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This research introduces a novel Guidance, Navigation, and Control (GNC) algorithm for

spacecraft formation flying. The theoretical background of the proposed relative path planner is

based upon nonlinear geometric control theory. The algorithm incorporates holonomic/nonholo-

nomic constraints and a filter’s information to generate collision-free trajectories despite the sys-

tem’s stochasticity. It is shown that the local fuel-optimal solutions are geodesics of the constrained

solution manifold. The optimization problem is shown to be equivalent to a partial differential

equation defined on a Riemannian manifold. Using Lie brackets, the relative problem is shown to

be controllable. The total delta-v required to travel along the computed geodesic is small enough to

do the orbital transfer using natural forces such as atmospheric drag and solar radiation pressure.

Consequently, 6DOF fuel-free trajectories are generated for a flat plate deputy spacecraft around a

cannonball chief. The computation is distributed among the different spacecraft in the formation

to ensure that the relative GNC algorithm can be used with large formations. The algorithm’s

computation requirement is distributed among the different agents in the formation. Each space-

craft identifies potential obstacles (i.e., neighboring spacecraft) and uses this local information to

independently compute a fuel-efficient path to avoid its neighbors. A relative navigation filter is

also derived to keep the uncertainty associated with each deputy bounded. The filters operate on

a distributed architecture, and each agent estimates its state using relative measurements with its

neighbor. The covariance envelope associated with each filter is used as a keep-out ellipsoid, and

a chance constraint formulation is used to transform the probabilistic collision constraint on the

filters’ covariance into a deterministic condition on the belief states of the system (i.e., mean of

each filters’ distribution). A covariance avoidance sequence is initiated every time two covariance

envelopes intersect. The resulting GNC algorithm has two components (geometric path planner and
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relative navigation filter) that run in parallel. A Lyapunov feedback controller is demonstrated to

track the computed optimal path in real-time. The algorithm is used for creating fuel-optimal and

collision-free trajectories, and is demonstrated on a six-spacecraft formation around Earth.
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Chapter 1

Background and Motivation

1.1 Background and Motivation

A Distributed Space System (DSS) is a spacecraft architecture that reconfigures large and

complex monolithic satellites into a cluster of smaller satellites. Intuitively, this new paradigm

distributes the mission’s payload and experiments across a network of smaller satellites, allowing

for better science returns (more collected data), and cheaper mission costs (more affordable to

manufacture) [25, 140]. The origins of DSS can be traced back to the Gemini program, and it was a

key technology instrumental in landing the first man on the Moon [50]. Over the years, the Gravity

Recovery and Climate Experiment (GRACE) [192], the TerraSAR-X add-on for Digital Elevation

Measurement (TanDEM-X) [9], and the Magnetospheric Multiscale Mission (MMS) [214] are a few

examples of flown missions that leveraged this approach to perform Earth gravity field recovery,

synthetic aperture radar interferometry, and magnetospheric observation, respectively. Encouraged

by the success of past missions, many space agencies, government research and development (R&D)

centers, and universities have invested a considerable amount of time and effort in designing more

than twenty DSS missions in the past two decades [173]. There are currently working on at least

ten more such missions that will launch in the next decade, including the Janus mission launching

later this year [58].
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(a) Grace Mission [147] (b) MMS Mission [67]

(c) TanDEM-X Mission [61] (d) Janus Mission [148]

Figure 1.1: Example of Past and Future Distributed Space Systems (DSS) Missions

With these added benefits comes a new set of challenges. A small spacecraft has low fuel

storage and limited actuation capability making it difficult to follow arbitrary relative trajectories;

this induces the need to develop Guidance, Navigation, and Control (GNC) algorithms that leverage

natural dynamics to achieve fuel-efficient relative trajectories [36, 145]. Spacecraft Formation Flying

(SFF) is a framework where the dynamics of each agent in a distributed architecture are defined

with respect to another agent; therefore, it is the appropriate framework for designing these kinds
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of GNC algorithms.

Over the years, numerous research efforts have developed fuel-efficient relative orbits such as

passive apertures orbits. Both linear and nonlinear approaches exist to generate the initial conditions

for such passive apertures. In the realm of linearized dynamics, many linear optimal control methods

have been developed based on Hill-Clohessy-Wiltshire (HCW) and the Tschauner–Hempel (T-H)

equations of motion [84, 11, 32, 33]. However, the performance of these methods decreases with

large relative separations and as external perturbations act on the system [170, 6]. On the other

hand, nonlinear methods involve using a numerical grid search to find a path optimizing a chosen

cost function [198, 111, 48, 60, 34]. However, the performance of these nonlinear methods heavily

relies on the choice of local coordinate representations. The algorithm developed in this study

reframes the fuel-optimal two-point boundary value (2PBVP) problem into a curve minimization

on a Riemannian manifold. The optimal path is shown to be a geodesic of the solution manifold, and

it is obtained by solving a partial differential equation derived in Chapter 2. The large convergence

radius of the proposed method is robust to bad initial guesses which is a big improvement over other

methods.

Another challenge associated with SFF is the generation of collision-free trajectories, mainly

when the spacecraft operate near one another. In recent years, Low Earth Orbit (LEO) overcrowding

has become a primary concern for the scientific community [126, 112]. In addition, the increase of

commercial endeavors (i.e., Starlink, OneWeb, and Project Kuiper) indicates that the spacecraft-

overpopulation problem is likely to increase in the next decades [131], thus the need for collision

avoidance algorithms. Many approaches are currently proposed in the literature for collision-free

path planning. Conjunction assessment is one of the most recognizable approaches to deal with

this issue. It consists of actively tracking hazardous objects, computing the probability of collision,

and performing a collision avoidance maneuver should the collision probability exceed a specified

threshold [3, 181, 56, 163, 42]. However, this approach is impractical for SFF collision avoidance

because the agents’ fly-bys are not short-term encounters, and their relative motion is not rectilinear

in general. Zhang and Gurfil developed a cooperative control algorithm that converges on collision-
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free trajectories via consensus on the control objectives for the entire formation to address this

shortcoming [219]. Mazal and Gurfil have also looked into controlling the agents’ mean orbital

elements (semi-major axis, inclination, and eccentricity) and imposing a minimum and maximum

separation for extended time intervals [142]. Uriot et al. [197] have discussed the use of machine

learning to predict the final risk of collision between two spacecraft at the time of closest approach

(TCA). Wang and Schaub [208] have proposed a control strategy which uses cluster internal coulomb

forces to ensure that deep-space spacecraft do not collide. D’Amico et al. have developed the

eccentricity and inclination (e/i) vector separation method, which guarantees collision avoidance by

placing the different agents in non-intersecting relative planes [51, 187, 70]. Other methods have

used artificial potential strategies, which create a repulsive force as the agents get closer to each

other [182, 86, 180]. Although these methods are effective for some applications, they do not take

advantage of natural dynamics to reduce fuel expenditures.

More specifically, natural forces such as Solar Radiation Pressure (SRP) and atmospheric

drag can be utilized to enable fuel-free trajectory design around Earth. Solar radiation pressure

has been studied for trajectory control in the past. Namely, SRP-based feedback control strategies

have been used for stabilizing motion at the libration points [186, 64] and transfers between them

[62, 31]. Oguri and McMahon have developed optimal control methods that leverage SRP for

visiting and landing on small bodies[155, 154]. Xu et al. have investigated the use of SRP for

station-keeping formation flying in the Sun-Earth-Moon Circular Restricted Three-Body Problem

[216]. Atmospheric drag has also sparked interest in enabling fuel-free missions. Trajectory design

using aeroassist technology has been investigated for Earth orbit [74], Mars robotic[213, 167] and

manned [204] missions, and Titan[129]. Ref. [75] analyzes these missions and provides a mass and

monetary cost analysis driving home the effectiveness and appeal for aeroassisted orbit transfer.

