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The increased usage of autonomous systems and vehicles will certainly improve societal

transportation and infrastructure in terms of overall performance and safety. For widespread

adoption, such systems have to ensure safety under the presence of various faults, conditions

and unknown environments. Additionally, vehicle operations need to be robust with respect

to potential actuator or path-planning, navigation, and control system failures.

This thesis develops an operationally useful and realistic framework for vehicle motion-

planning and control algorithms that ensure safe, collision-free trajectories under various

actuator failure scenarios. The results are general and applicable to systems with linear time-

varying dynamics, but here, the benefits of the approach are shown for various spacecraft

relative motion case studies. The methodology makes use of backwards reachable sets, which

are used to characterize the unsafe region of state space from which, in the presence of a

failure, a collision between a chaser and a target vehicle cannot be avoided. That is, in this

region of state space no feasible evasive collision-avoidance maneuvers exist. Additionally,

the passively unsafe state space or the sets of states that result in free-drift collisions with

the target, due to total loss of control actuation, are characterized.

A chaser spacecraft is guided towards a target body via a model predictive control

trajectory generation scheme that ensures abort-safety by avoiding the a-priori computed

unsafe region of state space. To ensure problem tractability in real-time, the original non-

convex motion-planning problem is convexified online using local half-space that separate

the chaser spacecraft from the unsafe region of state space. This ensures that the chaser

approaches its target in an inherently abort-safe manner. Simulations of the rendezvous

planning and control policy on various orbits demonstrate how the approach ensures passive
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and active aborts that are safe in the event of various thruster failures.

Finally, the developed work used to characterize the regions of state space that are

passively unsafe, are described using orbital elements differences, which has a few benefits.

Such sets have reduced linearization errors ensuring higher accuracy when characterizing

the passively unsafe regions of state space compared with the same sets expressed using

Cartesian coordinates. As such, the linear domain in which the safety analysis is performed

is enlarged. Naturally, these sets are mostly useful for formation flying scenarios where the

controlled vehicle is close to the target region. However, we provide insights as to how such

sets can be used for the purposes of both safe formation and constellation design.
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Chapter 1

Introduction

Spacecraft guidance, navigation, and control algorithms are among the highest-priority

technologies for future autonomous spacecraft missions [1] and have to meet strict criteria

prior to flight due to mission cost and lack of repair opportunities [2]. From a controls

perspective, this results in vehicles needing to demonstrate robust operation in various con-

ditions and unknown environments [2]. Missions also need to be robust with respect to

potential guidance, navigation, and control system failures. This is typically accounted for

in the mission and approach trajectory design process [3, 4]. The research herein is also

motivated by the increased usage and utility of spacecraft proximity operations. Examples

of such missions include orbital servicing and maintenance technology matures among others

[5]. Recently, servicing missions were completed by the Mission Extension Vehicle-1 and 2,

which successfully extended the life of GEO telecommunication satellites [6]. Evidently, as

the number of orbiting satellites increases and missions become more autonomous and com-

plex, the need to develop novel autonomous and safe spacecraft motion-planning algorithms

and techniques is also greater [2, 7].

Depending on the mission type, different levels of safety are required. For example,

in spacecraft rendezvous, approaches must guarantee several degrees of safety as seen in

[3, 4, 8]. Initially, the approaching spacecraft, called the chaser or deputy, must remain pas-

sively safe with respect to a target body, sometimes called the chief, for a specified amount

of time. An approach is passively safe if free-drift trajectories from some initial state do not
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enter an unsafe region or set. Upon closer proximity to the target, active-safety must be

maintained whereby the chaser must be able to perform a powered-abort maneuver to avoid

colliding with the target [9]. Both passive and active safety can be generally denoted by

what we call abort safety. Then, a spacecraft is in the abort safe region of state space if a

passive or active abort exists from its current state. Naturally, such safety guarantees are of

interest to general formation flying and relative proximity operations (RPO). The design of

safe spacecraft rendezvous approaches or relative motion has been achieved using a number

of techniques. Due to the non-convex nature of collision avoidance and abort safety con-

straints, optimization or sampling-based trajectory optimization techniques are appropriate

for handling such problems [7]. In this thesis, we utilize optimization-based control methods,

specifically, model predictive control (MPC), in conjunction with reachability analysis to de-

velop techniques that steer a chaser spacecraft around such unsafe regions. This allows for

the successful completion of an RPO mission while satisfying the abort-safety constraints.

The safe region of state space can be approximated using reachability theory. A reach-

able set is the exact or approximate set of states that can be reached by a system, given

initial/final states, a time-horizon, inputs, and the model parameters. The use of reachable

sets is fundamental to formally and rigorously verify the safety of a system [10, 11]. Most of

the prior work in this area focuses on computing controlled reachable sets, which theoreti-

cally can be done using optimal control methods, including the well known Hamilton-Jacobi-

Bellman (HJB) reachability level-set technique [12, 13]. However, for high dimensional sys-

tems, HJB methods are computationally intractable [11, 14]. As a result, numerous other

techniques that are applicable to nonlinear systems have been developed that over and under-

approximate the reachable sets obtained using HJB methods [15, 13, 16, 17, 18]. Many of

these techniques have also been extended to consider disturbances, dynamical uncertainty

and noise [19, 20, 10]. In terms of the application of reachability theory to spacecraft mo-

tion, linear reachability theory is often used since spacecraft relative proximity operations

generally occur in the linearizable domain about a reference trajectory of a real (or fictitious)



3

target. Hence, most of the literature involving spacecraft RPO and docking (RPO&D) along

with reachability analysis do not utilize the full nonlinear dynamics models.

The reachable sets form the backbone of the work proposed in this thesis. While a lot

of the literature currently focuses on computing reachable sets, particularly in the controlled

cases, as far as the authors know, limited work has been doing using reachability theory

to compute both passive and active abort-safe regions. This thesis develops a framework

which utilizes abort-safe reachable sets and then discusses how the reachable sets can be

used to guarantee the safety of a chaser (or deputy) with respect to a target spacecraft (or

chief) using model predictive control. Being able to characterize these regions has other

interesting implications in the astrodynamics domain. It can help inform and improve the

spacecraft trajectory design problem. A more specific use case of this work lies in space traffic

management, which is a generalization of the multi-disciplinary field of space situational and

domain awareness [21, 22]. Such applications are considered in the last chapter of the thesis

where the problems of safe formation and constellation organization are discussed.

One of the challenges remains computing and utilizing these reachable sets in a com-

putationally tractable manner for distinct spacecraft motion scenarios. Prior research in

passively-safe spacecraft relative motion uses geometric constraints that can be overly-

conservative, shooting-like methods resulting in large optimization problems, or overly-

constrained orbital parameters, limiting the types of relative motion that are considered

safe. Active abort-safety is a relaxation of the passively-safe case but has been investigated

much less [9]. The focus of this thesis lies in planning the motion of spacecraft in an in-

herently passive abort-safe (PAS) and active abort-safe (AAS) manner for arbitrary initial

conditions. The resulting methods and algorithms enable safer, more complex, and robust

autonomous spacecraft relative motion.
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Thesis Statement: Abort-safe spacecraft relative motion can be guaranteed and gener-

alized using reachability analysis, predictive control methods, and set-based constraints,

fundamentally improving spacecraft RPO safety, initial trajectory design, online imple-

mentation and vehicle autonomy.

1.1 Abort-Safe Spacecraft Rendezvous on Generic Elliptical Orbits

Initially, an approaching spacecraft, called the chaser, must remain passively safe with

respect to a target body, called the target, for a pre-specified amount of time. A rendezvous

approach is passively safe if instantaneous free-drift trajectories emanating from the approach

do not enter an avoidance region around the target. In other words, by nominally following

a passively safe approach trajectory, in the event of a total loss of propulsion, the chaser

spacecraft will naturally drift clear of the target. Upon closer proximity to the target, active

safety must be maintained at all times along the approach trajectory, whereby in the event

of a partial loss of propulsion, the chaser must be able to perform a powered-abort maneuver

with its remaining functional thrusters to avoid colliding with the target. Allowing for active

abort maneuvers relaxes the safety requirements compared to the passive case, permitting

trajectories more pertinent to the final approach phase of a rendezvous mission for which an

entirely passive approach may not be feasible or desirable.

Classically, spacecraft relative motion is guaranteed to be passively safe by exploit-

ing orbital mechanics knowledge and constraining the chaser’s trajectory via an open-loop

guidance generation that is computed on the ground. In recent years, interest in more au-

tonomous, online-generated passive safety techniques has increased, e.g., by constraining the

relative motion using orbital elements [23], or by using receding-horizon optimization, where

collision avoidance constraints are placed on future free-drift states via a state transition

matrix [24, 9, 25, 26]. Breger and How developed a method for online generation of nominal

trajectories that, in the event of partial thruster failure, can switch to a safe input sequence
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to avoid collision [9]. To guarantee the existence of such a sequence, the method expands the

size of the optimization problem by solving for both nominal and abort sequences concur-

rently given an initial condition for which the method is feasible. These methods, however,

do not compute the region of state space in which feasible passive or active abort maneuvers

exist. The safe state space can be approximated using reachability theory which generalizes

the methods discussed above and allows one to construct safe approaches from arbitrary safe

initial conditions. The focus of this contribution lies in characterizing the unsafe state space,

whether for passive or powered abort, which is then utilized for the development of an online

model predictive control (MPC) policy that ensures abort-safe approaches.

Contribution 1: The characterization of the passive and active abort-safe state space

using linear reachability theory and the development of a model predictive control-based

algorithm to maintain abort-safety during RPO.

1.2 Abort-Safe Spacecraft Rendezvous with State and Dynamical Uncer-

tainty

An important aspect of the viability of the algorithm for actual space missions is that

it must be able to perform well in unknown and uncertain environments [2]. The aim of

this contribution is to maintain abort-safety while being robust to unmodeled perturbations,

state uncertainty, and simultaneously, provide an increasingly fuel-efficient solution compared

to the method developed in the prior contribution. Motivated by increasingly complex

rendezvous missions such as NASA’s Lunar Orbital Platform-Gateway (LOP-G) concept

[27], this work considers rendezvous with a target body in perturbed environments while

including state or navigation uncertainty.

This contribution generalizes the prior one, which assumed unperturbed and determin-

istic states, by incorporating both dynamical, state, and input uncertainty into the abort-

safety problem. While robust control methods may be used to characterize the unsafe regions



6

of state space and to ensure the spacecraft satisfies any safety constraints robustly, we choose

to perform the analysis using stochastic methods because robust methods can be overly con-

servative [11, 28]. This is the case because worst-case uncertainty is often considered. In the

stochastic sense, probabilistic guarantees can be made about the safety of the system, i.e.,

the safety constraints are satisfied to a certain degree of likelihood. Stochastic methods allow

us to study varying degrees of safety, from the practically absolutely safe scenario, similar to

a robust approach, to a mildly safe one. Additionally, since GN&C algorithms ingest state

estimate information from a filter, it makes sense to use a probabilistic framework. In this

work, we are interested in ensuring that the chaser remains in the likely abort-safe region of

state space, where the probability of an abort existing is high. This implies that if an active

or a passive abort is required, there is a probability associated with the existence of that

abort maneuver. Moreover, due to the presence of navigation or state uncertainty, we want

the confidence that the algorithm is steering the chaser around the probabilistically unsafe

regions to be high as well, which is demonstrated using chance-constraints.

There is a wealth of literature on the topic of stochastic reachability, which include

forward and backward analysis using Fourier transforms [29], occupancy functions [30, 20],

chance-constraints [31, 32, 33], approximate dynamic programming [34], and particle filters

[35], among others. For active abort-safety with noise or disturbances, optimal controllers

need to be considered because such controllers provide the maximal or largest reachable sets

[36]. In our problem, an optimal controller will truly characterize where a feedback policy,

that is subjected to noise, may be safe or unsafe. A common assumption then is to assume

a Markov control policy is used for analysis and design purposes, i.e., the controller acts on

a current estimate of the state and the state follows a random process in which the Markov

property holds. Then, in theory, the stochastic reachable sets can be computed via dynamic

programming (DP) [37, 38]. As stated previously though, such methods are computationally

intractable for high-dimensional systems like ours, which resulted in prior work that over and

under-approximates the sets obtained with DP [39].
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The problem of stochastic reachability of a target tube, first introduced in [40], con-

siders safety specifications which are captured via a finite collection of time-varying sets

within which the nominal state must remain [41]. This generalizes notions of the terminal

hitting-time stochastic reach-avoid [42] and the stochastic viability problems [39, 19]. A

mild modification of the target tube framework in [39] is used to characterize the regions of

state space for which the probability of a safe active abort-maneuver existing is low. These

regions are deemed probabilistically unsafe. Moreover, in this work, we additionally consider

the impact of linearization errors on these unsafe regions, which if ignored can compromise

the safety of the system even within the linearization regime of interest over longer periods

of time.

Aside from generalizing the prior contribution to the stochastic case, we are interested

in developing a method that reduces fuel consumption and yields sparse thrust signals while

maintaining abort-safety. Thruster signal sparsity implies that the on-board thrusters are

engaged less often, which is important to protect on-board instrumentation as well as for

preventing stuck-on thrusters. In the absence of state or safety constraints, one can choose to

solve the optimal ∆V maneuver by solving the standard optimal control problem [43, 44, 45].

When convex or non-convex state or input constraints are present, a multitude of techniques

can be employed to optimize a trajectory in an online or offline manner. Some examples

include model-predictive-control [2, 25, 46, 47, 48], local and global collocation [49, 50],

shooting methods [51], successive convexification[52, 53], among others. The differences

between these methods typically lie in the transcription process, i.e., the discretization of

the continuous-time system and the enforcement of constraints. Another alternative for

improving ∆V performance is to replace a quadratic cost function with an L1-norm [54] or

regularized linear-quadratic cost function [55].

Solving the full ∆V optimal control that is abort-safe requires solving a nonlinear

program with a multitude of non-convex constraints, presenting a challenge for real-time im-

plementation. If on-off control input constraints are incorporated, yielding a mixed-integer
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nonlinear program, the optimization becomes increasingly difficult. This motivates an ap-

proach that yields abort-safe trajectories that can be used in an online manner while reducing

thruster on-off switches and the total ∆V consumed. To this end, a solution that exploits the

natural dynamics better is demonstrated by means of predictive coasting arcs, i.e., regions

where the spacecraft’s thrusters can be disengaged while moving safely towards a goal region.

The developed technique leverages passive reachability theory, resulting in a methodology

that engages thrusters less often and can reduce the total ∆V of the maneuver.

Contribution 2: The development of an abort-safe online trajectory generation algo-

rithm that utilizes coasting arcs for improved control performance while accounting for

state, input, and dynamical uncertainty.

1.3 Passive Abort-Safe Spacecraft Motion using Orbital Element Differences

The prior contributions focus on computing the passive and active abort-safe regions

of state space using a Cartesian coordinate description which is valid near the target or

chief spacecraft. The goal of this contribution is to characterize these sets using orbital

element differences, which are useful for arbitrary relative motion and eventually, as will be

discussed, for initial safe formation and constellation design. There are a number of reasons

for characterizing the unsafe regions of state space in terms of orbital element differences.

By construction, using differential orbital elements captures eccentric chief orbits [56]. De-

pending on the orbital element model used, the resulting passive backwards reachable sets

(PBRS) are much simpler to describe as only a subset of the coordinates are time-varying.

Additionally, the dynamics of relative states in terms orbital element differences have smaller

linearization errors compared to relative Cartesian representations [57, 58], which is benefi-

cial when propagating Gaussian uncertainty. Additionally, the linearizable domain around

the chief or target’s reference trajectory is enlarged too, which allows us to ensure safety
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for even longer time-horizons compared to the Cartesian analogue. Finally, performing the

analysis in terms of orbital element differences can help facilitate formation and constellation

design as mission constraints of interest are often in terms of spacecraft orbital elements.

Given future LEO mega-constellations missions and concepts, that are placing thou-

sands of spacecraft within a constellation, there is a warranted concern for the safety of

spacecraft “near” such constellations [22]. To guarantee the safety of future spacecraft mis-

sions, several improvements in space traffic management standards need to be made that

minimize collision risk between active and inactive spacecraft [59]. It is estimated that

conjunction events will increase in frequency by the simple introduction of the upcoming

mega-constellations in low Earth orbit (LEO) [60, 61]. In the constellation design scenario,

orbits are typically chosen to satisfy mission requirements, which depend on ground obser-

vation or communications constraints [62, 63, 64]. In these instances, passive safety is a by

product of the phasing of the constellation and the number of satellites in it, since up until

recently, constellations have not been densely packed. The work in this contribution helps

inform how satellites should be organized and how many could fit in a particular regions of

state space while explicitly satisfying safety constraints or requirements. We propose using

reachable sets as a method of defining a generic orbital slot, which can inform and aid our

understanding of the safe holding capacity of the near-Earth space environment.

Not surprisingly, there is a lot of literature that discusses techniques for maintaining

passive safety using orbital element differences or relative orbital elements. From a theoretical

perspective, the related prior work in the literature usually considers passively-safe relative

motion under the assumption that the deputy and chief spacecraft have a matched period.

Some of these constrain the chosen relative orbit elements to ensure a minimum amount of

separation between the deputy and chief spacecraft in the radial/along-track plane [65, 66,

23, 67], which guarantees passive safety. The notion of walking and stationary safety ellipses

are discussed in [68], where passively-safe drifting and periodic relative orbits are used to

ensure consistent separation between a deputy and chief spacecraft. These configurations
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have the specific property of not intersecting the chief’s along-track axis or its Keplerian orbit.

For formation design, another important constraint is that the relative motion between the

spacecraft remains bounded [69], which is typically of interest for spacecraft within the same

constellation as well, as the relative geometry should remain stationary to satisfy mission

requirements.

The formulations and safety constraints in the literature are derived from orbital me-

chanics and geometry. In [23], a safe minimum separation constraint is derived which relies

on the assumption that the chief is in an unperturbed circular or near-circular orbit. While

relative orbits have been designed for chief spacecraft with arbitrary eccentricity [69], there

is limited work on generic passive safety constraints for chiefs with arbitrary eccentricity

that are subject to perturbations. This is derived and shown in this contribution as a special

case of the reachable set analysis. Moreover, the passive safety constraints in the literature

do not easily generalize to all possible kinds of relative motion around the chief, which is

possible using passive backwards reachability analysis, at the expense of more computation.

As such, in this contribution, we first characterize the regions of state space that

are passively unsafe with respect to a chief using orbital element differences. The passive

backwards reachable sets here can be directly used for arbitrary relative motion scenarios

such as rendezvous using the same algorithms in the first two contributions. We demonstrate

how analyzing slices of these sets for the sake of formation and constellation design can

help reduce the dimensionality of the problem, greatly simplifying the safe formation and

constellation design problems. Additionally, such slices of the reachable sets eventually yield

geometrical safety constraints, similar to ones in prior work. In summary, this contribution

presents initial results and insights as to how reachability theory can be used for the purposes

of maintaining safety between spacecraft in formations and constellations.
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Contribution 3: The characterization of passively unsafe regions of state space for a

deputy spacecraft with respect to a chief in terms of orbital element differences and its

applications to formation flying and initial constellation design.

1.4 Contributions and Outline

The contributions in this work focus on the applicability of reachability theory to ensure

relative motion that is inherently safe with respect to partial or full loss of thruster capability.

In chapter 2, preliminaries and background theory are introduced. Chapter 3 discusses how

backwards reachable sets are used to characterize regions of state space where a passive or

active abort allows a chaser spacecraft to successfully avoid collision with a terminal set. The

second contribution, presented in Chapter 4, generalizes this concept while accounting for

state and dynamical uncertainty. Additionally, a set-based coasting arc method is presented

that can yield more fuel-efficient solutions than the nominal safe policy. Finally, Chapter 5

leverages a coordinate change from Cartesian to orbit element differences to characterize the

passively unsafe state space, which is useful for formation and initial constellation design.

The thesis focuses on reachability analysis to acquire the abort-unsafe regions of state space

and their corresponding application to demonstrates how such sets can be used.

1.5 Thesis-Related Publications

Some of the research leading to this thesis has appeared previously in research papers.

Moreover, this work has contributed to the development of patents and inventions, submitted

to the United States Patent Office (USPTO).

1.5.1 Journal Articles

[1] Aguilar Marsillach, Daniel, Di Cairano, Stefano and Weiss, Avishai. Abort-Safe
Spacecraft Rendezvous on Generic Elliptic Orbits. IEEE Trans. on Control Systems
Technology, Submitted May 2021.
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[2] Aguilar Marsillach, Daniel, Vinod, Abraham, Di Cairano, Stefano, Holzinger, Mar-
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State and Dynamical Uncertainty. J. Guidance, Control, and Dynamics, Planned
Dec. 2021.
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Chapter 2

Preliminaries

2.1 Notation

R, R≥0, Rn, N, Z, and Z0+ are the sets of real numbers, non-negative real numbers,

the Euclidean space, natural numbers, integers, and non-negative integers, respectively. For

intervals, we use notations such as Z[a,b) = {z ∈ Z : a ≤ z < b}. Vectors are shown in

boldface.

A reference frame, Fx, is defined at an origin and consists of three orthonormal dextral

basis vectors {ı̂, ̂, k̂}. The angular velocity vector of frame Fx with respect to Fy is denoted

by ωx/y. A derivative as seen by the inertial frame Fe is denoted by
e.

(·) whereas a derivative

as seen by another frame Fv is denoted by
v.

(·). Such vector derivatives seen are obtained

using the transport theorem. A vector resolved in frame Fx is denoted x(·), any unit vector

is denoted by (̂·). The position of a point c with respect to a point b is given by rc/b.

Given a continuous time signal x(t) sampled with period ∆T , we denote the value at

time instant k∆T , k ∈ Z0+, by xk = x(k∆T ), and xj|k denotes the value of x predicted j

steps ahead from k. The discrete-time state transition matrix is from time index i-to-j is

denoted Φ(i, j) in time-step form or Φ(ti, tj) when using absolute times.

Given a matrix H, [H]i denotes the ith row of the matrix and H
1
2 denotes its matrix

square root. In denotes the n-dimensional identity matrix. The matrix M that is a function

of τ is enclosed with brackets and denoted [M(τ)]. The Euclidean norm of a vector is given

by || · ||.
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2.2 Convex Sets & Operations

The hyperplane representation (H-rep) of the polyhedron P ⊆ Rn is P(H,k) = {x ∈

Rn : Hx ≤ k} with H ∈ Rp×n, k ∈ Rp. An ellipsoid centered at d ∈ Rn with shape

matrix D, is defined as E(d, D) , {x ∈ Rn : (x − d)>D−1(x − d) ≤ 1} or equivalently,

{D 1
2v+d ∈ Rn : ‖v‖2 ≤ 1}. The set of all subsets of X is denoted as 2X , and the cardinality

of a set X is |X |. The complement of a set X is given by X c.

For two sets, X ∈ Rn, Y ∈ Rn, the Minkowski sum is denoted by X ⊕Y , and is defined

as

X ⊕ Y = {x+ y ∈ Rn : x ∈ X ,y ∈ Y}. (2.1)

The Pontryagin difference is denoted X 	 Y , which is

X 	 Y = {x ∈ Rn : x+ y ∈ X ,∀y ∈ Y} (2.2)

and finally, the set difference X \ Y is defined as

X \ Y = {x ∈ Rn : x ∈ X ,x 6∈ Y}. (2.3)

Let S ⊆ Rn be a convex set, the support function of S, denoted ρS is defined as

ρS(l) = max
x∈S

lTx (2.4)

and the convex set S can be uniquely determined by the support function

S =
⋂
l∈Rn
{x ∈ Rn : lTx ≤ ρS(l)}. (2.5)

The Minkowski sum of convex sets A and B, using support functions is given as

ρA⊕B(h) = ρA(h) + ρB(h) (2.6)

The image of the convex set C ⊆ Rn through matrix A ∈ Rm×n is a convex set AC = {Ax ∈

Rm : x ∈ C}. The preimage of the convex set C ⊆ Rm through matrix A ∈ Rm×n is a convex

set CA = {x ∈ Rn : Ax ∈ C}. The indicator function of a non-empty set S is given by 1S(x̄)

where 1S(x̄) = 1 if x̄ ∈ S and is zero otherwise.
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2.3 Probability

The probability density function (PDF) of a random vector v is denoted as ψv ∈ R≥0.

The evaluation of the PDF at a vector v̄ is given as ψv(v̄). The tilde notation is used to

denote that a random vector belongs to a certain distribution, i.e., v ∼ ψv. The expected

value of a random vector v is given by E[v] and its covariance matrix is given by Σv =

E
[
(v−E[v])(v−E[v])T

]
. If v is normally distributed, then, ψv(v̄) = N (v̄;E[v],Σv). Given

a set S, the probability that a random vector v is inside set S given by

Pv{v ∈ S} =

∫
S
ψv(v̄)dv̄ (2.7a)

=

∫
Rn
ψv(v̄) · 1S(v̄)dv̄ (2.7b)

= E
[
1S(v)

]
(2.7c)

where the subscript in Pv{·} denotes the random vector used to compute the probability

measure. Note that computing the probability in (2.7a) generally requires performing a

numerical quadrature. When the set S is axis-aligned and v is normally distributed, this

quadrature is greatly simplified.

Without loss of generality, we denote the probability that an initial state x̄0 at index

k = 0 reaches S in N steps, using a control policy π ∈ M as Px̄0,π
x {xN ∈ S}. Here,

xN is stochastic due to the process noise, even if x̄0 is deterministic. The policy π =

[µ0(·), µ1(·), . . . , µN−1(·)] consists of state-feedback functions µ : X 7→ U .

2.4 Spacecraft Dynamics & Kinematics

Since the majority of the results in this thesis pertain to the unperturbed and perturbed

two-body problem, here, we highlight the related dynamics models. Other models used can

be found in Appendix A. Consider a target and a chaser in orbit around a central body,

e.g., Earth. The frame Fe is the Earth-Centered Inertial (ECI) frame. The chaser’s center

of mass is denoted by c and has a chaser-fixed frame Fc. The target’s center of mass is
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denoted by t and has a target-fixed frame Ft. The target’s orbit frame Fo = {ı̂r, ı̂θ, ı̂h} is

Hill’s frame with radial, along-track, and cross-track basis vectors. The vector ı̂r is parallel

to the target spacecraft position vector, ı̂h points in the direction of the orbit’s angular

momentum, and ı̂θ completes the right-hand rule. The chaser is controlled and assumed to

be rigid. All external forces acting on the target and chaser are assumed to act on their

respective centers of mass. During the active abort-safety phase of the approach, we assume

the chaser frame Fc is aligned with the target’s orbital frame Fo, i.e., ωc/o = 0 due to the

presence of directional navigation sensors.

The translational equations of motion for the target and the chaser relative to the

inertial frame Fe are given by

e..
r t/b= −µ rt/b

‖rt/b‖3
+
ft

mt

, (2.8a)

e..
r c/b= −µ rc/b

‖rc/b‖3
+
fc

mc

, (2.8b)

where rt/b, rc/b are the position vectors of the target and chaser’s center of mass relative to

the center of the Earth, given by a point b, mt,mc are the target and chaser masses, µ is

Earth’s gravitational parameter, and ft, fc represent external forces acting on the target

and chaser, respectively. The external forces include orbital perturbations as well as control

actions.

Given a target and chaser spacecraft, and a point b coincident with the origin of the

inertial frame, the position of the chaser relative to the target is given by

rc/t = rc/b − rt/b. (2.9)

Taking the derivative of the relative position (2.9) with respect to the target’s orbital frame

Fo yields

t.
rc/t =

e.
rc/b −

e.
rt/b −ωo/e × rc/t. (2.10)

Taking the derivative of of the relative velocity (2.10) with respect to the target’s orbital
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frame Fo yields [69]

t..
rc/t =

e..
r c/b −

e..
r t/b −

e.
ωo/e ×rc/t − ωo/e × (ωo/e × rc/t)− 2ωo/e×

t.
rc/t . (2.11)



Chapter 3

Abort-Safe Rendezvous on Generic Elliptical Orbits

3.1 Introduction

In this chapter, we construct active and passive abort-safe regions of state space using

reachability theory, which allows us to compute safe approach trajectories from arbitrary

safe initial conditions. A reachable set is the set of states that can be reached by a system,

given initial/final states, a time-horizon, a set of input sequences, and the model parameters.

Reachable sets have previously been used for spacecraft relative proximity operations and

docking. Several nonlinear reachability techniques have been developed for general relative

motion dynamics [70, 13, 16]. Of these, Hamilton-Jacobi methods in particular quickly

become computationally intractable for high-dimensional systems, while other techniques

over and under-approximate the “true” reachable sets in a tractable way [71]. Moreover,

because spacecraft proximity operations occur near the target, linearized relative motion

dynamics are often sufficiently accurate, permitting the use of linear reachability techniques

[72, 30, 39, 36, 73]. In [72], backwards reachable sets of the linear time-invariant (LTI)

Clohessey-Wiltshire (CW) equations of relative motion determine successful initial conditions

for docking, whereas [30, 39, 36] compute reach-avoid sets, that is, sets of states that can be

reached while avoiding obstacle sets.

