
Politecnico di Milano

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

Corso di Laurea Magistrale in Space Engineering

Tesi di Laurea Magistrale

A Model-Based Thruster Fault Detection and Isolation Tool
with Low Level Implementation in Basilisk Astrodynamics

Simulation Framework

Relatore

Prof. James Douglas Biggs

Correlatore

Prof. Hanspeter Schaub

Candidato

Giulio Napolitano
Matr.878748

Anno Accademico 2019–2020





Acknowledgements

Un grande capitolo della mia vita si conclude qui. Tante cose sono successe
durante questo periodo universitario, nel bene e nel male. Purtroppo te ne sei
andato troppo presto per vedermi arrivare fin qui, papà, però ne hai visto almeno
la parte iniziale. Hai visto lanciarmi in questa avventura e, come sempre, mi hai
supportato senza battere ciglio. Grazie a te, mamma, sei la donna più forte che
abbia mai conosciuto e non sai quanto mi sento fortunato che tu sia ancora qui
con me a gioire, soffrire, pianificare, aiutare, sopportare. Grazie a nonna Grazia,
zia Annamaria, zio Luigi, Dade, zia Antonella, zio Antonio, Francesco e Federico.
Devo ringraziare voi tutti se sono arrivato fin qui, non avrei potuto desiderare
una famiglia migliore di questa. E devo ringraziare anche voi, nonno Giulio e zia
Jolanda, che purtroppo non avete potuto vedermi ora, ma mi avete accompagnato
per tutta la vita. Grazie anche a zio Giovanni, zia Agata, Marzia e Malo, per
essermi stati vicini nei momenti più difficili, ed averli condivisi con me. Grazie a
tutti gli altri membri della famiglia, putroppo non posso nominarvi tutti qui, per il
supporto che mi date.
I wanna thank Professor Biggs for supporting me during this work, and for giving
me the chance to go to the USA where most of the research for the thesis has been
done. I wanna thank Professor Schaub for helping me and letting me be part of
his AVS lab for six months, where I learned so many skills that are and will be
immeasurably useful for my career. I wanna thank the people from the lab for
helping me and being so friendly with me from literally day one. From my period
in Boulder I also wanna thank the people from Horizons, you guys made me feel so
loved during those months. I know we’re gonna see each others again.
Against all the odds I was also able to find you there, Vanessa, my love. Thank
you for supporting and caring for me, you’re an awesome person on top of being
an awesome girlfriend. In Boulder we started a journey together and I can’t wait
to see what’s coming for us. Gracias también a Lula, Omar, Brigitte, Christian,
Sebastian y toda la familia de Vanessa, por aceptarme desde el principio y alojarme
en Houston. Todos ustedes son gente maravillosa
Poi ci siete voi uagliù cioè mi avete letteralmente seguito tutti a Milano. Grazie
Besio, Stefano, Ale, è stato come avere parte della famiglia con me anche lontano
da casa. Grazie ai ragazzi delle ZdP (siete oggettivamente troppi da menzionare,
ma se riconoscete l’acronimo ZdP allora ce l’ho con voi) che sono rimasti giù, e agli
altri che piano piano stanno salendo su. Facciamo l’Arbostella a Milano. Grazie
anche a tutti gli amici di Salerno Sara, Miriam, Guido, Antonella che mi avete
letteralmente visto crescere e sostenuto da sempre. Grazie te Tina, per essere ed
essere stata sempre li ad ascoltarmi, consigliarmi e volermi bene.

iii



iv

Grazie Nicola per gli anni passati insieme, abbiamo creato una sensazione di quo-
tidianità che non pensavo potesse avvenire all’infuori di Salerno, facendomi sentire
meno fuori sede. Grazie anche ad Anna per tutto il tempo assieme quando ci venivi
a trovare e Monica per avermi supportato ed essere stata da subito affettuosa con
me.
Grazie ai ragazzi di PdF Giovanni, Yle, Marti, Valeria, Alessia, Fede, Ezia, Irene,
per tutte le uscite ed il tempo speso insieme lontani da casa. Grazie agli amici
di CG Ale, Eli, Ste per aver condiviso tutte le belle (ed alcune stupide) memorie
accumulate durante questo percorso. Grazie a Ila, Giulia, Alice, Vale, Alo, Renato,
Davide, Edo, Andrea e tutti gli altri del gruppo Space. Essere con voi a Milano
ha reso tutto più facile e bello. Spero, anzi sono sicuro che con voi non sia finita,
oramai non siete più amici del poli, siete amici e basta.

Milano, Giugno 2020 G. N.



Per te, papà





Contents

1 Introduction 1
1.1 Fault Detection and Isolation Problem . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Data Based . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Model Based . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Presented Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Comparison with Other Methods . . . . . . . . . . . . . . . 6
1.3.2 Main Characteristics . . . . . . . . . . . . . . . . . . . . . . 7

2 Background Knowledge 9
2.1 Basilisk Simulation Framework . . . . . . . . . . . . . . . . . . . . 9
2.2 Attitude Dynamics Equations . . . . . . . . . . . . . . . . . . . . . 11
2.3 Nonlinear Unknown Input Observer . . . . . . . . . . . . . . . . . . 13

3 Mission Description 17
3.1 Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Environment and Disturbances . . . . . . . . . . . . . . . . . . . . 18
3.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Thrusters Module . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Types of Faults . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Basilisk De-Tumbling Control . . . . . . . . . . . . . . . . . 25
3.5.2 Simple De-Tumbling Control . . . . . . . . . . . . . . . . . . 26
3.5.3 Generation of the On-Time Input Vector . . . . . . . . . . . 27

4 Proposed Solution 31
4.1 Overview of the Solution . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 FDI Subsystem Interfacing . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 First Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Second Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Simulation and Results 47
5.1 Simulation Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Simulation Fixed Parameters . . . . . . . . . . . . . . . . . . . . . . 48

vii



viii CONTENTS

5.3 Simulation Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Efficiency Loss Fault . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Stuck Thruster Fault . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6.1 External Forces . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.2 External Torques . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Final Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions and Possible Developments 59
6.1 Interpretation of the Results . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Acronyms 61

Bibliography 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Pubblications and Manuals . . . . . . . . . . . . . . . . . . . . . . . 63
Online Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Non Cited References . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Online Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



List of Figures

1.1 Classification of FDI techniques . . . . . . . . . . . . . . . . . . . . 2

2.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Spacecraft shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Sensonor STIM300 IMU . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 CG thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Thrusters configuration . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 De-timbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Input/output relation for the FDI subsystem . . . . . . . . . . . . . 31
4.2 Representation of a partial FDI . . . . . . . . . . . . . . . . . . . . 33
4.3 Representation of the four cases of FDI . . . . . . . . . . . . . . . . 34
4.4 Accelerations and FD . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 NUIOs residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 NUIOs residuals blocked comms . . . . . . . . . . . . . . . . . . . . 42
4.7 SFI principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Thrusters FDI flowchart . . . . . . . . . . . . . . . . . . . . . . . . 45
4.9 Basilisk scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Angular velocity plot in efficiency loss case . . . . . . . . . . . . . . 50
5.2 NUIOs behavior in efficiency loss . . . . . . . . . . . . . . . . . . . 51
5.3 NUIO 1 zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Final isolation results . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Angular velocity plot in thruster stuck case . . . . . . . . . . . . . . 53
5.6 Wrong FFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 NUIOs behavior with disturbances . . . . . . . . . . . . . . . . . . 56

ix





Abstract

The problem of Fault Detection and Isolation (FDI), is of much concern among
the control engineering community. In addition, the space industry is pushing
towards more compact spacecraft solutions (e.g. Cubesats) that have the advantage
of being relatively low cost and easily configurable, posing however new constraints in
terms of mass and power available onboard. The FDI problem is directly influenced
by these new trends, that limit the amount of sensors carriable on board, forcing
the community to come up with innovative ways to guarantee the fulfillment of
those new requirements. With this in mind, the thesis carries out the development
of a tool for detecting and isolating specific kinds of faults, that can occur in
thruster-controlled space missions’ maneuvers, making use of only accelerometer
and gyroscope information. This kind of approach is particularly suitable for smaller
spacecraft which, having more stringent requirements in terms of mass and power
consumption, can benefit from the minimal number of sensors needed. In addition,
this tool can be used soon after the spacecraft is released by the carrier, when not
all the sensors are active, and usually information comes from simple sensor like
an IMU unit. The method consists in three-stages (one for fault detection, two
for fault identification), and combines simple sensor information monitoring with
model-based approaches, leading to the design of multiple Nonlinear Unknown Input
Observers. The implementation is carried out using Basilisk, the astrodynamics
simulation software developed by the University of Colorado AVS Lab and the
Laboratory for Atmospheric and Space Physics (LASP). It makes use of Python’s
ease of scripting and reconfiguration, together with the execution speed of low level
programmed C/C++ modules, making the developed algorithms faster with respect
to classical MATLAB simulations, and directly usable on spacecraft’s onboard
computers.

xi



Sommario

Il problema di Fault Detection and Identification (FDI) è di grande interesse
nel campo di ingegneria del controllo. In più, l’industria spaziale si sta indirizzando
verso l’utilizzo di satelliti sempre più compatti (come ad esempio i Cubesat). Essi
hanno il vantaggio di essere relativamente economici e facilmente configurabili,
creando tuttavia nuovi vincoli in termini di massa e consumo disponibile a bordo.
La FDI è direttamente influenzata da questi nuovi trends, che limitano la quantità
di sensori trasportabili a bordo, forzando quindi gli ingegneri a trovare nuove
innovative soluzioni che garantiscano l’adempimento a questi nuovi vincoli. Tenendo
conto di tutto ciò, la tesi propone il design di un nuovo metodo per captare ed
isolare specifici tipi di malfunzionamenti che possono avvenire durante manovre
nello spazio che utilizzano propulsori di tipo "Cold Gas Thrusters", facendo uso
esclusivamente di misurazioni di accelerometri e giroscopi. Questo tipo di approccio
è particolarmente utile per piccoli veicoli che, avendo vincoli di massa e consumo
elettrico piu stringenti, beneficiano della possibilità di utilizzare solo questi due
sensori. Ancora, questo strumento può essere utilizzato appena dopo il rilasio
del satellite da parte del vettore, quando non tutti i sensori sono ancora attivi,
e le misurazioni arrivano solo da sensori quali IMU. Il metodo consiste in tre
stadi (uno per fault detection e due per fault identification), e combina il semplice
monitoramento dell’accelerazione con tecniche "Model-Based", portando al design
di Nonlinear Unknown Input Observers. L’implementazione è portata a termine in
Basilisk, il software di simulazione astrodinamica creato nell’Università del Colorado
Boulder, dall’AVS Laboratory ed il Laboratory for Atmospheric and Space Physics
(LASP). Questo software sfrutta la semplicità di riconfigurazione e scripting di
Python, insieme con la velocità di esecuzione di moduli codificati nei linguaggi di
basso livello C e C++. Ciò rende gli algoritmi qui presenati di più veloce esecuzione
rispetto alle classiche simulazioni Matlab, e direttamente utilizzabili nei computer
di bordo di veri satelliti.

xii



Chapter 1

Introduction

In this chapter, the Fault Detection and isolation problem is laid down and
the reason for its existence is explained. A literature review is carried out and,
given the size of the argument, only the main methods used in the space sector are
reported. The second section describes how the present work stands with respect
to the literature, explaining its strengths and the contribution to the FDI subject.

1.1 Fault Detection and Isolation Problem
During the design phase of engineering projects, two conditions are taken into

account: nominal behavior and off-nominal behavior. The nominal behavior is the
desired one and is expected (or better, advised) to be exhibited by the system at
all times. However, the real world application poses an unavoidable threat, by
introducing a theoretically infinite amount of variables in the system, in contrast
with the relatively few considered in the design. The relative weight of those new
variables with respect to the design ones can largely vary, but in general they do
have an effect on the system. From that comes the highly threatening off-nominal
behavior. It is impossible (and often useless) to take into account every possible
"secondary" variable so, usually, a survey of the most important ones is carried
out beforehand. This means that the designers should have a thorough knowledge
of the operating conditions and of the possible events that can perturb them. In
some (but not all) applications where humans are an active part of the system,
this pre-survey can just serve as a manual for the operators, that will be able to
tell when and where an off-nominal behavior took place (and eventually correct it).
However, in a large number of cases, humans cannot be present, and the need for
autonomous actions becomes mandatory.
On this premise, the Fault Detection and Isolation (FDI) problem is introduced,
with its purpose of answering:

• Fault detection: Is there a fault in the system?

• Fault isolation: Which component is faulty?

Those questions are tackled by the majority of industrial engineering fields, from
aerospace to automotive, naval, chemical, etc. The common situation is a system
composed of multiple sensors and actuators, that might become faulty during the

1



2 Chapter 1. Introduction

mission’s lifespan. An immediate solution is the introduction of "per component"
monitoring, causing redundancy, at the expense of a weight and complexity increase,
which might not be that stringent of a trade-off in terrestrial applications. To avoid
that, however, multiple FDI techniques are investigated with the purpose of offering
the so called "Analytical Redundancy".
It is clear that the lower is the capability to locally act/monitor the system, the more
stress should be put on FDI. In the case of space applications this becomes very
clear, given the impossibility to either "see" or "touch" a spacecraft. Everything is
automated hence also the FDI has to act autonomously. Besides, the space industry
is pushing towards more compact spacecraft solutions (e.g. Cubesats) that have
the advantage of being relatively low cost and easily configurable, posing however
new constraints in terms of mass and power available onboard. The FDI problem
is directly influenced by these new trends, that limit the number and kinds of
available sensors, forcing the engineering community to come up with innovative
ways to guarantee the fulfillment of the FDI requirements.

1.2 Literature Review

The literature of FDI is vast, given the large number of ways to tackle this
problem. In [34], [15] and [17] a survey of methods and philosophies is carried
out, and is summarized in figure 1.1. Two major families can be identified: data-
based and model-based ; the former relying on pattern recognition, the latter on
mathematical/physical models. Among those, further distinctions are to be made,
but this goes beyond the purpose of this thesis, in which an overview of the
most important characteristics is enough to give an idea of where the presented
method stands. As expected, the focus will be on space-related applications, and
in particular on actuator faults.

Observer Based Parameter Estimation Parity Space Fuzzy LogicNeural Networks

FDI Techniques

Data BasedModel Based

Figure 1.1: Classification of FDI techniques

1.2.1 Data Based

The latest developments are being made in the data-based field, showing how
”model–free” (i.e. no need for mathematical modeling) approaches can be especially



1.2. Literature Review 3

advantageous in cases of FDI applied to complex systems. Neural-network (NN)
based methods [31], [33] belong to the aforementioned group, and have received
much attention because of their outstanding performance in learning nonlinear
behaviors and their ability for pattern recognition and association [21]. Neural
networks consist of processing elements called neurons, that get activated when
the input exceeds a threshold value. Each neuron is connected with others by
connection link. Each link has weights that carry the information about the input
signal. A Neural network has to be trained for detecting and isolating the faults,
and the training can be either offline or online.
Another similar technique employs the Fuzzy Logic[22]. Here a subset of the system
in nominal conditions is used for off-line training, in order to create the base for the
consequent fuzzy-based if-then conditions. Those are particularly useful in cases
when humans’ knowledge of the "faulty behavior" is of help, since it can be used in
the training, giving a de facto mathematical model for human experience.

