

merged the propeller, allowing immediate submergence. Controlling this initial propeller

submergence leads to a quicker ż and a steeper diving trajectory unavailable through use

of fins alone. Because of the steep diving trajectory and the positively buoyant nature of

the vehicle, the depth will overshoot the desired depth. The magnitude of this overshoot

is a function of the net buoyancy of the AUV, the response speed of the MMA, the agility

of the primary thruster, and actuation speeds of the control surfaces.
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Figure 7.5: Vehicle response to slewing the moving mass from its full rearward to its full

forward position. The transition begins at t = 301.5 seconds. (In the top plot, the solid

line represents Fina, the dashed line represents Finb, and the dotted line represents Finc.

In the bottom plot, the solid line represents pitch angle and the dotted line represents

roll angle.)
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Figure 7.6: Reverse diving proceedure

Alternatively, the AUV can use the MMA to dive in a nose forward manner more con-

ducive to shallow water diving. This is accomplished by using the internal momentum

of the moving mass actuator to quickly go from a rear position where the propeller is

submerged and effective, to a full forward position causing the vehicle to arc forward.

With enough vehicle momentum, the AUV will carry itself underwater nose first and dive

Desired Depth

Figure 7.7: Forward or breaching diving proceedure

sufficiently far to resubmerge the propeller.
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7.4 Parameter Identification

The averaged steady-state data collected in the previous experiments can be used to pro-

duce a better estimate of the hydrodynamic and gravitational parameters. Recognizing

that all of the angles in table 7.1 are small, a linearized estimate of the hydrodynamic

parameters is reasonable. Recalling the equilibrium conditions 5.1 and 5.2, the following

linearized equations can be formulated:

CB − CW = CNθwb
θ + 2

At

Ar

CNδe
(θ + δe) + CT θ

−mpg

q̄Ar

(rpxi

L
+

rpz

L
θi

)
= CMθ

θ + 2
At

Ar

CMδe
(θi + δei

)

Here the variables CNθwb
, CNt , CT , CMθ

, CMδe
and CMδcg

are solved through simultaneous

equations using the previously collected empirical data. Placing this information into the

matrix form, Ax = B, yields:

A =



θ1 2At

Ar
(θ1 + δe1) θ1 0 0 0

θ2 2At

Ar
(θ2 + δe2) θ2 0 0 0

...
...

...
...

...
...

0 0 0 θ1 2At

Ar
(θ1 + δe1) δcg1

0 0 0 θ2 2At

Ar
(θ2 + δe2) δcg2

...
...

...
...

...
...



B =



(CB − CW )

(CB − CW )
...

−mpg

q̄Ar

( rpx1

L
+ rpx

L
θ1

)
−mpg

q̄Ar

( rpx2

L
+ rpz

L
θ2

)
...


where

x =


CNθwb

CNδe

CT

CMθwb

CMδe


The matrix A is not necessarily square and is inverted using the pseudoinverse. If the
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Table 7.2: Least squares solution using the data from Table 7.1 and the VTMAUV

physical approximations. At

Ar
= 0.3, rpz

L
= 0.01

Variable Value

CNθwb
-0.0014

CNδe
-0.0018

CT -0.0014

CMθwb
-4.1438

CMδe
7.0789

inverse of
(
AT A

)
exists, the Moore-Penrose inverse [28] can be defined as:

A† =
(
AT A

)−1
AT

Use of this term in the equation: x = A†B locates the least squares solution to the

problem Ax = B.

Using a rough approximation for the physical dimensions of the VTMAUV yields the

coefficients found in table 7.2. The signs of CNθwb
, CNδe

, CT show a positive force when

coupled with a negative θ and δe which is expected for a positively buoyant submersible.

The value CMθwb
is negative and large suggesting a very statically stable system for the

chosen tail area over the range of moving mass positions. These equations illustrate the

use of a MMA to determine an estimation of the hydrodynamic parameters which are

often difficult to empirically identify. The Matlab code created to solve this problem is

presented in section 8.3.
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Chapter 8

Conclusions & Recommendations

Streamlined AUVs are typically trimmed to be somewhat buoyant or heavy in water.