Here, we compute backwards reachable sets (BRS) that characterize the unsafe state

space in which passive or active aborts are infeasible. In order to generate abort-safe ren-

dezvous on generic orbits, we linearize the nonlinear relative equations of motion resulting
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in linear time-varying (LTV) equations. Due to the LTV nature of the system and Be-

causethe reachable set is usually non-convex over a finite time interval [74], we construct

the set as the union of convex BRS for different initial and final times along the target’s

periodic orbit. The union represents the unsafe state space to be avoided. As avoiding the

union of BRS results in non-convex constraints, we convexify the problem by computing

half-spaces that cover a local region of the BRS along the trajectory, and use the half-spaces

as safety constraints. We incorporate the safety constraints in a model predictive control

(MPC) policy to generate rendezvous approaches that remain outside of the union of BRS,

i.e., in the abort-safe region of state space, which guarantees that, in the event of various

thruster failure scenarios, safe passive or active aborts exist. The approach of separating

state space into safe and unsafe regions in the event of thrust failure distinguishes this work

from much of the literature on spacecraft collision avoidance, which occurs under nominal

thrust conditions. For nominal thrust collision avoidance using constrained trajectory opti-

mization techniques, model predictive control (MPC), or robotic motion planning algorithms,

see [9, 75, 76, 77, 78]. Continuous-time reactive-control policies that use artificial potential

functions to avoid areas of state space are developed in [79]. For additional sources on MPC

for spacecraft rendezvous under nominal propulsion conditions, see [80, 47, 48, 81, 46, 82]

and references therein.

In [83, 84] we presented preliminary research related to this contribution. With respect

to the early contributions, this chapter provides a complete treatment of the method, in-

cluding refined algorithms, for instance by constructing hyperplanes from multiple ellipsoidal

sets, and a deeper analysis, e.g., on the thrust failure effects on admissible and backwards

reachable sets and on the trade-offs between polytopic and ellipsoidal sets. Furthermore,

we provide a more complete validation, including a rendezvous mission scenario to the In-

ternational Space Station (ISS) that shows the behavior of an entire mission using different

approaches for different mission phases, and we demonstrate the robustness of the approach

to unmodeled perturbations via set inflation. Thus, this chapter presents design improve-
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ments, deeper analysis, more details and discussions, and a more precise validation in a

realistic mission scenario.

The chapter proceeds in Section 3.2 with a description of the safe rendezvous problem

and an introduction of the spacecraft model and admissible control sets. Section 3.3 high-

lights robust backwards reachable set theory and its use for abort safety. Section 3.4 discusses

the MPC prediction model, cost function, and the convexification of the safety constraints

for polytopic and ellipsoidal sets. Section 3.5 presents algorithmic and computational details

related to the offline and online formulation of the problem. Section 3.6 presents a variety

of simulations and results for both abort and passive safety.

3.2 Abort-Safe Rendezvous

In safe rendezvous a chaser spacecraft must approach a target in an abort-safe man-

ner such that in the event of partial or total loss of propulsion, the chaser spacecraft can

perform an active or passive abort that avoids collision with the target.

Adopting NASA’s convention for safety regions surrounding the ISS, the chaser must

first maintain passive abort-safety with respect to two regions centered at the target’s center

of mass, referred to as the approach ellipsoid (AE) and keep-out-sphere (KOS), resulting

in two phases of passive safety requirements. As seen in Figure 3.1a, the KOS is a proper

subset of the AE. Passive safety is first maintained with respect to the AE, and subsequently,

as the chaser nears the AE, with respect to the KOS. A passively unsafe state is such

that the natural unforced dynamics from such an initial state enters the AE, or, in the

second phase, the KOS, at some future time step, while a passively safe state results in a

natural trajectory that does not enter the corresponding region. During the passive abort-

safe approach, if the chaser suffers a catastrophic loss of propulsion or other system anomaly

and chooses to power off all thrusters, the chaser is guaranteed to follow a trajectory that

avoids collision with the target.

The final approach phase of the mission is initiated if no failures or anomalies occur
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along the chaser’s passively safe approach. At this stage, when the chaser is in very close

proximity to the target and intends to dock or berth, passive aborts may no longer be feasible

and active abort-safety with respect to a target region approximating the target’s physical

shape must be maintained, as depicted in Figure 3.1b. An active abort-unsafe state is

such that, after partial loss of thrust, any trajectory from such an initial state enters the

target region regardless of the control actions applied with the remaining thrust. Conversely,

an active abort-safe state is one in which there exists at least one control sequence using

the remaining thrust that allows the chaser to avoid entering the target region. During the

active abort-safe approach, if the chaser suffers a partial thrust failure, it will be able to use

its remaining thrust to execute a trajectory that avoids collision with the target.

Passive abort-safety is classically guaranteed by designing mission-specific passively

safe trajectories offline and then tracking them online. For active abort-safety, redundant

thrusters are often engaged in a predetermined active collision avoidance maneuver (CAM)

in the event of thruster anomalies in proximity to the target [8]. In the subsequent devel-

opment, no mission-specific passively safe trajectories or CAMs are precomputed. Instead,

we characterize offline the region of state space as abort-safe or abort-unsafe, which then

enables online planning of rendezvous trajectories that remain in the abort-safe region as the

chaser approaches the target. Thus, we guarantee the existence of passive or active aborts

in various thrust failure scenarios. The characterization of state space into safe and unsafe

regions opens up the possibility of automating the safe rendezvous problem in a future where

rendezvous is frequent and routine while allowing for online computation of fuel optimized,

and often non-intuitive, safe trajectories.

3.2.1 Spacecraft Model

Substituting (2.8) into (2.11) yields the full nonlinear relative equations of motion,

which can be linearized about the target’s trajectory when ‖rc/t‖ � ‖rt/b‖, and resolved in
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Figure 3.1: Passive and active abort-safety illustrations.

(a) Natural dynamics takes the chaser into the AE and KOS if
passively unsafe, and clears the regions if passively safe.

(b) At the active abort-unsafe state xunsafe, no control signal
exists to avoid the target region while at xsafe, it does.
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the target’s orbital frame Fo, resulting in [85]
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(3.1)

where orc/t = [δx δy δz]T ∈ R3 is the relative position resolved in Fo, rt = ‖rt/b‖, h =

‖rt/b×
I.
rt/b ‖ is the inertial specific angular momentum of the target’s orbit, and u , ofc =

[ux uy uz]
T ∈ R3 is the control input applied to the chaser resolved in Fo.

As rt varies along the orbit, the equations of motion (3.1) result in the LTV system

ẋ(t) = Ã(t)x(t) + B̃u(t), (3.2)

where x , [δx δy δz δẋ δẏ δż]T ∈ R6. We sample (3.2) with sampling period ∆T , which is

assumed to be small enough to not lose significant behavior between samples

xk+1 = f(k,xk,uk) = Akxk +Bkuk. (3.3)

The discrete-time LTV model (3.3) is used as a prediction model for our controller and for

the reachable set calculations. The model for closed-loop simulations is obtained by time

discretizing the nonlinear relative equations (2.11), (2.8) with an even finer sampling period.

While the spacecraft model used in this work is based on a Keplerian orbit around a

central body, the equations of motion (3.3) are LTV and the proposed control design can be

applied to relative motion about other orbits or reference trajectories that can be modeled

in such way, e.g., perturbed or 3-body orbits.

3.2.2 Thrusters and Failure Modes

The chaser spacecraft, depicted in Figure 3.2, has eight thrusters rigidly fixed with

respect to Fc that provide thrust in lines coincident with their positions and the center of

mass of the spacecraft such that they do not impart any torque. The total force applied to
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the chaser resolved in Fo is

u = ofc =
8∑
j=1

γj
of̂c,τj , (3.4)

where γj ∈ [0, um,j] is the magnitude of thruster j, um,j is the maximum thrust of thruster

j, and of̂c,τj is the chaser-fixed thrust direction of thruster j resolved in Fo.

Figure 3.2: Chaser model and thruster configuration. The inertial, target orbital (Hill), and
chaser frames, Fe,Fo,Fc are shown.

During the execution of a rendezvous maneuver, any number of thrusters may fail.

Given the set of thruster indices I = {1, 2, . . . , 8}, the set of working thruster combinations

is M = 2I , nF = |M|. The set Mi ∈ M denotes a specific set of functional thrusters, also

called a thrust mode. Mi = I indicates nominal operation of all thrusters, and Mi = ∅

indicates total loss of propulsion. The set of all possible failure modes is FM =M\I. The

admissible control set Ui ⊂ R3 associated with thrust mode Mi ∈M is

Ui =

|Mi|⊕
j∈Mi

{γjof̂c,τj : γj ∈ [0, um,j]}, (3.5)

which is the Minkowski sum of various line (thrust) segments. As a result of the variable

thrust assumption and the positioning of each thruster, the sets Ui are polytopes, for which

four examples are shown in Figure 3.3.
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Figure 3.3: Sample admissible control sets for different thrust modes. Upper left: all
thrusters functional Mi = I. Upper right: thrusters 1, 2, and 3 working, Mi = {1, 2, 3}.
Bottom left: thrusters 7 and 8 are functional, Mi = {7, 8}. Bottom right: only thruster 8
is functional, Mi = {8}.
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3.2.3 Problem Statement

Consider a given avoidance set S̃ ⊂ R3, which may represent the AE, KOS, or an over-

approximation of the target’s physical geometry. The set S̃ is lifted to include the chaser’s

admissible operational velocities, yielding S ⊂ R6. This defines a region in state space that

the chaser must avoid in the event of total or partial thruster failure.

The objective of the safe spacecraft rendezvous problem is for the chaser to approach

the target in a manner that is passively safe with respect to the AE when far, passively safe

with respect to the KOS when near, and abort-safe with respect to the target region before

docking. In the different phases, the approach is such that in the corresponding events of

total or partial thruster failures, Mi ∈ FM, at a generic time instant tfail = kfail∆T there

exists, respectively, an uncontrolled (passive) or controlled (active) N -step abort sequence

such that the chaser trajectory does not enter S for all discrete times k ∈ Z[kfail,kfail+N ]. That

is, there exists ukfail , . . . ,ukfail+N−1 ∈ Ui such that xk /∈ S for k ∈ Z[kfail,kfail+N ]. In practice,

N is significantly larger than what can be used for prediction horizon in a control design.

3.3 Robust Reachable Sets and Abort Safety

We enforce abort safety by maintaining the chaser outside of the unsafe region of

state space, that is, the region where, if a failure occurs, a collision cannot be avoided. We

construct the unsafe region from the robust backwards reachable sets (RBRS) of the target

set with respect to the after-failure input set, that is, the set of states that will enter the

target set regardless of the applied inputs, among those that are available after the failure.

Thus, when the failure occurs and the state is in the RBRS, no admissible control exists that

avoids collision at a specified final time.

Definition 3.3.1. Given xk+1 = f(k,xk,uk), a convex admissible control set U where

u ∈ U , and final time step kf , the N-step robust backward reachable set Rb(N ;S,U , kf) of
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target region S ⊂ Rn is

Rb(0;S,U , kf) = S, (3.6a)

Rb(j;S,U , kf) = {x ∈ Rn : (3.6b)

f(kf − j,x,u) ∈ Rb(j − 1;S,U , kf), ∀u ∈ U},

∀j = {1, . . . , N}.

The N -step RBRS is the set of initial conditions at time t0 = tf − N∆T from which the

chaser will not be able to avoid the target region S at time tf , regardless of the admissible

control sequence applied.

Definition 3.3.2. The robust backwards reachable set over the discrete-time interval Z[k0,kf ]

(RBRSI), where k0 = kf −N , is the union of the j-step RBRS for j = {1, . . . , N},

RN(S,U , kf) =
N⋃
j=0

Rb(j;S,U , kf). (3.7)

The RBRSI denotes the set of states x̄ such that from xk = x̄, k ∈ Z[k0,kf ] the chaser will

not be able to avoid the target region S at time step kf , regardless of the admissible control

sequence applied. 1

Next, we account for changing final time, considering that the orbit, and hence the

LTV system, is periodic. To this end, the orbit-RBRSI is the union of the RBRSI over

Z[k0,kf ], k0 = kf −N , for kf that varies along one orbit

R̄N(S,U) =

2kp⋃
kf=kp+1

RN(S,U , kf), (3.8)

where kp is the orbital period in time steps, and we assume that N < kp due to the length of

the desired spacecraft maneuver. By taking the union of the RBRSI for changing final time

1 All discrete time representations of RBRS and RBRSI are in fact approximations for the actual
continuous-time behavior. However, these approximations can be made sufficiently accurate by an ap-
propriate choice of the sampling period ∆T .
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around one orbit, (3.8) contains sets of states for which there exists a time in the target’s

periodic orbit such that a collision will necessarily occur after at most N steps. The union

ensures the target state is evaluated at discrete points along an orbital period, yielding a set

of final states

Xf =

{rt/b(tf)

I.
rt/b (tf)

 , . . . ,
rt/b(tf + kp∆T )

I.
rt/b (tf + kp∆T )

}, (3.9)

which is equivalent to evaluating rt/b,
I.
rt/b at different true anomalies θ ∈ [0, 2π], Becausek, t ∝

θ.

Remark 1. We arrive at the construction of R̄N(S,U) “backwards,” by first fixing the final

time and considering all initial times within N steps in (3.7), and then considering all final

times within the orbit in (3.8), which models where along the orbit the collision will occur.

An alternative, yet completely equivalent, approach is to first define the set of states that

necessarily collide with the target within N steps for a fixed initial time and then take the

union for all t0 within the orbit.

Remark 2. Typically RBRS are the set of states that enter the target set for all disturbances

in a set W. Here, we use RBRS to determine the set of states where abort maneuvers that

avoid the target set do not exist. Hence, we use the control set U instead of the disturbance

set W in the RBRS computation.

3.3.1 Abort-Safe Sets

Consider a discrete-time interval Z[k0,kf ] and a target set S constant in such an interval.

Given the state at an initial time step k0, the state at any time step k > k0 is given by

xk = Φ(k, k0)x0 + Cũ, (3.10)

where C is the controllability matrix of the LTV system (3.3), ũT =

[
uT
k−1 . . . uT

k0

]
, and

Φ(k, k0) = AkAk−1 · · ·Ak0 is the k0-to-k transition matrix. For the sake of notation let

xk = φ(k;x0, ũ, k0), (3.11)
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where ũ ∈ Uh, and, with a little abuse of notation, h ≥ k − k0, i.e., we may include more

inputs in ũ even though the ones with indexes j > k − 1 have no impact on xk. Letting

kf − k0 = N , we define the safe set X safe
N (S,U) as the set of initial conditions that can be

made to not collide with S within a desired discrete-time interval, i.e., X safe
N (S,U) = {x ∈

Rn : ∃ũ ∈ UN , φ(k;x0, ũ, k0) /∈ S, ∀k ∈ Z[k0,kf ]}.

Proposition 3.3.1. Let x0 ∈ R̄N(S,U)c. Then, for any k0 and kf = k0 + N , there exists

ũ ∈ ŪN , such that φ(k;x0, ũ, k0) 6∈ S, for all k ∈ Z[k0,kf ]. Hence,

X safe
N (S,U) = R̄N(S,U)

c
. (3.12)

Proof. By construction of (3.7) and (3.8), R̄N(S,U) contains all the initial conditions x0

such that for all ũ ∈ UN there exists k ∈ Z[k0,kf ] such that φ(k;x0, ũ, k0) ∈ S. Thus,

the complement R̄N(S,U)c contains the initial conditions x0 such that there exists ũ ∈ UN

such that for all k ∈ Z[k0,kf ], φ(k;x0, ũ, k0) /∈ S, which is the desired safety condition. The

validity for any k0 is due to (3.6) and to including in (3.8) the RBRSI for all kf ∈ Z[kp+1,2kp],

which covers all the time instants by considering that the LTV system is periodic with period

kp. Thus, X safe
N (S,U) = R̄N(S,U)c.

Due to the definition of X safe
N (S,U), if the state is kept inside it, the existence of a

control sequence that avoids S in any interval Z[k0,kf ] is guaranteed.

We construct the unsafe set as the union of the orbit-RBRSI in (3.8) over the input

sets (3.5). Becausesome failure modes may not need to be considered, e.g., the spacecraft

may be re-oriented to change the configuration of the faulty thrusters, the unsafe set is

constructed from the input sets (3.5) of some pre-specified q ≤ nF failure modes of interest

Ū =

q⋃
i=1

Ui. (3.13)

Then, the set of unsafe states is the union over the failure modes of interest

X unsafe
N,q (S, Ū) =

⋃
Ui∈Ū

R̄N(S,Ui). (3.14)
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Hence the safe set with respect to q failure modes is

X safe
N,q (S, Ū) = X unsafe

N,q (S, Ū)
c
. (3.15)

The above equations provide general expressions for the unsafe sets that rely only on a

compact target set. For actual computation of these sets, we need to assume a particular

form for the target set, e.g., a polytope or an ellipsoid.

Remark 3. The sets in Ū are constructed under the assumption that Fc is aligned with Fo.

Even if this were not the case after a failure, the chaser spacecraft may be reoriented by

the attitude control system to align itself with the orientation used to compute X unsafe
N,q (S, Ū),

ensuring active abort-safety. Such an attitude maneuver can generally be completed much

faster than the required rendezvous orbital maneuver. For passive abort-safety, Ū = ∅, the

unsafe set X unsafe
N,q (S, Ū) is independent of the orientation of Fc.

3.3.2 Active Safety based on Polytopes

When the dynamics are linear as in (3.3) and the target set S is a polytope, the RBRS

is also a polytope and is computed by solving linear programs (LPs) [86]. Hence, the unsafe

set is the union of polytopes that take into account the LTV nature of the equations of

relative motion as well as well as several admissible input sets that capture multiple failure

modes. Consider the target set S , Pf = P(Hf , lf). Let the j-step RBRS from final time

tf be Rb(j;Pf ,U , kf) = P(Hj, lj), the j + 1-step RBRS is Rb(j + 1;Pf ,U , kf) = {x ∈ Rn :

Hj+1x ≤ lj+1}, where

Hj+1 = HjAkf−(j+1), (3.16a)

[lj+1]i = min
u∈U

[lj]i − [Hj]iBkf−(j+1)u. (3.16b)

Redundant hyperplanes for obtaining a minimal representation of P(Hj, lj) are removed by

solving LPs. In terms of set operations, (3.16) is given by
(
P(Hj, lj)	B(·) U

)
A(·). BecauseS
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is a polytope, each RBRS in (3.16) will also be a polytope, while the RBRSI, R̄N(Pf ,U), is

a union of polytopes, which may be non-convex.

The RBRS is expected to be smaller the larger the range is of available control after a

failure, because the vehicle can perform abort maneuvers from more initial states x0 ∈ Rn.

Proposition 3.3.2. Given a final time step kf and two control sets Uv and Uy, such that

Uy ⊆ Uv, the RBRSs at kf − j + 1, for Uv and Uy satisfies

Rb(j;Pf ,Uv, kf) ⊆ Rb(j;Pf ,Uy, kf). (3.17)

Proof. When considering two sets, such that G̃ ⊆ G, it follows that
(
F 	 G

)
⊆
(
F 	 G̃

)
.

Aside from the input sets Uy and Uv, the RBRS at kf − (j + 1) are constructed using the

same matrices, Akf−j and Bkf−j. Then, the input sets affect the RBRS computation through

the Pontryagin difference P(Hj, lj) 	 B(·)U . Thus, if Uy ⊆ Uv, then Rb(j;Pf ,Uv, kf) ⊆

Rb(j;Pf ,Uy, kf).

Additionally, if Uv ⊆ Uy, then R̄N(S,Uy) ⊆ R̄N(S,Uv) due to (3.8). As such, the

unsafe region of state space gets larger as the spacecraft loses actuation due to thruster

failures.

Figure 3.4a shows slices of the RBRSI for increasingly severe failure modes. The

darker the set, the fewer thrusters have failed. Slices are taken for δz = δẏ = δż = 0 and

δẋ ∈ {−1.5, 0, 1.5}× 10−6 km/s. Figure 3.4b shows the projection of the same RBRSI sets

onto the orbital plane, δx, δy. The sets in the RBRSI get larger as the spacecraft becomes

increasingly under-actuated, indicating that a larger region of state space is unsafe. When

the RBRS is computed for total propulsion failure, i.e,Mi = ∅ and Ui = ∅, the result is the

set of passively unsafe states, i.e., the initial conditions for which free-drift trajectories enter

S. The passively unsafe set is the largest BecauseRb(j;S,Ui 6= ∅, kf) ⊆ Rb(j;S, ∅, kf).

Maintaining passive safety ensures a collision free rendezvous under the worst possible

propulsion failure mode. Spacecraft rendezvous missions are often staged to maintain passive
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Figure 3.4: RBRSI illustrations, from dark to light: we reduce the number of functional
thrusters, therefore, less safe state space.

(a) Slices of the RBRSI

(b) Projections of the RBRSI
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safety first, as a chaser approaches but is still far from the target, and active safety later, as

the chaser comes into close proximity to the target. Becauseũ = 03h×1 ∈ Uh, the computation

of the RBRS are greatly simplified. For this special case, the RBRS is denoted Passive

Backwards Reachable Sets (PBRS) as control is no longer considered.

Computing the PBRS is computationally much less demanding than the RBRS as no

LPs need to be solved, other than those for removing redundant hyperplanes. If kj = kf − j,

the j-step PBRS polytope is

Rb(j;Pf , ∅, kf) = {x ∈ Rn : HfΦ(kf , kf − j)x ≤ lf}. (3.18)

3.3.3 Passive Safety based on Ellipsoids

For passive safety, an alternative is to consider an ellipsoidal target set S , Ef = E(0, P )

centered at the origin with shape matrix P . Since Ef is an ellipsoid, the discrete-time

dynamics (3.3) are linear time-varying, and uk = 0, the j-step PBRS (3.6)

Rb(j; Ef , ∅, kf) = {x ∈ Rn : x>Φ(kf , kf − j)> P−1 Φ(kf , kf − j) x ≤ 1}, (3.19)

are also ellipsoids Becauseellipsoids are closed under affine transformations. The N -step

PBRSI RN(Ef , ∅, kf) is not an ellipsoid, but is the union of a finite set of ellipsoids. The

orbit-PBRSI R̄N(Ef , ∅) is similarly obtained by taking the union of the N -step PBRSI over

kf that varies along one orbit.

3.4 Abort-Safe Rendezvous Control

Next, we develop an abort-safe control policy that enforces the state to remain in

the safe set (3.15). Specifically, we develop a model predictive control (MPC) policy that

minimizes a cost function designed based on performance metrics, while constraining the tra-

jectory to remain within (3.15), and hence outside its complement (3.14) where, in presence

of failures, collisions with the target are unavoidable.
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At every time step k, the MPC policy solves the finite horizon optimal control problem

min
Uk

F (xNp|k) +

Np−1∑
j=0

L(xj|k,uj|k) (3.20a)

s.t. xj+1|k = Aj|kxj|k +Bj|kuj|k (3.20b)

gk(xj|k,uj|k) ≤ 0 (3.20c)

uj|k ∈ U(k) (3.20d)

x0|k = xk (3.20e)

where Np � N is the prediction horizon length, the prediction model (3.20b) is (3.3),

(3.20c) is the safety constraint ensuring that collision can be averted in the presence of

propulsion system failures, and U(k) ∈ {i}i is the input set at time step k, which depends

on the propulsion system condition according to (3.5). The MPC control law is given by

uk = κmpc(xk) = u∗0|k, (3.21)

where U ∗k = (u∗0|k . . .u
∗
Np−1|k) is the optimizer of (3.20).

3.4.1 Cost Function

We design the stage cost and the terminal cost in (3.20a) as

L(x,u) = x>Qx+ u>Ru, (3.22a)

F (x) = x>Mx, (3.22b)

where the weight matrices Q = Q> ≥ 0, R = R> > 0, M = M> > 0 are selected to achieve

the desired performance, resulting in a linear quadratic MPC for which (3.20) is a quadratic

program (QP). The weight Q affects the primary objective, which is to approach the target,

i.e., reaching zero position and velocity. The weight R affects the secondary objective, which

is to minimize the total required propellant by minimizing the thrust. The terminal cost M
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is usually chosen to obtain stability properties, although here the main focus is on ensuring

safety in case of a thruster failure. Non-quadratic cost functions can also be used as in [55],

while still achieving active safety due to the constraint (3.20c).

3.4.2 Polytopic Safety Constraint

Implementing (3.20c) directly as xj|k ∈ X safe
N,q = X unsafe

N,q (Pf , Ū)
c

renders (3.20) non-

convex and hard to solve. We convexify the problem by imposing convex constraints that

exclude (3.14) from the feasible space of (3.20) based on the following result.

Result 1. ([86, Prop.3.31]) Given polytopes P1(H1, l1), P2(H2, l2), then P2(H2, l2) ⊃ P1(H1, l1)

if and only if there exists a non-negative matrix Λ such that

ΛH1 = H2

Λl1 ≤ l2.
(3.23)

Given a subset of the polytopes {P(HR̄i , l
R̄
i )}`i=1 within X unsafe

N,q (Pf , Ū), where HR̄i ∈

Rnci×n, we use Result 1 to construct a halfspace Ph(h, 1) = {x ∈ Rn : hx ≤ 1} such that

Ph(h, 1) ⊃ {P(HR̄i , l
R̄
i )}`i=1. Given x̄ ∈ Rn, let h∗(x̄), {λ∗i (x̄)}`i=1, s∗(x̄) be the solution of

min
s,h,{λi}`i=1

− s (3.24a)

s.t. s ≥ 0 (3.24b)

hx̄ ≥ 1 + s (3.24c)

[λi]j ≥ 0, j = 1, . . . , nci (3.24d)

λiH
R̄
i = h (3.24e)

λil
R̄
i ≤ 1, i = 1, . . . , ` (3.24f)

where λi ∈ R1×nci , for all i = 1, . . . , `. Any feasible solution of the LP (3.24) is such

that Ph(h, 1) ⊃ {P(HR̄i , l
R̄
i )}`i=1. Furthermore, any feasible solution of (3.24) is such that

x̄ /∈ Ph(h, 1), and the cost function (3.24a) maximizes the clearance of x̄ to the half space

Ph(h∗, 1).
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Figure 3.5: A 3D demonstration of Result 1. The blue polytopes represent sets to be avoided
in 3D space while the red hyperplane separates the state marked by the black cross from the
polytopes.
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At time k, we construct (3.20c) from the optimal trajectory according to (3.20) at time

k− 1, (x∗0|k−1 . . .x
∗
Np|k−1). Given x∗j|k−1, j ∈ {1, . . . , Np}, we select the ` closest polytopes in

X unsafe
N,q (Pf , Ū) by

d(x∗j|k−1, Si) = min
y

‖x∗j|k−1 − y‖2

s.t. y ∈ Si.
(3.25)

Then, we compute hj|k = h(x∗j+1|k−1) from (3.24) based on the selected {Pi}`i=1 and

implement (3.20c) as its complement

−hj|kxj|k ≤ −1− ρ, (3.26)

where ρ > 0 is an arbitrarily small constant, in order for (3.20c) to determine a closed set

excluding (3.14). BecausePh(h, 1) ⊃ {Pi}`i=1, (3.26) does not intersect ∪`i=1Pi.

Remark 4. If ` is chosen to include all polytopes of X unsafe
N,q (Pf , Ū), the feasible set of (3.26)

is contained in X safe
N (Pf , Ū). We allow to include only the subset of closest polytopes to

take advantage of the receding horizon nature of (3.21) to reduce the computational burden

of (3.20) and (3.24), and to avoid being excessively conservative. In fact, X unsafe
N,q (Pf , Ū) con-

siders all terminal times around the orbit, while the final approach of the rendezvous maneu-

ver considered here terminates in a small, albeit difficult to predict, fraction of the orbital

period.

Cost function (3.24a) is meant to increase the residual of x∗j|k−1 in satisfying (3.26), so

that the chaser has more clearance to maneuver and select an optimal trajectory without

riding on or near the constraint.

3.4.3 Ellipsoidal Safety Constraint

Similar to Result 1, a half-space constraint can be constructed for avoiding ellipsoidal

sets.
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Result 2. ([87, Section 2.5]) Given j + k ellipsoids

Ei = {Q
1
2
i v + qi ∈ Rn : ‖v‖2 ≤ 1}, (3.27)

where Qi = QT
i � 0, a hyperplane, defined by a>x = b, that strictly separates

⋃j
i=1 Ei from⋃j+k

i=k+1 Ei is computed by solving the second-order cone program (SOCP)

−‖Q>i a‖2 + a>qi − b ≥ α, i = 1, . . . , j (3.28)

‖Q>i a‖2 + a>qi − b ≤ −α, i = j + 1, . . . , j + k. (3.29)

Given a subset of the ` closest ellipsoids {E(qR̄i , Q
R̄
i )}`i=l within X unsafe

N (Ef , ∅), we use

Result 2 to construct a halfspace P(aT, 1) = {x ∈ Rn : aTx ≤ 1} such that Pa(aT, 1) ⊃

{E(qR̄i , Q
R̄
i )}`i=l. We separate ` ellipsoids from the state x and for each ellipsoid Ei, we require

that

sup
‖v‖≤1

aT(Q
1
2
i v + qi)− b ≤ −α (3.30)

where the supremum argument is

v∗ =
Q

1
2
i a

‖Q
1
2
i a‖

. (3.31)

Substituting (3.31) into (3.30), yields the convex safety constraint for the ellipsoidal case.