Distributed autonomous guidance is now more than ever at the forefront of robotics and engi-

neering research to provide innovative solutions to complex problems [192, 9, 214]. These problems

affect every aspect of our lives and range from self-driving cars, marine and submarine studies and

exploration, and debris space removal, to enumerate a few. The computation is distributed among
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the different deputy spacecraft to ensure that the relative GNC algorithm can be used with large

formations. Therefore, each agent computes a locally optimal path given the information locally

available.

The derivations also considered the stochastic nature of real-life dynamical systems because

the decisions made by a guidance algorithm are only as good as the knowledge of its surround-

ings. Consequently, the proposed GNC algorithm incorporates navigation information via chance

constraints. The chance constraint is a mathematical framework that transforms (unbounded) prob-

abilistic constraints into deterministic rules. It has been extensively used in robotics [35, 194, 193]

and has gained traction in spacecraft GNC [153, 202, 41, 71]. In this work, the chance constraint

transforms the covariance (Gaussian distributions) associated with each spacecraft into a keep-out

ellipsoid. Therefore, the collision avoidance constraint is enforced by ensuring that the covariance

envelopes of any two agents do not intersect. A relative navigation algorithm is also proposed to

provide the covariance matrices mentioned above to the stochastic geometric guidance algorithm.

Centralized and distributed navigation algorithms are the two main approaches currently

used for SFF navigation. Centralized algorithms relay all the raw data (local state estimates,

covariance, and relative measurements) from the different agents to a single node for processing.

The processing node is then responsible for estimating every agent’s state and communicating the

information back across the network [59, 91, 92]. In such a centralized approach, the size of the

state space increases with the number of agents in the formation (i.e., for a formation of p spacecraft

each with n states, a centralized filter has to estimate n ∗ p states simultaneously). Therefore, the

computational requirements associated with large formations make a centralized filter intractable

for SFF estimation in general. Centralized algorithms are also vulnerable to a single point of failure,

and local changes in the network topology affect the entire system’s behavior, causing central filters

to diverge.

Distributed algorithms, on the other hand, treat every agent as a separate computation cen-

ter that processes its local measurements and only shares relevant information with the rest of the

network. In addition, the nodes are easily replaceable, and the system’s topology can be modified
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(nodes added or removed) without affecting the algorithm’s performance. However, data fusion is

a challenge for distributed network architectures. Notably, double-counting the information avail-

able in measurements is a common problem that leads to filter inconsistencies [37]. Numerous

studies have leveraged the excellent mathematical properties of consensus algorithms (i.e., prov-

able convergence) to address these filter inconsistencies [158, 217, 209, 135]. However, a consensus

algorithm can be hard to apply in real-life scenarios due to underlying assumptions regarding the

network’s topology and communication capability (sufficiently fast communication rate) [196]. An-

other proposed solution is designing network architectures that intrinsically distribute specific state

information to the concerned nodes [105]. Though effective, these methods require knowledge of

the cross-correlation between agents. The covariance Intersection (CI) algorithm is a conservative

yet efficient way to merge information collected by different sensors when their cross-correlation

is unknown [161, 14, 13, 37]. The proposed navigation algorithm uses CI to remove the network-

topology assumption and allow for ad hoc connection (random measurement and communication

graph) between the different agents in the network.

Ref [45] bears many similarities with the work presented in this dissertation. Namely, The

author uses insights from reachability theory to derive a fuel-optimal and impulsive guidance in

a perturbed environment. The approach developed in this work uses relative orbital elements,

and a closed-form solution is derived for Linear Time-Varying (LTV) systems. As it will be shown,

however, the approach proposed in this dissertation is a nonlinear guidance algorithm that leverages

natural forces to minimize fuel usage. In addition, the algorithm herein is applicable for collision

avoidance with incorporative target and incorporates filter information to compute stochastic-aware

trajectories.

1.2 Proposed Research

The abovementioned methods have advanced the state of the art in path planning for cluster

flights. However, there is still a need for a relative GNC algorithm that leverages natural dynamics

to minimize fuel while ensuring collision-free paths between the agents in a formation. Also, a
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consolidating approach that imposes more general holonomic and nonholonomic constraints is still

missing. This work aims to fill that gap. Fig. 1.2(a) shows the different area of research combined in

this study. The designed algorithm’s flow chart is shown in Fig. 1.2(b). The controllability of the full

relative motion is analyzed using Lie bracket theory. The geometric guidance leverages differential

SRP and differential drag to generate six degrees of freedom (6-DOF) fuel-free transfer trajectories

between a flat plate deputy spacecraft which changes its attitude to fly around a cannonball chief

spacecraft. The proposed guidance recursively solves a 2BVP and computes locally fuel-optimal

and collision-free trajectories. The algorithm developed in this work also considers uncertainties

in the planning phase. A distributed navigation filter estimates the state of each agent, and the

guidance algorithm incorporates the covariance information when generating transfer trajectories

using a chance constraint formulation. The navigation algorithm allows spacecraft to navigate using

solely relative measurements. The three characteristics that make the proposed algorithm unique

are as follows:

(1) Speed: We show that the fuel-optimal solution of the 2BVP is the stationary curve for

a partial differential equation (PDE). The PDE converges in seconds and allows active

collision through replanning online.

(2) Nonlinearity: The nonlinear interactions between the states of the system and the natural

forces (drag, SRP, higher-order gravitational perturbations) are leveraged to reduce fuel

expenditure. In addition, the algorithm’s large convergence radius provide robustness to

bad initial guesses.

(3) Modularity: The algorithm is designed independently of the dynamics model. For con-

trollable systems, the proposed method can be applied in different dynamical environments

(underwater, air, etc.) without any simplifications/approximations to the dynamics or al-

teration to the main solver.

The resulting geometric path planning algorithm is fully distributed and capable of handling

the stochastic nature of GNC problems. This work primarily focuses on formations between Low
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(a) Venn Diagram (b) Flowchart

Figure 1.2: Contribution of the Proposed Research

Earth Orbits (LEO) and Geostationary Earth Orbits (GEO), but the methods developed herein can

be applied in any dynamical environment. The thesis statement is a follows:

Assuming a Spacecraft Formation Flying system with controllable dynamics, this

research develops a distributed Guidance Navigation and Control (GNC) algorithm

for fuel-optimal and collision-free trajectory generation in a stochastic-nonlinear

environment.

And the contribution of this work to the literature consists of the four following phases:

(1) First, a deterministic and centralized relative guidance algorithm is derived. This algorithm

takes advantage of the full nonlinearity of the problem. Lie brackets theory is used to

analyze the controllability of the 6DoF SFF problem where a flat-plate deputy maneuvers

around a cannonball chief by modulating its attitude in the presence of SRP and drag. The
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geometric guidance demonstrates how to design a six degree of freedom (6DoF) trajectory

that harvests natural forces to enable fuel-free formation flying missions.

(2) The computational burden is separated across the different agents in the formation. The

distributed algorithm relies on periodic information sharing among the agents to converge

on a locally optimal solution. The generated paths obey both local constraints (specific to

an agent – i.e., actuation requirement) and global constraints (constraints about the entire

formation – i.e., collision avoidance).

(3) A novel distributed navigation filter is introduced for relative navigation of spacecraft in a

formation. The algorithm merges the Unscented Information Filter (UIF) and the Covari-

ance Intersection algorithm (CI) to estimate the spacecraft’s states in a distributed manner.

Each spacecraft tracks its states, and the CI algorithm allows the distributed architecture to

converge to a consistent estimate while ignoring the cross-correlation between the different

spacecraft estimates.

(4) A stochastic distributed geometric path planner is developed to blend the distributed geo-

metric guidance and estimation theory. Here, the geometric guidance algorithm runs parallel

with the relative filtering algorithm developed in Chapter 5. The navigation algorithm keeps

the uncertainty of the system bounded while the geometric planner avoids collisions with the

stochastic deputy via a chance constraint algorithm. The goal is to design a path planning

algorithm capable of accounting for the uncertainty provided by the navigation algorithm.