To maintain depth, they must generate a constant hydrodynamic force which requires

that they swim at a constant pitch angle. Although tail fins are the typical mechanism

for generating this control moment, they become ineffective at low speeds. To enable an

existing AUV to travel at lower speeds, one may easily incorporate a modular moving

mass actuator. In some cases, it may also be advantageous to include a fixed wing.

The dynamic effects of the moving mass were evaluated to develop the equations of

motion. The equilibrium conditions necessary to maintain a constant depth and velocity

were defined, and the effectiveness and low-speed efficiency of a fixed wing was analyzed.

An expression was derived to determine whether a wing is needed to travel with peak

efficiency for a given speed. The effect of the vertical offset of the moving mass was

analyzed to establish the relation between the control angle and the moving mass linear

position. Sizing guidelines were constructed for sizing of the horizontal tail and placement

of the MMA below the AUV centerline.

A description of the design of a one degree of freedom moving mass actuator module and

preliminary experiments using the Virginia Tech Miniature AUV was provided. Data was

presented for a series of fixed MMA position experiments as well as a dynamic position

test. The results illustrate the effectiveness of a moving mass actuator at generating low-

speed control moments. With the collected data, parameter identification was performed

to get an estimate on the hydrodynamic parameters.

Planned experiments should further demonstrate the actuator’s ability to control an AUV

at an otherwise uncontrollably low speed.
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Appendix

8.1 OOPic Code

Dim Pot As New oA2D

Dim Servo As New oServo

Dim Target as New oByte

Dim RS232 As New oSerial

Dim LED As New oDio1

Dim storage1 as New oByte ’intermediate value holder

Dim storage2 as New oByte ’Final value holder

Dim subber as New oByte ’sensor subtract argument

Dim joiner as New oMath ’Linking object

Dim divide as New oByte ’Noise masking argument

Dim jitter as New oMath ’Used to mask off lower bits

Sub Main()

OOPic.Node = 1

LED.IOLine = 30

LED.Direction = cvOutput

Call SetupMotor

Call initcomm

Do

If RS232.Received = cvTrue THEN

Target.value = RS232.Value

If (Target.Value <= 63) and (Target.Value >= 0) then

Servo.Operate = cvTrue ’ Turn the servo on.

LED.Value = 1

Servo.Value = Target.Value

OOPic.delay = 200

Servo.Operate = cvFalse ’ Turn the servo off.

LED.Value = 0

else

Call potcalc

RS232.String = Str$(Storage2)

RS232.Value = 13
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RS232.Value = 10

RS232.String = Str$(Pot.value)

RS232.Value = 13

RS232.Value = 10

End If

End If

Loop

End Sub

Sub SetupMotor()

Servo.IOLine = 31 ’ Specify the I/O Line.

Servo.Center = 28 ’ Specify the center.

Pot.IOLine = 1

Pot.Operate = cvTrue

End Sub

Sub initcomm()

RS232.Baud = cv9600

RS232.Operate = cvTrue

End Sub

Sub potcalc()

subber = 18 ’Subtract 18

joiner.Input1.Link(Pot) ’Get sensor data

joiner.Input2.Link(subber) ’scale value down

joiner.Output.Link(storage1) ’Put it to temp. storage1

joiner.Mode = cvSubtract ’Subtract 2 from 1

joiner.Operate = cvTrue

divide = 1 ’divisor

jitter.Input1.Link(storage1) ’Get result of last math

jitter.Input2.Link(divide) ’get divisor

jitter.Output.Link(Storage2) ’Put it to temp. storage2

jitter.Mode = cvRShift ’divide by two

jitter.Operate = cvTrue

End Sub
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8.2 Static Matlab Code

