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Abstract

In order to address the challenges of future space exploration, new lightweight and model-
free guidance algorithms are necessary to make spacecraft completely autonomous. In
recent years, autonomous spacecraft guidance has been a subject of intense research, and
in the near future, this technology will be a great advantage for proximity operations
in the cislunar space. For instance, NASA’s Artemis program plans to establish a lunar
Gateway, and this type of autonomous maneuver, besides the nominal Rendezvous and
Docking (RVD) ones, is also necessary for the assembly and maintenance procedures.
In this context a Meta-Reinforcement Learning (Meta-RL) algorithm is applied to address
the real-time relative optimal guidance problem of a spacecraft in the cislunar environ-
ment. Non-Keplerian orbits have more complex dynamics, and classic control theory may
be less flexible and more computationally expensive with respect to Machine Learning
(ML) methods. Furthermore, Meta-RL is chosen for its peculiar and promising ability of
"learning how to learn" through experience. It is an ML approach in which a model is
trained on a variety of tasks in such a way that it becomes more efficient and effective at
learning new ones.
A stochastic optimal control problem is modeled in the Circular Restricted Three-Body
Problem (CRTBP) framework as a discrete time-scale Markov Decision Process (MDP).
The agent, an LSTM-based network, is then trained with a state-of-the-art actor-critic
algorithm known as Proximal Policy Optimization (PPO). Additionally, operational con-
straints and stochastic effects are considered to assess policy safety and robustness. An
MLP-based agent and an optimal control solution using pseudospectral methods are also
evaluated for comparison purposes. The resulting tool is a closed-loop controller able to
autonomously guide a spacecraft in the context of cislunar proximity operations. It is able
to approximate the optimal control solution with a very general and not hand-crafted al-
gorithmic framework, guaranteeing at the same time high robustness and computational
efficiency.

Keywords: Spacecraft Autonomy, Adaptive G&C, Relative Dynamics, Reinforcement
Learning, Cislunar Space
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Abstract in lingua italiana

Per affrontare le sfide della futura esplorazione spaziale, occorrono nuovi algoritmi di guida
computazionalmente efficienti e privi di modelli per rendere i satelliti completamente au-
tonomi. In anni recenti, la guida autonoma dei satelliti è stata oggetto di intense ricerche
e nel prossimo futuro questa tecnologia rappresenterà un grande vantaggio per le op-
erazioni di prossimità nello spazio cislunare. Ad esempio, il programma Artemis della
NASA prevede di stabilire un Gateway lunare, e questo tipo di manovre autonome, oltre
alle manovre nominali Rendezvous and Docking (RVD), è richiesto anche per le procedure
di assemblaggio e manutenzione.
In questo contesto, viene applicato un algoritmo Meta-Reinforcement Learning (Meta-RL)
per affrontare il problema della guida ottimale relativa in tempo reale di un satellite in
ambiente cislunare. Le orbite non-kepleriane hanno dinamiche più complesse, e la teoria
del controllo classica può essere meno flessibile e più computazionalmente costosa rispetto
ai metodi di Machine Learning (ML). In aggiunta, Meta-RL è scelto per la sua particolare
e promettente capacità di "imparare ad imparare" attraverso l’esperienza. È un approccio
ML in cui un modello viene allenato su una varietà di compiti in modo tale che diventi
più efficiente ed efficace nell’apprendimento di nuovi.
Un problema di controllo ottimale stocastico è modellato nel contesto del Circular Re-
stricted Three-Body Problem (CRTBP) come un Markov Decision Process (MDP) su
scala temporale discreta. L’agente, basato su una rete neurale composta da celle LSTM,
viene poi addestrato con un algoritmo attore-critico allo stato dell’arte noto come Prox-
imal Policy Optimization (PPO). Inoltre, i vincoli operativi e gli effetti stocastici sono
considerati per valutare la sicurezza e la solidità della legge di controllo. Ai fini del con-
fronto vengono valutati anche un agente basato su celle MLP e una soluzione di controllo
ottimale che utilizza metodi pseudospettrali diretti. Il risultato è un controllore ad anello
chiuso in grado di guidare autonomamente un satellite nell’ambito delle operazioni di
prossimità cislunare. È in grado di approssimare la soluzione di controllo ottimale con un
algoritmo flessibile e privo di modello, garantendo allo stesso tempo elevata robustezza
ed efficienza computazionale.

Parole chiave: Autonomia Satelliti, G&C Adattivo, Dinamica Relativa, Apprendimento
per Rinforzo, Spazio Cislunare
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Introduction

Earth is the cradle of humanity, but one cannot live in a cradle forever.

Konstantin Tsiolkovsky

0.1. Autonomous Proximity Operations

Rendezvous and Docking (RVD) is a technology that allows two spacecraft to come to-
gether in space with the same velocity and then physically attach. This is an essential
capability for complex space missions, such as transferring crew, exchanging cargo, trans-
ferring fuel, repairing a satellite or building larger space structures. For the past fifty
years, numerous countries have conducted numerous RVD missions [1]. The chaser space-
craft can be divided into more than ten series, including Gemini [2], Apollo [3], Space
Shuttle [4], Demonstration of Autonomous Rendezvous Technology (DART) [5], Soyuz
and Progress spacecraft from Russia or the former Soviet Union [6], the Cygnus expend-
able cargo from the United States [7], the automated transfer vehicle (ATV) from the
European Space Agency (ESA) [8] and the H-II Transfer Vehicle (HTV) [9] from Japan.
The last three spacecrafts mentioned are unmanned, and their RVD missions are com-
pletely automated, thus necessitating the development of complex autonomous Guidance,
Navigation, and Control (GNC) algorithms.

A Rendezvous and Docking (RVD) process generally consists of four distinct steps: phas-
ing, close-range rendezvous (which is divided into homing and closing), final approach,
and docking (as seen in Figure 1). During the phasing phase, the chaser performs maneu-
vers to adjust the phase angle between the two spacecrafts, reduce the differences in the
orbital plane, increase the orbital height, and initiate relative navigation. The homing
phase is when the chaser autonomously controls itself and the final position of this phase
is P2, a station-keeping point located a few kilometers from the target. The main goals
of this phase are to acquire the target orbit and reduce the relative velocity. The closing
phase is when the chaser reduces the relative distance further and its position is trans-
ferred to P3, a station-keeping point located hundreds of meters away from the target.
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The final approach phase begins at P3 and ends when the chaser touches the target and
docks. Absolute GNC sensors and algorithms are used mainly during the phasing stage,
while relative ones are employed during the close-range rendezvous and subsequent stages.

Figure 1: Soyuz spacecraft Rendezvous and Docking (RVD) operational phases with the
International Space Station (ISS). Source: Reference [10].

In the past, astronauts had to manually manage the close-range or final approach ren-
dezvous phases. Today, autonomous methods are used to guarantee robustness and safety.
Autonomous G&C techniques are essential for the most intricate spacecraft proximity
operation missions, such as on-orbit servicing, on-orbit assembly and inspection, active
space debris removal, and more. This kind of problem is usually formulated as an Optimal
Control Problem (OCP) and solved with active set or interior point techniques after a
transcription [10], which are also called OCP direct methods. However, these methods are
open-loop, unable to manage unpredictable circumstances without a controller, and too
computationally expensive to be executed on-board. Autonomous G&C algorithms re-
quire two fundamental ideas: robustness, which should be achieved by satisfying numerous
requirements, such as closed-loop control, for mission safety, and computational efficiency
for on-board implementation. Nowadays, to acquire this capability, the high-level task is
usually transformed into a precalculated reference trajectory (Guidance) and then tracked
by a controller (Control). Several efficient algorithms for on-board implementation have
been suggested, including those in Reference [11, 12], as well as the following:

• Guidance algorithms: Artificial Potential Field (APF) [13], Proportional Navigation
(PN) [14], Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) [15] and more;

• Control algorithms: H∞ Control [16], State-Dependent Riccati Equation (SDRE)
Control [17], Linear Quadratic Regulators (LQR) [18], Model Predictive Control
(MPC) [19], Sliding Mode Control (SMC) [20] and more.

In 1965, the Gemini 4 vehicle attempted the first rendezvous in history, using the Straight-
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Line approach ∆V =
(
rf − ri

)
/∆t − vi due to the limited understanding of orbital me-

chanics. Unfortunately, it was unable to rendezvous with its Titan II launch vehicle’s
upper stage, as both the target and chaser were still in LEO. Since then, technology has
advanced significantly; however, for autonomous spacecraft G&C algorithms to be able
to manage more intricate dynamical environments, where engineering modeling would
be unfeasible, they must become model-free and their computational efficiency must be
enhanced so they can be executed on smaller, more cost-effective spacecraft, while still
being highly dependable and secure. An additional benefit would be to have an integrated
G&C law, which would not require breaking down the high-level task into reference com-
putation and tracking. Reinforcement Learning (RL) has the qualities mentioned above
and, furthermore, since it is able to directly optimize the task-level goal while being able
to use domain randomization to handle model uncertainty, it enables the discovery of
more empirically reliable control responses, as stated by Song et al. [21].

0.2. Cislunar Space and Near-Rectilinear Orbits

On the road to a manned exploration of Mars, NASA is aiming to build a space station in
cislunar space as part of the ARTEMIS project in cooperation with multiple international
organizations and private companies in the next decade [22]. The station, also known as
the Lunar Gateway, will be located on the Southern 9:2 Resonant Near-Rectilinear Halo
Orbit (NRHO) around the Lagrangian Point L2 of the Earth-Moon system. The station
will be built gradually, and a series of rendezvous and docking missions will be necessary to
carry out the actual construction, as well as to refurnish it once operational. Autonomous
Rendezvous, Proximity Operations and Docking (ARPOD) capabilities in cislunar space
would be a great advantage for the deployment and the overall functioning of the Lunar
Gateway.

The use of a Southern L2 9:2 Resonant NRHO offers a variety of advantages. According
to Lee [22], these include:

1. Low orbit maintenance costs due to neutral stability characteristics;

2. The ability to reach the lunar surface within half a day from the orbit perilune;

3. Four-body Ballistic Lunar Transfers (BLTs) can deliver cargo to the NRHO with low
fuel requirements, and it can also be used to depart for interplanetary destinations;

4. Enhanced visibility on the lunar far side, enabling continuous or nearly continuous
communication, which significantly improves the overall infrastructure for lunar
missions;
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5. Low fuel requirements for a splashdown in the northern emisphere of Earth;

6. Absence of Sun eclipses (Figure 2), which can be advantageous for mission planning
and operation.

Figure 2: Southern L2 9:2 Resonant Near-Rectilinear Halo Orbit (NRHO) of the Earth-
Moon system eclipse avoidance property seen by the Earth-centered Sun-Earth synodic
frame and by Moon-centered Earth-Moon synodic frame. Source: Reference [22].

A comparison between different lunar orbits can be seen in Figure 3 for completeness.

Figure 3: Comparison of various cislunar space orbits properties. Source: Reference [23].

In order to understand the behavior of rendezvous and docking operations in this cir-
cumstance, a comprehensive examination is necessary, as studied by Reference [24, 25].
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Vehicles will maneuver in a non-Keplerian environment, making the dynamics highly non-
linear and chaotic. The methods and protocols used in the Apollo/Shuttle programs and
ATV/HTV automated ISS operations, which are based on the assumption of a strong
central gravitational field and linearized dynamics, are not applicable, as stated by Lizy-
Destrez et al. [25]. The complexity of rendezvous is further compounded by the numerous
conditions and constraints that must be met. The target station may require safety zones,
approach-trajectory corridors, and hold points along the way to check the accuracy of the
chaser’s trajectory and switch between suitable sensor suites. Any state of the chaser
vehicle outside the nominal limits of the approach trajectory could lead to a collision with
the target, which would be hazardous to the crew and vehicle. These restrictions are
already difficult to manage in a strong central body gravity field, so in the context of the
cislunar space, new RVD algorithms must be studied and taken into account.

Lizy-Destrez et al. [25] mainly analyzed, in addition to proposing a simple guidance strat-
egy, all the possible safety constraints that can be applied in this context, such as a
keep-out sphere and an approach corridor aligned with the docking port. The article
also pointed out that from a dynamical point of view linearized solutions, due to the
three-body effect, are not reliable and, in order to design properly G&C solutions, a non-
linear equation of motion should be exploited. Colombi et al. [24] pointed out the same
consideration, also claiming the possibility of reaching the target orbit by exploiting the
stable/unstable manifolds (i.e., the typical dynamical structure of a multibody system)
to have safe and fuel-optimal maneuvers. The works of Reference [26, 27] delve further
into these concepts by proposing a fully safe RVD strategy in the cislunar space. This
approach involves the use of manifold exploitation and the selection of optimal holding
points for passive collision avoidance during the far-range rendezvous, as well as a State
Dependant Riccati Equation (SDRE) control strategy during the final approach for active
collision avoidance. A comparable study was conducted by Lorenzo Bucci and Lavagna
[28]. Generally, there is a lack of research on RVD strategies and GNC algorithms for
multibody dynamics. Very few papers and studies have been published on this topic.

0.3. Why Meta-Reinforcement Learning?

In various control research areas, such as robotics [29], automotive [30] and aerospace [31],
Deep-Reinforcement Learning (Deep-RL) has been successful. This branch of machine
learning uses Artificial Neural Networks (ANNs) that are trained through the interac-
tion of the environment to tackle complex sequential decision-making problems known as
Markov Decision Process (MDPs). Neural networks have been shown to be capable of
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accurately estimating any given function [32], making them a great choice to learn (not
designing as traditional controllers) an optimal closed-loop G&C policy by estimating
the solution of the Hamilton-Jacobi-Bellman (HJB) equations [33]. Before the training
phase, the engineer focuses only on defining the MDP and adjusting the training hy-
perparameters. Once the agent has been trained on-ground and the optimal policy has
been identified, its execution on-board requires minimal computing power. This process
is illustrated in Figure 4. In the field of spacecraft G&C, these techniques have been
used for a variety of purposes, such as orbital transfer [34–36], pinpoint planetary landing
[37], hovering around small bodies in unknown gravity [38], rendezvous and proximity
operations [39–43], impact time control [44], and planning images of small bodies [45, 46].

Figure 4: SWIFT system developed by Robotics and Perception Group, University of
Zurich. Source: Reference [21].

Reinforcement Learning (RL) addresses control challenges without requiring exact math-
ematical equations of dynamics or stringent assumptions. It can benefit from domain
randomization to address model uncertainty; agents can be trained with high-fidelity
simulators that have stochastic models and real-time telemetry data [21]. Although these
techniques are closed-loop and provide a great deal of flexibility, they are still not consid-
ered as reliable or safe as traditional methods. Neural networks are capable of learning
within the boundaries of training distributions, but they tend to be unsuccessful when try-
ing to extrapolate beyond these distributions. This could potentially lead to an unstable
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guidance law if the spacecraft encounters states that are not within the training distri-
bution range. Traditional reinforcement learning has another major drawback in that it
requires a large amount of experience to learn even the most basic tasks. The integration
of Long Short-Term Memories (LSTMs) into a Reinforcement Learning (RL) agent, as
proposed by Hochreiter et al. [47], can be used to tackle these problems. This is called
Meta-Recurrent Neural Network (Meta-RNN), a specific instance of Meta-Reinforcement
Learning (Meta-RL) or "learning to learn" [48, 49]. Recurrent agents differ from tra-
ditional Multi-Layer Perceptrons (MLPs) in that they can store temporal data in their
hidden states, which act as internal memory. This leads to increased robustness and im-
proved sample efficiency when learning tasks with randomized parameters. The policy
obtained will be adaptive as the hidden states of the recurrent layers will be altered as
observations are made during the trajectory.

Meta-RL has been shown to be more successful than traditional RL in tackling unmodeled
dynamics and actuator failures [50], multi-task scenarios with uncertain initial conditions
[35], and partially observable dynamics [42]. This approach has been applied with success
to a variety of applications, such as planetary landing [51], control of underactuated
cubesats [52], finite-thrust rendezvous missions [35], interplanetary trajectory design [53],
and close proximity operations of asteroids [50, 54, 55]. All of these studies employ a
particular actor-critic reinforcement learning algorithm, Proximal Policy Optimization
(PPO), to optimize Meta-RL policies. PPO has been shown to be highly effective for
continuous control applications and is currently the state-of-the-art method [56]. By
analyzing the characteristics of Meta-RL and its adaptive G&C, it can be seen that when
testing, the agent’s next action is based not only on the current state and action, but also
on any external factors that were not taken into account during training. This is due to
the recurrent layers, which cause the hidden states to vary depending on the observations
obtained from the environment during the controlled trajectory. The hidden state is able
to store information and learn during training how to modify the internal dynamics of
the LSTM to generate the most suitable output for the task-level goal during testing.
Therefore, Meta-RL is the ideal solution for situations that involve complex time-varying
dynamics, uncertain models, and the possibility of failure.

The latest remarks have focused on the utilization of Meta-RL for a variety of spacecraft
G&C applications. However, when all the reinforcement learning solutions in the context
of spacecraft proximity operations that are available in the literature are taken into ac-
count, there is still a dearth of research. Scorsoglio et al. [57] investigated the potential
of using RL to develop an adaptive ZEM/ZEV algorithm with safety guarantees for RVD
spacecraft in cislunar space. Federici et al. [40] applied RL to create an autonomous
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proximity operations algorithm in the xy-plane with guidance constraints in a Low Earth
Orbit (LEO). Hovell and Ulrich [41] used RL to develop a Deep-Guidance strategy (i.e.,
a reference RL-based trajectory fed into an LQR controller) in LEO. Oestreich et al. [58]
employed machine learning techniques with an LQR controller as a reference trajectory,
while Broida and Linares [59] used it without optimality guarantees. Up until now, no
research has been conducted on the use of RL for spacecraft proximity operations guid-
ance and control that take into account fuel efficiency, three-dimensional motion, complex
dynamics such as the Circular Restricted Three-Body Problem (CRTBP), and safety re-
quirements, without relying on any classical optimal control theory.

0.4. Outline and Research Questions

Outline

1. Theoretical Background: Rendezvous and Docking (RVD) operations safety require-
ments, Cislunar space absolute and relative dynamics, fundamentals of Reinforce-
ment Learning (RL) and Artificial Neural Networks (ANNs), Meta-Reinforcement
Learning (Meta-RL);

2. Problem Formulation: RVD as Optimal Control Process (OCP) and Markov Deci-
sion Problem (MDP) definition, ANNs and hyperparameters selection;

3. Numerical Results: LSTM-policies training and testing, robustness to disturbances
and computational efficiency assessment;

4. Benchmarks: MLP-policies training and testing, optimality assessment through
state-of-the-art Optimal Control Problem (OCP) pseudospectral direct solution,
and Lyapunov’s Direct Method for asymptotic stability evaluation.

Research Questions

This project is centered on two main research questions, as outlined below. Their com-
prehensive exploration, informed by the acquired results and numerical data, is detailed
and discussed in Chapter 5.

1. To what extent can a Meta-Reinforcement Learning algorithm be used as an au-
tonomous spacecraft proximity operations guidance and control algorithm in the
cislunar space? Does it meet safety requirements while being computationally effi-
cient for on-board execution?
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2. What are the benefits of using Long Short-Term Memories (LSTMs) instead of basic
Multi-Layer Perceptrons (MLPs) when it comes to a reinforcement learning agent
for spacecraft guidance and control applications?

0.5. Bibliographic Disclaimer

For the past nine months, I have been a Visiting Researcher at the University of Colorado
Boulder, working in the Autonomous Vehicle Systems (AVS) laboratory under the guid-
ance of Prof. Hanspeter Schaub. I have had the privilege of presenting the progress of my
research on multiple occasions. My findings were featured at the 8th AIAA Intelligent
Systems Workshop in Boulder, Colorado, which took place on 24th and 25th July 2023.
Furthermore, my abstract has been accepted for the 46th AAS Guidance, Navigation, and
Control Conference in Breckenridge, Colorado, from February 1st to 7th 2024.

AVS
Laboratory

Figure 5: The logo of the Autonomous Vehicle Systems (AVS) laboratory at University
of Colorado Boulder.
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1| Theoretical Background

When a pain stimulus occurs, all tentative entries are canceled, and when a
pleasure stimulus occurs, they are all made permanent.

Alan Turing

This chapter provides a comprehensive theoretical foundation for the study of Rendezvous
and Docking (RVD) in cislunar space, including safety requirements and dynamics. Addi-
tionally, it examines modern Machine Learning (ML) fundamentals such as the Proximal
Policy Optimization (PPO) algorithm and Long Short-Term Memory (LSTM) neural
networks to introduce the concept of Meta-Reinforcement Learning (Meta-RL). This the-
oretical foundation is necessary to progress to a systematic examination of implementation
and numerical results.

1.1. Safety Requirements in Cislunar Space

NASA and ESA have been conducting manned rendezvous and docking missions since
Gemini 6 in 1966, and many of the techniques used in the Apollo and Shuttle programs
are still applicable to ATV and HTV rendezvous with the ISS. However, these techniques
are based on the assumption of two vehicles operating in a near circular orbit in a strong
central gravity field, which is not the case in the cislunar environment. Therefore, the
constraints and safety procedures derived from operating in the vicinity of a strong central
body are no longer applicable. Additionally, since the gravity field is shallow in cislunar
orbits, the relative dynamics of proximity motion is almost straight [25], meaning that
the "carving" characteristics of LEO trajectories, which govern the ISS safety standards,
cannot be used.