1.3 Publications

The work done in this dissertation generated the following publicartions:

1.3.1 Journal Articles

(1) Hermann Kaptui Sipowa and Jay McMahon. Distributed Estimator for Spacecraft Coop-

erative Localization. Journal of Guidance, Control, and Dynamics, pages 1–6, feb
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2022

(2) Hermann Kaptui Sipowa and Jay McMahon. Fuel-Optimal Geometric Guidance for Space-

craft Formation Flying. Journal of Guidance, Control, and Dynamics, 2021. Manuscript

submitted for publication

(3) Hermann Kaptui Sipowa and Jay McMahon. Fuel-optimal geometric path planning algo-

rithm for spacecraft formation flying. Journal of Guidance, Control, and Dynamics,

2022. Manuscript submitted for publication

(4) Hermann Kaptui Sipowa and Jay McMahon. Distributed and stochastic guidance for multi-

agent systems. Journal of Guidance, Control, and Dynamics, 2022. Manuscript in

preparation

1.3.2 Conference Papers

(1) Hermann Kaptui Sipowa and Jay McMahon. First order approximation of the effects of solar

radiation pressure on relative motion using a linearized representation of relative orbital

elements. In AAS/AIAA Astrodynamics Specialist Conference, volume 167, Aug.

2019. Paper AAS 18-474

(2) Hermann Kaptui Sipowa, Jay W. McMahon, and Taralicin Deka. Distributed unscented-

information kalman filter (uikf) for cooperative localization in spacecraft formation flying.

In AIAA Scitech 2020 Forum. Paper AIAA-2020-1917

(3) Hermann Kaptui Sipowa and Jay McMahon. Analysis of srp-disturbed relative motion

using geometric nonlinear control theory. In AAS/AIAA Astrodynamics Specialist

Conference, volume 175, Aug. 2020. Paper AAS 20-474

(4) Hermann Kaptui Sipowa and Jay McMahon. 6dof nonlinear guidance for spacecraft forma-

tion flying. In AAS/AIAA Astrodynamics Specialist Conference, Aug. 2021. Paper

AAS 21-768
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(5) Hermann Kaptui Sipowa and Jay McMahon. Fuel-efficient distributed path planning for

spacecraft formation flying. In IEEE Aerospace Conference, Mar. 2022. Paper 2393

(6) Hermann Kaptui Sipowa and Jay McMahon. Stochastic distributed geometric motion plan-

ner for spacecraft formation flying. In International Workshop on Satellite Constel-

lations & Formation Flying, Jun. 2022. (Submitted)



Chapter 2

Riemannian Geometry and Geometric Path Planner

The problem investigated in this chapter is a two-point boundary value problem (2PBVP)

with fixed end conditions, and the guidance algorithm derived herein computes the locally fuel-

optimal path of the solution manifold. The theoretical background of the proposed relative path

planner is based upon nonlinear geometric control theory. The optimization problem is equivalent

to a partial differential equation defined on a Riemannian manifold. Compared to the methods

mentioned earlier, the proposed geometric guidance is agnostic to the choice of coordinates. The

large convergence radius of the algorithm (shown numerically) removes the need to have a thorough

knowledge of the dynamical system while generating the initial guess. The optimal trajectory is

computed by updating an initial guess (homotopies iteration) to minimize the difference between

the spacecraft acceleration and natural dynamics (i.e., reducing fuel usage). The derivations of the

planning algorithm take advantage of the full nonlinearity of the problem so that generated paths

obey the natural dynamics as closely as possible. Collision avoidance constraints are also seamlessly

integrated into the manifold’s construction, and the proposed approach generates collision-free rel-

ative trajectories with minor changes to the algorithm.

The remainder of this chapter is organized as follows. Section 2.1 presents the dynamical

system under consideration. In Section 2.2, the fuel-optimal path reframes the path-planning prob-

lem into a PDE; this result is the the main contribution of this chapter to the trajectory design

literature. In Section 2.3, the proposed approach is used to generate fuel-optimal and collision-free

transfer trajectories for a spacecraft constellation flying around a highly eccentric reference orbit,
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which poses no issue for the proposed method. Finally, Section 2.4 draws conclusions of the chapter

with a few closing remarks.

2.1 Nonlinear Relative Motion Dynamics

Let E : {êr, êθ, êh} denote the chief’s Local-Vertical Local-Horizontal (LVLH) frame (c.f. fig.

2.1), and let the unit vectors êr, êθ, êh be defined in Eq. (2.1) where ~rc, ~vc are the chief’s inertial

position and velocity vectors, respectively.

êr =
~rc
‖~rc‖

, êh =
~rc × ~vc
~rc × ~vc

, êθ = êh × êr (2.1)

Figure 2.1: Chief’s Local-Vertical Local-Horizontal Frame

The full nonlinear model for relative dynamics is written as:

~̇x = f(~x(t)) +

3∑
i=1

bi(~x(t))ui(t) (2.2)

where ~x = [~ρ, ~̇ρ]ᵀ is the vector composed of the relative position ~ρ and relative velocity ~̇ρ in the

LVLH frame. The multivariate function f(·) is called the drift vector field, and it describes the

behavior of the system in the absence of any controls. The multivariate function bi(·) is a control

vector field and maps the ith control input to the deputy’s acceleration. In the cases studied in this

chapter, bi(·) represents the thrusters’ direction, and it is assumed the control vectors span R3 (i.e.,
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an acceleration can be produced in all directions). The drift vector field is defined as:

f(~x(t)) =

 ~̇ρ

δ~a
g

+ ~Ξ

 (2.3)

where ~Ξ = −~Ω×~ρ−2 ~̇Ω×~̇ρ−~Ω×~Ω×~ρ, and δ~ag
=
(
~a

g

d − ~a
g

c

)
is the relative gravitational acceleration

between the chief and deputy spacecraft. In the chief’s LVLH frame, the relative acceleration is

written as follows [4] (assuming unperturbed 2BP dynamics):

δ~a
g

= − µ

[(r + ρ
1
)2 + ρ2

2
+ ρ2

3
]
3/2


r + ρ

1

ρ
2

ρ
3

+
µ

r2


1

0

0

 (2.4)

where r is the instantaneous radius of the chief trajectory.

2.2 Optimal Path Planning

The solutions of differential equations are subsets of a curved surface also referred to as the

solution manifold and denoted M . These surfaces are typically modeled one of two ways, as shown in

Fig. 2.2. The first approach embeds the manifold into a higher dimensional space with an additional

constraint (see Fig.2.2(a)). This method allows one to define the manifold fully, but it makes the

derivations more complicated because of the added constraints (i.e., more variables than degrees of

freedom). The second approach defines a local coordinate around a reference to approximate the

manifold’s behavior (see Fig.2.2(b)). This method uses the minimum number of variables in the

derivations, but breaks down for points away from the reference (due to singularities or non-valid

approximations). In attitude dynamics, for instance, these two approaches correspond to using

quaternions (no singularities but an extra constraint) and Euler angles (only three parameters but

singularities), respectively.
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(a) Embedding a 2D manifold into a 3D frame (b) Local coordinate approximation

Figure 2.2: Classical treatment of curved surfaces

Riemannian geometry provides a systematic approach that consolidates the two methods

mentioned above. It does so by defining local basis vectors (represented by ∂~u1 and ∂~u2 whose

sizes equal that of the manifold) at every point pi on the solution manifold M (see Fig. 2.3). These

local basis vectors define the tangent space noted TpiM . If ~γ(t) denotes a solution trajectory on

M and ~̇γ(t) = d
dt~γ(t) the time derivative associated with every point on ~γ(t), then the notion of

Riemannian manifold is defined as follows:

Definition A Riemannian manifold is a real, smooth manifold M endowed with a positive-definite

inner product 〈~̇γ, ~̇γ〉 = ~̇γᵀG~̇γ on the tangent space T~xM at each point ~x on the manifold and for

an n× n positive definite matrix G(~γ) called the Riemannian metric and ∀~̇γ ∈ T~xM .