%Model

% close all

% clear

% clc

global tstep td e1 rho g rpy rpz mb mp rp rcg L Ib Ab Ap Ar CNCN0SB

CNCN0Newt CDn CA0 Vol CLa_fin CD0_fin AR_fin e_fin St xac xt xv

mbuoy k1 k2 kp findeflh xbold xt n finlimit

place rpdes

I = eye(3); e1 = I(:,1); e2 = I(:,2); e3 = I(:,3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r = 3.75/2*.0254; %Radius of cylindrical hull

s_r = 2.5; %Ratio of Wingspan to radius 1 for no wings

L_r = 15.5; %Ratio of Vehicle Length to radius

%CG offset

xcg_L = 0.01; zcg_L = 0.02; xac_L = 0.0; zac_L = 0;

%Fins

Lt_L = 0.5+xac_L; % Ratio of distance from vehicle AC to

% horizontal tail AC to Total length

St_S = 0.3; % Ratio of Tail area to Planform area (2*r*L)

AR_fin = 1; % Aspect Ratio of fins (b^2/S)

findeflh0 = 0*(pi/180); % Fin deflection

finlimit = 45*(pi/180); % Fin deflection limit

%Moving Mass Characteristics

Wmm_W = 0.3;%*10^-6;

rpy_L = 0.0; rpz_L = r+1.75/2*.0254;

%Net buoyancy

B_W = 1.05; %>1 for Buoyant <1 for Heavy

rho = 1025;%977.81;

g = 9.81;
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%v = 0.9;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 0;

%Elliptical craft winged Lift, Drag, Pitch Moment info

%Physical parameters

%Circular Cross section with wing span s from centerline

s = s_r*r; L = L_r*r;

Ab = pi*r^2; %Stern Base Area

Ap = 2*r*L; %Planform Area

Ar = Ap; %Reference Area

%%%%%%%%%%%%%%%%%%%%

xm = L/2; Vol = pi*r^2*L;

mbuoy = Vol*rho; %Buoyancy in Kg

mb = (1/(B_W*(1+Wmm_W)))*mbuoy; mp = Wmm_W*mb; BmW = mbuoy-mb;

%Circular Cross section

CDn = 1.2; CA0 = 0.004; CNCN0SB = s_r^2+(1/s_r)^2-1;

CNCN0Newt = (3/2)*(s_r-(1/3)); CD0_hull = 0.002;

%Fin Properties

CLa_fin = pi*AR_fin/(1+sqrt(1+(AR_fin/2)^2)); V_tail = Lt_L*St_S;

St = St_S*Ar; CD0_fin = 0.006; e_fin = 1;

% Distances

xac = [(0.5-xac_L);0;zac_L]*L; rcg = [xcg_L;0;zcg_L]*L;

xt = [-L/2;0;0]; xv = [-L/2;0;0];

%rpx0 = -(1/Wmm_W)*xcg_L*L;

rpy = rpy_L*L; rpz = rpz_L*L;

% Inertia

Ib = diag([.5*mb*r^2,(1/12)*mb*L^2+0.25*mb*r^2,

(1/12)*mb*L^2+0.25*mb*r^2]);

% Environment
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g = 9.81; % m/s^2

rho = 1025; % kg/m^3 - density

%Added Inertia

a = .75*L; b = r; ef = sqrt(1-(b/a)^2);

a0f = (2*(1-ef^2))/ef^3*(0.5*log((1+ef)/(1-ef))-ef);

b0f = 1/ef^2-(1-ef^2)/(2*ef^3)*log((1+ef)/(1-ef));

k1 = a0f/(2-a0f); k2=b0f/(2-b0f);

kp = (ef^4*(b0f-a0f))/((2-ef^2)*(2*ef^2-(2-ef^2)*(b0f-a0f)));

Jf = -diag([0,-kp*Ib(2,2),-kp*Ib(2,2)]);

Mf = -diag([-k1*mb,-k2*mb,-k2*mb]);

mt = mp+mb-mbuoy; findeflecth = 0;

alpha = -[1*pi/180:.01:80*pi/180];

%alpha = -30*pi/180;

for i = 1:length(alpha)

beta(i) = 0;

% Wing-Body Hydrodynamics

CN(i) = -sign(alpha(i))*((Ab/Ar)*sin(2*abs(alpha(i)))

*cos(abs(alpha(i)/2))*CNCN0SB+CDn*(Ap/Ar)