Investigations into 3 Degrees-Of-Freedom (DOF) relative dynamics in non-Keplerian envi-
ronments are now necessary to identify potential issues in the design of the Lunar Gateway
and to adapt the Rendezvous and Docking (RVD) protocols, which have been established
in LEO for the International Space Station (ISS), to the new non-Keplerian environment.
Here is a helpful collection of definitions [1, 60, 61]:
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• Rendezvous: this phase begins when the chaser vehicle is confirmed to be in an orbit
established in space relative to the target vehicle, and ends at the docking start;

• Docking: the beginning of this phase is marked by the two vehicles’ docking mech-
anisms coming into contact, and it concludes when the hard-mating hooks/latches
are firmly connected. Once the initial contact is established, the rendezvous is fin-
ished. The requirements of the terminal relative state depend on the vehicle and the
docking mechanism, but usually for a successful maneuver [61], the relative position
shall not exceed 1 m and the relative velocity1 shall be no more than 0.1 m/s;

• Proximity Operations: this stage encompasses the stages mentioned above and many
more, such as fly-around, undocking, and departure.

The mission scenario taken into account in this work involves an automated RVD between
a chaser and the target orbiting a Near-Rectilinear Halo Orbit (NRHO). Before construct-
ing a secure trajectory, certain safety boundaries and minimum hold points (places where
the chaser will stop relatively near the target and decide whether to abort the rendezvous
or continue the mission) are established by Gerstenmaier et al. [62]:

• Rendezvous Sphere (RS): the RS is a 10 km radius sphere around the target. Outside
of this perimeter, passive safety, defined as the strategy of avoiding collisions by
using a collision-free trajectory, shall be guaranteed. Here the spacecraft waits for
GO Rendezvous Entry ;

• Approach Sphere (AS): the AS is a 1 km radius sphere around the target. Ac-
tive safety, which involves detecting a potential collision and executing a Collision
Avoidance Maneuver (CAM) by actively using the chaser propulsion system, shall
be provided within this region. At this point the spacecraft waits for GO Approach
Initiation;

• Keep-Out Sphere (KOS): the KOS is a 200 m radius sphere around the target. Here
the spacecraft waits for GO Final Approach;

• Approach/Departure Corridors: the approach and departure corridors are ±20◦

centered to the docking port axis within KOS. The final decision to allow vehicles
to have contact is GO Docking.

The Figure 1.1 and Table 1.1 give a thorough and formal description of the conditions
1In order to accomplish a soft-docking [60], the terminal relative velocity should not exceed 0.03 m/s.

Nevertheless, research in the realm of RL has addressed RVD issues with less stringent requirements
[58, 59] using the same ones used for the Apollo CSM/LM docking maneuver (https://ntrs.nasa.gov/
citations/19730066752), which are considered suitable for this work as a preliminary evaluation of the
proposed G&C algorithm.

https://ntrs.nasa.gov/citations/19730066752
https://ntrs.nasa.gov/citations/19730066752
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and requirements for a successful RVD operation. However, this work focuses on the final
approach phase of rendezvous, and the specific algorithmic requirements (which must
comply with those just mentioned) are outlined in Section 2.1.

Figure 1.1: Notional concept for a successful Rendezvous and Docking (RVD) in the
cislunar space. Source: Reference [62].

Requirement Description

RVD-001 Rendezvous Sphere (RS) shall have a radius of 10 km.

RVD-002 Approach Sphere (AS) shall have a radius of 1 km.

RVD-003 Keep-Out Sphere (KOS) shall have a radius of 200 m.

RVD-004 Approach Corridor shall have half-angle of ±20◦.
RVD-005 Terminal relative position shall be less than 1 m.

RVD-006 Terminal relative velocity shall be less than 0.1 m/s.

Table 1.1: Minimum Guidance, Navigation and Control (GNC) requirements for Ren-
dezvous and Docking (RVD) maneuvers in cislunar space.

Depending on the mission and vehicle, various holding points can be included; generally,
outside of the approach sphere, stable/unstable manifolds [24] should be used to create
passive safe trajectories, while inside it closed-loop control and collision avoidance algo-
rithms should be designed. These procedures are necessary due to the presence of various
sources of orbital deviation: unmodeled acceleration and disturbances, GNC errors, fail-
ures, and so on.
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1.2. Cislunar Space Dynamics

1.2.1. Absolute Dynamics

Synodic Reference Frame

The Circular Restricted Three-Body Problem (CRTBP) can be described by a synodic
reference frame that rotates at a constant angular velocity ωS in accordance with the
motion of two massive bodies around their barycenter. This frame is centered at the
barycenter O of the system and is constructed in such a way that the x̂-axis points from
the larger body to the smaller one at any given time, the ẑ-axis is aligned with the
angular momentum of the system, and the ŷ-axis completes the right-handed coordinate
system, as illustrated in Figure 1.2. This can be condensed to CO : {x̂, ŷ, ẑ}, while
CO : {X̂, Ŷ, Ẑ} is the original non-rotating reference frame.

Figure 1.2: Circular Restricted Three-Body Problem (CRTBP) synodic reference frame.
Source: Reference [63].

The CRTBP equations of motion become autonomous in this reference frame, since the
angular rate of the system ω = ωẑ is a constant.
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Circular Restricted Three-Body Problem

To explain the motion of a massless particle, such as a spacecraft, in the presence of two
massive bodies, such as Earth and the Moon, the most basic model is the Restricted Three-
Body Problem (RTBP). This model takes into account the mass of the body mB, and the
masses of the two massive bodies, m1 and m2, with the assumptions that mB ≪ m1, m2

and m1 > m2. It is possible to simplify the problem and gain useful qualitative insights to
help design practical low-energy orbit transfers by introducing some assumptions. These
include expressing the equations in a rotating reference frame, called the synodic frame
of Subsection 1.2.1, and supposing that the motion of the primary bodies is circular.
This leads to the Circular Restricted Three-Body Problem (CRTBP)[64], which is usually
studied in its normalized form. In this case, the magnitude of the separation between the
two massive bodies r12, the angular velocity of the reference frame ω, and the total mass
of the system mT = m1 +m2 are equal to one. A key definition is the mass parameter µ,
which provides a clear definition of the three-body system:

µ =
m2

m1 +m2

(1.1)

The mass parameters and the non-dimensional units typically used for the Earth-Moon
system are described in Table 1.2 [65, 66].

Parameter Value

µ 0.0121505856

Mass Unit (MU) 6.0458 · 1024 kg

Distance Unit (DU) 3.844 · 108 m

Time Unit (TU) 375200 s

Table 1.2: Characteristic quantities of the Circular Restricted Three-Body Problem
(CRTBP) for the Earth-Moon system.

Consequently, due to normalization, the universal gravitational constant has also been
set to G = 1, and the orbital period of the two massive objects around the barycenter is
T = 2π. The position of m1 is x1 = −µ x̂, and the position of m2 is x2 = 1 − µ x̂. The
equations of motion ẋ = f (x) for the CRTBP are given in Equation 1.2, along with the
definitions of r1 and r2 as the distance of the third body from the two massive ones. The
mass parameter µ is the only factor that affects the dynamics.
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ẍ = 2ẏ + x− (1− µ)
x+ µ

∥r1∥3
− µ

x+ µ− 1

∥r2∥3

ÿ = −2ẋ+ y − (1− µ)
y

∥r1∥3
− µ

y

∥r2∥3

z̈ = (1− µ)
z

∥r1∥3
− µ

z

∥r2∥3

(1.2)

r1 = [x+ µ, y, z]

r2 = [x+ µ− 1, y, z]

(1.3)

(1.4)

When considering the Earth-Moon system, particularly in NRHO, two disturbances can
be taken into account to improve the accuracy of the model without making it overly
complex with ephemeris: Solar Radiation Pressure (SRP) and the gravitational effect
of the Sun as a fourth body. To model the first one, the spacecraft can be thought of
as a perfect reflective sphere with uniform optical properties, and the SRP can be seen
as a continuous and opposing force to the sunlight that is hitting it (Figure 1.3). This
is known as the cannonball assumption [67], a first-order approximation used for the
LAGEOS mission, and is implemented as follows:

aSRP = −Cr
APSRP

m

(
1 AU

∥r4∥

)2
r4
∥r4∥

(1.5)

Figure 1.3: Solar Radiation Pressure (SRP) disturbance modeling through the Cannonball
assumptions. Source: Reference [67].

Where Cr is the reflectivity coefficient of the spacecraft, PSRP = 4.56 · 10−6 Pa is the
pressure of the photons that impinge on the cross section A of the spacecraft, and r4

(Equation 1.6) is the position with respect to the Sun. Instead, the gravitational effect
of a fourth body, such as the Sun, can be computed considering the Bicircular Restricted
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Four-Body Problem (BRFBP)[68]. The Sun and the barycenter of the Earth-Moon system
O moves in a circular coplanar Keplerian orbit around their shared barycenter Ô. This
four-body problem is not consistent, meaning that the motion of the Earth and Moon is
not affected by the Sun’s gravity. The model can be formulated as follows:

r4 (x, y, z, t) =
[
x− rscos (θst) , y − rssin (θst) , z

]
Ω4B (x, y, z, t) =

ms

∥r4∥
− ms

r2s

[
xcos (θst) + ysin (θst)

]
a4B = ∇Ω4B (x, y, z, t)

(1.6)

(1.7)

(1.8)

Where Ω4B is the BCRFBP pseudopotential in the Earth-Moon synodic frame, ms is the
mass of the Sun, ws is the angular velocity and rs is the radius of the circular orbit reflect-
ing the Sun-O motion; thus, the current location of the Sun is

(
rscos (θst) , rssin (θst) , 0

)
.

It is important to note that the Sun is not stationary in the chosen reference frame, re-
sulting in a loss of autonomy. This is a great departure from the CRTBP as both the
equilibrium points and the Jacobi integral vanish.

Figure 1.4: Bicircular Restricted Four-Body Problem (BRFBP) coplanar motion of the
Sun around Ô with respect to the Earth-Moon synodic frame. Source: Reference [68].

Lagrange Points

A potential function Ω (x) can be established in the CRTBP utilizing non-dimensional
normalized synodic coordinates:

Ω (x) =
1

2

(
x2 + y2

)
+

1− µ

∥r1∥
+

µ

∥r2∥
(1.9)
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The CRTBP has a set of autonomous Ordinary Differential Equations (ODEs), thus
equilibrium points may be present in the phase space. To discover them, the following
equation must be solved:

∇Ω (x) = 0 (1.10)

The five solutions of the Circular Restricted Three-Body Problem (CRTBP) are known
as the five Lagrangian (or libration) points. All of them are located in xy-plane with
z = 0. The first three, L1, L2, and L3, are referred to as collinear and are found by
setting y = z = 0. The last two, L4 and L5, are called equilateral and are located when
r1 = r2 = 1. The Lagrange points of the Earth-Moon system are outlined in Table 1.3.

x y z

L1 0.8369151324 0 0

L2 1.1556821603 0 0

L3 -1.0050626453 0 0

L4 0.4878494157 0.8660254038 0

L5 0.4878494157 -0.8660254038 0

Table 1.3: Normalized positions of the five Lagrangian points, comprising three collinear
and two equilateral points, in the synodic reference frame of the Earth-Moon system.

The Jacobian matrix of the system dynamics, when computing the eigenvalues of the
collinear points, produces an unstable result, whereas the equilateral points are stable.
Nevertheless, there are periodic orbits that exist around the unstable collinear points.

State Transition Matrix

The State Transition Matrix (STM) Φ (t, t0) of a dynamical system is used to monitor the
divergence of a trajectory; it predicts how a slight alteration in the initial conditions will
propagate along the trajectory. A particular instance of STM is the monodromy matrix,
which is expressed as M = Φ (t0 + T, t0), and contains information on all the areas that
a spacecraft would traverse during an orbit of period T . The STM can be determined by
taking the partial derivatives of the state vector x (t) = (x, y, z, ẋ, ẏ, ż) with respect
to the initial conditions as follows:
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Φ (t, t0) =
∂x (t)

∂x (t0)
(1.11)

The STM is propagated in time from its initial value Φ (t0, t0) = I employing the following
equation:

Φ̇ (t, t0) = A (t)Φ (t, t0) (1.12)

A (t) =
∂ẋ (t)

∂x (t)
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
∂ẍ
∂x

∂ẍ
∂y

∂ẍ
∂z

0 2 0
∂ÿ
∂x

∂ÿ
∂y

∂ÿ
∂z
−2 0 0

∂z̈
∂x

∂z̈
∂y

∂z̈
∂z

0 0 0


(1.13)

In this work, the Jacobian matrix A (t) of the dynamics of CRTBP (Equation 1.2) is
analytically determined and the propagation of the STM is combined with the dynamical
state equations, forming a system of 42 Ordinary Differential Equations (ODEs).

Construction of Halo Orbits in the CRTBP

In order to gain insight into the behavior of dynamical systems and identify periodic so-
lutions, three types of techniques can be used in this context [69]: Analytical Expansion
Techniques, Poincaré Method, and Shooting Techniques. The latter are especially sensi-
tive to the starting conditions, yet they are highly simple and computationally efficient,
and thus they are employed in this study.

In the CRTBP framework, since Lagrange points are the five simplest solutions, it may
be argued that the next simple solutions are the periodic symmetric orbits. There are
other arbitrarily complicated orbits as well, for instance, not symmetric, but this is be-
yond the scope of this work. This study focuses on the use of a Southern 9:2 Resonant
Near-Rectilinear Halo Orbit (NRHO) around the L2 point of the Earth-Moon system, as
mentioned in Section 0.2. Halo orbits are a well-known three-dimensional periodic solu-
tion to the CRTBP. These orbits are divided into two categories, Northern and Southern,
and are symmetric in relation to the xz-plane. Lyapunov orbits, which are restricted
to the xy-plane, can be used to generate an initial guess for an orbit through a bifur-
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cation technique. Subsequently, a shooting technique (Subsection 1.2.1) is employed to
calculate an elementary Halo orbit from the initial guess, and then a continuation scheme
(Subsection 1.2.1) is used to obtain the desired one.

Moreover, the CRTBP has certain intriguing symmetries that can be used to create peri-
odic orbits. They can be summarized as:

1. If (x, y, z, ẋ, ẏ, ż, t) is a solution, then also (x, −y, z, −ẋ, ẏ, −ż, −t). In other
words, if a trajectory is mirrored across the xz-plane, there is also a trajectory in
the opposite direction that is reflected;

2. If (x, y, z, ẋ, ẏ, ż, t) is a solution, then also (x, y, −z, ẋ, ẏ, −ż, t). Conse-
quently, two distinct types of orbit can be found in the system, one in the North
and one in the South.

This is called the Mirror Theorem by Parker and Anderson [69].

Single-Shooting Differential Correction

Differential Correction [65] is a targeting approach that utilizes the State Transition
Matrix (STM) to adjust the initial conditions of a trajectory in order to meet a certain
set of criteria. The objective of the single-shooting differential correction scheme is to find
an initial state x0 = (r0, v0) that will lead to a desired state x̂f =

(
r̂f , v̂f

)
at a later time

tf with a single propagation leg. The variables x0, x̂f , and tf can be constrained, free,
or unknown, depending on the problem. The routine is allowed to iteratively adjust the
unknown variables to meet the constraints within a certain tolerance. The STM is used to
calculate the adjustment needed in the initial condition δx0 to remove any discrepancy δxf

at the end of the propagated trajectory. Therefore, the essential equation for adjustment
is as follows:

δxf = Φ
(
tf , t0

)
δx0 (1.14)

Beginning with an initial Southern L2 Halo Orbit guess [66] for the Earth-Moon system,
the procedure mentioned above can be used to locate the periodic orbit using the Mirror
Theorem (Paragraph 1.2.1). In particular, starting from:

x0 = [1.120745458770128, 0, 0.011371823619780, 0, 0.175237781529976, 0] (1.15)
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The algorithm2 constraints z0 (Halo orbits are defined through the amplitude Az on the z-
axis) and, in an iterative manner, adjusts x0 and ẏ0 until ẋf and żf become zero when the
trajectory, during its propagation, reaches the xz-plane for a second time at tf . Equation
1.16 serves as the foundation for this differential correction technique: it specifies the
desired change in the elements of the final state and then calculates the approximate
adjustment to the initial state that is necessary to achieve such a modification.

[
δx0

δẏ0

]
=

[
Φ41

(
tf , t0

)
Φ45

(
tf , t0

)
Φ61

(
tf , t0

)
Φ65

(
tf , t0

)]−1 [
−ẋf

−żf

]
(1.16)

Using a non-stiff multi-step Adams integrator with absolute and relative tolerances set
to 10−13, and solving the differential correction problem with a tolerance of 10−13, the
results are presented in Figure 1.5.
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(a) Halo orbit before differential correction.

x [DU]

1.00
1.05

1.10
1.15y [DU]

0.05
0.00

0.05

z [
DU

]

0

Moon

L2

(b) Halo orbit after differential correction.

Figure 1.5: Single-shooting differential correction scheme applied to the initial conditions
in Equation 1.15.

Continuation Method

Periodic orbits in the Circular Restricted Three-Body Problem (CRTBP) can be classified
into families. Each family is composed of an infinite number of orbits that differ from each
other in terms of their properties. All the orbits in the same family can be characterized
by a single parameter, such as their position or velocity on a specific plane. Using a
continuation method [70], it is possible to trace the entire family of orbits once a single
periodic orbit in the CRTBP is known.

2The code for this algorithm can be found at https://github.com/giovannifereoli/CRTBP_
DifferentialCorr_Continuation.

https://github.com/giovannifereoli/CRTBP_DifferentialCorr_Continuation
https://github.com/giovannifereoli/CRTBP_DifferentialCorr_Continuation
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This method starts by changing some parameters of the known periodic orbit and then
adjusting the new conditions using the differential correction technique described in Sub-
section 1.2.1. To guarantee the accuracy of the continuation method, only small modifica-
tions are made. In this study, the entire Southern L2 Halo Orbit family of the Earth-Moon
system is examined. To do this, the component z0 is perturbed first and then the pertur-
bation was shifted to the component x0 when δz0 < δx0, with the differential corrector
adjusted accordingly. Both perturbations were of magnitude 0.005 DU . Following these
steps, Figure 1.6 is generated.
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Figure 1.6: Southern L2 Halo orbits family of the Earth-Moon system obtained combining
differential correction and continuation schemes.

Among the orbits recently discovered, the one chosen for the spacecrafts’ flight is the
Southern 9:2 Resonant NRHO. This orbit is discussed in Section 0.2, but it is worth
mentioning some other properties. A synodic resonant orbit is defined by a resonance
ratio P/Q, where P is the number of orbital periods and Q is the number of lunar
synodic periods. The Southern 9:2 Resonant NRHO has a period of 6.5 days, a perilune
radius of approximately 3250 km, and an apolune radius of around 71000 km. This orbit
is illustrated in Figure 1.7.
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Figure 1.7: Southern L2 9:2 Resonant Near-Rectilinear Halo Orbit (NRHO) of the Earth-
Moon system.

1.2.2. Relative Dynamics

Relative Synodic Reference Frame

The relative motion between a target and a chaser spacecraft, both of generic masses mT

and mC , can be expressed as well in the synodic frame outlined in Subsection 1.2.1. The
origin of the three axes, considering δx, is located at the target, which gives CT : {x̂, ŷ, ẑ}.

Figure 1.8: Relative synodic reference frame centered in the target body. Source: Refer-
ence [63].
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Relative Circular Restricted Three-Body Problem (RCRTBP)

In the literature, many types of relative motion can be found for NRHOs. Lizy-Destrez
et al. [25] studied the Clohessy–Wiltshire (CW) and Linearized Relative Equations (LRE).
Scorsoglio et al. [43] implemented the CW equations near the perilune. Franzini and
Innocenti [71] proposed a set of Non-Linear Relative (NLR) equations in the Local-
Vertical/Local-Horizon (LVLH) frame, which require the computation of the target’s an-
gular velocity and acceleration vectors during its motion around the Moon. However,
certain equations are not suitable for generalization or simplicity, so they are not used in
this study.

The equations of motion for the Relative Circular Restricted Three-Body Problem (RCRTBP)
can be obtained by subtracting the absolute equations of motion from Subsection 1.2.1 of
the target and the chaser, resulting in δx = xC − xT . These equations are expressed in
the Relative Synodic Earth-Moon frame (Figure 1.8) and are given in Equation 1.17.