Thus, given x̄ ∈ Rn, let a∗(x̄), s∗(x̄) be the solution of

min
s,a

− s (3.32a)

s.t. s ≥ 0 (3.32b)

aTx̄ ≥ 1 + s (3.32c)

‖Q>i a‖2 + a>qi ≤ b− α, i = 1, . . . , ` (3.32d)

where α = 0 as strict separation is not necessary and b = 1. Any feasible solution to the

SOCP is such that Pa(a, 1) ⊃ {E(qR̄i , Q
R̄
i )}`i=l.

Thus, in the ellipsoidal case we compute aj|k = a(x∗k+1|t−1) from (3.32) by considering

the ` closest ellipsoids to the previosuly computed trajectory in a manner similar to (3.25),
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Figure 3.6: A 3D demonstration of Result 2. The blue ellipsoids represent sets to be avoided
in 3D space while the red hyperplane separates the state marked by the black cross from the
ellipsoids.
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and replace (3.26) with

−aT
j|kxj|k ≤ −1− ρ. (3.33)

Remark 5. In the case that a single ellipsoid is used for the safety constraint, i.e., ` = 1,

the closest (more conservative) ellipsoid is used. The hyperplane can also be constructed by

projecting the current state radially onto the ellipsoid and taking the tangent at that point,

which does not require the solution of SOCPs [83]. See below for more details.

3.4.3.1 Simplifying Heuristic

An alternative approach is to let ` = 1, so that only the nearest ellipsoid is used

to convexify the problem for a particular xj|k−1. The avoidance of each ellipsoid is then

described by non-convex constraints

v>(QR̄i )
−1
v ≥ 1, (3.34)

where v represents a generic state vector here. Instead of obtaining the closest sets by solving

various QCQP, here, we approximately compute the closest set by taking a radial projection.

A half-space is constructed using the tangent at the projected point of the ellipsoid, which

removes the need to compute an optimization problem, saving computational time.

The squared radial “distance” from the state x to the surface of the ellipsoid Ei is

ρ2 = v>(QR̄i )
−1
v. (3.35)

Normalizing the state v by ρ, results in a point on the ellipsoid’s surface

v̄ =
v

ρ
, (3.36)

because v̄>(QR̄i )
−1
v̄ = 1. The tangent hyperplane to the ellipsoid surface at v̄ is parameter-

ized by the normal vector

a = 2(QR̄i )
−1
v̄, (3.37)
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since QR̄i = (QR̄i )
>

. Then, the hyperplane is defined by all x in the following set

{x ∈ R6 : a>x = b}, (3.38)

where b = a>v̄.

Given a state x at time t, we compute the projections v̄ to all ellipsoids Ei ∈ X unsafe
N (·).

Due to the possibly large number of ellipsoids, rather than imposing half-space constraints

for all of them, we only enforce the one that seems to be most conservative, i.e., the one that

is most exterior to the center of the ellipsoids, in our case the origin, by selecting i such that

v̄∗i = arg max
i
‖v̄i‖, i = 1, . . . , ns, (3.39)

where ns is the number of sets in X unsafe
N (Ef , ∅). As before, the constraints along the MPC

horizon are updated based on these half-spaces.

3.5 Implementation and Practical Aspects

Next, we introduce practical information related to the implementation of the approach

and discuss the various safety constraints in terms of computational burden.

3.5.1 Implementation

Algorithm 1 summarizes the approach for abort-safe rendezvous, where the safe set

computation is performed offline Becauseit does not require real-time data and is compu-

tationally demanding. When the spacecraft engages the final approach phase, the safety

constraints are removed to allow for berthing or docking.

The algorithm is initialized by separating x0 from the nearest unsafe sets along the

entire MPC window. Then, the constrained MPC problem is solved, and the states along the

prediction horizon are used to re-compute half-space constraints at each step k ∈ {0, 1, ..., N−

1}. This is repeated for some fixed number of iterations, finally resulting in an initial half-
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Algorithm 1 Abort-Safe Rendezvous Control

Offline: Compute the unsafe set (3.14) using polytopic or ellipsoidal target sets
1: input: xk
2: repeat
3: Select ` polytopes (ellipsoids) of X unsafe

N,q (S, Ū) closest to xj|k by (3.25) for j = 1, . . . , N
4: Convexify safety constraint along MPC horizon using Results 1, 2
5: Solve optimal control problem (3.20)
6: Apply control policy (3.21) to the chaser spacecraft
7: until Final approach is activated

space constraint sequence. After initialization, the constraint sequence is iteratively updated

with the new predicted states in receding horizon.

The following proposition summarizes the abort-safe rendezvous approach using poly-

topic sets.

Proposition 3.5.1. At any time step k, let the convex safety constraint (3.20c) be (3.26)

for ` such that {Pi}`i=1 = X unsafe
N,q (S, Ū). Let x0 be any state such that x0 = xj|v for some

v = 0, . . . , Np − 1, where {xj|v}Np

v=0 is any feasible trajectory of (3.20). Then, there exists

an abort control sequence ua(x0) = {uj|k+v(x0)}N−1
j=0 such that when applied from x0, the

trajectory xa(x0,u
a(x0)) = {xj|k+v}Nj=0, where x0|k+v = x0, does not enter the target set, i.e,

xj|k+v 6∈ S, ∀j ∈ {0, . . . , N}.

Proof. Since (3.26) are such that their complement Ph(h, 1) ⊃ {P(HR̄i , l
R̄
i )}ns

i=1 = X unsafe
N,q (S, Ū),

any feasible solution of (3.20) ensures xj|k ∈ X safe
N,q . Then per Proposition 3.3.1, for every

x0 = xj|k there exists at least one abort sequence ua(x0) = {uj|k+v(x0)}N−1
j=0 that results in

a trajectory xj|k+v /∈ S for all j = 0, . . . , N . Therefore, the chaser will avoid entering the

target set S for at least N steps.

In the passive safety case, {uj|k+v}N−1
j=0 = {0}N−1

v=0 and thus, proposition 3.5.1 applies to the

ellipsoidal passive safety scenario using (3.33) instead of (3.26). Usually, ` � ns to reduce

the computational burden. However, by choosing ` large enough and selecting the sets

based on distance, e.g., (3.25), we only remove sets that are far away from the spacecraft.
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Constructing the hyperplanes (3.26) or (3.33) based on the closest sets often results in

separating the spacecraft trajectory also from the neglected ones so that Proposition 3.5.1

still holds in practice.

When the chaser approaches the border of a particular target set, i.e., the AE, KOS, or

target polytope, the next phase of the the maneuver can be triggered. These phase changes

occur when the distance to the set is below designed thresholds, that is, d(x0|k,Si) < di,

where di is the distance to the target set in phase i, and possibly, after additional checks

are done on the spacecraft. Phasing is used because the safety constraints change along the

different parts of the mission and including state-triggered constraints in the MPC [88] is

outside of the scope of the current work.

3.5.2 Comparison of Various Safety Constraints

This chapter presents three methods to enforce passive and active safety based on poly-

topic and ellipsoidal sets. The LP and SOCP methods require solving optimizations within

the MPC loop while the heuristic for ellipsoids in rem 5 does not. In all cases, the MPC prob-

lem (3.20) results in a QP. Table 3.1 highlights the number and type of optimization problem

that each convexification method requires, including the determination of the ` closest sets

and the construction of the hyperplanes. For ellipsoidal passive safety, the heuristic may

be desirable for online application, as it significantly reduces the computational complexity

compared to its SOCP counterpart while resulting in a similar degree of safety. If separa-

tion from multiple sets is required, the polytopic approach may be more effective than the

ellipsoidal one BecauseLPs and QPs are simpler to solve, in general, than SOCPs. Table 3.1

primarily reports the types of problems to be solved, that determine what solvers need to be

included in the spacecraft embedded computing platform. In terms of computational speed,

the size of each problem also has impact.
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Table 3.1: Online numerical optimization problems solved at each step for the different
approaches of enforcing safety.

Variations LPs QPs SOCP
P Active safety Np ns + 1 0
P Passive-Safety Np ns + 1 0
E Passive-Safety 0 1 Np + ns

E Passive-Safety Heuristic 0 1 0

3.5.3 Approach Velocities

In the polytopic case, we construct the target set as Pf = P(Hf , lf), where Hf =[
I6 −I6

]T
, and lf defines the upper and lower position and velocity bounds of the set, e.g.,

lf =

[
pm11×3 vm11×3 pm11×3 vm11×3

]T
. Similarly, the ellipsoidal target set is given by

Ef = E(0, P ), where

P =

 Pp 03×3

03×3 Pv

 ∈ R6×6, (3.40)

Pp = PT
p � 0, and Pv = PT

v = vmI3 � 0. As the approach velocity bounds are increased,

vm −→ ∞, both Pf and Ef are unbounded in the velocity subspace, resulting in RBRSI that

contain the states which enter the target set in N steps, or less, at any relative velocity

ρ̇. Practically, we select vm � 0 to include the chaser’s admissible operational velocities,

permitting the usage of Results 1 and 2, which require Pi or Ei to be compact.

3.5.4 Robustness to unmodeled perturbations

The safety constraints in (3.20c) and the prediction model (3.20b) are designed based

on (3.1), which applies to Keplerian orbits, i.e, they ignore perturbations such as Earth’s

non-spherical and unequal mass distribution, air-drag effects in low-Earth orbits, third-body

effects, and more [69]. In practice, the use of exclusion regions such as the AE or KOS allow

for the effects of these perturbations to be ignored at design time, while still ensuring safety

of the target in the event of chaser propulsion failures. If the spacecraft under the nominal
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model does not enter the exclusion region, when subject to non-Keplerian dynamics for short

time-horizons, it will not collide with the target although it may enter the exclusion region.

That is, the exclusion region works as a safety margin against unmodeled perturbations.

If one wants to achieve robust avoidance of the entire exclusion area, such as the AE

or KOS, our approach provides multiple options. From a purely algorithmic perspective,

the techniques presented in Section 3.3 can be extended to account for a set W bounding

the unmodeled perturbations. This amounts to computing robust controllable sets, since in

order to avoid a given region in case of propulsion failures, the trajectory must not enter

the set of states for which there exists at least one disturbance sequence that results in

entering the given region for all the admissible sequences of command inputs, according to

the propulsion fault condition. However, that is numerically challenging because computing

each step in the set iteration requires projection of a set of states and disturbances, i.e., a

subset of Rn+d, onto a set of states, i.e., a subset of Rn [89], where the projection algorithm

has in general non-polynomial complexity even for polytopes.

A simple to implement, although suboptimal, approach is to inflate the unsafe sets (3.14)

by a margin γ > 1, which in turn shifts the linear constraints (3.26), (3.33) that imple-

ment (3.20c). For ellipsoids and polytopes, the inflated sets are ∪ns
i=1{x ∈ R6, x>P−1

i x ≤ γ}

and ∪ns
i=1Pi(Hi, γli), respectively. The inflation parameter γ can be selected in general by

high-precision orbital simulations that characterize the impact of the disturbances, although

in some cases, analytical over approximation is possible.

3.6 Simulation Results

We first present ellipsoidal passive abort safety results along with a robustness study

to determine how Algorithm 1 behaves when subjected to unmodeled perturbations. Then,

we report simulations that validate the polytopic active abort safety. Finally, the proposed

method is demonstrated on a phased, full mission scenario of abort-safe rendezvous with
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the ISS. We define an AE around the target of size

[
1 2 1

]
km in the radial, along-track,

and out-of-plane directions, and a KOS of size

[
100 100 100

]
m. With approach velocities

vm = 0.1km/s, these ellipsoidal sets are given by EAE and EKOS, respectively. The sampling

period ∆T = 30s. The mass of the chaser spacecraft is mc = 4000 kg. Each thruster can

apply a maximum thrust of um = 0.02 kN. Where relevant, we discuss the performance

trade-off between enforcing safety and not enforcing safety using delta-V, which is the mass-

independent propellant consumption of the maneuver ∆V =
∑N−1

k=0 ‖B̃uk‖ ·∆T . We run the

discrete-time MPC (3.21) in closed-loop with the continuous-time model (2.11),(2.8) resolved

in Fo.

3.6.1 Ellipsoidal Passive Abort Safety

3.6.1.1 Heuristic vs. SOCP

We compare the radial projection heuristic of Remark 5 with the SOCP-based safety

constraint (3.33) for a target in a circular Earth-orbit. For circular orbits, the relative

equations of motion (3.1) simplify to the well-known Clohessy-Wiltshire (CW) equations

[69]. Becausethe CW equations are linear time-invariant, the RBRSI are invariant along

the orbit and only (3.7) is necessary for passive safety. The safety horizon N corresponds

to a length of three orbital periods, N = 3kp
∆T

, that is, by remaining in X safe
N (S, ∅), the

chaser will not passively drift into the AE given by S , EAE ⊂ R6 for at least three sub-

sequent orbital revolutions. The target’s orbit is defined by the classical orbital elements[
a e i ω Ω f

]>
=

[
6738km 0 51.64◦ 94.07◦ 302.37◦ 0◦

]>
, see [69] to relate or-

bital elements to inertial states.

The SOCP-based method separates the chaser spacecraft from ` = 3 ellipsoids at every

time step in the MPC horizon, whereas the radial projection heuristic separates the chaser

from ` = 1 ellipsoid. Figure 3.7 shows that the approaches are similar in this simulation.

Although the similar trajectories are not necessarily guaranteed for all initial conditions, the
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simulation shows the benefits of using the radial-projection heuristic as it requires much less

computation and can achieve similar safe approaches.

Figure 3.7: Comparing the approaches resulting from SOCP and heuristic-based safety con-
straints.

3.6.1.2 V-bar Approach

Next, we consider an along-track, also called V-bar, approach such that the initial

position is purely in the ı̂θ direction (positive δy). We compare a passively safe con-

trol policy to a simulation where the passive safety constraints are removed, i.e., a pas-

sively unsafe policy. Passive safety is enforced via the heuristic of rem 5. The target

is in an eccentric Earth-orbit with the classical orbital elements

[
a e i ω Ω f

]>
=[

7420km 0.1 0.01◦ 0◦ 0◦ 145◦
]>

. The resulting orbital period of the target body is

tp = 106.02 min = 6361.2 s.

The number of steps in the MPC horizon is Np = 30. The safety horizon N corresponds

to three orbital periods, which is more than 20 times the length of the prediction horizon. The

safety phases with respect to the AE and KOS share the same state and control penalties,
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Figure 3.8: Passively Unsafe approach with respect to the AE from the along-track direction
for a target in an eccentric orbit. States along the trajectory enter the AE under natural
dynamics.

Q = I6, R = 1.3 · 104I3, and terminal cost M = 102I6. The initial state is x0 =

[
pT0 vT0

]T
where pT0 =

[
0 5 0

]
km and vT0 =

[
0 0 0

]
km/s.

The results are shown in Figures 3.8–3.10, where, the initial condition is represented

by a blue circle, the trajectory of the relative position of the chaser with respect to the target

as seen in the target’s orbital frame Fo is shown in blue. The sampled free-drift trajectories

propagated forward without control to verify passive safety are shown in gray. The sampled

free-drift trajectories that enter the AE or the KOS are shown in red.

As a baseline, we apply the MPC policy (3.21) that does not enforce the passive safety

constraints. The resulting maneuver is shown in Figure 3.8 and requires ∆Vunsafe = 0.0134

km/s. The spacecraft enters the AE orbit-PBRSI prior to reaching the target set boundary

and thus, sampled free-drift trajectories along the nominal rendezvous maneuver intersect

the AE and are unsafe (shown in red). Then, we run the same simulation while enforcing the

passive safety constraint, which yields the maneuver shown in Figure 3.9. Clearly, enforcing

the passive safety constraints results in a passively safe trajectory towards the AE with

∆Vsafe = 0.0206 km/s.

Once the chaser chaser is near the AE, the maneuver proceeds towards the target
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Figure 3.9: Passively safe approach with respect to the AE, in red, from the along-track
direction for a target in an eccentric orbit. Sampled states do not enter the AE under
natural dynamics within the safety horizon N .

while maintaining passive safety with respect to the KOS. The resulting maneuver is shown

in Figure 3.10.

3.6.1.3 Robustness to Unmodeled Perturbations

In order to evaluate the proposed control policy when subjected to realistic perturba-

tions, we consider the target and chaser spacecraft to be perturbed by Earth’s oblateness,

captured by the J2 zonal harmonic acceleration, and third body gravitational disturbances

from the sun and the moon. The perturbations are nonlinear functions of the inertial posi-

tion, r, and are denoted aJ2(r), as(r), and am(r), respectively. Though other perturbations

can be included, these are the dominant ones for most near-Earth orbital regimes. The

inertial acceleration model (2.8) is modified to include the perturbations,

r′′t = −µ rt

‖rt‖3
+ aJ2(rt) + as(rt) + am(rt), (3.41a)

r′′c = −µ rc

‖rc‖3
+
u

mc

+ aJ2(rc) + as(rc) + am(rc), (3.41b)

yielding orbits that are no longer Keplerian. While the simulation model (2.11) is perturbed,

we retain (3.2) for constructing the RBRS and as the MPC prediction model (3.20b).
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Figure 3.10: Passively safe approach with respect to the KOS, in red, from the along-track
direction for a target in an eccentric orbit. Sampled states do not enter the AE under natural
dynamics within the safety horizon N .
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As discussed in Section 3.5.4, under perturbations the proposed safe rendezvous method

is no longer guaranteed to provide abort-safe trajectories that avoid the original target sets.

However, we expect the chaser trajectories to only cross the border of the exclusion zone,

hence staying away from the actual target position, so that collisions are avoided thanks to

the exclusion zone margin.

Figure 3.11 shows Nsim = 55 closed-loop simulations of passive safety with respect

to the AE, where the total loss of propulsion occurs close to the boundary of the AE. In

Figure 3.11, the portions of the approach where the propulsion system operates nominally

are shown in blue, while the free-drift trajectories after the failures are in black. The black

marks show the states at which the thrust is fully lost, and the trajectories that enter the

AE are shown in red.

Figure 3.11a shows the results for various random initial conditions when the nominal

PBRSs are used, i.e., γ = 1. In this case, 3 out of 55 simulations result in trajectories that

enter the AE. However, such trajectories cross the AE near the edge, clearing the target by

kilometers. As expected, the AE provides a sufficient margin to avoid the target, when used

in conjunction with our proposed approach.

As discussed in Section 3.5.4, to ensure that the trajectories remain outside of the

exclusion zone even under perturbations, the unsafe sets can be inflated, while still using the

nominal safe controller. Figure 3.11b shows the trajectories for the same initial conditions

and failure times as in Figure 3.11a where the RBRSs are inflated by a factor γ = 1.1. In

these cases, none of the trajectories enter the AE, showing that a relatively small inflation and

minor modification to the nominal sets, allows us to retain the same RBRS computation and

nominal controller while maintaining robustness of the entire exclusion zone in the presence

of perturbations.
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Figure 3.11: Closed-loop simulations of rendezvous in presence of perturbations.

(a) Approaches from various initial conditions with
nominal prediction model and nominal RBRS, i.e., γ =
1. Passively safe approaches (blue), free drift trajecto-
ries (black), failure events (black marker); 3/55 trajec-
tories entered (briefly) the AE (red).

(b) Approaches from various initial conditions with nominal pre-
diction model and inflated RBRS, γ = 1.1, roughly 4.9%. Pas-
sively safe approaches (blue), free drift trajectories (black), failure
events (black marker). No trajectory is entering (even briefly) the
AE.
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3.6.2 Polytopic Active Abort-Safety

For active abort-safety, the weight matrices in the cost function (3.20a) are Q = 103 ·I6,

R = I3, M = Q. The target set is defined by a polytope P(Hf , lf) whereHf =

[
I6 −I6

]T
and

lf =

[
pm11×3 vm11×3 pm11×3 vm11×3

]T
, pm = 0.02 km, and vm = 6.0 × 10−3 km/s. The

target initial conditions are defined by the classical orbit elements

[
a e i ω Ω f

]T
=[

7420km 0.1 0.01◦ 0◦ 0◦ 140◦
]T

, which yields an orbital period of 106.2 min. The

number of steps in the MPC horizon is Np = 8. The safety horizon is a quarter of the orbital

period, N = d tp
4∆T
e+ 1 = 54, almost 8 times larger than Np. The failure occurs at tfail, when

the state is xkfail , so that for k < kfail, uk ∈ U1, which corresponds to M1 , I, i.e., nominal

control. For k ≥ kfail, uk ∈ Ui where Mi ∈ FM, i.e., some thrusters have failed, where we

recall the thruster layout in Figure 3.2. For k ≥ kfail we set Q,M = 06×6 so that the only

objective is to avoid the target.

Next, we show the behavior of the safe controller (3.21) that enforces x ∈ X safe
N (Pf ,U)

and compare it with a standard design, called the unsafe controller, that only enforces

x /∈ Pf . We show two cases with differing thruster anomalies. We compare the behavior of

the controllers before and after the failure time, tfail = 240s. In these simulations q = 1 so

safety is only maintained with respect to one failure mode in each approach.

In the first case, only thruster τ1 fails and thus M2 , I \ {1} ∈ FM. Initially,

uk ∈ U1, where U1 is the nominal control set. After the failure occurs, uk ∈ U2 for the

remainder of the simulation. The initial state in the target’s Hill frame is x0 =

[
pT0 vT0

]T
where pT0 =

[
−75.7 95.1 −54.7

]
× 10−3 km and vT0 =

[
1.0 −1.1 0.7

]
× 10−3 kms−1 for

both controllers. The trajectories for the safe and unsafe controllers are shown in Figure

3.12a, while the control histories are shown in Figure 3.12b. Indeed, while the unsafe con-

troller cannot avoid colliding with the target, when the safe controller is used, an avoidance

maneuver is possible. The command of the unsafe controller after the failure time saturates
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while attempting but failing to avoid collision. Not surprisingly, the safe approach is more

costly in terms of delta-V since ∆Vsafe = 5.8× 10−3 km/s and ∆Vunsafe = 2.8× 10−3 km/s.

The same behavior is observed when only thruster τ8 remains functional after fail-

ure, i.e., M3 , {8} ∈ FM. Then, after the failure occurs, uk ∈ U3, which is a sin-

gle line segment. The initial condition for both controllers is x0 =

[
pT0 vT0

]T
where

pT0 =

[
−32.8 −83.0 −177.1

]
×10−3 km and vT0 =

[
0.3 0.9 2

]
×10−3 km/s The trajecto-

ries for the safe and unsafe controllers are shown in Figure 3.13a, while the control histories

are shown in Figures 3.13b, respectively. Indeed, while the unsafe controller cannot avoid

colliding with the target, the safe controller can. Again, this comes at the cost of increased

propellant consumption, as the ∆V for the safe controller, ∆Vsafe = 1.8×10−3 km/s, is larger

than the unsafe controller ∆Vunsafe = 1.0× 10−3 km/s.

3.6.3 Varying Initial Conditions

For simplicity and clarity, we consider a scenario of a planar rendezvous, δz, δż = 0.

Here, the failure mode considered is defined by M3 , {8} ∈ FM, such that thrusters

τ1 through τ7 simultaneously fail. In these simulations, the failure occurs at kfail = 0,

and as a consequence uk ∈ U3, for all k ≥ 0. We generate random initial conditions

xsafe,i
0 ∈ X safe

N,1 (Pf ,U3) and xunsafe,i
0 ∈ R̃N(Pf ,U3, kf) ⊂ X unsafe

N,1 in a small region around the

target.

Figure 3.14a shows that all of the initial conditions within the safe set can use the

remaining thruster to stay away from the target for the remainder of the simulation. For

comparison, Figure 3.14b shows the resulting trajectories when the unsafe controller attempts

to only avoid the target set, i.e., xj|k /∈ Pf , ∀j = {1, . . . , Np} given initial conditions within

the unsafe set R̃N(Pf ,U3, kf). In this case, the unsafe controller is unable to avoid the target

polytope due to the unsafe initial conditions, as expected by the construction of (3.6).
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Figure 3.12: Comparison of the safe and unsafe controllers when only thruster, τ1, fails, i.e.,
M2 = I \ {1}.

(a) Approaches to the target set, in black, for the
controllers. The black circle and marks are the the
initial and failure states, respectively. Dashed and
solid lines are states before and after attempted
abort.

(b) Control histories for the controllers. Vertical
dash line marks tfail.



56

Figure 3.13: Comparison of the safe and unsafe controllers when thrusters τ1 − τ7 fail, i.e.,
M3 = {8}.

(a) Approaches to the target set, in black, for the
controllers. The black circle and marks are the the
initial and failure states, respectively. Dashed and
solid lines are states before and after attempted
abort.

(b) Control histories for the controllers. Vertical
dash line marks tfail.
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Figure 3.14: Various initial conditions for the case when only 1 thruster remains functional
after the failure, i.e., M3 = {8}.

(a) Simulations with safe controller for multiple safe initial
conditions, x0 ∈ X safe

N,1 (Pf ,U3). Collisions with the target Pf

can be avoided.

(b) Simulations with the unsafe controller, which attempts
to avoid Pf at all times, for multiple unsafe initial condi-
tions x0 ∈ X unsafe

N,1 (Pf ,U3). The chaser cannot avoid entering
target set Pf .
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3.6.4 Full Mission Simulation - ISS Rendezvous

We consider a realistic mission scenario where the chaser rendezvous with a target

in a circular low Earth orbit. In this scenario, the mission incorporates both passive and

active safety in a a phased sequence. Initially, passive safety is necessary with respect to the

approach ellipsoid. As the chaser closes in on the AE, the next phase where passive safety

is maintained with respect to the KOS is initiated. Upon closer proximity, the active safety

phase is initiated. We consider a target representing the international space station (ISS) in

a circular orbit with orbital elements given in Section 3.6.1.1. Active safety is maintained

with respect to all thruster failure combinations, yielding nF = 255 failure modes. As a

result of the LTI dynamics, all of these failure modes can be considered concurrently since

ns = 2527, while it would be much larger in the LTV case.

We consider the relative initial state x0 =

[
pT0 vT0

]T
where pT0 =

[
0 5 0

]
km and

vT0 =

[
0 0 0

]
km/s. As before, passive safety is maintained in both the AE and KOS

phases of the rendezvous simulation. Figure 3.15 shows the corresponding approach with

the annotated mission phases. Starting from the left, the first green circle shows the initial

state and where passive safety is maintained with respect to EAE. Immediately to the right,

at δy ≈ 2km, the mission progresses to the next phase and passive safety is maintained with

respect to EKOS. Then, the active abort-safety phase begins. Finally, the green circle closest

to EKOS shows the activation of the final approach, i.e., where the chaser converges to the

origin, x −→ 0.

We can confirm that safety is maintained with respect to the various phases by checking

if any of the states along the approach are inside each phases’ corresponding unsafe sets.

Figure 3.16 shows that the chaser only enters the prior phases’ unsafe sets after the phase

switching times, i.e., after it has permission to advance to the next phase. These transition

times are shown by the black dashed vertical lines. Similarly, the phases switches are evident

in the history of the MPC control signals in Figure 3.17.
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Figure 3.15: Safe approach for a full mission scenario with annotated safety specifications
per phase. Each phase begins at a green circle.

Figure 3.16: States only enter a particular phase’s unsafe sets after explicitly being com-
manded to do so.

Figure 3.17: Control over the various phases of the mission.
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Chapter 4

Fuel-Efficient Abort-Safe Spacecraft Rendezvous with State and Dynamics

Uncertainty

In the previous chapter, a deterministic abort-safe rendezvous model predictive control

policy and analysis is presented. In this chapter, the focus lies on improving control perfor-

mance in terms of ∆V to develop more fuel-efficient solutions. Additionally, we generalize

our prior work on abort-safe rendezvous to consider stochastic disturbances in the dynamics

as well as input uncertainty. Though we focus on the rendezvous problem in this chapter,

the methods developed are applicable to general formation flying scenarios.

4.1 Introduction

As discussed in chapter 3, fail-safe spacecraft rendezvous can be cast as a trajectory

generation and control problem that avoids unsafe regions of state space in which collision

is guaranteed under total or partial thrust failure. The unsafe regions can be characterized

using reachability theory [84, 86, 90]. Recall that spacecraft missions often seek to minimize

∆V , which provides a measure of the total propellant consumed throughout a maneuver

[54]. When introducing non-convex safety constraints, it becomes difficult to solve for the

optimal ∆V maneuver in a computationally efficient manner [91]. As such, the non-convex

constraints are often locally approximated as convex constraints, yielding a feasible sub-

optimal solution that remains fuel efficient. These convexified constraints have been exploited

to maintain passive safety using MPC [9, 55, 83, 84]. Moreover, thruster on-time may be
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reduced by incorporating thruster on-off integer decision variables in the optimization [92].

Combining safety and thruster on-off decision variables requires solving a non-convex mixed-

integer program, which is challenging for on-board implementation. Thus, a computationally

tractable approach that satisfies the safety constraints while improving performance in terms

of ∆V and reduced thruster on-time is desirable. For shortness, we call an input signal where

thrusters are off more often, per given time, than another input signal, one that is sparser.