The behavior of any dynamical system can be represented by a smooth mapping that asso-

ciates a real parameter (such as time) to a point on a Riemannian manifold. Such mapping defines

the curve ~γ(t) evolving on M , as shown in Fig. 2.3.



16

Figure 2.3: Illustration of a Riemannian manifold

2.2.1 Geodesic

Given a Riemannian manifold (M,G), a curve is defined by the following mapping:

γ : [0, T ]→M | γ̇ = f(γ(t), u(t)) (2.5)

A geodesic is a minimum length curve connecting two points on a Riemannian manifold. On the

manifold, the concept of distance is tied to the Riemannian metric, and the length of a curve

connecting γ(0) = xi to γ(T ) = xf in time T is written as:

L (γ(t)) =

∫ T

0

√
~̇γᵀG~̇γdt =

∫ 1

0
ds (2.6)

where ds2 =
∑

i

∑
jGijdxidxj is the infinitesimal length element. Conceptually, a geodesic is the

extension of a straight line to a curved space.

Let’s define a connection as a mapping between tangent spaces at different points on the

manifold. The Levi-Civita connection ∇ : Tp1M → Tp2M , Tp1 , Tp2 ∈M is a special mapping that

preserves the direction of the velocity vector along a curve (i.e., it is the mapping that keeps the

velocity vector along a curve “straight”). The geodesic is described by the following parabolic PDE

[29]:

∂γ(t, s)

∂s
= ∇γ̇(t,s)γ̇(t, s) = 0 (2.7)
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From a control perspective, geodesics are zero-fuel trajectories connecting two points on a

manifold. The motion planning problem boils down to finding the connecting curve which requires

the minimum amount of controls to cancel any tangential accelerations. The PDE defined in Eq.

(2.7) is typically solved numerically from given boundary conditions and an initial condition. The

initial condition is updated by moving the curve in the direction of the tangential acceleration,

thereby reducing its curvature. The resulting path is the minimum length curve between any two

points on the Riemannian manifold. Ref. [89] provides a rigorous mathematical explanation why a

geodesic is a locally minimizing curve. The term γ̇(t, s) = ∂γ(t,s)
∂t is the derivative with respect to

time. γ(0, s) = xi is the initial state, and γ(T, s) = xf represents the goal state. ∇γ̇(t,s)γ̇(t, s) is

the tangential acceleration felt by a particle traveling along the curve γ(t, s). ∇XY is the covariant

derivative of the vector Y along the direction of the vector X, and it quantifies how much Y changes

along the direction of X. The kth component of ∇XY is given by

(∇XY )k =

n∑
j=1

[
∂Yk
∂xj

Xj +

k∑
i=1

[
ΓkijXiYj

]]
(2.8)

where X = ∂x
∂t is the time derivative of the local coordinate x. Xi is the ith component of the

velocity vector X. Γk is an n×n matrix associated with kth component of the local coordinate and

is called the Christoffel symbols of xk. Christoffel symbols characterize the directional change of

the basis vectors at each point of a curved manifold. Γkij is the (i, j) component Γk and is given by

Γijk =
1

2

n∑
l=1

gil
(
∂g

lj

∂x
k

+
∂g

lk

∂xj

−
∂g

jk

∂x
l

)
(2.9)

where gij is the (i, j) component of the Riemannian metric G, and gij is the (i, j) component of

G−1.

2.2.2 Geodesic and Fuel-Optimal Guidance

The initial and final conditions of the problem are defined as ~γ(0, s) = ~xi and ~γ(T, s) = ~xf ,

respectively. The parameter t is the physical time it takes to travel from ~xi to ~xf along the curve

~γ(t), and the parameter s is a real positive number that characterizes the homotopies of the initial
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guess. For a fixed homotopy number s, Eq. (2.7) is expressed in terms of local coordinates as follows

d2xi

dt2
+

dxm

dt
Γimk

dxk

dt
= 0 (2.10)

where the matrix elements Γimk are called Christoffel symbols defined in Eq. (2.8). The action

integral associated with a geodesic is defined as:

A (~γ(t)) =

∫ T

0
L(~γ(t), ~̇γ(t))dt = 0 (2.11)

where L(~γ(t), ~̇γ(t)) is the Lagrangian function associated with the manifold, and it is defined as:

L(~γ(t), ~̇γ(t)) =
1

2
~̇γ(t)ᵀG~̇γ(t) =

1

2
gikẋ

iẋk (2.12)

where gik are the components of the metric G. Algorithmically, the solution of the PDE in Eq.

(2.7) is obtained numerically from given boundary conditions and an initial condition. The initial

condition is gradually updated (via a homotopy transformation) in a direction where the tangential

acceleration along the curve ∇~̇γ(t,s)
~̇γ(t, s) approaches zero, thereby zeroing out the work done on

the system along that solution curve. The resulting path is the minimum length curve between any

two points on the Riemannian manifold. As shown in the Appendix A, the equation of a geodesic

in Eq. (2.7) is equivalent to the Euler-Lagrange equations, the necessary condition for a curve ~γ∗

to be a local optimizer of Eq. (2.11).

Applied to the ODE defined in Eq. (2.2), one can compute the minimum fuel trajectory of

the 2PBVP by defining the following Lagrangian:

L(~x, ẋ) =
1

2

(
~̇x− f(~x)

)ᵀ
G
(
~̇x− f(~x)

)
. (2.13)

The solution of Eq. (2.7) is the steady-state of the following PDE [128]:

∂~γ

∂s
= G−1(~γ)

(
d
dt
∂L

∂~̇γ
(~γ, ~̇γ)− ∂L

∂~γ
(~γ, ~̇γ)

)
(2.14)

where G is the Riemannian metric associated with the problem and, as mentioned above, allows

for the compution of dot products (and thereby to define distances) on the manifold. This metric

is defined as

G(x) = ψ(~x)F̄−ᵀ(~x)DF̄−1(~x) (2.15)
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where D = diag([λ, · · · , λ︸ ︷︷ ︸
n-m

, 1, · · · , 1︸ ︷︷ ︸
m

]) is the penalty matrix. The scalar λ > 0 is a tuning parameter

chosen large enough to penalize motion in prohibited directions. ψ(~x) is a non-zero function that

is used to impose additional constraints, such as characterizing obstacles to be avoided during the

path or defining the maximum achievable control. An example demonstrating the use of ψ(~x) will

be shown in the next section. F̄(~x) is an n × n matrix that is differentiable in x and invertible at

every point on the manifold. It is defined as

F̄(x) = [Fc(~x) | F(~x)] ∈ Rn×n (2.16)

where F(~x) is an m × n matrix and encodes all directions where the system can instantaneously

move by changing the control inputs. It is constructed as F(~x) = [b1, · · · , bm], where b1, · · · , bm are

the m control vector fields in (2.2). The set of all holonomic and nonholonomic constraints on the

studied system can be encoded in a bounded x-dependent (n−m)× n matrix Fc(~x). The matrix

Fc(~x) encodes all the directions the system cannot move in. For instance, in the case of a wheel

rolling without slipping, the column of Fc(~x) will encode the nonholonomic constraint between the

linear speed and the wheel rotational rate. To ensure that all the prohibited directions are penalized

equally, it is recommended to orthogonalize the column of Fc(~x) using the Gram-Schmidt process.