δẍ = 2δẏ + δx+ (1− µ)

[
xT + µ

∥r1T∥3
− xT + δx+ µ

∥r1T + ρ∥3

]
+ µ

[
xT − µ− 1

∥r2T∥3
− xT + δx+ µ− 1

∥r2T + ρ∥3

]

δÿ = −2δẋ+ δy + (1− µ)

[
yT

∥r1T∥3
− yT + δy

∥r1T + ρ∥3

]
+ µ

[
yT

∥r2T∥3
− yT + δy

∥r2T + ρ∥3

]

δz̈ = (1− µ)

[
zT

∥r1T∥3
− zT + δz

∥r1T + ρ∥3

]
+ µ

[
zT

∥r2T∥3
− zT + δz

∥r2T + ρ∥3

] (1.17)

ρ = [δx, δy, δz]

r1T =
[
xT + µ, yT , zT

]
r2T =

[
xT + µ− 1, yT , zT

]
(1.18)

(1.19)

(1.20)

They are highly advantageous, requiring no extra assumptions in comparison to the Circu-
lar Restricted Three-Body Problem, and thus can be employed in any area of the NRHOs.

To regulate chaser dynamics, a control action, such as u/m, should be incorporated into
Equation 1.17. To account for mass variation along the trajectory, the following equation
should be included as well:

ṁ =
∥u∥
Ispg0

(1.21)

The specific impulse of the chaser thrusters is denoted by Isp, while the constant g0 is
equal to 9.81 m/s2.
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1.3. Reinforcement Learning

The concept of learning through interaction with our surroundings is probably the first
that comes to mind when we consider the essence of learning. Babies playing, waving
their arms, or observing their environment do not have a formal instructor, but they
do have a direct physical connection to their environment. Exploiting this connection
provides a great deal of knowledge about cause and effect, the results of actions, and how
to reach objectives. Learning from interaction is a fundamental concept that is at the
core of almost all theories of learning and intelligence. Reinforcement Learning [33] is
learning what to do, how to map situations to actions, to maximize a numerical reward
signal. The learner is not told which actions to take; instead, the learner must discover
which actions yield the most reward by trying them. It is formalized using ideas from
dynamical systems theory, specifically a discrete-time stochastic control process known
Markov Decision Processes (MDP). A learning agent must be able to sense the state of
its environment to some extent and must be able to take actions that affect the state.
The agent also must have a goal or goals related to the state of the environment.

Reinforcement learning is different from Supervised Learning, the kind of learning from a
training set of labeled examples provided by a knowledgeable external supervisor. This is
an important kind of learning, but alone it is not adequate for learning from interaction.
Reinforcement learning is also different from Unsupervised Learning, which consists of
generally finding the hidden structure in collections of unlabeled data. Therefore, RL is
considered to be a third Machine Learning (ML) paradigm.

One of the challenges that arises in reinforcement learning is the trade-off between ex-
ploration and exploitation. The agent has to exploit what it has already experienced in
order to obtain reward, but it also has to explore in order to make better action selections
in the future. The dilemma is that neither exploration nor exploitation can be pursued
exclusively without failing at the task.

In addition to the agent, there are four main components of a reinforcement learning
system: a policy, a reward signal, a value function, and a model of the environment.
These are discussed in Section 1.3.2.

1.3.1. Reinforcement Learning and Optimal Control

The study of optimal control has been a major thread in the history of early reinforcement
learning. This field of research involves the problem of designing a controller to optimize
a measure of the behavior of a dynamical system over time. Dynamic programming,
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introduced by Bellman in 1954 [72], is a class of methods for solving optimal control
problems. Furthermore, Bellman also developed the discrete stochastic version of the
optimal control problem, known as Markov Decision Processes (MDPs). It is now evident
that reinforcement learning problems are closely related to optimal control problems,
particularly those formulated as MDPs.

In the realm of spacecraft guidance and control, in order to make it autonomous, the
chosen algorithm must be both robust and computationally efficient. In the context of
Optimal Control Problems (OCP), the typical solution choices are open-loop solutions,
such as indirect methods (e.g., Euler-Lagrange equations, Pontryagin Maximum Prin-
ciple) and direct ones (e.g., single or multiple shooting, transcription, and collocation).
However, these solutions cannot generate additional corrections with respect to the nom-
inal reference trajectory, making them unreliable, not flexible, and not robust. An al-
ternative that is more secure is to refer to the family of closed-loop solutions such as
the Hamilton-Jacobi-Bellman (HJB) equations and Dynamic Programming (DP) theory.
These are partial differential equations, which are not computationally efficient. Artificial
Neural Networks (ANNs) can be used as an approximation of these complex solutions [33]
and implemented as a closed-loop controller. Neural networks can be trained with Rein-
forcement Learning to map observations y into optimal control actions u, as illustrated
in Figure 1.9 with a stochastic policy πθ such that u ∼ N (µ,σ).

Figure 1.9: Artificial Neural Networks (ANNs) trained with Reinforcement Learning (RL)
algorithms can map observations y into optimal control actions u. Source: Reference [40].
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Reinforcement learning does not require an expert control engineer for training, making
it a great choice for complicated dynamic situations. Instead of designing a closed-loop
controller, it is learned; the engineering effort is focused on reward engineering and ad-
justing hyperparameters after the environment has been established. Once the policy is
trained, it can be deployed in a computationally efficient manner. To emphasize the close
connection between RL and closed-loop OCP, Figure 1.10 and Table 1.4 are presented.

Figure 1.10: Reinforcement Learning (RL) architecture compared to a traditional closed-
loop dynamical system. Source: https://tinyurl.com/2p9b9wux.

Reinforcement Learning Closed-Loop Optimal Controller

Policy Controller

Environment Plant

Observation Measurement

Action Control Signal

Reward Cost Function

Learning Algorithm Adaptive Mechanism

Table 1.4: Reinforcement Learning (RL) translated into a representation of a closed-loop
optimal controlled dynamical system. Source: https://tinyurl.com/2p9b9wux.

1.3.2. Markov Decision Process

Markov Decision Processes (MDPs) are a well-known way to represent sequential deci-
sion making, where actions taken affect not only immediate rewards, but also subsequent
states and future rewards. This means that MDPs must balance immediate and delayed
rewards, making them a mathematical representation of the Reinforcement Learning (RL)
problem, which is the challenge of learning from interaction to achieve a goal. The learner

https://tinyurl.com/2p9b9wux
https://tinyurl.com/2p9b9wux
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and decision maker is called agent, while the thing with which it interacts is called envi-
ronment. At each successive discrete time step (t = 0, 1, 2, 3, ...) the agent responds to the
environment by receiving a representation of the state, St ∈ S, and then selecting an ac-
tion, At ∈ A (s). As a result of its action, the agent is given a numerical reward Rt+1 ∈ R.
Figure 1.11 shows the interaction between them, leading to a trajectory beginning with:
S0, A0, R1, S1, A1, R2, S2, A2, R3, etc.

Figure 1.11: The agent-environment interaction at each discrete time step in a Markov
Decision Process (MDP). Source: Reference [33].

To utilize this modeling framework, the underlying hypotheses are:

1. State fully observable and known3;

2. Sets of states S, actions A and rewards R all have a finite number of elements;

3. The likelihood of each potential value for St and Rt is only contingent on the im-
mediately preceding state and action St−1 and Rt−1, and not in any way on prior
states and actions. This is called the Markov property.

The MDP environment is described by a discrete probability distribution p : S ×R×S ×
A → [0, 1], which determines the dynamics of the system as:

p
(
s′, r | s, a

) .
= Pr

(
St = s′, Rt = r | St−1 = s, At−1 = a

)
(1.22)

For all s′ ∈ S, s ∈ S, r ∈ R and a ∈ A (s). Generally, actions can be any decisions we
wish to learn how to make, and the state can be anything we can be aware of that could
be beneficial in making those decisions. The expected rewards for state-action pairs can
be calculated using a two-argument function r : S ×A → R such as:

3The spacecraft is assumed to be equipped with all the sensors and algorithms required to accurately
determine its position and speed.
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r (s, a)
.
= E

[
Rt | St−1 = s, At−1 = a

]
=
∑
r

r
∑
s′

p
(
s′, r | s, a

)
(1.23)

Episodes and Tasks

The aim of the agent is to discover how to maximize the total reward it obtains, thus
its attention is on the cumulative reward in the long term and not the immediate reward
Rt ∈ R. Typically, the interaction between an agent and its environment is divided into
sequences known as episodes. At the end of each episode, a particular condition is reached
known as the terminal state, which indicates whether the task has been completed or
not. After this, the system is reset to a standard initial state or a sample from a standard
distribution of initial states. Depending on whether the termination time T is finite
or infinite, episodes can be referred to as episodic or continuous tasks. To prevent high
cumulative rewards and facilitate convergence, the agent applies the concept of discounting
to select actions that maximize the sum of discounted benefits it will receive in the future;
in particular, it chooses action At to maximize the so-called discounted return denoted as
Gt:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... = Rt+1 + γGt+1 =

T∑
k=t+1

γk−t−1Rk (1.24)

Where γ ∈ [0, 1] is the discount rate. The discount rate determines the current value
of a future reward: a reward received k time steps from now is worth only a fraction of
what it would be worth if it were received immediately. This specific discounted reward
formulation combines episodic and continuous tasks taking into account that the end
of an episode, if it exists, enters a special state known as an absorbing state that only
transitions to itself and does not yield any rewards. It allows for T = inf or γ = 1.

Policy and Value Functions

A policy π can be formally expressed as a mapping of states to the likelihood of selecting
each potential action; specifically, π

(
a|s
)

is the probability that At = a when St = s.
The expected discounted return when starting in a state s ∈ S and following policy π is
known as the state-value function vπ. This is defined as follows:

vπ (s)
.
= Eπ

[
Gt | St = s

]
(1.25)
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The expected value of a random variable is denoted by Eπ [·] when the agent follows the
policy π. The expected discounted return when beginning in a state s ∈ S and taking an
action a ∈ A (s) according to the policy π is denoted by the action-value function qπ:

qπ (s, a)
.
= Eπ

[
Gt | St = s, At = a

]
(1.26)

The agent is unaware of these two relations beforehand, but they can be estimated while
learning.

The state-value function has a key feature in which the value of a state s ∈ S under a
policy π is consistent with the value of its possible successor state s′ ∈ S, as expressed by
the Bellman Equation:

vπ (s) =
∑
a

π
(
a | s

)∑
s′, r

p
(
s′, r | s, a

) [
r + γvπ

(
s′
)]

(1.27)

Finding a policy that maximizes the expected discounted return is the goal of solving a
reinforcement learning problem. A policy π is considered to be better than or equal to
another policy π′ if vπ (s) ≥ vπ′ (s) for all states s ∈ S. The most advantageous policy is
known as an optimal policy and is represented by π∗. Its optimal state-value function v∗

is defined as:

v∗ (s) = max
π

vπ (s) (1.28)

The optimal state-value function v∗ must satisfy the self-consistency condition expressed
in Equation 1.27, resulting in the Bellman Optimality Equation 1.29. It can be said that
the state-value function when following an optimal policy must be equal to the expected
discounted return of the most advantageous action from that state:

v∗ (s) = max
a

qπ∗ (s, a) = max
a

∑
s′, r

p
(
s′, r | s, a

) [
r + γv∗

(
s′
)]

(1.29)

The Bellman optimality equation for vπ has a single solution that is not dependent on the
policy. However, there can be multiple optimal policies. In theory, Equation 1.29 can be
solved by knowing the dynamics of the environment, as a system of equations in v∗. Once
one of the optimal actions is identified for a given state, the optimal policy is the one that
assigns a non-zero probability to that action alone. The benefit of v∗ is that it allows us
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to quickly and easily identify the best course of action for any given state by looking at
the immediate rewards it offers. This means that the expected long-term optimal reward
can be determined by evaluating the immediate effects of each action.

1.3.3. Approximated Solution Methods

In order to tackle reinforcement learning problems with a wide state space, tabular meth-
ods are not suitable. Instead, function approximation techniques must be used. This set
of algorithms is designed to approximate functions by training a weighted parameterized
functional form, such as an Artificial Neural Network (ANN). In this class of techniques,
Policy Gradient Methods are preferred due to their greater stability and assurance of con-
vergence, as evidenced by Tipaldi et al. [73]. Moreover, they calculate directly the policy
without requiring a model, although they are less data efficient compared to traditional
value-based methods such as Q-learning. This issue can be addressed by using an actor-
critic architecture, which reduces the estimated policy-gradient variance. Policy gradient
methods are attractive due to their ability to handle high-dimensional, continuous-state,
and continuous-action spaces, especially when combined with nonlinear function approx-
imators such as ANNs. The selected algorithm, Proximal Policy Optimization (PPO), is
currently considered the leading continuous control reinforcement learning algorithm [74].

Policy Gradient Methods

Methods that learn a parameterized policy and select actions without computing a value
function are discussed in this subsection. The parameter vector is expressed as θ ∈ Rd

and the policy as πθ
(
a|s
)
. The algorithms to solve the policy parameters are based

on the gradient of a scalar performance measure J (θ). They are designed to maximize
performance, so the update of the parameters at the training step k follows the gradient
ascent of J :

θk+1 = θk + α∇̂J (θk) (1.30)

Where ∇̂J (θk) is an estimate of the gradient of the performance metric with respect to
the current policy parameters θk, and the step size is determined by the learning rate
α. In RL, the performance metric is usually expressed as in Equation 1.31, which is the
state-value function with respect to the policy determined by the current parameters.

J (θ) = vπθ
(S0 = s) (1.31)
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What is the technique for calculating the performance gradient in relation to the policy
parameters when the effect of policy modifications on the state distribution is unknown?
The Policy Gradient Theorem is a great theoretical response to this issue; it gives a
mathematical expression of the performance gradient in terms of the policy parameters.
It establishes that:

∇J (θ) ∝
∑
s

µ (s)
∑
a

qπ (s, a)∇πθ
(
a | s

)
(1.32)

Gradients are column vectors of partial derivatives with respect to the components of θ,
and µ (s) is the distribution of states following policy π.

The policy πθ
(
a | s

)
is usually chosen to be stochastic in order to allow exploration. For

continuous action spaces, the policy can be expressed as a normal probability density
function, with the mean µ : S × Rd → R and standard deviation σ : S × Rd → R+

determined by a function approximator that depends on the state. In other words:

πθ
(
a | s

) .
=

1

σ (s, θ)
√
2π

exp

−(a− µ (s, θ)
)2

2σ (s, θ)2

 (1.33)

As the learning process progresses, exploration of the environment becomes less important
in favor of exploitation (i.e., a decrease in sigma). When the final policy is deployed, the
exploration is terminated, and the optimal deterministic action for a given observation is
returned.

REINFORCE with Baseline

The first policy-gradient learning algorithm is now ready to be derived. The policy gra-
dient theorem (Equation 1.32) provides an estimate of the gradient that can be acquired
by taking samples from the environment. This expression, due to µ (s), is proportional
to the sum of states experienced under the target policy π, weighted by the frequency of
their occurrence. Therefore, it can be interpreted as follows:

∇J (θ) ∝ Eπ

[∑
a

qπ (St, a)∇πθ
(
a | St

)]
(1.34)

Multiplying and dividing by the policy and substituting a with At sampled from πθ, it
can be expressed as:
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∇J (θ) ∝ Eπ

[
Gt

∇πθ
(
At | St

)
πθ
(
At | St

) ] (1.35)

The step size α can absorb any constant of proportionality, making it easy to use the
gradient estimate in Equation 1.36 to obtain the update of the stochastic gradient ascent
in Equation 1.30, when only one sample trajectory is taken into account.

∇̂J (θ) = Gt

∇πθ
(
At | St

)
πθ
(
At | St

) (1.36)

At each time step, a sample is taken of the latter quantity and an update is made.
Unfortunately, this approach has a high variance and a slow rate of learning. To enhance
it, it can be broadened to include the comparison of the action-value function with an
arbitrary baseline function b (s):

∇̂J (θ) =
(
Gt − b (s)

) ∇πθ (At | St

)
πθ
(
At | St

) (1.37)

The baseline can be any function, even a random variable, as long as it does not depend
on the action taken. It has been shown that the baseline does not introduce bias. Conse-
quently, it is not a bootstrapping technique, which is a method by which an agent updates
its value estimates or policies using predictions from its current estimates, combining prior
knowledge with newly acquired data to improve decision making.

Actor-Critic Methods

This family of techniques attempts to generate an estimate with a lower variance, which is
more suitable for online applications. These methods have the advantages of policy gradi-
ent methods, but with a sample efficiency that is more similar to traditional Q-Learning
[73]. They introduce a bias through a bootstrapping critic, which is similar to the baseline
defined in Equation 1.37, with an estimate of the state-value function v̂w where w ∈ Rm

is a learned weight vector4. As a result, these methods estimate both the optimal policy
through a function approximator known as actor, and the state-value function through
another called critic, which are usually made up of ANNs.

4The state-value function is still contingent on the policy π. In actor-critic methods, a change in
notation has been made, as it is typically a function of certain parameters w ∈ Rm that are then
implicitly associated with the policy.
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The actor-critic methods use a policy gradient estimate within the stochastic gradient
descent algorithm as follows:

∇̂J (θ) = At (St, At)
∇πθ

(
At | St

)
πθ
(
At | St

)
At (St, At) = qπ (St, At)− vw (St)

(1.38)

(1.39)

The Advantage Function, At (s, a), is an indicator of the additional reward that the
agent could receive by taking a certain action from a given state. This method is an
online incremental learning process, where states, actions, and rewards are processed as
they occur, and not reexamined. In many cases, a surrogate objective function is used
to take advantage of automatic differentiation software [56], with its gradient being the
policy gradient estimator, as follows:

L (θ) = Êπ

[
log πθ

(
At | St

)
Ât

]
(1.40)

Therefore, a practical algorithm requires the estimation of both the advantage function
Ât (which is contingent on the unknown environment) and the expectation operator Êπ,
which are typically performed with data from trajectory roll-outs.

Trust Region Policy Optimization

The Trust Region Policy Optimization algorithm is the first actor-critic approach to be
considered. It maximizes a surrogate objective function while constraining the size of the
policy update. It is guaranteed to monotonically enhance the policy function, as stated
in Schulman et al. [74], and is especially effective with large non-linear policies such as
ANNs. Specifically:

max
θ

Êπ

[
πθ

(
At | St

)
πθ,old

(
At | St

)Ât

]

s.t. Êπ

[
KL

(
πθ,old

(
· | St

)
, πθ

(
· | St

))]
≤ δ

(1.41)

The policy prior to parameter update is denoted by πθ,old. The unique feature of this
approach, apart from the surrogate objective function, is the restriction of the Kullback-
Leibler (KL) divergence5 at each point in the state space. This helps to avoid changes to

5The Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted KL (P, Q),
is a type of statistical distance: a measure of how one probability distribution P is different from a second
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the policy that are too drastic, thus guaranteeing robustness and a strong convergence.
This optimization issue can be effectively tackled by utilizing the conjugate gradient
algorithm, after making a linear estimation of the objective and a quadratic estimation of
the constraint. TRPO is a reliable and data-efficient algorithm, especially when it comes
to continuous control tasks [74]. Despite its effectiveness, it is quite complex and difficult
to implement.

Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) algorithm is an actor-critic method that fol-
lows the same principles as TRPO. It is simpler to implement and usually has better
empirical sample complexity, even though it is a first-order approximation. PPO employs
a clipped surrogate objective to generate a pessimistic and conservative estimate of the
policy’s performance without the need for any explicit constraint. Instead of TRPO hard
constraints, PPO uses soft constraints that exploit a clipping parameter ε. The resulting
unconstrained optimization problem is defined as follows:

max
θ

Êπ

[
min

(
rt (θ) Ât, clip

(
rt (θ) , 1− ε, 1 + ε

)
Ât

)]
(1.42)

The probability ratio rt is expressed as:

rt (θ) =
πθ

(
At | St

)
πθ,old

(
At | St

) (1.43)

The first term within min in Equation 1.42 is the objective function of TRPO. The second
term modifies the surrogate objective by clipping the probability ratio, thus preventing rt

from being outside the range [1− ε, 1 + ε]. Finally, by taking the minimum of the clipped
and unclipped objectives, the final goal is a lower pessimistic limit for the unclipped
objective. This scheme disregards a significant alteration in the probability ratio if it
would lead to an improvement in the objective, but if it would cause the objective to
worsen, it is taken into account. Figure 1.12 shows the optimization of the surrogate
function in a single time step in relation to the probability ratio of positive and negative
advantages (left and right, respectively). The red circle on each graph indicates the
starting point of optimization (that is, rt = 1).

An example of a PPO implementation with fixed length trajectory segments, as reported
in Schulman et al. [56], is presented in Algorithm 1.1. This approach runs the policy

reference probability distribution Q.
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in the environment for T time steps and uses all collected samples to update the policy.
In each iteration, each of the N parallel actors collects T time steps of data. Then, the
surrogate loss and the advantage estimates are constructed on these NT timesteps of the
data and gradient descent is applied (typically with Adam optimizer, shown in Section
1.5) for K epochs.

This approach requires an advantage estimator; since it is an actor-critic technique, the
state-value function is learned in conjunction with the policy and then a Generalized
Advantage Estimate (GAE) [75] is typically employed. A truncated GAE version is usually
implemented with Recurrent Neural Networks (RNNs) agents, as proposed by Mnih et al.
[76]. Both versions are discussed in Section 1.5. As shown in Reference [56], PPO takes
only a few lines of code and outperforms TRPO in most continuous control environments.

