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Christopher C. Romanelli

(ABSTRACT)

The challenge of sensing relative motion between vehicles is an important subject in the en-

gineering field in recent years. The associated applications range from spacecraft rendezvous

and docking to autonomous ground vehicle operations. The focus of this thesis is to develop

the simulation tools to examine this problem in the laboratory environment. More specif-

ically, the goal is to create a virtual unmanned ground vehicle that operates in the same

manner as an actual vehicle. This simulated vehicle allows for safely testing other software

or hardware components before application to the actual vehicle. In addition, the simulated

vehicle, in contrast to the real vehicle, is able to operate on different surfaces or even different

planets, with different gravitational accelerations. To accomplish this goal, the equations of

motion of a two-wheel driven unmanned vehicle are developed analytically. To study the

spacecraft application, the equations of motion for a spacecraft cluster are also developed.

These two simulations are implemented in a modular form using the UMBRA framework.

In addition, an interface between these two simulations is created for the unmanned vehi-

cle to mimic the translational motion of a spacecraft’s relative orbit. Finally, some of the

limitations and future improvements of the existing simulations are presented.

This work received support from U.S. Defense Advanced Research Project Agency (DARPA)

and Sandia National Laboratories.



Contents

1 Introduction 1

1.1 Historical Studies of the Relative Motion Problem . . . . . . . . . . . . . . . 5

1.2 The Autonomous Vehicle Systems Lab . . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Robotic Vehicle Dynamics 13

2.1 Kinematic Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Kinetic Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Vehicle Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 EOM of the Drive Wheel . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 EOM of the Vehicle Body . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Solving for the System EOM . . . . . . . . . . . . . . . . . . . . . . . 22

iii



2.3 Numerical Vehicle Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Friction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Numerical Simulations with Vehicle Slippage . . . . . . . . . . . . . . . . . . 34

3 Relative Orbit Simulation 40

3.1 Non-Linear Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Computing Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Orbit Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Gravitational Zonal Harmonics . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Atmospheric Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 UMBRA Implementation 58

4.1 The Pioneer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 The Original Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 The Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The Full Vehicle Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Servo Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iv



4.3.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Digital Filtering and Differentiation . . . . . . . . . . . . . . . . . . . 69

4.3.3 Computing Wheel Torques with Feed Back . . . . . . . . . . . . . . . 74

4.3.4 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.5 Torque Input Gain Selection . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Battery Power Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Orbit Propagator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Relative Orbit Pioneer Interface Module . . . . . . . . . . . . . . . . . . . . 95

4.6.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.2 Simulation Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6.3 Orbit Tracking Control Law . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusion and Future Work 108

v



List of Figures

1.1 Spacecraft Rendezvous and Docking Maneuver . . . . . . . . . . . . . . . . . 2

1.2 Unmanned Vehicle on Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Depiction of Simulation/Hardware Interaction . . . . . . . . . . . . . . . . . 4

1.4 Planar Air-Bearing Testbed at Stanford’s ARL23 . . . . . . . . . . . . . . . . 6

1.5 Spherical Air-Bearing Systems at the SSSL1,15 . . . . . . . . . . . . . . . . . 7

1.6 ActiveMedia Robotic Vehicle Pioneer with Pan-and-Tilt Unit . . . . . . . . . 9

1.7 Simulated Vehicle Components Interfacing with an Orbit Simulator . . . . . 10

2.1 ActiveMedia Robotic Vehicle Pioneer . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Wheel Distances on the Robotic Vehicle . . . . . . . . . . . . . . . . . . . . 16

2.3 Position and Heading Coordinate Definition . . . . . . . . . . . . . . . . . . 17

2.4 Diagram of the Robotic Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Diagram of Robotic Vehicle with approximate dimensions . . . . . . . . . . . 27

vi



2.6 X and Y Position Plots of the Kinematic Model Response . . . . . . . . . . . 29

2.7 Dynamic Model Response (Tr = Tl= 0.1 Nm) . . . . . . . . . . . . . . . . . 30

2.8 Dynamic Model Response (Tr= 0.1 Nm, Tl= 0.01 Nm) . . . . . . . . . . . . 31

2.9 Dynamic Model Response to Forward Slippage (µfR=µfL=0.01) . . . . . . . 35

2.10 Friction and Normal Forces with Forward Slippage (µfR=µfL=0.01) . . . . . 36

2.11 Dynamic Model Response to Lateral Slippage (µN=0.2) . . . . . . . . . . . . 37

2.12 Friction and Normal Forces with Lateral Slippage (µN=0.2) . . . . . . . . . 38

3.1 Diagram of the Relative Motion Problem . . . . . . . . . . . . . . . . . . . . 41

3.2 Plot of Relative Orbit Between 2 Spacecraft . . . . . . . . . . . . . . . . . . 47

3.3 Relative Orbit Between 2 Spacecraft with J2 through J6 Perturbations . . . 51

3.4 Relative Orbit Between 2 Spacecraft with Atmospheric Drag Perturbations . 53

3.5 Relative Orbit Between 2 Spacecraft with Solar Radiation Pressure Perturba-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Dominant Differential Perturbation Zones Illustration. . . . . . . . . . . . . 56

4.1 Schematic of Pioneer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Diagram of Pioneer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Screen Shots of GUI for Unguarded Mode (left) and Teleop Mode (right). . . 63

vii



4.4 Block Diagram of Pioneer Simulation . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Diagram of the Servo Module. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Filtered Response to Sinusoidal Signal. . . . . . . . . . . . . . . . . . . . . . 72

4.7 Filtered Response to Sinusoidal Signal with Noise . . . . . . . . . . . . . . . 73

4.8 Diagram of robotic vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Position Estimation with LP frequency of 5 Hz . . . . . . . . . . . . . . . . . 80

4.10 Velocity Estimation with LP frequency of 5 Hz . . . . . . . . . . . . . . . . . 81

4.11 Command vs. Estimated with kv = 0.0 . . . . . . . . . . . . . . . . . . . . . 84

4.12 Command vs. Estimated with kv = 0.1 . . . . . . . . . . . . . . . . . . . . . 85

4.13 Command vs. Estimated with kv = 0.03 . . . . . . . . . . . . . . . . . . . . 86

4.14 Diagram of the Battery Power Module . . . . . . . . . . . . . . . . . . . . . 88

4.15 Battery Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.16 Diagram of the Orbit Module. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.17 Schematic of Orbit/Pioneer Simulation . . . . . . . . . . . . . . . . . . . . . 96

4.18 Diagram of ROPI Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.19 Simulation Frame P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.20 Tracking Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



4.21 Stationary point tracking with kx = ky = kθ = 0.3 . . . . . . . . . . . . . . . 104

4.22 Spacecraft relative orbit tracking with kx = ky = 0.005, kθ = 0.05 . . . . . . . 105

4.23 Spacecraft relative orbit tracking with Atmospheric Drag and kx = ky =

0.005, kθ = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix



List of Tables

2.1 Estimates of Vehicle Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Initial Conditions and Spacecraft Parameters . . . . . . . . . . . . . . . . . . 48

4.1 Motion Input Connector Components for Teleop Modes . . . . . . . . . . . . 62

4.2 Motion Input Connector Components for Unguarded Modes . . . . . . . . . 62

4.3 ARIA functions and their purpose. . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Values for Perturbation Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Initial Chief (Center of Mass) Orbit Parameters . . . . . . . . . . . . . . . . 107

1 Cart Dynamics Module Commands . . . . . . . . . . . . . . . . . . . . . . . 115

2 Battery Power Module Commands . . . . . . . . . . . . . . . . . . . . . . . 116

3 ROPI module Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Simulated Servo Module Commands . . . . . . . . . . . . . . . . . . . . . . 117

x



5 RelOrbitSim module Commands . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



Chapter 1

Introduction

Sensing relative motion between vehicles is a challenge that applies to vehicles of all types.

Some examples include spacecraft formations, aerial vehicles flying in close proximity, or even

a formation of ground vehicles. The growing number of applications for this problem occur

in fields such as the military, local police forces, and various space administrations. The

applications for spacecraft formations alone range from wide field-of-view interferometry,

to forming virtual structures, to engaging in close proximity flying operations, as well as

rendezvous and docking maneuvers. One specific aircraft application is the creation a fully

autonomous aerial refueling aircraft. In another example, a group of unmanned vehicles

must navigate a crowded urban environment by following a lead vehicle to an unknown

location and complete an objective. However, the task of sensing relative motion in any

of these applications is difficult and complex. For example, a spacecraft has six degrees of

freedom and operates in a near vacuum environment at speeds on the order of kilometers per

1
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second. In addition, there are disturbances such as solar radiation pressure and atmospheric

drag that affect the spacecraft’s orbit and attitude. Now consider the application where

a spacecraft attempts to rendezvous and dock with another spacecraft or maintain a 10-

meter separation distance. The spacecraft rendezvous and docking application is depicted

in Figure 1.11. In order to gain a better understanding of the relative motion concept, some

Figure 1.1: Spacecraft Rendezvous and Docking Maneuver

institutions and laboratories are developing hardware/simulation test beds. These test beds

combine hardware components such as air bearing tables or robotic ground vehicles, with

software components such as numerical vehicle simulations or spacecraft orbit models. The

hardware components are designed to examine a simpler form of the problem. For example,

an air bearing table simulates the motion of a spacecraft in its orbit plane with only one

degree of rotational freedom and two degrees of translational freedom. In contrast, the

numerical simulation component both complements the hardware component and extends

1http://science.ksc.nasa.gov/mirrors/images/images/pao/ASTP/10076433.jpg
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its capability. For instance, an advantage of having a numerical vehicle simulation is that

software, such as a new control law, is safely tested before applying it to the actual vehicle.

However, the more important advantage of having a numerical vehicle simulator is that it

is not limited to operating in a lab environment. For example, a simulated ground vehicle

is able to operate on different types of surfaces, such as gravel or slippery pavement, and

even different planets which have different gravitational and surface properties. An example

application would be to model an unmanned vehicle on Mars as it is depicted in Figure

1.22. This vehicle simulation capability is extended to make the actual vehicle behave as

Figure 1.2: Unmanned Vehicle on Mars

if it is operating on different surfaces or planets, or even to mimic the orbital motion of a

spacecraft. Figure 1.3 depicts how this simulation-hardware interaction would occur with

an autonomous ground vehicle. In this example, a software module is created to control

both the real and virtual versions of the ground vehicle. This control module interacts with

2http://marsrovers.nasa.gov/gallery/artwork/hires/rover1.jpg
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the actual and simulated vehicles in the same manner. In addition, a sensor or another

simulation is able to send the same information to either type of vehicle, without having to

make any distinction between the two. This example illustrates the importance of having

an efficient hardware/simulation testbed to study the relative motion problem.

Figure 1.3: Depiction of Simulation/Hardware Interaction
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1.1 Historical Studies of the Relative Motion Problem

The study of relative motion concepts for different types of vehicles is challenging to do in

the laboratory environment. The challenge lies in trying to reproduce the types of environ-

ments these vehicles operate in. Historically, one application that has been studied in great

detail is the motion of spacecraft, which includes the translational and attitude dynamics

of spacecraft. With the spacecraft application the difficulties arise when trying to mimic a

frictionless and nearly torque-free environment in a ground-based laboratory.24 The solution

that has frequently been used in past is an air-bearing environment. In an air-bearing en-

vironment, pressurized air is pumped through small orifices and provides a thin lubricating

film. These air-bearing platforms are typically in a spherical or planar shape, which gives

them the capability to study planar or attitude motion of spacecraft respectively.24 Other

types of systems that produce similar types of environments are water tanks or magnetic

suspension systems. However, these hardware test beds have their limitations when applied

to spacecraft. For instance, the magnetic suspension systems have a limited range of motion,

and submerging a satellite is not a useful way to study its motion in space. For example,

a water tank is limited in size and does not model any orbital dynamics.24 In contrast, an

autonomous ground vehicle operates indoors or outdoors and has the ability to simulate the

translational motion of a spacecraft.

Of interest to the relative motion problem are the planar air-bearing test beds. These test-

beds provide two degrees of translation freedom and one degree of rotational freedom. This
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type of test bed provides a good environment for simulating and studying planar relative-

motion of spacecraft. One specific application that is studied on these test-beds is rendezvous

and docking.24 In the 1970’s these facilities were a common occurrence in the industry. They

featured large polished floors with floating air-bearing vehicles.12 Furthermore, NASA has

manufactured planar air-bearing testbeds capable of supporting 200-pound vehicles that are

either manned or unmanned.10 Another notable facility that uses a planar air-bearing is the

Aerospace Robotics Laboratory at Stanford University. This facility features a 6-by-12 foot

polished granite table with a robotic arm and various vehicles that freely float on the table.