1.2.2 Model Based

The most classical approach is the model-based one, which has been thoroughly
analyzed and employed in space missions for a long time. Among this group, the
most used methods are:

• Parameter estimation

• Parity space

• Observer based

The general working principle of those methods relies on the creation and analysis
of a signal, based on the system’s measured input-output. The detection meth-
ods generate residuals (Observers, Parity equations) or parameter estimates. By
comparison with the nominal values, deviations are detected and fault is declared
and (when containing enough information) characterized for isolation. High fidelity
models and possible noise reduction techniques are the keys to an effective FDI
model-based tool, and for cases in which the investigated phenomenon’s governing
equations are simple enough, those requirements can be easily met, resulting in a
fast and easy implementation.

Parameter Estimation

When the process parameters are partially not known or not known at all,
Parameter estimation methods come to help. Such technique is used for example in
[18] for the satellite’s orbit and attitude FDIR (the R stands for recovery from the
fault). System anomalies caused by faults and/or malfunctions result in changes
in the physical parameters in the system, which will be estimated using the least-
squares algorithm. Once a deviation (larger than a threshold) in those parameters
is detected, the occurrence of a fault is declared and the subsequent analysis of the
deviation allows for identification.



4 Chapter 1. Introduction

Parity Equations

A review of Parity space approaches is done in [23]. The underlining idea there
is to generate auxiliary signals (residuals or parity vectors) that are independent of
system operating conditions and system inputs under nominal operating conditions
while carrying fault "information". This property is considered of fundamental
importance in FDI, cause it allows for a relatively low probability of "false positives"
and a simple (fixed) threshold check for fault declaring. The method compares
the process behavior with a process model describing nominal behavior. The key
idea is to check the parity (consistency), of the mathematical equations of the
system by using the actual measurements. The difference of signals between the
process and model is expressed by residuals. Following these guidelines, the residual
signals are nominally near zero, and deviate from zero in characteristic ways when
particular faults occur. Then they are examined for the likelihood of faults using
proper decision functions and decision rules. A decision process may consist of a
simple threshold test on the instantaneous values or moving averages of residuals,
or it may be used directly on methods of statistical decision theory, e.g., sequential
probability ratio testing.

Observer Based

Observer based methods are the last of the aforementioned, and are historically
among the first studied for space FDI applications. The basic idea behind the
observer or filter-based techniques is to estimate the outputs of the system from
the measurements by using either Luenberger observers in a deterministic setting
or Kalman filters in a noisy environment [28]. The output estimation error (or its
weighted value) is therefore used as residual. When an observer is exploited for
FDI purposes, the estimation of the outputs is necessary, whilst the estimation of
the state vector is not necessarily needed (depending on the chosen approach). An
advantage of using observers is the flexibility in the selection of its gains which
leads to a rich variety of FDI schemes, each one with specific applications and some
overlapping capabilities.
In [25] an Extended Kalman Filter is used to estimate the torque bias acting on
the satellite due to faults in the thruster system using the data from a gyro. The
filter innovation is then monitored using a generalized likelihood ratio (GLR) jump
detection algorithm. This approach results to be very simple and convenient in
terms of computational cost.
In [8] the identification of time-varying thruster faults is done by an iterative
learning observer (ILO), designed to achieve estimation of time-varying faults. The
proposed ILO-based fault-identification strategy uses a learning mechanism (i.e.
previous information is employed to update the fault estimates law) to perform
fault estimation instead of using integrators.
The authors of [24] present a practical solution to the problem of robust fault
detection and isolation (FDI) for faults affecting the thrusters of Mars Express
(MEX). The approach taken is based on both state estimation of an accurate linear
model for the satellite system and unknown input de-coupling to achieve robust



1.3. Presented Solution 5

FDI in the presence of severe dynamic uncertainty during main engine deployment.
In [12] and [13] a multiple observer based scheme is proposed jointly with an
online constrained allocation algorithm to detect, isolate and accommodate a single
thruster fault affecting the propulsion system of an autonomous spacecraft during
a rendez-vous maneuver. The fault detection is achieved through a EKF-based
torque bias direction estimator which exploits information coming from the LIDAR
relative position sensor. The approach to fault isolation consists of a bank of NUIOs
able to isolate the fault to specific groups of thrusters, and ends with a torque bias
evaluation of the EKF.

1.3 Presented Solution

A way of performing Fault Detection and Identification is presented in this
thesis, which takes its motivation directly from the latest space trends, in terms
of size, cost and complexity reduction. The target is a thruster propelled micro-
spacecraft, equipped with eight ACS thrusters, capable of producing pure torque.
Single thruster faults can be detected, and the two canonical kinds of malfunctions
are contemplated: stuck on/off and efficiency loss. The example scenario taken
into consideration is that of a de-tumbling maneuver in deep space. The FDI is
performed in three stages:

• Fault Detection (FD) Fault detection is achieved by monitoring the space-
craft’s acceleration, and confronting it with a threshold. This triggering
threshold is a design parameter.

• First Fault Isolation (FFI) As soon as the fault is detected, four NUIOs
are activated, each one being sensitive to a fault in one of two opposing firing
thrusters. The isolation is now restricted to two suspects.

• Second Fault Isolation (SFI) The two isolated thrusters will produce a
net force/acceleration on the spacecraft, and by confronting it with their
nominal force direction, the faulty one is isolated.

The presented tool is going to used in a specific thruster configuration. This however
doesn’t limit its applicability to other missions, given that the following conditions
are met:

• The thruster configuration is such that the resulting design matrices for the
NUIOs respect some characteristics.

• The thruster configuration and the employed control law produce only pure
torques in nominal conditions, and the fault can be restricted to suspects
with distinct force directions.

Those are going to be explained and understood later in the thesis.



6 Chapter 1. Introduction

1.3.1 Comparison with Other Methods

The presented method falls into the category of model-based, from which inherits
the populated literature and well tested behavior. This nature is due to the usage of
techniques such as Signal Monitoring (i.e. putting a limit to the difference between
system states to their nominal values, the exceeding of which can indicate a fault
situation) but most importantly Nonlinear Unknown Input Observers.

Comparison with Data Based

One of the main advantages of employing data-based is their non-reliance on the
mathematical modeling of the system they are considering. This comes in handy
with complex systems, with difficult or impossible accurate modeling, and that can
present a whole variety of behaviors and responses. This is not the case for the
target application, which is governed by simple known equations (attitude dynam-
ics equations for angular velocity), and presents net distinctive and predictable
behaviors in case of the considered faults.
Data-based techniques performances are heavily dependent on the database (it
must be as extensive and detailed as possible) and/or training process, that would
be unnecessary for the "simple" application considered here. Besides, even the most
thorough training process cannot completely cancel out unexpected behaviors that
especially in the space sector, cannot be tolerated. Or at least not if there are more
easy and secure solutions.

Comparison with Other Model Based

Cause of the reasons explained above, the choice has fallen on a model based
technique. In parity based residual generation, the residuals are formed directly
without depending on state estimation. This method cannot be applied to non-linear
systems since it is suitable for only linear system [30]. This excludes them for the
considered application, that presents non-linearity in its attitude dynamics equa-
tions’ representation of the angular velocity. Together with the acceleration, this
last quantity is clearly affected in case of faults, being also the state of the system
of (three) equations. The ability to easily describe and estimate the spacecraft’s
response in terms of those quantities, makes the choice go towards state estimation
techniques, given that those are the parameters that change the most in faulty
situations. This is why a parameter estimation approach like in [18] (that was
applied to a far wider attitude and orbit control system) is not taken into account.
The approach used by [25] is of easy and effective implementation, making use of
only gyroscope information, and is used as well for fault detection and isolation in
a thruster-based ACS. This makes it a good candidate, since it exploits the simple
geometry of the problem and its response to faults. However, it is not possible to
distinguish between actuators with identical torque vector direction when these are
activated collectively (like in the considered application), and a subsequent manual
testing strategy is foreseen. This can result to be intrusive, since it requires the
active modification of the spacecraft’s control law/subsystem.
The work of [8] answers to the problem of fault detection and estimation in thruster



1.3. Presented Solution 7

controlled spacecraft, being able to accurately detect and estimate a time varying
fault. However it does not address the problem of isolation, of vital importance to
a possible decision of shutting off the faulty thruster.
To address this problem, the concept of bank of observers is introduced. The
idea is to design more than one observer, each one sensitive to faults of specific
thrusters. In this direction, Patton et al. [24] solution for the Mars Express missions’
thruster system exploits a bank of UIOs, capable of isolation in case of several noise
sources and disturbances. The usage of UIOs however implies a linear state system
for the otherwise complex spacecraft. The linearization is achieved by using an
identification process given the inputs and outputs of the nonlinear system. This
assumption is dropped in the scenario considered in this paper, which uses the full
nonlinear attitude dynamics equations, applied to a simple subsystem with respect
to the whole Mars Express thruster propulsion subsystem.
Also the tool developed in this thesis lies its foundation in the aforementioned
principle of banks of observers. Thanks to the work of Weitian Chen and Saif [32],
the mathematical modeling basis for the usage of actuator fault isolation NUIOs
is carried out, laying down the path for their usage in space. Both the presented
work and Fonod et al. [12] exploit this useful technique, and apply it for thruster
fault isolation. The detection and final isolation stages of the latter work is however
based of an EKF, that exploits information coming from the LIDAR device mounted
on-board, differently to the accelerometer based one presented here.

1.3.2 Main Characteristics

Now that the stance of the presented solution with respect to other works
is clear, a roundup of the main characteristics is carried out, outlining its main
features.

One sensor The only sensor used for FDI is an Inertial Measurement Unit (IMU),
which gives information in terms of angular velocity and linear acceleration
of the spacecraft. Those measurements are usually available for all sorts
of usages, so it is impossible not to find them already onboard. Higher
precision/more specific sensors (e.g. star trackers, "per-actuator" sensors or
LIDARs for position measuring) might not be present, so the possibility of
using just IMU is highly advantageous.

Scalable The weight and volume of an IMU is respectively in the order of tens of
grams and cubic centimeters, making it usable by vehicles from the nano/mi-
crosat range to bigger targets.

Ready to use During the early phases of the mission (e.g. after release into orbit)
or when the spacecraft is in safe mode, multiple subsystems are not in use
or can’t be used cause of the s/c’s initial tumbling. However the IMU is
usually fully operative, being the simplest source of information available on
the spacecraft’s state. Hence FDI can be performed also during those phases.

Control system independence The control system is not touched by the FDI
subsystem and the issue of mid-isolation command changing is considered



8 Chapter 1. Introduction

and solved. This means that the tool can be inserted in an already existing
spacecraft, simply by feeding it sensors readings and nominal input commands.

Multi Purpose Even if the example scenario is of de-tumbling, the tool can be
used also for other thruster-propelled ACS maneuvers (e.g. rendez-vous). A
robustness analysis with respect to external disturbances is performed, giving
insights on other possible employments of the tool. The only limits are the
thruster configuration (that could make the NUIOs not able to isolate) and
applicability on spacecraft/missions with external force/torque disturbances
higher than some limit thresholds.

Flight proven technology With respect to newer tools (e.g. data-based, model-
free), the usage of relatively "simple" observers has been already thoroughly
studied and used in space applications, as seen in the references before.

Robustness and sensitivity The tool’s performance has been tested in the pres-
ence of unmodeled disturbances, giving promising results also in case of small
faults. Furthermore, a trustworthy FDI is achieved even if the fault doesn’t
compromise the maneuver.

Low computational burden The algorithms developed here do not require high
computational capabilities. In a real life scenario, for the majority of time,
only the simple monitoring of the spacecraft acceleration will be running in
background. Only when a fault is detected the algorithms for fault isolation
go online, and they usually run for a very short period of time.

C implementation The algorithms of the discussed method have been coded in
the low level programming language "C" which is currently the most popular
language for onboard satellites’ computers (together with C++). In addition
to the faster speed of execution, this allows for the presented work to divert
from just being a simulation (like MATLAB/Simulink implementations that
would require steps like auto-coding to be used in real applications, often with
interfacing problems to overcome) and be closer to a real world application.

Basilisk The environment of development and testing is Basilisk, an astrodynamics
simulation software with Python/C/C++ scripting. The advantages that it
brings to the work are in terms of 1) ease of reconfiguration for creating and
testing different scenarios, thanks to its Python interface;2) library of pre-built
and flight ready modules regarding different subsystems;3) the aforementioned
advantages of the C language.



Chapter 2

Background Knowledge

In order to develop the FDI scheme, a proper background knowledge has to be
laid down, in terms of mathematical models and simulation framework in which the
tool will be inserted. First Basilisk is introduced, explaining its features. Then the
discussion changes its focus on the modeling needed for the making of the FDIS.
The spacecraft’s attitude is modeled, and the NUIO is explained with its purpose
and mathematical modeling
The following mathematical notations will be used here and throughout the thesis:

x = one dimensional variable or constant

x = vector

X = matrix

ẋ = derivative in time of x

XT = transpose of matrix X

X+ = Moore-Penrose inverse of matrix X

X > 0 = matrix X is positive definite

x̂ = estimate of vector x

2.1 Basilisk Simulation Framework

The choice of using Basilisk as the simulation framework has been already
mentioned in 1. Basilisk astrodynamics framework is a spacecraft simulation tool
developed with an aim of strict modular separation and modeling decoupling,
in regards to coupled spacecraft dynamics, environment interactions and flight
software (FSW) algorithms [20]. The modularity comes from the fact that every
element of the simulation, whether it is part of a dynamic/physical entity (the
spacecraft, its solar panels, actuators, gravity bodies, disturbances, etc.) or of the
flight software (algorithms for attitude determination, guidance, optical navigation,
etc.) is represented by a module written in the C or C++ programming language.
The simulation (scenario in Basilisk terms) is created in a Python environment, in
which all the required modules are linked together and each one’s characteristics
(initial values, gains, required parameters) are set. In order to simulate properly

9



10 Chapter 2. Background Knowledge

a real life mission, different time steps are allowed to be set for different sections
of the simulation. This, for example, can allow for a more accurate simulation
of the orbital and attitude dynamics, while having the FSW part running at a
slower frequency. The spacecraft dynamics are modeled as fully coupled multi-body
dynamics with the generalized EOMs being applicable to a wide range of spacecraft
configurations. The implementation uses a back-substitution method to modularize
the EOMs and leverages the resulting structure of the modularized equations to
allow the arbitrary addition of both coupled and uncoupled forces and torques to a
central spacecraft hub ([4], [1], [7], [3], [5]). The effects on the spacecraft can be
due to:

• State effectors. They derive from elements whose dynamics has to be
integrated with the states of the spacecraft. Examples are reaction wheels,
control moment gyroscopes, fuel slosh.