*(sin(abs(alpha(i))))^2*CNCN0Newt);

CA(i) = -CA0*(cos(alpha(i)))^2;

CL(i) = CN(i)*cos(alpha(i))-CA(i)*sin(alpha(i));

CD(i) = CN(i)*sin(alpha(i))+CA(i)*cos(alpha(i));

Cm_wb(i) = sign(alpha(i))*(((Vol-Ab*(L-xm))

/(Ar*L))*sin(2*abs(alpha(i)))

*cos(abs(alpha(i)/2)))*CNCN0SB;

%+(CDn*(Ap/Ar)*((xm-xac)/L)*sin(abs(alpha(i)))^2);

% Fin Hydrodynamics

if sin(alpha(i)) == 0; CNf(i) = 0;

else; CNf(i) = sign(alpha(i))*(1/(0.222

+(0.283/sin(alpha(i)-findeflecth))));

end

CAf(i) = -CD0_fin*cos(alpha(i))^2;
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CLf(i) = CNf(i)*cos(alpha(i))-CAf(i)*sin(alpha(i));

CDf(i) = CNf(i)*sin(alpha(i))+CAf(i)*cos(alpha(i));

if sin(beta(i)) == 0; CNv(i) = 0;

else; CNv(i) = sign(beta(i))*(1/(0.222

+(0.283/sin(beta(i)))));

end

CAv(i) = -CD0_fin*cos(beta(i))^2;

CLv(i) = CNv(i)*cos(beta(i))-CAv(i)*sin(beta(i));

CDv(i) = CNv(i)*sin(beta(i))+CAv(i)*cos(beta(i));

% Straight and Level Condition Glide path = 0

theta(i) = alpha(i);

% Determine Equilibrium Velocity

qbar(i) = abs((mt*g*cos(theta(i)))

/(CN(i)*Ar+CNf(i)*St));

v(i) = sqrt(2*qbar(i)/rho);

u(i) = v(i)*cos(alpha(i));

w(i) = v(i)*sin(alpha(i));

% Lift and Drag

Lwb(i) = CL(i)*Ar*qbar(i);

Dwb(i) = CD(i)*Ar*qbar(i);

Mwb = Cm_wb(i)*Ar*L*qbar(i)*[0;1;0];

Lt(i) = CLf(i)*St*qbar(i);

Dt(i) = CDf(i)*St*qbar(i);

Lv(i) = CLv(i)*St*qbar(i);

Dv(i) = CDv(i)*St*qbar(i);

% Rotation -beta about z, alpha about y

Raero = [ cos(alpha(i))*cos(beta(i)),

-cos(alpha(i))*sin(beta(i)),

-sin(alpha(i));

sin(beta(i)),

cos(beta(i)),

0;



8.2 Static Matlab Code 64

sin(alpha(i))*cos(beta(i)),

-sin(alpha(i))*sin(beta(i)),

cos(alpha(i));];

RT = [ cos(theta(i)), 0, -sin(theta(i));

0, 1, 0;

sin(theta(i)), 0, cos(theta(i));];

R = transpose(RT);

% Aero Forces

Faero = [ Dwb(i)+Dt(i)+Dv(i);

Lv(i);

Lwb(i)+Lt(i)];

Fb = Raero*Faero;

% Aero Moments

Mt = hat(xt)*Raero*[Dt(i);0;Lt(i)];

Mv = hat(xv)*Raero*[Dv(i);Lv(i);0];

Mw = hat(xac)*Raero*[Dwb(i);0;Lwb(i)];

% Gravitational Forces/moments

Fm = (mb+mp-mbuoy)*g*RT*[0;0;1];

Mcg = mb*g*hat(rcg)*RT*[0;0;1];

% Thrust

%T = -((CA(i)*Ar+CAv(i)*St)*qbar(i)

+mt*g*sin(theta(i)))*[1;0;0];

T = -(Fm(1)+Fb(1))*[1;0;0];

% Sum Forces/Moments

Fext = T + Fm + Fb;

Mext = Mt + Mv + Mw + Mcg + Mwb;% + hat(xt)*T;