As mentioned in the introduction, chapter 1, stochastic reachability analysis has been

studied extensively in the literature [29, 30, 20, 31, 32, 33, 34]. When analyzing active cases,

a common assumption is to assume that a Markov control policy is being used for the sake

of reachability and design purposes. This allows for the theoretical characterization of the

active stochastic reachable sets via dynamic programming (DP) [37, 38]. As stated previously

though, such methods are computationally intractable for high-dimensional systems like ours,

which motivated prior work that over and under-approximates the sets obtained with DP

[39]. We leverage such work in this chapter to characterize the probabilistically unsafe regions

of state space. Moreover, the impact of linearization errors in the dynamics function is also

considered. This is particularly important for longer duration missions because ignoring

these errors can compromise the safety of the system, even within the linearization regime

of interest.

Here, for the initial approach where passive safety is typically required, we propose

a solution that can improve fuel-efficiency by leveraging natural orbital dynamics using

stochastic PBRS (SPBRS). The resulting methodology allows the chaser to enter a coasting-

arc during which no control is required to safely coast toward the target of interest. This

expands our prior work on passive and abort-safe spacecraft rendezvous about time-varying

reference trajectories in chapter 3 by improving control performance and reducing thruster

usage. First a goal set is defined near the original avoidance set. Then, offline, the backwards

reachable sets of the goal set are computed, resulting in the sets of states that naturally drift

into the goal set in a certain number of time-steps. We call these (S)PBRS emanating from
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the goal set coasting sets. An MPC policy is then developed that targets the appropriate

coasting set in an online manner, so that once the correct set is entered, the chaser can

disengage its thrusters and passively coast toward the goal set. In the stochastic case, the

coasting and unsafe sets are computed under the assumption that the dynamical uncertainty

is modeled as additive white gaussian noise (AWGN). To compensate for state uncertainty

due to imperfect measurements and process noise, chance-constraints are utilized [93].

The results in this chapter focus on a rendezvous mission concept for a target orbiting

a single central body. However, we provide an example of how such a framework is used

for a target in NRHO. Prior work for NRHO rendezvous has considered the design of safe

approach trajectories in an offline manner [94, 95]. As for online trajectory generation,

stochastic and robust MPC has been applied using chance-constraints and tube-MPC [96],

[82]. This work however does not consider safety with respect to failure modes and also do

not use high-fidelity NRHO target references. Our simulations demonstrate a reduction in

maneuver ∆V and a significant reduction of thruster on-time compared to our prior work.

This chapter is structured as follows. Section 4.2 introduces the spacecraft model and

dynamics. Section 4.3 presents the relevant reachable set theory and its relation to safety,

while in Section 4.4, nonlinear reachability analysis is performed under some particular

assumptions. In Section 4.5, the coasting set method is presented. Section 4.6 discusses how

the stochastic passive-unsafe and abort-unsafe sets are used to develop the stochastically

safe rendezvous control policy. Finally, results of the approach are shown in Section

hp2sec:simulatioNchp2

4.2 Stochastic Model

As before, the spacecraft are assumed to be rigid bodies such that all exogenous forces

act on their centers of mass and the target spacecraft is assumed to be uncontrolled. In the

two-body case, the nonlinear relative equations of motion as seen by the target are linearized

while including perturbations [69]. The linearized equations of relative motion are provided
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in Appendix A. Theses include some perturbations of interest, though more can be added

following the same methodology. In the NRHO scenario, discussed later, the equations of

motion are derived and expressed in the Synodic frame FS and the related dynamics are also

given in Appendix A.

Here, we denote the target’s inertial state by z(t) and the chaser’s relative state with

respect to the target as x(t), as in Chapter 3. The stochastic nonlinear equations of relative

motion are of the form

ẋ(t) = f̃(x(t), z(t)) +Bu(t) +Bδu(t) + q(t) (4.1)

where f̃(x(t), z(t)) are the natural continuous-time dynamics of the system, the input or

control uncertainty is given by δu(t) ∼ N (E[δu(t)],Σu(t)), and q(t) ∼ N (E[q(t)],Σq(t))

is the dynamical process noise in the system. The uncertainty in control may be modeled

using thruster misalignment or magnitude errors as well as attitude errors. We also assume

that the input uncertainty and process noise at different time steps are independent and

uncorrelated, i.e., white noise.

Because linearized dynamics dominate around some nominal trajectory, we approxi-

mate the relative motion of the chaser with respect to the target (4.1) about the target’s

nominal trajectory using the resulting LTV system

ẋ(t) = Ã(t)x(t) + B̃u(t) + B̃δu(t) + q(t), (4.2)

where u , ofc is the chaser’s control input expressed in the target’s orbital Hill frame Fo.

Here, the linearized domain around the chief’s nominal trajectory, where the rendezvous

is performed, is denoted by X ⊆ Rn. In this work we consider a discrete time formulation

of (4.2) with sampling period ∆T , which is assumed to be small enough to not lose significant

behavior between samples, yielding

xk+1 = Akxk +Bk(uk + δuk) + qk, (4.3)
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where δuk ∼ N (E[δuk],Σ
u
k ) and qk ∼ N (E[qk],Σ

q
k) is the discrete-time process noise. The

stochastic discrete-time LTV model (4.3) is used as a prediction model for our controller and

for the reachable set calculations. For simplicity, in the active or controlled case, we combine

the process noise and input uncertainty, yielding

xk+1 = Akxk +Bkuk +wk (4.4a)

wk = Bkδu+ qk (4.4b)

where wk ∼ N (E[wk], Σwk ), E[wk] = BkE[δu] + E[qk] and Σwk = Σqk + Σuk . In this work, we

assume E[δuk] = 0 and E[wk] = 0. The relative state covariance or uncertainty at step k is

denoted Σxk , and depends on prior state, control, and process noise. This is used for future

covariance propagation using the Kalman recursion

Σxk+1|t = Aj|kΣ
x
j|kA

T
j|k +Bj|kΣ

u
j|kB

T
j|k + Σqj|k (4.5)

= Aj|kΣ
x
j|kA

T
j|k + Σwj|k,

because Σwj|k = Bj|kΣ
u
j|kB

T
j|k+Σqj|k. Though not shown here, a filter is used to get a-posteriori

mean and uncertainty estimates as well. This model allows us to combine uncertainty in

the target and chaser’s inertial states in a way that either both bodies or one of them can

be considered stochastic. That is, either both vehicles or one of them is modeled using

stochastic dynamics, resulting in a random relative state vector.

In this work, we assume that the target’s trajectory is well understood such that the

linearized relative dynamics are accurate to first order. This assumption is made because

any significant uncertainty in the target vehicle’s state or dynamics results in uncertainty

in the model matrices Aj|k and Bj|k. Hence, any error in the estimates of zk result in error

matrices of the form ∆Ak and ∆Bk, which can be absorbed by a new process noise model,

i.e., w̃k = wk + ∆Akxk + ∆Bk(uk + δuk). In this work, we assume that such errors are

small and that the a-priori knowledge of the system matrices are accurate to first-order.

Any deviations of the target from it’s nominal trajectory are captured through the nominal

process noise qk.
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4.2.1 Problem Statement

We consider the problem of driving a spacecraft safely to a target location while avoid-

ing a known region around the target, using minimum fuel. The maneuver is performed

using a receding horizon control framework where the relative state of the chaser is par-

tially observable through measurements. In order to account for unmodelled perturbations

as well as sensor limitations, the dynamics and sensor outputs are perturbed by stochastic

disturbances. For both the passive and active abort-safe scenarios, we construct over (outer)

approximations of the stochastically unsafe regions of state space, which include an assumed

form of dynamical uncertainty, i.e., process noise. Such regions are computed under an as-

sumed probability of collision. Avoidance of this region of state space guarantees that a

passive or active abort maneuver exists with a minimum amount of probability.

4.2.2 State Estimation and Cost

A model predictive, receding horizon, control framework is used with a planning horizon

Np. At every step k ∈ N of the receding horizon control, an estimate of the chaser’s random

state is available, which has distribution xk ∼ N (E[xk],Σ
x
k ). The mean and covariance are

updated by means of a Kalman filter, though the a-priori and a-posteriori estimates are not

explicitly differentiated in the notation. In the absence of measurement and process noise,

we obtain the deterministic abort-safe motion problem. The cost of the mission is denoted

J : XN × UN → R, is a function of the trajectory and controller. The cost of interest

here attempts to reduce fuel-consumption while having desirable closed-loop or coasting

properties.
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4.2.3 Thruster Configuration

As shown in chapter 3, for given a thruster configuration, we can construct a general

polytopic and compact admissible control set

U = {u ∈ R3 : Huu ≤ ku}, (4.6)

where 0 ∈ U . For simplicity, in this chapter the control vector is constrained only by lower

and upper bounds, ul and uu, respectively. Hence, ku in (4.57) is completely determined

by ul and uu. Let ku,i correspond to the admissible control set Ui. When accounting for

safety with respect to partial or total loss of thrust, it is sufficient to consider distinct ku,i

for different failure modes. The set of possible failure modes, FM is therefore given by

FM = {ku,1, . . . ,ku,nF
}, where nF = |FM| is the total number of failure modes under

consideration. We let Ui denote the admissible control set corresponding to failure mode

FMi ∈ FM. These failure modes are used to construct the set of states for which all

control actions lead to collision with a polytopic terminal set [84].

4.3 Stochastic Reachable Sets

The introduction of stochastic noise into the computation of the unsafe regions of

state space requires extending the work done in chapter 3. We characterize the abort-unsafe

regions of state-space that include dynamics model uncertainty in both the passive and

active abort scenarios. In the active abort-safety scenario, uncertainty in the control itself

impacts the safety of possible abort maneuvers. When characterizing the passive abort sets,

uncertainty in the control is not required as once the chaser ceases to engage its thrusters,

the uncertainty in the state is purely driven by the nominal process noise injected into the

system. For both cases, these sets define regions in which the probability of entering a final

set S is above some threshold, i.e., the probability of collision is lower-bounded.

In this chapter, we introduce some new notation that will simplify the descriptions of

the unsafe regions of state space. Most of the prior work computes controlled stochastic
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backwards reachable sets based on the following one-step controlled backwards reach set

[18, 40, 86, 97].

Definition 4.3.1 (One-step controlled backwards reach set). The one-step controlled back-

ward reachable from a set S ⊂ X , using admissible controls U , is defined as

R̃1,k(S,U) = {x ∈ X : ∃u ∈ U ,∃y ∈ S,y = Akx+Bku}. (4.7)

This defines all of the states that can reach a set S using a control action from U without

any noise.

Unlike the controlled reach set above, for abort-safety, we compute the set of states for

which all controls enter a set S. This set was introduced in chapter 3 as the RBRS.

Definition 4.3.2 (One-step RBRS). The one-step RBRS, i.e., abort-unsafe backward reach-

able set, is defined as

R1,k(S,U) = {x ∈ X : ∀u ∈ U ,∃y ∈ S,y = Akx+Bku}, (4.8)

which we have seen in (3.6), and yields states for which all control actions result in entrance

of S, without any noise.

4.3.1 Abort-unsafe Sets Given a Fixed Final Time

Before computing the unsafe stochastic sets for the generic LTV system (4.4a), we

characterize the regions of state space for which all controls enter a set S at a specific final

time tf or time-step N , with some probability. For simplicity, we use the acronym SBRS

to indicate the stochastic version of RBRS. We use the method in [39] to characterize such

regions. For the sake of the SBRS computation, the process noise at a step k is treated as a

disturbance belonging to a bounded set Wk, such that P{wk ∈ Wk} ≥ α. Because the noise

is assumed to be AWGN here, the disturbance set is constructed based on the super-level

sets of a Gaussian PDF. Thus, the setW is an α-probability ellipsoid and we recall that if w
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is AWGN, then wi and wj are independent ∀i, j. Treating the process noise as a disturbance

greatly simplifies the SBRS computation.

The set of states that enter S at a specific final time step N can be obtained from

dynamic programming [39]. In this case, it is assumed that the vehicle uses a stochastic and

Markov feedback control policy π ∈ M, where M is the set of Markov control policies and

M ⊆ U . Such policies are used to characterize the SBRS. Then, the probability that an

initial state x0 at index k = 0 reaches S in N steps using a Markov policy π ∈ M is given

by the probability measure Px0,π
x {xN ∈ S}.

In [39], the probability measure Px0,π
x {xN ∈ S} is maximized as the objective is to find

a control policy that has a high chance of satisfying the reachability goal. This results in

doing a conventional stochastic controlled reachability analysis, which leverages (4.7). In the

abort-safety case, we want to obtain regions of state space which enter S with some minimum

probability, which will leverage (4.8). Successful avoidance of these probabilistically unsafe

regions then ensures that an abort maneuver exists with a minimum probability. Such

probability thresholds are left as design variables that depend on the application of interest.

In summary, we seek to find the policy π that minimizes Px0,π
x {xN ∈ S}. We denote

the minimum probability of reaching set S under optimal policy π∗ as Px0,π∗
x {xN ∈ S}.

Using dynamic programming, the β super-level stochastic reachable set consists of all states

at a step k that satisfy the reachability objective, i.e., entering S at step N , with minimum

probability of β. The set of states at index k that enters S at N with at least β probability

is then given by

Lπ∗

k (β,S) = {xk ∈ X : Pxk,π∗

x {xN ∈ S} ≥ β}. (4.9)

These sets are theoretical in nature for high-dimensional systems due to the previously

mentioned computational intractability. Naturally, letting k = 0, yields the set of initial

states x0 that enters S at N , which is given by Lπ∗
0 (β,S).

Leveraging the prior work in [39, 97], we construct over-approximations of (4.9) to
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ensure safety in the “right direction” while ensuring computationally tractability. Here, we

over-approximate the sets at variable k ∈ Z[0,N ], where N represents the safety horizon.

In this work, we over-approximate the sets Lπ∗

k (β,S) with a set denoted Reach+
k (S, N).

The latter is constructed using set-based (Lagrangian) methods to characterize the over-

approximation of the true reach set [18, 39], which we used in chapter 3.

Definition 4.3.3 (SBRS). The SBRS over-approximation over the discrete-time interval

Z[0,N ] are given by the backwards recursion

Reach+
k (S, N) = X ∩R1,k

(
Reach+

k+1(S, N)⊕ (−Wk), U
)
, (4.10)

where Reach+
N(S, N) = S and k = N − 1, . . . , 0. Starting from the final time step, we work

our way to the initial time step. While (4.10) explicitly depends onWk and U , the dependence

is dropped for notational simplicity.

Proposition 4.3.1. The set Reach+
k (S, N) over-approximates the set Lπ∗

k (β,S), i.e., Lπ∗

k (β,S) ⊆

Reach+
k (S, N).

Proof. The proof follows from [39, Thm. 2]. Let xk ∈ X \ Reach+
k (S, N). We need to show

that

xk ∈ X \ Reach+
k (S, N) =⇒ xk ∈ X \ Lπ

∗

k (β,S). (4.11)

The set in (4.10) is given by

Reach+
k (S, N) = {x ∈ X : ∀j ∈ Z[k,N−1],∀uj ∈ U ,∃wj ∈ Wj, (4.12)

xj+1 = Ajxj +Bjuj +wj,xN ∈ S}

The admissible complement of (4.12) is

X \ Reach+
k (S, N) = {x ∈ X : ∃j ∈ Z[k,N−1],∃uj ∈ U , ∀wj ∈ Wj, (4.13)

xj+1 = Ajxj +Bjuj +wj,xN 6∈ S}
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This set defines the regions outside of the over-approximating SBRS. The set X \Lπ∗

k (β,S),

is given as

X \ Lπ∗

k (β,S) = {x ∈ X : inf
π∈M

Pxk,πx {xN ∈ S|xk} < β}, (4.14a)

= {x ∈ X : ∃π ∈M, Pxk,πx {xN ∈ S|xk} < β}, (4.14b)

= {x ∈ X : ∃π ∈M, Pxk,πx {xN /∈ S|xk} > 1− β}, (4.14c)

that is, X \ Lπ∗

k (β,S) is characterized by the set of states for which there exists at least one

Markov control (feedback) policy that does not enter the final set S in N steps, with at least

probability 1− β.

Let the the augmented disturbance vector w̄ ∈ W̄ = Wk × · · ·WN−1. Then, we

expand the term Pxk,πx {xN /∈ S|xk} in (4.14c) using the law of total probability to consider

disturbances sampled from inside and outside of W̄ in the analysis. As such, the probability

that a state x ∈ X \ Reach+
k (S, N) does not enter S at step N using a policy π ∈ M, is

given by

Pxk,πx {xN /∈ S|xk} = (4.15a)

Pxk,πx {xN /∈ S|xk, w̄ ∈ W̄} · Pw{w̄ ∈ W̄}+ Pxk,πx {xN /∈ S|xk, w̄ /∈ W̄} · Pw{w̄ /∈ W̄}

≥ Pxk,πx {xN /∈ S|xk, w̄ ∈ W̄} · Pw{w̄ ∈ W̄} = Pw{w̄ ∈ W̄}

because Pxk,πx {xN /∈ S|xk, w̄ ∈ W̄} = 1. We can truncate the augmented stochastic noise

vector using a probability threshold β, such that Pw{w̄ ∈ W̄} = 1− β, and thus,

Pxk,πx {xN /∈ S|xk ∈ X \ Reach+
k (S, N)} ≥ 1− β. (4.16)

This indicates that states that are outside Reach+
k (S, N) are less likely to enter S at step N

than states outside of Lπ∗

k (β,S, ), which completes the proof.

In summary, the probability that a maneuver can avoid entering S at N in the region

X \Reach+
k (S, N) is greater than or equal to 1− β. From (4.16), it follows that Pxk,πx {xN ∈
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S|xk ∈ X \ Reach+
k (S, N)} < β. As β −→ 0, we obtain a high degree of active abort-safety

with respect to a specific final step N .

Remark 6. If U = ∅, then the resulting sets characterize the passively unsafe states, i.e,

where passive abort-maneuvers are unsafe using probability level β.

For a linear dynamics model (4.4a), the over-approximated stochastic backwards reach-

able sets (4.10) are given by

R1,k

(
Reachk+1(S, N)⊕ (−Wk),U

)
= (4.17a)

{x ∈ X : ∀u ∈ U ,∃y ∈ Reachk+1(S, N)⊕ (−Wk),y −wk = Akx+Bku}

= {x ∈ X : Akx ∈ (Reachk+1(S, N)⊕ (−Wk))	BkU} (4.17b)

= X ∩
(
(Reachk+1(S, N)⊕ (−Wk))	BkU

)
Ak, (4.17c)

for all k = N − 1, . . . , 0. These define the sets of states that enter S under disturbances

contained in W̄ , no matter the admissible controls U , at step N . We enforce abort-safety

by maintaining the chaser outside of this over-approximated unsafe region of state space.

Because the sets in (4.17) are computed using U ⊃ M, this analysis holds for general

control policies, which include which include Markov feedback controllers.

Taking the union of these sets along an interval of interest yields the SBRSI.

Definition 4.3.4. The stochastic robust backwards reachable set over the discrete-time in-

terval Z[0,N ] (SBRSI) is the union of the j-step SBRS for j = {0, . . . , N − 1},

UnionReach+(S, N) =
N⋃
j=0

Reach+
j (S, N), (4.18)

which denotes the set of states xk = x̄, k ∈ Z[0,N ] for which the chaser will not be able

to avoid the target region S at time step N , regardless of the admissible control sequence

applied, with probability β.
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4.3.2 Abort-unsafe Sets for Varying Final Time

Above, we computed the sets of abort-unsafe states given a fixed final time step, that is

we found probabilistically unsafe regions that enter S at a specific future time step. Here, we

generalize this to varying final times due to the LTV nature of (4.4a), because a perturbed

target orbit is not in a periodic orbit. To this end, the LTV-SBRSI is the union of various

SBRSI for variable horizon N ∈ Z[0,kf ], where kf defines the full safety horizon of interest.

Thus, we introduce the set

UnionReachLTV(S, kf) =

kf⋃
N=0

UnionReach+(S, N), (4.19)

which provides the union for increasing time horizons so that safety is maintained with

respect to the LTV system. If only a single control set Ui is considered, then,

SafeSet = UnionReachLTV(S, kf)
c, (4.20)

and naturally, UnsafeSet , UnionReachLTV(S, kf).

As in chapter 3, to be safe with respect to various failure modes, the union of the LTV-

SBRSI has to be taken over various input sets. The abort-unsafe sets are constructed

from q input sets as

UnsafeSet =

q⋃
i=1

UnionReachLTV(S, kf)
∣∣
Ui
, (4.21)

where the correponding failure mode controls Ui are used. The safe set with respect to q

failure modes is then simply given by

SafeSet = UnionFailc. (4.22)

The above expressions for abort-unsafe are general and rely only on compactness of the

terminal set.
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4.3.3 Fixed Final Time Under-approximation of the SPBRS

It is of interest to compute under-approximations of the passive SBRS, such that, no

matter the disturbance setW affecting the system, the initial states contained in the under-

approximation will enter a desired target set, denoted G ⊂ X , with some probability. That

is, the states are likely to enter the desired set, regardless of the disturbances affecting the

system.

Definition 4.3.5. Given xk+1 = Akxk + Bkuk and final time step N , the j-step under-

approximation of the passive SBRS from a goal set G ⊂ X is

Reach−j (G, N) = {x ∈ X : ∀wj ∈ Wj, Ajx+wj ∈ Reach−j+1(G, N)} (4.23a)

=
(
Reach−j+1(G, N)} 	Wj

)
Aj (4.23b)

where j = {N − 1, . . . , 0}. Such sets yield states that have a likelihood of entering G in the

N-step horizon.

Definition 4.3.6. The inner-approximations of the passive SBRS over the discrete-time

interval Z[0,N ] (passive SBRSI) is the union

UnionCoast−(G, N) =
N⋃
j=0

Reach−j (G, N). (4.24)

If x0 ∈ Reach−0 (G, N), and the augmented disturbance set W̄ =W0× · · ·WN , then by

the law of total probability

P(xN ∈ S|x0) =

P(xN ∈ G|x0, w̄ ∈ W̄) · P(w̄ ∈ W̄) + P(xN ∈ G|x0, w̄ /∈ W̄) · P(w̄ /∈ W̄) (4.25a)

≥ P(xN ∈ G|x0, w̄ ∈ W̄) · P(w̄ ∈ W̄) (4.25b)

≥ P(w̄ ∈ W̄) = β, (4.25c)

because Reach−0 (·) was constructed using W̄ and thus, P(xN ∈ G|x0, w̄ ∈ W̄) = 1, ∀w̄ ∈ W̄ ,

xN ∈ G. As such, the higher the lower bound β, the higher the probability of naturally
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coasting into the set G. As the set W̄ gets larger, the passive SBRS inner approximations

become “smaller” and thus the odds of entering G under natural dynamics are higher.

4.3.4 Over-Approximation of LTV Abort-Unsafe Sets

In general, a large number of sets characterize the union in UnionReachLTV(S, kf).

For a single control mode U , the number of abort-unsafe ns throughout an N -step horizon

is at most the sum of consecutive integers

ns,max =
N(N + 1)

2
. (4.26)

In the passive case, ns = ns,max, while in the active case, ns ≤ ns,max due to the Pontryagin

difference. In chapter 3 and [84] we used ` nearby sets to compute a local convex constraint,

but this still requires computing ns QPs at every step in the MPC horizon to understand

what unsafe regions are near the predicted state. Hence, the number of sets ns strongly

affects the computational tractability of the online approach, i.e., as N increases significantly,

maintaining safety becomes intractable.

We briefly discuss a method used to over-approximate the number of passive sets

such that only N + 1 sets are needed to cover UnionReachLTV(S,U), greatly reducing the

computational load for online separation of a vehicle from the unsafe regions of state space.

The proposed algorithm applies generally but is most accurate for cases where the dynamics

matrix Ai ≈ Aj.

In an N-step horizon, the j-steps SBRS are computedN−j times. We over-approximate

the j-steps SBRS with a single set using support functions. The result is a single set

Reach#
j ⊇ ∪jReach+

j (S, N − j) that over-approximates the relevant j-steps SBRS. This

allows us to cover UnionReachLTV(S, kf) with N + 1 sets.

Given a matrix H ∈ Rnr×n of direction vectors with nr rows, the over-approximation

is given by

Reach#
j =

nr⋂
i=1

{
[H]ix ≤ max

j∈Z[0,N ]

ρReach+
j (·)([H]i)

}
. (4.27)
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Then, we compute the over-approximation UnionReachLTV#(S, kf) = ∪Nj=0Reach#
j which

consists of N+1 sets that cover the unsafe region of state space. Naturally, for LTV systems,

UnionReachLTV#(S, kf) ⊃ UnionReachLTV(S, kf) while for LTI systems, the resulting sets

are identical, i.e., UnionReachLTV#(S, kf) ≡ UnionReachLTV(S, kf). Algorithm 2 shows

the logical flow of this over-approximation.

Algorithm 2 Support function-based over-approximations of UnionReachLTV for LTV
systems

1: Input: H,S,Wk,U , k = 0, . . . , N,
2: Output: UnionReachLTV#

3: repeat
4: For variable j, compute all j-step Reach+

j (S, N − j) using (4.17).

5: Compute Reach#
j by retaining maximum ρ(·)([H]i), i.e., solving (4.27).

6: until All j-step SBRS are computed for all k

4.4 Nonlinear Reachability: Linearization Error Compensation

Though the LTV dynamics model (4.3) is generally accurate in X , the accumulation

of the model errors due to linearization can compromise the safety of the system. We are

interested in compensating for such errors when characterizing UnSafeSet to ensure that

safety is maintained despite the neglected higher order terms in the dynamics linearization.

This is particularly important for the far-rendezvous portion of a mission, where in the event

of a failure, feedback can not be used to maintain safety. Essentially, the goal is to ensure

that the chaser is safe under the full nonlinear dynamics model (4.1).

Similarly, in the coasting scenario, we want to guarantee that the nonlinear system

enters the desired goal set at the final time. As will be shown, neglecting such errors can

result in the chaser missing the goal set G. In [71], forward reachable sets are computed

for generic nonlinear dynamical system by over-approximating the instantaneous Lagrange

remainder, which is the linearization error of the multivariate dynamics function, and treating

these errors as an input in a conventional linear reachability analysis. That is, the nonlinear
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problem is analyzed from the perspective of a linear one in addition to some “extra” input

that corresponds to the possible linearization errors.

In this work, we first specify a region of interest, namely X , which represents the allow-

able domain of the chaser. In this region, the worst-case linearization errors are estimated

for a chaser spacecraft in X , which is the case for rendezvous and other formation flying

missions. By first specifying the domain X , we can correctly over-approximate the lineariza-

tion error of interest, and then utilize the method in [71] to characterize the unsafe region

of state space.

We denote the solution to the state equation using nonlinear and linear dynamics under

a control signal u(t) for t ∈ [t0, tf ] as

xnl(t) = φnl(t;x0, t0,u(t)), t ∈ [t0, tf ] (4.28a)

xl(t) = φl(t;x0, t0,u(t)), t ∈ [t0, tf ] (4.28b)

and the error between the system models at t as

e(t) = xnl(t)− xl(t). (4.29)

Due to the affine control and disturbance in (4.1), the control and process noise do not

contribute to the linearization errors under this model. For each row i of the multivariate

dynamics function f̃(·), the Lagrange remainder represents the exact error, and as such

[ẋnl(t)]i = [A(t)]ix(t) + [B(t)]iu(t) + [w(t)]i + Li(x(t)), (4.30)

meaning the ith component of the dynamics belongs to a set made of the linear model and

the error term Li(t), which is given by the Lagrange remainder.

Definition 4.4.1. Let the continuous-time state and linearization point for (4.1) be x(t)

and xr(t), respectively. The Lagrange remainder, or linearization error, for basis component
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i at a state x is given by

Li(x) =
1

2
(x− xr)

T∂
2f̃i(ξ, z)

∂2x
(x− xr)

T (4.31)

=
1

2
xT∂

2f̃i(ξ, z)

∂2x
x (4.32)

where xr = 0n×1, ξ = γx, γ ∈ [0, 1].

Remark 7. Here, we linearize about the origin of the Hill frame, thus, xr(t) = 0n×1.

Generally, the point at which the remainder is exactly computed, ξ is unknown, and

hence has to be estimated. The state-space dynamical systems considered in this chapter

are such that the first n/2 dynamics are simply the velocities i.e. f̃i = vi, i = {x, y, z}.

Consequently, their Hessian matrices are zero-matrices, ∂2f̃i(ξ,zk)
∂2x

= 0n×n so that there is

no need to compute the Lagrange remainder for half of the Cartesian basis components of

interest.

To obtain a conservative estimate of the remainder, we follow the reasoning in [71],

where we seek to maximize the remainder’s norm Li(x) , ‖Li(x)‖ in the region X for each

basis component i at an instant in time t

Li(x
∗) = max

x,γ

∥∥∥∥1

2
xT∂

2f̃i(γx, z(t))

∂2x
x

∥∥∥∥, (4.33)

s.t. x ∈ X , γ ∈ [0, 1],

which is bounded by

0 ≤ Li(x
∗) ≤ 1

2
‖x∗‖

∥∥∥∥∂2f̃i(γx
∗, z(t))

∂2x

∥∥∥∥‖x∗‖, (4.34a)

Lui (x) =
1

2
‖x∗‖

∥∥∥∥∂2f̃i(γx
∗, z(t))

∂2x

∥∥∥∥‖x∗‖. (4.34b)

Because the continuous-time nonlinear dynamics are linearized and then discretized with

sampling period ∆T and the Lagrange remainder over-approximation only holds at an in-

stantaneous time t, we require an over-approximation L̃i of Lagrange remainder Li(x(t))
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over an interval of time τ ∈ [tk, tk + ∆T ], i.e,

Lui (x(τ)) ≤ L̃i, ∀τ ∈ [tk, tk + ∆T ] (4.35)

Such an over-approximation of the Lagrange remainder in the interval of interest in (4.35)

can be found numerically. Then, we can obtain a vector of worst-case linearization errors

L̄k =

[
L̃4(tk) L̃5(tk) L̃6(tk)

]T
. These errors are used to create a fictitious disturbance set

Ek which can be incorporated into the linear reachability analysis to make claims about the

nonlinear system. The over-approximating error set in interval [tk, tk+1] is constructed using

Ek = {y ∈ Rm : Hey ≤ ke} (4.36)

where, He = [Im,−Im]T and ke = [L̄T
k , L̄

T
k ]T.