Figure 1.12: Proximal Policy Optimization (PPO) clipped surrogate objective function
behavior during optimization with respect to different probability ratios and advantage
function signs. Source: Reference [56].

Algorithm 1.1 PPO, Actor-Critic Style. Source: Reference [56].
1: for iteration=1,2,... do
2: for actor=1,2,...,N do
3: Run Policy πθold in environment for T timesteps
4: Compute advantage estimates Â1,...,ÂT

5: end for
6: Optimize surrogate L wrt θ, with K epochs and minibatches size M ≤ NT

7: θold ← θ

8: end for

In certain scenarios, the objective of Equation 1.42 can be augmented by including an
entropy bonus to guarantee adequate exploration, as proposed by Mnih et al. [76]. This
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helps to maintain a balance between exploration and exploitation.The entropy of the
policy π for a given state s is denoted as Hπ (s) and is expressed as:

Hπ (s) = −
∑
a

π
(
a | s

)
log π

(
a | s

)
(1.44)

The objective function of the PPO version with entropy has this bonus term, Hπ (s),
subtracted from it to stimulate exploration. The magnitude of this incentive is regulated
by an entropy coefficient c.

1.4. Artificial Neural Networks

Artificial Neural Networks (ANNs) are commonly used to approximate nonlinear func-
tions. These networks are composed of interconnected units that possess some of the
characteristics of human neurons, the primary components of the nervous system. Deep
neural networks can be classified into three primary types: Feedforward, Convolutional,
and Recurrent networks.

Figure 1.13 illustrates a generic Feedforward ANN, which has an output layer made of
two units, an input layer made of four units, and two hidden layers (no input nor output
layers). Each link is associated with a weight of real value, which is analogous to the
efficacy of a synaptic connection in a real neural network.

Figure 1.13: A Feedforward Artificial Neural Network (Feedforward ANN) with four input
units, two output units, and two hidden layers. Source: Reference [33].
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ANNs are designed to approximate a certain function f by assigning an output value to
an input value through a mapping y = N (x, w). This is done by learning the values of
the parameters w ∈ Rw, which are referred to as weights, to achieve the most accurate
approximation. Each successive unit of hidden layers computes representations of the
raw input that become increasingly abstract, providing features that contribute to the
hierarchical representation of the entire input-output function of the network, rather than
being crafted by hand. ANNs usually learn using a stochastic gradient method. In the
most common supervised learning case, the objective function is the mean square error
on a set of labeled training examples. In reinforcement learning, ANNs aim to maximize
expected reward, as is done in a policy gradient algorithm, by taking advantage of data
coming from interactions with the environment. To achieve this, one must evaluate the
influence that a change in the weight of each connection has on the general performance
of the network; this can be done using a Backpropagation (BP) approach to acquire the
network gradient.

Before delving into the details of a neuron’s structure and the backpropagation process, it
is essential to understand why Artificial Neural Networks (ANNs) can accurately approxi-
mate any non-linear and complex function. This is achieved by using activation functions,
as demonstrated by Theorem 1.1.

Theorem 1.1 (Universal Approximation Theorem). The universal approximation the-
orem takes the following classical form. Let ϕ : R → R be a non-constant, bounded,
continuous function (i.e., the activation function). Let Im denote the hypercube unit m
dimensional [0, 1]. The space of continuous functions with real value in Im is denoted by
C (Im). Then, given any ε > 0 and any function f ∈ C (Im), there exist an integer N ,
real constants vi, bi ∈ R and real vectors wi ∈ R for i = 1, ..., N such that we may define:

F (x) =
N∑
i=1

viϕ
(
wT

i x+ b
)

(1.45)

As an approximate realization of the function f

|F (x)− f (x) | < ε ∀x ∈ Im (1.46)

A review of the most popular activation functions is presented in Table 1.5. In the
past [77], most neural networks employed the Sigmoid activation function, however, its
saturation in most of the domain has now discouraged its use (i.e., very difficult to learn
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using gradient-based methods). Despite this, RNNs have additional requirements that
make sigmoidal units more attractive despite the saturation issue.

Activation Function ϕ ϕ′ Codomain

Hyperbolic Tangent tanhx 1− tanhx (−1, 1)

Sigmoid 1/
(
1 + e−x

)
ϕ (1− ϕ) (0, 1)

ReLu max (0, x) max (0, x) [0, ∞)

Heavyside Step
(
sgn (x) + 1

)
/2 δ0 [0, 1]

Softmax exi/
∑n

j e
xi ϕi

(
δij − ϕj

)
(0, 1)

Table 1.5: Overview of commonly employed activation functions in Artificial Neural Net-
works (ANNs).

Multi-Layer Perceptron

The most popular deep model is the Feedforward ANN, also known as a Multi-Layer
Perceptron (MLP). This type of network has an information flow that goes from the
input layer, through the hidden layers, and finally to the output without any feedback.
This creates an acyclic graph. When designing such a neural network, it is important to
consider two important design parameters:

1. Depth: neural networks are usually composed of multiple layers, which are com-
monly referred to as input, hidden, and output layers, and are evaluated in succes-
sion;

2. Width: each layer is typically a vector-valued function, and its size is indicated by
the amount of neurons it contains.

Figure 1.14: Elementary architecture of a Multi-Layer Perceptron (MLP). Source: Refer-
ence [78].
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The elementary unit of an MLP is the neuron. With reference to Figure 1.14, the so-called
induced local field vj of the neuron j, which is the input of the activation function φj (·),
can be expressed as:

vj =
∑
i∈Ci

wijxj + bj (1.47)

The neurons in the set Ci are linked to layer j, and bj is the bias term. The output
yj of a neuron is determined by the activation function (which performs the nonlinear
transformation) applied to the local field vj:

yj = φj

(
vj
)

(1.48)

Backpropagation Algorithm

Most of the training algorithms for artificial neural networks are based on Backpropagation
(BP). Generally, finding the weights and biases of an ANN involves identifying the optimal
set of variables that minimize a given loss function:

(w∗, b∗) = argmin J (w, b) (1.49)

It is not possible to obtain a closed form solution, so it is common to use iterative methods
that make use of the derivative of the objective function to reach the optimal value. The
backpropagation algorithm is a smart way to calculate these derivatives, which can then
be used with certain optimization algorithms. Thus, backpropagation only refers to the
technique for computing the gradient, while another algorithm, like stochastic gradient
descent, is used to do the actual learning with the gradient.

In gradient-based approaches for a traditional MLP, the weights of a neuron, wij, are
adjusted according to the direction indicated by the partial derivatives. This direction
can be determined using the chain rule as:

∂J

∂wij

=
∂J

∂yj

∂yj
∂vj

∂vj
∂wij

(1.50)

The weights of the neurons are adjusted by ∆wij through a gradient descent step in
the weight space, which is based on the gradient made up of the partial derivatives of
Equation 1.50. The backpropagation algorithm is called this way because it involves two
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passes through the network: a forward pass and a backward pass. During the forward
pass, the output of the network and the activation function of each neuron are evaluated
without altering the weights. The backward pass begins at the output layer, sending the
loss function back to the input layer, and calculating the local gradient for each neuron.

Artificial Neural Networks (ANNs) are susceptible to two main issues during training. The
first is overfitting, which is the inability to accurately generalize to cases where the network
has not been trained. This is a common problem for ANNs, but especially so for deep
ANNs due to their large number of weights. To reduce overfitting, various techniques have
been developed, such as cross-validation, regularization, and weight sharing.The second
issue is that backpropagation may not be effective due to the partial derivatives computed
by its backward passes. These derivatives can either decay rapidly towards the input side
of the network, making learning by deep layers very slow, or they can grow rapidly towards
the input side of the network, making learning unstable. These occurrences are referred
to as vanishing and exploding gradients, respectively.

1.4.1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are ANN architectures that contain at least one feed-
back loop in their layer interactions. These networks are capable of efficiently processing
time series data and sequential data in general. The connections between neurons create
a directed graph, enabling the network to store memory and display temporal dynamic
behaviors through a time-dependent internal state. A many-to-many RNN (a type of
neural network that takes a sequence of input data and produces a sequence of output
data) is typically expressed at time step t with hidden state ht and output yt as:

ht = φ(whhht−1 + whxxt + bh)

yt = wyhht + by
(1.51)

This architecture is illustrated in Figure 1.15 as a computational graph, a way to express
the structure of a set of computations (such as those used to map inputs and parameters
to outputs). The process of unfolding a RNN involves transforming it into a compu-
tational graph that illustrates how the parameters are shared across the deep network,
particularly the recurrence of hidden states. The concept of unfolding is the basis of the
Backpropagation Through Time (BPTT) method, which gives RNN the ability to calcu-
late gradients. Unfolding provides a clear understanding of the calculations that must be
performed. This concept is necessary because, as shown in Equation 1.51, it is evident
that ht depends on ht−1.
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The BPTT algorithm is a straightforward application of backpropagation to the compu-
tational graph of an unfolded RNN. This makes it easy to calculate the gradient, which is
done in reverse order from t = T to t = 1. The gradient obtained can then be used with
any gradient-based optimization technique. The fundamental equation of BPTT for the
weight whh can be expressed as:

∂J

∂whh

=
T∑
t=1

∂J

∂ht

∂+ht

∂whh

(1.52)

In order to prevent vanishing/exploding gradients and improve memory efficiency, Trun-
cated Backpropagation Through Time (Truncated BPTT) is often used when dealing with
long time series data:

∂J

∂whh

≃
T∑

t=T−n

∂J

∂ht

∂+ht

∂whh

(1.53)

Taking into account only n time steps in the backward pass, the gradient is truncated.
This allows the hidden state to be initialized at t = T −n instead of the usual 0. The only
downside is that the gradient is biased and the trained network has a reduced memory.

Figure 1.15: Many-to-Many Recurrent Neural Network (RNN) cell and its computational
graph after unfolding process. Source: Reference [77].

Long Short-Term Memory

The mathematical challenge of learning long-term dependencies in Recurrent Neural Net-
works (RNNs) has a fundamental issue: the gradients propagated over many stages tend
to either vanish (most of the time) or explode (rarely, but with much harm to optimiza-
tion). To tackle this issue, Gated Recurrent Neural Networks (Gated RNNs) have been
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created. The idea behind these cells is to create pathways through time that have deriva-
tives that never vanish or become too large, which are accomplished through structures
known as gates. Rather than simply accumulating information over a long period, it is
advantageous for the neural network to be able to forget the old state and learn when to do
so. The gates allow the network to selectively update and control the flow of information
through it.

The Long Short-Term Memory (LSTM) network is a type of Gated RNN that is widely
used to make predictions based on time series data. This architecture was first proposed
by Hochreiter and Schmidhuber [79]. The main concept of an LSTM network is that a cell
state allows data to pass through three gates, which are made up of a sigmoid activation
layer and point-wise multiplication operations. The sigmoid layer of each gate produces
a value between 0 and 1, which decides how much core information is processed. The
LSTM cell state is closed-loop, meaning that there is an internal recurrence in addition
to the external recurrence of a regular RNN hidden state (which is also present through
the output state6).

Figure 1.16: Internal architecture of a Long Short-Term Memory (LSTM). Source: Ref-
erence [78].

6In literature, the notation of Long Short-Term Memory (LSTM) is sometimes not uniform. Generally,
the cell state is denoted by Ct and the hidden state, which is also the output in this case unlike RNNs,
is symbolized by ht. To maintain the definition of the vanilla RNN in Equation 1.51 and make concepts
more understandable, a more "aerospace" notation [80] is used.
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The key components of the LSTM network are summarized as follows:

• Cell state (h): the cell state conveys information through different time steps and
is modified by linear interactions with the gates.

• Forget gate (f): the forget gate determines which information should be removed
from the cell state.

f = σ
(
wfyyt−1 + wfxxt + bf

)
(1.54)

• Input gate (i): the input gate is utilized to determine which new information should
be included in the cell state. Subsequently, a hyperbolic tangent is used to generate
a candidate cell state h̃t through point-wise multiplication.

i = σ
(
wiyyt−1 + wixxt + bi

)
h̃t = i · tanh

(
wcyyt−1 + wcxxt + bc

) (1.55)

(1.56)

• Memory gate: the memory gate adds the old cell state from the forget gate to the
candidate one. It is not presented as a standalone gate because it is a modification
of the cell state itself without a sigmoid layer.

ht = fht−1 + h̃t (1.57)

• Output gate (o): the network output yt is obtained by the output gate filtering the
cell state.

o = σ
(
woyyt−1 + woxxt + bo

)
yt = o · tanhht

(1.58)

(1.59)

1.5. Meta-Reinforcement Learning

The development of GNC autonomous systems presents a major challenge in terms of ro-
bustness to uncertain spacecraft models and environments. Reinforcement learning deep-
agents, such as Feedforward ANNs, are usually successful in learning within the training
distributions but often have difficulty extrapolating beyond them (low generalization ca-
pability). This can lead to an unstable guidance law when the spacecraft encounters states
that are not part of the training distribution. Moreover, traditional RL requires a large
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amount of experience to even learn basic tasks (sample inefficiency). To address these
two main weaknesses, recent advances in Meta-Reinforcement Learning (Meta-RL) have
been made. This is a Machine Learning (ML) technique in which an agent is taught a
range of tasks (that is, randomized environment parameters) instead of just one, allowing
it to create a meta-policy that can quickly adjust to new and unseen tasks with minimal
experience [49]. This enables the agent to generalize its knowledge and adapt its policies
efficiently, making it more flexible and capable of fast learning in unfamiliar settings. This
transfer learning ability has been referred to as "learn to learn" by Wang et al. [48]. There
are numerous approaches to put these ideas into practice, such as Meta-Agnostic-Meta-
Learning (MAML), Task-Agnostic Meta-Learning (TAML), REPTILE, Meta-SGD, and
many more [81–83]. One of the most popular approaches, as proposed by Hochreiter et al.
[47], is to employ Long Short-Term Memory (LSTM) networks within a reinforcement
learning agent, referred to as Meta-Recurrent Neural Networks (Meta-RNN). Alternative
methods become impractical when dealing with large models. However, this implemen-
tation, which uses gradient descent on LSTMs, proves capable of managing a substantial
number of free parameters. The approach excels in handling non-stationary time series
prediction in a single training sequence and has demonstrated applicability to learning
and autonomous systems.

The Meta-RNN approach has been studied in the aerospace field and has been shown
to be more effective than traditional RL in managing uncertain environments, actuator
failures, and Partially Observable MDPs (POMDPs) [35, 40, 50]. The hidden states of
Long Short-Term Memory (LSTM) networks provide them with an internal dynamics
that is continually updated by new observations along the trajectory. This contributes to
better learning in high-uncertainty environments during the training phase and allows for
an adaptive policy during the testing phase. The resulting G&C algorithm has a higher
overall robustness due to these properties, which is especially important after deployment.
Unlike MLPs, LSTMs can modify their hidden state and adjust in real time to capture
data that have not been modeled, such as dynamical disturbances or hardware failure,
during spacecraft operations. Therefore, Meta-Recurrent Neural Networks (Meta-RNN)
is the Meta-Reinforcement Learning solution adopted in this work.

Training Algorithm

In Subsection 1.3.3, PPO was discussed. As it is a model-free algorithm, meaning it does
not possess any knowledge of the environment, an estimation of the advantage function
must be provided in order to put it into practice. As mentioned previously, At (s, a)

(Equation 1.37) is used in actor-critic methods to reduce the variance of the policy gradient
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estimate, although it comes with some bias [75]. According to Sutton et al. [84], the
Residual Temporal-Difference (Residual TD)7 of the discounted value function is defined
as:

δvt = Rt + γvπ (St+1)− vπ (St) (1.60)

This value can be thought of as an unbiased estimator of the advantage function, provided
that the state-value function is estimated as vw (s), as follows:

Ât = Êπ
[
Rt + γvw (St+1)− vw (St)

]
(1.61)

This estimator has a high variance, which can cause instability during the learning process.
To gain more control and stability, it may be beneficial to find a formulation that balances
the trade-off between bias and variance, allowing also for tuning. By using a telescopic
sum for t → ∞ of the δvt terms and introducing an exponentially weighted average with
the coefficient λ (which controls the trade-off between bias and variance), the Generalized
Advantage Estimate (GAE) [75] can be calculated as follows:

ÂGAE
t =

∞∑
k=0

(γλ)k δvt+k (1.62)

At the end of each episode, the algorithm truncates the formula for t = T to be able to
apply this estimator to LSTM networks [76]. To calculate ÂGAE

t , the state-value function
must still be estimated. To do this, a variety of different techniques can be employed.
If a non-linear function approximator is used to represent the state-value function, the
most straightforward approach is to solve a nonlinear regression problem by minimizing
the Mean Squared Error (MSE):

JMSE (w) = Êπ


vw (St)−

T∑
k=t

γk−tRt

2
 (1.63)

In order to calculate the expectancy operators, batch learning is used. In this machine
learning technique, the model is trained on the entire data set in one go at each training

7This definition builds on the classic Temporal-Difference (TD) learning framework and introduces
the concept of residuals to improve the estimation of the value function. Residuals are the discrepancies
between the target values and the current value estimates. The target value is usually a combination of
the immediate reward and the estimated value of the next state based on the current value function.
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cycle. The parameters of the model are only updated once, after the entire training data-
set has been processed. In reinforcement learning, this implies that a batch of trajectories
(or roll-outs) is created through interaction with the environment prior to the training
cycle. The amount of trajectories collected is determined by a hyperparameter known as
the batch size. The architecture of the algorithm is shown more clearly in Figure 1.17.

Gradient ascent is used for both unrolled LSTM-based actor and critic networks, and
Backpropagation Through Time (BPTT) is used to compute the gradients of the param-
eters θ and w (as demonstrated in Equation 1.52). At each epoch k of the gradient-based
optimizer (e.g. Adam), the update equations are implemented as follows:

θk+1 = θk + βθ∇̂J (θk)

wk+1 = wk + βw∇̂J (wk)

(1.64)

(1.65)

For each set of roll-out data, the gradient descent step is applied a certain number of times,
called epochs, which is a hyperparameter. The algorithm will stop when the maximum
number of predetermined learning steps is reached.

Figure 1.17: Meta-Reinforcement Learning (Meta-RL) training architecture for Recurrent
Proximal Policy Optimization (Recurrent PPO) algorithm. Source: Reference [73].

Typical implementations track KL-divergence, which is sometimes used as an early stop-
ping flag [85] or to adjust the PPO clipping parameter [74]. A biased estimator8 is typically
used to calculate it, as follows:

K̂L
(
πθ, πθ,old

)
=

1

2

(
log πθ − log πθ,old

)
(1.66)

8http://joschu.net/blog/kl-approx.html

http://joschu.net/blog/kl-approx.html
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The weights in the LSTM networks are typically initialized using either a Xavier or
Orthogonal approach. This is a critical step, as incorrect initialization can lead to is-
sues such as all layers learning the same feature, or vanishing/exploding gradients. The
Xavier initialization method samples matrix weights from a normal distribution, such as
m ∼ N

(
µ = 0, σ2 = 1/ninput

)
. The orthogonal initialization method is designed to pre-

vent ill-conditioned gradients by starting from and then multiplying matrices with unitary
eigenvalues. This technique creates a matrix by drawing weights from a normal distribu-
tion and then making the rows of the matrix orthogonal to one another through either
the Gram-Schmidt process or the QR decomposition.

The algorithm described above, due to the specific version of GAE implemented and the
use of BPTT, produces a version of PPO that is suitable for use with LSTM networks,
called Recurrent Proximal Policy Optimization (Recurrent PPO) [52]. The following is
an illustration of the algorithm:

Algorithm 1.2 Recurrent PPO
1: Initialization of neural network parameters θ and w

2: for step=1,2,..., learning steps do
3: Reset environment
4: for episode=1,2,..., batch size do
5: Run Policy πold in environment until done
6: Compute advantage estimate ÂGAE

t

7: Store trajectory into batch roll-out
8: end for
9: for iteration=1,2,..., epochs do

10: Unroll Agent LSTMs
11: Optimize Actor JPPO wrt θ and Critic JMSE wrt w

12: θold ← θ, wold ← w

13: end for
14: end for

The implementation of Recurrent PPO, and PPO in general, involves a number of complex
optimizations that are not discussed in depth or even mentioned in Schulman et al. [56].
However, these optimizations have been found to have a significant effect on the efficacy
of PPO [86]. Examples of these include value-function clipping, reward and advantage
normalization, learning rate annealing, global gradient clipping, state-independent loga-
rithmic standard deviation, and many more. To ensure robustness, consistency, compara-
ble results with other researchers, and high flexibility (once the environment is set up, one



1| Theoretical Background 49

can experiment with a variety of RL algorithms), this work utilizes the Stable-Baselines3
(SB3)9 library. This is a collection of reliable implementations of reinforcement learning
algorithms in PyTorch, an open-source machine learning library created mainly by the
Facebook AI Research (FAIR) Laboratory.