%rpx(i) = (Mext(2))/(mp*g*cos(theta(i)))

-rpz*tan(theta(i));

%rpx(i) = (Mext(2)+mb*rcg(3)*u(i)-mb*rcg(1)

*w(i)+mp*rpz*u(i))/(mp*g*cos(theta(i)))+mp*w(i)

-rpz*tan(theta(i));
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rpx(i) = ((Mext(2)-(Mf(1,1)-Mf(3,3))*u(i)*w(i))

/(mp*g*cos(theta(i))))-rpz*tan(theta(i));

rp = [rpx(i);rpy;rpz];

Mp = mp*g*hat(rp)*RT*[0;0;1];

end

% plot(alpha*(180/pi),CN)

% hold on

% plot(alpha*(180/pi),CA,’r--’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Force Coefficient’)

% legend(’C_N’,’C_A’,2)

% title(’Comparison of Hull Normal &

Axial Force Coefficients’)

%

% figure

% plot(alpha*(180/pi),CNf)

% hold on

% plot(alpha*(180/pi),CAf,’r--’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Fin Force Coefficient’)

% legend(’C_{N_f}’,’C_{A_f}’,2)

% title(’Comparison of Hull Normal &

Axial Force Coefficients’)

if length(alpha) > 1

Dtotal = -(Dwb+Dt+Dv);

Ltotal = Lwb+Lt;

LoDtotal = Ltotal./Dtotal;

% Dtotalmin = Dtotal(1);

% for j = 1:length(Dtotal)

% if Dtotal(j) <= Dtotalmin

% Dtotalmin = Dtotal(j);

% jmin = j;

% end
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% end

[Dtotalmin,jmin] = min(Dtotal);

[LoDtotalmax,jLoDmax] = max(LoDtotal);

figure(1) hold on plot(alpha*(180/pi),v,’r:’)

hold on plot(alpha(jmin)*(180/pi),v(jmin),’ro’)

title(’Equilibrium Angle of Attack and Velocity

Relation’) xlabel(’Angle of Attack,

AoA, degrees’) ylabel(’Velocity, v, m/s’)

figure(2) hold on plot(alpha*(180/pi),rpx./L,’r:’)

hold on

plot(alpha*(180/pi),0.4*ones(length(alpha)),’r--’)

plot(alpha*(180/pi),-0.4*ones(length(alpha)),’r--’)

title(’Moving

Mass Position to Equilibrium AoA relation’)

xlabel(’Angle of Attack, AoA, degrees’)

ylabel(’Moving Mass Position, r_{p_x} /L’)

legend(’Moving Mass Position’,’Actuator Limits’)

figure(3) hold on plot(v,rpx./L,’r:’)

hold on plot(v,0.4*ones(length(alpha)),’r--’)

plot(v,-0.4*ones(length(alpha)),’r--’)

title(’Moving Mass Position to Equilibrium Velocity

relation’) xlabel(’Velocity, v, m/s’)

ylabel(’Moving Mass Position, r_{p_x} /L’)

legend(’Moving Mass Position’,’Actuator Limits’,4)

figure(4) hold on plot(v,Dtotal,’r:’)

hold on plot(v(jmin),Dtotalmin,’ro’)

xlabel(’Velocity, v, m/s’) ylabel(’Drag’)

figure(5) hold on plot(v,LoDtotal,’r:’)

hold on plot(v(jLoDmax),LoDtotalmax,’ro’)

xlabel(’Velocity, v, m/s’) ylabel(’Lift/Drag’)

figure(6) hold on plot(alpha*180/pi,LoDtotal,’r:’)

hold on plot(alpha(jLoDmax)*180/pi,LoDtotalmax,’ro’)
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xlabel(’Angle of Attack, AoA, degree’)

ylabel(’Lift/Drag’) end

% figure

% plot(alpha*(180/pi),Mjorg)

% hold on

% plot(alpha*(180/pi),Mcg,’r:’)

% plot(alpha*(180/pi),Mach,’g--’)

% plot(alpha*(180/pi),Mht,’y’)

% plot(alpha*(180/pi),MWa,’k-.’)