This test bed is used to study the problem of capturing a free floating object with a robotic

arm, which is pictured in Figure 1.4.23 Other facilities that include similar systems are a

Figure 1.4: Planar Air-Bearing Testbed at Stanford’s ARL23

10-by-16 foot plate glass table at the Tokyo Institute of Technology and a planar air-bearing

at the University of Victoria.4,16 The facilities mentioned here represent only a few of these

planar air-bearing testbeds. Additionally, these air-bearing systems are limited by table-size

and weight and do not model spacecraft orbital motion. In contrast, spacecraft attitude
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and rotational motion is explored using spherical air bearings. Currently at Virginia Tech,

the Space Systems Simulation Laboratory (SSSL) is exploring this problem using table-top

and dumbbell style air bearing systems. The table-top system provides one full 360-degree

of freedom, while the dumbbell system has two full rotational degrees of freedom.1,15 The

air-bearings are pictured in Figure 1.5. However, the spherical air-bearing systems only sim-

(a) “Tabletop” Style Air Bearing (b) “Dumbbell” Style Air Bearing

Figure 1.5: Spherical Air-Bearing Systems at the SSSL1,15

ulate the attitude motion of spacecraft and do not feature any of the orbital and attitude

dynamics. For example, the gyroscopic coupling of attitude and orbital motion or the effect

of gravity gradient torque. In addition, air-bearing systems are mathematically complex and

expensive as well as having limited or no mobility. This is where autonomous vehicles have

a clear advantage. An autonomous vehicle system is able to mimic not only the motion of

spacecraft, but also aircraft and ground-based vehicles. With the increasing interest in visual
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sensing techniques, the mobility of an autonomous system provides various different lighting

environments to explore, as well as different types of surfaces and obstacles. In laboratories

that feature autonomous ground vehicles, a hardware/simulation test bed is created in order

to add software components to compliment the hardware. At the University of Florida, the

Nonlinear Controls and Robotics (NCR) group (which is part Autonomous and Multi-Agent

Systems (AMAS) Laboratory at UF) is examining the problem of using a visual servo to

control autonomous robotic vehicles.17,28 However, this facility is limited to exploring only

control solutions for ground vehicles. At Virginia Tech, a new facility is being developed us-

ing autonomous robotic vehicles to explore many different types of relative motion problems,

such as spacecraft orbital motion and aircraft motion.

1.2 The Autonomous Vehicle Systems Lab

Virginia Tech is developing a new facility called the Autonomous Vehicle Systems (AVS) Lab

to examine the relative motion problem. The goal of this lab is to mimic the near-planar

relative dynamics of ground, aerial or space-based vehicles and to provide relative motion

sensors with realistic physical motion. This goal is achieved by developing a sophisticated

hybrid hardware/simulation environment. For example, a software component that models

spacecraft orbital motion interfaces with the vehicle’s control software, thus enabling the

actual vehicle to behave like a spacecraft. This feature is extended to mimic aircraft or

even ground vehicles on complex terrains. The current hardware in the lab includes an
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ActivMedia P3-DX robotic vehicle that is used to provide a 2D autonomous motion plat-

form. Additional hardware includes two cameras to examine visual sensing techniques. In

addition, these cameras are mounted on pan and tilt units which allow more flexibility to

examine out-of-plane or lateral attitude motion of a vehicle. Currently ground vehicle rel-

ative control issues are being investigated using only visual sensing techniques. However,

the applications for this vehicle can be expanded to mimic the relative motion of aircraft

or spacecraft. For example, the autonomous vehicle mimics the actual in-plane motion of

spacecraft. Another benefit of using autonomous vehicles is that the relative motion tests

can be performed both indoors and outdoors, allowing for a diverse set of lighting and surface

conditions to be tested. The simulation capability within in the lab is achieved through a

Figure 1.6: ActiveMedia Robotic Vehicle Pioneer with Pan-and-Tilt Unit
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software framework called UMBRA and is being used to generate a modular code environ-

ment. Different vehicle tasks such as communication, control, sensing processing, etc., are

encapsulated into compiled code objects called modules. These modules are then connected

to each other, allowing for interaction and manipulation in real-time. This feature of the

UMBRA framework allows us to develop modules that can easily interact with either the

actual hardware or a simulated vehicle without having to recompile any code. Figure 1.7

shows an depiction of this simulation environment. Here the vehicle control components are

put into modules and interfaced with an orbit simulator. By sharing this code through the

Figure 1.7: Simulated Vehicle Components Interfacing with an Orbit Simulator

UMBRA framework, yields an efficient hardware/simulation environment. This capability

takes full advantage of the power of C++ in a modular form. This property is expanded to

include communication over wired and wireless networks. Sandia National Labs is currently
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developing such modules. However, in order to take advantage of these ideas, an accurate

dynamical model of the vehicle must be created as well as the components to control it,

such as an internal drive-wheel servo module. In addition the vehicle simulation must be

developed using the same module that controls the real vehicle. This ensures consistency

between operating with the virtual or actual vehicle. Other modules, such as an orbit sim-

ulator, are then be created to interface with either vehicle. Some of the future work that

one could consider is a collaboration between the attitude simulators of the SSSL lab and

the planar motion simulator of the AVS lab. This collaboration could bridge the gap for

exploring coupled attitude and translational motion of spacecraft.

1.3 Outline of Thesis

The research work contained in this thesis is to begin developing the simulation capability

of a two-dimensional test bed platform that will assist with researching the relative motion

sensing problem. In the following chapter, the equations of motion for the ActivMedia P3-

DX robotic vehicle are developed, which includes a basic wheel friction model and direct

wheel torques as inputs. This provides the capability to accurately mimic the full dynamic

motion of the robotic vehicle. Additionally, a wheel-speed based kinematic model is de-

veloped to provide the idealized no-slip motion of the vehicle. In the third chapter, the

non-linear translational equations of motion for a spacecraft subject to orbital perturbations

are developed. The equations of motion apply to a single spacecraft or to multiple space-
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craft in a formation. The orbit simulation also includes a relative motion calculation and

orbit perturbations such as atmospheric drag, gravitational harmonics, and solar radiation

pressure. The fourth chapter illustrates how the orbit and vehicle simulations are imple-

mented using the UMBRA framework. The key ideas explored in the fourth chapter are

implementing the vehicle simulation using the same interface code that drives the actual

vehicle, and also developing the internal servo module that takes vehicle speed commands

as inputs, and translates them to wheel torques. This chapter also discusses the creation

of a interface module between the vehicle simulation and the relative orbit module, which

enables the vehicle to track spacecraft relative orbits. This interface module allows either

the simulated vehicle or the actual vehicle to behave like a spacecraft in formation.



Chapter 2

Robotic Vehicle Dynamics

In order to develop a successful hardware/simulation test bed, the simulation component

must accurately describe the motion of the vehicle in question. In this case, the goal for

the AVS Lab is to develop a software vehicle simulation that mimics the motion of the P3-

DX robotic vehicle pictured in Figure 2.1. This is achieved by developing both a kinematic

speed-based model and a kinetic torque-based model. The kinematic model is a simple wheel-

speed based model that is well suited to describing the ideal no-slip motion of the vehicle.

The kinetic model is much more complex and includes such things as surface friction forces,

normal forces, and internal forces and torques. This model is designed with wheel torques

as the control input and includes a basic friction model. This adds a level of accuracy to

the kinetic-based model, allowing the virtual vehicle to explore wheel slippage on different

surfaces. In the kinetic model there are two different approaches to developing the vehicle

equations of motion. The vehicle has two large drive wheels and one rear support wheel.

13
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The two larger wheels are independently controlled by two motors. The third wheel is a

small free-wheel or caster that only provides stability. The first approach to developing the

equations of motion is to describe the vehicle as whole with two rotating wheels attached

to it. This approach quickly yields the equations of motion of the vehicle. However, the

wheels are examined separately to describe the motion of the vehicle as a function of the

internal motor control torques. The second approach is to examine the vehicle body and

two wheels as three separate bodies. These bodies are linked through the internal torques

and forces that act between them. This approach is taken in this chapter, with the goal of

not only obtaining the equations of motion but also describing the surface friction forces,

normal forces, and internal forces as functions of the state of the vehicle. This also allows for

a real-time friction model to be developed later in this chapter. Next, the kinematic model

for the vehicle is described.
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Figure 2.1: ActiveMedia Robotic Vehicle Pioneer

2.1 Kinematic Vehicle Model

Before deriving the full dynamic equations of motion we examine the kinematic equations

of motion of the vehicle. This model is intended as a first iteration into simulating the ideal

motion of the robotic vehicle. It is also useful in controlling the virtual vehicle using wheel

speeds, where motor torques are not needed. One important item to consider in developing

the kinematic model is the basic configuration and dimensions of the vehicle. A schematic

diagram is included in Figure 2.2, which illustrates the drive wheel and free wheel offsets

through distances d1 and d2. These are the distances of the free wheel and driving wheel

axis from the center of mass of the vehicle respectively. Here d1 = −d1b̂2 and d2 = d2b̂2 are
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Figure 2.2: Wheel Distances on the Robotic Vehicle

distances along the b̂2 axis which is the forward direction of the robotic vehicle. Also note

the distance L is half the wheel-base and RL is the left wheel radius. Additionally, Figure 2.3

defines the position and heading coordinates of the vehicle. Two key assumptions are that

the vehicle body is symmetric with respect to the b̂2-b̂3 plane and the wheels are identical

homogeneous cylinders. These assumptions and parameters are also carried through to the

kinetic model. In the kinematics model the rate of change of the position and heading of the

vehicle are represented in the following matrix equation.21
ẋ

ẏ

θ̇

 =
1

2


−Rr sin θ −Rl sin θ

Rr cos θ Rl cos θ

Rr

L
−Rl

L


 ωr

ωl

 (2.1)
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Figure 2.3: Position and Heading Coordinate Definition

Here ωr and ωl are the right and left wheel speeds and θ is the cart heading angle as defined

in Figure 2.3. These initial equations of motion give insight into the motion of the vehicle

and how movement is controlled using wheel speeds.

2.2 Kinetic Vehicle Model

To develop the dynamic equations of motion, the robotic vehicle is split into three separate

bodies: two identical wheels and a vehicle body. This allows for a larger and complex problem

to be broken down into three simpler problems. This approach examines the governing

equations of the wheel and the vehicle body separately, and then combines them to solve for

the unknown forces and the final form of the equations of motion.
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2.2.1 Vehicle Reference Frames

Figure 2.4: Diagram of the Robotic Vehicle

In Figure 2.4 the robotic vehicle components are displayed with the various torques and

forces being applied. The torques TL and TR are the drive motor control torques acting

on the wheels and are treated as inputs to the equations of motion. The rest of the forces

and torques are unknowns and must be solved for in terms of the state of the vehicle. The

principal body frame, B : {b̂1, b̂2, b̂3}, is fixed to the vehicle with its origin at the center of

mass of the vehicle body. Also note here that the vehicle is restricted to planar motion. Any

motion in the b̂3 direction is restricted to zero as well as any rotations about b̂1 and b̂2 axes.

Another frame that is not described in the figure is the inertial frame, N : {n̂1, n̂2, n̂3},

whose origin is initially at the vehicle’s center of mass and n̂i = b̂i(t0). Therefore, the
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angular rate between the body frame and the inertial frame is written as follows:

ωB/N = θ̇b̂3 (2.2)

Also note that the free wheel is modeled here as a support force NC . Here, it is required

that NC be positive to avoid tipping the vehicle.

2.2.2 EOM of the Drive Wheel

The governing equations for the wheel are obtained by applying Euler’s equation and New-

tons 2nd Law. The angular momentum and torque are taken about the center of mass of the

wheel and described in the body frame. This body frame B is also aligned with the principal

inertia frame of the wheel. The angular momentum of the wheel is:22

Hi = [Iw](ωB/N − ωib̂1) =

B
Iw1 0 0

0 Iw2 0

0 0 Iw3



B
−ωi

0

θ̇

 = Iw3θ̇b̂3 − Iw1ωib̂1 (2.3)

Here, the subscript i is either L or R to denote the left or right wheel respectively. Addi-

tionally, [Iw] is the inertia matrix of the drive wheel. The positive wheel speeds, ωi, are in

the negative b̂1 direction, which is the same direction as the control torques Ti. Using the

transport theorem22 we find the rate of change of angular momentum and this is equal to
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the external torques applied to the body:

Ḣi =

B
−Iw1ω̇i

−Iw1θ̇ωi

Iw3θ̈

 = Li =

B
−Ti −RiFFi

Ti2 + RiFNi

Ti3

 (2.4)

Newton’s 2nd Law is then applied to the wheel, but in the inertial frame:

mwa =

N
mwẍL

mwÿL

0

 = F =

N
(F1 − FNL) cos θ + (FFL − F2) sin θ

(F2 − FFL) cos θ + (F1 − FNL) sin θ

NL −mwg + F3

 (2.5)

An equivalent force equation is written for the right wheel. Note that xi and yi represents

the position of the center of mass of the drive wheel in the inertial frame. This essentially

completes the set of six equations needed to fully describe the six degrees of freedom of the

wheel. However, note that the wheel has been restricted to planar motion by setting the z

acceleration to zero as well as any rotation about the b̂2 axis. Accompanying these equations

are the no-slip conditions, which must be applied if the vehicle is to move along a surface.