Optimization Algorithm

The family of optimization algorithms used is Gradient Descent (GD)[87], a method in
which the parameters θ of an objective function J are adjusted in the opposite direction
of the gradient of the objective function ∇J (θ) with a step size α called the learning
rate10. This process, which ends when the gradient is zero, eventually leads to a local
optimal solution based on the batch of data used to estimate the gradient. The standard
equation of update is the following:

θk+1 = θk + α∇̂J (θk) (1.67)

Methods in this family typically compute each update to the parameters based on the
estimated cost function gradient using only a portion of the overall training data. Algo-
rithms that use the entire training set are known as Batch Gradient methods, while those
that use a subset of training examples are usually called Stochastic Gradient methods.
Reinforcement learning algorithms, such as Algorithm 1.2, often use the last type, which
involves the gradient descent of Equation 1.67 with the gradient computed using a roll-out
of trajectories. This is referred to as Stochastic Gradient Descent (SGD) [77].

Stochastic Gradient Descent (SGD) has inherent randomness or variability in gradient
estimates that come from using a randomly chosen subset of training data in each iteration.
This noise is a key feature of SGD and sets it apart from deterministic optimization
techniques such as batch gradient descent. To address this problem, two strategies can
be beneficial [77]:

1. Momentum can be used to accelerate the learning process by accumulating an ex-
ponentially decaying moving average of past gradients. SGD with momentum is an
algorithm that implements this concept and computes the first moment estimate
mk in the learning step k as follows:

9https://stable-baselines3.readthedocs.io/en/master/index.html
10A high learning rate implies that the system is responsive to new information, adapting quickly.

However, this also means that the system is more likely to forget and replace old data. On the other
hand, a low learning rate makes the system less flexible, leading to a slower learning process and less
susceptibility to noise.

https://stable-baselines3.readthedocs.io/en/master/index.html
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mk = β1mk−1 + (1− β1) ∇̂J (θk) (1.68)

The first moment estimate mk is the mean of the gradients, with a momentum
hyperparameter β1.

2. Adaptive learning rate decreases the size of steps over time to reduce the amount of
noise that is present when approaching the minimum. The RMSProp algorithm uses
an adaptive learning rate αk which is calculated at the learning step k as follows:

αk =
α√

vk + ϵ

vk = β2vk−1 + (1− β2)
(
∇̂J (θk)

)2 (1.69)

(1.70)

The second moment estimate vk is the mean of the squared gradient values, with a
decay factor β2 and a smoothing parameter ϵ.

The Adaptive Moment (ADAM) Estimation method [88] includes concepts of momentum
and adaptive learning rate. Momentum is taken into account through a biased estimate of
the first gradient moment mk, while adaptive learning rate is taken into account through
a biased estimate of the second gradient moment vk. In particular:

mk = β1mk−1 + (1− β1) ∇̂J (θk)

vk = β2vk−1 + (1− β2)
(
∇̂J (θk)

)2 (1.71)

(1.72)

These estimators are biased because the initial values of the first and second moments
are initially set to zero. Consequently, their bias must be adjusted in the course of the
iterations, leading to bias-corrected estimates of the first and second moments as follows:

m̂k =
mk

1− βk
1

v̂k =
vk

1− βk
2

(1.73)

(1.74)

Taking into account the adjusted moments, the Adam algorithm step is computed as
follows:

θk+1 = θk +
α√

v̂k + ϵ
m̂k (1.75)
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It should be noted that, typically, the decaying rates are set to the default values of 0.9
and 0.999, as recommended by Goodfellow et al. [77]. The same is true for the smoothing
parameter ϵ, which is set to 10−8. The only hyperparameter that must be manually chosen
is the learning rate. Adam is usually quite tolerant when it comes to parameter tuning,
although the learning rate may need to be changed from the recommended default.
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I am, and ever will be, a white socks, pocket protector, nerdy engineer.

Neil Armstrong

This chapter examines the application of reinforcement learning to an autonomous space-
craft guidance and control problem. It starts by describing the spacecraft’s final approach
and docking procedure that is taken into account in this work. Then it goes into the im-
plementation approach, including the formulation of the Markov Decision Process (MDP)
formulation, neural network design, and hyperparameter selection. This two-part narra-
tive provides an overview of the complexities of the problem and the technical solutions
that make up the proposed approach.

2.1. Study Case

The objective of this work is to design an autonomous G&C algorithm for a spacecraft’s
final approach and docking phases in cislunar space. This algorithm will move the space-
craft from GO Final Approach to GO Docking in a secure way (Section 1.1). Before this
stage, stable/unstable manifolds offer a reliable and robust natural corridor for a chaser
spacecraft, which can be utilized in approaching the target with passive safety assurances.
The chaser should aim to utilize these orbits to complete the far-range rendezvous (e.g.,
100 km) and then directly inject into the NRHO at a point situated on the edge of the
Keep-Out-Sphere (KOS). Within this region, it is essential to have continuous control and
active collision avoidance; however, periodic central manifolds can still be used as passive
safe holding points, either on the edge of the KOS or within it.

If the chaser spacecraft is situated at the Southern L2 9:2 Resonant NRHO apolune at
a certain distance from the target, it can be used as a holding point until it is given the
go-ahead to begin its final rendezvous stages. The initial conditions of this motion would
guarantee that, when this strategy is used, collisions with the target are passively avoided.
Additionally, Reference [24, 25] has identified the apolune region of NRHOs as the most
suitable point for complex controlled proximity operations due to its slower dynamics,
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which provides greater safety and less fuel consumption. Therefore, the NRHO apolune
is chosen as the starting point for the maneuver, and the chaser is situated on a holding
point within the KOS that is behind the target in the direction of the orbital motion.

This concept is illustrated in Figure 2.1, where it is possible to observe from an absolute
perspective the initial position on the NRHO and from a relative perspective the passive
safety of the holding point on the periodic manifold (no collision over the course of a
single orbit). The equations of motion, both absolute and relative, and the reference
frames associated with them are outlined in Section 1.2.
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(a) Absolute synodic reference frame.
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Figure 2.1: Chaser and Target on the Southern 9:2 Resonant Near-Rectilinear Halo Orbit
(NRHO) of the Earth-Moon system apolune at a relative distance of 200 meters, Keep-
Out-Sphere (KOS) edge, during one orbital motion.

The present study takes into account the Lunar Gateway as the target and the Orion
spacecraft as the chaser. This work includes the main characteristics of Orion (Table 2.1).
The OMS-E and Aux-E thrusters are oriented in the direction of the ĉ2 body-axis.

Value

Mass [kg] 21000

Thrust [kN] 25.7 (OMS-E), 0.45x8 (Aux-E)

Isp [s] 310

Table 2.1: Data and primary characteristics of NASA’s Orion spacecraft.

The RVD maneuver shall respect certain requirements1 to ensure the safety of the ap-
1Shall: Mandatory requirements or hard requirements, which must be implemented. They constitute
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proach and correct docking. A review of the literature’s fundamental requirements for
the entire maneuver is conducted in Section 1.1, and the list of constraints to be taken
into account for the algorithm, which focuses solely on the final approach and the docking
phase, is as follows:

• Docking Port: in order to ensure a successful automated docking, the final relative
position and velocity shall be ρf < ρf,max and ρ̇f < ρ̇f,max respectively. The selected
values are ρf,max = 1 m and ρ̇f,max < 0.1 m/s;

• Approach Corridor: the chaser shall remain within a truncated cone with a half
angle of β = 20 ◦ for safety and vision-based navigation purposes. Assuming that
the target docking port is located on its positive t̂2 direction, the truncated cone
requirement is expressed as follows:

ρ∗ (t) · t̂2 − ρ∗ (t) cos (β) > 0 ∀δy ≥ 0,∀t

ρ∗ (t) = ρ (t) +

[
0,

ρf,max

tan β
, 0

]T (2.1)

(2.2)

A truncated cone [1], known as a frustrum, offers a more realistic docking port model
(Figure 2.2) and avoids singularities, enhancing the convergence properties of the
algorithm. Additionally, the unrestricted small frustrum base proves advantageous;
as the spacecraft progresses, it facilitates the docking mechanism by nearing the end
of the docking port stroke (noting that post-docking stability should be addressed).

Figure 2.2: Androgynous Peripheral Docking System (APDS) of Orion spacecraft on left,
Sistema Stykovki i Vnutrennego Perekhoda (SSVP) of Soyuz spacecraft on right. Source:
https://tinyurl.com/5e4zrkpv.

This is proposed by Lee [22] and is achieved by using an alternate relative position
ρ∗ with respect to a point in the −t̂2 direction to have a small frustrum base that

the core requirements of the project to fulfill the mission objectives. Should: These requirements aim
to improve the performance or outcome of the mission

https://tinyurl.com/5e4zrkpv
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meets the docking port requirement. This work assumes that the origin of the target
body frame BT : {t̂1, t̂2, t̂3} is situated in the center of the docking port opening.
The chaser will aim for this point during the RVD maneuver, and then the docking
port system will take care of the rest. The requirement should be stated in the
body frame of the target, as the orientation of the cone axis depends on its attitude.
Therefore, it is assumed also that the target remains aligned with the Earth-Moon
synodic frame such that t̂2 ≡ ŷ. The attitude of the chaser should be adjusted in
accordance with its docking port’s position in its body frame. This situation is
depicted in Figure 2.3.

Figure 2.3: The approach corridor is represented by a truncated cone with a maximum
semi-angle of β and a small frustum base designed to satisfy the docking port requirements.

• Time-Of-Flight (ToF): the RVD maneuver shall be completed in a limited period
of time. To guarantee success, it is essential to be able to set limits on the time of
flight for such missions, thus t < ToFmax must be fulfilled. The value of ToFmax

will be determined on an individual basis in the subsequent chapters;

• Thrusters Performance: the data sheet’s maximum thrust value shall be adhered
to in order to create a viable control action profile. It is essential to ensure that
u (t) < umax, where umax = 29.3 kN according to Table 2.1.

2.2. Optimal Control Problem Formulation

Taking into account the requirements mentioned above, it is simple to create an Optimal
Control Problem (OCP): "Find the control action profile that minimizes control effort and
such that dynamics, initial conditions, maximum control action, maximum time of flight,
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approach corridor and final docking port requirements are respected". It can be expressed
mathematically as follows:

min
u

J =

∫ tf

t0

||u (t) ||dt

s.t. ẋ (t) = f
(
x (t) ,u (t)

)
∀t

x (t0) = x0

u (t) < umax ∀t

t < ToFmax

ρ∗ (t) · t̂2 − ρ∗ (t) cos (β) > 0 ∀δy ≥ 0,∀t

ρ
(
tf
)
− ρf,max < 0

ρ̇
(
tf
)
− ρ̇f,max < 0

(2.3)

The dynamics of the system, referred to as f , is extensively covered in Section 1.2. The
state x (t) within the ODEs comprises the absolute target state, the relative chaser state,
and its associated mass. The details of the other constraints are discussed in Section 2.1.
To solve the Optimal Control Problem (OCP) with Meta-Reinforcement Learning (Meta-
RL), it is converted to a Markov Decision Process (MDP) in Section 2.3. The Markov
property is satisfied once the problem is discretized in time, so it can become an MDP.

2.3. Markov Decision Process Formulation

The agent’s goal in a Markov Decision Process (MDP) is: "Find the control policy π∗ that
maximizes the discounted expected return of rewards received along a trajectory and such
that the policy, the environment’s dynamics, and the initial conditions are respected". The
MDP is mathematically expressed as follows:

max
π

J = Eπ

[
Gt | St

]
s.t. At = π (St)

St+1 = ϕ (St, At)

S0 ∼ N
(
Ŝ0, C

) (2.4)

The dynamics of the environment, discussed in Subsection 2.3.3, is taken into account by
the second constraint, which produces the system state St (not to be confused with the
ODEs state xt) at each time step t. MDPs are capable of handling both deterministic
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and stochastic dynamics; this work takes into account the latter in order to strengthen
the reliability of the algorithm. Operational constraints (docking port requirements, ap-
proach corridor, flight duration, and maximum control action) and fuel minimization are
"translated" by specifying the reward function in Subsection 2.3.2. MDPs are not as
elegant at dealing with constraints as OCPs; in fact, constraints are expressed as large
positive or negative rewards or the end of an episode. The last constraint in Equation 2.4
specifies the initial state as a random variable drawn from a normal distribution.

2.3.1. State and Action Spaces

The neural networks of the agent use the state space as input, which is a set of coordinates
that provide information to generate the action or prediction of the state-value function.
As suggested by Wilson and Riccardi [89] in a spacecraft RVD problem, it is beneficial
to include both the absolute state of the target and the relative state of the chaser. The
mass of the chaser is also taken into account; optimization of fuel consumption should
be part of the reward function. To meet time constraints, the remaining flight time
∆Tt = ToFmax − t is also included. Furthermore, to keep track of all episodes’ history
and allow LSTMs to internally update their dynamics more effectively, Hochreiter et al.
[47] emphasize the importance of including the action and reward of the preceding time
step in the observations. Therefore, the state space S ∈ R18 consists of:

St =
[
xT
t , δxt, mt, ∆Tt, ut−1, Rt−1

]
(2.5)

In ANNs, it is advisable to normalize inputs to ensure consistent feature scales and en-
hance stability during training, preventing certain features from exerting excessive influ-
ence, which can lead to slower and less reliable convergence. Hence, a straightforward
Min-Max normalization [90] is chosen and the normalized state S∗

t ∈ [−1, +1] is created
for each of its elements using the following equation:

S∗
t,i = 2

(
St,i − Smin,i

Smax,i − Smin,i

)
− 1 (2.6)

Once the problem is defined, the extremal components of St are identified. The specific
zero-centered Min-Max approach utilized, especially in combination with the selected
activation functions outlined in Section 2.4, effectively addresses symmetry issues in weight
initialization and enhances the gradient distribution.

The actor neural network generates a set of all the possible actions that the agent can
take in a given environment, which is called the action space. In this work, since a
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3DOF spacecraft rendezvous and docking problem is being studied, the action space
would represent the thrust action. Different models have been used in the literature to
represent the control action of thrusters as an action space. The most suitable formulation
for this study case [36] consists of an action space At ∈ R3 and its unscaled control action
ut defined as:

At =
[
ũx,t, ũy,t, ũz,t

]
ut = σũt (2.7)

The control action ut is the input of the spacecraft equations of motion. A definition that
directly includes the components of the thrust vector is preferable to one that utilizes the
angle in-plane and out-of-plane angle (which has discontinuity issues) because it has better
convergence characteristics [36]. To ensure that the maximum thrust value is respected,
the scaling coefficient is set to σ = umax/∥13∥, as the output of the neural network is
limited to [−1, 1]. As demonstrated by Lorenzo Capra and Lavagna [91], a continuous
action space takes longer to train but is more flexible and realistic, resulting in higher
performance than a discrete action space.

2.3.2. Reward Function

The reward signal is a way to communicate to the agent what you want it to achieve,
not how you want it to be achieved. A spacecraft rendezvous and docking G&C problem
can be seen as a sparse-reward RL problem, where bonus or penalty rewards are only
given for successful docking or any collisions with the approach corridor. To improve the
performance of reinforcement learning in such cases, reward shaping techniques should be
used, as suggested by Ng et al. [92]. Non-linear functions, such as log and exp, possess
the property of increasing their first derivative near attractive or repulsive states [36].
These functions can provide a gentle push or pull, gradually guiding the agent away from
or towards certain state regions, making the reward landscape appear smoother. The
reward function used is as follows:

Rt = α log

(
∥δxt ⊘ δxmax∥

∥16∥

)2

− λ exp

(
acos

(
ρ̂∗
t · t̂2

)
π

)2

− γ exp

(
ut

umax

)2

+
(
ρt < ρf,max ∧ ρ̇t < ρ̇f,max ⇒

)
ζ −

(
ρ∗
t · t̂2 − ρ∗t cos (β) < 0⇒

)
κ

(2.8)

The reward function is made up of two components: dense rewards, which give continuous
feedback within each episode, and episodic rewards, which are given at the conclusion of
a task or episode. Specifically, they are as follows:
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• Dense bonus and penalty rewards:

1. Ideally, the final relative state should be zero, so a squared natural logarithm
is employed to gradually increase the bonus towards the goal. Square increases
the convergence performance [93]. To ensure that each component is given the
same importance, the relative state is normalized2 with respect to its assumed
maximum values. The logarithmic argument, due to the L2-norm and the
division by∥16∥, is always within the range of [0, 1], meaning that the greatest
distance is not rewarded. The dense bonus term is then:

R1,t = α log

(
∥δxt ⊘ δxmax∥

∥16∥

)2

(2.9)

2. The angular distance from the approach direction and the control effort are
penalized by squaring the exponential of the normalized values, which are
always within [0, 1]. The two tuning coefficients guarantee that there is almost
no penalty when the arguments are zero. The unit vector ρ̂∗

t is ρ∗
t normalized.

The penalty is expressed as:

R2,t = −λ exp

(
acos

(
ρ̂∗
t · t̂2

)
π

)2

− γ exp

(
ut

umax

)2

(2.10)

The dense reward logic, with numerical values only for illustration, can be summa-
rized and shown in Figure 2.4 using these functions.

Bonus [-]

0.20.40.6 0.8 1.0 Penalty [-]0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2.4: Graphic illustration of the reward shaping employing logarithmic and expo-
nential functions. The bonus and penalty axes represent their input arguments.

2Hadamard division, denoted as ⊘, divides corresponding elements of two matrices element-wise,
creating a new matrix of the same dimensions.
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• Episodic bonus and penalty rewards:

1. If the desired relative state is achieved, which meets the docking port require-
ments, a bonus is awarded as follows:

R3,t =
(
ρt < ρf,max ∧ ρ̇t < ρ̇f,max ⇒

)
ζ (2.11)

If this situation occurs, the episode is finished with a done signal, signifying
the success of the mission. Thus, it also bounds the reward of Equation 2.9.

2. The agent incurs a penalty reward if the trajectory collides with the approach
corridor, such as:

R4,t = −
(
ρ∗
t · t̂2 − ρ∗t cos (β) < 0⇒

)
κ (2.12)

If it occurs, the episode ends with a done signal. This situation indicates that
the mission has not been successful, as the safety requirements have not been
met. Consequently, the reward of Equation 2.10 is also bounded.

The coefficients are selected via a trial-and-error approach, as conducting an extensive
hyperparameter search using Bayesian optimization is beyond the scope of this work. The
chosen values consist of α = 0.02, λ = 0.1, γ = 0.01, ζ = 100, and κ = 30.

2.3.3. Environment’s Dynamics

Given the continuous nature of an RVD problem, it is challenging to create an explicit
transition function with conditional probabilities that accurately reflects state transitions
as in Equation 1.22. Therefore, the transition function is represented by a generative
model St+1 = ϕ (St, At). This model generates the updated absolute target and relative
chaser states based on CRTBP (Equation 1.2) and RCRTBP (Equation 1.17), respectively.
Additionally, it updates the chaser mass, the remaining flight time, as well as the action
and reward from the previous time step. Equations of motion f are broken down into
discrete steps by integrating and considering a constant control action between the time
intervals, resulting in xt+1 = ψ (xt, ut). At the beginning of each MDP episode, a random
initial state S0 is chosen, as described in Section 2.3. This randomness exclusively affects
the initial conditions of the relative chaser dynamics δx0 = [ρ, ρ̇] and its initial mass m0,
derived from three very broad normal distributions3. The means of the distributions are

3In a real-space application, such extensive uncertainties might seem unjustified given the better-known
initial conditions. However, they are utilized to test Meta-RL’s capacity to handle substantial parameter
randomization, showcasing its adaptability. Additionally, successful satisfaction of the constraint under
these conditions would further demonstrate the robustness of the algorithm.
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taken as the initial conditions, with standard deviations of σρ0 = 0.1ρ0 (the uppermost
value ensuring ρ0 remains within the approach corridor), σρ̇0 = 0.5 m/s (to cover the full
range of velocity states throughout Figure 2.1b) and σm0 = 100 kg (reasonable given the
m0 provided in Table 2.1). This approach aimed to integrate the broadest possible range
of initial condition distributions. Furthermore, the environment sends out a done when
the time of flight exceeds its highest value (ToFmax), similar to what the reward function
does with collision and docking events; this concludes the OCP "translation" in MDP.

In the environment model, additional stochastic and random elements are included to
further demonstrate the robustness of the algorithm and to emphasize the features of
Meta-RL, which is a great benefit of RL methods compared to the straightforward OCP
"translation" [21]. Process noise is included in the chaser spacecraft dynamics to ac-
count for unmodeled accelerations (e.g. SRP, the gravity of other celestial bodies, thrust
uncertainty, etc.). The equations of motion for the chaser, which include h as the non-
autonomous RCRTBP expressed in Equation 1.17, are as follows:

δẋ (t) = h
(
δx (t) ,u (t) ,xT (t)

)
+w (t)

w (t) ∼ N
(
0, diag

(
03,10

−8
3

)) (2.13)

(2.14)

N represents a Gaussian White Noise (GWN), featuring a covariance matching the non-
dimensional magnitude (σ = 10−4) of typical NRHO disturbances. This simplification
assumes independence and stationarity in uncertainty, which is not always the case in
reality. Despite this, the normal distribution is widely used due to its mathematical
convenience and its alignment with the Central Limit Theorem [94]. This theorem suggests
that the sum of various dynamic disturbances often tends to follow a normal distribution.
The robustness of the algorithm is further enhanced by taking into account and modeling
the possibility of a random failure in the control action. At the beginning of each episode,
the environment randomly selects a control direction in which to reduce the magnitude
of the thrust by 50% or have no failure. This is illustrated by a multinomial distribution
in which each case has an equal chance of occurring at 25% as follows:

Pfail =



0.5 · ux 25%

0.5 · uy 25%

0.5 · uz 25%

No Failure 25%

(2.15)

As a result, there is a 75% chance per episode of being unable to produce the required
thrust in one direction, effectively simulating a breakdown in 6DOF control.