% plot(alpha*(180/pi),MBa,’m’)

% legend(’Jorg’,’CG_B’,’AC_B’,’HT’,’CG_A’,’CB_A’)

% title(’Breakdown of Moments’)

% xlabel(’Angle of Attack, AoA, degrees’)

%

%

% figure

% plot(alpha*(180/pi),(Cm./CNf)*2)

% title(’Tail Area to Cancel Cm_{wb}’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Tail Area Ratio, A_t/A_r’)

%

% figure

% plot(alpha*(180/pi),(Cm./CNf))

% title(’Tail Volume Ratio to Cancel Cm_{wb}’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Horizontal Tail Volume ratio, \forall_t’)

% % figure

% % plot(v,(Cm./CNf)*2)

%

% figure

% plot(alpha*(180/pi),(CN+CNf).*qbar.*Ar.*cos(theta))

% title(’Equilibrium Lifting Force’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Equilibrium Lifting Force’)

%

% figure

% plot(v,(CN+CNf).*qbar.*Ar)

% title(’Equilibrium Lifting Force’)
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% xlabel(’Velocity, v, m/s’)

% ylabel(’Equilibrium Lifting Force’)

%

% figure

% plot(v,(CN+CNf).*qbar.*Ar.*cos(theta))

% title(’Equilibrium Lifting Force’)

% xlabel(’Velocity, v, m/s’)

% ylabel(’Equilibrium Lifting Force’)

%

% figure

% plot(alpha*(180/pi),Cm.*qbar.*Ar*L)

% title(’Destabilizing Wing-Body Pitching Moment’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Wing-Body Pitching Moment, C_{m_{wb}}’)

%

% figure

% plot(v,Cm.*qbar.*Ar*L)

% title(’Destabilizing Wing-Body Pitching Moment’)

% xlabel(’Velocity, v, m/s’)

% ylabel(’Wing-Body Pitching Moment, C_{m_{wb}}’)

%

% figure

% plot(alpha*(180/pi),Mht)

% title(’Stabilizing Horizontal Tail Pitching Moment’)

% xlabel(’Angle of Attack, AoA, degrees’)

% ylabel(’Stabilizing Horizontal Tail Pitching Moment, C_{m_{ht}}’)

%

% figure

% plot(v,Mht)

% title(’Stabilizing Horizontal Tail Pitching Moment’)

% xlabel(’Velocity, v, m/s’)

% ylabel(’Stabilizing Horizontal Tail Pitching Moment, C_{m_{ht}}’)

if length(alpha) == 1

%Inertia with Moving Mass

Inertiabm = [

Ib-mp*hat(rp)^2, mb*hat(rcg)+mp*hat(rp),

mp*hat(rp)*e1;
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-mb*hat(rcg)-mp*hat(rp), (mb+mp)*eye(3),

mp*e1;

-mp*transpose(e1)*hat(rp), mp*transpose(e1),

mp;

]; Inertiafl = -diag([0,-kp*Ib(2,2),-kp*Ib(2,2),

-k1*mb,-k2*mb,-k2*mb,0]);

Inertia = Inertiabm+Inertiafl;

%invInertia = inv(Inertia);

v = [u(i);0;w(i)]; Omega = [0;0;0];

V = [Omega;v;0]; Pt = Inertia*V;

P = Pt(4:6); Pi = Pt(1:3); Pp = Pt(7);

PcV = hat(P)*v;

Pdot = hat(P)*Omega + Fext;

Pidot = hat(Pi)*Omega + PcV + Mext + Mp;

fprintf(’ [Pi;P;rp;Pp;R;xb;findelfh] =

[%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;

%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;%4.4f;

%4.4f;0;0;0;%4.4f]\n’,Pt(1),Pt(2),Pt(3),Pt(4),Pt(5)

,Pt(6),rp(1),Pt(7),R(1,1),R(2,1),R(3,1),R(1,2),

R(2,2),R(3,2),R(1,3),R(2,3),R(3,3),findeflecth)

end

vnorm = norm(v)