ẏi cos θ − ẋi sin θ = Riωi (2.6)

ẏi sin θ = ẋi cos θ = 0 (2.7)

These equations are valid for both wheels and are differentiated once to describe accelera-

tions.
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2.2.3 EOM of the Vehicle Body

Euler’s equation and Newtons 2nd law are applied to the cart body in similar fashion. The

torques and angular momentum are taken with respect to the center of mass of the vehicle

body and described in the body frame:

H = [I]ωB/N =

B
I1 0 0

0 I2 0

0 0 I3



B
0

0

θ̇

 = I3θ̇b̂3 (2.8)

Here [I] is the inertia matrix of the vehicle body and the inertial rate of change of angular

momentum in relation to the external torques is:

Ḣ =

B
0

0

I3θ̈

 = L =

B
−NCd1 − TR − TL − (F3 + F6)d2

(F6 − F3)L− TR2 − TL2

(F1 + F4)d2 + (F2 − F5)L− TL3 − TR3

 (2.9)

Newton’s 2nd Law is applied to the vehicle body in the inertial frame to obtain:

mca =

N
mcẍ

mcÿ

0

 = F =

N
−(F1 + F4) cos θ + (F5 + F2) sin θ

−(F2 − F5) cos θ − (F1 + F4) sin θ

NC −mcg − F3 − F6

 (2.10)

Combine these equations with the six equations for each wheel, yields a total of 18 equa-

tions and 17 unknown forces. Additionally, there are 5 desired unknown accelerations

(ẍ,ÿ,θ̈,ω̇R,ω̇L) and 4 unknown wheel accelerations (ẍL,ÿL,ẍR,ÿR). This leaves 8 unknowns,

which are reduced to 4 by using the kinematic relations between the wheel positions, xi and
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yi, and the vehicle body position, x and y. Lastly, there are 2 no-slip conditions for each

wheel and a lateral no-slip condition that leaves one unknown that cannot be solved for.

This unknown force is along the b̂1 direction where the lateral friction forces (FNi) cannot

be determined uniquely.

2.2.4 Solving for the System EOM

The strategy for solving for these forces starts with the wheel equations. From the first two

components of the matrix equation 2.4, the friction forces are determined for each wheel

using:

FFi = (−Ti + Iw1ω̇i)/Ri (2.11)

FNi = (−Ti2 − Iw1ωiθ̇)/Ri (2.12)

These friction forces are used to reduce the unknowns in the first two components of equation

2.5 by two for each wheel:

mwẍR −
ω̇RIw1 sin θ

RR

=
(RRF4 + TR2 + Iw1ωRθ̇) cos θ − (RRF5 + TR) sin θ

RR

(2.13)

mwÿR −
ω̇RIw1 cos θ

RR

=
(RRF4 + TR2 + Iw1ωRθ̇) sin θ + (RRF5 + TR) cos θ

RR

(2.14)

mwẍL −
ω̇LIw1 sin θ

RL

=
(RLF1 + TL2 + Iw1ωLθ̇) cos θ − (RLF2 + TL) sin θ

RL

(2.15)

mwÿL −
ω̇LIw1 cos θ

RL

=
(RLF1 + TL2 + Iw1ωLθ̇) sin θ + (RLF2 + TL) cos θ

RL

(2.16)
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Using these four equations, the four unknown pin forces (F1,F2,F4,F5) are solved for in terms

of the remaining two unknown torques, TR2 and TL2, and the known wheel motor torques:

F1 =
−TL2 − Iw1ωLθ̇

RL

+ mw(cos θẍL + sin θÿL) (2.17)

F4 =
−TR2 − Iw1ωRθ̇

RR

+ mw(cos θẍR + sin θÿR) (2.18)

F2 =
Iw1ω̇L − TL

RL

+ mw(− sin θẍL + cos θÿL) (2.19)

F5 =
Iw1ω̇R − TR

RR

+ mw(− sin θẍR + cos θÿR) (2.20)

The pin forces described here are directly substituted into the first two components of equa-

tion 2.10 and the last component of equation 2.9. The remaining components of those

equations are used to solve for the normal forces. These are later used in the friction model.

Before we solve for the cart accelerations, some kinematic conditions must be applied that

relate the translational wheel accelerations to the accelerations for the vehicle body. These

conditions essentially “attach” the wheels to the vehicle body and are written as follows.

yL = y − L sin θ + d2 cos θ (2.21)

yR = y + L sin θ + d2 cos θ (2.22)

xL = x− L cos θ − d2 sin θ (2.23)

xR = x + L cos θ − d2 cos θ (2.24)

These equations are differentiated twice to relate velocities and accelerations as needed.

Using these kinematic conditions as well as the the pin forces and the no-slip conditions, the

vehicle body equations 2.10 and 2.9 reduce to three equations in terms of 5 accelerations
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(ẍ,ÿ,θ̈,ω̇R,ω̇L) and a single unknown torque sum (TR2 + TL2):

− 2ẍmwd2 cos θ− 2ÿmwd2 sin θ + (2mw(L2 + d2
2) + 2Iw3 + I3)θ̈− ω̇L

(
Iw1L

R

)
+ ω̇R

(
Iw1L

R

)
=

L

R
(TR − TL)− d2

R
(TL2 + TR2 + Iw1(ωR + ωL)θ̇) (2.25)

ẍ(2mw + mc)− 2mwd2 cos θθ̈ − ω̇R

(
Iw1 sin θ

R

)
− ω̇L

(
Iw1 sin θ

R

)
= − sin θ(TR + TL + 2mwd2R sin θθ̇2) + cos θ(Iw1(ωR + ωL)θ̇ + TR2 + TL2) (2.26)

ÿ(2mw + mc)− 2mwd2 sin θθ̈ + ω̇R

(
Iw1 cos θ

R

)
+ ω̇L

(
Iw1 cos θ

R

)
= cos θ(TR + TL + 2mwd2R sin θθ̇2) + sin θ(Iw1(ωR + ωL)θ̇ + TR2 + TL2) (2.27)

Also note that we have assumed the wheels to be identical in size and mass. The last

unknown in this equation is the torque sum (TR2 + TL2). In this dynamical system these

torques cannot be determined uniquely. The reason is that the vehicle is treated as a rigid

body and these torques act along the same axis (b̂2). Structural stiffness modeling of the

vehicle and its drive wheels is necessary to determine these torques uniquely. However, the

kinematic and no-slip conditions for each wheel are combined to yield the no-slip conditions

in terms of the full vehicle states. Applying the full no-slip conditions to equations 2.25,

2.26, and 2.27, the unknown torque sum is obtained:

(TR2 + TL2) = −2Iw1 + R2(2mw + mc)

2
(ωR + ωL)θ̇ − 2mwRd2θ̈ (2.28)

This equation represents the last unknown in the vehicle equations of motion. Applying

equation 2.28 results in three second-order differential equations in terms of five unknown
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accelerations. To complete the set of equations the no-slip condition for the full vehicle is

included as well as a rotational kinematic condition. The set of equations are now arranged

in matrix form in equation 2.29.

−2mwd2 cos θ −2mwd2 sin θ (2(mwL2 + Iw3) + I3)
(

Iw1L
R

)
−

(
Iw1L

R

)
(2mw + mc) 0 0 −

(
Iw1 sin θ

R

)
−

(
Iw1 sin θ

R

)
0 (2mw + mc) 0

(
Iw1 cos θ

R

) (
Iw1 cos θ

R

)
− sin θ cos θ 0 −R/2 −R/2

0 0 L −R/2 R/2





ẍ

ÿ

θ̈

ω̇R

ω̇L



=



L
R
(TR − TL) + Rd2

2
(2mw + mc)(ωR + ωL)θ̇

− sin θ(TL + TR)− R
2

cos θ(2mw + mc)(ωR + ωL)θ̇ − 2mw sin θd2θ̇
2

cos θ(TL + TR)− R
2

sin θ(2mw + mc)(ωR + ωL)θ̇ + 2mw sin θd2θ̇
2

2d2θ̇
2L

0


(2.29)

Which is also represented in a simple form as:

[A]



ẍ

ÿ

θ̈

ω̇R

ω̇L


= [B] (2.30)

The five accelerations then become the inverse of a five-by-five matrix, [A], multiplied by

the vector, [B]. As with any second order system, integration is done by simply breaking it
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down to a larger first-order system where the state vector X and the derivative of the state

are defined as:

X =



x

y

θ

ẋ

ẏ

θ̇

ωR

ωL

θR

θL



Ẋ =



ẋ

ẏ

θ̇

ẍ

ÿ

θ̈

ω̇R

ω̇L

ωR

ωL



=



X(4)

X(5)

X(6)

A−1B

X(7)

X(8)



(2.31)

Note that it is desirable to keep track of wheel angles, θR and θL, for the purpose of simulating

encoder outputs, as well as incorporating wheel movement in the graphical simulation. These

equations represent the full dynamic no-slip motion of the robotic vehicle. However, in order

to accurately mimic the motion of the vehicle on general surfaces, it is also necessary to

include a basic friction model that allows the wheels to slip.

2.3 Numerical Vehicle Simulations

In this section, the goal is to numerically simulate the simple kinematics model and the

torque-based kinetic model. This gives us a better understanding of both models and allows
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us to verify basic movement of the vehicle. The kinematics model, which is described in

equation 2.1, is essentially a wheel-speed based model, while the kinetic model takes wheel

torques as inputs. For these numerical simulations it is desirable to include some realistic

parameters for the robotic vehicle in question, such as mass, size, and moments of inertia.

Estimates of these parameters are obtained by consulting the ActiveMedia robotics manual

as well as through some hand measurements. Figure 2.5 shows the basic dimensions of the

vehicle used in the simulation and Table 2.1 lists additional vehicle parameters. For calcu-

lating the moment of inertia of the wheel, it is assumed to be a homogeneous cylinder and

the appropriate inertia equation is used. The vehicle body is estimated as a homogeneous

rectangular body. Using these vehicle parameters, the two different vehicle models are sim-

ulated. The equations of motion for each of these models are integrated and the vehicle

Figure 2.5: Diagram of Robotic Vehicle with approximate dimensions
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Table 2.1: Estimates of Vehicle Parameters

mc Mass of the vehicle body. 8 kg

mw Mass of the vehicle wheels. 0.5 kg

R Radius of the wheels 0.098 m

Iw1 Inertia of the wheel about the spin axis (b̂1). 0.0025 kgm2

Iw3 Inertia of the wheel about the vertical axis (b̂3). 0.001305 kgm2

I3 Inertia of the vehicle body about the vertical axis (b̂3). 0.2 kgm2

d1 Distance of the third wheel from the center of mass. 0.225 m

d2 Distance of the wheel axis from the center of mass. 0.05 m

L Half the distance between left and right wheels. 0.165 m

states are plotted. For the kinematics model two simple cases are chosen. First, equal wheel

speed commands are issued that would instinctively move the vehicle in the forward (b̂2)

direction. The second case features different wheel speeds that move the vehicle in a circle.

The position plots for both cases are shown in Figure 2.6. Using equation 2.29, the dynamic

response of the robotic vehicle to two equal constant motor torques is plotted in Figure 2.7.

As expected, the vehicle moves forward in the y-direction at a quadratic rate, with the speed

increasing at a linear rate. The second case in Figure 2.8 shows the vehicle accelerating on

a constant radius circle with a linearly increasing heading rate. Note that in the plot for the

wheel speeds, red corresponds to the right wheel and blue to the left wheel. These simple

test cases help verify that our kinematic and kinetic models work as expected.
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2.4 Friction Model

The friction model chosen for the simulation is a basic static friction model. Later versions

or iterations of the simulation will possibly include a more sophisticated friction model.

The goal of this friction model is to add a layer of accuracy to the kinetic vehicle model.