• Dynamic effectors. Those are external forces, or phenomena that can be
condensed in external forces. Examples are thrusters, gravity, drag.

The communication between modules is done through a messaging system. Basilisk’s
messaging system manages the trafficking of inter modules messages and employs
a publisher-subscriber message passing nomenclature. A single module may read
and write any number of messages, which can be s/c states, forces, torques, flags,
module-specific variables, etc. A module that writes output data, registers the
‘publication’ of that message by creating a new message entry with the message
exchange. Conversely, a module that requires data output by another module
subscribes to the message published by this last one. The advantages of using
Basilisk as the simulation environment for the algorithm developed here are multiple
[9] [2], and can be summarized in:

Speed The underlying simulation executes entirely in C/C++ which allows for
maximum execution speed, given the low level of the two languages.

Reconfiguration The user interface executes in Python which allows the user to
change integration rates, model/algorithm parameters, and output options
dynamically on the fly.

Pre-existing modules An already existing wide set of modules, both for high
fidelity dynamics and FSW, is present in Basilisk.

OBC implementation The ability to run on the spacecraft OBC the same ex-
act hand-written, optimized, algorithms developed in the Basilisk desktop
environment is a substantial advantage in sight of a possible real mission
usage.

Analysis Python-standard analysis products like "numpy" and "matplotlib" are
actively used to facilitate rapid and complex analysis of data obtained in a
simulation run without having to stop and export to an external tool. This
capability also applies to the Monte-Carlo engine available natively in the
Basilisk framework.



2.2. Attitude Dynamics Equations 11

The presence of such a well established framework makes the development of the
FDI tool follow those workflow steps:

• Mathematical and physical modeling of the newborn FDI method.

• Creation of the C module containing the algorithm translation of the previous
point, and the structure needed to run in Basilisk (e.g. the interfaces with
the messaging system).

• Creation of the Python de-tumbling scenario containing the new FDI module
and the needed pre-existing ones with which, as in the previous point, a
proper interface is needed.

• Creation of the Montecarlo simulation containing the FDI scenario.

It is clear that, given the need to interface with other pre-existing and well tested
modules, an understanding of their content is mandatory. The full mathematical
modeling for each employed module is already available in Basilisk documentation
[35], so it is decided to report only the modeling considered of interest for the
current application.

2.2 Attitude Dynamics Equations
Attitude is the three-dimensional orientation of a body with respect to a specified

reference frame [29]. The "attitude coordinates" can be expressed in a multitude
of ways (DCM, quaternions, MRP, etc.), but all have in common their job of
completely describe how a rigid body is placed relative to a reference frame. As
seen in figure 2.1 two frames are defined:

• Inertial Frame (IF) is a fixed inertial frame taken as reference.

• Body Frame (BF) is the frame attached to the spacecraft body. It is
important to note that in this digression, the BF is centered in the spacecraft’s
COM. Its distance from IF is r (it will always be expressed in BF).

For higher tasks such as attitude determination, guidance, or pointing, the informa-
tion on the instantaneous attitude is required, cause it will be part of the governing
equations of the control subsystem. However, for the FDI purposes of this thesis,
the orientation of the spacecraft is not important per se, cause it will not enter in
any stage of the tool. At the basis of the FDI, lies the idea that a thruster fault
will induce an effect on the spacecraft’s attitude. This means that instead of the
actual "angles" between the IF and BF, it is important to know how those angles
evolve in time in terms of angular velocity. The fundamental equations of motion
for rotational dynamics, governing the angular velocity of a rigid body are the
Attitude Dynamics Equations (ADEs). With the assumption that the spacecraft is a
rigid body with uniform mass distribution and that BF is aligned with the physical
principal axes of inertia, the s/c momentum can be expressed in BF coordinates as:

h(t) = JωBN (t) (2.1)



12 Chapter 2. Background Knowledge

N1 N2

N3

B1

B2

B3

r

Figure 2.1: Reference frames

Where ωBN is the angular velocity of the rigid body with respect to IF in BF
coordinates (from now on just ω). J is the s/c’s inertia matrix that, with the
previous assumptions, reduces to the diagonal one:

J =

J1 =
∫
B

(y2 + z2)dm 0 0
0 J2 =

∫
B

(x2 + z2)dm 0
0 0 J3 =

∫
B

(x2 + y2)dm


The diagonal terms represent the (uniform) mass distribution and are called "Inertia
Moments". In order to derive the ADEs for the angular velocity, the time derivative
of the angular momentum is taken, in IF coordinates, which can be rewritten thanks
to the transport theorem to:[

dh(t)

dt

]
N

=

[
dh(t)

dt

]
B

+ ω(t)× h(t) (2.2)

In the presence of a generic vector of external moments mext, the ADEs become
(with everything in body coordinates):

Jω̇(t) + ω(t)× Jω(t) = mext(t) (2.3)

By dividing each term by J, and expressing them component-wise:

ω̇1 =

(
J2 − J3
J1

)
ω2ω3 +

mext1

J1
(2.4)

ω̇2 =

(
J3 − J1
J2

)
ω1ω3 +

mext2

J2
(2.5)

ω̇3 =

(
J1 − J2
J3

)
ω1ω2 +

mext3

J3
(2.6)

Those last equations, together with the ones discussed in the next section, will be
the basis for the NUIOs, explained in 4. The terms J and mext will be characterized
in the next chapter, where all the mission related quantities will be explained.



2.3. Nonlinear Unknown Input Observer 13

2.3 Nonlinear Unknown Input Observer
The Nonlinear Unknown Input Observer is the extension of the more common

Unknown Input Observer to the nonlinear case. As the name suggests, it deals with
systems characterized by one or more unknown inputs, and in particular is able to
decouple them from the state estimation process. This powerful property makes
them useful in a variety of applications, going from disturbance rejection to both
sensors and actuators fault detection.
The usage of NUIOs to assess the FDI problem has been explored by various
authors, as seen in the first chapter. The main idea behind their adoption is that,
by treating an actuator fault as abnormality with respect to the nominal input, it is
possible to create a NUIO whose estimation job is not susceptible to that particular
actuator, hence monitoring its fault state.
A mathematical dissertation on NUIOs can be found on [32], [27] and [13], and a
review is carried out on this section given the important properties that are going
to be derived. While in the first reference the authors lay down a general usage
of the NUIO applied to FDI, leading to general conclusions, this dissertation will
focus slightly more on the results applicable to the thesis subject.
The following general nonlinear system is considered:

ẋ(t) = Ax(t) + f(x(t)) + B̄nūn(t) + Bnun(t) (2.7)
y(t) = Cx(t) (2.8)

where x(t) is the state vector of the system, A the dynamics’ matrix, f(x) the
nonlinear part of the dynamics, and y(t) the output vector. From now on the time
dependence is omitted for brevity.
The remaining terms represent the known inputs and the disturbances coming from
faulty actuators. They are defined starting from the full input matrix:

Bu = B̄nūn + Bnun (2.9)

B and u are the full input matrix and vector. By removing from B the column(s)
corresponding to the unknown input actuator(s), Bn is obtained, with un its
corresponding input vector. The remaining columns of B and elements of u are
collected into B̄n and ūn.
Two assumptions are made beforehand:

• A1: A, B̄n,Bn are known and Bn is of full column rank

• A2: ||f(x)− f(x̂)|| ≤ γ||x− x̂||
With γ > 0 being a positive Lipschitz constant, and for all x̂, x (x̂ being the
estimated state).
The inputs coming from the actuators can be either healthy (uh) or faulty, with
uh = u only in case of healthy actuators, and uh = ūh

n + un
h.

The goal is to design an observer sensitive only to faults coming from actuators
represented by Bn. For that reason a NUIO is proposed, with the following
characteristics:

żn = Nnzn + Ḡnūh
n + Lny + Mnf(x̂n) (2.10)

x̂n = zn − Eny (2.11)



14 Chapter 2. Background Knowledge

Where the matrices are defined as:

Nn = MnA−KnC (2.12)
Ḡn = MnB̄n (2.13)
Ln = Kn(I + CEn)−MnAEn (2.14)
Mn = I + EnC (2.15)

Hence by using 2.11 and 2.8, the estimation error is:

en = x̂n − x = zn − EnCx (2.16)

It is useful to also express ėn, that will be used later to prove the NUIO’s estimation
capability. In order to do that, the time derivative of the error is taken, and 2.7,
2.10 are used. After rearranging the terms:

ėn = Nnen + Mn(f(x̂n)− f(x)) + Ḡn(ūh
n − ūn)−MnBnun (2.17)

The sufficient conditions for the NUIO existence are:

1) MnBn = 0 (2.18)
2) Nn

TP + PNn + γPMnMn
TP + γI < 0 (2.19)

Where P is symmetric and positive definite, and solves the matrix inequality.
Discussions about the existence of those are found in the aforementioned related
literature. However, given this paragraph’s purpose of designing a NUIO with
accurate state estimation properties, only the proof of their ability to bring the
error asymptotically to zero is reported.
By recalling 2.18 and noticing that ūh

n = ūn (the bar on top stands for not-unknown
actuators, that are healthy by construction of the NUIO) the simplified expression
for 2.17 is:

ėn = Nnen + Mn(f(x̂n)− f(x)) (2.20)

Moreover, 2.19 can be rewritten introducing the positive definite matrix Q:

Nn
TP + PNn + γPMnMn

TP + γI = −Q (2.21)

To show that that ėn → 0 for t→∞, a Lyapunov function is chosen as:

VL = en
TPen (2.22)

By differentiating in time, and substituting 2.20 in it:

V̇L = en
T[Nn

TP + PNn]en + 2en
TPMn[f(x̂n)− f(x)] (2.23)

At this point the assumption A1 is replaced in the last term of 2.23, leading to a
chain of inequalities that make the Lyapunov function more and more positive. By
substituting the expression of the Riccati equation in 2.21, the positive definite Q
appears:

V̇L = −en
TQen (2.24)



2.3. Nonlinear Unknown Input Observer 15

Since Q > 0, the second Lyapunov Stability Theorem ([19]) is met, and the error
will go indefinitely to zero. Now that this property is verified, and the NUIO’s
ability to correctly estimate in case of actuator fault is proved, the continuation of
its construction is carried on.
Recapping, in order to fully define the NUIO, the matrices defined in 2.12 ∼ 2.15
are to be found. In particular:

• En,Kn are still unknown

• P > 0 such that 2.19 is solved, has to be found

By combining 2.15 and 2.18 it is found:

EnCBn = −Bn (2.25)

Since Bn is full column rank so it is required that CBn should also be of full column
rank [27]. If CBn is full column rank, all possible solutions of En can be expressed
in a general way in:

En = U + YV (2.26)

With:

U = −Bn(CBn)+ (2.27)
V = I− ((CBn)(CBn)+) (2.28)

The unknowns are now K, Y and P. It is shown that in order to find those matrices,
and at the same time solve 2.19, the following Linear Matrix Inequality system has
to be solved: (

X11 X12

X12
T −I

)
< 0

With:

X11 = [(I + UC)A]TP + P(I + UC)A + (VCA)T ȲT + Ȳ(VCA) (2.29)
−CT K̄T − K̄C + γI

X12 =
√
γ[P(I + UC) + Ȳ(VC)] (2.30)

With Yn = P−1Ȳ and Kn = P−1K̄. This problem can be solved practically using
MATLAB’s LMI solver, finding the unknowns K̄, Ȳ and P. Finally all quantities
necessary to characterize the NUIO are known, and its estimating properties are
met.
The number of faults that can be simultaneously detected is strictly connected to
the sufficient conditions in 2.18 ∼ 2.19, and a more general analysis is found in [32].
For the particular application of this thesis, those conditions will be verified in 4,
where it will be seen how this design can be used for FI in thruster driven ACSs.





Chapter 3

Mission Description

As mentioned before, the Basilisk scenario will be the environment in which the
FDI tool will be inserted, so this chapter will cover its surroundings, in terms of
modules and mission specific quantities.

3.1 Spacecraft

The choice of the spacecraft has been arbitrary, since the goal of simulating
an FDI tool does not depend on the kind of spacecraft. This cannot be said for
its thrusters configuration, that will be discussed later. In order to be consistent,
however, with the considerations about the usage on smaller s/c (1), the choice has
fallen on a micro-spacecraft kind. The shape is of a rectangular parallelepiped and
can be appreciated in figure 3.1, together with its principal inertia axes alignment
with the BF. Given the shape and the uniform mass distribution, it is possible to

B1

B2

B3

COM

d2

d1

d3

Figure 3.1: Spacecraft shape in BF

17



18 Chapter 3. Mission Description

Table 3.1: Table of spacecraft characteristics

Spacecraft characteristics

Mass (m) 100 kg
Dimensions
d1 0.8 m
d2 0.7 m
d3 0.6 m
Principal inertia moments
J1 7.08 kg x m2

J2 8.33 kg x m2

J3 9.42 kg x m2

define the principal inertia moments as:

J1 =
1

12
md22d

2
3 (3.1)

J2 =
1

12
md21d

2
3 (3.2)

J3 =
1

12
md21d

2
2 (3.3)

Where di is the length of the i-th BF aligned dimension and m is the mass of the
spacecraft. Based on that, the numerical values of the aforementioned quantities
are reported in table 3.1. The Basilisk module that represents the spacecraft is
spacecraftPlus.cpp. In this module the equations of motion of the spacecraft are
computed, taxing into account the effects of the aforementioned dynamic and state
effectors. The states of the spacecraft integrated in this module are (all in BF with
respect to IF) the position r, the velocity ṙ, the MRP σ, and the angular velocity
ω. The parameters that are being set are the mass defined before, the diagonal
inertia matrix containing J1, J2, J3 on the diagonals, and the position vector of the
COM in BF, which is [0, 0, 0] in the analyzed case.
SpacecraftPlus can simulate pure translational movement, pure rotational movement,
and the coupled problem when both are present. As mentioned in 2.1 the full
integration scheme implemented is quite complicated, so it will not be reported
here. Besides, as mentioned before, the only equations meaningful for the FDI
scheme are the Euler Equations, so the problem could be set as a translational one.
However, to give the FDIS more of a real application usage, it is decided to keep
both motions, without describing the fully coupled dynamics, that is not object of
this thesis. The translational part will require the definition of the orbital motion
of the spacecraft, and will be tackled in the next section.

3.2 Environment and Disturbances

In order to test the FDI tool, also an environment had to be set. The choice
has fallen on a deep space environment, in which the de-tumbling maneuver takes



3.3. Sensors 19

place. This environment acts as a general test-bed, and is representative of several
real life missions. Even though the disturbances in this particular environment are
expected to be negligible with respect to an actuator fault, it is decided to make
a robustness analysis of the method in presence of those. This means that their
magnitude will not be realistically modeling the deep space environment, and are
better seen as unknown external forces/torques that will try to corrupt the FDI
performance. For this reason the Basilisk module extForceTorque.cpp is added to
the scenario and will act as a disturbances-creator. This module allows a general
force and/or torque to be applied onto a rigid body. The force is the net external
force acting through the center of mass, and will be specified in BF coordinates.
The torque is taken about the BF origin, and the vector components are given in
BF. Their impact on the FDI will be evaluated within the Montecarlo simulations.