Given the boundary conditions ~x(0, s) = ~xi, ~x(T, s) = ~xf , and initial condition ~x(t, 0), t ∈

[0, T ], numerically solve the PDE defined in Eq. (2.14). The solution is noted as ~x∗(t, s), and it

is the path obeying to Hamilton’s principle of critical action (i.e., the path of least resistance and

therefore requiring the least amount of control). The action integral defined in Eq. (2.11) decreases

for every feasible curve and gradually approaches the steady state solution ~x∗(t) = ~x(t, smax) where

it is equal to zero [128]. That is d
dsA (~x(·, s)) ≤ 0 for all admissible ~x(t, s), and the equality holds

at x∗(t, s). The solution is computed by performing homotopy of the initial condition, and the

solution is updated in the direction of decreasing d
dsA (~x(·, s)), and

lim
s→∞

~x(t, s) = ~x∗(t, s) (2.17)

Algorithm 1 defined below gives a consice overview of the algorithm discussed above.
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Algorithm 1: Geometric Path Planning
input : ~x(t0), ~x(tf )
// Set boundary conditions
~γ(0, 0) = ~x(t0), ~γ(T, 0) = ~x(tf )
// Pick an initial guess
~γ(t, 0) is any function connecting the boundary conditions
// Define the Riemannian metric
G(~γ) = (1 +ψ)

(
F̄−ᵀ(~γ)DF̄−1(~γ)

)
// Define the lagrangian

L(~γ, ~̇γ) = 1
2

(
~̇γ − f(~γ)

)ᵀ
G(~γ)

(
~̇γ − f(~γ)

)
// Solve the geodesic PDE until convergence

~γ(t,∞) , G−1
i (~γ)

(
d
dt

∂L

∂ ~̇x
(~γ, ~̇γ)− ∂L

∂~x
(~γ, ~̇γ)

)
= 0

// Return the optimal path
~x∗(t) = ~γ(t,∞);
output: ~x∗(t)

2.2.3 Constrained Optimal Path Planning: Collision Avoidance

Reframing the path planning problem into an optimization problem on a Riemannian manifold

allows for imposing different constraints by modifying the definition of the metric G. Collision

avoidance is one such constraint that is of paramount importance to the success of formation flying

missions. In this work, such the collision avoidance is imposed by using the barrier function defined

in Eq. (2.18). However, other options can be used, as it will be shown in Chapters 4 and 6. The

reader is referred to [179, 180] for more details on barrier functions and how they are constructed.

A minimum approach distance can be imposed by augmenting the Riemannian metric (2.15) with

the following functional:

ψj (~ρj(t), ~ρi(t)) =

n∑
i=1

ki
(δρij − α)p

, (2.18)

δρij = ‖~ρj(t)− ~ρi(t)‖ (2.19)

where k, α, and p are user defined parameters. The presence of the parameter ki in the numerator

is the relative importance of the ith constraints. This is crucial to finding satisfactory paths from

arbitrary initial guesses as it allows the guess to be chosen irrespective of whether the agents

meet the minimum separation constraints. The parameter p controls how fast the constraints rise
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toward infinity, and α represents the distance of closest approach. The vectors ~ρi and ~ρj are the

relative positions of any (i, j) deputies. From Eq. (2.15), the value of the Riemannian metric (and

consequently the action integral) increases to an infinitely large value as the two spacecraft approach

the relative keep-out distance.

2.2.4 Tracking Control

Chapter 3 introduces a rigorous check for controllability. However, the system is assumed to

be controllable in this section. The computed optimal trajectory can be tracked using many control

approaches. Let ~u∗(t) be the tracking control that allows the deputy to follow the fuel-optimal path

~x∗(t) computed from Algorithm 1. Below, two potential methods are discussed to compute the

tracking control ~u∗(t): an open-loop least-squares control and a closed-loop Lyapunov controller.

The open-loop control law ~u∗LS(t) is computed by projecting the difference in acceleration between

the converged trajectory and the natural dynamics onto the columns space of F(~x) = [b1, · · · , bm],

as defined below

~u∗LS(t) = [0 Im×m]
[
F̄ (~x(t, smax))

]−1
(
~̇x∗(t, smax)− fd(~x(t, smax))

)
(2.20)

The control law ~u∗LS(t) is straight forward to compute. However, the trajectory it generates may

not faithfully follow the optimal path ~x∗(t, smax) because it is a least-squares approximation. Due

to its open-loop nature, such a control is also not recommended if there are perturbations in the

system.

An alternative closed-loop tracking control ~u∗CL(t) can be derived using Lyapunov control

theory. Here the aim is to actively minimize the errors between the spacecraft states (relative

position δ~r and velocity δ~v ) and the desired trajectory (the computed optimal trajectory computed

from Eq. (2.14)) using a closed-loop control law. To this end, the following Lyapunov function is

considered:

V (δ~r, δ~v) =
1

2
δ~vᵀδ~v +

1

2
δ~rᵀ[K1]δ~r (2.21)
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where δ~r(t) = ~ri(t)− ~r∗(t, smax) is the difference between the instantaneous position of the deputy

~ri(t) and the desired position ~r∗(t, smax). Likewise, δ~v(t) = ~vi(t)− ~v∗(t, smax) is deviation between

the instantaneous velocity ~vi(t)and the desired velocity ~v∗(t, smax). By setting the time derivative

of the Lyapunov function to d
dtV (δ~r, δ~v) = −1

2δ~v
ᵀ[P1]δ~v, the closed-loop control can be expressed

as (see Appendix B):

~u∗CL(t) = −δ~a− [K1]δ~r − [P1]δ~v (2.22)

where δ~a is the difference between the instantaneous acceleration of the deputy and the acceleration

along the optimal path. The control matrices [K1] and [P1] are the sensitivity of the controller to

deviation in position and velocity, respectively. The closed-loop control in Eq. (2.22) ensures that

the cost function in Eq. (2.21) decreases over time, and the resulting closed-loop system (i.e.,

δ~a+[P1]δ~v+[K1]δ~r = 0) is globally asymptotically convergent. For additional information on how

to derive this Lyapunov control law, the reader is referred to Ref. [177].

Both control laws were applied in this analysis. However, there were no appreciable differ-

ences between their respective performances because dynamical perturbations are not considered

in this analysis and there is no error in the initial condition of the trajectory-tracking problem.

Consequently, only the results computed from the Lyapunov closed-loop control will be presented

in the results section.

2.3 Simulation, Results and Discussion

2.3.1 Trajectory Design for One Spacecraft in Formation

The following section looks at path planning for the nonlinear system described in Eq. (2.2).

The geometric path planner introduced in this study converges on an optimal solution, starting

from a wide variety of initial guesses connecting the boundary conditions. To illustrate the large

convergence radius of the proposed guidance algorithm, the following initial guess was chosen:

~x(t, 0) = ~x0 cos(
λ1t

T
) + ~xT sin(

λ1t

T
)− (~x0 − ~xT ) sin(

λ2t

T
) (2.23)
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where λ1 = 5π/2, λ2 = 3π, T = tf is the final time. ~x0 and ~xT are the initial and final states,

respectively. For the orbital transfer scenario defined in Tables 2.1 and 3.2, Fig. 2.4 shows the

initial condition in gold and the converged solution (the fuel-optimal path) in dashed purple. The

initial and final relative orbits are blue and green, respectively. Note that, even though the initial

condition does not represent a suitable orbital trajectory that follows the dynamics, the geometric

planner performs homotopies to reshape the bad initial guess and converges to the optimal path.

Here, the homotopy iterations are shown in red. The red and gold curves are superimposed at the

beginning of the optimization process, as seen in Fig. 2.4(a). The algorithm proceeds to compute

the gradient defined in Eq. (2.14) and updates the red curve in the direction that minimizes the

cost function defined in Eq. (2.11) (i.e., minimizes the control required to travel along the solution

curve). The red curve becomes more aligned with the natural dynamics as more iterations are

performed. Fig. shows the value of the cost function defined in Eq. (2.11) as a function of the

iteration parameter s. The algorithm is iterated until the cost function reaches a local minimum.