2| Problem Formulation 63

2.4. Artificial Neural Networks Architecture

Finding the correct architecture and equilibrium between small and large neural networks
is essential to achieve a satisfactory result and to possess strong generalization charac-
teristics. The architecture of the model is inspired by Stable-Baseline3 (SB3) Recurrent
PPO, featuring layers of LSTM followed by layers of MLP extractor, as shown in Table
2.2. The use of a combination of LSTM networks and a MLP extractor layer is a common
approach in Reinforcement Learning (RL), as noted by Sak et al. [95]. This is because
LSTMs are particularly adept at capturing sequential dependencies, but may not be able
to provide a suitable final representation. An MLP-layer at the end is used to condense
the variable-length sequence of LSTM outputs into a fixed-size representation, making it
easier to make decisions or take actions. This combination of sequence modeling (handled
by LSTMs) and representation learning (handled by MLPs) allows the model to effec-
tively use sequential information in RL tasks. The choice of the hyperbolic tangent as an
activation function is based on its symmetry and widespread use. The size of the neural
network is determined through experimentation to guarantee a high level of generaliza-
tion and to accurately fit the optimal solution. It consists of two LSTM-layers with 256
neurons and two MLP-layers with 64 neurons for both the agent’s neural networks.

Layer Neurons (A/C) Activation Type

Input 16/16 Linear

Hidden Layer 1 256/256 Tanh LSTM

Hidden Layer 2 256/256 Tanh LSTM

Hidden Layer 2 64/64 Tanh MLP

Hidden Layer 2 64/64 Tanh MLP

Output 3/1 Linear

Table 2.2: Architecture of the Artificial Neural Network (ANN) implemented in the Actor
(A) and Critic (C) networks of the agent.

During the development of this work, a single layer of LSTM cells did not perform as well
as expected in terms of the mission success rate. In theory, two layers could slow down
the training phase and reduce generalization performance, potentially leading to an issue
of overfitting; however, this is beyond the scope of this work and should be addressed in
the future. For now, two layers of LSTM have been the best choice to accurately fit the
MDP (Section 2.3) implemented.
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2.5. Hyperparameters Selection

In reinforcement learning, hyperparameters are not learned by the algorithm itself but
are instead set by the user through trial and error. These hyperparameters are essential
in determining the behavior and performance of the RL agent during training, and can
have a major effect on the training process and the final results. The hyperparameters
chosen for this work are listed in Table 2.3.

The hyperparameters chosen are not far from the default settings [33] and only required
minor adjustments. It is recommended to use a batch size of less than 128 to increase
the variance of the gradient estimate and to add entropy to promote the algorithm’s
exploration. Gradient clipping is a particularly important hyperparameter for LSTM
networks, as they are prone to catastrophic forgetting. This phenomenon occurs when
a network that has been trained for a task loses its ability to perform that task when
trained for a new one, due to overwriting of previously acquired knowledge [96]. Gradient
clipping in LSTM networks can help reduce this effect by stabilizing the training process
and preventing large weight updates that could disrupt previously learned information.
Additionally, when setting the GAE parameter to 1, all potential rewards are considered
equally in estimating the advantage function, which is beneficial for spacecraft proximity
operations. However, there are drawbacks to this approach, such as increased variance,
sensitivity to noise, delayed convergence, and the risk of overfitting. Despite the success
of the study, it is evident that these potential issues should be addressed in the future
through a comprehensive hyperparameter search, which is not included in this work.

Actor PPO Critic MSE

Batch Size 64 64

Number Epochs 10 10

GAE Lambda (λ) 1 -

Discount Factor (γ) 0.99 -

Clip Parameter (ε) 0.1 -

Learning Rate (α) 0.00005 0.00005

Entropy Coefficient 0.0001 -

Clip Gradient 0.1 0.1

Table 2.3: Selection of hyperparameters for Actor’s training using Proximal Policy Opti-
mization (PPO) and Critic’s training through Mean Squared Error (MSE) algorithms.
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It should be noted that, even though different tasks may require different optimal hyper-
parameters, the limited computing budget and time available make it unfeasible to tune
each study case (and agent neural network) individually. Furthermore, since problems
share similar dynamics, action/state space, and reward functions, it is likely that they
will have similar optimal hyperparameter configurations, which justifies the use of the
same set for all study cases.
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Everything is relative; and only that is absolute.

Auguste Comte

This chapter provides an in-depth analysis of the numerical results obtained. Meta-
Reinforcement Learning (Meta-RL) agents’ training and testing phases are examined,
and a variety of graphs are displayed to demonstrate the practicality and effectiveness
of Meta-RL for Rendezvous and Docking (RVD) maneuvers. The dependability and
computational efficiency of the strategy are evaluated through Monte Carlo campaigns
in the environment. The findings ultimately show that Meta-RL can be used as an
autonomous Guidance and Control (G&C) strategy for RVD in the cislunar space.

3.1. Training and Testing: Nominal Study Case

In this section, the numerical results of the algorithm discussed in Section 1.5 are pre-
sented. The RVD problem discussed in Chapter 2 is solved using this algorithm, which is
specifically transformed into an MDP in Section 2.3. Different initial conditions and flight
times are taken into account, as various Holding Points (HP) within the Keep-Out-Sphere
(KOS) are considered. At the end of this process, an autonomous G&C policy is obtained
for the situations examined.

Reinforcement learning can be broken down into two distinct stages: training and testing.
During the training period, the policy is optimized to create an agent that is capable of
performing a desired task. During the testing phase, no further learning occurs; instead,
the optimized agent is placed in an environment similar to the one it has been trained in
and the policy is used to complete the actual task. The first phase for spacecraft G&C
applications would be conducted using high-fidelity simulators on the ground. This is
because there is not enough computing power in space, and missions cannot be put at
risk by experimenting and making mistakes. Once the policy has been trained, testing is
simply a matter of deploying and evaluating it on board, which involves a straightforward
multiplication of a few matrices to generate closed-loop control actions.
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The code used in this study is accessible on a dedicated GitHub repository 1. The equa-
tions of motion are solved in the MDP environment with the scipy.integrate library in
Python, using the non-stiff Adam predictor-corrector, called LSODA, method with rel-
ative and absolute tolerances of 2.22 · 10−14. The integration time step for converting
continuous dynamics into an MDP is set to dt = 0.5 s. The device used for this work is a
Laptop PC with an Intel(R) Core(TM) i7-8565U CPU 1.99 GHz and 16.0 GB of RAM.

3.1.1. Final Approach and Docking: 50-meter Case

It is now considered a 50-meter Holding Point (HP) within the Keep-Out-Sphere (KOS)
case. The reference frame used is outlined in Subsection 1.2.2. The absolute target and
the relative chaser initial conditions, expressed in a dimensionless form, are as follows:

xT
0 =



1.02206694

−1.32282592 · 10−7

−1.82100000 · 10−1

−1.69229909 · 10−7

−1.03353155 · 10−1

6.44013821 · 10−7


δx0 =



1.08357767 · 10−13

1.32282592 · 10−7

−4.12142542 · 10−13

1.69229909 · 10−7

−3.65860120 · 10−13

−6.44013821 · 10−7


(3.1)

The chaser spacecraft is located at the Southern L2 9:2 Resonant NRHO aposelene, while
the target is 50 meters away in the clockwise direction of the orbit. The initial mass of
the chaser spacecraft is taken from Table 2.1 and the maximum time of flight (ToFmax)
is set to 50 s, in order to complete the problem definition described in Section 2.1.

Training

The agent is trained for 5M steps, which is equivalent to 28.9 days in a simulated environ-
ment. This process takes 2.3 days and the training curve, the mean discounted cumulative
reward of the trajectory roll-outs in relation to the learning step, is shown in Figure 3.1.

The learning curve demonstrates that the reward gradually increases until it reaches a
plateau, signifying the success of the learning. The mean reward achieved, thus the
optimality of the LSTM-policy, will be evaluated and compared in Section 4.1. For now,
it is only essential to determine if the algorithm has converged. The recurrent agent
learned to consistently maximize the reward throughout each episode, thereby resolving
the associated MDP. According to Sak et al. [95], Long Short-Term Memory (LSTM)

1https://github.com/giovannifereoli/ThesisVer2

https://github.com/giovannifereoli/ThesisVer2
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networks, due to their inherent adaptability, may slightly lean toward better or worse
solutions when further training is done; however, this is not the case. Once the neural
network has been trained, the next step is to assess its performance as a G&C algorithm
in the following section.
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Figure 3.1: Mean discounted cumulative reward of the trajectory roll-outs during the
training phase of the LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case.

Testing

The LSTM-policy that has been trained is now being used again in the environment for
the testing phase, with the same uncertainties as in Section 2.3. The results of deployment
are demonstrated through the trajectory in Figure 3.2, as well as the relative position,
relative velocity, mass, and thrust profile in Figure 3.3, which are based on a single episode.

Figure 3.2 shows that the chaser spacecraft, starting from a random initial condition
(as described in Section 2.3 of the MDP), can reach the target and meet the safety re-
quirements of the approach corridor with a final state of δxf =

[
0.578 m, 0.089 m/s

]
.

Figures 3.4a and 3.4b demonstrate that docking port requirements have been met, since
the final relative position and velocity are within the specified limits. The thrust profile2

shown in Figure 3.3d and the time of flight are both within their respective limits. There-
fore, the rendezvous and docking maneuver described in Section 2.1 has been successful.

2The control action profile should be further examined with respect to the throttling capabilities of
the thrusters and analyzed in a 6DOF environment to determine its suitability for attitude control. The
maximum control effort has been evaluated and verified, so at this point these additional investigations
are outside the scope of this project.
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Figure 3.3c indicates that, according to Tsiolkovsky’s equation, the necessary impulse is
∆V = 6.49 m/s. This value is greater than what is typically observed in the literature;
however, its optimality must always be linked to the designated flight time. These ma-
neuvers are usually completed in a few hours, so a fair assessment of the algorithm’s fuel
efficiency is conducted in Section 4.2. Moreover, it is important to emphasize that the
policy was tasked (Section 2.3) with managing unforeseen thrust failures. As depicted
in Figure 3.3d, it successfully addresses this problem by learning to utilize half of the
maximum thrust.
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Figure 3.2: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a single episode.
Trajectory inside the approach corridor starting from a randomized initial condition.
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Figure 3.3: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a single episode.
Relative position, relative velocity, mass and control action along the trajectory of Figure
3.2.

The LSTM-policy that has been trained is now evaluated using a set of 500 trajectories,
each with a different initial condition based on the uncertainty of the MDPs discussed in
Section 2.3. This Monte Carlo campaign has two objectives: to measure the performance
of the policy statistically and to evaluate the robustness and computational efficiency as
autonomous G&C algorithm for on-board deployment, which is the goal of this work.
The trajectories are depicted in Figure 3.4, the CPU-Time for each policy evaluation is
displayed in Figure 3.5, and a summary of the results is presented in Table 3.1. The
LSTM-policy has been proven to be successful in up to 100% of the cases, meeting the
docking port and safety requirements for the entire batch of trajectories. The success rate
Sr, which is the fraction of trajectories that comply with all constraints, is determined
by the environment done signals: a docking signal without a collision signal signifies
that the mission has been completed. Despite the wide range of initial conditions, the
policy has been able to safely guide the spacecraft to the desired final state with low
variance. The mean and standard deviation of fuel consumption and time of flight are
also evaluated. Furthermore, the policy evaluation had an average CPU-Time per step
of 2.296 ms, which is equivalent to 18.266 ms (55.55 Hz) when taking into account the
clock frequency of 250 MHz on a LEON3FT3 onboard spacecraft processor in an average
performance configuration. This value implies that the algorithm can be implemented in
Orion’s real flight software, which typically runs the GNC blocks4 at a rate of 40 Hz.

3https://www.gaisler.com/index.php/products/boards/gr712rc-board?task=view&id=364
4https://ntrs.nasa.gov/api/citations/20190000011/downloads/20190000011.pdf

https://www.gaisler.com/index.php/products/boards/gr712rc-board?task=view&id=364
https://ntrs.nasa.gov/api/citations/20190000011/downloads/20190000011.pdf
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Figure 3.4: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a batch of episodes.
Trajectories inside the approach corridor starting from a randomized initial condition.
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Figure 3.5: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a batch of episodes.
CPU-Time for each policy evaluation step during testing.
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Success Rate: Sr = 100% Results MC: µ± σ

Final Position ρf [m] 0.552± 0.063

Final Velocity ρ̇f
[
m/s

]
0.088± 0.003

Fuel Consumption ∆V
[
m/s

]
6.350± 0.110

Time of Flight ToF [s] 32.104± 1.267

CPU-Time Step dtCPU [ms] 2.296± 0.107

Table 3.1: Numerical results summary of the LSTM-policy for the 50-meter Holding Point
(HP) within the Keep-Out-Sphere (KOS) case testing, as illustrated in Figure 3.4.

As indicated in Subsection 2.3.3, the policy is trained with the inclusion of process noise to
make it more reliable. This allows the policy to be trained on a high-fidelity simulator and
still perform optimally in the real world even when unmodeled accelerations are present.
This enhances the dependability of the solution and decreases mission design time (i.e.,
the full dynamical model is not required). This statement is demonstrated by testing
the trained LSTM-policy on a batch of 500 trajectories in an environment similar to the
one described in Subsection 2.3.3, but without process noise and with the addition of
the Sun’s fourth-body gravitational effect and Solar Radiation Pressure (with Cr = 0.1

and A = 1 m2) accelerations into the chaser dynamics, as defined in Subsection 1.2.1.
The results of the Monte Carlo study are shown in Figure 3.5 and Table 3.2, and being
the same as those of Figure 3.4 and Table 3.1 demonstrate that the LSTM-policy is also
capable of handling unmodeled accelerations.
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Figure 3.5: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in an environment with Solar Radiation Pressure (SRP)
and Sun’s fourth-body gravity disturbances, and tested for a batch of episodes. Trajec-
tories inside the approach corridor starting from a randomized initial condition.

Success Rate: Sr = 100% Results MC: µ± σ

Final Position ρf [m] 0.653± 0.082

Final Velocity ρ̇f
[
m/s

]
0.090± 0.003

Fuel Consumption ∆V
[
m/s

]
6.644± 0.254

Time of Flight ToF [s] 33.621± 0.986

Table 3.2: Numerical results summary of the LSTM-policy for the 50-meter Holding Point
(HP) within the Keep-Out-Sphere (KOS) case testing with disturbances, as illustrated in
Figure 3.5.

This algorithm would be an optimal selection for autonomous proximity operations G&C
on a Southern L2 9:2 Resonant NRHO for the Earth-Moon system. It is capable of
effectively solving rendezvous and docking maneuvers while guaranteeing safety, compu-
tational efficiency, and robustness to uncertainties and unmodeled accelerations. This is
evidenced by the two Monte Carlo analyses presented. All in all, this algorithm is highly
promising.

3.1.2. Final Approach and Docking: 200-meter Case

The 200-meter Holding Point (HP) within the Keep-Out-Sphere (KOS) case is now being
studied. The reference frame used is described in Subsection 1.2.2. The absolute target
and relative chaser initial conditions, expressed in unitless form, are as follows:

xT
0 =



1.02206694

−5.25240280 · 10−7

−1.82100000 · 10−1

−6.71943026 · 10−7

−1.03353155 · 10−1

2.55711651 · 10−6


δx0 =



1.70730097 · 10−12

5.25240280 · 10−7

−6.49763576 · 10−12

6.71943026 · 10−7

−5.76798331 · 10−12

−2.55711651 · 10−6


(3.2)

The chaser spacecraft is located at the Southern L2 9:2 Resonant NRHO aposelene, while
the target is 200 meters away in the clockwise direction of the orbit. The initial mass of
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the chaser spacecraft is taken from Table 2.1 and the maximum time of flight (ToFmax)
is set to 100 s, in order to complete the problem definition described in Section 2.1.

Training

The agent is trained for 7M steps, which is equivalent to 40.5 days in a simulated environ-
ment. This process takes 3.2 days and the training curve, the mean discounted cumulative
reward of the trajectories roll-outs in relation to the learning step, is shown in Figure 3.6.
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Figure 3.6: Mean discounted cumulative reward of the trajectory roll-outs during the
training phase of the LSTM-policy for the 200-meter Holding Point (HP) within the
Keep-Out-Sphere (KOS) case.

The learning curve shows that the reward gradually increases until it reaches a plateau,
which indicates the success of the learning process and the successful resolution of the
associated MDP. In Section 4.1, the mean reward achieved, which reflects the effectiveness
of the LSTM-policy, will be assessed and compared.
This training was the first to show the presence of catastrophic forgetting [96]. To pre-
vent this from occurring during the learning process, gradient clipping is employed, as
discussed in Section 2.5. This enabled the plateau to be reached precisely; however, the
phenomenon persisted even after the plateau had been achieved, advancing further with
the learning steps. To address this, the training is designed to complete and save the
best policy achieved after a certain number of steps without any improvement. This is
made possible by the Stable-Baseline3 (SB3) callback5 called "StopTrainingOnNoMode-
lImprovement". To further improve the situation, a systematic hyperparameter search,
reward engineering, and the implementation of adaptive learning rate annealing would
be necessary. Unfortunately, simpler solutions, such as decreasing the size of neural net-

5https://stable-baselines3.readthedocs.io/en/master/guide/callbacks.html

https://stable-baselines3.readthedocs.io/en/master/guide/callbacks.html
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works and the learning rate, have not been successful, and further exploration is beyond
the scope of this project. However, this training has reached its plateau and the results
are satisfactory.

Testing

The LSTM-policy that has been trained is now being tested in the environment, with
the same uncertainties as in Section 2.3. The results of the deployment are shown in
Figure 3.7 and Figure 3.8, which are based on a single episode. The trajectory, relative
position and velocity, mass, and thrust profile over time are shown in these results.
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Figure 3.7: Trained LSTM-policy for the 200-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a single episode.
Trajectory inside the approach corridor starting from a randomized initial condition.
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Figure 3.8: Trained LSTM-policy for the 200-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a single episode.
Relative position, relative velocity, mass and control action along the trajectory of Figure
3.7.

The results of Subsection 3.1.1 are further demonstrated in these graphs, which show that
the trained LSTM-policy is again successful in reaching the desired state of the docking
port (δxf =

[
0.612 m, 0.085 m/s

]
) while following safety conditions, maximum thrust,

and maximum time of flight. Figure 3.8c in particular displays the mass profile over time,
and Tsiolkovsky’s equation indicates that a ∆V of 13.113 m/s is needed.
The LSTM-policy that has been trained is now being tested using 500 trajectories, each
with a different initial state based on the randomness of the MDPs discussed in Section
2.3. The Monte Carlo campaign trajectories are shown in Figure 3.8, the CPU-Time for
each policy evaluation is shown in Figure 3.9, and a summary of the results is given in
Table 3.3.
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Figure 3.8: Trained LSTM-policy for the 200-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment, and tested for a batch of episodes.
Trajectories inside the approach corridor starting from a randomized initial condition.
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Figure 3.9: Trained LSTM-policy for the 200-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case, deployed in the environment and tested for a batch of episodes.
CPU-Time for each policy evaluation step during testing.

Success Rate: Sr = 100% Results MC: µ± σ

Final Position ρf [m] 0.561± 0.096

Final Velocity ρ̇f
[
m/s

]
0.082± 0.004

Fuel Consumption ∆V
[
m/s

]
11.981± 0.495

Time of Flight ToF [s] 82.571± 1.571

CPU-Time Step dtCPU [ms] 2.334± 0.138

Table 3.3: Numerical results summary of the LSTM-policy for the 200-meter Holding
Point (HP) within the Keep-Out-Sphere (KOS) case testing, as illustrated in Figure 3.8.