3.3 Sensors
The only sensor needed for the FDI tool to work is an Inertial Measurement Unit.

This kind of sensors are capable of outputting different kinds of measurements,
from linear accelerations to angular rates to accumulated changes in velocity. They
usually consist in several different sensors (accelerometers, gyroscopes, inclinometers,
etc.) and their usage is widespread in a all kinds of applications, including space.
Dimensions can widely differ among different models, but the new electronic
miniaturization processes have allowed for drastic reduction in dimensions, leading
to the advent of Micro Electro-Mechanical Systems (MEMS). An example of space
IMU is the Sensonor STIM300 [16] (in figure 3.2). Its weight of 55g and dimensions

Figure 3.2: Sensonor STIM300 IMU

of approximately 45 × 39 × 22 mm3 allow for its implementation on very small
payloads, making it a strong candidate for the micro-spacecraft analyzed in this
mission.
In Basilisk an IMU sensor can be modeled with the module imu_sensor.cpp. Among
all the possible measurements that can be set, the choice has been a 3-axial gyroscope



20 Chapter 3. Mission Description

for angular velocity and 3-axial accelerometer for linear acceleration. Those are the
two measurements needed by the FDIS, and a sensor like the STIM300 is capable of
providing these information. The first important choice when adding an IMU is its
placement on the spacecraft. By looking, for example, at the accelerometers reading,
a placement different from the COM would allow for an additional acceleration due
to the eventual spacecraft’s rotation. Even though Basilisk is able to model any
arbitrary IMU placement, it is chosen here a COM mount, with the sensor axes
aligned with the BF. This is not an uncommon choice in real life applications.
With those assumptions the IMU reference frame will be the same as the BF, and all
the equations to come will then be in BF with respect to IF. The two measurements
will be modeled starting from the information produced by spacecraftPlus.cpp.
The sensed angular velocity ωsensed will be simply taken from the aforementioned
module, being one of the states of the spacecraft. As for the accelerometer, the
general equation for the acceleration felt by the IMU is:

r̈sensed = (r̈− agrav) + ω̇ × rIMU + ω × (ω × rIMU) (3.4)

Thank to the placement, the distance of the IMU from the BF (rIMU) is zero, so
also the third and fourth terms (representing the apparent acceleration due to the
rotation) are zero. Furthermore, in the deep space environment considered there
is no gravity acting, so also the acceleration due to gravity agrav will be zero. All
that’s left is the linear acceleration of the spacecraft, that will be due to external
forces, including the thrusters. However this quantity is not part of the states, so it
has to be extrapolated. The chosen method is a simple Euler integration scheme
across one integration step of the velocity ṙ (which, conversely, is one of the states).
In this way:

r̈sensed = r̈ =
ṙpost_integ − ṙpre_integ

∆t
(3.5)

3.4 Thrusters

In order to perform attitude control, the spacecraft taken into consideration is
equipped with eight cold gas thrusters (CGT). Of the chemical propulsion systems
frequently used in spacecraft, cold gas propulsion systems have the lowest complexity
and cost. They can provide highly repeatable, extremely small impulse bits for
accurate orbit maintenance and attitude control, at the expense of the specific
impulse. For minor primary propulsion functions and ACS tasks with a relatively
short mission duration and a low overall impulse, cold gas systems may work well.
For these applications, the simplicity and low dry mass are a benefit, despite the
low Isp [11]. They consist of a simple system composed by a tank containing the
pressurized gaseous propellant, and a valve that when actuated opens the passage
for the gas that gets expelled through a nozzle. Its simple scheme is reported in 3.3.
All these characteristics tie well with the small nature of the satellite, and represent
a plausible mission test bed for the FDI tool.
The thruster configuration is of fundamental importance for any thruster FDI

scheme and the particular method presented here is no exception. In order to
produce pure torque the choice has fallen onto an eight thruster configuration



3.4. Thrusters 21

Gas Tank

Valve
Thruster

Jet

Figure 3.3: Cold gas thrusters scheme

Table 3.2: Table of thruster locations in body frame

x [m] y [m] z [m]
Thruster 1 0.4 0 0.3
Thruster 2 -0.4 0 0.3
Thruster 3 -0.4 0 0.3
Thruster 4 0.4 0 0.3
Thruster 5 0.4 0 -0.3
Thruster 6 -0.4 0 -0.3
Thruster 7 -0.4 0 -0.3
Thruster 8 0.4 0 -0.3

(nth = 8), analyzed in Basilisk documentation, capable of generating torque in all
axes, thus controlling the angular velocity of the spacecraft in the 3D space. Its
graphic representation can be seen in figure 3.4. Here the thrusters are represented
in terms of firing directions (the vectors originating from and the spacecraft sides,
no to be confused with force directions directed opposite) and torque generated (the
vectors originating from the origin). The color code is made such that same colored
vectors generate same colored torques. The numerical values of the locations and
force directions are reported in tables 3.2 and 3.3.
The conditions for which any perturbation torque can be compensated with a
positive force exerted by the thrusters using a particular configuration are given in
[26] and can be summarized in:

• The mapping matrix (defined later as Dt) is of full rank.

• The mapping matrix null-space has sign definite vectors.

Both these conditions have been verified in Matlab for the analyzed configuration,
with the commands rank and null.
The control unit (discussed later) will handle the firing of those thrusters, but

already from here it’s clear that a symmetry can be exploited to create pure torque
action on the spacecraft. In fact, by always firing together the thruster couples
thcouples1 = [1, 7], thcouples2 = [2, 8], thcouples3 = [3, 5] and thcouples4 = [4, 6] (i.e.
same colored thrusters in 3.4), the opposing forces will always cancel each other,
and no net force is induced on the spacecraft. This property, not mandatory but
neither uncommon in ACS thrusters, will be exploited by the FDI subsystem.
Each i-th thruster is capable of generating a torque:

ti = ri × fmaxi
ĝfi (3.6)



22 Chapter 3. Mission Description

Table 3.3: Table of thruster force directions in body frame

x y z
Thruster 1 -0.7071 -0.7071 0
Thruster 2 0.7071 -0.7071 0
Thruster 3 0.7071 0.7071 0
Thruster 4 -0.7071 0.7071 0
Thruster 5 -0.7071 -0.7071 0
Thruster 6 0.7071 -0.7071 0
Thruster 7 0.7071 0.7071 0
Thruster 8 -0.7071 0.7071 0

Figure 3.4: Thrusters configuration

Where ri and ĝfi are the distance from the center of mass and force direction (in
BF, reported on the previous tables). fmaxi

is the nominal force produced by each
thruster.
It is possible then, to build a 3× 8 torque matrix Bt whose columns are the torque
contributions of each thruster:

Bt = [t1, t2, t3, t4, t5, t6, t7, t8] (3.7)



3.4. Thrusters 23

Table 3.4: Table of thrusters properties. The location and direction will vary, but all
the other properties are considered the same for each thruster

Thrusters properties

Location ri m
Force direction ĝfi

Max thrust 0.1 N
Isp 65 s
tminOn 0.002 s

Note that cause of the symmetry:

t1 = t7; t2 = t8; t3 = t5; t4 = t6 (3.8)

By multiplying Bt with a boolean command vector uc, representing the on-off (1
or 0) state of each thruster, the commanded torque is produced, that will be equal
to the contribution of the external forces in the ADEs in 2.2:

mext = Btuc (3.9)

3.4.1 Thrusters Module

Since they generate an external thrust acting on the spacecraft, the thrusters
are seen as a dynamic effector, thus the module thrusterDynamicEffector.cpp. This
model is used in the Basilisk simulation to emulate the effect of a vehicle’s thrusters
on the overall system. Its primary use is to generate realistic forces/torques on the
vehicle structure and body. This is accomplished by applying a force at a specified
location/direction in the body and using the current vehicle center of mass to
calculate the resultant torque. A on/off ramp behavior can be enabled, but it won’t
be done here. The thruster properties to be set are summarized in table 3.4. These
values are chosen considering the performances of typical Moog CGTs for micro
propulsion, reported in [6], being a reasonable choice for the mission prototype
analyzed here. tminOn is the smallest time a thruster can stay open, and is related
to its Minimum Impulse Bit. The reason why also a value for Isp is provided, is
because of Basilisk’s ability to compute the mass flow rate of the propellant, thus
its effect of a weight loss on the dynamics, through the formula:

ṁexp =
fmaxi

gIsp
(3.10)

With g being the Earth’s gravity on surface.
The input for this module will come directly from the control subsystem, that will
tell for how long and which thrusters have to be firing at each update, in a 8× 1
vector called uonTime. At each integration step this vector will be updated with
the elapsed time, taking into account the minimum on times, and the boolean
command vector uc (defined earlier) is created.



24 Chapter 3. Mission Description

3.4.2 Types of Faults

By looking at the working principle of CGTs, and at the available literature,
there are two main fault kinds that can happen, and both are contemplated in this
thesis:

• Loss of efficiency with reduction of max thrust available.

• Thruster no more responsive to commands.

The first one corresponds to a change in the fmaxi
parameter, that will become just

a fraction of the original value. This situation can be due to leakage problems in
the system, and is a well documented problem in literature [6].
The second, instead, contemplates the situation of a "stuck thruster". This means
that for some reason there’s no more the possibility to command the thruster valve,
that will be then stuck in a specific position. Other than the simple stuck on/off
situations, also the "stuck on with efficiency loss" is considered, where the CGT is
providing a fraction of fmaxi

(just like in the other case), but without the possibility
of actuating the valve. Single thruster failures are explored and, depending on the
kind-of-fault/firing-command combination, the faulty thruster might or might not
have an effect on the spacecraft. Details on this topic are in the next chapter. What
is worth noticing here is that in a non-faulty situation the opposite firing thrusters
are always in the same state (from control law) and exert the same force, so only
the presence of a fault might induce a net force.
In Basilisk there is no built in way to induce thrusters faults, so it has been decided
to inject them at fault time in the following ways:

• The loss of efficiency fault is induced by setting a new value of max force in
the faulty thruster physical properties. Since this change is related to the
dynamics part of the simulation, the FSW will not be aware of his change,
and continue to work with the nominal thrusters values.

• The stuck thruster fault is induced by, for each time step, overriding the
on-time command after it is produced by the control system and fed to the
FDI module. This means that also this time the control and FDIS will not
be aware of the modification.

3.5 Control

Even though the FDI scheme does not intervene in the control system, this last
does play a significant role in the depicted scenario. The chosen mission is of a
de-tumbling maneuver, so it is necessary to have a control law capable of achieving
such goal. In this analysis two methods are represented, one already available
with Basilisk’s current modules, and one created ad-hoc. They will be explored in
the next subsections and referred as "Basilisk De-Tumbling Control" (BDT) and
"Simple De-Tumbling Control" (SDT). It is worth noticing that the knowledge of
the spacecraft’s attitude is required for the fist kind of control, so it is necessary to
use simpleNav.cpp. This module doesn’t simulate a specific sensor, but rather a



3.5. Control 25

series of measurements that can come from different sources. The spacecraft MRP
and ω are the information to be retrieved for control purposes. It is clear that in
this case the information will not come from the IMU but from some other source.
This, however, does not defeat the goal of the thesis to use just an IMU sensor for
FDI, cause independently from the control, the FDI module will always just have
the IMU information coming from the corresponding IMU module.
Usually a de-tumbling mission would be designed in such a way that when some
pre-established conditions on the angular velocity are met, the control turns off.
For the analyzed application however the control subsystem is instructed to stay
on for the whole simulation duration. This is done in order to raise the probability
of excitement of a faulty thruster. On the contrary, if the commands were to be
turned off, and, for example, an efficiency-loss kind of fault is introduced, there will
never be a detectable effect on the spacecraft.
The simulation time is chosen by looking at the angular velocity behavior in a 100
runs Montecarlo simulation, with different initial conditions on the angular velocity
and MRPs, using the BDT control. In a time span of three minutes, the angular
velocities go from a maximum initial value of around 0.3 rad/s, to a final one of
around 0.002 rad/s. This is considered a useful test bed for the FDI, which will
then be tested in a time span of 3 minutes for all the simulations in this thesis.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

An
gu

la
r V

el
oc

ity
 [r

ad
/s

] 

Figure 3.5: De-tumbling control on a 100 runs Montecarlo simulation

3.5.1 Basilisk De-Tumbling Control

The modules handling a de-tumbling control in Basilisk are: inertial3D.c, att-
TrackingError.c and MRP_Feedback.c. In [10] a full explanation of those modules is
carried on, and will be summarized here with the purpose of completely characterize
the mission.

Inertial3D

This simple module has the job of defining an inertial reference frame to be
followed by the control. The input will be given in terms of MRP of the desired



26 Chapter 3. Mission Description

attitude, while the (most important) condition of null angular velocity is set by
default in the module. This means that the control will try to align the spacecraft’s
body frame with this inert frame, that will be the output of this module, with the
result of achieving an inertial pointing together with the de-tumbling.

Attitude Tracking Error

The next step is to evaluate the error between the body frame and the reference
frame described in the previous module, thus the two inputs will be the current
attitude information coming from simpleNav.cpp, and the reference frame from
inertial3D.c. It is contemplated the possibility of aligning another reference frame,
different from BF, to the inertial one, but it’s not useful for a simple de-tumbling.
As expected, since the goal of the control is to perform an inertial pointing more
than just de-tumbling, the error is computed both in terms of MRP and angular
velocity, with respect to the reference frame, and will be brought to zero by the
next modules.

MRP Feedback

The goal of this module is to produce a body-frame control torque vector capable
of bringing to zero the attitude tracking error coming from the previous module.
The other inputs are the vehicle configuration message containing the inertia matrix,
and the gains used in the control law. The full MRP control algorithm can be
found in [19], together with the proof of Lyapunov stability, and will not be object
of discussion in this thesis. The values of the gains have been tuned for a successful
de-tumbling. The output will be a 3D control torque lr that the thrusters will have
to produce through a proper thrust allocation method.

3.5.2 Simple De-Tumbling Control

In order to have a scenario containing just the IMU as sensor, also for the control,
an ad-hoc simple c module has been created, that does not take into account the
current attitude (MRPs) of the spacecraft. The module is called deTumb.c and
takes as input a gain kdet and the current ω sensed by the IMU. The control law
employed is the simple but effective:

lr = −kdetω (3.11)

The Lyapunov stability of this law is well known in literature and can be simply
proven by considering the kinetic energy as Lyapunov function:

V (ω) = ω · Jω (3.12)

By deriving it and substituting the expression of the ADEs with mext = −kdetω,
the negativity of V̇ is ensured, being:

V̇ (ω) = −ωT kdetω (3.13)

Hence the stability of the chosen control law.
The biggest difference between the two laws is their final objective. Two goals are



3.5. Control 27

being chased by BDT: bringing the angular velocity to zero and aligning the MRPs
with an inertial frame. SDT, instead, only brings the angular velocity to zero. This
translates to a wider variety of commands instructed by BDT, that will create
more chance of exciting a faulty thruster, thus provoking the fault effects. Since
the whole point of the dissertation is to verify the FDI tool performances, the BDT
results to be more useful, and will be the only one used in the simulations. In this
sense the design of SDT has been just a proof of concept for an IMU-based control.