24

(a) Initial condition, s = 0 (b) mid iteration, s = 0.2 (c) mid iteration, s = 0.55

(d) mid iteration, s = 2.35e3 (e) mid iteration, s = 1.53e5 (f) Legend

Figure 2.4: Evolution of the Geometric Planner as a Function of the Homotopy Parameter s

Figure 2.5: Cost funtion vs homotopy iterations
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The approach described above was used for an orbit transfer problem where a deputy is

tasked to travel between two relative orbits around the chief in a specified time of flight. The initial

conditions of the chief spacecraft are given in Table 2.1

Table 2.1: Reference Orbit in Orbital Elements

Initial OE a [km] e i [rad] Ω [rad] ω [rad] f [rad]

Reference 1.42e04 {0.0, 0.25, 0.5} 50 10 10 0.0

The three cases studied were created by varying the chief’s eccentricity between e = {0.0, 0.25, 0.5}.

The initial and final conditions of the deputy spacecraft are represented as relative orbital elements

and are given in Table 3.2.

Table 2.2: Deputy Orbit in Relative Orbital Elements

∆OE δa [km] δe δi [rad] δΩ [rad] δω [rad] δf [rad]

Initial 0.0 1/(6a) −1/(3a) 0.0 −2π ∗ 1e− 5 π ∗ 1e− 6

Final 0.0 1/(6a) 1/(2a) 0.0 0.0 0.0

The transfer was prescribed to occur at tf = T = 0.75P , where P is the period of the chief’s

orbital period. Fig. 2.6 shows the deputy’s optimal trajectories for each case. For every scenario,

closed-loop tracking control is computed from the converged PDE solution, using Eq. (2.22). Fig.

2.7 shows the components of closed-loop tracking controls expressed in the chief’s LVLH frame.
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(a) 3D plot, e = 0 (b) 3D plot, e = 0.25

(c) 3D plot, e = 0.5

Figure 2.6: Converged solution for single deputy transfer, for different values of chief’s eccentricity
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(a) Required Control, e = 0 (b) Required Control, e = 0.25

(c) Required Control, e = 0.5

Figure 2.7: Required control for single deputy transfer, for different values of chief’s eccentricity

The performance of the proposed guidance is compared to another path planning method,

called regulator guidance. The control required to follow the regulator’s path is computed using the

steps laid out in Section 2.2.4, and it is given by the following expression:

ur(t) = f∗(~xd)− f(~x)− [K2]δ~r − [P2]δ~v (2.24)
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where ~xd(t) = [~rd, ~vd]
ᵀ is the desired state to be tracked, ~x(t) = [~r, ~v]ᵀ is the state of the deputy.

f∗(~xd) represents gravitational acceleration associated with the desired state while f(~x) is the drift

vector field of the deputy. The vectors δ~r = ~r − ~rd and δ~v = ~v − ~vd are the error vectors between

the deputy’s state and the desired state. The gain matrices [K] and [P] penalize deviations in the

position and the velocity. Both the control gains in Eqs. (2.22) and (2.24) were set to [K1] = [K2] =

diag([1e − 6, 1e − 6, 1e − 6, ]) and [P1] = [P2] = diag([6e − 4, 6e − 4, 6e − 4, ]). Furthermore, these

gains were selected so that the controls are active throughout both orbital transfers; this allows

for a fair comparison between the two methods. Fig. 2.8(a) shows the trajectories obtained from

both methods, and Fig. 2.8(b) shows the control required to travel on each trajectory. Unlike

the geometric guidance, the regulator’s path does not follow the natural dynamics at all times,

especially in the middle of its transfer. The total ∆v required to perform the transfer is ∆v =

2.524e-2 mm/s for the geometric planner as opposed to ∆v = 1.805e-1 mm/s for the regulator

guidance. That is, the proposed method ensures convergence with a control that is one order of

magnitude smaller than the regulator guidance. Also, the profile of geometric controls is small

throughout the transfer, allowing for this transfer to be performed by a low-thrust engine [76] or

using natural forces such as differential solar radiation pressure or differential drag. Figure 2.8(c)

compares, as a performance index, the weighted product of the difference between the deputy’s

acceleration and the acceleration induced by the natural dynamics for both the regulator guidance

(in blue) and the geometric guidance (in red). The regulator control continuously fights the natural

dynamics at the beginning of the trajectory, resulting in poor performance. As discussed earlier, the

regulator control is not concerned with the amount of fuel burned so long as it hits its targeted state.

The proposed geometric path planning finds the optimal trajectory for minimum fuel consumption

by iterating through different homotopies. The cost function for both methods is the same at the

end of the transfer as they both hit the targeted end conditions.
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(a) Converged Trajectories

(b) Required Controls (c) Lagrangian

Figure 2.8: Comparison Between Path Planning Approaches

2.3.2 Constrained Trajectory Design for Multiple Spacecraft

The geometric path planner is applied to a collision avoidance scenario in this section. The

following example looks at the transfer of two deputies between different parking orbits. The
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paths for both spacecraft are computed simultaneously from a centralized algorithm. The collision

avoidance is achieved by enforcing the minimum-distance barrier function derived in Eq. (2.18).

The boundary conditions are given in Tables 2.3 and 2.4. The parameters of the barrier function

were set to k = 1e− 7, p = 1, and the distance of the closest approach α = 0.45km.

Table 2.3: Reference Orbit in Orbital Elements

Initial OE a [km] e i [rad] Ω [rad] ω [rad] f [rad]

Reference 1.42e04 0.5 50 10 10 0.0

Table 2.4: Initial Differential Orbital Elements

∆OE δa [km] δe δi [rad] δΩ [rad] δω [rad] δf [rad]

Deputy1 (initial) 0.0 1/(6a) −1/(3a) 0.0 −2π ∗ 1e− 5 π ∗ 1e− 6

Deputy2 (initial) 0.0 1/(8a) 2/(10a) −π ∗ 1e− 5 π ∗ 1e− 5 π ∗ 1e− 6

Deputy1 (final) 0.0 1/(6a) 1/(2a) 0.0 0.0 0.0

Deputy2 (final) 0.0 −1/(8a) −1/(20a) π ∗ 1e− 6 −5 ∗ π ∗ 1e− 7 0.0

Figure 2.9(a) shows the collision-free trajectory of the two spacecraft in formation. To better

understand the effect of the collision avoidance constraint, the collision-free paths were compared

to transfer trajectories that did not consider the minimum allowable distance. Figures 2.9(b) and

2.9(c) illustrate the paths each spacecraft follows when the constraint is considered (dashed red

line) and not considered (dashed green line). Imposing the minimum allowable distance caused

the two agents to deviate from the trajectories they would have followed otherwise. The effect of

the path change also appears in the controls. Figs. 2.9(b) and 2.9(c) show the control efforts for

agents 1 and 2, respectively. The first row represents the control to follow the trajectory without
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constraint, and the bottom row is the control required to follow the constrained trajectory. When

the two spacecraft come close to one other, they perform a thrust correction. Figure 2.9(f) shows

the distance of the closest approach at each homotopy for each of the studied scenarios. The

constrained path’s minimum distance is shown in red, and the unconstrained case is shown in blue.

The pink background represents the keep-out zone, and successful collision-free paths should have

their closest approach outside the pink area. At the beginning of the iteration, both the collision-

free and the unconstrained paths follow the same trend. During that phase, the emphasis is placed

on minimizing the control inputs (i.e., minimizing the error between the control trajectory and the

natural dynamics), because it is the main factor driving the cost function. Once the cost gets low

enough, the minimum separation constraints become the dominant concern, and the red solution

obeys the imposed constraints. Fig 2.9(g) shows a comparison between the cost function resulting

from generating independent paths versus generating collision-free paths for the two-deputy case.