Specifically, the friction model allows the drive wheels to slip when the vehicle is moving

on a general surface. This adds realistic error to the kinetic vehicle simulation. The static

friction model is based on the standard physics relation.

Ff ≤ µN (2.32)

Here Ff is the maximum possible surface friction force in relation to the normal force acting

at that point. If the friction force is found to exceed this amount then there would be

slippage. In this case the friction force would be replaced by the maximum friction force,

µN , and the accelerations acting on the vehicle are recomputed. Before this is accomplished

the friction force equations are needed. Equation 2.11 describes these friction forces for each

wheel in terms of various accelerations and states. However, as noted before, the torques TR2

and TL2 cannot be solved for explicitly. Therefore, the lateral friction forces FNR and FNL

cannot be described explicitly, only their sum. Combined with equation 2.28, the friction

forces in their final form are obtained.

(FNR + FNL) =
R

2
(2mw + mc)(ωR + ωL)θ̇ + 2mwd2θ̈ (2.33)

FFR =
−TR − Iw1ω̇R

R
(2.34)

FFL=
−TL − Iw1ω̇L

R
(2.35)
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In addition to these equations it is necessary to obtain the normal force relations for each

wheel, NR and NL, which is achieved by taking the first two elements of equation 2.9 and

the last components of equations 2.10 and 2.5. This results in five equations from which

five unknown forces are solved for (NC ,F3,F6,NL,NR). Using equation 2.28 again the normal

forces are obtained in their final form:

NL = mwg +
1

2L(d1 + d2)
(gLd1mc − L(TR + TL)) +

TR2 + TL2

2L
(2.36)

NR = mwg +
1

2L(d1 + d2)
(gLd1mc − L(TR + TL))− TR2 − TL2

2L
(2.37)

These equations complete the set of required force computations in the friction model. The

next step is to define the logic for checking for slippage. In this model, each required friction

force is compared to the corresponding maximum allowable friction friction force obtained

from applying equation 2.32. In the case of lateral friction, the total lateral friction force

is compared to the sum of the normal forces multiplied by a lateral friction coefficient, µN .

Again this is assuming identical wheels. If any of the friction forces are greater then the

maximum then they are replaced with the maximum friction force. Therefore the five cart

accelerations must be recomputed based on these new forces. These equations defines the

new motion of the cart as the wheels slip. The following equations are obtained by applying
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Newtons 2nd law and Euler’s equation on the vehicle as a whole:

ẍ =
1

(2mw + mc)
((FFL + FFR) sin θ − (FNL + FNR) cos θ) (2.38)

ÿ =
1

(2mw + mc)
(−(FFL + FFR) cos θ − (FNL + FNR) sin θ) (2.39)

θ̈ = ((FNL + FNR)d2 + (FFL + FFR)L)/(I3 + 2Iw3 + 2mL2) (2.40)

ω̇R = (−TR − FFRR)/Iw1 (2.41)

ω̇L = (−TL − FFLR)/Iw1 (2.42)

2.5 Numerical Simulations with Vehicle Slippage

The goal of this section is to examine this friction model using simple test cases when the

vehicle slips to verify the algorithm and code. In the same MATLAB environment as before,

the friction model is implemented into the equations of motion. The resulting friction and

normal forces are plotted and examined. To compare to a “no-slip” situation, the same two

test cases that were previously used in Figures 2.7 and 2.8 are considered. These two test

cases also allow us to explore the forward slipping and the lateral slipping independently.

For the first test case, the torques remain the same, but the forward friction coefficients are

lowered to a point where the vehicle slips, while ignoring the lateral friction coefficient. In

the second test case, the forward friction coefficients are kept high enough not to slip, while

the lateral friction coefficients are lowered to a point where the vehicle slips side to side.
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In the first test case presented in Figures 2.9 and 2.10, we observe that wheels slip immedi-

ately due to the constant torque input. Slippage is noted as a thick red line in plot 2.10(b)

of the friction forces. Also, in comparing the plots to the results of the no-slip case in Figure

2.7, the wheels spin up faster and the vehicle does not move as far. This of course makes

sense when a vehicle that is trying to accelerate too quickly. In the second case, the vehi-

cle is accelerating around a circular path. The wheels slip in the lateral direction and the

vehicle leaves this circular path. The results are shown in Figures 2.11 and 2.12. Another

interesting note is that the normal forces on the “inside” wheel decrease and coincidently

the normal force on the “outside” wheel increase. This property is synonymous with the

vehicle’s tendency to flip over to the side as it is accelerating through this circle. These

simple test cases again provide some interesting insight into the vehicle’s behavior while it

is slipping. Also note that in a normal lab environment the vehicle may never slip, but this

tool allows us to explore different environments that the actual vehicle is unable to reach.

The equations of motion as well as this friction model are implemented in the UMBRA

simulation environment to interface with other simulations.



Chapter 3

Relative Orbit Simulation

In this chapter, the relative orbit concept is explored by developing the equations of motion

for multiple spacecraft in a formation. Traditionally, the relative motion of spacecraft is

studied when they are in nearly circular orbits. For these cases, the Clohessy-Wiltshire-Hill

equations are commonly used.9,13,22 These equations linearize the relative motion dynamics

with respect to a constantly rotating reference frame. They have a well-known analytical

solution to the unperturbed motion which decouples the orbital in-plane and out-of-plane

motions. The CW equations are convenient to develop rendezvous and near-circular for-

mation flying control laws.14,25 However, due to the effects of orbit perturbations on the

relative orbit frame, it is necessary to avoid the linearization and constant orbit rate issues

of the CW equations. Therefore, a full non-linear simulation of the spacecraft is developed

with the perturbations included as inertial acceleration vectors. The relative motion of the

spacecraft is then computed by processing the inertial solution. One of the objectives of this

40
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orbit simulation is to describe the perturbation effects on the relative motion of spacecraft

as accurately as possible.

3.1 Non-Linear Equations of Motion

rc

R
el
at
iv
e
O
rb

it

Chief Inertial Orbit

Inertial Orbit
Deputy

Satellite
Deputy

ρi

ri

xi
yi

zi

ı̂r

ı̂h
ı̂θ

Chief or C.M

Figure 3.1: Diagram of the Relative Motion Problem

Figure 3.1 describes the set-up of the relative motion problem and the notation to be used

in the rest of this chapter. The inertial equations of motion of a satellite are given by

r̈i = − µ

ri
3
ri + adi

(3.1)

where adi
is the disturbance acceleration acting on the ith satellite. Of interest is the motion

of a particular satellite relative to the formation center of mass rc or another satellite in the

formation. These two types of relative motion descriptions are well suited for the formation

maintenance and rendezvous and docking applications. In addition, the influence of the
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disturbances on the center of mass is also of interest. Let there be N general spacecraft

present with their inertial position vectors given by ri, while

rc =
1

M

N∑
i=1

miri (3.2)

is the formation inertial center of mass vector. Here M is the total system mass and mi is the

mass of the ith spacecraft. The velocity of the center of mass is computed by differentiating

the center of mass condition once to obtain:

ṙc =
1

M

N∑
i=1

miṙi (3.3)

To describe the motion relative to another satellite, simply replace the rc vector with the ri

vector of the satellite of interest. The Hill frame unit direction vectors H : {ı̂r, ı̂θ, ı̂h} are

defined through:

ı̂r =
rc

rc

ı̂θ = ı̂h × ı̂r ı̂h =
rc × ṙc

|rc × ṙc|

The Hill frame is aligned with the radial, out-of-plane, and along-track directions of the

chief orbit. In the CW equations, this frame is treated as having a constant rotation rate.

However, when orbital perturbations are included the actual ṙc is taken into account. The

rotation matrix [HN ], which rotates vector components taken with respect to the inertial

frame to vector components taken with respect to the the Hill frame, is defined as

[HN ] =

[
ı̂r ı̂θ ı̂h

]T

(3.4)

Defining the relative position vector as ρi = ri − rc, this vector is mapped between inertial

and Hill frame vector components using Hρi = [HN ]Nρi.
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3.2 Computing Relative Motion

The purpose of this orbit simulation is to describe the relative motion of satellites using the

non-linear inertial equations of motion. Therefore, the first step is to obtain the inertial

position and velocity vectors of each of the spacecraft from the initial relative vectors ρi and

ρ′i. To achieve this, the rotation matrix [NH] is calculated based on the initial chief orbit of

the formation using equation 3.4. These initial chief or CM conditions are supplied by the

user. In addition, the user supplies the initial desired Hill-frame coordinates of each of the

spacecraft. The relative position and velocity vectors are written as follows.22

Hρi =

[
x y z

]T
Hρ′i =

H
d

dt
(ρi) =

[
ẋ ẏ ż

]T

(3.5)

Using this information, the position of each spacecraft in the ECI frame is written as22

Nrdi = [NH]


rc + x

y

z

 (3.6)

Here rc is the chief orbit radius. The velocity vector is:22

Nṙdi = Nṙc + [NH]




ẋ

ẏ

ż

 + ωH/N ×


x

y

z



 (3.7)

Here ωH/N = ω is the angular velocity of the Hill Frame with respect to the inertial frame.

This is defined initially as Hω =

[
0 0 ḟ

]T

, where ḟ is the true anomaly rate of the chief
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orbit and is defined as:

ḟ =
|rc × ṙc|

r2
c

=
h

r2
c

(3.8)

This relationship comes from the definition of angular momentum of a general orbit.22 Note

that these equations are only implemented at the beginning of the simulation to set up the

initial inertial vectors properly from the relative orbit inputs. During the integration process

of the inertial equations of motion, it is desirable to obtain the relative motion of a particular

spacecraft with respect to the center of mass of the formation or another spacecraft. This

is achieved by applying the reverse process to that described above to obtain the relative

position and velocity vectors. The inertial relative position is defined as:

Nρi = Nrdi − Nrc (3.9)

and is mapped into the Hill frame using:

Hρi = [HN ]Nρi (3.10)

For the relative velocity a similar process is done:

Hρ′i = [HN ]Nρ̇i − ω × Hρi (3.11)

However, since we are dealing with perturbations that cause the frame to rotate about the

along-track and radial directions, it is desirable to compute the angular velocity components

more rigorously. The second and third components of ω are obtained through applying the

transport theorem to position vector of the chief spacecraft, rc:

ṙc =
H
d

dt
(rc) + ω × rc = ṙcı̂r − rcω2ı̂h + rcω3ı̂θ (3.12)
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Now ω2 and ω3 are obtained as follows:

ω2 =
ṙc

rc

· ı̂θ ω3 = − ṙc

rc

· ı̂h (3.13)

The final component of the angular velocity, ω1, is obtained by taking the inertial derivative

of the unit direction vector ı̂h:

N
d

dt
(ı̂h) = ω2ı̂r − ω1ı̂θ =

rc × r̈c

hc

− ı̂h
ḣc

hc

(3.14)

And ω1 is obtained as follows.

ω1 = −
(

rc × r̈c

|rc × ṙc|

)
· ı̂θ (3.15)

Lastly, it is also desirable to compute the relative accelerations acting on each spacecraft.

These acceleration components are useful for studying the relative motion dynamics of the

spacecraft formation. To obtain these accelerations, we must revisit equation 3.9 which is

rearranged to yield:

ri = rc + ρi (3.16)

This equation is differentiated twice to yield the relative acceleration of the spacecraft in the

Hill frame.

ρ′′i = r̈i − r̈c − ω × ρ′i − ω̇ × ρi − ω × (ṙi − ṙc) (3.17)

To obtain ω̇, a simple numerical differentiation scheme is used.

ω̇ =
ωk − ω(k−1)

h
(3.18)

The complete relative orbit simulator now has the capability to examine the relative motion

of spacecraft and apply control solutions or orbit tracking using the robotic vehicle. Figure
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3.2 shows a plot of relative orbit using the numerical simulation described above. In this

plot, two spacecraft have an initial separation distance of 200 meters with a circular chief

orbit that has an altitude of 300 km. For this test case, the initial Hill-frame positions and

velocities are selected such that the resulting motion is bounded with a circular projection

in the local horizontal plane. This case is chosen due to the increasing interest in radar

interferometry applications.8
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3.3 Orbit Perturbations

In this section the orbital perturbations that are implemented in the relative orbit simulation

are discussed. These typical orbital perturbations have a large effect on the relative motion

of two closely orbiting satellites. In an effort to examine this problem in a general way,

the effects of atmospheric drag, J2 perturbations, and solar radiation drag are included

as disturbance accelerations in equation 3.1. For reference, Table 3.1 describes the initial

conditions and spacecraft parameters that are used in the simulations following the rest of

this chapter.