3.5.3 Generation of the On-Time Input Vector

The lr computed by both the two laws is a 3D vector, representing the torque to
be generated by the thrusters. The final goal of the control subsystem is to create
the aforementioned uonTime vector and, to do so, two steps are required:

• lr has to be transformed in an 8× 1 vector of forces (uforces).

• uforces has to be transformed in the 8 × 1 uonTime, that is an input for
thrusterDynamicEffector.cpp.

The two modules responsible for that are thrForceMapping.c and thrFiringSchmitt.c,
and will be analyzed below.

Thruster Force Mapping

The goal of the thruster mapping strategy is to find a set of thruster forces that
yield lr. The number of controlled axes can be tuned, and will be maximum for the
chosen scenario (3D control). This module can handle both ACS and DV thrusters,
so the first operational mode is chosen. The assumption of the module is that the
ACS configuration is capable of producing pure torques, and is coherent with the
chosen one.
Starting from 3.6, and with everything in BF, it is possible to extract the mapping
matrix Dt, that maps the generic 8× 1 thruster forces vector f to their produced
3D torque τ :

τ = Dtf (3.14)

If τ is set to be the requested torque lr, it is possible to invert the previous expression
(i.e. performing the minimum norm inverse), and find the forces that can produce
such torque:

f = Dt
T(DtDt

T)−1lr (3.15)

The capability of 3D controllability mentioned in 3.4 has already ensured that Dt

is of full rank. For this reason the inversion present in the previous equation is
possible, being also DtDt

T of full rank. The f vector, however, will contain also
negative values, so a smart way to eliminate them is subtracting from it another
8× 1 vector whose elements are the minimum value of f :

fpos = f −min(f) (3.16)

When all the thrusters are on, there is no torque applied to the spacecraft. This
means that the addition of all the elements for each Dt row brings to a 3× 3 zeros



28 Chapter 3. Mission Description

vector. The same happens if the rows are post-multiplied by a 3× 3 vector of all
equal values. Then, the operation Dtmin(f) (i.e. min(f) belongs to the null-space
of Dt) will output a zero vector. This property is exploitable to show that also fpos
generates lr. If this is true then:

fpos = f −min(f) = Dt
T(DtDt

T)−1lr (3.17)

By pre-multiplying both sides by Dt:

Dt(f −min(f)) = lr (3.18)

By expanding the LHS and using 3.14:

Dtmin(f) = 0 (3.19)

Since min(f) does belong to the null-space of Dt, this condition is verified, thus
also fpos generates lr.
Just like Bt, Dt yields the 3.8 property. This means that when performing the
minimum norm inverse in 3.15, the positions on the f vector corresponding to indices
of equal columns in Dt will be occupied by equal values [36]. In the current studied
configuration this translates to having f1 = f7; f2 = f8; f3 = f5; f4 = f6. The
implication of that is that equal torque-producing thrusters will always be fired
together, hence no command generating net forces is created. A simple way of
deriving this property its found by looking at its physical meaning. The minimum
norm inverse solution operation corresponds to finding the minimum force vector
that can generate lr. One can think of taking each same-torque thrusters couple
and condense it in a single imaginary thruster with double the force and same
"arm". Dt is then reduced to Dtred , a 3× 4 matrix with the same columns of Dt,
but without repetitions. lr will then be generated by a 4×1 force vector fred. Cause
of the uniqueness of the norm inverse solution, and given the fact that firing one
imaginary thruster produces the same effect as firing both the corresponding real
thrusters with half the force:

fthcouplesi1
= fthcouplesi2

=
fredi

2
(3.20)

Hence, they will always be fired together and no net force is produced in nominal
conditions.

Thruster Firing Schmitt

As mentioned before thrusterDynamicEffector.cpp needs to know the opening
times for each thruster (uonTime) in order to produce the command uc. Then
fpos (from now on just f) be properly translated through a firing law. Basilisk is
provided with a module containing the well known "Firing Schmitt Law". At each
control update, for each thruster, the nominal decision on-time is computed:

tonn =
f

fmax

∆t (3.21)



3.5. Control 29

With ∆t being the time step of the module. Based on the relation between tonn , ∆t
and tminOnsc (i.e. how much force will be produced across a time step, with respect
to the force required), it is possible to build a logic that avoids the chattering
problem. If a parameter l = tonn/tminOn is introduced, the logic will have this form:

If tonn < tminOnsc :

{
if l > lon =⇒ ton = tminOnsc

if l < loff =⇒ ton = 0
(3.22)

In which ton is the value that will populate the uonTime vector. loff and lon are two
threshold values. The first case of 3.22 will remain true as long as the second is
false. The other cases are not touched by the Schmitt logic, since they are far from
the shutting off condition:

If ∆t > tonn ≥ tminOnsc =⇒ ton = tonn (3.23)
If ton > ∆t =⇒ ton = 1.1∆t (thruster saturation) (3.24)

The thresholds are usually manually tuned in order to avoid chattering, however,
since the Montecarlo simulations will present a wide variety of situations, their
values might not be optimal for each simulation.
The value of tminOnsc cannot be lower that the physical thruster tminOn, and the
higher it is, the lower chattering effect will be present, at the expense of thrust
resolution. Considering the simple de-tumbling maneuver a value of tminOn = 0.02
is enough to grant the success of the maneuver across all the simulation campaign.





Chapter 4

Proposed Solution

In this chapter will be explained the FDIS design. First an overall look of the
whole method is given. Then the FDI interaction with the other subsystems is
discussed in terms of frequency interaction. Finally, the detailed design of each FDI
stage is reported.

4.1 Overview of the Solution
As briefed in 1.3, the approach presented in this thesis makes use of three stages.

Three are also the information needed in terms of input to the FDI subsystem
(from now on FDIS):

• Linear acceleration

• Angular velocity

• Command vector

The origin and shape of those information are explained in 3. The fist two come
from the IMU unit, and the third from the control subsystem, as reported in
figure 4.1. It is clear from the picture the passive interaction of the FDIS with the

Figure 4.1: Input/output relation for the FDI subsystem

control subsystem. This means that the tool can be inserted as an algorithm in the
spacecraft, without the need of changing the control law. The possible feedback

31



32 Chapter 4. Proposed Solution

that can be done, is of the faulty thruster information back to the control, in order
to either exclude it, or, in general, take decisions. This is part of the broader
argument called "Fault Recovery".
With respect to the theory of FDI (1.2) the present method classifies as model-based,
and in particular:

FD and SFI make use of signal monitoring for the acceleration of the spacecraft.
With respect to classical model based techniques the system modeling is
hidden by the fact that in nominal condition this quantity should be zero,
given the ACS thruster configuration.

FFI represents a classical model based approach, given the presence of Nonlinear
Unknown Input Observers.

The underlining idea is that a fault of one of the thrusters will result in a non-zero
accelerometer’s reading, cause of the new net force acting on the spacecraft. Only
when this happens, the four NUIOs are activated and will start their fault isolation
job, while at the same time feeding to SFI a couple of candidate faulty thrusters.
Thanks to the design of the NUIOs, those candidates will always have opposing
firing direction. This means that the net force can be in one of two directions.
It is the SFI job to confront the accelerometer reading with the nominal thrust
directions, and finally declare the faulty thruster. All the three stages will be
wrapped up in the newborn thrustersFDI.c module.

4.2 FDI Subsystem Interfacing
The FDI algorithm has to be inserted in the spacecraft ecosystem, characterized

by a variety of components that, in general, work at different frequencies. As
stated before, three are the subsystems/components interfacing: IMU (frequency
freqIMU ), FDI (freqFDI) and control (freqcont). Those interactions are taken into
account in the design, achieving two goals:

• Perform FDI within the duration of one command time step.

• Solve the problem of mid-firing command change

First of all, a reasonable assumption to be made is that freqIMU > freqcont.
Accelerometers can work at very high sampling times, in the order of kHz [16].
Such frequencies of operation are not reachable by cold gas thruster systems like
the one considered here, neither are necessary for the analyzed case. In order to
avoid the creation of false positives, the FDIS has to have a certain time window to
declare the faulty thruster. This time window will reflect in a design parameter
tFDI = 1/freqFDI , representing the FDIS time step duration. The choice is to have
freqIMU > freqFDI > freqcont. In this way, the fault can be successfully isolated
within the time window of one command update. This is reasonable, since freqFDI

is part of the flight software algorithms of the OBC, and does not depend on other
physical component that could limit this operating frequency.



4.2. FDI Subsystem Interfacing 33

Another problem, is the "mid-isolation" command change. This can manifest
when a command changes during the isolation window, possibly modifying the
faulty thruster state. This condition is illustrated in figure 4.2. In the figure the

t[s]

Accelerometer 
Reading

accelerometer spike

update frequency FDI

update frequency control

partial FDI =

=

=

=

= fault event

update frequency IMU=

= command containing faulty thruster

command not containing faulty thruster=

Figure 4.2: Representation of a partial FDI

colored segments on the continuous time line correspond to the update points
of the different subsystems, and are spaced of 1/freqsubsystem seconds. Every
command, accelerometer and FDI update will happen respectively at each red,
green and blue line, and with the dashed black one representing the accelerometer’s
reading as it picks up the acceleration coming from a fault. It is hypothesized
in these illustrations that a trustworthy FDI time window corresponds to a time
tFDIwindow

= kFDItFDI = kFDI/freqFDI with kFDI = 3. The first command
generates a faulty behavior, and will thus cause a spike in the accelerometer.
However, at a time t < tFDIwindow

, the command changes and the faulty thruster
is no longer showing its faulty behavior. This means that, depending on the kind
of fault, it might no longer induce an effect on the spacecraft to be detected by
the IMU. Proceeding with the FDI would result in a wrong isolation, cause a non
faulty input would enter FFI and SFI.
It has already been mentioned that different fault-kind/command combinations
generate different effects on the s/c. In order to illustrate that, four possible cases
are depicted in picture 4.3. It can be noticed how in all cases the effect of a
command change gets picked up by the accelerometer after two of its time steps.
This is due to the way in which the acceleration signal is generated (3.3).

Case A This condition can only be possible if, despite its fault, FTH is not showing
faulty behavior. For this reason this situation can happen:

• In an efficiency loss fault, if the command is not instructing FTH to stay
on.
• If FTH is stuck on-at-max-efficiency and commanded to stay on, or stuck

off and commanded to stay off.



34 Chapter 4. Proposed Solution

t [s ]

Accelerometer 
Reading

accelerometer spike

successful FDI

FDIS update

control update

discarded FDI 

=

=

=

=

=

tw tC-FDI

tw*tBUFF

tAR tA-FDI

tAR

tAR

tA-FDItFDI* tC-FDI

kFDI*tFDI

tA-FDItFDI* tBUFF

= fault event

IMU update=
kFDI*tFDI

kFDI*tFDI

kFDI*tFDI

=
command containing 

faulty thruster

command not 

containing 

faulty thruster

=

Case A

Case B

Case C

Case D

Figure 4.3: Representation of the four cases of FDI

After the fault, a time tw has to pass, that depends on when FTH will be
commanded to change its state. Starting from that event, after a time tC−FDI

the FDI will pick up the accelerometer reading and start. After kFDItFDI

seconds, the fault is isolated.

Case B This is the best case scenario, in which the fault instigates the faulty
behavior and there is enough time for the FDI to end its task before an
eventual command change. This conditions can happen:

• In an efficiency loss fault, if the command instructs FTH to fire.

• If FTH is stuck on-at-max-efficiency but commanded to shut off, or stuck
off but commanded to stay on.

• Whenever the thruster is stuck on with a sub-nominal max force.

Differently from Case A, the time before FDI start is going to depend on
tAR which is the "raising time" of the accelerometer (i.e. when it picks up
the fault disturbance), and tA−FDI , at which the FDI starts. This waiting is



4.2. FDI Subsystem Interfacing 35

going to be dependent on freqIMU and freqFDI but will always be less than
2tFDI .

Case C As mentioned before, it might happen that during tFDIwindow
the con-

trol subsystem instructs FTH to change its state. The contemplated fault-
kinds/command combinations are:

• Efficiency loss fault, if the command instructs FTH to fire and then shut
off.
• Thruster stuck on-at-max-efficiency but commanded to shut off, or stuck

off but commanded to stay off. At the next command step, however the
commanded FTH changes.

To avoid false positives, it is decided to discard every FDI during which a
command change happens while tFDIwindow

is not yet fulfilled. The discarded
time is going to depend on how many FDIS updates were done before the
cutting (tFDI∗). After tFDI∗, a time tBUFF is waited, consisting of one FDI
time step. In addition, a time tw∗ will be spent before a new faulty command
will be introduced.

Case D This is similar to Case C, however the command changes to another one
inducing FTH ’s faulty behavior. The contemplated fault-kinds/command
combinations are:

• Efficiency loss fault, if FTH is instructed to fire for two commands time
steps.
• Thruster stuck on-at-max-efficiency but commanded to shut off, or
stuck off but commanded to stay on. At the next command step the
commanded FTH state is the same.
• Whenever the thruster is stuck on, with a sub-nominal max force.

It is important to notice that the fault is considered unknown until FDI is
reached, so the cut is done whenever the command change is detected, that
would mean a change in the NUIOs input. The cut will lead to a buffer time
tbuff equal to one FDIS update (freqFDI), before starting another FDI.

It is clear that a smaller kFDI will lead to a lesser probability of FDI cutoff.
By analyzing the four cases, the following conclusions can be drawn:

• With efficiency-loss, stuck-on-at-maximum-efficiency and stuck-off kinds of
faults, all the previous cases are possible, leading to the presence of waiting
times.

• If the thruster is stuck on at a fraction of the max thrust only cases B
and D are possible, cause no matter the command, FTH is going to fire
differently than expected. An eventual mid-isolation command change will
indeed interrupt the FDI, that will however always restart with the new
command, without waiting times. Cause of that the overall isolation time for
a thruster stuck fault is statistically going to be smaller than the one for the
efficiency loss case. This will be confirmed in simulations.



36 Chapter 4. Proposed Solution

4.3 Fault Detection

Fault detection is the first of the three steps, and serves as a triggering point for
the FDI chain of events. The underlining idea is to confront the nominal value of the
linear acceleration with the one coming from the IMU, and declaring a fault when
their difference becomes greater than a threshold value FDtrs. When generically
using the term "acceleration", it is intended the vector norm considering its three
components in BF coordinates.
In 3.4, the configuration of the ACS thruster system is discussed, laying down
the concept of "pure torque", that is the basis of the employed fault detection
algorithm. This means that there is no need for a mathematical model of the
nominal acceleration, that will always be zero. FDtrs will then simply correspond
to the maximum allowed acceleration before declaring fault. The off-nominal
conditions are then:

• A fault in one of the thrusters.