The LSTM-policy has been proven to be successful in all scenarios, satisfying all the
requirements for the entire set of trajectories. The mean and standard deviation of fuel
consumption and time of flight have also been evaluated. Furthermore, the computational
efficiency and the capability to execute this algorithm on-board have been verified. The
same results were obtained in Subsection 3.1.1.
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The LSTM-policy that has been trained is tested on a set of 500 trajectories in a setting
similar to the one described in Subsection 2.3.3, but without process noise and with the
addition of the Sun’s fourth-body gravitational effect and Solar Radiation Pressure (with
Cr = 0.1 and A = 1 m2) accelerations into the chaser dynamics, as defined in Subsec-
tion 1.2.1. This is to show that the policy is able to withstand unmodeled accelerations
during testing by introducing noise during the training phase. The results of the Monte
Carlo study are shown in Figure 3.10 and Table 3.4, which are identical to those of Fig-
ure 3.8 and Table 3.3, indicating that the LSTM-policy is capable of managing unmodeled
accelerations.
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Figure 3.10: Trained LSTM-policy for the 200-meter Holding Point (HP) within the
Keep-Out-Sphere (KOS) case, deployed in an environment with Solar Radiation Pressure
(SRP) and Sun’s fourth-body gravity disturbances, and tested for a batch of episodes.
Trajectories inside the approach corridor starting from a randomized initial condition.

Success Rate: Sr = 100% Results MC: µ± σ

Final Position ρf [m] 0.579± 0.084

Final Velocity ρ̇f
[
m/s

]
0.094± 0.001

Fuel Consumption ∆V
[
m/s

]
12.263± 0.524

Time of Flight ToF [s] 81.713± 0.955

Table 3.4: Numerical results summary of the LSTM-policy for the 200-meter Holding
Point (HP) within the Keep-Out-Sphere (KOS) case testing with disturbances, as illus-
trated in Figure 3.10.
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The algorithm has also proven its effectiveness in this situation, successfully executing
rendezvous and docking maneuvers while providing safety, computational efficiency, and
the ability to withstand extensive uncertainties and unmodeled accelerations. This is
supported by the two Monte Carlo analyzes presented, which corroborate the findings in
Subsection 3.1.1.
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Nothing in life is to be feared, it is only to be understood. Now is the time
to understand more, so that we may fear less.

Marie Curie

This chapter provides a comprehensive overview of the research by performing a series
of benchmark analyses. A Multi-Layer Perceptron (MLP) policy is tested and trained to
compare the results with those of the Long Short-Term Memory (LSTM) policy. Addi-
tionally, an Optimal Control Problem (OCP) pseudospectral direct solution is applied to
evaluate optimality, and a Lyapunov’s direct method is used to assess system asymptotic
stability. This collection of benchmarks offers a detailed assessment of research effective-
ness in multiple dimensions.

4.1. Reinforcement Learning: Non-Recurrent Policy

This work seeks to assess whether Meta-Reinforcement Learning (Meta-RL) can be used
as an autonomous guidance and control algorithm for spacecraft proximity operations.
Subsequently, it would be beneficial to determine if Meta-RL has any advantages over
more traditional reinforcement learning techniques, as mentioned in Section 1.5.

In this section, Proximal Policy Optimization (PPO) is used to train a basic Multi-Layer
Perceptron (MLP) agent. This contrasts with the recurrent network discussed in Chapter
3, which is now replaced by a feedforward network. The width and depth of the agent’s
neural network1, the hyperparameters and the environment setup of Sections 2.4, 2.5, and
2.3, respectively, are kept the same to ensure fair comparison. Meta-RL is proposed in the
literature as an adaptive guidance and control algorithm due to its agent’s internal LSTMs
memory. Once trained, the weights and biases of an MLP-policy are fixed and cannot be
altered in response to changes in the environment, such as disturbances or failures. An

1It is noteworthy that Long Short-Term Memory (LSTM) cells contain six times the number of param-
eters as a Multi-Layer Perceptron (MLP) cell. Therefore, even if the same neural network architecture is
used, the LSTM-based neural networks will take more time to train.
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MLP-policy learns a strategy that is generally effective, while an LSTM-policy also learns
how to adjust itself in order to optimize its performance for each task in a specific way.
Therefore, these assertions will be examined in the following section.

Training

The scenarios being examined are the same as those already discussed in Section 3.1: a
50-meter and a 200-meter Holding Point (HP) within the Keep-Out-Sphere (KOS) cases.
Initial conditions and time of flights are kept consistent with the respective scenario. The
two MLP-policies are trained with the same number of steps as described in Section 3.1.
The mean discounted cumulative rewards of the trajectory roll-outs in relation to the
learning step are shown in Figure 4.1.
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(a) 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case.
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(b) 200-meter Holding Point (HP) within the
Keep-Out-Sphere (KOS) case.

Figure 4.1: Mean discounted cumulative rewards of the trajectory roll-outs during the
training phases of the MLP-policies compared to those of the LSTM-policies. The nu-
merically solved study cases are identical to those in Chapter 3.
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The rewards of MLP-policies increase steadily until they reach a plateau, suggesting that
the learning process has been successful. This is analogous to the LSTM-policies discussed
in Chapter 3, which always converged.

It is worth noting the distinctions between Long Short-Term Memory (LSTM) networks
and Multi-Layer Perceptrons (MLPs) when training, given that LSTMs are a more com-
plex model (with six times more parameters). MLP-policies take less wall-time to train
than LSTM-policies with the same number of learning steps, usually about half the time
(i.e., 0.9 days for the 50-meter case and 1.8 days for the 200-meter case). MLPs achieve
faster convergence in terms of learning steps and exhibit greater stability in both scenar-
ios. The results of this study, as seen in Figure 4.1b, show that LSTMs can be more
effective in optimizing the policy and consistently obtaining a higher cumulative reward,
particularly for more intricate tasks such as the final approach scenario with the farthest
range. The reward discussed in Subsection 2.3.2 takes into account both the distance from
the axis of the approach corridor and the control effort as dense penalties. MLP solutions
in Section 4.1 will be less fuel efficient than the LSTM ones in Section 3.1. However,
the cumulative reward of the final approach scenario with the shortest range shown in
Figure 4.1a is the same for both MLPs and LSTMs, as LSTMs used less fuel, but the
trajectories are, on average, farther away from the axis of the approach corridor. The
results of training an RL policy are also dependent on the random seeds used, as it is a
stochastic process.

This has been confirmed by Lorenzo Capra and Lavagna [91], where LSTMs achieved a
slightly higher or equal cumulative reward at the end of the training process, depending
on the scenario, compared to MLPs.

Testing

The MLP-policies that have been trained are now being tested in the environment. To
evaluate their performance, a batch of 500 trajectories with different initial conditions
is used, based on the uncertainty of the MDPs discussed in Section 2.3. The results of
the deployment can be directly demonstrated through Monte Carlo results instead of a
single-episode trajectory, as the relative state, mass, and thrust plots in time for the MLP-
policies are similar to those in Section 3.1 for the LSTM-policies. Monte Carlo analysis
is used to evaluate the accuracy of rendezvous and docking maneuvers of MLP-policies
by measuring the success rate Sr, and to acquire statistical data on the final relative
state, fuel consumption and time of flight. Trajectories are depicted in Figure 4.2, and a
summary of the results is presented in Tables 4.1 and Table 4.2.
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(a) 50-meter Holding Point (HP) within the Keep-Out-
Sphere (KOS) case.
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(b) 200-meter Holding Point (HP) within the Keep-Out-
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Figure 4.2: Trained MLP-policies, deployed in the environment, and tested for a batch
of episodes. Trajectories within the approach corridor starting from a randomized initial
condition. The numerically solved study cases are identical to those in Chapter 3.

Success Rate: Sr = 100% Results MC: µ± σ

Final Position ρf [m] 0.349± 0.075

Final Velocity ρ̇f
[
m/s

]
0.091± 0.002

Fuel Consumption ∆V
[
m/s

]
9.930± 0.262

Time of Flight ToF [s] 23.425± 0.438

Table 4.1: Numerical results summary of the MLP-policy for the 50-meter Holding Point
(HP) within the Keep-Out-Sphere (KOS) case testing, as illustrated in Figure 4.2a.
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Success Rate: Sr = 100% Results MC: µ± σ

Final Position ρf [m] 0.719± 0.051

Final Velocity ρ̇f
[
m/s

]
0.088± 0.003

Fuel Consumption ∆V
[
m/s

]
18.669± 0.537

Time of Flight ToF [s] 61.571± 1.274

Table 4.2: Numerical results summary of the MLP-policy for the 200-meter Holding Point
(HP) within the Keep-Out-Sphere (KOS) case testing, as illustrated in Figure 4.2b.

The MLP-policy has been proven to be effective in all scenarios, satisfying the docking
port and safety requirements for the entire set of trajectories within the maximum control
action and the allocated time of flight. By comparing the results of Section 3.1 with those
of the present, it is evident that the success rate of the solutions is the same as the
LSTM-policies; however, the MLP-policies have a much higher average fuel consumption.
It is evident that the recurrent layers are more successful in obtaining the best results
for both scenarios, as demonstrated by the fuel consumption. This is especially true
for the 200-meter holding point case, which yielded even higher levels of optimality, as
the maximum cumulative reward obtained through learning shows. This is because, as
previously mentioned, LSTM-policies can learn how to modify their hidden states during
testing to more effectively optimize each individual task in a very "customized" manner.
Further comparisons between LSTM-policies and MLP-policies can be seen in Appendix
B, which includes an additional restriction on plume impingement compared to MDP
described in Section 2.3.

Gaudet and Linares [42] have already determined that both the LSTM and MLP policies
could achieve similar terminal relative states, but the LSTMs were able to achieve fuel
performance that was superior to that of MLPs. It is evident that recurrent policies are
more successful than non-recurrent ones when tackling tasks with a high degree of random-
ness. Nevertheless, satisfactory results can still be obtained with an MLP-policy, as this
work has demonstrated. Federici et al. [53] conducted an investigation into the efficacy
of recurrent policies for Transfer Learning (TL) and their greater ability to generalize in
a collection of six finite-thrust planar rendezvous scenarios. The results showed that the
LSTM-policies had a higher mission success rate than the MLP-policies. Further explo-
ration of this topic would be interesting but is beyond the scope of this work. Meta-RL is
designed to learn how to handle multiple tasks, but for spacecraft G&C applications, it is
more suitable to be used only to improve the robustness of a single scenario, treating tasks
as "high parameter randomness" rather than "different scenarios". The application of TL
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techniques leads to a decrease in the performance of the single scenario. Therefore, in a
real space application, it is recommended to use different policies for different maneuvers
to achieve the highest performance in each situation. Furthermore, it would be beneficial
to investigate Hierarchical Reinforcement Learning (HRL) for this type of applications,
as discussed in Section 5.2.

4.2. Optimal Control Problem: Pseudospectral Di-

rect Method

Artificial Neural Networks (ANNs) can provide an approximation of the solution to the
Hamilton-Jacobi-Bellman (HJB) equation, thus making them a suboptimal control solu-
tion. To assess the effectiveness of the reinforcement learning approach used in this study,
a state-of-the-art Optimal Control Problem (OCP) solution, such as a pseudospectral di-
rect method [97], is used as reference. Although OCP solutions cannot consider certain
features of the RL solutions proposed in this work, such as process noise and actuator
malfunctions, they still provide a useful benchmark for optimality.

Computational techniques for OCPs are employed to determine the most appropriate
open-loop trajectory of a dynamic system while meeting given restrictions and objectives.
Direct methods accomplish this by transforming the continuous-time optimal control prob-
lem into a discrete-time form that can be solved using Non-Linear Programming (NLP)
algorithms. Pseudospectral direct methods approximate the state and control variables
over a given period of time by means of a weighted sum of polynomial basis functions.
These methods are desirable because of their exponential rate of convergence and their
ability to provide high accuracy and efficiently handle constraints and complex dynamics,
even with relatively coarse grids. Various software packages can be used to solve OCPs
with pseudospectral methods, such as GPOPS-II2 and PROPT3. This work makes use of
an open-source Python library, mpopt4, which is suitable for multi-phase problems and
different types of pseudospectral collocation methods, including Legendre-Gauss-Radau
(LGR), Legendre-Gauss-Lobatto (LGL) and Chebyshev-Gauss-Lobatto (CGL) polynomi-
als. Equations that capture the core components of pseudospectral direct methods for
OCPs are presented in the following:

1. State and Control Approximation:

Consider a general state variable, x(t), and a control input, u(t). Approximate them
2https://www.gpops2.com/index.html
3http://tomdyn.com/
4https://pypi.org/project/mpopt/

https://www.gpops2.com/index.html
http://tomdyn.com/
https://pypi.org/project/mpopt/
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by using polynomial interpolation in the time period [tk, tk+1]:

x(t) ≈ xk(τ) =
N∑
j=0

xkjϕj(τ) u(t) ≈ uk(τ) =
N∑
j=0

ukjϕj(τ) (4.1)

At a certain moment τ within the period [tk, tk+1], the state is estimated by xk(τ)

and the control input by uk(τ). This is achieved by using N coefficients, xkj and
ukj, and the basis functions, ϕj(τ), evaluated at τ .

2. Collocation Condition:

The dynamics of the system can be enforced at specific collocation points within
the interval. For example, using a single collocation point (that is, the root of a
first-order basis function) at the midpoint of the interval [tk, tk+1]:

f

(
tk +

h

2

)
− ẋk+ 1

2
= 0 (4.2)

The dynamics of the system, usually represented by ẋ, can be expressed as f . The
gap between tk+1 and tk is the length of the interval, denoted by h. The time
derivative of the state at the collocation point is ẋk+ 1

2
.

3. Path Constraints and Boundary Conditions:

Path constraints can be included in the form of algebraic equations that are enforced
at the collocation points. For example:

g(xk(τ), uk(τ)) = 0 (4.3)

The path constraint g is contingent on the state xk(τ) and control uk(τ). Boundary
conditions are treated in a similar way.

4. Optimization Problem:

The OCP is an attempt to minimize the cost function while satisfying the dynamics
and constraints. The cost function should be discretized in the following manner:

min
ukj

J =
Nt−1∑
k=0

∫ tk+1

tk

L(xk(τ), uk(τ))dτ (4.4)
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The dynamics, path constraints, boundary conditions, and any other restrictions
must all be satisfied at the collocation points.

5. Solver:

Nonlinear programming algorithms, for example Sequential Quadratic Programming
(SQP), are often used to solve the optimization problem and determine the best
control coefficients ukj and state coefficients xkj.

In order to fully specify the algorithm that has been put into practice, it is essential to
pick the number of time intervals, the type of polynomial, and its order. In this study, a
single time interval of length h = ToF is taken into account and Legendre-Gass-Radau
(LGR) polynomials of order 4th are used. The solved Optimal Control Problem (OCP)is
expressed in Equation 2.3. Ensuring convergence relies on key numerical methods, such
as variable scaling, but delving into their specifics is beyond the scope here.

A Monte Carlo technique is used to compare the outcomes of Chapter 3, which were
acquired through Meta-Reinforcement Learning (Meta-RL), with the OCP results. This
process involves randomly selecting initial conditions for the relative chaser dynamics and
its mass from three broad normal distributions before solving the problem. The means
of these distributions are taken as the initial conditions and have standard deviations of
σρ0 = 0.1ρ0, σρ̇0 = 0.5 m/s, and σm0 = 100 kg. To ensure that the comparison between
the LSTM-policies, the MLP-policies, and the OCPs is as precise as possible, the initial
guess of time of flight in the OCPs is set to the midpoint between the minimum and
maximum values obtained from all the Monte Carlo campaigns (as described in Sections
3.1 and 4.1). The results of a batch of 500 trajectories for both scenarios taken into
account in Chapter 3 are shown in Figure 4.3, Figure 4.4 and Table 4.3. The proposed
solutions should not be considered as the flawless answer to the OCP, but rather as a
benchmark of optimality, so Sr is not displayed. This OCP is complex, with 13 states,
making it impossible to accurately tune it within a Monte Carlo analysis. The IPOPT
non-linear solver, with a tolerance of 10−8, has been able to successfully solve a large
number of trajectories, though not all of them met all of the requirements.

The results in Table 4.3 show that the LSTM-policies from Section 3.1 can generate a
solution that is almost optimal, as indicated by the nearly identical average fuel consump-
tion in the results of the Monte Carlo campaign. MDPs provide a closed-loop solution
and can take into account stochastic effects such as actuation failures, whereas OCPs
are open-loop and cannot. Despite the increased complexity, the LSTM-policies achieved
very high optimality, while the MLP-policies did not. It is also noteworthy that the OCP
solutions time of flight converged very close to that of the LSTM-policies.
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Figure 4.3: Optimal Control Problem (OCP) pseudospectral direct method for the 50-
meter Holding Point (HP) within the Keep-Out-Sphere (KOS) case, applied to a batch
of episodes. Trajectories inside the approach corridor starting from a randomized initial
condition.
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Figure 4.4: Optimal Control Problem (OCP) pseudospectral direct method for the 200-
meter Holding Point (HP) within the Keep-Out-Sphere (KOS) case, applied to a batch
of episodes. Trajectories inside the approach corridor starting from a randomized initial
condition.

Results MC: µ± σ 50-meter Case 200-meter Case

Fuel Consumption ∆V
[
m/s

]
5.763± 0.684 11.153± 0.772

Time of Flight ToF [s] 29.024± 1.654 76.619± 2.155

Table 4.3: Numerical results summary of the Optimal Control Problem (OCP) pseu-
dospectral direct method for the 50-meter and 200-meter Holding Point (HP) within the
Keep-Out-Sphere (KOS) cases, as illustrated in Figures 4.3 and 4.4.
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4.3. Stability Analysis: Lyapunov’s Direct Method

A G&C algorithm should ensure the asymptotic stability of the controlled system in order
to achieve mission success, avoiding any erratic behavior and guaranteeing predictable ve-
hicle performance, while also avoiding potential accidents or deviations from the intended
trajectory.

There are different methodologies to assess the asymptotic stability of a closed-loop con-
troller. These include the Lyapunov’s Indirect Method, which assesses the negativity of
the real part of Jacobian eigenvalues, and the Eigenvalue Analysis Method, which gauges
the bounding of State Transition Matrix (STM) eigenvalues across the trajectory [57].
Additionally, there are a few analytical methods related to the convergence of the Rein-
forcement Learning (RL) algorithm. If the RL algorithm ensures local optimal conver-
gence, the policy is at least suboptimal, and this implies stability. An RL policy uses
actions to guide state variables towards the desired result in order to get the highest
possible reward, similar to the Linear Quadratic Regulator (LQR) closed-loop controller,
which adjusts the control output to move the state to minimize an objective function.
Optimization of a criterion bounds the states along the optimal trajectory, making the
policy inherently stabilizing. The proof of the convergence of policy gradient algorithms
with function approximators to local optima is outlined in Appendix A from Sutton et al.
[84]. This work implements Recurrent PPO, which is an example of such an algorithm.

In this section, the Lyapunov’s Direct Method [64] is used to demonstrate asymptotic
stability, as defined in Theorem 4.1, from a non-linear equations of motion perspective.
This approach is based on Theorem 4.2 and is advantageous as it allows one to evaluate the
stability of the controlled system without linearizing around an equilibrium solution. It
also provides a global stability analysis and is a theoretical proof. This method is usually
employed to design Lyapunov-based controllers, but in this case it is used afterward and
numerically to assess the stability of the LSTM-policies.

Theorem 4.1 (Lyapunov’s Stability). Consider an autonomous non-linear dynamics sys-
tem described by:

ẋ = f (x) , f (x∗) = 0 (4.5)

Where x∗ is an isolated equilibrium point. Then the equilibrium point is said to be:

1. Stable: for ∀ε > 0, there ∃∂ > 0 such that if
∥∥x (0)− x∗

∥∥ < ∂ then
∥∥x (t)− x∗

∥∥ < ε

∀t > 0;
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2. Asymptotically Stable: the equilibrium point x∗ is stable and
∥∥x (t)− x∗

∥∥→ 0 as
t→∞.

The definitions describe a local stability in the vicinity of the equilibrium point; if the
region ∂ is unbounded, the definitions describe a global stability.

Theorem 4.2 (Lyapunov’s Second Stability Theorem). Consider an autonomous non-
linear dynamics system described by:

ẋ = f (x) , f (x∗) = 0 (4.6)

Where x∗ is an isolated equilibrium point. If there exists in some finite neighborhood D of
the equilibrium point x∗, a scalar function V (x) with a continuous first partial derivative
with respect to x such that the following conditions hold:

(i) V (x) > 0, ∀x ̸= x∗ ∈ D ∧ V (x∗) = 0

(ii) V̇ (x) < 0, ∀x ̸= x∗ ∈ D ∧ V̇ (x∗) ≤ 0
(4.7)

Then the system is said to be asymptotically stable. If D includes all possible states,
the system is said to be globally asymptotically stable. If V̇ (x) ≤ 0 ∀x ∈ D then the
system is said to be stable.

This section considers the Relative Circular Restricted Three-Body Problem (RCRTBP)
of Equations 1.17 as an autonomous dynamical system. It is assumed that the target ab-
solute state xT remains constant throughout the maneuver, since the NRHO has a period
of 6.5 days, which is much longer than the duration of any rendezvous maneuver taken
into account. Hence, the motion of the target is disregarded and only the equations of
motion for the chaser’s relative dynamics, expressed as δẋ = h (δx, u) (as opposed to
Equation 2.14), are taken into account when defining V (x). With these assumptions, a
positive-definite quadratic Candidate Lyapunov Function in R6 can be used as follows:

V (δx) = δxTPδx (4.8)

The diagonal weight matrix taken into account is P = diag (0.56), and the equilibrium
point is δx∗ = 0, which is the desired outcome of the RVD maneuver and would result
in h (δx∗, u) = 0 in the RCRTBP equations. According to Schaub and Junkins [64], the
Lyapunov function in Equation 4.8 is of an "energy-error-like" structure.