Finally, as in [71], the over-approximating linearization error set Ek at tk is incorporated

as a known disturbance on the original linear reachability analysis. As such, the nonlinear

reachable states are related to the linear ones by

xnl(tk+1) ∈ {Akx+Bk(u+ ek)}, ek ∈ Ek (4.37a)

xnl(tk+1) ∈ {xl(tk+1)} ⊕BkEk, (4.37b)

where BkEk is the error disturbance mapped into the state space. Here, provided the linear

and nonlinear trajectories remain in X , so that the errors are correctly accounted for, the

reachable states of the nonlinear system are correctly captured. No guarantees can be made

if the state leaves X as the linearization errors are then unaccounted for.

4.4.1 Over-Approximation of the Nonlinear Abort-Unsafe Sets

In the absence of stochastic noise, treating the linearization error as disturbance can

result in having to perform facet and vertex enumeration, due to the Minkowski sum, which

is computationally not desirable [86, 89]. Instead, we again use support functions in the
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backwards recursion to compute an over-approximation of the passive and active abort-

unsafe sets of the deterministic nonlinear system.

Definition 4.4.2. The N-step over-approximation of the nonlinear RBRS from a set S ⊂ X

is given by

Reachnl,+
k (S, N) = {x ∈ X : ∀u ∈ U , ∃ek ∈ Ek, Akx+Bku+ ek ∈ Reach+

k+1(S, N)}

=
((

Reachnl,+
k+1(S, N)} ⊕ (−Ek)

)
	 U

)
Ak (4.38a)

where again Reachnl,+
N (S, N) = S and k = {N − 1, . . . , 0}.

Figure 4.1 shows how the PBRS from a set S that include the linearization errors

are larger than the ones obtained through the nominal linear analysis. Here, the sets are

projected to the along-track and radial plane of the target’s Hill frame. The set S is shown

in red, in the center.

Figure 4.1: Projection of the inflated PBRS compensating for linearization errors and the
nominal linear PBRS in the x− y plane. The nonlinear sets over-approximate and envelop
the linear ones.
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4.4.2 Combined Linearization Error and Process Noise

Generally, because the true dynamics of the system are nonlinear, it is difficult to assert

probabilistic statements about the safety of the stochastic nonlinear system. A nonlinear

transformation of a random vector is required when propagating the current PDF of the

chaser’s state forward or backward in time, thus a PDF that is initially Gaussian will no

longer remain so. However, because the linearization errors are small, the chaser’s estimated

PDF in X is well-approximated by a Gaussian distribution, despite the linearization errors.

We briefly discuss a couple of methods that satisfy the probabilistic safety constraints

we desire for the original nonlinear system. First, we naively assume the linearization errors

have negligible impact on the chaser’s PDF, that is, the nonlinearities do not affect the PDF

propagation. The second method incorporates the linearization errors as additional process

noise to the stochastic linear model. These methods provide good approximations for the

nonlinear system but have no guarantees due to the issue raised above.

Due to linearity, the linearization errors can be incorporated by modifying the distur-

bance setWk. We define a set W̃k ,Wk⊕Ek that accounts for both stochastic disturbances

and linearization disturbances in the original reachability analysis. Let w̃k = wk +ek, wk ∈

Wk, ek ∈ Ek =⇒ w̃ ∈ W̃k =Wk ⊕ Ek, where

P{w̃k ∈ W̃k} = P{wk + ek ∈ W̃k}, (4.39)

= P{wk ∈ Wk}, (4.40)

because the linearization error is treated as a deterministic disturbance and stochasticity

enters through Wk. Then, to be safe with respect to both random noise and linearization

errors, we avoid the sets Reachnl,+
k (S, N) computed with the new disturbance sets such that

Pxk,πx {xN /∈ S|x0 ∈ X \ Reachnl,+
k (S, N)} ≥ 1 − β. Similarly, we can under-approximate

the passive backwards reachable set by replacing Wj in (4.23b) with W̃j. The tightening

effect of the linearization error compensation compared to the nominal deterministic coasting

sets is clear in Figure 4.2, where in the nominal case some trajectories miss the goal set G
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altogether.

An alternative method for compensation of the linearization errors is to model the

linear process noise based on the linearization errors. Specifically, the linearization error

can be modeled as a random vector with an assumed distribution, e.g., ek ∼ N (0,Σe
k) with

covariance

Σe
k = γdiag([L̃2

4, L̃
2
5, L̃

2
6]), (4.41)

such that the support of the corresponding probability ellipsoid sufficiently captures the

linearization error. Then, the expected value of the state is

E[xj+1|k] = E[Aj|kxj|k +Bj|kuj|k +wj|k +Bj|kej|k], (4.42a)

E[xj+1|k] = Aj|kE[xj|k] +Bj|kE[uj|k], (4.42b)

and the state uncertainty is

Σ̃xj+1|k = Aj|kΣ
x
j|kA

T
j|k +Bj|k(Σ

u
j|k + Σej|k)B

T
j|k + Σqj|k, (4.43)

which accounts for control uncertainty, process noise, and linearization errors in the system.

By modeling the process noise in this way, we lose theoretical guarantees about the nonlinear

reachability of the system. However, in practice, the process noise can be appropriately

tuned such that the support of the noise sufficiently captures the linearization errors as well

as alternative sources of process noise. Another benefit of this approach, is that we do not

have to compute the SBRS as if an input was acting on the system. Doing so results in less

conservatism compared to modelling it as an explicit input, as shown in Figures 4.3-4.4. In

these figures, the stochastic forward reachable sets from an initial condition in the positive

along-track direction are computed using the two linearization error compensation methods.

It is clear that adding the linearization error into the process noise results in much less

conservatism, the validity of which is confirmed in Figure 4.5. Figure 4.5 shows, in black,

states that are propagated using the nonlinear dynamics with AWGN, which remain inside

the projected confidence ellipsoids calculated using (4.43).
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Figure 4.2: Initial states, shown by the green and blue squares, that enter and miss the desired
goal set with stochastic coasting arcs relative to a target in LEO. In blue: trajectories that do
not compensate for linearization error and process noise and miss the goal set Gf . In green,
trajectories that are robust to noise and linearization error and enter Gf . The trajectories
are for a time-horizon of tf − t0 = 50 min., roughly half an orbital period of a target in LEO.
Safe initial states not considered here.
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Figure 4.3: Comparison of the stochastic forward reachable sets when the linearization er-
ror is incorporated as an additive disturbance vs. as process noise to the nominal model.
Propagation time is 40 min, about a third of the target’s orbital period.

(a) In blue, the stochastic passive forward reach
sets from an initial condition using the additive
disturbance method. In black, the expected tra-
jectory is shown.

(b) In blue, the stochastic passive forward reach
sets assuming the linearization error is incorpo-
rated into the process noise. In black, the expected
trajectory is shown.
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Figure 4.4: Comparison of the nonlinear stochastic forward reachable set: additive distur-
bance or process noise over longer horizon. Propagation time is 80 minutes, about a third of
the target’s orbital period. After 80 minutes, the additive disturbance method shows that
the entire position subspace X is reachable.

(a) In blue, the stochastic passive forward reach
sets from an initial condition using the additive
disturbance method, which occupies the entire po-
sition subspace of X .

(b) In blue, the stochastic passive forward reach
sets assuming the linearization error is incorpo-
rated into the process noise. In black, the expected
trajectory is shown.
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Figure 4.5: Sample trajectories propagated forward in time using the nonlinear stochastic
model based on Σqk + Σek. All trajectories lie well within the 0.95 confidence ellipsoids, thus,
linearization erros can be incorporated as process noise.
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4.5 Safe Coasting Arcs

Section 4.3.3 introduced how under-approximations of the stochastic passive backwards

reachable sets are obtained. We call such sets coasting sets for obvious reasons, we desire to

enter such a set to exploit the natural dynamics, leading to possible reductions in maneuver

∆V and thruster on-time. In summary, we define the goal set as G, and we desire that

the chaser arrives at G in at most Nc coasting steps, i.e., xNc ∈ G. For the deterministic

nonlinear case, it is sufficient to compute ∪Nc
k=0R1,k(G, Ek) to obtain the sets of states that

enter in Nc steps or at a specific final time step kc, no matter the linearization errors present.

The stochastic version is highlighted in (4.23b) and for simultaneous compensation of the

linearization errors and the process noise effects, we can again use sets such as W̃k =Wk⊕Ek
in the backwards recursion. In summary,

CoastingSets = ∪Nc
j=0Reach−j (G, Nc). (4.44)

The goal set is defined such that its intersection with S is empty, i.e., G ∩ S = ∅.

Naturally, the states in Reach−k (G, Nc) need not be passively safe. That is, for some δt > 0,

there may exist a state x(t) ∈ G such that x(t + δt) ∈ S or vice-versa, there may exist a

state x(t) ∈ S such that x(t+ δt) ∈ G. In general then,

G ∩ Reach+
k (S, Nc) 6= ∅ (4.45)

=⇒ Reach−k (G, Nc) ∩ Reach+
k (S, Nc) 6= ∅. (4.46)

Note that if Reach−k (G, Nc) ∩ Reach+
k (S, Nc) = ∅, then one can drive the chaser into

Reach−k (G, Nc) without passive safety constraints. Because this is not the case for spacecraft

dynamical problems, as (4.46) is in general non-empty, we formulate a method for the chaser

spacecraft to enter the passively safe portion of CoastingSets, denoted as SafeCoastingSets,

where

SafeCoastingSets = CoastingSets \ UnSafeSet. (4.47)
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However, for computational reasons, we wish to not compute this set difference explicitly.

SafeCoastingSets is made up of a union of passively safe coasting sets that arrive at G in Nc

steps or less. If the rendezvous approach is constrained to be passively safe for N steps, we

require Nc ≤ N for the resulting coasting-arc to have a safety-horizon N∆t.

Remark 8. Provided the Pontryagin difference
(
Reach−j+1(G, Nc)	Wj

)
6= ∅, which appears

in (4.23b), then there exists a coasting arc of at least j∆t seconds.

4.5.1 Linear Time-Varying Case

To obtain a successful coasting arc, we specify a fixed final coasting time kc at which

we seek to enter the goal set G. The coasting maneuver is planned such that the maximum

duration it can be is tm = tc− t0, where t0 is the initial time. We generally pick tc < tf such

that there is an additional amount of time after the coasting is complete in which the safety

of the vehicle can be guaranteed. Then, the resulting maximum number of coasting steps is

Nc = tm
∆T

. This is a time-dependent problem where the relative state of the chaser xNc−j has

to enter Reach−Nc−j(G, Nc) to ensure a successful coasting arc from an initial time stepNc−j to

a final time step of interest Nc. That is, if xNc−j /∈ Reach−Nc−j(G, Nc) there are no guarantees

that xNc ∈ G due to the LTV nature of the system because the coasting sets from two

different final times ki and kj, are not the same, i.e., Reach−j (G, ki) 6= Reach−j (G, kj), ∀ki, kj.

Thus, to enforce a coasting arc, we require

xj ∈ Reach−j (G, Nc), j ∈ {0, . . . , Nc − 1}. (4.48)

Because initially x0 6∈ Reach−0 (G, Nc), the constraints (4.48) are softened to avoid infeasibil-

ity. Once (4.48) is satisfied, the chaser has entered a coasting set for step j and then it will

passively coast to G in Nc − j steps with a probability associated with the construction of

the sets W̃ .
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4.5.2 Linear Time-Invariant Case

For a linear time-invariant (LTI) system, there is additional flexibility in designing a

coasting arc from an initial time to a specified final time. Though the same method as in

section 4.5.1 is applicable, where a fixed final time is chosen, the LTI dynamics allow us to

relax the timing problem above, yielding a free final time method. That is, because Ak =

A, ∀k, given any two final times ki and kj, the coasting sets are identical, i.e., Reach−0 (G, ki) =

Reach−0 (G, kj),∀ki, kj. Thus, if xj ∈ Reach−0 (G, Nc), the chaser is guaranteed to enter the G

in Nc steps even though j 6= kc−Nc, which is not the case for an LTV system. Though this

does not apply for eccentric orbits or general perturbed trajectories, it does apply to targets

in unperturbed circular orbits and may yield a good approximation for near circular target

orbits over short horizons.

4.6 Rendezvous Control

Next, we develop an abort-safe control policy that enforces the state to remain in

SafeSet. Specifically, we develop a SMPC policy that minimizes a cost function designed

based on performance metrics, while constraining the trajectory to remain within SafeSet,

and hence outside its complement (4.21). For the entire rendezvous mission, we consider two

controllers: the first one steers the spacecraft from the initial position towards the target

while enforcing passive safety and exploiting coasting arcs. The second controller is engaged

when the spacecraft enters the final approach corridor while enforcing active abort-safety.

Both controllers are implemented using SMPC, where the only the imposed constraints are

changed.

Because the SMPC prediction model used is LTV, it does not capture the effects of

any linearization errors. As such, additional process noise is given to the SMPC policy based

on (4.43) to further tighten any constraints of interest, e.g. safety and coasting constraints.

Alternatively, we could use nonlinear SMPC to obtain nonlinear state updates, but in doing
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so we may lose convergence guarantees.

4.6.1 Stochastic Optimal Control Problem

The non-coasting SMPC policy yields a constrained trajectory that is safe while driv-

ing the chaser to approach the target. Conversely, the coasting SMPC, appends the coasting

set constraints in the initial rendezvous phase to the non-coasting SMPC formulation. At

every time step k, the SMPC policy solves the finite horizon optimal control problem

min
Uk

E
[
F (xNp|k) +

Np−1∑
j=0

S(xj|k,uj|k)
]

(4.49a)

s.t. xj+1|k = E[Aj|kxj|k +Bj|kuj|k] (4.49b)

P{gk(xj|k,uj|k) ≤ 0} ≥ α (4.49c)

uj|k ∈ U(k) (4.49d)

x0|k = E[xk] (4.49e)

where Np � N is the prediction horizon length, the prediction model (4.49b) is (4.3),

(4.49c) is the chance constraint ensuring that collision can be averted in the presence of

propulsion system failures as well as the coasting constraint, if desired. U(k) is the input

set at time step k, which depends on the propulsion system condition, i.e., before or after a

failure. The MPC control law is given by

uk = κmpc(E[xk]) = u∗0|k, (4.50)

where U ∗k = (u∗0|k . . .u
∗
Np−1|k) is the optimizer of (4.49).

4.6.2 Cost Function

We design the stage and terminal cost in (4.49a) as

S(x,u) = x>Qx+ u>Ru, (4.51a)

F (x) = x>Mx, (4.51b)
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where the weight matrices Q = Q> ≥ 0, R = R> > 0, M = M> > 0 are selected to achieve

the desired performance, resulting in a linear quadratic MPC for which (4.49) is a quadratic

program (QP). The weight Q affects the primary objective, which is to approach the target,

i.e., reaching zero position and velocity. The weight R affects the secondary objective, which

is to minimize the total required propellant by minimizing the thrust. M is usually chosen

to obtain stability properties, although here the main focus is on ensuring safety in case

of a thruster failure. Non-quadratic cost functions can also be used as in [55], while still

achieving active safety due to the constraint (4.49c).

4.6.3 Constraints

Here, we briefly discuss the relevant constraints of the SMPC problem.

4.6.3.1 Safety

For both passive and active abort-safety, we impose these constraints on the state to

remain outside of the abort-unsafe sets UnionReachLTV(S, kf) (4.19) by computing a half-

space that excludes UnionReachLTV(S, kf) based on Result 1 in Chapter 3. Specifically,

a set of nearby polyhedra {P(Hi, ki)}`i=1 ⊂ UnionReachLTV(S, kf) are used to construct a

halfspace Ph(h, 1) = {x ∈ Rn : hTx ≤ 1} such that Ph(h, 1) ⊃ {P(HR̄i ,k
R̄
i )}`i=1. That is, a

half-space that contains a subset of UnionReachLTV(S, kf) is constructed and its complement

is used to maintain abort-safety. Given x̄ ∈ Rn, the required half-space normal h∗(x̄) is ob-

tained by solving a linear program [84, 86]. These half-space constraints are computed based

on the previously predicted state trajectory, given by the MPC policy. Let (x0|k−1 . . .xNp|k−1)

be the trajectory computed at time k− 1, we compute half-space normal vectors hj|k−1, and

use this at the next MPC iteration such that hT
j|k−1xj|k ≤ 1, ∀j = 0, . . . , Np. For passive

abort-safety, we use passive system to compute UnionReachLTV(S, kf) while we use the

active ones for active abort-safety.
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4.6.3.2 Navigation Uncertainty

When constructing the UnionReachLTV(·), initial state uncertainty is neglected, be-

cause only the effects of process noise are considered to compute the unsafe sets. In reality,

the chaser will have initial state uncertainty as a result of uncertain measurements and dy-

namics, i.e., x0 ∼ ψx(x) is a random vector. Incorporating state uncertainty for the general

controlled or linearization error compensated backwards reachable sets is difficult, but is

more easily done in the purely passive case. Incorporating initial state uncertainty results

in a predicted covariance of

Σ̃xj|k = Φ(j, k) Σxk Φ(j, k)T + Σxj|k, (4.52)

where Σxj|k is the component purely due to process noise. Moreover, because the state

uncertainty changes throughout the course of a maneuver, it is preferable to compensate for

any state uncertainty in a way that does not require a full re-computation of the unsafe or

coasting sets. This motivates the use of chance-constraints, which provides a measure of

confidence for the satisfaction of a constraint under state uncertainty. Thus, we arrive at

the following condition for safety

P{xj|k 6∈ UnionReachLTV(S, kf)} ≥ α (4.53a)

⇐= P{xj|k ∈ ∪i{pTi xj|k ≤ qi}} ≥ α (4.53b)

⇐= max
i

P{xj|k ∈ {pTi xj|k ≤ qi}} ≥ α (4.53c)

⇐⇒ P{xj|k ∈ {pTi xj|k ≤ qi}} ≥ α, ∃i (4.53d)

⇐⇒ Φ

(
qi − pTi E[xj|k]

(pTi Σxj|kpi
)
1
2

)
≥ α, ∃i (4.53e)

⇐⇒ pTi E[xj|k] ≤ qi − Φ−1
cdf (α) (pTi Σxj|kpi)

1
2 , ∃i (4.53f)

which suggests that we have a confidence α that the true chaser state satisfies the locally

convex safety constraints. Recall that when outside of the unsafe region of state space, a safe

abort will exist with a minimum probability of 1−β. Thus, we can claim to have α confidence



92

that we are safe with probability 1 − β. Additionally, if Σxj|k = 0n×n, i.e., we have no state

uncertainty, we recover the original safety constraints pTi E[xj|k] ≤ qi =⇒ pTi xj|k ≤ qi.

Generally, the chance-constraint pushes the chaser away from the unsafe region of state

space, reducing the effective probability of collision.

Remark 9. Computing the effective probability of collision from a given state using α and

1−β is not readily possible; the set UnionReachLTV itself contains states with varying degrees

of safety and without further analysis, the actual measure of safety is unclear.

4.6.3.3 Coasting Arcs

The coasting constraints throughout the horizon are given by (4.48). We let G =

P(Hg,kg) be a polytope such that the passive SBRS are given by polytopes. Given the

current time step k, the appropriate coasting set is targeted by enforcing

xj|k ∈ Reach−k+j(G, Nc), (4.54)

for j = 0, . . . , Np, which is a linear constraint of the form

Hcxj|k ≤ kc + 1sj|k (4.55)

where the slack variable sj|k is used to avoid infeasibility because x0 /∈ Reach−0 (G, Nc). The

cost function penalty on the slack variables sj|k minimizes the infeasibility, which results in

driving the chaser into the coasting set. If navigation or state uncertainty is included, then

as before, a chance-constraint is utilized such that

P{xj|k ∈ Reach−k+j(G, Nc)} ≥ α (4.56a)

⇐= P{xj|k ∈ ∩i{[Hc]
T
i xj|k ≤ [kc]i}} ≥ α (4.56b)

⇐⇒ Φ

(
[kc]i − [Hc]

T
i E[xj|k]

([Hc]Ti Σxj|k[Hc]i)
1
2

)
≥ α, i = 0, . . . , nr (4.56c)

⇐⇒ [Hc]
T
i E[xj|k] ≤ [kc]i − Φ−1

cdf(α)([Hc]
T
i Σxj|k[Hc]i)

1
2 , i = 0, . . . , nr, (4.56d)
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which suggests that we have α-confidence that the state xj|k ∈ the coasting set Reach−k+j(G, Nc).

4.6.3.4 Line-of-sight

A LOS constraint is added for the final active abort-safety phase which maintains the

chaser spacecraft within a corridor that leads to an assumed docking port on the target.

This constraint requires the state of the chaser to remain within a cone Alosxj|k ≤ blos.

Additionally, the goal set is constructed to be contained within the LOS cone, i.e., G ⊂

P(Alos, blos). Again, when incorporating state uncertainty, we utilize a chance-constraint.

4.6.3.5 Control

As shown in [84], for given a thruster configuration, we can construct a general polytopic

admissible control set at step k

U(k) = {u ∈ R3 : Huu ≤ ku}. (4.57)

The set U(k) can present nominal control or for example a back-up set of thrusters, which

will be assumed in the active safety phase of the approach.

4.6.3.6 Summary

Because the coasting-arc is useful when the chaser is far relative to the target, these

coasting constraints are only used in the initial rendezvous phase where passive safety is

required. Conversely, the LOS constraints are only necessary when the chaser is heading

towards a docking port. Thus, for the initial approach, we can write the passively safe path

constraints, gp as

gp(xj|k, sj|k) =

−hT
j|kxj|k + 1 + Φ−1

cdf (α) (pTi Σxj|kpi)
1
2

Hcxj|k − 1sj|k − kc − c̄

 ≤ 0.
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where, [c̄]i = Φ−1
cdf(α)([Hc]

T
i Σxj|k[Hc]i)

1
2 . When a coasting set is entered, control is switched

off, so the passively safe control policy is summarized by

uk =


κmpc(E[xk]) ∈ U , E[xk] /∈ Reach−k (G, Nc)

0 ∈ R3, E[xk] ∈ Reach−k (G, Nc)

(4.58)

For active safety, we replace the passive safety constraints with the abort-safety constraints.

Additionally, the coasting constraints are exchanged for the LOS cone, yielding

ga(xj|k) =

−hT
j|kxj|k + 1 + Φ−1

cdf (α) (pTi Σxj|kpi)
1
2

Alosxj|k − blos − l̄

 ≤ 0. (4.59)

where [l̄]i = Φ−1
cdf(α)([Alos]

T
i Σxj|k[Alos]i)

1
2 .

4.7 Results

Now, results pertaining to the safe SMPC, with and without coasting, are presented.

4.7.1 Stochastic Rendezvous with Near-Earth Targets

We consider a target in a near circular target orbit with et = 0.0001 and a semi-major

axis of 7578km. In this simulation, we include J2, lunar, and solar third body effects on

both the chaser and the target. We compute the passively unsafe regions of state space

with a safety horizon of 3 orbital periods. The deputy is initially in the negative along-track

direction from the target. In the loop, we update the relative states and PDF of the chaser

with respect to the target using a simple linear Kalman filter with noisy relative position

measurements.

Initially, passive safety is maintained with respect to a polytopic set S while a coasting

set is targeted. The developed method is compared to a non-coasting MPC policy in terms

of maneuver ∆V and input signal sparsity. The total ∆V of a maneuver is given by ∆V =∑N−1
i=0 ||B(·)ui|| · ∆T . In the simulations, a sampling time of ∆T = 30s is used, and the
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nominal admissible control set Un, i.e., without any loss of thrust, is such that uu = −ul =

13×1 · 50N. Passive safety is maintained with respect to a polytopic set of size where 1.5 ×

3.5× 1.5 km3 in the position subspace and we consider impact velocities of up to 100m/s.

4.7.1.1 No Coasting

First, we consider the case where the safe SMPC method is used. Here, the chance-

constraints are used to ensure the chaser does not enter the passively unsafe regions of state

space. The resulting approach is visible in Figure 4.6. The expected states along the approach

trajectory are sampled and propagated forward passively to confirm passive safety, which is

clear because none of the trajectories enter S, shown in red. In Figure 4.7, samples are taken

from the relative state’s distribution at a particular time index and propagated forward in

time, yielding a “tube” shown in black. None of these samples enter S, which indicates

the chance-constraint is working as designed and expected. For the chosen parameters, this

SMPC uses a total maneuver ∆V = 27.7463 m/s. The expected relative position, velocities,

and corresponding control signals are given in Figure 4.8.

Figure 4.6: Passively safe rendezvous without a coasting arc. The expected SMPC trajectory
is shown in blue while the expected passive failure trajectories are shown in black.
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Figure 4.7: Passively safe rendezvous without a coasting arc. The expected MPC trajectory
is shown in blue. In black, random samples at ti from N (E[xi],Σ

x
i ). The samples are from

a 0.99 confidence ellipsoid around the mean.

Figure 4.8: Relative position, velocity, and control trajectories for a passively safe non-
coasting rendezvous maneuver.
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4.7.2 Passively safe coasting

Next, we consider the case where the coasting safe SMPC method is used to obtain

coasting arc of a quarter period in duration. Here, the chance-constraints are used to ensure

the chaser does not enter the passively unsafe regions while simultaneously targeting the

interior regions of the coasting sets of interest. Once inside the coasting set, the chaser turns

off it’s thrusters and coasts into G. The geometry of interest is shown in Figure 4.9. The goal

set G is an enlarged version of the approach polytope S. This allows for the SMPC to consider

multiple approach locations around the target. The resulting approach is visible in Figure

4.9, where the expected states along the approach are sampled and propagated forward

passively to confirm passive safety, which is clear because none of the trajectories enter S.

After only three steps, the chaser enters a coasting set and arrives at G approximately a

quarter period later, as designed. In Figure 4.10, samples are taken from the relative state’s

distribution at the third index, after shutting off the thursters, and propagated forward in

time. None of these samples enter S, which indicates the chance-constraint is working as

designed and expected, i.e., passive safety is maintained while the goal set is reached even

when subjected to unmodeled accelerations (process noise). Figure 4.11 shows the expected

relative position, velocity, and control of the chaser for the rendezvous approach, where the

initial short burn required at the beginning is visible. This maneuver saturates the controller

at 50N . Then, after entering the coasting set, the thrusters are disengaged. This solution

has a total maneuver ∆V = 3.7061 m/s, which is clearly much more fuel-efficient than the

conventional safe SMPC method.

4.7.3 Active Safety

The active abort-safety scenario considered here is one where the chaser is assumed

to start in the center of an approach corridor in the positive along-track direction from

the target, as is frequently done in current missions [8]. The corrider is given by a LOS
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Figure 4.9: Safe rendezvous with a coasting arc. The expected SMPC trajectory is shown
in blue while the expected passive failure trajectories are shown in black.

Figure 4.10: Safe rendezvous with a coasting arc. The expected SMPC trajectory is shown
in blue. In black, random samples at ti from N (E[xi],Σ

x
i ). The samples are from a 0.99

confidence ellipsoid around the mean.
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Figure 4.11: Relative position, velocity, and control trajectories for a passively safe coasting
rendezvous maneuver.
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constraint, as shown in Figure 4.12. We aim to be active abort-safe with respect to a

polytopic set Pf , which is a box that tightly over-approximates an assumed target’s physical

size. The resulting abort-safe trajectory is the one shown in Figure 4.12, where the chaser

essentially cancels out deviations from the along-track direction, as designed with the SMPC

weights. The resulting relative states and control are visible in Figure 4.13. High penalties

have been placed on δx and δz deviations, the consequences of which are seen in Figure 4.13,

where the chaser predominantly moves along δy.

Figure 4.12: Actively-safe rendezvous in the LOS cone. The expected MPC trajectory is
shown in blue while the expected passive failure trajectories are shown in black.

At a point just over 50m from the surface of the avoidance region Pf , we assume

a failure occurs with the primary thruster system, such that the back-up thrusters must

perform an abort-maneuver which has not been planned for. By remaining inside the safe

region of state space, the SMPC is able to find an abort-maneuver that avoids the set Pf .

At this assumed failure time, samples are drawn from the chaser’s relative state distribution,

and aborts are simulated for each one to determine whether or not the chance-constraints

ensured that the majority of the chaser’s PDF remains in the safe part of state-space. As

is shown in Figure 4.14, all of the drawn samples successfully avoid the set Pf . The abort

maneuvers for each sample are pretty similar as shown in Figure 4.15.
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Figure 4.13: Positions, velocities, and control during an actively-safe rendezvous.
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Figure 4.14: Abort trajectories for various samples drawn from the posterior distribution at
an assumed failure time. The states are sampled from the 0.99 confidence ellipsoid of the
distribution. All states are in the abort-safe region of state space and thus miss the target,
represented by the red polytope Pf .