Table 3.1: Initial Conditions and Spacecraft Parameters

rc Initial Chief Orbit Altitude 300 km

|ρi| Initial Separation Distance 200 m

m Spacecraft Mass 50 kg

Cd1 and Cd2 Coefficient of Drag for each spacecraft 2.6 or 2.0

rsat Cylindrical Radius of each spacecraft 0.5 m

h Height of each spacecraft 1.5 m

A1 and A2 Cross-sectional area for each spacecraft 0.7854 or 1.5000 m2
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3.3.1 Gravitational Zonal Harmonics

The J2 through J6 perturbations arise from the fact that the Earth is not a perfect sphere,

but rather ellipsoidal in shape. Of these gravitational disturbances, the 2nd order zonal

harmonic, called the J2 term, is about three orders of magnitude larger than the remaining

harmonics. It provides the dominant formation flying perturbation for spacecraft of equal

type and build.2 These formation flying spacecraft are typically envisioned to be flying about

1 km apart, or farther.7 However, with this simulation much smaller separation distances

can also be examined based on user input. With these smaller separation distances the

differential J2 influence becomes even smaller. An interesting problem to examine is how

these differential accelerations compare to other orbital perturbations such as differential

atmospheric drag and differential solar radiation pressure.

The inertial disturbance acceleration vector due to J2 through J6 is modeled as a function

of inertial position and contains six zonal harmonic terms. However, only the first zonal

harmonic has a significant contribution, which is expressed as.22

aJ2 =
−3

2
J2

( µ

r2

) (req

r

)2



(
1−5

(
Z
r

)2
)

X
r(

1−5
(

Z
r

)2
)

Y
r(

3−5
(

Z
r

)2
)

Z
r

 (3.19)

Here req is the equatorial radius of the Earth and µ is the gravitational constant of the

Earth. The variables X, Y , and Z are the inertial position coordinates with respect to

the ECI (Earth Centered Inertial) frame and the orbit radius is r =
√

X2 + Y 2 + Z2. The

magnitude of the J2 induced relative motion disturbance depends on how the relative orbit
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is formed (whether the out-of-plane motion is achieved through inclination or ascending

node differences), and on the location (anomaly angle) within the orbit.5,19,22 Because

we are examining relative motion of satellites, we would like to examine the effect that

gravitational harmonics have on these relative orbits. A study examined the disturbance

acceleration magnitudes for different formation sizes and at different altitudes. In the study,

the altitude is swept from LEO (300 to 1000 km) to GEO (35,000 km) and the formation

size is swept from 10 – 1000 meters. The results of the study showed that the differential J2

perturbations increase with increasing formation size and with decreasing orbit altitude. As

the chief orbit inclinations are increased, the disturbance accelerations increase slightly, but

not substantially.8 Figure 3.3 shows an example case of the relative motion of 2 craft under

the influence of gravitational harmonics. In this plot the same initial separation distance of

200 meters and chief (center of mass) orbit altitude of 300 km are chosen.
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Figure 3.3: Relative Orbit Between 2 Spacecraft with J2 through J6 Perturbations

In Figure 3.3, the relative orbits are plotted over 3 orbit periods. Over this time the effect

of the J2 through J6 perturbations becomes significant, as seen in a shift in the relative

orbits along the Y axis. The gravitational harmonics also rotate the relative orbit frame

about the along-track and radial directions, which violates the assumptions used in the Hill

Frame equations of motion. This illustrates the importance of using the inertial non-linear
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equations of motion.

3.3.2 Atmospheric Perturbations

The next perturbation examined is the atmospheric drag force. This effect is strongest in

the low earth orbit altitudes and becomes negligible at orbit altitudes greater than 1000 km.

The magnitude of acceleration due to atmospheric drag is.22

aD = −1

2
ρ(CdA/m)V 2 (3.20)

Here ρ is the atmospheric density, Cd is the coefficient of drag, A is the satellite’s cross-

sectional area, and V is the current inertial velocity of the spacecraft. The drag force acts

in the opposite direction of velocity:22

adi
= adi

ı̂v = adi

ṙi

|ṙi|
(3.21)

The atmospheric density model used in equation 3.21 is the United States Standard At-

mosphere Model from 1976.18 The actual model contains density data for altitudes ranging

from 86 to 1000 km. Above this range it is assumed that density becomes close to zero

and the drag force is non-existent.18 The atmospheric disturbance is not dependent on the

spacecraft formation size. Rather, it only depends on the orbit altitude. A plot of two

spacecraft in formation under the influence of atmospheric drag is shown in Figure 3.4. A

general cylindrical shape is considered for each spacecraft otherwise if spherical spacecraft

of equal mass are considered the differential atmospheric draft would be trivially zero. In

the cylindrical spacecraft case the attitude of the spacecraft has an influence on the Cd
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value. This configuration allows us to study the differential drag force between two or more

satellites in a formation. An estimate of the Cd value for worst and best case scenarios is

based on existing data from an actual spacecraft.29 A typical spacecraft with a mass of 50

kg is chosen with a radius of 0.5 meters and a height equal to three times the radius. This

provides our numerical simulation with realistic spacecraft parameters.8
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Figure 3.4: Relative Orbit Between 2 Spacecraft with Atmospheric Drag Perturbations

In this case the chief orbit (center of mass) is at 300 km altitude, so the drag effect is

relatively high. Also note that we are looking at a worst case scenario in differential drag
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force between the two spacecraft. This is why we see them drift apart from each other in

the Y-direction. This is due to the fact that the drag force acts along the velocity vector

and tends to both circularize and lower the orbit speed.

3.3.3 Solar Radiation Pressure

Solar radiation drag is created by having the sun’s light reflect off the spacecraft. Through

momentum conservation, a small force is exerted onto the craft. The magnitude of this force

depends on the apparent size and reflectivity of the spacecraft. To model the solar radiation

pressure a spherical spacecraft model is used. The equation for this model is:27

aR = −CR
AΦR

mcR3
(3.22)

Here A is the cross-sectional area facing the sun, and Φ = 1372.5398 W/m2 is the solar

constant. Further, m is the spacecraft mass, c = 2.997 ∗ 108 m/s is the speed of light, and

CR is the pressure radiation coefficient. The pressure radiation coefficient is taken to be CR

= 1.3 from the average value based on recent data.27 Lastly, the vector R is the inertial

vector pointing from the sun to the planet the spacecraft is orbiting in AU, and R is its

magnitude. In this part of the equation, it is assumed that there is a quadratic drop in

radiation pressure as the distance is increased past 1 AU. Without loss of generality, for our

simulation we choose a vector in the vernal equinox direction as a default. However, the user

supplies this distance based on which planet the spacecraft is orbiting. The motion of all

satellites is considered to be insignificant compared to the size of this inertial position vector.
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The solar radiation pressure does not depend on altitude or formation size.8 In Figure 3.5,

the effects of solar radiation pressure on the spacecraft formation are displayed.
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Figure 3.5: Relative Orbit Between 2 Spacecraft with Solar Radiation Pressure Perturbations

Again note that we are looking at the worst case scenario where the differential force is max-

imum. However, we see that this effect is minimal in comparison to the other perturbations.

But, it is still an effect that produces a disturbance acceleration and in combination with the
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other effects creates a significant force on the spacecraft. To get an idea of the overall effect

of these perturbations, Figure 3.6 provides an overview of altitude and separation distance

zones showing which perturbation is the most significant for a particular zone.
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Figure 3.6: Dominant Differential Perturbation Zones Illustration.

Traditional formation flying applications treat the J2 perturbation as the dominant distur-

bance of the formation geometry.3,20,26 Here the spacecraft are assumed to be of equal type

and build. However, even if all craft have the same shape, different orientations cause sig-

nificant differential atmospheric drag in LEO regimes. Figure 3.6 shows that for conditions

used in this study, the differential atmospheric drag dominates at LEO up to separation

distances of 350 meters. As the orbit altitude is increased to about 500 km, the differen-

tial atmospheric drag dominant zones vanish. For large separation distances at LEO the



57

differential J2 perturbation becomes dominant, even if differential spacecraft attitudes are

considered. This tendency is expected because the differential J2 perturbation increases with

separation distance, while the differential atmospheric drag does not.8



Chapter 4

UMBRA Implementation

The goal of this chapter is to illustrate the methodology of implementing these various

simulations into the UMBRA framework. The UMBRA framework is a combination of

C++ and a scripting language. The scripting language used in the AVS Lab is Tcl/Tk. In

the UMBRA framework, the user creates a module of C++ code that interacts with other

modules through this scripting language. This feature is achieved by creating input and

output connectors that pass data easily from one module to another. It is also possible to

pass parameters directly to a module through the use of “wrapper” functions written in

C++. This fact makes the UMBRA framework an ideal tool for creating a simulation with

many different parts interconnected to each other without having to recompile C++ code.

The rest of this chapter is organized into three major sections. The first section deals with

implementing the vehicle simulation in such a way that it interacts with other modules in

the exact same manner as the hardware does. This allows for easily switching between the

58
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virtual and actual vehicle as well as ensuring the consistency in the module interface. The

second section shows how the inertial orbit simulation and relative orbit calculations are

implemented. And lastly, an interface module is created to link these these two simulations

together. This module essentially allows either the real or simulated vehicle to behave like a

spacecraft in a planar orbit.

4.1 The Pioneer Module

The vehicle simulation is based on an existing UMBRA module called pioneer. This module

was originally created to control the real robotic vehicle by interfacing with the robot’s

own C++ libraries called ARIA. These ARIA libraries feature functions that control the

vehicles movements, as well as return encoder computed position and heading data. The

following section details how the Pioneer module is modified in order to interact with a

simulated vehicle, while still keeping the original functionality intact. Figure 4.1 shows a

rough schematic of the pioneer simulation and its various components. There are three

main components to this simulation. First is the pioneer module itself with the various

modifications. Second, is a simulated servo control module which takes commands generated

through pioneer and output wheel motor torques. The servo module also serves to simulate

other functionalities of the real vehicle that are discussed later. And lastly, a module that

encompasses the vehicle dynamics is discussed in Chapter 2.
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Figure 4.1: Schematic of Pioneer Simulation

4.1.1 The Original Layout

The original pioneer module was created to interface with the ActiveMedia P3-DX Robotics

platform. This robotic vehicle is located in the AVS Lab and is used for exploring different

aspects of relative motion problems. A diagram of the pioneer module with its various

original and simulated connectors is shown in Figure 4.2. The original pioneer module has

three input connectors and three output connectors. The first input connector is the mode

connector, which is an integer between 0 and 3. This connector describes the operating mode

of the module. A value of 0 corresponds to no motion at all, and 1, 2, and 3 corresponding

to the Teleop, Wander, and Unguarded modes respectively. The second input connector,
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Figure 4.2: Diagram of Pioneer Module

motion, is a vector containing four doubles. The motion input connector contains different

states depending on the mode of the module. The motion input connector components for

the Teleop modes are featured in table 4.1. In the Teleop mode there are no direct speed

commands, the vehicle only moves in a single direction at the specified maximum rotational

or translational velocity. This mode is a useful mode for easily commanding the vehicle to

move in different directions but is not used for the simulated version. The wander mode is a

purely an ARIA defined mode, where the robotic vehicle moves in randomly picked direction

until it comes near to something and then changes direction to avoid hitting the obstacle. The

robotic vehicle senses these obstacles using its 16 sonar sensors and various bump sensors.

The last mode is the Unguarded mode, which is also the most useful mode. Here, the user
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Table 4.1: Motion Input Connector Components for Teleop Modes

Motion Connector Components

[0] [1] [2]

0 (No Motion) N/A N/A

1 (Motion) ±1 (Move forward or in reverse) ±1 (Turn right or left)

Table 4.2: Motion Input Connector Components for Unguarded Modes

Motion Connector Components

[0] [1] [2]

0 (No Motion) N/A N/A

1 (Velocity Mode) Vc (Move at speed Vc in mm/s) Rc (Turn at speed Rc degrees/s)

2 (Position Mode) D (Move to distance D in mm) N/A

controls directly the translational velocity, rotational velocity, or relative position of the

vehicle. The motion input connector components for the Unguarded modes are described in

Table 4.2. The velocity mode gives the user the most control over the vehicle’s movements

and is the only mode that is used in this version of the numerical simulation. The last

original input connector is a snake_info vector, which contains information from a visual

snake and is currently not being used. Lastly, there are also three original output connectors

which are counter, sonar_meas, and sensors. The first is an update counter to keep track

of the number of iterations the module has completed. The second output connector contains



63

sonar information and is unused currently. The last connector, sensors, outputs a vector

that contains information on the vehicle’s position and heading. These modes are controlled

through a Tcl/Tk generated GUI (Graphical User Interface). Figure 4.3 shows screen shots

of the GUI in the Teleop and Unguarded modes. The different modes are accessed through

a pull down menu of the GUI.