A Monte Carlo technique is used to evaluate stability by randomly selecting the chaser’s
relative motion and its mass initial conditions from three large normal distributions with
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means taken as initial conditions and having standard deviations of σρ0 = 0.1ρ0, σρ̇0 =

0.5 m/s, and σm0 = 100 kg. For each of the LSTM-policy study cases discussed in
Chapter 3, a set of 500 trajectories is simulated. The trained policies are deployed again
in the environment, and the numerical values of V (δx) and V̇ (δx) are determined along
the trajectories. The results are shown in Figures 4.5 and 4.6, with the L2-norm of the
relative state vector as the abscissa in each graph.
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Figure 4.5: Trained LSTM-policy for the 50-meter holding point case, deployed in the
environment and tested for a batch of episodes. Candidate Lyapunov Function and its
time-derivative of Figure 3.4 with regard to the distance from the equilibrium point.
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Figure 4.6: Trained LSTM-policy for the 200-meter holding point case, deployed in the
environment and tested for a batch of episodes. Candidate Lyapunov Function and its
time-derivative of Figure 3.4 with regard to the distance from the equilibrium point.

The LSTM-policies developed in Chapter 3 demonstrate asymptotic stability, as evidenced
by the discovery of a Candidate Lyapunov Function that meets the criteria outlined in



4| Benchmarks 93

Theorem 4.2. Moreover, the Monte Carlo experiments conducted in Chapter 3 could also
potentially indicate the asymptotic stability of the controlled systems. This inference
arises from the systems’ capability to withstand diverse uncertainties without resulting
in catastrophic consequences. Asymptotic stability is required to ensure the system’s de-
pendability and predictability, and from a spacecraft perspective, it ensures that relative
positions and velocities will always converge to the desired configuration within a finite
flight time.
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I have learned to use the word ’impossible’ with the greatest caution.

Wernher von Braun

This work presents a Meta-Reinforcement Learning (Meta-RL) algorithm, which is an
LSTM-based agent trained by a recurrent version of the actor-critic gradient-based method
Proximal Policy Optimization (PPO). This algorithm has been demonstrated to be able to
autonomously guide and control a spacecraft during rendezvous and docking missions in
the cislunar space. It is a viable option for a real space application, as it has been proven
to be robust and computationally efficient for on-board implementation. The findings of
this research and potential future works are summarized in this chapter.

5.1. Conclusions

1. To what extent can a Meta-Reinforcement Learning algorithm be used
as an autonomous spacecraft proximity operations guidance and control
algorithm in the cislunar space? Does it meet safety requirements while
being computationally efficient for on-board execution?

This work demonstrates that the Meta-Reinforcement Learning (Meta-RL) algo-
rithm is capable of accurately resolving the Markov Decision Process (MDP) posed.
The algorithm’s efficacy is tested in two spacecraft’s final approach and docking
scenarios on a Southern L2 9:2 Resonant Near-Rectilinear Halo Orbit (NRHO) of
the Earth-Moon system. Despite a great deal of uncertainty in initial conditions,
process noise, and actuator malfunctions, all objectives have been achieved. The
learning curves show that the training phases were successful as they reached the
expected plateau. During the testing phase, the same agents were tested through
a Monte Carlo campaign, which revealed that trained policies were able to meet
docking port requirements, avoid collisions with the approach corridor, and adhere
to the maximum control effort and time of flight in all cases. As a result, the Meta-
RL algorithm has proven its capability to effectively learn a guidance and control
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policy tailored for rendezvous and docking maneuvers within cislunar space.

To achieve autonomy for spacecraft guidance and control, a closed-loop controller
should be developed that is reliable, computationally efficient, and nearly optimal.
The proposed Meta-RL policy, a closed-loop controller that approximates the solu-
tion of the Hamilton-Jacobi-Bellman (HJB) equation, can be considered as a po-
tential solution for autonomous G&C applications. This policy has been evaluated
through Monte Carlo simulations not only in the training environment but also in an
enhanced one with unmodeled dynamics. It has been determined to be reliable even
in the latter situation. In addition, its computational efficiency has been proven
to be suitable for on-board processor execution. Finally, its optimality has been
confirmed by comparing it with a state-of-the-art Optimal Control Problem (OCP)
pseudospectral direct solution, the results of which are reported in Table 5.1.

2. What are the benefits of using Long Short-Term Memories (LSTMs)
instead of basic Multi-Layer Perceptrons (MLPs) when it comes to a
reinforcement learning agent for spacecraft guidance and control appli-
cations?

Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) policies have
both been able to learn the proposed Markov Decision Problems (MDPs) correctly,
as demonstrated by the learning curves, which have reached the expected plateaus.
During the testing phase, both policies achieved the highest possible success rate
in the Monte Carlo campaigns. This achievement highlights their complete profi-
ciency in executing rendezvous and docking operations while meeting all imposed
requirements across the entire range of evaluated trajectories. Despite this, the
LSTM-policy demonstrated the ability to acquire greater cumulative rewards dur-
ing training and significantly higher fuel efficiency during testing (see Table 5.1).
Its internal memory enabled it to generate an adaptive guidance and control policy
that is better suited to the optimal solution of the problem.

It is evident that recurrent policies are more successful than non-recurrent ones
when tackling tasks that have a lot of randomization in their parameters. However,
at this stage satisfactory outcomes can still be achieved with an MLP-policy; thus,
more intricate MDPs should be addressed to gain a better comprehension of Meta-
RL’s potential and its benefits in comparison to traditional reinforcement learning.
It should be noted that training LSTMs is more complex than other models, as seen
in their slightly higher instability during training and the time it takes them to reach
convergence. This is a natural result of the complexity of recurrent layers, but can
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be addressed with a comprehensive hyperparameter search and reward engineering.
From a spacecraft guidance and control point of view, this is not a major problem
as long as an optimal policy is achieved.

Fuel Consumption ∆V [m/s] 50-meter Case 200-meter Case

LSTM-Policy 6.350± 0.110 11.981± 0.495

MLP-Policy 9.930± 0.262 18.669± 0.537

OCP Direct Method 5.763± 0.684 11.153± 0.772

Table 5.1: The fuel consumption of Long Short-Term Memory (LSTM) policy, Multi-
Layer Perceptron (MLP) policy, and Optimal Control Problem (OCP) pseudospectral
direct method solutions are compared for the 50-meter and 200-meter Holding Point
(HP) within the Keep-Out-Sphere (KOS) scenarios.

5.2. Future Work

In the future, potential areas of improvement for this work on Meta-Reinforcement Learn-
ing, as well as potential new machine learning solutions for spacecraft guidance and con-
trol, could be explored.

• Meta-Reinforcement Learning (Meta-RL) enhancements for this work:

– The proposed Meta-RL solution could be improved by putting more effort into
reward engineering with various coefficients and functions, with the aim of fur-
ther improving the final relative state and fuel consumption. Training could
be enhanced by performing a thorough search for the best hyperparameters
using Bayesian optimization, and it would be advantageous to examine the
state/action spaces using different sets of coordinates and scalings. An effec-
tive strategy could involve logarithmically scaling the state space before the
agent’s neural networks. This adjustment aims to enhance the minimization
of the final relative state, making the ANNs more responsive to smaller state
values, specifically related to better meeting the docking port requirements.
It would also be interesting to compare the proposed Meta-Recurrent Neu-
ral Network (Meta-RNN) solution with other Meta-Reinforcement Learning
implementations (e.g., MAML, TAML, REPTILE, etc.) to have a benchmark;

– Problem formulation can be improved by taking into account a more realistic
and comprehensive framework. For actual deployment in space, it is necessary
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to model the full 6-Degree-Of-Freedom (6DOF) dynamics, incorporate addi-
tional constraints (such as thruster throttle capabilities, plume impingement,
maximum angular velocity, reaction wheel saturation, and so on), and imple-
ment a full ephemeris model to achieve the most accurate dynamics possible.

• Other Machine Learning (ML) solutions for spacecraft Guidance and
Control (G&C):

– Space missions often have long-term goals, multiple tasks, complex maneu-
vers, and safety regulations during each phase. This work focuses directly on
the final approach and docking maneuvers, but before reaching this point, a
rendezvous and docking mission has many stages (such as orbital insertion,
targeting different holding points, and possible fly-arounds to modify the ap-
proach corridor). A potential machine learning framework to design the whole
mission could be Hierarchical Reinforcement Learning (HRL)[98]. Introduces a
multilayered approach to decision making, each layer responsible for a distinct
element of the problem. At the highest level, a meta-controller is responsible
for selecting subgoals and deciding which lower-level controllers to use. The
lower levels are responsible for performing subtasks and establishing policies
that dictate how the agent should act in different states or situations. The
spacecraft would be able to make decisions at various levels of abstraction. At
a higher level, it can make general decisions, such as selecting between differ-
ent mission stages (e.g., orbit insertion, phasing, rendezvous, etc.). At a lower
level, it can make more precise decisions related to particular maneuvers or
trajectory changes. The mission is divided into subtasks, each with its own re-
inforcement learning agent, and helps in planning and execution. Additionally,
HRL can assess risks at different levels of the mission and take the necessary
steps to reduce them. For instance, if a high-level agent identifies a potential
collision, it can activate a lower-level agent to carry out evasive maneuvers;

– It would be interesting to investigate the possibility of using Neural Ordi-
nary Differential Equations (Neural ODEs), Physics-Informed Neural Networks
(PINNs) to approximate the Hamilton-Jacobi-Bellman (HJB) equations, and
AI-aided traditional methods (e.g., Optimal Control Problem indirect solutions
Warm-Started with Neural Networks) for spacecraft autonomous G&C appli-
cations. These techniques are proposed as an alternative to the current Meta-
Reinforcement Learning (Meta-RL) solution of this work, and are intended to
be used for a single phase of the mission.
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A| Appendix A: Proof of
Proximal Policy Optimization
Convergence

Proximal Policy Optimization (PPO) is a reinforcement learning approach that employs
policy gradients with the help of function approximators, such as Artificial Neural Net-
works (ANNs), to optimize the agent. It aims to learn a policy (Actor) characterized by
parameters θ ∈ Rd and a state-value function (Critic) described by parameters w ∈ Rm.
Within the PPO implementation, the computation of an advantage function is essential,
which, in the current version, is accomplished using Generalized Advantage Estimation
(GAE), as shown in Equation 1.62. This implies that the parameters of the critic network
also indirectly estimate the action-value function, qw (s, a) = ÂGAE

w (s, a) + vw (s) (as
indicated in Equation 1.39). For further details and definitions, see Section 1.3.

Theorem A.1 (Policy Gradient with Function Approximation). Let qw : SXA → R be
the approximation of qπ, with the parameter w ∈ Rm. If qw converges to a local optimum,
it satisfies: ∑

s

µ (s)
∑
a

πθ
(
a | s

) [
qπ (s, a)− qw (s, a)

]
∇qw (s, a) = 0 (A.1)

If qw satisfies Equation A.1 and is compatible with the policy parameterization in the sense
that:

∇qw (s, a) =
∇πθ

(
a | s

)
πθ
(
a | s

) (A.2)

Then:

∇J (θ) =
∑
s

µ (s)
∑
a

qw (s, a)∇πθ
(
a | s

)
(A.3)
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Theorem A.2 (Policy Iteration with Function Approximation). Let πθ and qw be any
differential function approximators for the policy and action-value function, respectively,
that satisfy the compatibility condition and for which maxθ |∂θiθjπθ

(
a|s
)
| < B < ∞. Let

{αk}∞k=0 be any step-size sequence such that limk→∞ αk = 0 and
∑

k αk = ∞. Then, for
any MDP with bounded rewards, the sequence {J (θk)}∞k=0 ,defined by θ0, πθk , and

wk = w s.t.
∑
s

µ (s)
∑
a

πθk
(
a | s

) [
qπ (s, a)− qw (s, a)

]
∇qw (s, a) = 0 (A.4)

θk+1 = θk + αk

∑
s

µ (s)
∑
a

∇πθk
(
a |s

)
qwk

(s, a) (A.5)

converges such that limk→∞∇J (θk) = 0.

Equation A.2 is verified for compatibility due to the congruence of characteristics between
actor and critic neural networks (see Table 2.2). Furthermore, the estimation of the
advantage function is carried out using the definition of Residual Temporal-Difference
(Residual TD) as described in Equation 1.60. The constraint on ∂θiθjπθ

(
a|s
)
, although

awaiting further theoretical analysis, is supported by numerical validation and the use of
gradient clipping. Furthermore, both the MDP reward limits and the step-size criteria are
satisfied. The Recurrent Proximal Policy Optimization (Recurrent PPO) of this study, as
supported by Theorem A.2, ensures convergence to at least a local optimum.
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B| Appendix B: Plume

Impingement Study Case

In this appendix, a few extra numerical results from the algorithm described in Section
1.5 are presented. These outcomes utilize the Markov Decision Process (MDP) outlined in
Section 2.3, now incorporating an additional constraint concerning plume impingement.
The chaser spacecraft is assumed to be underactuated, meaning it has thrusters in only
one direction of its body frame CT , the ĉ2-axis, as conceptualized in a 3DOF model.
This allows the control action vector to be thought of as the direction of the particulate
emissions.

As the chaser performs rendezvous and docking maneuvers, the direction of thrust be-
comes significant. The thrusters of the chaser should not be pointed directly at the target
when in close proximity. The typical representation of thruster emissions’ geometry usu-
ally involves modeling it as a cone-shaped region surrounding the thrust vector, defined
by an angle α. In this analysis, due to the close-range proximity operations considered,
this angle and the plume shape are assumed to be constant. Particulate emissions from
thrusters impact target spacecraft when:

ut · ρt

∥ut∥∥ρt∥
≤ cos

(
α

2

)
ut · ρt ≥ 0

(B.1)

In order for the policy to learn this additional restriction, it should be incorporated into
the MDP formulation of Section 2.3. When Equation B.1 is satisfied, the reward function
of Subsection 2.3.2 is increased by a penalty of ϕ = −30 and a signal done is sent by the
environment to terminate the episode (similar to the approach corridor constraint). For
the sake of simplicity, only an episodic reward without reward shaping is considered in
this case. The control action ut is taken into account in the equations, with ρt being the
relative position vector. The plume cone is assumed to have an angle of 20◦. The docking
port requirements are eased since this appendix is only for comparison purposes, so the
final relative state shall now meet the criteria of ρf < 2 m and ρ̇f < 0.1 m/s.
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It would be interesting to carry out a thorough examination of a 6DOF underactuated
spacecraft, taking into account further restrictions such as the maximum angular speed,
reaction wheels saturation, and limitations from sensors and navigation filters (e.g. no
bright objects, target within the field of view, maximum radial velocity, etc.). However,
this is beyond the scope of this work. The idea for this research direction is inspired by
the work of Soderlund and Phillips [99].

Final Approach and Docking: 50-meter Case with Plume Im-
pingement

To investigate the impact of the newly imposed restriction on plume impingement in
comparing LSTM-policies and MLP-policies, the scenario involving the 50-meter Holding
Point (HP) within the Keep-Out-Sphere (KOS) is now considered. The specified reference
frame is detailed in Subsection 1.2.2. The initial conditions of the absolute target and
relative chaser match those indicated in Subsection 3.1.1, including the initial mass. The
duration of the flight is established at 100 seconds.

Training

To compare Meta-Reinforcement Learning (Meta-RL) and traditional Reinforcement Learn-
ing (RL), the LSTM-agent and the MLP-agent (outlined in Section 2.4 and 4.1) are trained
for 8M steps. The training curves, which are the mean discounted cumulative rewards of
the trajectory roll-outs in relation to the learning step, are shown in Figure B.1.
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Figure B.1: Mean discounted cumulative rewards of the trajectory roll-outs during the
training phases of the LSTM and MLP policies. The numerically solved study case is the
50-meter Holding Point (HP) within the Keep-Out-Sphere (KOS) with plume impinge-
ment.
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The learning curves show that the rewards gradually increase until they reach a plateau,
indicating the success of both learning processes. The recurrent and non-recurrent agents
are able to maximize the reward during each episode, thus solving the associated Markov
Decision Process (MDP). Trainings are much more stable than in Subsection 3.1.1, due to
the plume impingement constraint, which enabled a less "explorative" learning process.
As demonstrated in Section 4.1, the LSTM-policy can achieve consistently higher rewards
than the MLP-policy. Its internal memory and ability to adapt to changing conditions
allowed it to optimize the proposed MDP more effectively, as expected for such a complex
problem.

Testing

The LSTM-policy that has been trained is now being used again in the environment for
the testing phase, with the same uncertainties as in Section 2.3. The performance of the
LSTM-policy is demonstrated in Figure B.2 and Figure B.3, which show the trajectory,
relative position and velocity, mass, and thrust profile of a single episode. The Monte
Carlo campaign is the only situation in which the MLP-policy is evaluated, as the results
of each episode are quite similar to those of LSTMs.
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Figure B.2: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case with plume impingement constraint, deployed in the environment
and tested for a single episode. Trajectory inside the approach corridor starting from a
randomized initial condition.
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Figure B.3: Trained LSTM-policy for the 50-meter Holding Point (HP) within the Keep-
Out-Sphere (KOS) case with plume impingement constraint, deployed in the environment
and tested for a single episode. Relative position, relative velocity, mass and control action
along the trajectory of Figure B.2.

Figure B.2 illustrates that the chaser spacecraft, which starts from a random initial condi-
tion (as discussed in Section 2.3 of the MDP), can reach the target without its thrusters’
exhaust coming into contact (arrows indicate the opposite direction of plume). The dock-
ing port requirement with a final state1 of δxf =

[
1.991 m, 0.097 m/s

]
and the safety

approach corridor constraint are satisfied, as can be seen in Figure B.3. The thrust and
time of flight are within their maximum values, which make the rendezvous and docking
maneuver described in Section 2.1 with plume impingement as an additional constraint
a success. The Tsiolkovsky equation (Figure B.3c) shows that the required impulse for

1The episodic approach of the reward function, indicated by the done signal for docking requirements,
prevents the chaser from engaging in an "endless" pursuit of closeness, unlike traditional G&C algorithms.
This design is intended to guarantee the uniformity and verifiability of the outcomes; however, it is possible
to make the requirements more stringent, though this may prolong the training period.
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the task is ∆V = 61.320 m/s, which is much higher than the optimal value without the
plume impingement restriction (as seen in Section 4.2). This outcome is foreseen due to
the increased complexity of the problem. The thrust action in Figure B.3d is not smoothly
adjusted, but instead has a "bang-bang" pattern. The plume impingement case has been
mainly studied as a more thorough comparison between LSTM-policies and MLP-policies.

The LSTM-policy and the MLP-policy that have been trained are now evaluated simulat-
ing 500 trajectories, each with a different initial condition based on the uncertainty of the
MDP discussed in Section 2.3. Trajectories are illustrated in Figure B.4 and a summary
of results is provided in Table B.1.
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(a) LSTM-policy.
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(b) MLP-policy.

Figure B.4: Trained LSTM-policy and MLP-policy for the 50-meter Holding Point (HP)
within the Keep-Out-Sphere (KOS) case with plume impingement constraint, deployed
in the environment and tested for a batch of episodes. Trajectories inside the approach
corridor starting from a randomized initial condition.

Results MC: µ± σ LSTM-policy (Sr = 82.4%) MLP-policy (Sr = 36.6%)

Final Position ρf [m] 1.998± 0.042 1.566± 0.343

Final Velocity ρ̇f
[
m/s

]
0.106± 0.020 0.164± 0.032

Fuel Consumption ∆V
[
m/s

]
65.103± 5.595 112.177± 4.718

Time of Flight ToF [s] 91.887± 3.956 99.967± 2.568

Table B.1: Numerical results sum-up of the LSTM-policy and MLP-policy for the 50-meter
Holding Point (HP) within the Keep-Out-Sphere (KOS) case with plume impingement
constraint testing, as illustrated in Figure B.4.

In this scenario, the LSTM-policy demonstrates superior effectiveness compared to the
MLP-policy, given identical conditions of environment, neural network sizes, and hyper-
parameters. The MLP-policy has been assessed and found to be inadequate in addressing
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the G&C problem, as demonstrated by its lower success rate and higher fuel consumption.
The majority of trajectories approach the target closely; however, in their attempt to de-
celerate and meet the terminal relative velocity requirement, they encounter either plume
impingement or fall short within the allotted maximum flight time. The LSTM-policy
has been successfully tested (Sr = 82.4 %), and most trajectories meet docking port re-
quirements (as indicated by the confidence intervals of the relative terminal states). In
addition, all these trajectories abide by the safety regulations of the approach corridor,
the maximum control action, the time of flight, and, most importantly, almost all of them
also ensure that the chaser thruster plume does not come into contact with the target.
This study is only a preliminary examination of the plume impingement scenario. How-
ever, the LSTM-policy has demonstrated its ability to effectively handle complex MDPs
that include highly randomized parameters, even in this instance.
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