%fprintf(’Mt = %4.4f Mv = %4.4f Mw = %4.4f

Mcg = %4.4f Mwb = %4.4f Mp = %4.4f

PcV = %4.4f’,Mt(2),Mv(2),Mw(2),Mcg(2),Mwb(2),Mp(2),PcV(2))
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8.3 Parameter ID

clear close all clc

rho = 1025;

BmW = 3/100; % 3 Percent Buoyant

L = 30 *.0254; % Body Length in inches

r = 3.75/2 *.0254;

% Buoyancy and Weight

mb = 4.55; % Mass of AUV

mbuoyb = 1.03*pi*r^2*L*rho; % Approximate Mass of

%displaced fluid (Cylinder volume +3% for nosecap and tailcap)

m_mma = 0.82; % Mass of actuator

%without movable mass (kg)

mt = mb+m_mma;

mp = 0.8; % Mass of movable mass (kg)

rpz_L = 0.01; g = 9.81; qbar = .5*1025*1^2;

Ar = r^2*L; At_Ar = 0.3;

Cmcg = (mp*g)/(qbar*Ar);

Data = [2 1.50 -11.30 -4.47 10.08 11.72 -4.61 ;

10 1.50 -9.81 -4.54 5.84 8.20 -1.09 ;

20 1.50 -8.26 -5.05 4.33 4.02 3.09 ;

30 1.50 -7.85 -6.16 -0.81 -2.66 9.76 ;

40 1.50 -6.48 -5.44 -1.54 -5.76 12.86 ;

50 1.50 -5.70 -6.72 -3.55 -8.28 15.38 ;

60 1.54 -5.59 -8.58 -6.61 -11.15 18.26];

MMApos = Data(:,1);

Depth = Data(:,2);%*pi/180;

Pitch = Data(:,3);%*pi/180;

Roll = Data(:,4);%*pi/180;

Fin_a = Data(:,5);%*pi/180;

Fin_b = Data(:,6);%*pi/180;
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Fin_c = Data(:,7);%*pi/180;

MMAposin = ((7.5/60)*MMApos-3.75)/L;

% Transorm MMA location to inches/L from CG/L

Fin_avg = (Fin_a+Fin_b)/2;

% A = [Pitch (Pitch+Fin_avg) Pitch zeros(7,3);

% zeros(7,2) Pitch.*xt_L Pitch (Pitch+Fin_avg) MMAposin];

% A = [Pitch (Pitch+Fin_avg) Pitch zeros(7,3);

% zeros(7,3) Pitch (Pitch+Fin_avg) MMAposin];

A = [Pitch 2*At_Ar*(Pitch+Fin_avg) Pitch zeros(7,2);

zeros(7,3) Pitch At_Ar*2*(Pitch+Fin_avg)];

% B = [BmW*ones(7,1);0.000*ones(7,1)];

B = [BmW*ones(7,1);-(Cmcg*MMAposin+Cmcg*(rpz_L)*Pitch)];

format long; Coeff = pinv(A)*B;

CNthetawb = Coeff(1)

CNdeltae = Coeff(2)

CT = Coeff(3)

CMthetawb = Coeff(4)

CMdeltae = Coeff(5)

%CMdeltacg = Coeff(6)

format short;

% num = 7;

% A = [Pitch(1:num) (Pitch(1:num)+Fin_avg(1:num))

Pitch(1:num) zeros(num,3);

% zeros(num,2) Pitch(1:num).*xt_L Pitch(1:num)

(Pitch(1:num)+Fin_avg(1:num)) MMAposin(1:num)];

%

% B = [BmW*ones(num,1);0.000*ones(num,1)];

% format long;

% Coeff = pinv(A)*B;

% CNthetawb = Coeff(1)

% CNdeltae = Coeff(2)

% CT = Coeff(3)
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% CMthetawb = Coeff(4)

% CMdeltae = Coeff(5)

% CMdeltacg = Coeff(6)

% format short;

%

% (CNthetawb*Pitch+CNdeltae*(Pitch+Fin_avg)+CT*Pitch)-BmW

%

% CMthetawb*Pitch+CMdeltae*Fin_avg+CMdeltacg*MMAposin
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