Figure 4.15: Abort control for all samples drawn from the posterior distribution at an
assumed failure time.
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4.7.4 Deterministic Lunar Gateway Rendezvous

We additionally demonstrate some results of the developed approach for a target in

NRHO, representing the Lunar Gateway, and a chaser spacecraft that aims to rendezvous

with the target. These results were first presented in [98]. The dynamics are assumed

to be deterministic and the full state is known. The deterministic case is studied here to

understand more about abort-safe rendezvous missions to NRHO targets. The equations of

motion of the target in the resulting near-stable quasi-periodic orbit are linearized, resulting

in a linear-time varying (LTV) system from which the passive-unsafe and abort-unsafe sets

are computed. Initially, when far from the target, passive-safety is maintained and coasting

arcs are exploited. Once the chaser enters a final approach corridor given by an LOS cone,

abort-safety with respect to an assumed failure mode is considered.

The target NRHO used in this work is constructed using a full ephemeris model and

dominant perturbations [99], which yields a more realistic, i.e., lower maintenance-energy,

orbit. The NRHO is defined by a 4 : 1 sidereal resonance, i.e., one for which the target com-

pletes four orbits for every lunar orbit around the system barycenter. The trajectory in the

Synodic frame is shown in Figure 4.16. For additional works related to orbit navigation and

maintenance about NRHO, see [99, 100], and references therein. At perilune, the dynamics

along the NRHO are the fastest and coupled in all three Cartesian directions, resulting in

non-intuitive coasting trajectories. At apolune, the dynamics are slow and the dynamics

resemble a double integrator. The passive BRS, when projected onto the position subspace,

using dynamics at apolune are shown in Figure 4.17. The double integrator-like dynamics

result in the sets being approximately “concentric.”

Initially, passive safety is maintained with respect to an ellipsoidal set Ef while a

coasting set is targeted. After coasting into the goal set, abort-safety is maintained with

respect to a polytopic set Pf . The developed method is compared to a non-coasting MPC

policy in terms of maneuver ∆V and input signal sparsity. In the simulations, ∆tMPC =
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Figure 4.16: Target NRHO quasi-periodic orbit with 4:1 sidereal resonance, as seen in the
Synodic frame Fs, with radius of perilune Rp = 4000km. Moon visible in gray, Earth
neglected for illustrative purposes.

Figure 4.17: Projection of the coasting sets (blue) and the passively unsafe sets (red) onto
the 3D position subspace for an NRHO target.
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<latexit sha1_base64="b/6Mp50kJU4Ocj3c9+yve6f3M/U=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiC11WsA9oh3InzbShmcyYZApl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU8epoqxBYxGrdoCaCS5Zw3AjWDtRDKNAsFYwus391pgpzWP5aCYJ8yMcSB5yisZKfjdCM6QosrtpL+yVK27VnYGsEm9BKrBAvVf+6vZjmkZMGipQ647nJsbPUBlOBZuWuqlmCdIRDljHUokR0342Cz0lZ1bpkzBW9klDZurvjQwjrSdRYCfzkHrZy8X/vE5qwms/4zJJDZN0fihMBTExyRsgfa4YNWJiCVLFbVZCh6iQGttTyZbgLX95lTQvqp5b9R4uK7WbRR1FOIFTOAcPrqAG91CHBlB4gmd4hTdn7Lw4787HfLTgLHaO4Q+czx/3SpI2</latexit><latexit sha1_base64="b/6Mp50kJU4Ocj3c9+yve6f3M/U=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiC11WsA9oh3InzbShmcyYZApl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU8epoqxBYxGrdoCaCS5Zw3AjWDtRDKNAsFYwus391pgpzWP5aCYJ8yMcSB5yisZKfjdCM6QosrtpL+yVK27VnYGsEm9BKrBAvVf+6vZjmkZMGipQ647nJsbPUBlOBZuWuqlmCdIRDljHUokR0342Cz0lZ1bpkzBW9klDZurvjQwjrSdRYCfzkHrZy8X/vE5qwms/4zJJDZN0fihMBTExyRsgfa4YNWJiCVLFbVZCh6iQGttTyZbgLX95lTQvqp5b9R4uK7WbRR1FOIFTOAcPrqAG91CHBlB4gmd4hTdn7Lw4787HfLTgLHaO4Q+czx/3SpI2</latexit><latexit sha1_base64="b/6Mp50kJU4Ocj3c9+yve6f3M/U=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiC11WsA9oh3InzbShmcyYZApl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU8epoqxBYxGrdoCaCS5Zw3AjWDtRDKNAsFYwus391pgpzWP5aCYJ8yMcSB5yisZKfjdCM6QosrtpL+yVK27VnYGsEm9BKrBAvVf+6vZjmkZMGipQ647nJsbPUBlOBZuWuqlmCdIRDljHUokR0342Cz0lZ1bpkzBW9klDZurvjQwjrSdRYCfzkHrZy8X/vE5qwms/4zJJDZN0fihMBTExyRsgfa4YNWJiCVLFbVZCh6iQGttTyZbgLX95lTQvqp5b9R4uK7WbRR1FOIFTOAcPrqAG91CHBlB4gmd4hTdn7Lw4787HfLTgLHaO4Q+czx/3SpI2</latexit><latexit sha1_base64="b/6Mp50kJU4Ocj3c9+yve6f3M/U=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiC11WsA9oh3InzbShmcyYZApl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU8epoqxBYxGrdoCaCS5Zw3AjWDtRDKNAsFYwus391pgpzWP5aCYJ8yMcSB5yisZKfjdCM6QosrtpL+yVK27VnYGsEm9BKrBAvVf+6vZjmkZMGipQ647nJsbPUBlOBZuWuqlmCdIRDljHUokR0342Cz0lZ1bpkzBW9klDZurvjQwjrSdRYCfzkHrZy8X/vE5qwms/4zJJDZN0fihMBTExyRsgfa4YNWJiCVLFbVZCh6iQGttTyZbgLX95lTQvqp5b9R4uK7WbRR1FOIFTOAcPrqAG91CHBlB4gmd4hTdn7Lw4787HfLTgLHaO4Q+czx/3SpI2</latexit>
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∆tRBRS = 30s, and the nominal admissible control set Un, i.e., without any loss of thrust, is

such that uu = −ul = 1 · 30N. Passive safety is maintained with respect to an ellipsoidal

set where P = diag(

[
22 · 11×3 0.12 · 11×3

]T
), i.e., an ellipsoid with position and velocity of

major-axes of 2km and 0.100km/s, respectively. The goal set G is a box with ±1.5km in

the positions and ±5m/s in velocities. The coasting maneuver is tm = 6 hours. The initial

condition is randomly sampled from the safe region of state space and is also outside of the

computed coasting sets. The initial conditions are shown by red marks in the subsequent

plots, the projection of the goal set G onto the position subspace is shown as a green polytope,

while the LOS cone, which is a superset of the goal set G, is shown in light blue.

4.7.4.1 Passive Abort-Safety at Perilune

The resulting approach trajectories are shown in Figure 4.18, the solution without

coasting in red, and the solution with coasting arc in blue. The corresponding control signals

are shown in Figures 4.19a-4.19b. For the case with coasting arc, only two input steps are

required to enter a nearby coasting set. This results in an impulse-like input as shown in

Figure 4.19a, leading the chaser into a coasting arc after two discrete-time steps. The states

and entire passively safe control signal for the duration of the coasting arc are visible in

Figure 4.20. The resulting trajectory is almost entirely driven by the natural dynamics

and the chaser enters G with an approach velocity well below the designed approach velocity

limits. Moreover, Figure 4.21 shows samples along the controlled-arc of the maneuver, which

are propagated naturally for the considered safety-horizon, to show that the chaser is indeed

passively safe. Once the chaser has entered a coasting-arc in a safe manner, the coasting-arc

will also be safe, see the trajectory of Figure 4.21 that enters G, shown in green. Conversely,

Figure 4.19b shows the resulting control signal for the non-coasting MPC solution. The

resulting maneuver length is much shorter; it takes roughly 1.2 hours to enter a bounding

box around the Ef with control or thrust being required at all times. The benefit of the

design introduced here is clear as the coasting-arc safe MPC gives ∆V = 2.657m/s, while
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Figure 4.18: In red, the MPC solution without a coasting arc while, in blue, the MPC with
a coasting arc. Both are passively safe.
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Figure 4.19: Comparison of the safe MPC input signals.
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(a) Safe control signal with coasting arcs; only 0.2 hours shown out of the almost 10 hour signal.
Resulting ∆V = 2.657 m/s.
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(b) Safe control signal without coasting arcs. Resulting ∆V = 9.6914 m/s.
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the standard safe MPC approach gives ∆V = 9.6914m/s, yielding a 72.5% reduction in fuel

consumption. In addition, the coasting-arc solution has a control signal that is much sparser

in time, which is preferable for spacecraft thruster management to reduce propulsion system

failures.

For the standard MPC to obtain a trajectory similar to the one with coasting arc, an

extremely large prediction-horizon Np would have to be considered. This would come at the

cost of computation as the entire QP-MPC would be much larger and the safety constraints

convexification will also involve many more steps. Thus, the coasting-arc MPC that can

utilize much shorter Np seems much more practical for on-board use.

4.7.5 Passive Abort-Safety at Apolune

At apolune, the state transition matrix is close to the identity and control heavily

dominates the dynamics. The resulting coasting trajectory and control signal are shown in

Figures 4.22-4.23, respectively. In this scenario, tm = 6 hours. The coasting-arc consists of

near straight-line motion as seen in Figure 4.22. At apolune, as a consequence of the state

transition and control effect matrices, rendezvous approaches are likely safe as long as the

relative velocity direction does not point towards S. This phenomena is shown in Figure

4.22. If G is placed between the given initial condition and Ef , passive-safety would only be

possible if the chaser did not approach directly from +δy. Based on the simulations above,

a natural question to pose is where a spacecraft mission should rendezvous with the lunar

Gateway. Typically, the chaser is injected into the NRHO at apolune. This, combined with

the fact that that control dominates the slower dynamics suggests it is much simpler to

maintain safety at apolune, as the PBRS and RBRS are “smaller” compared to perilune.

4.7.6 Active abort-safety at Perilune

Once the spacecraft enters G, the abort-safety phase is initiated. Here, the chaser has

to remain outside of the RBRS, constructed with a hypothesized failure mode (additional
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Figure 4.20: The position, velocity, and control signal for the initial approach toward an
NRHO target with a roughly 6 hour long coasting arc.

0 1 2 3 4 5 6

-20

-10

0

10

0 1 2 3 4 5 6

-2

0

2

0 1 2 3 4 5 6

0

10

20

30

Figure 4.21: Demonstration of passive safety by sampling and propagating states (pre-
coasting) along the controlled portion. None enter the red avoidance set.
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Figure 4.22: A passively safe coasting arc when rendezvous occurs at apolune.

Figure 4.23: Safe control signal with coasting arcs. Only 0.2 hours out of 6 are shown.
Resulting ∆V = 1.3019 m/s.
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failures can be easily included), such that in the event of a failure, a feasible abort maneuver

exists. The incorporation of the LOS constraints severely limits the feasible abort maneuvers

and approaches. As seen in Figure 4.24a, the LOS extends towards −δy. The assumed failure

mode is such that ux = 0, 0 ≤ uy ≤ 30N, 0 ≤ uz ≤ 30N, i.e., only positive y and z thrusts

are available after a failure time tfail. The chaser is able to avoid entering the RBRS while

getting close to the target as seen in Figure 4.24a and as such, a viable abort-maneuver exists

from tfail onwards. The resulting control signal is shown in Figure 4.24b. A small impulse is

applied to avoid collision.
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Figure 4.24: Comparison of the safe MPC input signals.

(a) Abort-safe approach from the initial condition in the goal set G to a state near the terminal
polytope Pf . Simulated abort in red.

(b) Control for the abort-safety phase and the simulated abort at tfail.
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Figure 4.25: The control sequence for the abort-safety phase of the approach. The safety-
constraints result in an unsteady control signal.
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Chapter 5

Passive Abort-Safe Spacecraft Motion using Orbital Element Differences

5.1 Introduction

In this chapter, we focus on the problem of passive safety but from a slightly different

perspective to the those discussed in chapters 3-4. In the prior chapters, we characterized

sets of states that passively drift into a convex set S using Cartesian coordinates. The

dynamics are used correspond to relative states as seen by a target frame, i.e., the sets are

computed using the relative equations of motion in the chief or target’s orbital Hill frame.

Here, we characterize the regions of state space that are passively unsafe with respect to

a chief in terms of a different coordinate description, namely, by means of orbital element

differences. The orbital elements provide inertial state information of the each spacecraft and

their difference yields a relative stat. The passive safety description remains the same but the

relative state vector is now different, as seen in Figure 5.1. While the same techniques and

algorithms discussed in chapters 3-4 could be used with these “new” BRS, in this chapter,

we focus on using such sets for passively safe formation and constellation design.

The limitation of this description is that both spacecraft must be orbiting a single

central body, while the Cartesian representation can be used for general dynamics models,

i.e., N-body problems. Moreover, by using osculating orbital elements, we can characterize

the passively unsafe regions of state space in this new coordinate space while also accounting

for known perturbations. However, in this chapter, we will focus on deriving the BRS

for the Keplerian dynamics model and the first-order J2-perturbed mean orbital element
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dynamics model. Such models are often used for preliminary design and in the J2-perturbed

mean orbital element representation, the secular effects of the J2-perturbation are captured

[69, 101, 102], which is particularly important for spacecraft in LEO.

For formation flying and constellation design applications, the inclusion of the J2 secu-

lar effects is vital as it greatly improves the accuracy of any preliminary trajectory solutions;

tracking or maintaining these “mean” trajectories also has the added benefit of reducing

station-keeping or trajectory regulation fuel consumption [69]. These considerations are ob-

viously important in the design of any orbit of interest. The usage of the “mean” element

dynamics is useful for controlling the secular drift between satellites in a formation, but does

not however, describe the actual motion between spacecraft, due to mapping errors. As such,

this model is mostly applicable for formation flying or constellation where highly-accurate

positional knowledge is not required. Such a model may not be suitable for active abort-safe

rendezvous, where the deputy and chief are closer to each other, but it is useful for station-

keeping, general analysis, and design of formations or constellations [103], as will be shown

later.

Figure 5.1: Illustration of a passively unsafe and passively safe state. In the former, natural
dynamics leads to entry of S while in the latter, the spacecraft naturally stays clear of S.

5.2 Models

In the general perturbed case, Gauss’ variational equations are used which maps the

effects of perturbations to the dynamics of each orbital element [69, 104]. In this chapter

though, we focus on using classical Keplerian and J2-perturbed mean orbital element dy-
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namics models to further analyze the BRS using models that capture some of the dominant

perturbations in LEO, where most of the mega-constellations will be [59]. The equations of

interest are available in Appendix A. Such equations are linearized about a reference, given

by the chief’s trajectory, and discretized for the computation of the BRS. We denote the

relative state in terms of the difference between the deputy and chief’s orbital elements, i.e.,

δœ = œd − œc. When mean orbital elements are used, we use the bar notation, so that

δœ̄ = œ̄d − œ̄c represents the difference in terms of mean orbital elements.

While in the Cartesian case the domain of interest is given by X ⊆ R6, when using

orbital elements, the domain is a strict subset of the 6-dimensional Euclidean space. This

is because of the presence of constrained angular quantities, and we denote this domain as

Xœ ⊂ R6. Typically, at least one orbital element is given as an angle that is constrained to

belong to a specific interval, e.g., mean anomaly M ∈ [0, 2π). The space Xœ then consists of

the Cartesian product of various intervals, which in general, depend on the orbital element

description used, e.g., Keplerian, semi-singular, equinoctial, etc. Since we are considering

near-Earth applications, that is, none parabolic and hyperbolic orbits, we constrain the

osculating eccentricity and semi-major axis by e < 1 and 0 < a <∞, respectively.

5.2.1 Keplerian Dynamics

Suppose the following osculating orbital elements are chosen œ = [n, e, i,Ω, ω,M ]T.

The relative dynamics are then simply given by δœ̇ = [01×(n−1), δn]T, where [69]

δn ≈ −3

2

√
µ

a5
c

δa, (5.1)

and the corresponding plant matrix is

A(t) =

0n−1×1 0n−1×n−1

1 01×n−1

 , (5.2)

which is an time invariant and nilpotent. Under this description, the state transition matrix

Φ(tk+1, tk) = eA(tk+1−tk) = I + A∆T , because A2 = 06×6, and ∆T = tk+1 − tk.
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5.2.2 J2-perturbed Mean Orbital Element Dynamics

A large part of the LEO region, where the majority of the upcoming mega-constellations

will be [59], is predominantly affected by J2 perturbations. It is convenient then to analyze

the “gross” motion of such orbits with mean orbital elements that capture the secular drift

due to J2 perturbations [69]. Using mean orbital elements and the mean J2 perturbations,

only Ω̄, ω̄, and M̄ change with time. Their rates of change are nonlinear functions of the other

mean elements ā, ē and ı̄. In [69], the nonlinear dynamics of the mean orbital elements are

linearized about a reference œ̄r, yielding a plant matrix [A(œ̄r)] that is LTI and nilpotent.

The linearized equations of motion in continuous time are δ ˙̄œ = [A(œr(t))]δœ̄. In discrete-

time we have the following dynamics

δœ̄k+1 = Φ(tk+1, tk)δœ̄k, (5.3a)

Φ(tk+1, tk) = e[A(œr(tk))]∆T = I6 + [A(œ̄r,k)]∆T, (5.3b)

where the dynamical plant matrix is

[A(œ̄r)] =

 03×3 03×3

[A21(œ̄r,k)] 03×3

 . (5.4)

The block matrix [A21(œ̄r,k)] is a matrix function of ār, ēr, ı̄r and is given in [69]. The

algorithm in [69, Appendix F] which retains the first-order J2 terms is used to map from

osculating to mean orbital elements and vice versa.

5.3 Coordinate Transformations

As in the preceding chapters, we utilize avoidance regions around the chief spacecraft

again which are defined by convex sets. Recall that S ⊂ X , which represents an avoidance

region around the chief and in the Cartesian space. It represents a set of relative positions

and impact velocities which the chaser has to avoid entering. Since the avoidance region of

interest is defined in X , this set has to be expressed in terms of orbital element differences
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some how. That is, the set itself has to be mapped from relative Cartesian space to orbital

element space.

In [69], an invertible linear mapping between relative states in the chief’s Hill frame

and orbit element differences is derived using semi-singular orbit elements. This orbital

element set is particularly useful when analyzing inclined near-circular orbits but suffers

from singularities when the chief’s orbit is equatorial, i.e., ic = 0. The linear mapping is

described by the matrix function [A(œc(t))] and transforms orbit element differences into

a Cartesian relative state vector expressed in the chief’s Hill frame, i.e., x = [A(œc(t)]δœ.

These types of linear mappings are particularly useful as the image or pre-image of a convex

under a linear mapping remains convex.

Without loss of generality, let g : Xœ × Xœ 7→ R6 be a mapping that given œd and

œo, yields a Cartesian relative state vector expressed in the chief’s orbital frame Fo. Such a

mapping is usually nonlinear and is given by the following nonlinear vector function

x = g(œd; œc). (5.5)

Note that this mapping is invertible, i.e., œd = g−1(x; œc). We can uniquely recover the

deputy’s orbital elements given the Cartesian relative state and knowledge of chief’s inertial

state. The deputy’s state in terms of orbit elements of the chief is given by œd = œc + δœ;

substituting this into (5.5) while performing a first-order approximation yields

x = g(œc + δœ; œc) (5.6a)

x = g(œc; œc) +
∂g(œc; œc)

∂δœ
δœ +O(δœ) (5.6b)

x ≈ g(œc; œc) +
∂g(œc; œc)

∂δœ
δœ (5.6c)

where g(œc; œc) = 0n×1, i.e., the relative state of the chief with respect to itself is zero. As

such, the first-order mapping is given by the Jacobian matrix

[G(œc)] ,
∂g(œc; œc)

∂δœ
. (5.7)
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As discussed earlier, such a matrix is provided in [69] for semi-singular elements. This

approach generalizes to all orbital element descriptions, including the ones of interest in this

Chapter provided the chief’s state is not near a singularity.

5.4 Passive Backwards Reachable Sets

We enforce passive safety by ensuring that the deputy remains outside of the passively

unsafe region of state space, that is, the region where natural dynamics results in the deputy

entering or “colliding” with S. The set S, when expressed in orbital element differences, is

clearly dependent on the chief’s state at any given time. As such, we slightly change the

notation compared to the prior chapters for the purposes of simplification. The set Sœ
k is

the S expressed in terms of orbital element differences δœ given the chief’s state œc,k at

index k. The subscript highlights the explicit dependency on time, that is, expressing S in

terms of δœ will yield different sets which depend on the chief’s state œc,k. Since the chief’s

trajectory is assumed to be known a-priori, we parameterize the set as a function of time.

We can now introduce the BRS computation using orbital element differences.

Definition 5.4.1 (Backwards Reachable Sets). Given a discrete-time dynamical system

δœk+1 = f(k, δœk), and final time step kf , the N-step backward reachable set Rb(N ;Sœ
kf

)

of Sœ
k ⊂ R6, is found using the backwards recursion

Rb(0;Sœ
kf

) = Sœ
kf
, (5.8a)

Rb(j;Sœ
kf

) = {δœk ∈ R6 : f(kf − j, δœk) ∈ Rb(j − 1;Sœ
kf

)}, j = {1, . . . , N}. (5.8b)

Here, the discrete-time dynamics function f(·) may in general be nonlinear or linear. In

the latter case, convexity of the BRS is preserved.

The function f(·) represents the relative dynamics of the deputy with respect to the

chief, which can be nonlinear and include perturbations. Such a nonlinear discrete-time

function can be obtained using various numerical quadratures. Alternatively, this dynamical
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function may also be a discrete-time version of the first-order approximation of the relative

Gauss’ variational equations with perturbations, linearized about the chief’s trajectory. In

this case, f(·) is given by a sequential state transition matrix, obtained by integrating a

perturbed Jacobian matrix, similar to that constructed in (A.13). The N -step BRS is the

set of initial conditions at time t0 = tf − N∆T from which the deputy will not be able to

avoid entering Sœ
k at time tf , or kf , under natural dynamics.

Definition 5.4.2 (Backwards Reachable Sets over an Interval). The backwards reachable set

over the discrete-time interval (BRSI) Z[k0,kf ], where k0 = kf −N , is the union of the j-step

BRS for j = {1, . . . , N},

R(N,Sœ
kf

) =
N⋃
j=0

Rb(j;Sœ
kf

). (5.9)

The BRSI denotes the set of states x̄ such that from xk = x̄, k ∈ Z[k0,kf ] the deputy

will enter the avoidance region around the chief, Sœ, at time step kf under natural dynamics.

Next, even if the target is in a periodic orbit, we must account for the LTV nature of

the linearized dynamics. To that end, we introduce the following sets.

Definition 5.4.3 (Periodic orbit-BRSI ). The periodic orbit-BRSI is the union of the BRSI

over Z[k0,kf ], where kf is varied along one orbit

X p
unsafe(N) =

2kp⋃
kf=kp+1

R(N,Sœ
kf

), (5.10)

and kp is the orbital period in time steps. This represents the sets of states that enter S in

N steps or less, no matter where the chief is in its periodic orbit.

In the general perturbed case, the chief’s orbit is no longer periodic, and thus we

introduce the following set.

Definition 5.4.4 (Non-periodic orbit-BRSI). If the the chief orbit is not periodic, then, the

non-periodic orbit-BRSI is the union over an interval Z[k0,kf ] is given by

X np
unsafe(N) =

N⋃
j=0

R(j;Sœ
k0+j). (5.11)
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The union is carried out for increasing final times so that safety is maintained with respect

to the LTV system over a safety-horizon of N steps from the given initial time step k0, i.e.,

the safety-horizon is N∆T from the assumed initial time.

As in chapter 3, when the linear dynamics model and a convex terminal set are used,

we are able to compute the BRS by performing simple linear-affine transformations of the

original terminal set.

Suppose that S ⊂ R6 represents a region in the 6-dimensional Euclidean space around

the chief. To first order, this set can be represented in terms of δœ by computing the

pre-image of S with respect to [G(œc)], that is, Sœ
k = S[G(œc,k)]

−1 or

Sœ
k = {δœ ∈ Xœ : δœ = [G(œc,k)]

−1x, x ∈ S}. (5.12)

Because œc,k is a function of time step, and is discrete in this work, we denote the set Sœ
k

as the set S expressed in δœ at time step k. Because (5.12) is a first-order approximation,

the set can be inflated to account for any errors in the mapping such that there exists a

set S̃œ
k ⊃ Sœ,nl

k , where Sœ,nl
k is the non-convex set obtained using the nonlinear coordinate

transformation. This set, is given by

Sδœ,nl
k = {δœ ∈ Xœ : δœ = g−1(x; œc,k), x ∈ S}. (5.13)

The inflation is done by quantifying the errors in the mapping, constructing an error set

E ⊂ R6, and letting S̃œ
k = Sœ

k ⊕ E.

If the terminal set S = {x ∈ R6 : Wx ≤ w}, then the set is equivalently expressed in

terms of δœ as

Sœ
k = {δœ ∈ Xœ : W [G(œc,k)]δœ ≤ w}, (5.14)

using the linear mapping. Evidently, the matrix function [G(œc,k] is a function of the

osculating orbital elements of the chief. As such, the set Sœ
k will vary depending on where

the chief is in its orbit, in both the unperturbed (Keplerian) and perturbed cases. These

“terminal” sets represent the set of δœ which impact with the chief at variable tf or kf .
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Figure 5.2: Illustration of the avoidance set S along the chief’s orbit at two ti and tj. The
set S is equivalent to two different sets in terms of δœ at different ti and tj.

Moreover, suppose one has the BRS expressed in terms of Cartesian Hill frame coordi-

nates, as obtained in chapter 3. The Cartesian j-step BRS Rb(j;S, kf) in terms of δœ, and

vice versa, is given by the inverse and affine linear maps

Rœ
b (j;Sœ

kf
) = Rb(j;S, kf)[G(œc(tf − j∆T )], (5.15a)

Rb(j;S, kf) = [G(œc(tf − j∆T )]Rœ
b (j;Sœ

kf
), (5.15b)

and as such, the sets (5.10) and (5.11) can be described in terms of δœ if the BRS are

computed using Cartesian coordinates and STM. However, as will be discussed later, because

there are angular quantities in Xœ, one must be careful when mapping the Cartesian sets

naively to Xœ.

5.5 Passive Reachability Analysis: Orbit Element Differences

For general nonlinear systems that are conservative in nature, the solution to the

discrete-time dynamics function f(k, δœk) can be represented by 6 constants of motion,

where one is time-varying [105]. The impact on the BRS computation is that only a single

variable is changing backwards or forwards in time, leaving n− 1 time-invariant quantities,

simplifying the BRS analysis and computation.

In the Cartesian backward reachable analysis done in [83, 84], the terminal set is not
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updated because the Cartesian relative equations of motion are used. Here, we are interested

in a set that is defined in the chief’s Hill frame expressed in terms of δœ.

For Keplerian dynamics, the chief’s orbit is periodic and thus [G(œc,k] is also periodic.

Let kp be the number of ∆T steps in a chief’s orbital period. Then,

[G(œc,k] = [G(œc,k+kp)], (5.16)

For the purposes of passive safety, we wish to characterize the unsafe regions in terms of δœ

around the chief. This is achieved by discretizing with sampling period ∆T , and evaluating

Sœ
k for k = 0, . . . , N , where N is the safety horizon of interest. Given a fixed initial time k0

and N = kf , we introduce the set

S̄ =
N⋃
i=1

Sœ
i =

N⋃
i=1

S[G(œc,i)], (5.17)

which consists of a union of terminal sets, representing all of the avoidance regions in the

safety horizon considered. The set S̃ captures all possible δœ along an interval of the possibly

perturbed chief’s orbit. The BRS using orbital element differences will be of the form

Rb(N ;Sœ
kf

) = Xœ ∩ Sœ
kf

Φ(tf , t0) (5.18a)

= Xœ ∩ Φ(tf , t0)−1Sœ
kf
, (5.18b)

that is, the sets are described by an affine or an inverse affine map using the state transition

matrix.

5.5.1 The Effect of the Modulo Operator

The angular orbital elements are defined within specific intervals of interest, e.g. [0, 2π)

in the anomaly angle case, which has important consequences for the BRS computations.

The admissible domain of the BRS is given by Xœ and therefore we take the intersection

of Rb(·) with Xœ to obtain the admissible reachable states. However, in some cases, the

dynamics of certain orbital element angles is one with constant rates, e.g., Keplerian or-

bital elements with mean anomaly or J2-perturbed mean orbital elements. The relative
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angles grow monotonically with time and then wrap around the domain of interest using the

modulo operator.

In such cases, the BRS will inevitably leave the admissible domain as more backwards

steps are taken, that is, Rb(·) ∩ Xœ 6= ∅. The part of the BRS that spills out of Xœ is

given by Rb(·) ∩ (Xœ)c. As will be shown later using some concrete examples, when this

occurs, the BRS is effectively split by the modulo operator into the union of convex regions.