Figure 4.3: Screen Shots of GUI for Unguarded Mode (left) and Teleop Mode (right).
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4.1.2 The Modifications

As mentioned before, the only mode of pioneer in which we are interested in is the unguarded

velocity mode. This mode is implemented as a separate C++ function as part of the orig-

inal pioneer module. The implementation of these functions is controlled by an update()

function. The update() function checks the mode, initializes if it is a new mode, and then

activates that mode to accept the inputs through the GUI if necessary. Within the Un-

guarded function are various ARIA functions that command the robotic vehicle. Our goal is

to preserve this functionality, while at the same to interface with the virtual vehicle. Table

4.3 features some select functions that control the actual hardware.

Table 4.3: ARIA functions and their purpose.

Function Name Function Purpose

robot.setVel() Set the translational velocity in mm/s

robot.setRotVel() Set the rotational velocity in ◦/s

robot.setAbsoluteMaxTransVel() Set the maximum translational velocity in mm/s

robot.setAbsoluteMaxRotVel() Set the maximum rotational velocity in ◦/s

robot.getX() Output the estimated X position in m

robot.getY() Output the estimated Y position in m

robot.getTh() Output the estimated heading in ◦
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The intention for these modifications is to keep these functions intact and instead use them

to pass various data to and from the simulated vehicle. This goal is achieved by circum-

venting the provided ARIA libraries and defining our own simulated versions of these func-

tions. These functions are defined in a header file AriaSim.h and essentially replace the

actual ARIA libraries. This file is included in the main module file instead of the actual

libraries. Through these functions information is passed through additional “simulated”

connectors which are shown in blue in Figure 4.2. An additional header file, AriaSimfun.h,

contains the function definitions that pass data to various simulated connectors. First, the

input connector sim_state contains the vehicle states from the numerical simulation which

is then obtained by the pioneer module through the robot.getX(), robot.getY(), and

robot.getTh() functions. These functions output the vehicle’s x and y position as well as

heading angle, respectively. An output connector sim_param contains the maximum allow-

able rotational and translational velocity, which are the speed limits for the vehicle.

The next output connector is sim_command, which is a vector containing six numbers. The

first component is either 1, 2, or 3 which tells a connecting module what mode to be in and

what type of information to expect in the remaining components of the vector. Currently

only mode 2 is operational, which is the unguarded velocity mode. In this mode, the second

and third components of sim_command are the translational velocity and rotational velocity,

which are passed through the simulated functions robot.setVel() and robot.setRotVel().
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4.2 The Full Vehicle Simulation

Figure 4.4 shows a block diagram of all of the different modules connected together to form

the complete pioneer vehicle simulation. The basic idea is that the pioneer module generates

commands through its GUI or by interfacing with another simulation and passes them along

to the simulated servo module. In turn, the servo module calculates the wheel torques and

passes them along to the vehicle dynamics. The cart dynamics module takes the torques and

the previous state and calculates the derivative of the state, which is sent to an integrator

module to calculate the new state and feed it back. The cart dynamics module contains the

kinetic equations of motion for the virtual vehicle discussed in Chapter 2. The integrator in

this case is a simple Euler integrator. This procedure runs every time UMBRA updates the

modules. Also note that the simulation runs in either real or simulated time, which is set

by a Tcl procedure called SetTime. In this function, 0 corresponds to real time and a non

zero value corresponds to the new time step of the simulation. Since we have preserved the

functionality and layout of the original pioneer module, we are able to interface with any

code or other modules written for the original pioneer module without having to make any

changes.
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Figure 4.4: Block Diagram of Pioneer Simulation
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4.3 Servo Module

The goal of the simulated servo module is to create an interface between the pioneer module

and the vehicle dynamics modules. The servo module’s main task is to generate left and right

wheel torques from velocity or position commands. It has additional tasks such as reading

a simulated encoder output and estimating the state of the vehicle and simulating battery

power consumption. The next section details the layout of the simulated servo module.

4.3.1 Layout

The servo module has a total of five input connectors and four output connectors that in-

terface with other modules of this simulation. The first two input connectors, command

and param, connect with the two simulated output connectors of the Pioneer module,

sim_command and sim_param. These connectors allow the Pioneer module to pass along any

commands and parameters to the servo module. The input connectors time and time_step

interface with UMBRA’s wallClock or simClock modules to add real time or simulated time.

These modules are standard UMBRA modules that are initialized upon running the UM-

BRA program. The last input connector, encoder_out, contains a simulated wheel encoder

output from the dynamics module that is used for state estimation. The Torquevec output

connector contains the left and right wheel torques and passes them to the vehicle dynamics

module. The second output connector, cart_param_out, contains the parameters of the

robotic vehicle, such as wheel base and wheel radius, which are set internally in the servo
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module and passed along to the dynamics modules. These connectors ensure consistency of

parameters across all the modules. The last output connector is the sim_state connecter

which is in a feedback connection to pioneer module. This connector allows pioneer to obtain

the state of the vehicle through the simulated ARIA functions. The layout of the servo mod-

ule is featured in Figure 4.5 along with some descriptions of the internal logic and functions.

4.3.2 Digital Filtering and Differentiation

The simulated servo module contains functions that represent the different states of the

servo. There are three main functions in the module which correspond to the three movement

modes of pioneer: unguarded velocity, unguarded relative position, and Teleop modes. The

unguarded relative position and Teleop modes will be developed in a later version of this

module. For the first iteration of the servo module, the unguarded velocity function is

created and is represented as UngaurdedVel() in Figure 4.5. In this function, there are two

inputs: the rotational velocity and translational velocity. These two terms are independent

of each other. For example, the vehicle moves forward at a given velocity and at the same

time rotates at a given heading rate and the resulting motion is turning in an arc. It is

necessary to obtain the rotational and translational accelerations in order to compute the

necessary torque to apply to the wheels. To achieve this, we take advantage of a 1st-order

differentiator with a 1st-order low-pass filter. The additional filter helps remove any noise

and smooth any discretization from the velocity inputs. The differentiator with filter is
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Figure 4.5: Diagram of the Servo Module.
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featured in equation 4.1.11

ai =
1

2 + hωc

[ai−1(2− hωc) + 2ωc(vi − vi−1)] (4.1)

In this equation, ai and ai−1 represent the current and previous accelerations, while vi and

vi−1 are the current and previous velocities. Also, h and ωc are the time step and cut-off

frequency in rad/s. In order to get an estimate on the behavior of this differentiator and

select a cut-off frequency, a sinusoidal signal running at 0.1 Hz is filtered and differentiated

with and without noise. For our noise model, an approximate Gaussian distribution is

chosen. The sinusoid motion is chosen based on the typical vehicle commands. Figure

4.6 shows two plots of the output signal with two different cut-off frequencies. From the

figures we see that when the cut-off frequency is at 0.5 Hz, we get some lag in the signal.

On the other hand, a higher cut-off frequency that is at least 10 times higher than the signal

frequency greatly reduces this effect. The drawback is that if there is any noise below 2 Hz it

is not smoothed out and even grows larger after differentiation. In Figure 4.6 some Gaussian

noise is introduced. As expected, differentiating only magnifies this effect, unless the cut-off

frequency is set to a lower value. In the figure, a cut-frequency of 0.5 Hz is used and the

noise remains reasonably low with a small amount of lag. This differentiator is implemented

as a separate function in the main module. The next problem is applying this filter to the

servo module. UMBRA modules update as fast as possible according to the computer’s

limits. However, the servo module must update slower than the vehicle dynamics module.

Otherwise, the control may be updating faster than the dynamical system. Ideally, the servo

module is to run 5 times slower than the dynamics module. This check is done using an if
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Figure 4.6: Filtered Response to Sinusoidal Signal.
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statement that is featured at the top of Figure 4.5. To implement the frequency enforcement,

the update() function is encompassed with a series of if statements that force the module

to only update at a certain rate by keeping track of the real time passed between updates.

This feature of the servo module is shown in upper portion of the module diagram in Figure

4.5. For our first implementation we chose a run frequency of about 10 Hz. However, both

the run frequency and the cut-off frequency of the low pass filter, are able to change in real

time through the Tcl/Tk functions setRunFreq and setLPFreq. These set functions makes

it easier to change the filtering properties for different situations.

4.3.3 Computing Wheel Torques with Feed Back

The next key component is to compute wheel torques based on the translational and rota-

tional acceleration commands, which are outputs of the differentiator/filter function. The

accelerations are represented as ar and at in Figure 4.8. There are two main parts to comput-

ing wheel torques. First, a simplified version of the equations of motion is used to generate

a reasonably accurate feed-forward torque term. Secondly, a feed-back term is added based

on the desired angular wheel speed and position. The feed-forward term itself has two com-

ponents. First is a torque that is applied to both wheels equally to provide forward motion

and the second is a torque difference that rotates the vehicle. The feed-forward torques are

represented in the following equation.
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Figure 4.8: Diagram of robotic vehicle.

T̃R = Tf + ∆T/2 (4.2)

T̃L = Tf −∆T/2 (4.3)

To compute the forward torque, Tf , the equations of motion are reduces to a simpler form

by assuming only translational motion (θ=0, θ̇=0, ẋ=0, TR = TL = 2Tf , ÿ = at) to obtain:

(2(L2m + Iw3) + I3)θ̈ +
Iw1L

R
ω̇R −

Iw1L

R
ω̇R = 0 (4.4)

(2mw + mc)ẍ = 0 (4.5)

(2mw + mc)ÿ +
Iw1

R
ω̇R +

Iw1

R
ω̇R = (TR + TL)/R (4.6)

ÿ =
R

2
(ω̇R + ω̇L) (4.7)

θ̈ − R

2L
ω̇R +

R

2L
ω̇L = 0 (4.8)
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Using simple algebra, the forward wheel torque is determined in terms of an translational

acceleration at:

Tf =
(R(2mw + mc) + 2Iw1/R)

2
at (4.9)

For rotational motion a similar process is applied to the equations of motion (ẋ = 0, ẏ =

0, θ̈ = ar, ∆T = TR − TL) and the torque difference is obtained in terms of rotational

acceleration:

∆T =

(
(2(L2m + Iw3) + I3)R

L
+

2Iw1L

R

)
ar (4.10)

These two equations are used with equations 4.2 and 4.3 to compute a feed forward torque

input for each wheel.

However, it is also desirable to include some feed-back on wheel position and rate. The feed-

back control enables the virtual vehicle to track the commanded velocities more accurately.

Additionally, the wheel angle feed-back ensures that the vehicle is at the correct desired

position. For example, the kinetic model does not respond immediately to velocity commands

due to its weight and inertia, therefore the feed-back is necessary to compensate for this effect.

The feed-back control law is:

Ti = T̃i + kv(ωid − ωim) + kp(θid − θim) (4.11)

Here the d subscript represents a desired state and the m subscript represents a measured or

estimated state. The desired wheel speeds and positions are computed easily from kinematics
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in terms of the original velocity commands.

ωid =
Vt

R
± ωdiff

2
(4.12)

ωdiff =
Vr2L

R
(4.13)

θid = ωidh + θiold (4.14)

Here Vt and Vr are the translational and rotational velocity commands respectively. Also

note that θid is computed using a simple integration with time step h.

Next, the stability of the closed-loop dynamics with this control law is examined. The closed-

loop dynamics equation is obtained by substituting the control torques into the simplified

equations of motion featured in equation 4.4. This yields one independent second order

differential equation for each wheel which are written as follows.

(
mtR

2
+

Iw1

R

)
δθ̈i + kvδθ̇i + kpδθ = 0 (4.15)

Here, δθ̈i = δω̇i and δθ̇i = δωi. This equation represents a spring-mass-damper system, where

positive gains kv and kp yield a stable behavior and the error in wheel position and speed

is driven to zero. In the full torque computation the gains kp and kv are selected to mimic

the motion of the actual vehicle or of a different vehicle. An analysis of the gain selection is

done in a later section.
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4.3.4 State Estimation

Another component of the simulated servo module is to estimate the state of the robotic

vehicle in the same manner as the real vehicle. One method in which the state is estimated is

through what are called encoder outputs. An encoder is a device that reads ticks which are

distributed around the wheel, allowing the vehicle to measure the wheel position. These are

differentiated to get wheel speed. The P3-DX has 2000 ticks on a wheel and the relationship

between wheel angle and encoder tick is:

enci = θi
2000

2π
(4.16)

This equation is implemented in a separate function within the vehicle dynamics module.