The cost function associated with the collision-free case does not fall as rapidly to its steady-

state value because the separation constraint becomes dominant toward the end. Consequently,

more homotopy iterations are required before the solution reaches a solution that ensures that the

spacecraft stay at a safe distance from each other. The process discussed here can be extended to

a constellation with any arbitrary number of spacecraft.
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(a) Converged Solution for Collision Avoidances

(b) Agent 1: Comparison of Transfer Trajectory (c) Agent 2: Comparison of Transfer Trajectory
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(d) Agent 1: Comparison of Required control (e) Agent 2: Comparison of Required control

(f) Distance of closest approach for collision avoidance (g) Action Integral for collision avoidance

Figure 2.9: Collision Avoidance: Two Deputies

2.4 Conclusion

This work presented a novel nonlinear method for fuel-optimal and constrained trajectory

designs. The path planning method was derived using theoretical development from nonlinear
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geometric control. The novel path planning technique reframes the fuel-optimal trajectory design

problem into a curve minimization problem on a Riemannian manifold. The method also allows

the incorporation of holonomic and nonholonomic constraints. The optimal path was obtained by

solving a partial differential equation. This optimal path is the geodesic of the solution manifold

and was shown to be equivalent to the solution of the Euler-Lagrange equations. The proposed

methodology was applied to trajectory design for distributed space systems. The case of collision

avoidance was investigated to illustrate how constraints can be imposed on a multi-agent path

planning problem. The chapter offered a new perspective on computing fuel-efficient and collision-

free trajectories for orbital transfer within the spacecraft formation flying problem. The (closed-

loop) control required to follow the generated trajectories was shown to be one order of magnitude

smaller than a regulator guidance. Because the geometric planner is concerned with reducing the

acceleration requirement imposed on the thrusters, the magnitude of the required control is relatively

constant and suitable for designing low-thrust trajectories.



Chapter 3

Fuel-Efficient Distributed Path Planning for Spacecraft Formation Flying

The algorithm discussed in the previous chapter computes the minimum-fuel path that con-

nects two points on the solution manifold. However, when multiple agents are in the system, it

is imperative to incorporate collision avoidance constraints when planning each spacecraft’s path.

This chapter extends the geometric path planning algorithm to account for any potential collisions

among the computed trajectories while keeping the computational requirements to a minimum (i.e.,

the algorithm’s computation time is agnostic to the number of agents in the formation). Throughout

this chapter, it is assumed that every agent is fully controllable and has perfect state knowledge. It

will be shown how collision avoidance constraints can be imposed using artificial potential functions.

The proposed distributed path planning method adjusts for detected obstacles and re-constructs a

new path that avoids those obstacles. Effectively, each agent constructs a local solution manifold

and iteratively solves for a locally fuel-optimal solution in the presence of obstacles. The newly com-

puted geodesic retains the fuel-saving characteristics while avoiding new obstacles detected along

the way. A (Lyapunov) feedback controller is used to track the optimal path to the goal state.

The distributed guidance is an online algorithm that actively avoids other agents infringing on a

defined keep-out zone. The remainder of this chapter is structured as follows: In section 3.1, the dis-

tributed guidance algorithm is derived. In Section 3.2, simulation results show examples where the

distributed guidance algorithm generates collision-free paths for a multi-agent system (i.e., avoid-

ance of moving obstacles). Finally, Section 3.3 offers a summary and provides a few concluding

remarks.
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3.1 Distributed Motion Planner

3.1.1 Geometric Planning in the Presence of Moving Obstacles

Let N spacecraft be tasked to transfer between distinct parking orbits. On its journey to its

goal, agent i is assumed to know its surroundings fully. Every agent has a safety/avoidance sphere

that should not be infringed upon by the other agents (see Fig. 3.3). Let Rψ be the radius of the

avoidance sphere. Any agent entering the avoidance sphere is considered to be a potential obstacle.

Lastly, define a priority level ℘ to decide which agent should be responsible for performing the

re-planning maneuver (i.e., if ℘j > ℘i, then agent i will conduct an avoidance maneuver).

In the presence of an obstacle, the collision avoidance constraint is imposed by augmenting

the Riemannian metric to the following expression:

Gi(
#»x) =

1 +

N i
obs∑
j=1

ψj

(F̄−ᵀ( #»x)DF̄−1( #»x)
)

(3.1)

where N i
obs is the number of obstacles that agent i has identified, and the function ψj is a C∞

function that increases as agent i approaches the obstacle j. The function chosen for this analysis

is defined below:

ψj(
#»ρ i,

#»ρ j) = Kj exp

−( δρij√
2Pij

)2
 (3.2)

Here δρij =
∥∥δ #»ρ ij

∥∥ and δ #»ρ ij = #»ρ j − #»ρ i is the relative separation between the agent i and

the dynamic obstacle j. The parameter Pij controls the rate of increase in the cost function as the

spacecraft i and j approach each other. Kj is a scalar weight that imposes the relative importance

of each constraint. If agent j is identified as an obstacle, the new cost function to minimize has the

classic Bell curve shape shown in Fig. 3.1.

The geodesic PDE is solved using a gradient descent method. Therefore, selecting the param-

eter Pij affects the algorithm’s performance by defining the slope of the cost function for different

relative separation distances. The larger Pij , the smaller the slope of the cost and the larger the

missed distance between the agents. However, a larger Pij also implies that the algorithm takes
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Figure 3.1: Augmented Cost Between Agents i and j

longer to converge. Pij is picked so that the slope of the cost function provides the highest separation

distance while ensuring minimum computation time. Fig. 3.2 shows the effects of Pij on the algo-

rithm run time and achieved separation distance at convergence, obtained from heuristic simulation

data. Setting the initial separation radius to four standard deviations away from the collision point

provides a good balance between maximum separation distance and minimum computation time.

The parameter Pij can be written as a function of the initial separation radius ‖δ #»r0‖ as follows:

Pij =
‖δ #»r0‖

4
(3.3)

3.1.2 Receding Horizon Path Planner for Multi-Agent Transfers

The proposed receding horizon path planner is a guidance algorithm that aims to proactively

correct the agents’ paths and reach their destinations without colliding with each other. The

guidance algorithm is discretized so that k designates a guidance epoch. Each new trajectory

computed during a guidance epoch is done using the geometric path planner described in Chapter

2. The operating concept is shown in Fig. 3.3, where the re-planning agent, noted “Agent i”, has

an avoidance sphere of radius Rψ defined in Eq. (3.4).

Ri
ψ = sup

∥∥R (
#»γ ik−1(tk),≤ Tψ

)∥∥ (3.4)
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Figure 3.2: Effect of Pij on the miss distance and the computation time

Here #»γ ik−1(t) is the optimal path #»γ ∗i (t) followed by Agent i before the guidance update at

epoch k, and R
(

#»γ ik−1(t),≤ Tψ
)
is the set of states that can be reached in time tk + Tψ from

the state at the detection time #»γ k−1
i (tk). Any neighboring spacecraft, noted “Agent j”, would be

considered as an obstacle if it were to enter the keep-out sphere (i.e.,
∥∥δ #»ρ ij

∥∥ ≤ Ri
ψ). When an

obstacle is detected, a re-planning sequence is initiated. The initial condition of the re-planning

sequence is chosen to be the state of the spacecraft at time tk + tξ should it continue to follow the

old optimal path (i.e., #»x ik,0 = #»γ ik−1(tξ)). Selecting the initial state downstream allows accounting

for the continuous motion of the spacecraft during the time interval it takes to compute a new

path. Each spacecraft is assigned a priority factor ℘ that determines which Agent is responsible for

performing the avoidance maneuver. If Agent j (of higher priority level – i.e., ℘j > ℘i) is in the

avoidance sphere, Agent i will be required to re-plan its path from #»xki,0 to the goal while considering

Agent j as a moving obstacle. On the other hand, if ℘j < ℘i, Agent i will ignore Agent j in the

computation of its new path. This is ok because then when Agent j replays its trajectory it will

avoid agent i, so one craft will always ensure collision avoidance is achieved.