Denote Xœ
+ = {δœ ∈ Xœ : [δœ]i ≥ 0, i = 1, . . . , n} as the positive side of the admissible

orbital element difference domain, while Xœ
− = {δœ ∈ Xœ : [δœ]i ≤ 0, i = 1, . . . , n} is the

negative side of the admissible domain. When the magnitude of the orbital element angles

are larger than the maximum allowable difference, e.g. larger then 2π for anomaly angles,

the BRS effectively cross into the inadmissible domain (Xœ)c. The j-step BRS at this point

need to be adjusted due to the effect of the modulo operator. We consider here the case

where the backwards analysis results in a single crossing into the inadmissible domain. In

this scenario, the corresponding BRS is given by given by

R̃b(j,Sœ
kf

) =

(
Rb(·)∩Xœ

)⋃((
Rb(·)∩Xœ

+

)
⊕{−ȳu}

)⋃((
Rb(·)∩Xœ

−
)
⊕{ȳl}

)
(5.19)

where ȳu, ȳl ∈ R6 are the necessary offsets to re-align the portion of the BRS that left Xœ

about the origin. That is, the BRS is the union of its original component in the admissible

domain and the regions affected by the modulo operator.

Remark 10. If the backwards time-step is sufficiently large, there can be multiple crossings

of this boundary and as such, the BRS is made of the union of many more convex sets.

Put differently using the vertex representation (V-rep) of the BRS, the single crossing

BRS is more simply understood because the modulo operator acts on elements of a vertex

(vector) as it is propagated backwards in time. The vertices that make up Sœ
k , denoted V (kf)

may have significantly different δa, which in turn results in different amounts of relative drift

between the vertices of the BRS and the chief itself. This naturally affects the propagation of
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vertices to the initial time, which is denoted V (k0). As such, different vertices will be affected

by the modulo operator at different times, resulting in the above-mentioned problem. The

vertex representation of the BRS after the modulo operator is given by

R̃b(j,Sœ
kf

) = conv(Vin) ∪ conv(V 1
out) ∪ conv(V 2

out), (5.20a)

Vin = {vi(t0) ∈ Xœ}nin
i=1, (5.20b)

V 1
out = {ṽj(t0) ∈ Xœ

+ }
n+
out
j=1 , (5.20c)

V 2
out = {ṽj(t0) ∈ Xœ

− }
nout−
j=1 , (5.20d)

ṽj(t0) = vj(t0) (mod z̄) (5.20e)

where nin, n+
out, n

−
out are the number of BRS vertices inside and outside of the admissible

domain Xœ along the positive and negative regions. The total number of vertices are nv =

nin + n+
out + n−out. Because of the intersection operation Rb(·) ∩ Xœ, the number of vertices

Vin will necessarily increase. The modulo operator is applied element-wise on vj(t0) using

the limits z̄, which depend on the orbital elements considered.

Remark 11. The resulting BRS is not simply the convex hull of the vertices after the modulo

operation is carried out because this operation does not preserve the convexity of the set.

An illustrative example considers Keplerian dynamics where an anomaly angle effec-

tively describes the relative state. When the anomaly difference is either more or less than

2π, the modulo operation is required. Beyond this point in time, one obtains states that

are unsafe in more than one relative period. A deputy state belonging to the BRS has

essentially wrapped around the chief’s orbit. Despite its proximity in state-space, it would

only enter S after more than one relative period. Given the sets S assumed in chapters 3-4

and a chief orbiting in LEO, the inadmissible domain is reached in just under 3 days.

In summary, given a sufficiently large backwards time-step, the BRS become non-

convex due to the modulo operator and are expressed as the union of the original admissible

BRS along with the re-centered component of the BRS that left the admissible domain. It is
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for this reason that polytopic sets may be of interest when computing the BRS using orbital

element differences as the intersection of a polytope with another yields yet another polytopic

set. In the ellipsoidal case, such a set would be difficult to express. In this thesis, we avoid

having to compute the non-convex effect of the modulo operator on the BRS using (5.19)

by considering scenarios that have not yet reached this point in time during the backwards

analysis, e.g., by limiting the relative mean motion of the spacecraft.

One of the benefits of using Cartesian coordinates for the BRS computations is that

this issue is avoided entirely.

5.5.2 Keplerian Dynamics and Orbital Elements

We provide the analytic BRS given a deputy and chief subject to Keplerian dynamics

whose states are expressed using Keplerian orbital elements. This results in only the mean

anomaly difference varying with time through the following relationship: δM = δn(t− t0) +

δM0, while all other orbit elements are time-invariant. For the orbit elements assumed above,

the N-step BRS at k0 = kf −N∆T is given by

Rb(N ;Sœ
kf

) = {δœ ∈ Xœ : HΦ(tf , t0)δœ ≤ k} (5.21a)

= {δœ ∈ Xœ : (H +HA(tf − t0))δœ ≤ k}, (5.21b)

where H = W [G(œc,kf )] and the nilpotent matrix A “isolates” the nth column of H, denoted

hn, yielding HA(tf − t0) = [hn(tf − t0), 0n×(n−1)]. Therefore,

Rb(N ;Sœ
kf

) = {δœ ∈ Xœ : H̃δœ ≤ k}, (5.22a)

H̃ = H +

[
hn(tf − t0) 0n×(n−1)

]
. (5.22b)

The column vector hn and H are fixed and defined at the final time based on (5.14) from

which the polytopic BRS are acquired analytically. Similar properties can be derived for an

ellipsoidal terminal set S. This makes computation of the BRS particularly simple using δœ

as the only œ that is time-varying is the mean anomaly δM .
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However, as discussed in Section 5.5.1, care must be taken because δM ∈ [−2π, 2π).

Since δM cannot span the entire real number line, the modulus operator has to be incor-

porated into the set calculation. This eventually yields a non-convex representation of the

BRS at a particular time step as illustrated in Figure 5.4, which can be expressed as a union

of convex sets as seen in (5.19)-(5.20).

Suppose that H = [I6,−I6]T ∈ R12×6 in (5.21), such that,

Sœ
k = {δœ ∈ Xœ : [I6,−I6]Tδœ ≤ k} (5.23)

then each element in δœ is bounded from below and above, as given by the rows [k]i.

Additionally, assume that the set Sœ
k is symmetric about the origin, that is, [k]i = [k]i+n.

Using the the Keplerian case, this amounts to 2n − 2 time-invariant constraints if œ =

[n, e, i,Ω, ω,M ]T. As such, the BRS polytope only has two inequalities that change as the

considered time-horizon (tf − t0) changes, namely, the ones corresponding to δM , given by

δn(tf − t0) + δM0 ≤ δMmax (5.24a)

δn(tf − t0) + δM0 ≥ δMmin. (5.24b)

These inequalities characterize the BRS when the modulo operator is not required. This

constrains the initial δM0 to be within a certain interval while the mean motion difference

δn is itself constrained by δnmin ≤ δn0 ≤ δnmax. Because the terminal set is centrally

symmetric, we have δnmin = −δnmax and δMmin = −δMmax. Here, δn0 is a variable that is

bounded from below and above, but for every δn, there’s a specific interval constraining the

unsafe δM0. It is clear that as δn0 −→ 0, the time it takes for the modulo operator to be

used increases.

The outer-limits or maximal δM0 at any time are found by substituting the minimal

and maximal δn into (5.24), yielding

δM0 ≤ δMmax − δnmin(tf − t0) (5.25a)

δM0 ≥ δMmin − δnmax(tf − t0), (5.25b)
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since δnmin and δnmax maximize and minimize the upper and lower bounds, respectively.

These maximal bounds increase monotonically with the backwards time-horizon considered.

When |δM{max,min} − δn{min,max}(tf − t0)| ≥ 2π, the modulo operator is used, resulting in a

non-convex BRS.

Above, we assumed that Sœ
k was box-like. Even if it were not, any convex set S can be

over-approximated by a bounding box or hyper-rectangle B. As such, this property can be

leveraged to simplify the analysis of the BRS of Sœ
k . By using B ⊃ Sœ

k , we obtain a set of the

form in (5.23), defined by the shape-matrix H = [I6,−I6]T. By construction then, B yields a

measure of the maximum spread of the set Sœ
k in each δœ direction. In the Keplerian case,

B maximizes the quantities |δMmax|, |δMmin|, |δnmax|, |δnmin|. Then, the longest backwards

time-horizon that can be considered prior to the modulo operator taking effect on the BRS,

i.e., when |δM | ≥ 2π, is given by

tf − t0 =
2π −max(|δMmax|, |δMmin|)

max(|δnmax|, |δnmin|)
, (5.26)

and thus the time at which the modulo operation is needed is given by

tmod
0 , tf −

2π −max(|δMmax|, |δMmin|)
max(|δnmax|, |δnmin|)

. (5.27)

The number of backwards steps before the modulo operation is required is then

Nmod =
tf − tmod

0

∆T
. (5.28)

Figure 5.4 shows an illustration of the BRS splitting as a result of the modulo operator.

We let the time-invariant subspace of δœ be denoted by δœI . Here, δœI ∈ R5. The sets

are shown at different δœI for ease of illustration, but they should be aligned. Here, the

original BRS Rb(·) is split into Rb(·)α and Rb(·)β, i.e., the new effective BRS is given by

R̃b(·) = Rb(·)α ∪ Rb(·)β. In this illustration, the original portion of the BRS that is in the

admissible domain is Rb(·)α while the shifted portion that crossed into the inadmissible one

is given by Rb(·)β.
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Figure 5.3: Initial states for a passively-safe constellation of 5804 spacecraft distributed along
two intersecting orbital planes. A subset of the BRS and PFRS are shown for a single final
time. We go backwards and forward for 40 chief periods, i.e., 3 days, and then the crossing
of ±2π occurs.

(a) Projected BRS onto δn and δM plane where the BRS projections cross the (−2π, 2π) domain
in terms of δM . These sets require re-initialization after the crossing.

(b) Projected PFRS onto δn and δM plane where the PFRS projections cross the (−2π, 2π) domain
in terms of δM . These sets require re-initialization after the crossing.

Figure 5.4: Illustration of the effect of the mod(·) operation on the BRS, yielding a union of
two convex sets.
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Again, in this work, we consider scenarios before this problem occurs and hence the

BRS are simply given by (5.22). In general, the modulo operation issue can be alleviated by

reducing the size of S for example. Reducing the position bounds and impact velocities will

result in one being able to perform a longer backwards analysis prior to having to deal with

non-convex BRS.

5.5.3 Mean Elements with J2 Perturbations

This J2-perturbed mean orbital element difference STM used to compute the BRS from

a generic terminal set Sœ̄ is given in (5.3). Now, only three of the orbital element differences

change backwards in time, yielding yet another subspace along which the BRS change. Since

the S is originally defined in the Cartesian Hill frame of the chief, the set is mapped first to

osculating orbital element differences and then to mean orbital element differences using a

first-order mapping available in [69], based on the work by Brouwer and Lyddane [101, 102].

For mean elements, the N -step BRS at t0 = tf −N∆T is given by

Rb(N ;Sœ̄
k ) = {δœ̄ ∈ Xœ : (H +H[A(œ̄r)](N∆T ))δœ̄ ≤ k}. (5.29)

Similar to the Keplerian case, here, the BRS modulo operation can occur with the δω̄, δΩ̄,

and δM̄ relative angles.

5.6 Passive Safety Trajectory Design

In equations (5.10) and (5.11), we defined the periodic and non-periodic orbit-BRSI,

which characterize the unsafe regions of state space within a time-interval of interest. The

former computes the set of states that enter the region S in N steps or less at any point in

the chief’s orbit. As such, if a spacecraft is outside of this region, then the spacecraft will

not enter S in at least N steps. The non-periodic orbit-BRSI are similar but only consider

states that enter S within the next N steps from an initial time step. A state that is outside

of these regions will be safe for the following N steps. In this section, we demonstrate how
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the derived BRS and BRSI can be leveraged to guarantee long term safety. Importantly,

methods to reduce the dimensionality of the design problem are presented and discussed.

5.6.1 Infinite-Horizon Safety

Using Cartesian relative states expressed in a chief’s Hill frame, one can characterize

the unsafe regions of state space for a finite time-horizon. Without additional analysis, it

is not clear how the methods developed in chapter 3 and 4 can be exploited to guarantee

longer term, or infinite-time, safety without computing more sets and increasing the safety-

horizon N . When using orbit element differences, such analyses are greatly simplified. This

coordinate description allows us to merge classical orbital mechanics and formation flying

theory with passive reachability theory, where relative orbits which are safe for a possibly

infinite time, for example, fall out as a special case.

5.6.1.1 Keplerian Dynamics

In the Keplerian case, infinite-time safety can be guaranteed by constraining a subset

of the deputy’s orbital elements, i.e., by considering a subspace of the BRS. We denote the

time-invariant subspace of Keplerian orbit elements as I ⊂ R5, which is five-dimensional in

nature as the anomaly angle is the only time-varying quantity, that is, [n, e, i,Ω, ω]T ∈ I.

By projecting the BRS onto the subspace I of orbital element differences, an interesting

property emerges that allows us to guarantee safety for an infinite amount of time in the

Keplerian case.

We introduce the projection of a set Sœ
k onto a lower dimensional subspace here,

namely, the time-invariant subspace of orbital elements I. Projecting the terminal set onto

I yields

projI(Sœ
k ) = {y ∈ R5| y = Cx,x ∈ Sœ

k } (5.30)

where every vector in Sœ
k is multiplied by a matrix C = diag(I5×5, 0). This effectively

”marginalizes” the relative anomaly angle.
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Suppose the V-rep of Sœ
k is given by the matrix V (kf) ∈ Rn×nv , defined at a final time

of interest. The columns vi of V (kf) are the vertices of Sœ
k whose convex hull defines the

terminal set, that is,

conv(V (kf)) = Sœ
k . (5.31)

Then, the BRS is given by propagating each vertex backwards in time using Φ(kf , k0)−1,

yielding an initial matrix of vertices V (k0) = Φ(kf , k0)−1V (kf). Taking the convex hull of

these vertices, under the assumption that the modulo operator is not required yet, the BRS

is given by Rb(N ;Sœ
kf

) = conv(V (k0)). The projection of the BRS onto the time-invariant

subspace of orbit elements is VI(t0) = CV (k0), i.e., the linear map C is applied on each

vertex. As such,

RIb (N ;Sœ
kf

) , projI
(
Rb(N ;Sœ

kf
)
)

(5.32)

= projI
(
conv(V (k0))

)
(5.33)

= conv(CV (k0)) (5.34)

= conv(VI(t0)) = conv(VI(tf )) (5.35)

because CV (k0) = CV (kf). As a result, one obtains that the projected BRS onto the

subspace I is equivalent to the projection of the terminal set Sœ
k onto the same subspace,

that is, RIb (N ;Sœ
kf

) = projI
(
Sœ
kf

)
, for all k0 ≤ kf .

This projection can be applied to a sequence of sets Sœ
k where k ∈ Z[0,kp], that is, the

regions S are evaluated around the chief’s periodic orbit, to a certain discretization accuracy,

as shown in Figure 5.2. Typically, one evaluates the BRS from a given final time step and

works backwards to characterize the sets of states that enter an avoidance region in a certain

number of steps. Using orbital element differences, however, we can project the BRS onto

the subspace I, which is simply RIb (N ;Sœ
kf

) = projI
(
Sœ
kf

)
, ∀kf ∈ Z[0,kp], to characterize the

regions of the time-invariant orbital element subspace that enter S at any point in time.

By projecting onto I, the anomaly difference is marginalized from the passive reachability

analysis, yielding the time-invariant orbital element differences which would have entered S



133

at some future time-step. If a state is outside of this region, it will either not enter S or it

will do so at an impact velocity that is higher than that used to construct S.

The projected sets are evaluated at all times around the chief’s orbit and we use the

union of these sets

S̃I =

kp⋃
k=0

projI
(
Sœ
k ), (5.36)

to characterize the regions that a deputy’s time-invariant orbital elements must remain out-

side of to not enter Sœ
k at any future step k. This is analogous to characterizing the orbital

elements that intersect a solid-sphere that is swept through the chief’s orbit in the position

subspace, and has particular impact velocities at any point along it in higher dimensions.

Thus, if the deputy’s relative state with respect to the chief is given by δœ̃, Cδœ̃ 6∈ S̃I and

δœ̃ ∈ Xœ, then the deputy is said to be passively safe for an infinite amount of time, as its

own periodic orbit does not intersect the chief’s periodic orbit at any future time.

Such a constraint is conservative as it requires the Keplerian orbits of the chief and

deputy to never intersect. Using Cartesian relative Hill coordinates, constraining a trajectory

to never intersect the orbit of the chief is quite difficult. Figure 5.5 shows randomly generated

initial states δœ̃(i) that satisfy the following constraints: Cδœ̃(i) 6∈ S̃I and δœ̃(i) ∈ Xœ. These

states are then propagated forward in time and as shown in Figure 5.5; none of the resulting

trajectories intersect the orbit of the chief, locally shown by the horizontal black lines in the

chief’s Hill frame. The safety ellipse, discussed in [68] is also a solution that satisfies this

projection constraint, provided the in-plane and cross-track amplitudes are large enough to

avoid S.

While this projection constraint may seem impractical and inaccurate, if the deputy

and chief have similar physical geometries and are close to each other, then the perturbations

acting on both spacecraft are similar in the relative sense and approximately cancel out. As

such, this constraint can be used because δœ −→ 0, ad −→ ac.

When perturbations are neglected, there is another specific case that results in passive
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Figure 5.5: Initial states that are outside of projI(S̄œ) propagated forward for an orbital
period. No trajectory enters S or projI(Sœ

k ), resulting in no intersections of the along-track
axis when close to the chief spacecraft.



135

safety guarantees for an infinite amount of time. This is the case when the deputy spacecraft

is in a relative orbit with the chief that does not enter Sœ
k , ∀k. This occurs as a result of

δa = 0, i.e., the deputy and chief have matched-periods.

We can design relative orbits or trajectories that do not enter Sœ
k by considering sec-

tions or slices of S̄, the union of Sœ
k for different k in (5.17), when δn = 0. When perturba-

tions are neglected, we can design such trajectories that do not intercept S without ever com-

puting the BRS. We denote such slices as S̄
∣∣
δn=0

. When we constrain δn = 0 using Keplerian

orbit elements, the BRS cease to change. Slicing Rb(·) along δœs = [0, δe, δi, δΩ, δω, δM ]T

yields

Rb(j;Sœ
kf

)
∣∣
δœs

= {δœs ∈ Xœ : H̃δœs ≤ k} (5.37a)

= {δœs ∈ Xœ : Hδœs ≤ k} (5.37b)

which is a time-invariant set because δn = 0 (recall the Keplerian plant matrix in (5.2)).

As such, for Keplerian orbit elements, only S̄
∣∣
δœs

has to be evaluated as all Rb(j;Sœ
k ) =

Sœ
k , ∀j, k. This is easily verified because the orbital element differences at any future time,

given this orbit element set, are δœ(t) = (I + A(t − t0))δœs = δœs. In summary, for

unperturbed systems using Keplerian orbit elements, safety with respect to the original set

S is also achieved for an infinite amount of time if

δœs 6∈
N⋃
k=0

Sœ
k

∣∣
δœs

(5.38)

where δœs = [0, δe, δi, δΩ, δω, δM ]T. This will be leveraged for the purposes of formation

design in a later section.

This simplication is possible because of the inherent structure of the BRS when consid-

ering the orbital element set used here. If one uses semi-singular orbit elements [69], letting

δa = 0 will not result in this property as the BRS depend on other orbit element differences

due to the usage of true latitude. The dynamics Jacobian matrix for semi-singular coordinate

description depends on variations of true anomaly expressed in terms of the other variables.
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In that case, letting δa = 0 6=⇒ θ̇ = 0, and as such, slices along δa = 0 of the BRS do not

have the same impact as those just shown.

5.6.1.2 Mean Elements with J2

For discussion purposes, we briefly mention how infinite-horizon safety is achieved

under two-body motion with J2 perturbations. This method, however, does not make use

of the BRS analysis and computation done in the rest of this chapter. Beacuse the chief’s

mean ā, ē and ı̄ elements do not change with time under this orbital element set and model,

and Ω̄, ω̄, M̄ vary at a constant rate, the “mean” reachable set of positions can be obtained

by performing a volume integral of the changing elements. Without accounting for short and

long periodic oscillations, the chief’s orbits can be swept for variable Ω̄, ω̄, M̄ . In this chapter

though, we map the terminal set S from the Cartesian Hill frame and express them in terms

of œ̄. Under such an analysis, a large number of time steps needs to be considered to fully

capture the union ∪kfk=0Sœ̄
k of the unsafe regions of orbital elements, that is, performing the

volume integral above with the nominal approach would require a lot of computation.

Suppose that we evaluated the terminal sets for a large enough time-horizon, kf � 0,

such that S is swept across all possible Cartesian states of the chief. Then, following the

logic in Section 5.6.1.1, one can compute projections onto the new time-invariant sub-

space I ⊂ R3, which is 3-dimensional in nature and made up of variable [a, e, i]T ∈ I.

The resulting projections are equivalent to projecting the terminal sets onto I, hence,

RIb (N ;Sœ̄
kf

) = projI
(
Sœ̄
kf

)
, for all k0 ≤ kf . Then, as before, the projected sets are eval-

uated at all times around the chief’s possible inertial Cartesian positions and we use the

union of these sets S̃I =
⋃kp
k=0 projI

(
Sœ
k ) to characterize the regions that a deputy’s time-

invariant orbital elements must remain outside of to not enter Sœ
k at any future step k. This

yields orbital elements that intersect the entire orbital shell of the chief, an example of which

is depicted in Figure 5.6. Thus, if the deputy’s relative state with respect to the chief is

given by δœ̃ and if Cδœ̃ 6∈ S̃I and δœ̃ ∈ Xœ, then the deputy is said to be passively safe
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for an infinite amount of time with respect to the secular effects of J2. Such sets could be

inflated to account for variations between osculating and mean orbital elements.

Figure 5.6: The orbital shell resulting from the effects of J2 perturbations for a near-circular
chief in LEO.

There are other ways of achieving infinite-horizon safety which include constraining

a deputy’s period to be an irrational multiple of the chief’s orbital period, which when

coupled with a phase difference, at least in the two-body model, results in the spacecraft

never intersecting. For the Keplerian and J2-perturbed models, avoiding the reachable set

of positions, which makes up the orbit and shell, respectively, is a sufficient condition for

passive safety that is very conservative. For generic formation flying or constellation design,

such constraints are not preferable. Intersection of the position reachable sets is possible as

long as some phasing-offset is present, as will be shown later.

5.6.2 Finite-Time Safety

In the general case, the sets of states that are unsafe given perturbed and non-periodic

orbits in a finite amount of time are found via X np
unsafe(N). Constraining a spacecraft to be
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outside of X np
unsafe(N) results in a finite-time passive safety constraint between the deputy

and the chief.

5.7 Utility for Space Traffic Management

In general, enforcing such safety constraints between numerous spacecraft is challeng-

ing, which is why formations and constellations are designed with simpler geometric con-

straints and dynamical arguments. Given the safety constraints derived in this paper, one

can use them for a variety of situations, provided the chosen orbital element set makes sense.

In this chapter, we focus on the impacts of these constraints on formation and constella-

tion design and organization problems, which is motivated by the space traffic management

problem. BRS provide a framework in which regions of state space can be attributed to

different spacecraft, like a slot, which can help maintain the safety of orbiting assets and

reduce conjunction events.

As mentioned before, one of reasons for expressing these passive safety constraints

in terms of δœ are that the linearized dynamics in these spaces are much more accurate

than the corresponding Cartesian ones. In fact, in some models the dynamics in terms of

orbital elements are simply linear as seen above and therefore there are no linearization errors.

Additionally, constellation design is already done with such coordinate sets in mind, and thus,

it may be helpful to assess intra and inter-constellation safety using such descriptions. Solving

the general passive safety problem that considers multiple spacecraft is quite challenging, if

not intractable, and requires the satisfaction of numerous non-convex constraints. One way

to constrain Ns spacecraft to be passively safe for N -steps is to enforce

X np
unsafe(N)

∣∣
œci

∩ X np
unsafe(N)

∣∣
œcj

= ∅, (5.39)

∀i 6= j = 1, . . . , Ns.

This requires Ns non-periodic orbit-BRSI to be disjoint with strict separation, for passive-

safety guarantees. This constraint does not allow for overlap of spacecraft avoidance zones,
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i.e., Sa ∩ Sb = ∅.

As passive safety of multiple spacecraft with respect to each other is desired, we denote

the avoidance region around a spacecraft’s state œci as the set S(œci). Instead of enforcing

non-overlapping regions in state-space as seen in (5.39), in this work we propose a simpler

passive safety constraint given by

œci 6∈ X np
unsafe(N)

∣∣
œcj

∀i 6= j = 1, . . . , Ns, (5.40)

which allows the avoidance zones S(·) to overlap but constrains the spacecraft to not enter

each other’s “terminal” sets. That is, for a pair of spacecraft α and β, we enforce œcα 6∈

X np
unsafe(N)

∣∣
œcβ

and œcβ 6∈ X np
unsafe(N)

∣∣
œcα

to ensure the chief does not enter the deputy’s

avoidance zone S, and vice versa. For instance, when the chief and deputy have matched

periods and are not perturbed, i.e., δa = 0, the deputy may be placed infinitesimally close

to the set S(œc) with an along-track offset and remain safe for all time. Using the non-

overlapping constraint in (5.39), the same can be achieved but the deputy must have a

larger anomaly offset to ensure the avoidance sets do not overlap.

In the remainder of this section, we pose the general formation and constellation design

packing problems as well as a new definition of an orbital slot. The packing problems are

quite complex and as such, we do not present direct solutions to this problem and leave such

analyses for future work.

5.7.1 Formations

In this section, we discuss how the derived safety constraints can be used in the for-

mation design process. When fully perturbed dynamics are considered, closed relative orbits

that are periodic are not possible to achieve. One can design quasi-periodic orbits by trying

to match the deputy’s semi major axis ad with that of the chief ac, such that δa = ad−ac = 0.

In practice, δȧ 6= 0 as the perturbations between the spacecraft are not identical. However,

for spacecraft with similar physical geometries and attitudes, as well as cases where δœ −→ 0,
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one obtains δa ≈ 0 that can be managed with active station-keeping capabilities. Another

strategy is to design relative orbits that are “invariant” to perturbations of interest. This

can be done for example using mean orbital element differences between spacecraft that are

invariant to the secular effects of J2 perturbations [69].

Remark 12. The passive safety constraints discussed here can be added to the J2-invariant

ones to obtain relative orbits that do not intersect S.

The formation design problem can be thought of as an optimization problem whose

cost is a function of all spacecraft orbit elements. To guarantee passively safe solutions, one

incorporates the safety constraint as well as the matched-period constraint. If the orbital

element difference between spacecraft i and j is denoted δœi,j, then letting the cost function

be J(δœi,j) = ‖δœi,j‖2, results in minimizing the deviation of the orbital elements from

each other. Such a cost function can be considered for a formation packing problem, i.e.,

attempting to pack a number of spacecraft as close together as possible.

Definition 5.7.1 (Formation Packing). We pack a variable number of spacecraft Ns such

that they belong to the same formation and have bounded relative motion in the short term,

while maintaining passive safety for N steps, by considering solutions to

min
δœi,j ,Ns

Ns∑
i 6=j=1

‖δœi,j‖2, (5.41a)

s.t. œci 6∈ X np
unsafe(N)

∣∣
œcj

, (5.41b)

δai ≈ δaj, (5.41c)

œci ∈ Xœ, (5.41d)

i, j = 1, . . . , Ns, i 6= j. (5.41e)

If Ns is fixed, this problem is no longer mixed-integer, but it remains nonlinear and

non-convex. The inclusion of (5.41b) presents some challenges. These BRS are functions

of the current optimization iteration and as such require recomputing within the actual
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optimization itself, which can be computationally burdensome for large safety-horizons. If

Keplerian dynamics are used, then this problem is greatly simplified as the δai = δaj re-

sults in the BRS collapsing to slices of the terminal set, as described earlier. That is, the

problem dimensionality is reduced from six to three dimensions. Formation design with such

constraints is much more tractable as only slices of Sœ
k need to be “separated.”

In the event that J2-invariant orbits are desired, we swap (5.41c) with the constraints

that result in the spacecraft having matching mean orbit element rates, which then avoids

relative secular growth between the spacecraft in the formation. The simple method to

achieve such invariant orbits is by letting δā = δē = δı̄ = 0, but this restricts the admissible

geometries. Other geometries can be considered by constraining ˙̄Ωd = ˙̄Ωc and ˙̄Md + ˙̄ωd =

˙̄Mc + ˙̄ωc, following the work in [69], which yields two equations and three unknowns or design

variables.

5.7.2 Constellation Design

The general constellation design problem is particularly challenging, even with using

the methods developed in this chapter. This is because when considering intersecting con-

stellations, the potential impact velocities are on the order of km/s. As a result, mapping the

set S from the Cartesian Hill frame to the orbital element difference space, Sœ
k , is non-trivial.

In this case, the nonlinearities cannot be neglected, which is done in the formation flying

and design cases above. Given the rising interest in LEO constellations, there is a clear need

to understand how densely a given constellation or a region of space could be packed while

satisfying safety constraints. The general constellation packing problem, which aims to fit

as many spacecraft in a constellation as possible while satisfying passive safety constraints,

is defined below.