The encoder output is then fed back to the servo module where the state is estimated. One

important issue with using the encoder output enci is that it is an integer, therefore the

wheel angle is discretized and not a smooth function. Thus, differentiating the encoder

output creates noise in the signal. Therefore, a low-pass filter is implemented to smooth

the encoder outputs. This filter is the same that used for filtering velocity commands. The
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vehicle states are now calculated using simple kinematics:

θi = (2πenci)/2000 (4.17)

δθi = θi − θiold (4.18)

θ = θold + (δθRR− δθLR)/2L (4.19)

y = yold + (δθrR cos(θ) + δθlR cos(θ))/2 (4.20)

x = xold − (δθrR sin(θ) + δθlR sin(θ))/2 (4.21)

ẋ = (x− xold)/h (4.22)

ẏ = (y − yold)/h (4.23)

θ̇ = (θ − θold)/h (4.24)

ωi = δθi/h (4.25)

In these equations θi represents the wheel angles and h is the time step. Also note that the

old subscript represents the state at the previous update, which is stored in a global variable.

The next step is to verify that these equations estimate the state correctly. To achieve this

goal, the estimated state is plotted versus the actual state from the vehicle dynamics. In these

cases, a cut-off frequency of 5 Hz is chosen, which smooths the encoder outputs reasonably

well. Also, the vehicle is controlled manually using the GUI in unguarded mode and allowed

to follow some randomly selected path. Additionally, note that the sampling rate of the

estimated state is 10 Hz, which is the update frequency of the servo module. From Figures

4.9 and 4.10 we observe that the estimated state follows the actual state closely with minimal

noise in the velocity and relatively small error. Additionally, if the filter frequency is lowered
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below 5 Hz the estimated state tends to lag. If the frequency is increased much past this

value, noise begins to enter the signal, especially in the velocity estimation. Therefore, 5 Hz

is chosen as the frequency for this filter and can be changed by the user if necessary using

the Tcl function SetEncFreq.

4.3.5 Torque Input Gain Selection

Now that the state estimation has been verified, we use that estimated state to drive the

feed-back control on the torque inputs. More specifically, in relation to equation 4.11, control

the vehicle using both wheel angle and wheel position. There are two different aspects to

selecting gains that must be addressed. The gains are selected such that the virtual vehicle

actually performs better than the real vehicle, or these gains are selected to mimic the real

vehicle. For the purposes of this thesis, the gains are selected to mimic the real vehicle. The

real vehicle exhibits a small delay between commanding the vehicle to stop and achieving the

stopped condition. This observation means that the actual internal servo is not using wheel

angle or position in the feed-back control. If it were, the feedback control would actually

cause the vehicle to go in reverse when it overshoots the desired position. Since this does

not happen, the position gain, kp is picked to be zero. However, the vehicle is controlled

based on commanded wheel speed, which would ensure that the vehicle is traveling at the

commanded speed. Therefore, our goal is to pick a gain such that the commanded wheel

speeds match reasonably well with the measured wheel speeds. Figure 4.11 shows an output

of commanded vs measured wheel speed with the gain set to zero. Note that in the following
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figures the vehicle is controlled manually through the GUI, which is why the commanded

wheel speeds are discretized. In Figure 4.11, there is no feed-back control and the wheel

speeds exhibit an over-damped behavior and lag behind the commanded wheel speeds. When

the speed gain is increased to 0.1 in Figure 4.12, an under-damped behavior is seen. The

wheel speeds overshoot and slowly oscillate toward the desired speed. Therefore, the gain is

lowered to about 0.03. Figure 4.13 shows an essentially critically-damped behavior with a

small amount of lag between the two. This lag is smaller than with having no feed-back, as

seen in Figure 4.11, but is reasonably consistent with the actual vehicle’s behavior. However,

note that these gains can be selected according to the users desired closed-loop behavior. As

a result of these feed-back gain selections, controlling the virtual vehicle has a similar feel to

controlling the actual P3-DX robotic vehicle.

4.4 Battery Power Module

Another aspect of the vehicle that we desire to model is the battery power consumption.

The robotic vehicle has an on-board PC-104 computer and an electric motor for each of

the drive wheels. These are powered by a series of lead-acid batteries. Our first goal is to

model the battery power and its consumption in the robotic vehicle. Currently, there are

numerous battery consumption models, that use factors such as temperature and cycles of

use. For a first iteration a simple model derived from basic physics is used. A battery has

two properties that describe its performance: its voltage rating and capacity, in Volts and
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Figure 4.13: Command vs. Estimated with kv = 0.03
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Ampere-Hours respectively. The amount of energy in the battery at full charge is illustrated

in equation 4.26.

Energy(W · h) = V oltageRating(V )× Capacity(A · h) (4.26)

This value represents an estimate of the amount of energy in the battery at full charge. The

power draw of the electric motors must also be modeled. Again, we use a basic physics

model for the electric motors. To obtain the power a motor is consuming, multiply the

current torque the motor is providing in N · m by the rotational speed in rad/s. In our

case the rotational speed is the wheel speed, ωr or ωl, since the motors are directly attached

to the wheels. This value is the power drawn by the motor in Watts. To get the energy

drawn, multiply the power by the time step over which the torque is applied. This model is

described in the following equation.

MotorEnergyDraw(W · h) = T (N ·m)× ω(rad/s)× h(s) (4.27)

Here h is the current time step and ω is the current wheel speed. The remaining components

of the robotic vehicle that draw power will be modeled in a later version of this simulation.

To implement the battery model in the UMBRA environment, a separate module is cre-

ated to interface with the simulated servo module. This module has four input connectors

representing the motors, cpu, camera, and pan and tilt unit power inputs respectively. The

connectors for the cpu, camera, and pan and tilt unit are left open to be modeled later. These

connectors are either connected to additional modules that model the power consumption

behavior, or are set to a constant value using a Tcl set command. For example, to set the cpu
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connector to 5 kJ enter battery cpu_pwr 5 in the command window. Also for example, a

module calculates the power consumed by a device based on its use and/or empirical data,

such as an openGL camera taking video of the virtual world, and then passes the power

draw value to the battery module through the connector.

Figure 4.14: Diagram of the Battery Power Module

The motor power connector receives data from the simulated servo module, where the energy

from the motors is calculated using equation 4.27. In the servo module, the motor power

consumption is calculated in a separate function called MotorPwr() using the estimated

wheel angular rates. Within the battery module, the energy draw from each of the devices

is added together and then subtracted from the total energy from the battery. This process

continues in real time as torque commands are given during the simulation. Once the battery
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energy level reaches below a certain percentage of the total, there is no power available to

the motors. To implement this effect, a power flag is sent back to the pioneer module which

signals to the module to ignore any commands after the battery power is drained. A diagram

of the battery module is included in Figure 4.14.

Battery Power Test Case

In order to test the battery module with the simulation, we initialize the battery with a

low voltage and capacity so it drains prematurely. Next, the robotic vehicle simulation is

activated and the cart is given different movement commands until the battery is drained

and the cart cannot be controlled anymore. The battery power is then logged into a text file

and plotted versus time. Figure 4.15 shows a plot of the power profile.
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Figure 4.15: Battery Power vs. Time
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In the figure a power drain line is drawn to represent 20 percent of the total charge, which

is where the power drops to zero and the stop flag is sent to Pioneer. The battery capacity

is set according to the number of batteries in use. The black line shows the power level

dropping as the robotic vehicle controlled. Then, once the 20 percent level is reached, the

power drops to zero and the vehicle is disabled. This basic model illustrates the behavior of a

real vehicle when the battery runs out of power. In later versions, models can be written for

the computer, camera, and pan and tilt unit and implemented in modules to be connected to

this battery module. The battery capacity and voltage rating are set on the fly to represent

one or more batteries. This battery module is not limited to this vehicle, it applies to any

number of vehicles such as spacecraft or other robotic devices that run on batteries. This

module represents the last component of the vehicle simulation. For reference, appendix

tables 1, 2, and 4 list commands for the various modules and their purposes.
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4.5 Orbit Propagator Module

The intent of this section is to implement the general orbit simulation of Chapter 3 into the

UMBRA environment. This module creates a useful simulation tool to study both general

and relative orbit problems. However, this tool is also designed to interface with other

simulations which are discussed later.

4.5.1 Layout

In the orbit propagator module, there are three input connectors and two output connec-

tors. The first connector is the craft_flag input connector. This connector passes a value

containing the number of craft that are present in the simulation. This number can also be

one, which corresponds to a single spacecraft orbit simulation. There is also a check against

a maximum craft value. However the maximum number of craft can be changed by the user

within the code. The next input connector is the pert_flag connector. This connector

corresponds to the perturbations to be used in the equations of motion. For this connector,

the user selects to study either an individual perturbation or all perturbations during the

simulation. The different possible values of this connector are described in Table 4.4. Also

included is Figure 4.16 describing the internal layout of the module. The last input connec-

tor is the timestep connector. This connector interfaces with either the UMBRA wallClock

or simClock modules. This feature enables the simulation to have the option of running

in simulated time or real time. The two output connectors rel_motion and inert_motion
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Figure 4.16: Diagram of the Orbit Module.
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Table 4.4: Values for Perturbation Flag

Value Description

0 No Perturbations

1 Gravitational Harmonics (J2)

2 Atmospheric Drag

3 Solar Radiation Pressure

4 All Perturbations

output the relative motion and inertial motion of each of the spacecraft in question. If

there is only a single spacecraft, then only the inertial motion would be of interest. In

addition to these connectors, the user also specifies which craft to describe relative motion

about through the SetRelCraft command. This command can have a value of 0, which

corresponds to center of mass, or a value corresponding to a specific craft in the formation.

The function value is also checked against the number of craft to ensure the user does not

select a craft that does not exist. In this module, most of the algorithms and equations of

motion have been discussed already and are implemented in various different functions. For

example, the non-linear equations of motion are implemented in the Nonlineom() function

within the main module. These functions and the various input checks are also featured in

the diagram of Figure 4.16.
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4.5.2 Integration

One new function is an integrator function that propagates these equations of motion through

time. The integrator is implemented as a internal function to the module instead of an addi-

tional module. This feature allows for the module to have more control over the integration

process. However, later iterations of this simulation may feature a universal integrator mod-

ule. The integration technique used in the orbit module is a 4th-order Runge-Kutta method,

which is described below.6

xi+1 = xi +
1

6
(k1 + 2k2 + 2k3 + k4) (4.28)

k1 = h · f(x) k2 = h · f(x + k1/2)

k3 = h · f(x + k2/2) k4 = h · f(x + k3)

Here x is the state and ẋ = f(x) represent the equations of motion. The reason for using this

integrator is that while integrating the inertial motion, we are also computing the relative

motion. The size of our formations is generally on the order of 10s of meters, while inertial

motion is on the order of 1000s of kilometers. Therefore, small errors in the inertial motion

translate into large relative motion errors. Another important note is that this integrator

works for constant time step and variable time step cases. A higher order Runge-Kutta

method could be considered to increase accuracy for large time step cases.



95

4.5.3 Initial Conditions

The last component to this simulation is initial conditions. The user is given different options

to specify the initial positions and velocities of each spacecraft in the simulation. The user

specifies either the inertial motion of each craft separately, or the relative motion to a chief

orbit. If the latter choice is taken, there are additional options in selecting the chief orbit.

The chief orbit is defined either as orbital elements or inertial position and velocity vectors.

There are also checks in place in case the user attempts to specify relative motion without

a chief orbit. Finally, Table 5 of the appendix describes the functions for setting parameters

of the simulation. The next section details an interface module that links the vehicle and

orbit simulations.

4.6 Relative Orbit Pioneer Interface Module

The last module to be created is called the Relative Orbit Pioneer Interface or ROPI for

short. This module is an interface between the relative orbit simulator and the pioneer

robotic vehicle simulation module. However, due to the design of the pioneer simulation,

this interface works on the actual vehicle module as well. The overall result is that either

the actual or simulated vehicle behaves like a spacecraft in orbit. This interface is a useful

tool when studying relative motion concepts for spacecraft such as rendezvous and docking

or formation keeping. A schematic that illustrates how this module enables this simulation

concept is featured in Figure 4.17. In the figure, the orbit simulator integrates the equations



96

of motion for a spacecraft and passes the relative motion (position and velocity) to the

interface module. The interface module generates the desired velocity commands using a

feed-back control law that is designed to track the relative spacecraft orbit.