• An unmodeled external force acting on the spacecraft.

By a sensed-acceleration stand point, both cases generate a reading of the ac-
celerometer. In the first case, despite the ACS trying to create pure torques, a
force unbalance is created by the difference between the healthy and faulty thruster
in one of the thcouples. An example is reported in figure 4.4. The thruster 1 is
stuck off at 60s, while it was firing. The first two figures are the acceleration
readings, in terms of components and vector norm, while the third represents the
fault detection. The effect of the fault is clearly visible, and the magnitude of
the acceleration is correctly displayed at 0.001 m/s. After the fault is introduced,
in fact, only thruster 7 out of thcouples1 will be firing, causing an acceleration of
acc = fmax/m = 0.1N/100Kg = 0.001m/s.
The introduction of unmodeled forces on the spacecraft will inevitably have an
effect on the reading, potentially causing problems for the FD. In this sense the
tuning of FDtrs will result in a trade-off between detection sensitivity to small
faults and robustness to external forces. This topic is addressed in 5.3. An FD
fault declaration will trigger the FFI.

4.4 First Fault Isolation

Once a fault has been declared by FD, the FFI starts. The theory discussed
in 2.3 will be applied and tailored to this instance of fault isolation. The general
nonlinear system in 2.7 will then be based on the ADEs(time dependencies have
been omitted for brevity):

ω̇ = −J−1ω × Jω + J−1mext (4.1)
y = ω (4.2)



4.4. First Fault Isolation 37

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.0006

0.0004

0.0002

0.0000

Ac
ce

le
ra

tio
n 

[m
/s

^2
]

component1
component2
component3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ac
c.

 V
ec

to
r N

or
m

 [m
/s

^2
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t D
et

ec
tio

n

Figure 4.4: Acceleration readings and consequent fault detection



38 Chapter 4. Proposed Solution

With respect to 2.7 the following substitutions have been made:

x = ω (4.3)
A = 0 (4.4)
f(x) = −J−1ω × Jω (4.5)
C = I (4.6)

The most important decision now comes for the choice of the known and unknown
inputs. In 3.5 it has been established that mext = Btuc. This means that in order
to exploit the isolation capability of the NUIOs, each one of them will treat different
parts of Btuc as unknown inputs (Bni

uni
). Theoretically there is no unique way to

choose the Bni
, but it is mandatory for the assumptions 2.3 to be fulfilled, in order

create functioning fault isolating observers. Before checking those, a consideration
is done.
The Btuc product is a torque, so it means that ADEs are susceptible to faults in
terms of torques. Consequently, a fault produced by thrusters belonging to the
same fthcouples

will have the same effect torque-wise. Since the NUIOs are based
on ADEs, once one of the thrusters is faulty, it will impossible to isolate it from
the other belonging to the same fthcouplesi

. Spreading them as unknown inputs
on different NUIOs is not a good idea cause when a fault happens, two of them
will always be triggered, creating ambiguity. A reasonable choice is then to have
thrusters belonging to the same fthcouples

as unknown inputs of the same NUIO.
This solves the problem of multiple triggering and four NUIOs, each one handling
a fthcouples

, can be designed. A fault would trigger just the NUIO containing the
faulty thruster as UI. However, it is still unable (and will never be able, cause of
the previous considerations) to isolate between the two thrusters it is handling.
The second fault isolation step is then justified, that will handle this last problem.
Based on the previous considerations, and without any loss of performance, it is
decided to use a reduced torque matrix Btred , just like in 3.5.3. Using the same
analogy, four pure torque sources (PTS) are hypothesized, capable of producing
double the torque of a single thruster. By using the real numerical values of the
thrusters:

Btred =

 0.0424 0.0424 −0.0424 −0.0424
−0.0424 0.0424 0.0424 −0.0424
−0.0566 0.0566 −0.0566 0.0566


So the remaining matrices to define for each NUIO are Bni

and B̄ni
. In order

to ensure that each NUIO is sensitive just to a fault in one of the PTS, the Bni

matrices (remembering that those are related with the unknown inputs) correspond,
for each NUIO, to a column of Btred , and with B̄ni

being the remaining columns.
These design choices result in:

• NUIO 1 will be sensitive to faults in thcouples1 .

• NUIO 2 will be sensitive to faults in thcouples2 .

• NUIO 3 will be sensitive to faults in thcouples3 .

• NUIO 4 will be sensitive to faults in thcouples4 .



4.4. First Fault Isolation 39

Going back to the assumptions 2.3, it can be seen that while the first is easily
verified by looking at the ranks of the Bn matrices, the second one requires another
assumption. The condition was:

||f(x)− f(x̂)|| ≤ γ||x− x̂|| (4.7)

By substituting the values for this specific case:

|| − J−1ω × Jω + J−1ω̂ × Jω̂|| ≤ γ||ω − ω̂|| (4.8)

Even if the Jacobian of f(x) = −J−1ω×Jω is not globally bounded, it continuously
differentiable in the 3D space. This means that f(x) can be locally Lipschitz, given
that the x (i.e. the angular velocity) is bounded in magnitude. In literature,
the commonly used procedure for finding γ is referred in [12] and consist in a
constraint optimization. In this thesis a large number of Montecarlo simulations
will be performed, and the values of the angular velocity will vary significantly
among different runs. This means that the approach of constraint optimization
over the maximum ω used in [12] would require an optimal evaluation for each run,
considering each time the different initial conditions. Furthermore, because in a
de-tumbling maneuver the maximum angular velocity is reached just at the first
instants and tends to be near zero afterwards, the aforementioned method would
result in an overly conservative value for γ. Thanks to the Montecarlo simulations,
however, it has been possible to find a value that guarantees the correct NUIOs
behavior in all cases even if it’s not an optimal one. The value used throughout all
the simulations will be γ = 2 · 10−6.
Now that all the matrices of the nonlinear system are characterized, the design
of the observer can continue. The matrices U and V in 2.27 can be defined and
will be part of the LMI problem. Its shape will be the same as 2.3. With the new
definition of the system matrices, X11 and X12 will simplify to:

X11 = −K̄T − K̄ + γI (4.9)
X12 =

√
γ[P(I + U) + ȲV] (4.10)

As mentioned above, in order to solve the LMI problem, the Matlab LMI toolbox
is used [14]. This represents the standard way to solve it cause of its ease of usage
with respect to an otherwise difficult problem. Its employment is widespread in
literature. For this particular application a Matlab script has been created, that
first creates Btred as described before. Than, for each NUIO the steps are:

1) B̄n and Bn are defined.

2) U and V are found.

3) P, Ȳ and Kn are set as variables with the lmivar command. P is set to be a
symmetric matrix 2.18 while the other two are generic matrices.

4) The system is going to be composed of two LMIs, whose components are set
with the lmiterm command. The first inequality is the positive definiteness
of P (P > 0). The second is the one with 4.9 and 4.10.



40 Chapter 4. Proposed Solution

5) With the command getlmis and feasp the LMIs are solved.

6) The values for the solution matrices P, Ȳ and Kn are recovered from the
solution made of decision variables, using the command dec2mat.

7) Yn and Kn are computed using the solution matrices (2.3, 2.3).

8) The matrices En, Nn, Ḡn, Ln and Mn are computed using 2.26, 2.12∼2.15.

The last computed matrices will be part of the inputs of thrustersFDI.c and, being
only dependent from the thrusters and s/c characteristics, they are defined just
once, offline.
Once designed the NUIOs matrices, the 2.10 system is defined for each of the four.
In the practical application two things have to be noticed:

1) The vector y, equal for each NUIO, is none other than the angular velocity
coming from the IMU.

2) The vector ūh
n is the "healthy" input. Given the reduced four imaginary

thruster assumption, also the command vector coming from the control will
have to be reduced. By looking at 3.5 it is clear that coming out from
thrFiringSchmitt.c will be a vector of on-times. At each step, it will be
transformed by the FDIS in the boolean command vector uc by simply
checking which entries are different than zero. Those will be the 1 values,
since they represent a "on" command. Thanks to thrForceMapping.c, thrusters
belonging to the same thcouples will always have the same command. In this
way, for each NUIO, ūh

n will be a 3 × 1 vector, whose components are the
three commands targeting the PTSs considered as input, hence discarding
the one referring to the PTS treated as unknown.

All the terms are defined and the integration can be performed. An Euler integration
scheme is used, so for each step k the new states:

znk+1
= ∆tznk

(4.11)

The estimated angular velocity will be:

x̂nk
= znk

− Enyk (4.12)

By taking the difference between the estimated and IMU-sensed angular velocity,
the residuals can be found and their Euclidean norm is evaluated:

resnk
= x̂nk

− yk (4.13)
resNormnk

= norm(resnk
) (4.14)

At each isolation step, the smallest resNormnk
is found. Thanks to the properties

of the NUIOs, the observer producing the smallest resNormnk
will be the one

having a fault in the PST considered unknown input. In the analyzed configuration:

• If min(resNormnk
) = resNormn1k =⇒ fault in thcouples1 = 1, 7.



4.5. Second Fault Isolation 41

• If min(resNormnk
) = resNormn2k =⇒ fault in thcouples2 = 2, 8.

• If min(resNormnk
) = resNormn3k =⇒ fault in thcouples3 = 3, 5.

• If min(resNormnk
) = resNormn4k =⇒ fault in thcouples4 = 4, 6.

An example of NUIOs isolation, with the resNormn behaviors, can be seen in
pictures 4.5 and 4.6. In both the situations it is introduced a stuck-off fault in
thruster 2. The first one represent the output of the FFI during its time window.
The estimation error arising from NUIOs 1,2,4 means that a fault happened in
either thruster 2 or 8. This is confirmed by their numerical values at the end of the
isolation: resNormn1 = 9.51e−5, resNormn2 = 2.73e−9, resNormn3 = 8.71e−5,
resNormn4 = 9.52e− 5.
In 4.6 the command that caused the fault has been blocked, in order to show the
behavior of the NUIOs not limited to the FDI time window. By looking at the values
of the residuals it is clear that in a time span of one FDI window, the transitory
behavior is not finished. However, since the goal is just to find which residual grows
the least after a fault, this doesn’t pose a problem for FDI. The designed NUIOs
are then responsive enough to accomplish this goal. Further comments on the FFI
behavior is reported in the simulation campaign.
It can be noticed the absence of transitory in the faulty NUIO, whose signal remains
very close to zero even during the first instants after the fault injection. This result
is achieved by initiating the FFI with the real angular velocity values, coming from
the sensor. This means that at time zero:

x̂n0 = y0 (4.15)
zn0 = Eny0 + x̂n0 = (En + I)y0 (4.16)

The information on the two suspect faulty thrusters is now passed to the SFI.

4.5 Second Fault Isolation

Now that the fault is isolated to one of the two thrusters in thcouples, the final
step can take place. For this job, the accelerometer information is retrieve again
and used. Thanks to the subdivision of the NUIOs, every PST is made of opposing
firing thrusters, so once one PST is isolated, the two suspect faulty thrusters will
have opposing force directions. This means that by analyzing the direction of the
induced net force, and confronting it with the nominal thrusters force, the final
isolation can be achieved. In particular two different cases can happen, depending
on the command that is being instructed by the control subsystem to the two
suspect thrusters (from now on thsusp1 and thsusp2). They are depicted in figure 4.7
and correspond to:

Case a) The thrusters are instructed to stay on. In this case the healthy one will
generate the nominal fmax while the faulty one will not. The net force then
will be in the direction of the healthy, declaring then the other one faulty.



42 Chapter 4. Proposed Solution

0

2

4

6

8

Re
s N

or
m

 [r
ad

/s
]

1e 5 Norm of Residual 1 Norm of Residual 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0

2

4

6

8

Re
s N

or
m

 [r
ad

/s
]

1e 5 Norm of Residual 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

Norm of Residual 4

Figure 4.5: Norm of the NUIOs residuals

0.000

0.002

0.004

0.006

0.008

0.010

Re
s N

or
m

 [r
ad

/s
]

Norm of Residual 1 Norm of Residual 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

Re
s N

or
m

 [r
ad

/s
]

Norm of Residual 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

Norm of Residual 4

Figure 4.6: Norm of the NUIOs residuals when the faulty command is blocked



4.5. Second Fault Isolation 43

a) u_c = 1 

b) u_c = 0

acceleration caused by
the healthy thruster

=

=
acceleration caused by
the faulty thruster

=
net acceleration on the
spacecraft

Figure 4.7: Visualization of the SFI principle

Case b) If the the instructed command is off, however, the situation is the opposite.
Since the healthy one will not be firing, the generated net force will be in the
direction of the faulty.

Both the thruster forces directions and accelerometer measurements are in BF,
thanks to the placement of the IMU, so no coordinate change is needed to confront
those two quantities. The angle between those two vectors, at each isolation step,
for both the isolated thrusters, is:

αthsusp1
= cos

(
ĝfthsusp1

· r̈sensed
||ĝfthsusp1

|| · ||̈rsensed||

)−1

(4.17)

αthsusp2
= cos

(
ĝfthsusp2

· r̈sensed
||ĝfthsusp2

|| · ||̈rsensed||

)−1

(4.18)

So, with the considerations done before, the following conditions are found:

If ucthsusp1,2
= 1 :

{
if αthsusp1

> αthsusp2
=⇒ thsusp1 is faulty

if αthsusp1
< αthsusp2

=⇒ thsusp2 is faulty
(4.19)

If ucthsusp1,2
= 0 :

{
if αthsusp1

> αthsusp2
=⇒ thsusp2 is faulty

if αthsusp1
< αthsusp2

=⇒ thsusp1 is faulty
(4.20)

The final isolation is achieved, and the predicted faulty thruster FTthrpred has been
isolated.



44 Chapter 4. Proposed Solution

4.6 Implementation
The coding side of this work has been performed in three main languages:

Matlab, Python and C.
Matlab has been used to solve the LMI problem, and it has been explained how
in 4.5. Its usage its limited in one script that has to be run in order to find the
NUIOs design matrices.
The scenario for the de-tumbling has been created in the Basilisk’s Python interface,
and consists in tying together all the modules involved, defining their input values
based on the mission specifications, and connect them with the messaging interface.
The NUIO design matrices are imported from Matlab, and become part of the FDI
module input. A visual representation of the scenario and its modules’ interfacing
is provided in 4.9, where the modules with different colors are set to have different
time steps.
The FDI tool has been coded in C. Most of Basilisk FSW modules are programmed
in this language, although lately more C++ based are being added. The interfacing
with the scenario is done by Basilisk via SWIG. The flowchart in 4.8 shows the
operations and decisions coded in the module.



4.6. Implementation 45

Figure 4.8: Visualization of the thrustersFDI module flowchart



46 Chapter 4. Proposed Solution

Figure 4.9: Visualization of the Basilisk simulation scenario



Chapter 5

Simulation and Results

In this chapter the validity and performances of the FDI have been assessed
via a series of Montecarlo simulations (MCS), capable of accounting for all sorts of
parameters variation. This tool is particularly useful when there is a large number
of variables combination to be explored. This is the case for the current application,
that is required to work in case of such unexpected events like faults. The simulation
variables are explained and the results are reported and commented.