Definition 5.7.2 (Constellation Packing). The general N-step passively-safe constellation
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packing problem is given by

min
œc,i,Ns

Ns∑
i 6=j=1

J(δœi,j) (5.42a)

s.t. œci 6∈ X np
unsafe(N)

∣∣
œcj

, (5.42b)

c(œc,i) ≤ 0 (5.42c)

œc,i ∈ Xœ (5.42d)

i, j = 1, . . . , Ns (5.42e)

where the number of spacecraft in the constellation Ns is variable and J(δœi,j) can be

a multi-objective function that weighs various mission objectives and c(œc,i) ≤ 0 represents

miscellaneous constellation constraints. As before, when J(δœi,j) = ‖δœi,j‖2, the spacecraft

orbital element distances in Xœ are minimized, which places them in orbits that are very

close to each other. Solving this problem allows one to fit as many spacecraft as possible

into a region of state-space, given the passive-safety constraints. When Ns is fixed, this

problem is non-convex and nonlinear, and when it’s variable, it is additionally a mixed-

integer problem, which is computationally difficult to solve. Note again that X np
unsafe(N)

∣∣
œcj

is itself a function of œcj , and as such, reachable set computations are embedded into the

optimization problem.

Constellations that are designed using (5.42) are inherently going to be safe for a time-

horizon of N∆T . The problem above also serves as a primer to the space traffic management

problem where inter-constellation safety is paramount. Generally speaking, the spacecraft

considered need not belong to the same constellation.

5.7.2.1 Mean Elements: Matched period, Eccentricity, and Inclination

Here, we consider a special case where δā = δē = δı̄ = 0, that is, the mean semi-major

axis, eccentricity, and inclination of the chief and deputy are the same. By considering slices

along δā = δē = δı̄ = 0 of the perturbed BRS with J2 using mean elements (5.29), i.e., using
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δœs = [0, 0, 0, δΩ̄, δω̄, δM̄ ]T, one finds that for these design variables, the BRS collapse to

slices of the terminal set again.

This yields a set a 3-dimensional set, which resides in R6

Rb(N ;Sœ̄
kf

)
∣∣
δœ̄s

= {δœ̄s ∈ Xœ : Hδœ̄s ≤ k} (5.43)

and as a result of the slice, Rb(N ;Sœ̄
kf

)
∣∣
δœ̄s

= Sœ̄
k

∣∣
δœ̄s

, which holds for both the nonlinear and

linearized equations of motion for the mean orbital elements with J2 secular effects. Then,

it becomes simple to design safe relative motion when matched mean period, eccentricity,

and inclination by constraining

Mδœ̄s 6∈
N⋃
k=0

Sœ̄
k

∣∣
δœ̄s

, (5.44)

where M is a selection matrix, that isolates the last three components of δœs. This di-

mensionality reduction can be used to simplify (5.42), for example, and is leveraged for the

purposes of constellation design later.

5.7.3 Orbital Slots

One of the main difficulties in space traffic management remains that of organizing con-

stellations that already or will exist in such a way that passive safety is a strict requirement.

To make the analysis and understanding of such problems more tractable, we introduce a

new definition for an orbital slot that is based on the BRS.

Definition 5.7.3 (Orbital Slot). An orbital slot is a region in state-space, given by a convex

set S around a spacecraft of interest whose state is given by œc, and its associated passively

backwards reachable sets, i.e., X np
unsafe(N)

∣∣
œc

.

Defining a slot in terms of the BRS in X or Xœ guarantees then that no other spacecraft

collide with this one for a certain number of time steps, i.e., at the very least short-term

passive safety is guaranteed. A spacecraft may be designated a slot prior to launch or even
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after, as these will have to be continuously updated due to perturbations and station-keeping

requirements pertaining to the mission. As a consequence of the perturbing forces spacecraft

are subjected to, orbital slots themselves have to be time-varying or dynamic.

Remark 13. Embedding reachability analysis into the slot definition allows for the safe

traffic management to be predictive or constructive rather than reactive, and as such, should

be considered in future work.

5.8 Results

5.8.1 Formation Flying

Characterizing the BRS in terms of orbital element differences is mostly beneficial

for the formation flying problem because small orbital element differences are considered.

This in turn makes the usage of the linear mapping to express the set S in terms of δœ

accurate to first order because high impact velocities, which need to be required in the

constellation design problem, are not considered. The benefits of computing these sets in

terms of δœ are that the linearization errors are smaller compared to the Cartesian Hill

representation, making linearization domain larger. This has two interesting consequences,

the first being that if one assumes additive white Gaussian process noise as in chapter 4, the

true uncertainty of the relative states remains Gaussian for much longer, which ensures that

both the stochastic unsafe sets and chance constraints are more accurate. Here, instead of

repeating the work in chapter 4, we provide a few examples as to how these sets can be used

for formation design.

Figure 5.7 demonstrates a relative orbit that is safe for an infinite amount of time under

a Keplerian dynamics assumption. Here, δa = 0, which results in bounded and repeating

relative orbits in the Keplerian case. If δa 6= 0, the safety ellipse in [68] is obtained, which is

also safe for infinite time in an unperturbed environment. Similar observations are made in

[24], where it is noted that having relative orbits that do not intersect the along-track axis
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aid in maintaining passive safety. While such a relative orbit is not guaranteed to be safe

for an infinite amount of time if perturbations are included, provided the shape properties

of the deputy and chief are similar, such that non-conservative perturbations like differential

drag or SRP are similar, the relative orbit may still be passively safe for a long time because

as ‖δoe‖ −→ 0, then ‖ad - ac‖ −→ 0, where ad and ac are the exogenous accelerations on the

deputy and chief, respectively.

Figure 5.7: A safe relative orbit constrained by x(t0) 6∈ projI(S̄œ), resulting in no intersec-
tions with the chief’s orbit and along-track axis.

In Figure 5.8 we present various relative orbits that do not enter S, shown in red,

by considering slices δœs = [0, δe, δi, δΩ, δω, δM ]T and constraining δœs 6∈ S̄œ
∣∣
δœs

. All of

these relative orbits are generated by sampling in the safe region of the slices, which require

sweeping S along the chief’s orbit. Then, a single point solution in terms of δœ results in

a relative orbit that does not intersect S as shown in Figure 5.8. Such an approach is a

promising way of tackling the formation packing problem (5.41).

Lastly, we consider a scenario using mean orbital element differences such that the

deputy has a mean semi-major axis that is smaller than the chief’s, resulting in a along-
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Figure 5.8: Relative orbits with random initial states outside of the union matched-period
sets, i.e., δœs 6∈ S̄œs

∣∣
δœs

, resulting in no intersections of S.

track flyby of the chief that does not enter S. We select an initial condition such that

δœ̄ 6∈ X np
unsafe(N), which is constructed with BRS using mean orbital element difference and

J2 secular effect, i.e., Rb(N ;Sœ̄
k ). The initial condition is by design close to the unsafe region

and as such, its trajectory barely misses the set S, shown in 5.9. Here, the safety horizon N

corresponds to two orbital periods, and as shown in Figure 5.9 the flyby is passively safe.

5.8.2 Constellation Design

While the BRS derived in this chapter are mostly applicable to formation flying scenar-

ios, we consider a special case that allows us to utilize these sets for the sake of constellation

design.

5.8.2.1 LEO Walker Constellation Design

Motivated by LEO Walker constellations such as SpaceX’s Starlink constellation, we

consider a case where the chief is in LEO with the orbital elements shown in Table 5.1. In this

case, the deputy is a spacecraft on the same orbital plane as the chief or on an intersecting

orbital plane. Both spacecraft have an orbital slot as defined in the prior section. The special

case where δā = δē = δı̄ = 0, which is desired for many upcoming LEO constellations, results

in the deputy’s time-varying mean elements changing at the same rate as that of the chief,
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Figure 5.9: A safe initial condition œ̄ 6∈ X p
unsafe(N), given by the mark on the right with

respect to a near-circular chief ec = 0.05. Here, δā < 0 and in blue is the resulting trajectory
after two orbital periods. The deputy passively drifts from right to left underneath the
chief despite the effects of the J2 perturbations.

i.e., ˙̄Ωd = ˙̄Ωc, ˙̄ωd = ˙̄ωc, and ˙̄Md = ˙̄Mc. In this instance, the element drift rates are the same

in both the nonlinear and linear (5.3) dynamic models. Because δ ˙̄Ω = δ ˙̄ω = δ ˙̄M = 0, we

have time-invariant orbital element differences, i.e., δœ̄k+1 = δœ̄k.

Table 5.1: Mean orbital elements of a near-circular chief in LEO

.

āc (km) ēc ı̄c (◦) Ω̄c (◦) ω̄c (◦) M̄c (◦)
6920.136 10−8 53 0 0 0

Satisfaction of the constellation passive safety constraint (5.42b) is done via con-

straint (5.44), where the minimum safety horizon N = kp− k0 corresponds to the number of

time steps in the chief’s osculating period. Now, because the deputy and chief have matching

periods, letting N ≥ kp − k0 allows for the two craft to at least have two points of close

approach.1

We perform the preliminary design of the constellation using mean elements with J2

perturbations, which along with the two-body acceleration term, comprise the dominant

forces acting on the spacecraft in the LEO regime of interest in Table 5.1. To this end,

though in practice one uses N � kp − k0 for multi-period safety, here, we simply enforce

the constraints on the deputy to be safe for the following period, i.e., N = kp − k0, which

1 Due to the geometry of the deputy and chief here, the the union of slices in (5.44) contains many
redundant constraints since in this constellation configuration, the deputy and the chief have two points of
close approach.
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limits the amount of sets used to characterize X p
unsafe(N). Then, by virtue of the chosen

orbital elements of the chief and deputy, to first order, the relative states are J2-invariant

[69]. The implication of this, in the safe constellation design case, is that the minimum

distance between the craft is approximately the same for t > t0, and thus, the deputy is

passively safe for longer than the designed safety horizon N .

As seen in various LEO walker constellations, we let the deputy spacecraft have orbital

elements such that δā = δē = δı̄ = δω̄ = 0. As such, δœs = [0, 0, 0, δΩ̄, 0, δM̄ ]T, which

simplifies the structure of the non-convex constraints for safety to be maintained. For the

constellation design scenario, we do not map the set S to the orbital element difference space

because of the difficulties of the high impact velocities, which can occur at about 12 km/s

in this LEO Walker example. However, we do note that if we had the non-convex set Sœ̄
k in

this case, the slices along δa = δe = δi = 0 would still yield a BRS that is identically equal

to slices of the terminal set Sœ̄
k , by virtue of the dynamics model. This insight is then used

to obtain a set of constraints that need to be satisfied to ensure passive safety of spacecraft

within a constellation.

Recall that the set S is defined as S = {x ∈ X : Hx ≤ k}. When one maps this

set from Cartesian Hill frame relative states to mean orbital element differences is given

by h(x, tk) : X 7→ X œ̄, such that, δœ̄ = h(x, tk). Then, using the inverse mapping,

h−1(δœ̄, tk) : X œ̄ 7→ X , the non-convex set in terms of δœ̄ is obtained

Sœ̄
nl = {δœ̄ ∈ X œ̄ : Hh−1(δœ̄) ≤ k}, (5.45a)

which is not known analytically. This mapping is required for the general constellation

passive safety scenario as the impact velocities are extremely high compared to formation

flying scenarios. A constellation designer often selects a set of orbital planes via Ω̄ and ı̄ to

satisfy mission, sensor or payload constraints, and as such, we assume such orbital planes

have already been selected. Because five of the six mean orbital element differences are

constrained, the passive safety between spacecraft in the constellation then depends on the
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relative phase δM̄ , that is, the mean anomaly differences need to be chosen to avoid collisions

between potentially intersecting orbits.

Instead of characterizing Sœ̄
nl via samples or through approximations, in this work, the

indicator function is used to determine the δœ̄ that are contained in the Cartesian set S. In

this case,

1S(x) =


1, x = h−1(δœ̄, tk) ∈ S,

0, x = h−1(δœ̄, tk) 6∈ S,
(5.46)

and if δœ̄ = δœ̄s such that δœ̄s = [0, 0, 0, γ, 0, δM̄ ]T, where γ is a selected mean ascending

node difference, then δœ̄s represents a 1-dimensional manifold in Xœ that depends only on

δM̄ . Then, the set of unsafe δM̄ is given by all δœ̄s that satisfy

1S(h−1(δœ̄s, tk)) = 1, ∃k ∈ {k0, . . . , kp}. (5.47)

Consequently, the deputy’s relative state δœ̄s is said to be passively safe with respect to the

chief if

1S(h−1(δœ̄s, tk)) = 0, ∀k = {k0, . . . , kp}, (5.48)

which is a δM̄ phasing constraint.

5.8.2.2 Packing LEO Walker Constellations

In summary, instead of solving safe constellation design optimization (5.42) directly as

a non-convex optimization problem, we consider a special scenario where the spacecraft in

the constellation all have natched period, eccentricity, inclination, and argument of periapsis.

This results in the passive safety constraint (5.48). We then pack the orbital planes under

consideration as densely as possible using these phasing offets to obtain a Walker constellation

that is passively safe for a long period of time. In this example, we have two intersecting

orbital planes given by δΩ̄ = π. This choice of the deputy’s orbital elements results in the

deputy and chief’s inertial orbits approximately intersecting at two locations, at Mc = 0 and
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Mc = π, shown in Figure 5.12.2

As noted in (5.48), a single deputy’s relative phase δM̄ must be sufficiently out of

phase with the chief’s mean anomaly to prevent it from entering S. The unsafe δM̄ for a

deputy spacecraft on the same mean orbit as the chief, i.e., δΩ̄ = 0, are shown in Figure

5.10, where x(δM̄) shows the explicit dependence of the states considered on the anomaly

angle difference. In particular, Figure 5.10a - Figure 5.10b show the indicator function given

variable δM̄ and the corresponding relative states in the chief’s Hill frame. The unsafe

states clearly span the along-track direction of S as expected. The unsafe δM̄ for a deputy

spacecraft on a different orbit plane than the chief, i.e., δΩ̄ = π, are shown in Figure

5.11. Figure 5.11a - Figure 5.11b show the indicator function given variable δM̄ and the

corresponding relative states in the chief’s Hill frame. The unsafe states predominantly span

the out of plane direction.

The minimum anomaly separation for the in-plane and out-of-plane cases are found

using the analysis provided in Figures 5.10 - 5.11. From here, these phasing constraints can

be used to pack satellites (deputies) in both orbital planes of the constellation, the results

of which are shown in Figure 5.12. The phase differences allow us to pack the orbits with

a total of 5804 spacecraft, maximizing the amount of spacecraft that fit in each orbit plane

while respecting each others safety constraints. All of the spacecraft in this constellation are

propagated forward in time and the minimum distance between spacecraft are monitored to

check for safety, as shown in Figure 5.13. The minimum distance evolves over time but is

predominantly around 4.5km and at times may be as high as 8km due to osculating effects.

Figure 5.13 confirms that none of the spacecraft enter the avoidance regions S of other

spacecraft in the constellation.

Such a solution can be interpreted as a feasible one for the constellation packing prob-

lem, given a specific set of orbital planes, and generalizes to more intersecting planes. The

2 The orbits intersect exactly at two locations if they were circular and Keplerian dynamics are assumed,
but in the near-circular and J2 perturbed scenario, they have two points of close approach.
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more planes there are, the larger the mean anomaly difference offsets have to be for the

spacecraft in the constellation to be safe with respect to each other. From a traffic man-

agement point of view, as such orbit planes are increasingly packed, intersection of these

planes becomes harder, which may not be desirable for launch services or for other missions

that would need to be in similar areas of state-space. There is a clear trade-off between the

density of a constellation and the “usability” of space for other spacecraft in the vicinity.
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Figure 5.10: The unsafe δM̄ given a deputy in the same mean orbit as the chief, i.e., δΩ̄ = 0.

(a) The interval of δM̄ that are contained in the set S.

(b) The unsafe relative states, as a function of the mean
anomaly difference x(δM̄), for a deputy in the same mean
orbit as the chief is shown in blue in the chief’s J2-perturbed
Hill frame.
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Figure 5.11: The unsafe δM̄ given a deputy in a different mean orbit than chief, i.e., δΩ̄ = 0.

(a) The interval of δM̄ that are contained in the set S.

(b) The unsafe relative states, as a function of the mean
anomaly difference x(δM̄), for a deputy in a different mean
orbit than the chief is shown in blue in the chief’s J2-
perturbed Hill frame.
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Figure 5.12: Initial states for a passively-safe constellation of 5804 spacecraft distributed
along two intersecting orbital planes. In blue, the first orbit plane where each craft’s orbital
elements given by œ̄ = [6920.136km, 10−8, 53◦, 0◦, 0◦,M◦

i ]T. The second orbit plane, in red,
has œ̄ = [6920.136km, 10−8, 53◦, 180◦, 0◦,M◦

j ]T. Mi and Mj depend on the spacecraft and
satisfy the passive safety constraints.

Figure 5.13: The minimum distances between spacecraft in the two orbit plane constellation
when propagated with J2 over a week. The minimum distance is always larger than 4.5 km
by design, and as such the passive safety and slot constraints are satisfied.



Chapter 6

Conclusions

6.1 Passive and Active Abort-Safe Spacecraft Relative Motion

We develop an abort-safe control policy that is robust against hypothesized thruster

failures in a spacecraft rendezvous mission for targets on generic elliptic orbits using robust

backwards reachable sets and model predictive control. A fundamental contribution of this

work is the demonstration of the existence of active or passive abort maneuvers outside of

abort-unsafe sets, which is particularly novel in the active abort-safety scenario. Then, three

convexification methods are presented, which are used to constrain the chaser to be outside

of the unsafe region of state space. This guarantees, to the time-discretization used, that

collisions with the target can be avoided through the use of a powered-abort or simply via

natural motion. Several closed-loop simulations are presented for different failure scenarios,

showing that the approach performs as predicted. Importantly, the algorithm works for

generic LTV systems, resulting in its utility in other domains.

6.2 Fuel-Efficient Passive and Active Abort Safety

A safe rendezvous strategy that increasingly exploits the natural dynamics is presented.

The work considers targets in near-Earth orbits as well as on NRHOs. A chaser spacecraft

is steered into the constructed coasting sets, which contain the set of all states that have

a high probability of naturally coasting into a specified goal set, while maintaining passive-

safety. Stochastic passive backwards reachable sets are used to characterize the coasting
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sets as well as the abort-unsafe state space; this contribution generalizes the prior one by

incorporating random noise. The developed coasting arc approach reduces both the amount

of propellant used and the required thruster on-time, important for thruster management

and thruster fault mitigation during rendezvous and formation flying missions. In summary,

a general and novel guidance and control algorithm is presented for future space missions,

which is fuel-efficient, and is robust to disturbances.

6.3 Passive Abort-Safety using Orbital Element Differences

In the last chapter, the passively unsafe regions of state space with respect to a target

set are obtained in terms of orbital element differences. This representation has smaller

linearization errors making the derived PBRS more accurate and the linearizable domain

larger. Such sets can be used with the methods in Chapters 3-4, to enhance the domain of

the RPO algorithms developed. Moreover, by considering particular projections and slices of

these sets, the dimensionality of the safe trajectory design problem is greatly reduced. Here,

formation and constellation safety constraints are derived, which can inform how future

constellations can best make use of certain regions of state space, and how these regions can

be organized. A new orbital slot definition is also presented and illustrative design solutions

are presented.

6.4 Broader Implications

While lots of work related to reachability theory has been done in the literature, the

developed notions of abort-safety are novel and quite useful at large. How such sets can be

used operationally is frequently not touched upon in the literature. In this thesis we devel-

oped algorithms that utilize and exploit such sets to guarantee, in discrete-time, the safety

of the system under consideration. From an astrodynamics and astronautics perspective,

the developed approaches can be used to verify future algorithm safety. By using convexifi-

cation in the MPC, we further enable the algorithm’s applications for on-board usage. The
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solutions acquired can also be used as initial guesses to non-convex trajectory optimization

solvers to improve the performance and safety of mission trajectory designs, with regards to

RPOD, formations, and constellations.

The applications of abort-safety in general are not limited to spacecraft applications

and could be of interest to general aerospace, robotics, automotive, maritime and potentially

even biomedical industries. Naturally, motion-planning techniques at large can benefit from

the safety constraints derived in this work. In such cases, abort-safety may guarantee colli-

sion avoidance between aerial or ground-based agents and can guarantee a boat’s abort-safe

entrance into a harbor. In the biomedical realm, an interesting application of such methods

are in anaesthesia delivery and control, where we could guarantee the safety of the patient

by ensuring that anaesthetic “aborts” exist so that dangerous regions of the pharmacological

state space are avoided. In all of these cases, understanding where the abort-unsafe regions

of state space are can result in improvements of system performance, and most importantly,

safety. While control is often used as a feedback mechanism to optimally or correctly steer

systems to exhibit desirable behaviors, it also makes sense that formal approaches are con-

sidered such that safe recovery of a system can be guaranteed with the control actions that

one has.

6.5 Future Work

There are many potential future work directions that are directly related to this thesis.

In the presented methods, stability of the safety constrained model predictive controller was

not investigated. It would be interesting to consider approaches that incorporate reachabil-

ity and stability constraints on the chaser to guarantee that the target is reachable under

the available admissible control, despite the presence of the abort-safety constraints. While

model predictive control was used as the algorithm of choice for the motion-planning and

constrained feedback control in this thesis, alternative algorithms can be considered such

as sampling-based methods. Such algorithms may be more effective in guiding the chaser
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spacecraft into the coasting sets while avoiding the abort-unsafe regions of state space since

the convexification approach used in this thesis can at times impedes the chaser from advanc-

ing towards the coasting sets. Moroever, the presented work could directly benefit RPOD

mission planning by using the resulting trajectories from the MPC approach as an initial

guess the full non-linear abort-safe optimal control problem, which would be particularly im-

portant in the passive abort-safety phase. Additionally, continuation methods could be used

in conjunction with such approaches to obtain optimal solutions that tend from a quadratic

cost function, as is used in this thesis, to an L1-norm cost function to optimize ∆V directly.

With respect to the final chapter, work needs to be done on describing the terminal

sets S in terms of orbital element differences using the nonlinear mapping for cases with

very high impact velocity, which are pertinent to the space traffic management and more

general constellation design problem. This could for example be done by approximating

the set Sœ using a union of convex sets, similar to how Gaussian mixtures are used to

approximate multi-modal PDFs. From here, the PBRS could be computed which would

yield a more accurate, albeit non-convex, PBRS. Such sets could be used to obtain optimal

or sub-optimal solutions to the packing problems presented in the last chapter. Lastly,

formal optimization or alternative heuristic-based solutions to the packing problems should

be investigated to advance the state of the art in space traffic management.
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Appendix A

Alternative Dynamical Models

A.1 Linearized relative equations of motion for perturbed chaser and target

in target’s Hill Frame

Perturbations can in general be added the nonlinear Cartesian equations of relative

motion, as seen by the target. Recall that

rc/b = rt/b + ρ (A.1)

where ρ = rc/t For now, we neglect attitude-dependent perturbations and consider conser-

vative forces. The relative acceleration as seen by the target is then

t..
ρ =

I..
r c/b +ac + uc − (

I..
r t/b +at)−

I.
ωt/e ×ρ− 2ωt/e×

t.
ρ −ωt/e × (ωt/e × ρ) (A.2)

t..
ρ = − µrc/b

‖rc/b‖3
+ ac + uc +

µrt/b

‖rt/b‖3
− at−

I.
ωt/e ×ρ− 2ωt/e×

t.
ρ −ωt/e × (ωt/e × ρ) (A.3)

t..
ρ = − µrc/b

‖rc/b‖3
+ ac + uc +

µrt/b

‖rt/b‖3
− at − [

I.
ωt/e]×ρ− [2ωt/e]×

t.
ρ −[ωt/e]×[ωt/e]×ρ (A.4)

Note that since the target is no longer in a Keplerian orbit, its Hill frame angular velocity

is

ωt/e =
ht

‖rt/b‖2
+
rt/b

‖ht‖
(ĥt · at) (A.5)

We need to take the inertial derivative of this quantity to derive the perturbed Cartesian

relative equations of motion. In this thesis, we considered cases where the target and the
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chaser are subjected have luni-solar and J2 perturbations, that is,

at = aJ2 + alunar + asolar, (A.6)

ac = aJ2 + alunar + asolar. (A.7)

Note that the perturbing acceleration on the target is included in (A.5) such that the

time-derivative of the perturbing accelerations (i.e. jerk) is required. That is, we also need

I.
at =

I.
aJ2 +

I.
alunar +

I.
asolar . (A.8)

The linearized relative perturbed equations of motion are then obtained by taking the Ja-

cobian of (A.2) with respect to variations in the relative state

[
ρ

t.
ρ

]T
. Since the relative

acceleration is given as

t..
ρ = − µrc/b

‖rc/b‖3
+ ac + uc +

µrt/b

‖rt/b‖3
− at − [

I.
ωt/e]×ρ− [2ωt/e]×

t.
ρ −[ωt/e]×[ωt/e]×ρ, (A.9)

we take partial derivatives of this expression with respect to the relative position and velocity,

yielding,

∂
t..
ρ

∂ρ
= − ∂

∂ρ

(
µrc/b

‖rc/b‖3

)
+
∂ac

∂ρ
− [

I.
ωt/e]× − [ωt/e]×[ωt/e]× ∈ R3×3 (A.10)

∂
t..
ρ

∂
t.
ρ

= −2[ωt/e]× ∈ R3×3 (A.11)

Our perturbations are only chaser position-dependent. Since we linearize about the

target’s perturbed trajectory we obtain

ẋ(t) = A(t)x(t) +B(t)u(t) (A.12)

where,

A(t) =
∂

∂x
f(t,x,p)

∣∣∣∣
x=0

=

 03×3 I3

− ∂
∂ρ

(
µrc/b
‖rc/b‖3

)
+ ∂ac

∂ρ
− [

I.
ωt/e]× − [ωt/e]×[ωt/e]× −2[ωt/e]×

 ∣∣∣∣∣
x=0

(A.13)

B(t) =

03×3

I3

 (A.14)
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A.2 J2-perturbed Mean Orbital Element Dynamics

The equations of motion for the mean orbital elements of a spacecraft under the effects

of J2 and two-body accelerations:

˙̄a = 0 (A.15a)

˙̄e = 0 (A.15b)

˙̄ı = 0 (A.15c)

˙̄Ω = −3

2
J2

(
req

p

)2

n̄ cos i (A.15d)

˙̄ω =
3

4
J2

(
req

p

)2

n̄(5 cos i2 − 1) (A.15e)

˙̄M = n̄+
3

4
J2

(
req

p

)2

η̄n̄(3 cos i2 − 1) (A.15f)

where n̄ =
√

µ
ā3

, η̄ =
√

1− ē2.

A.3 Cislunar Dynamics

Consider a target and a chaser in orbit around two primary bodies, e.g. Earth and

the Moon, denoted e and m, respectively. The frame FI is the Inertial frame, b is an

unforced particle, assumed to be collocated with the Earth-Moon barycenter in the three-

body problem. The Synodic frame is given by Fs = {ı̂s, ̂S, k̂s}; ı̂s points from the primary

to the secondary body, k̂s is parallel to the system momentum, and ̂S completes the right-

hand rule. The chaser and target’s center of masses are denoted by c and t, respectively,

and have spacecraft-fixed frames Fc and Ft. In the two-body problem, the target’s orbit

frame Fo = {ı̂r, ı̂θ, ı̂h} is Hill’s frame with radial, along-track, and cross-track basis vectors.

However, since no other angular velocity is of interest in this paper, the angular velocity of

the orbital frame relative to the inertial frame will be denoted ω for convenience. We assume

the chaser is controlled and its fixed-frame is aligned with the Synodic frame, i.e., ωc/s = 0.
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This is done for simplicity and since the attitude dynamics and control are faster than the

corresponding translational dynamics and control. The spacecraft are assumed to be rigid

bodies such that all exogenous forces act on their centers of mass and the target spacecraft

is assumed to be uncontrolled.

Recall that the position of spacecraft i relative to a point j is given by ri/j = ri−rj. The

relative position of the chaser spacecraft with respect to the target is denoted rc/t = rc/b−rt/b

while
k.
rc/t=

I.
rc/b −

I.
rt/b −ωK/I × rc/t is the relative velocity vector as seen by a frame FK,

where b represents the barycenter of the inertial frame FI. Similar to before, the relative

acceleration is given by

k..
r c/t=

I..
r c/b −

I..
r t/b −

I.
ωK/I ×rc/t − ωK/I × (ωK/I × rc/t)− 2ωK/I × k.rc/t, (A.16)

where

I..
r i/b= − µeri/e

‖ri/e‖3
2

− µmri/m
‖ri/m‖3

2

+
fi
mi

(A.17)

are the inertial accelerations on spacecraft i ∈ {c, t}. The vector fi represents perturbing

forces acting on spacecraft i, which include orbital perturbations as well as control. In this

work, we choose to realize the relative equations of motion in the Synodic frame FS.

Note that if the lunar gravitational acceleration in (A.17) is neglected, FI , Fe, mi <<

me, and Fk , Fo, we obtain the nonlinear relative equations of motion about a target orbiting

a single primary body, seen in the target’s orbital frame.
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