Figure 4.17: Schematic of Orbit/Pioneer Simulation

4.6.1 Layout

The ROPI module features two input connectors and one output connector. The first input

connector, pioneer_state, receives the vehicles state from the pioneer module for feedback

control. The second input connector, rel_motion, takes in the relative positions and veloc-

ities that are computed in the orbit simulator module. The sole output connector, pmotion,

contains the velocity commands that are passed to the pioneer module in unguarded velocity

mode. Its interface with the orbit simulator and pioneer is illustrated in Figure 4.18. The
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Figure 4.18: Diagram of ROPI Simulation.

next task is to define the simulation frame which represents the planar orbit tracking frame.

4.6.2 Simulation Frame

The goal of the ROPI module to make to robotic vehicle track the near-planar relative

orbit motion of a spacecraft. An assumption is that the relative orbit of the spacecraft can

be oriented in any way with respect to the chief orbit frame H : {ı̂r, ı̂θ, ı̂h}. Therefore, a

simulation frame is defined such that the orbit plane aligns with the ground plane in which

the vehicle moves. This frame is described in Figure 4.19 and the unit direction vectors
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Figure 4.19: Simulation Frame P

P : {p̂1, p̂2, p̂3} are defined by:

p̂1 =
r0

r0

p̂2 = p̂3 × p̂1 p̂3 =
r0 × v0

|r0 × v0|

Here r0 and v0 are the initial position and velocity of the spacecraft in the chief orbit frame.

It is important to note that this frame is defined initially and is held constant with respect to

the rotating orbit frame. Finally, the rotation matrix [PO], which maps vector components

taken with respect to the orbit frame to the the simulation frame, is defined as

[PO] =

[
p̂1 p̂2 p̂3

]T

(4.29)
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The components of the position and velocity vectors of the spacecraft are represented in the

simulation frame P as:

Pr =

[
x y 0

]T
Pv =

[
Vx Vy 0

]T

(4.30)

The third component in these vectors is ignored since it is the out-of-plane component. In

the simulation, it is assumed that this component is generally small.

4.6.3 Orbit Tracking Control Law

The sole function of this module is to control the vehicle through translational and rotational

velocity commands and make it track the spacecraft’s planar relative orbit. The spacecraft’s

and the vehicle’s attitude are not considered, only the translational motion. Figure 4.20 is

a description of the tracking problem with heading angle θ.

Figure 4.20: Tracking Problem
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To design the control law, an existing potential function gradient-based control technique is

used.21 This control technique was originally designed to attract a two-wheeled vehicle to a

stationary point by creating an attractive potential around a fixed target. Here this steering

law is applied to the orbit tracking problem. Of interest is the performance of this control

technique for a moving target. For this control law, the kinematic equations of motion for

the vehicle are considered because the vehicle is controlled through speed commands. The

kinematic equations of motion are repeated here for reference.

ẋ =


ẋ

ẏ

θ̇

 = B(x)u =
1

2


−Rr sin θ −Rl sin θ

Rr cos θ Rl cos θ

Rr

L
−Rl

L


 ωr

ωl

 (4.31)

The control vector u has components ωr and ωl, which are the wheel speeds. First, a

potential function on the state error is defined:

V =
1

2
δxT δx (4.32)

Here δx = x − xd and xd is the desired state vector. This potential function is positive

definite with respect to the state error so that the vehicle states are attracted to the desired

state. To obtain the control law, equation 4.32 is differentiated once to yield the potential

rate function. This function is enforced to be negative definite with respect to the state

error. Therefore the ideal control law drives the states to the desired values.

V̇ = δxT δẋ = −δxT [K]δx (4.33)

Here [K] is a positive definite gain matrix. This potential rate function leads to the desired
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stable closed-loop dynamics:

δẋ + [K]δx = ẋ− ẋd + [K]δx = 0 (4.34)

The next step is to substitute the kinematic equations of motion for ẋ and solve for the

control vector u:

u = (BT B)−1BT (ẋd − [K]δx) (4.35)

Here, a least squares inverse is implemented on the matrix B since it is not a square matrix

and therefore directly invertible. The consequence is that we cannot always achieve the

desired closed-loop dynamics. This fact becomes clear when the potential rate function is

computed later in this section. Also in this equation the state error vector δx and desired

state derivative ẋd are defined as:

δx =


x− xd

y − yd

θ − θd

 ẋd =


Vx

Vy

θ̇d

 (4.36)

Here xd and yd are the position coordinates of the spacecraft in the simulation frame. Ad-

ditionally, the desired heading angle is defined such that the vehicle orients itself in the

direction of the error.

θd = arctan

(
δx

−δy

)
= arctan

(
x− xd

−(y − yd)

)
(4.37)

This desired heading angle is differentiated once to yield the desired heading rate:

θ̇d =
−δyδẋ

(δx2 + δy2)
+

δxδẏ

(δx2 + δy2)
(4.38)
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Finally, the components of the control vector u are converted to translational velocity and

rotational velocity commands:

θ̇c =
(ωl − ωr)R

2L
Vc = (ωr + ωl)

R
2

(4.39)

These commands are sent to the pioneer module via the pmotion connector. Also the gain

matrix [K] is defined as a diagonal matrix containing three positive gains for x, y, and

heading angle θ. The gains are selected by the user through various Tcl functions in order

to yield the desired closed-loop behavior. To analyze the stability of this control law, the

control vector equation 4.35 is substituted back into the potential rate function in equation

4.33.

V̇ = δxT (B · (BT B)
−1

BT (ẋd − [K]δx)− ẋd) (4.40)

B · (BT B)
−1

BT =


sin2 θ − cos θ sin θ 0

− cos θ sin θ cos2 θ 0

0 0 1

 (4.41)

A specific part of the potential rate equation has been analytically computed using the

kinematic equations of motion and shown in equation 4.41. This equation illustrates a

degenerative case where θ = 0 or 180 degrees. In this case, any error in the x direction

cannot be corrected for directly; the vehicle must first rotate toward this direction and then

move forward. This also applies for error in the y direction when θ = 90 or 270 degrees.

Further analysis on this equation is necessary to prove that it is negative definite for all cases.

However, a simple test case illustrates that this control law works on such a singularity. Here

a stationary point is located at xd = 1 m and yd = 0 m, and the control law drives the vehicle
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to this point. Also note that the vehicle’s initial heading, θ0, is zero. Figure 4.21 shows the

x − y position and error plots. From the figure, the vehicle converges on this point quickly

and remains there. However, there is a small delay in the error convergence. This delay

is due to the fact that the vehicle must first turn in place toward the desired point before

moving forward. This behavior illustrates the degenerative case mentioned earlier. Now that

the control law is able to move the vehicle to a stationary point, the next step is to track a

moving point in an orbit. The following orbit parameters for this numerical simulation are

featured in table 4.5. Additionally, the simulation is tracking one of two craft in a bounded

elliptical relative orbit. Figure 4.22 displays the orbit tracking and the x and y error. The

plots show that the vehicle tracks the orbit smoothly for one orbit period and the error

remains bounded at about ±0.1 m. However, there are wide bands in the error plots due

to the vehicle following a sinusoidal path around the trajectory. In this simulation case the

orbit interface runs at 1 Hz and the vehicle servo module updates at 2 Hz. Additionally,

Figure 4.23 shows a the same test case with atmospheric drag turned on. The plots show

similar tracking behavior as the spacecraft spiral away from each other. The simulation

test case illustrates only a first iteration for an orbit tracking control law. Improvements on

this control law include refining the gain selection techniques and finding the best gains for

relative orbit tracking. In this case, the gains were selected by trail and error in order to

get the smoothest possible tracking behavior. However, a new control law may need to be

developed in order to achieve better performance.
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Figure 4.21: Stationary point tracking with kx = ky = kθ = 0.3
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Figure 4.22: Spacecraft relative orbit tracking with kx = ky = 0.005, kθ = 0.05
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Figure 4.23: Spacecraft relative orbit tracking with Atmospheric Drag and kx = ky =

0.005, kθ = 0.05
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Table 4.5: Initial Chief (Center of Mass) Orbit Parameters

Parameter Value

Semi-major Axis 6800 km

Eccentricity 0.0

Inclination 0.7854 rad

Right Ascension of Ascending Node 0.3491 rad

Argument of Periapsis 0.2618 rad

Anomaly Angle 0.0 rad

Cd1 and Cd2 2.6 or 2.0

A1 and A2 0.7854 or 1.5000 m2



Chapter 5

Conclusion and Future Work

The relative motion problem is both an interesting and complex concept to study. In this

thesis, simulation tools are developed to study different aspects of this problem. Specif-

ically, a numerical simulation is developed to mimic a 2-wheel driven unmanned vehicle

which includes a friction model to simulate slippage on a variety of different environments.

Also, a relative orbit simulator is developed using the full non-linear equations of motion

of a spacecraft. The orbit simulation includes various perturbation models to study their

effects on the relative motion of spacecraft. These perturbation models include gravitational

harmonics, atmospheric drag, and solar radiation pressure. In addition to developing these

simulations analytically, they are also implemented within the UMBRA framework. These

simulation modules interact with each other or other modules and are manipulated in real

time. In addition, an interface module is created to link the orbit and vehicle simulations,

thus allowing the simulated or actual vehicle to track a spacecraft’s relative orbit.

108
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Although this problem has been studied in a variety of different lab environments, the AVS

Lab provides a unique perspective on the study of relative motion concepts. Further research

to be done in this lab includes developing simulations for other types of vehicles as well as

simulating new sensing techniques. The visual sensing techniques that are currently being

explored in hardware are also being developed in simulation. There are also some immediate

improvements that can be done on the research presented in this thesis. For instance, a more

robust friction model needs to be developed to include such concepts as rolling friction and

kinetic friction. Another improvement is the graphical representation of the autonomous

vehicle and its simulated environment. With current UMBRA software, it is possible to

import textures and other three-dimensional models. These improvements allow the virtual

vehicle to explore more realistic environments in the simulated world. Additionally, more

accurate vehicle parameters such as weight and moments of inertia need to be determined.
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Appendix

This appendix contains tables that describe the Tcl/Tk functions for setting parameters in

the vehicle and relative orbit simulations. It is organized by each module that is a part of

these simulations.

Table 1: Cart Dynamics Module Commands

Command Name Description Default Value

SetGravity Set the value of gravity 9.81

SetMun Lateral friction coefficient 2

SetMufl Forward friction coefficient for left wheel 0.24

SetMufr Forward friction coefficient for right wheel 0.24
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Table 2: Battery Power Module Commands

Command Name Description Default Value

setBattVoltage Total voltage of the battery(ies) 0.12

setBattCap Total capacity of the battery(ies) 0.72

Table 3: ROPI module Commands

Command Name Description Default Value

SetXGain Set the gain on X position 0.1

SetHeadGain Set the gain on heading angle 0.1

SetYGain Set the gain on Y position 0.1

SetCraft Set which craft to track 2
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Table 4: Simulated Servo Module Commands

Command Name Description Default Value

SetWheelRadius Size of the Wheel (R) in m 0.098

SetWheelBase Distance between the two wheels (L) in m 0.33

SetWheelInertia Inertia of the wheel (Iw1) in kgm2 0.0025

SetWheelMass Mass of the wheel (mw) in kg 0.5

SetCartMass Mass of the vehicle body (mc) in kg 8

SetCartInertia Inertia of the vehicle body (Ic3) in kgm2 0.21

SetWheelInertia3 Inertia of the wheel (Iw3) in kgm2 0.001305

SetFreeWheeldist Distance of the support wheel (d1) in m 0.225

SetAxisdist Distance of the wheel axis (d2) in m 0.0

SetSpeedGain Wheel speed gain on torque inputs 0.03

SetPosGain Wheel position gain on torque inputs 0.0

SetRunFreq The run frequency of the servo module in Hz 10

SetLPFreq The low pass filter cut-off frequency in Hz 0.5

SetEncFreq The encoder filter cut-off frequency in Hz 5.0
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Table 5: RelOrbitSim module Commands

Command Name Description Default Value

SetChiefoe Set Chief Orbital Elements User Defined

SetRelMotion Relative position and velocities User Defined

SetInertMotion Inertial position and velocities User Defined

SetCheifInertMotion Inertial position and velocity of the cheif User Defined

SetCraftmass The mass in kg {50 ...}

SetCraftCd The coefficient of drag {0 ...}

SetCraftCArea The cross-sectional area in m2 {0 ...}

SetNCraft The number of spacecraft 2

SetPert The perturbation flag 0

SetCraftSunvec The sun vector of the spacecraft in AU {0 0 1}

SetPlanet The planet the spacecraft are orbiting 3(Earth)
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