5.1 Simulation Variables

For the process of "fault injection" four are the identified variables and must be
explored thoroughly:

1) The faulty thruster FTthr.

2) The fault kind FTkind.

3) The fault magnitude FTmag.

4) The fault time FTtime.

The FTthr variable represents which thruster is going to be faulty, and is going to
be a number between 0 and 8. Note that the zero will represent the "no fault"
condition, and will override all the other parameters, making them useless.
The fault kind FTkind is representative of the two fault modes explored here:

• FTkind = 0 refers to the condition of efficiency loss.

• FTkind = 1 simulates a thruster stuck condition.

As mentioned in 3.4 there is also going to be a magnitude of the fault, and is going
to be represented by FTmag. It has been decided for FTmag to assume values from
0 to 1, with 0.05 increments, thus representing 5% increments from 0 to max thrust.
In relation to FTkind, this translates in:

• If FTkind = 0, the FTthr will have a new maximum force fmaxnew = fmaxFTmag.

47



48 Chapter 5. Simulation and Results

• If FTkind = 1, the FTthr will be stuck and firing with a constant force
fmaxnew = fmaxFTmag.

Finally, the fault event will be injected at different times, depending on the FTtime

parameter. It will be always kept as a random value within the whole simulation
time.
In addition to those, four other variables will be included in the simulation:

• The initial MRPs will vary, letting the spacecraft assume any random initial
attitude.

• The initial angular velocity is set to vary. Each axis is allowed to have a value
between −0.3 and +0.3 rad/s.

• The force and toque disturbances, described later.

All the variables will have a uniform distribution dispersion. The FTtime, initial
angular velocity, and initial MRP will vary in each MCS, thus their inclusion in the
simulation inputs will be implied.

5.2 Simulation Fixed Parameters

In addition to the quantities that change between different runs, there are some
pre-chosen simulation parameters. Some of them (e.g the spacecraft properties, the
thrusters characteristics, etc.) have been already defined, while the other significant
ones will be addressed here.
The time steps are chosen according to the frequencies discussion in 4.2:

• The IMU time step tspIMU is equal to 0.005s.

• The FDI time step tspFDI is equal to 0.01s.

• The control system time step tspcont is equal to 0.1s.

The tspIMU will be also the time step for the dynamics since there no higher
frequencies phenomena of interest.
The gains for the control subsystem have been manually tuned in order to grant a
more or less efficient de-tumbling, having in mind the wide variety of initial attitude
conditions. Their fine tuning is more related to the control than the FDIS analyzed
here.
The value for the fault detection threshold FDtrs is an important parameter, and
its tuning is going to depend on:

• The nominal force of the thruster.

• The minimum detectable fault.

• The external forces.



5.3. Simulation Campaign 49

Its tuning will be discussed in the simulation campaign.
The tFDIwindow

will be composed of 3 FDIS updates, that grant a trustworthy FDI
while having a low probability of mid-isolation command change. Even if this
last event is contemplated and solved by the FDI, it is still better to reduce its
occurrence probability to have an overall faster FDI. The simulated time will be of
3 minutes.

5.3 Simulation Campaign
The simulation campaign will cover variations for all the previously discussed

variables. In order to account for the differences in FDI behavior with respect
to FTkind, the two fault modes will be investigated separately. Furthermore, a
separate analysis will be made for the cases considering external disturbances. Each
Montecarlo simulation will produce the superimposed plots of useful variables, as
well as log files containing the performances of the FDI in terms of:

• Success percentage FDIsucc found by comparing the injected FTthr with the
predicted FTthrpred .

• Fault times injected FTtime, fault times predicted FTtimepred , and their differ-
ence. This last quantity is averaged on the successful runs, giving the mean
time for FDI completion. It will be referred as FTmeanTime.

Throughout the simulation campaign the MCSs will have different numbers of runs
depending on the result being analyzed. The more comprehensive ones are composed
of 1000 runs, that would result in useless chaotic plots, if shown. Furthermore,
the quantities of interest for FDI (e.g. fault detection, faulty observer, faulty
thruster, fault time) are all values that don’t express a characteristic "trend" to be
usefully shown in plots. They can either be zero or assume a certain value. For all
these reasons it is chosen to show MCSs plots of 100 runs max, independently of
the variable. This means that even when discussing the bigger 1000 runs MCSs,
their graphical representation will be referred to a simulation with all the same
settings, but the number of runs, set to 100 (this will be highlighted also in the
plot description).

5.4 Efficiency Loss Fault
This is the case for which FTkind = 0. In this case the thruster will correctly

respond to the control, however its reduced max thrust will have an impact on the
spacecraft. For the case analyzed here, the complete absence of disturbances allows
for a fine tuning of FDtrs (discussed in 4.3), set to a value of 0.00001. This means
that even the smallest allowed allowed fault, corresponding to FTthr working at
95%, are detected by the FDI. A 1000 runs MCS is performed, with the following
settings:

• FTthr can assume all values.

• FTmag can assume values from 0 to 0.95.



50 Chapter 5. Simulation and Results

It is noted that the condition FTmag = 1 is not contemplated in efficiency loss
faults, since it would correspond to a non fault condition. The result is a FDIsucc
of 100%, so all the faults are correctly detected and identified. The
corresponding 100 runs plot for the angular velocity is shown in 5.1, and serves
just as a visualization of the different runs. It can be noticed how, despite the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

An
gu

la
r V

el
oc

ity
 [r

ad
/s

] 

Figure 5.1: Plot of the angular velocity components in the corresponding 100 runs MCS
of the efficiency loss case

faults happening, the control system is able to perform the maneuver. This is
a great achievement for the FDIS, since it is able to perform perfectly
even when the de-tumbling mission is not compromised.
Concerning the FDI time, for the depicted MCS it is found that FTmeanTime = 1.272s.
This information, however, is not going to be particularly useful per se, since it will
depend on when FTthr will be fired for the first time after FTtime (4.2).
While still in the same fault kind situation, a useful analysis can be done by fixing
FTthr. A 100 run MCS is performed with the same parameters as before, but for
all simulations FTthr = 1. As expected the FDI success percentage is the same, but
with this new constraint it is possible to better visualize the NUIOs performance.
In figure 5.2 are shown the norms of the NUIOs residuals at the time of the fault
identification completion. FTthr belongs to the first NUIO, and it can be clearly
seen how the corresponding plot is the only one without spikes. The correct NUIO
behavior is then confirmed, since it is the only one whose residual doesn’t rise in
case of fault. By zooming in (5.3), another behavior can be caught. On a much
smaller scale with respect to the others, the first NUIO’s residual norm spikes have
a descending trend. This behavior is to be attributed to the choice of γ that will
be more optimized for smaller angular velocity values. For the sake of visualization,
the plot for the results of the final isolation is reported in 5.4.
As mentioned before, the fault detection threshold has been tuned to guarantee a
maximum success rate. The impact of this parameter on the FDI overall performance
can be shown by increasing its value, thus making the fault detection less sensitive.
A 100 runs MCS is performed, with the following characteristics:

• FTthr can assume all values.



5.4. Efficiency Loss Fault 51

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

1 
[ra

d/
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

2 
[ra

d/
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

3 
[ra

d/
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

4 
[ra

d/
s]

Figure 5.2: Behavior of the four NUIOs in the efficiency loss case with faulty thruster 1



52 Chapter 5. Simulation and Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0

2

4

6

8
Re

sid
ua

l N
UI

O 
1 

[ra
d/

s]

1e 8

Figure 5.3: Zoom on the first NUIO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0

1

Fa
ul

ty
 T

hr
us

te
r

Figure 5.4: Final isolation results. All the lines end up in the top right corner, at a
value corresponding to 1, in accordance with the real faulty thruster

• FTmag can assume values from 0 to 0.95.

• FDtrs is raised to a value of 0.0001.

The success rate for this case drops to 95%, and from the MCS log file (table 5.1)
it can be noticed that in all the failed FDIs the injected fault is very small.

5.5 Stuck Thruster Fault

The case for which FTkind = 0 is going to be analyzed here. As before, a 1000
runs MCS is done with following parameters:

• FTthr can assume all values.

• FTmag can assume all values.



5.5. Stuck Thruster Fault 53

Table 5.1: Log file containing the 5 failed FDIs

FTthr FTthrpred FTmag FTtime [s]
3 0 0.95 95.487
3 0 0.95 56.751
1 0 0.9 154.683
4 0 0.95 138.643
1 0 0.95 53.583

In this case all the FTmag values are contemplated. If a thruster is stuck, and its
command changes at least once, the fault will always generate a net force, regardless
of FTmag (as seen in 4.2).
The efficiency loss and thruster stuck faults are detected and isolated in the same
way, and the plots show the same behavior (e.g. figure 5.5 for angular velocity).
The only performance parameter whose difference is worth noticing is the mean

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

An
gu

la
r V

el
oc

ity
 [r

ad
/s

] 

Figure 5.5: Plot of the angular velocity components in the corresponding 100 runs MCS
of the thruster stuck case

FDI time. For the cases in which the thruster is stuck on at a sub-nominal value
different from zero (remembering the considerations in 4.2), there are no waiting
times tw and tw∗. Instead, if the thruster is stuck completely on or off, the situation
is the same as a loss of efficiency, time-wise. To prove this last sentence, a 1000 run
MCS is done, in which only FTmag = 0 and FTmag = 1 are injected. The results
are in agreement with the theory and are:

• Efficiency loss =⇒ FTmeanTime = 1.272s.

• Thruster stuck - all FTmag values =⇒ FTmeanTime = 0.086s.

• Thruster stuck - FTmag ∈ [0, 1] =⇒ FTmeanTime = 1.340s



54 Chapter 5. Simulation and Results

5.6 Disturbances

In order to investigate the robustness of the FDI method in a mission in which
disturbances are present, the module discussed in 3.2 is included in the simulation.
It generates disturbances in terms of constant external forces extforce and torques
exttorque. The torques are referred to the origin of the BF, that, in this case,
corresponds to the COM.
Those two objects will impact differently the FDI, and the reason is to be found in
the core idea of the FDIS. The steps that require accelerometer information will be
negatively affected by the presence of an external force (mainly FD), while the FFI
accuracy will resent from an external torque.
The analysis is done considering the same fault detection threshold as before, that
allowed to have a 100% success rate. A tuning of this value is fundamental and
strictly related to the expected disturbances. The MCSs performed here provide a
useful tuning tool, since it allows to explore the success rate changes depending on
the disturbances magnitude. In particular, the disturbances are set up with a uni-
form dispersion on all components, given their maximum absolute component-wise
value max(extforce,torque).
All the upcoming MCSs will allow all possible values for FTthr and FTkind. Without
loss of generality the FTmag will assume all values but 1. This is done in order to
exclude the injection of FTthr = 0-FTmag = 1 combinations.

5.6.1 External Forces

When extforce is introduced, the simple threshold check on the acceleration norm
might not be enough to perform a trustworthy fault detection. The composition of
the fault-produced net force with the external one can have two effects:

• Mistakenly trigger the FDIS before an actual fault, if the directions are similar,
causing false positives.

• Mitigate the effect of a fault and consequently miss its effect. This happens
when the directions are opposite-like.

The FDI performs well until the max disturbance allowed is in the same order
of magnitude as the threshold. A series of 100 runs MCSs are performed with
increasing max(extforce) value, and indeed a FDI behavior shift happens between
10−4N < max(extforce) < 10−3N . Across this value, the FDIsucc drops from 100%
to 53%. The resulting trade off is:

• A lower FDtrs allows for a more sensitive FDI, however the robustness to
disturbances will drop.

• On the contrary, a higher FDtrs can be tolerated if not interested in small
faults, allowing for a bigger max(extforce).



5.6. Disturbances 55

5.6.2 External Torques

The external torque exttorque consists in a pure moment applied to the spacecraft.
This will become another unknown input for the NUIOs, and potentially compromise
their estimation. This disturbance is completely un-modeled in the dynamics, and
this has to be with the fact that the nominal mission is in deep space, where the
disturbances are negligible with respect to a disruptive thruster fault. With this
analysis, however, it is possible to establish when a disturbance modeling might be
helpful.
In a similar fashion to extforce, for exttorque a series of 100 runs MCSs are performed,
this time with increasing values of max torque. The success rate drops from 100% to
87% in the interval: 10−3N ·m < max(extforce) < 10−2N ·m. This drop is related
to a NUIOs loss of state estimation ability. This phenomenon can be visualized
by restricting the fault to a single thruster (as in 5.4). By injecting only faults in
thruster 1, in a 100 runs MCS, the NUIOs behavior shown in 5.7 is very different
from 5.2.

In the new case, the spikes representing the residuals of the first observer are
not negligible with respect to the others, and in some runs they are even the highest
among the four (i.e. wrong isolation). The failed runs can be visualized in 5.6. In
this case, out of 100 runs, 13 result in a predicted faulty thruster not equal to 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0
1
2
3
4
5
6
7
8

Fa
ul

ty
 T

hr
us

te
r

Figure 5.6: Predicted faulty thrusters, overly perturbed case



56 Chapter 5. Simulation and Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

1 
[ra

d/
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

2 
[ra

d/
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

3 
[ra

d/
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Re
sid

ua
l N

UI
O 

4 
[ra

d/
s]

Figure 5.7: Behavior of the four NUIOs in case of disturbances and faulty thruster 1



5.7. Final Simulation 57

5.7 Final Simulation
Considering all the previous analysis, a final 1000 runs MCS is performed, with

the following parameters:

• FTkind ∈ [0, 1].

• All FTmag values but 1.

• FDtrs = 0.00001

• max(extforce) for each BF component: 10−4N

• max(exttorque) for each BF component 10−3N ·m

The success rate is of 100%. This simulation represent the near worst-case scenario,
in terms of disturbances, that still holds the maximum success rate. The mean FDI
time FTmeanTime is 0.328, which is an intermediate value between the times relative
to FTkind = 0 and FTkind = 1.





Chapter 6

Conclusions and Possible
Developments

In this final chapter first an analysis of the results is given with comments about
the FDI performance and the consequent limits of application. Finally an insight
on possible future developments is discussed.

6.1 Interpretation of the Results

The goal of the thesis was to design, implement and test the newborn FDI
tool. Thanks to the Montecarlo simulation campaign its performances have been
assessed and explored. The results are very promising, easily achieving a 100%
success rate even with faults as small as a thruster firing at 95% of its nominal
value, and the presence of unmodeled disturbances. In the simulation campaign
the limits for the tolerable magnitude of those disturbances are analyzed. Thanks
to its sensitivity, one of the achievements of the tool is the ability to correctly
detect and identify faults even if there are no macro-effects on the de-tumbling.
The information on the fault, then, might be helpful in case of later usage of the
thrusters for other purposes, and actions have to be taken on the faulty thruster to
address the problem.
In a possible real life application the developed algorithms would be implemented
in the spacecraft OBC (with no need of auto-coding) and left running in the
background. This would likely not be a burden for the OBC, since most of the
time they will consist in the simple acceleration signal monitoring of the FD. Only
when the a fault happens and is detected the NUIOs will go online, together with
the simple SFI. Even in this case running these algorithms don’t require a large
amount of computational power. In fact, thanks to the C programming, all the
testing and simulations have been done on an actual OBC-like code, with very good
computational performance results.
The chosen mission scenario has been a simple de-tumbling, but this doesn’t limit
the tool’s application to this maneuver only. In this sense, as long as the thrusters
are fired, the FDI can be performed. Among all the possible maneuvers, however,
the de-tumbling usually implies the usage of simple sensors (like the IMU used
here) cause other more complex sources of information like star trackers (if present)

59



60 Chapter 6. Conclusions and Possible Developments

are not compatible with the high initial angular velocities that have to be corrected.
The only limits to the applications on different missions are:

• The thruster configuration, for two reasons. First, in order for the FD and
SFI to work as they are presented now, the assumption of an ACS with pure
torque production is necessary. The SFI, in particular, needs to be able to
choose between suspect thrusters with distinguishable nominal force directions.
The other condition, still related on the configuration, is imposed by the
NUIOs in the FFI. As seen on the theory, in fact, it is necessary to meet the
rank requirements on the unknown input matrices. It is difficult to predict a
priori which are the all the possible thruster configurations compatible, so a
per-case check is advised.

• If the thrusters have a low enough nominal maximum force, it can be possible
that, either cause of disturbances or various noises present in the system,
their effect on the spacecraft cause of a fault does not get detected.

• If the spacecraft has moving parts, their actuation might perturb the FDIS,
potentially making the employed method not ideal for the application.

6.2 Future Work
In terms of possible future work applicable to the method, here are some

suggestions.

Fidelity of the simulation In order to test the tool in more realistic situations,
noises and delays can be introduced in the system, depending on the particular
mission and components specifics. These quantities could worsen the FDI
performance and their effect is worth being studied and predicted.

Disturbances The disturbances have been modeled as simple constant external
forces and torques. While this assumption was useful for the sample mission
analyzed here, for other cases it might be useful to include the disturbances
in the tool’s modeling.

Fault recovery The natural step after FDI is the "Fault recovery". This is another
important topic in the space engineering community and it can be tackled
in different ways. Usually, however, it implies either a change of the control
law, or the cut off of the faulty thruster for the system. Those actions are
rather dependent on the specifics of the mission, and this is why it has not
been considered in this thesis, in which the mission serves just as a test-bed
for the developed algorithms.



Acronyms

FDI Fault Detection and Identification

FD Fault Detection

FI Fault Identification

NUIO Nonlinear Unknown Input Observer

ADE Attitude Dynamics Equations

UI Unknown Input

NN Neural Network

EKF Extended Kalman Filter

FFI First Fault Isolation

SFI Second Fault Isolation

FDIS FDI Subsystem

OBC On-Board Computer

FSW Flight Software (algorithm)

s/c Spacecraft

IF Inertial Frame

BF Body Frame

DCM Direction Cosine Matrix

MRP Modified Rodrigues Parameters

CGT Cold Gas Thrusters

PTS Pure Torque Source

MEMS Micro Electro-Mechanical Systems

BDT Basilisk De-Tumbling Control

MCS Montecarlo Simulation

61





Bibliography

References

Pubblications and Manuals

[1] John Alcorn, Cody Allard, and Hanspeter Schaub. “Fully coupled reaction
wheel static and dynamic imbalance for spacecraft jitter modeling”. In: Journal
of Guidance, Control, and Dynamics 41.6 (2018), pp. 1380–1388 (cit. on p. 10).

[2] John Alcorn et al. “Simulating attitude actuation options using the basilisk
astrodynamics software architecture”. In: 67th International Astronautical
Congress, Guadalajara, Mexico. 2016 (cit. on p. 10).

[3] C Allard, Hanspeter Schaub, and Scott Piggott. “General hinged solar panel
dynamics approximating first-order spacecraft flexing”. In: AAS Guidance
and Control Conference, Breckenridge, CO. 2016 (cit. on p. 10).

[4] Cody Allard, Manuel Diaz Ramos, and Hanspeter Schaub. “Computational
Performance of Complex Spacecraft Simulations Using Back-Substitution”. In:
Journal of Aerospace Information Systems 16.10 (2019), pp. 427–436 (cit. on
p. 10).

[5] Cody Allard et al. “Modular Software Architecture for Fully Coupled Space-
craft Simulations”. In: Journal of Aerospace Information Systems 15.12 (2018),
pp. 670–683 (cit. on p. 10).

[6] Raymond Bzibziak. “Update of cold gas propulsion at Moog”. In: 36th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000,
p. 3718 (cit. on pp. 23, 24).

[7] Paolo Cappuccio, Cody Allard, and Hanspeter Schaub. “Fully-Coupled Spher-
ical Modular Pendulum Model To Simulate Spacecraft Propellant Slosh”. In:
AAS/AIAA Astrodynamics Specialist Conference. 2018 (cit. on p. 10).

[8] Wen Chen and Mehrdad Saif. “Observer-based fault diagnosis of satellite
systems subject to time-varying thruster faults”. In: (2007) (cit. on pp. 4, 6).

[9] M Cols Margenet, Hanspeter Schaub, and Scott Piggott. “Modular Platform
for Hardware-in-the-Loop Testing of Autonomous Flight Algorithms”. In: In-
ternational Symposium on Space Flight Dynamics, Matsuyama-Ehime, Japan.
2017 (cit. on p. 10).

[10] Mar Cols-Margenet, Hanspeter Schaub, and Scott Piggott. “Modular attitude
guidance development using the basilisk software framework”. In: AIAA
SPACE 2016. 2016, p. 5538 (cit. on p. 25).

63



64 Bibliography

[11] Wim De Groot. “Propulsion options for primary thrust and attitude control
of microspacecraft”. In: COSPAR Colloquia Series. Vol. 10. Elsevier. 1999,
pp. 200–209 (cit. on p. 20).

[12] R. Fonod et al. “Thruster Fault Detection, Isolation and Accommodation
for an Autonomous Spacecraft”. In: IFAC Proceedings Volumes 47.3 (2014).
19th IFAC World Congress, pp. 10543–10548. issn: 1474-6670. url: http:
//www.sciencedirect.com/science/article/pii/S147466701643288X
(cit. on pp. 5, 7, 39).

[13] Robert Fonod et al. “Robust FDI for fault-tolerant thrust allocation with
application to spacecraft rendezvous”. In: Control Engineering Practice 42
(2015), pp. 12–27. issn: 0967-0661. url: http://www.sciencedirect.com/
science/article/pii/S0967066115000945 (cit. on pp. 5, 13).

[14] P Gahinet et al. “LMI Control Toolbox User’s Guide. The Math Works Inc”.
In: Natick.—1995.—310 p (1995) (cit. on p. 39).

[15] Inseok Hwang et al. “A survey of fault detection, isolation, and reconfiguration
methods”. In: IEEE transactions on control systems technology 18.3 (2009),
pp. 636–653 (cit. on p. 2).

[16] Inertia Measurement Unit Datasheet. STIM300. Rev. 25. Sensonor. Feb. 2020
(cit. on pp. 19, 32).

[17] Rolf Isermann. “Model-based fault-detection and diagnosis–status and ap-
plications”. In: Annual Reviews in control 29.1 (2005), pp. 71–85 (cit. on
p. 2).

[18] Tao Jiang, Khashayar Khorasani, and Siamak Tafazoli. “Parameter estimation-
based fault detection, isolation and recovery for nonlinear satellite models”.
In: IEEE Transactions on control systems technology 16.4 (2008), pp. 799–808
(cit. on pp. 3, 6).

[19] John L Junkins and Hanspeter Schaub. Analytical mechanics of space systems.
American Institute of Aeronautics and Astronautics, 2009 (cit. on pp. 15, 26).

[20] Patrick W Kenneally, Scott Piggott, and Hanspeter Schaub. “Basilisk: a
flexible, scalable and modular astrodynamics simulation framework”. In: 7th
International Conference on Astrodynamics Tools and Techniques (ICATT),
DLR Oberpfaffenhofen, Germany. 2018 (cit. on p. 9).

[21] Yunosuke Maki and Kenneth A Loparo. “A neural-network approach to fault
detection and diagnosis in industrial processes”. In: IEEE Transactions on
Control Systems Technology 5.6 (1997), pp. 529–541 (cit. on p. 3).

[22] Paolo Massioni, Guido Sangiovanni, and Michèle Lavagna. “Innovative Soft-
ware for Autonomous Fault Detection and Diagnosis on Space Systems”. In:
Jan. 2006 (cit. on p. 3).

[23] Ron J Patton and Jie Chen. “Review of parity space approaches to fault
diagnosis for aerospace systems”. In: Journal of Guidance, Control, and
Dynamics 17.2 (1994), pp. 278–285 (cit. on p. 4).

http://www.sciencedirect.com/science/article/pii/S147466701643288X
http://www.sciencedirect.com/science/article/pii/S147466701643288X
http://www.sciencedirect.com/science/article/pii/S0967066115000945
http://www.sciencedirect.com/science/article/pii/S0967066115000945


Bibliography 65

[24] Ron J Patton et al. “Robust FDI applied to thruster faults of a satellite
system”. In: Control Engineering Practice 18.9 (2010), pp. 1093–1109 (cit. on
pp. 4, 7).

[25] Andre Posch et al. “Model-based on-board realtime thruster fault monitoring”.
In: IFAC Proceedings Volumes 46.19 (2013), pp. 553–558 (cit. on pp. 4, 6).

[26] Pablo A Servidia and RS Sanchez Pena. “Thruster design for position/attitude
control of spacecraft”. In: IEEE Transactions on Aerospace and Electronic
Systems 38.4 (2002), pp. 1172–1180 (cit. on p. 21).

[27] V Sharma et al. “Unknown input nonlinear observer design for continuous and
discrete time systems with input recovery scheme”. In: Nonlinear Dynamics
85.1 (2016), pp. 645–658 (cit. on pp. 13, 15).

[28] Silvio Simani, Cesare Fantuzzi, and Ronald Jon Patton. “Model-based fault
diagnosis techniques”. In: Model-based Fault Diagnosis in Dynamic Systems
Using Identification Techniques. Springer, 2003, pp. 19–60 (cit. on p. 4).

[29] Scott R Starin and John Eterno. “Attitude determination and control systems”.
In: (2011) (cit. on p. 11).

[30] M Thirumarimurugan, N Bagyalakshmi, and P Paarkavi. “Comparison of
fault detection and isolation methods: A review”. In: 2016 10th International
Conference on Intelligent Systems and Control (ISCO). IEEE. 2016, pp. 1–6
(cit. on p. 6).

[31] Arturo Valdes, Khashayar Khorasani, and Liying Ma. “Dynamic neural
network-based fault detection and isolation for thrusters in formation flying of
satellites”. In: International Symposium on Neural Networks. Springer. 2009,
pp. 780–793 (cit. on p. 3).

[32] Weitian Chen and M. Saif. “Fault detection and isolation based on novel
unknown input observer design”. In: 2006 American Control Conference. 2006,
6 pp.- (cit. on pp. 7, 13, 15).

[33] Edward Wilson and Stephen M Rock. “Reconfigurable control of a free-flying
space robot using neural networks”. In: Proceedings of 1995 American Control
Conference-ACC’95. Vol. 2. IEEE. 1995, pp. 1355–1359 (cit. on p. 3).

[34] Youmin Zhang and Jin Jiang. “Bibliographical review on reconfigurable fault-
tolerant control systems”. In: Annual Reviews in Control 32.2 (2008), pp. 229–
252. issn: 1367-5788. url: http://www.sciencedirect.com/science/
article/pii/S1367578808000345 (cit. on p. 2).

Online Material

[35] Hanspeter Schaub. Basilisk Documentation. 2020. url: https://hanspeterschaub.
info/basilisk/Documentation/index.html (cit. on p. 11).

[36] Hanspeter Schaub. Basilisk Force Mapping Algorithm. 2020. url: https:
/ / hanspeterschaub . info / basilisk / Documentation / fswAlgorithms /
effectorInterfaces/thrForceMapping/thrForceMapping.html (cit. on
p. 28).

http://www.sciencedirect.com/science/article/pii/S1367578808000345
http://www.sciencedirect.com/science/article/pii/S1367578808000345
https://hanspeterschaub.info/basilisk/Documentation/index.html
https://hanspeterschaub.info/basilisk/Documentation/index.html
https://hanspeterschaub.info/basilisk/Documentation/fswAlgorithms/effectorInterfaces/thrForceMapping/thrForceMapping.html
https://hanspeterschaub.info/basilisk/Documentation/fswAlgorithms/effectorInterfaces/thrForceMapping/thrForceMapping.html
https://hanspeterschaub.info/basilisk/Documentation/fswAlgorithms/effectorInterfaces/thrForceMapping/thrForceMapping.html


66 Bibliography

References

Non Cited References

[37] Sara Ghasemi and Khashayar Khorasani. “Fault detection and isolation of
the attitude control subsystem of spacecraft formation flying using extended
Kalman filters”. In: International Journal of Control 88.10 (2015), pp. 2154–
2179.

[38] David Henry. “Fault diagnosis of microscope satellite thrusters using H-
infinity/H_ filters”. In: Journal of Guidance, Control, and Dynamics 31.3
(2008), pp. 699–711.

[39] Bingyong Yan et al. “Fault diagnosis for a class of nonlinear systems via ESO”.
In: ISA transactions 47.4 (2008), pp. 386–394.


	Frontespizio
	Ringraziamenti
	Dedica
	Contents
	List of Figures
	Sommario
	Abstract
	Abstract
	Introduction
	Fault Detection and Isolation Problem
	Literature Review
	Data Based
	Model Based

	Presented Solution
	Comparison with Other Methods
	Main Characteristics


	Background Knowledge
	Basilisk Simulation Framework
	Attitude Dynamics Equations
	Nonlinear Unknown Input Observer

	Mission Description
	Spacecraft
	Environment and Disturbances
	Sensors
	Thrusters
	Thrusters Module
	Types of Faults

	Control
	Basilisk De-Tumbling Control
	Simple De-Tumbling Control
	Generation of the On-Time Input Vector


	Proposed Solution
	Overview of the Solution
	FDI Subsystem Interfacing
	Fault Detection
	First Fault Isolation
	Second Fault Isolation
	Implementation

	Simulation and Results
	Simulation Variables
	Simulation Fixed Parameters
	Simulation Campaign
	Efficiency Loss Fault
	Stuck Thruster Fault
	Disturbances
	External Forces
	External Torques

	Final Simulation

	Conclusions and Possible Developments
	Interpretation of the Results
	Future Work

	Acronyms
	Bibliography
	References
	Pubblications and Manuals
	Online Material

	References
	Non Cited References
	Online Material
	LaTeX