The following two-agent scenario was used as a test case to study the effect of the avoidance

sphere’s radius on the algorithm’s performance (i.e., the maximum separation distance achieved). In
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Figure 3.3: Concept of Receding Horizon Path Planner

this example, two spacecraft are tasked to transfer between two boundary conditions while avoiding

each other. The motions of the two deputies are described around an eccentric reference orbit. The

transfer was prescribed to occur at tf = 3
4P , where P is the period of the reference orbit. The initial

conditions of the reference orbit are given in Table 1 in terms of classical orbital elements. Orbital

elements are an alternative representation for a spacecraft trajectory, and they are utilized here

because of the geometric insights they provide about the shape of an orbit. The reader is referred

to Ref. [200] to learn more about the classical orbital elements and how they map to Cartesian

coordinates.

Table 3.1: Reference Orbit in Orbital Elements

Initial OE a [km] e i [rad] Ω [rad] ω [rad] f [rad]

Reference 1.42e04 0.5 50 10 10 0.0

Likewise, the initial and final conditions of the deputy spacecraft are given in Table 3.2, and

these boundary conditions are represented as relative orbital elements. The reader is referred to

Ref.[177] to learn more about relative orbital elements.
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Table 3.2: Deputies Orbit in Relative Orbital Elements

∆OE δa [km] δe δi [rad] δΩ [rad] δω [rad] δf [rad]

Deputy1 (initial) 0.0 −4/(3a) −9/(2a) −2E−5 ∗ π 0.0 1E−6 ∗ π

Deputy2 (initial) 0.0 9/(2a) −5/(3a) −π ∗ 1e− 5 π ∗ 1e− 5 π ∗ 1e− 6

Deputy1 (final) 0.0 5/(2a) −9/(4a) 0.0 1E−6 ∗ π −1E−5 ∗ π

Deputy2 (final) 0.0 −5/(2a) −9/(4a) −5E−6 ∗ π 1E−6 ∗ π 5E−5 ∗ π

Three possible scenarios are possible depending on how far the obstacle is when it is detected.

The re-planning agent can be too close, too far, or a “favorable” distance from the moving obstacle.

Each of these scenarios is shown in Fig. 3.4. The planning horizon is specified by the avoidance

sphere, represented here as a blue sphere. Suppose the re-planning occurs too far from the obstacle.

In that case, the algorithm generates an utterly different trajectory which may become problematic

as more obstacles are introduced in the simulation and would require more fuel to get to the

boundary at time t = tf (cf. Fig. 3.4(a)).

On the other hand, if the re-planning is initiated too close to the impediment, the new

trajectory requires significant control to move away due to its inertia (cf. Fig. 3.4(c)). In addition,

the miss distance achieved is small because of the momentum of the maneuvering agent. Lastly, if

the planning occurs at a relatively favorable distance from the obstacle, the re-planning algorithm

generates a new path that obeys all the constraints that have been imposed (cf. Fig. 3.4(b)). The

relative separation for each case is shown in Fig. 3.5.
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(a) Planning initiated at a large separation distance (b) Planning initiated at a favorable separation distance

(c) Planning initiated at a small separation distance (d) legend

Figure 3.4: Effects of the initial separation distance on the re-planned path
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Figure 3.5: Achieved Separation Distance

A directional cone replaces the avoidance sphere to account for motion direction and avoid

triggering a planning maneuver when agents are not moving in the same direction (see fig. 3.6).

The cone is centered at the avoiding agent and points in the direction of its velocity vector. The

requirement for initiating a re-planning sequence is

{∥∥δ #»ρ ij
∥∥ ≤ Ri

ψ

}
∩
{
]( #̇»ρ i, δ

#»ρ ij) < αi

}
(3.5)

where ]( #̇»ρ i, δ
#»ρ ij) is the angle between the relative position vector δ #»ρ ij and the velocity of the

detecting spacecraft #̇»ρ i. The maximum angle αi depends on sensor capability.
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Figure 3.6: Implementation of the Direction Cone

The inner workings of the proposed guidance algorithm operate as shown in Algorithm 2.

Algorithm 2: Receding Horizon Algorithm (for Agenti)

input : #»x ik,0,
#»γ ik−1(t)

if
{
‖δ~ρij‖ ≤ Ri

ψ

}
∩
{
](~̇ρi, δ~ρij) < αi

}
then

if ℘j > ℘i, j ∈ N i
obs then

// New Riemannian Metric

Gi(x) =
(

1 +
∑N i

obs
j=1 ψj

) (
F̄−ᵀ(~x)DF̄−1(~x)

)
// Agenti’s new optimal path

G−1
i (~γik)

(
d
dt
∂L

∂ ~̇x
(~γik, ~̇γ

i
k)−

∂L
∂~x

(~γik, ~̇γ
i
k)
)

= 0;

else
// No action needed
~γik(t) = ~γik−1(t);

end
else

// No action needed
~γik(t) = ~γik−1(t);

end
output: #»γ ik(t)
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3.2 Application to Large Constellation: Results and Discussions

Algorithm 2 can be implemented on arbitrarily large constellations, and Fig. 3.8 shows an

example with six deputy spacecraft around the eccentric reference orbit specified in Table 2.1. The

avoidance sphere radius Ri
ψ = 5km for each agent, and the angle of the direction cone constraint was

αi = 30◦. Here the six spacecraft were tasked to transfer between two sets of boundary conditions

chosen at random. The green lines in Fig. 3.7 represent the initial trajectories computed with

no regard to the potential presence of obstacles (i.e., #»γ i0(t)). In contrast, the dashed orange lines

represent the corrected paths generated after all the guidance updates (i.e., #»γ i∞(t)). It is also

important to note that not all spacecraft had to re-plan their maneuver. Some agents had their

original path clear of obstacles while others had a higher hierarchy level in the re-planning sequence;

the hierarchy used in here is ℘6 > ℘5 > ℘4 > ℘3 > ℘2 > ℘1.

Fig. 3.8(a) shows a comparison of the control magnitude required to travel along each trajec-

tory. Despite actively changing course to avoid moving obstacles, the amount of control necessary to

follow the updated paths is not too different from the initial path #»γ i0(t). This fact can be attributed

to the computed trajectories still inherently leveraging the natural dynamics to minimize fuel usage.

The only significant difference in fuel usage (more than twice the original amount) occurs

during the transfer of agent 4. Fig. 3.8(b) provides more insights on each of the re-planning

sequences Agent 4 initiated on its way to its end condition. At the beginning of the transfer, Agent

5 is identified as an obstacle. Therefore, Agent 4’s guidance algorithm computed a new path to

avoid Agent 5. The new trajectory deviates from the original path and moves away from Agent 5.

Later, Agent 4 detects Agent 6 in its avoidance cone. It then initiates three avoidance maneuvers.

Because the detection of Agent 6 occurs close to the final condition for agent 4, more control effort

is required to change course and make sure the two spacecraft do not run into each other.
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Figure 3.7: 3D Trajectories for All the Agents

(a) Comparison of Required Control (b) Zooming on Agent 4 and its Obstacles

Figure 3.8: Distributed Geometric Path Planner for Six-Agent’s Transfers
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3.3 Summary

This chapter presents a distributed guidance algorithm that generates minimum-fuel and

collision-free trajectories for multi-agent systems. The mathematical foundation of the path plan-

ning algorithm provides a seamless framework to introduce collision avoidance constraints on moving

obstacles. The algorithm is implemented on a six-agent spacecraft constellation where each space-

craft was tasked to transfer from one parking orbit to another. It was shown that the distributed

guidance algorithm allows each spacecraft to safely get to its destination while minimizing the fuel

expenditure.



Chapter 4

Nonlinear Controllability and 6DoF Fuel-free Transfer Using Differential Solar

Radiation Pressure and Differential Drag

This chapter extends earlier findings and leverages natural forces such as differential solar ra-

diation pressure (SRP) and differential drag (between the chief spacecraft and the deputy spacecraft)

to generate fuel-free transfer trajectories. This work will primarily focus on trajectories between

Low Earth Orbit (LEO) and Medium Earth Orbit (MEO). The deputy is modeled as a flat plate,

while the chief is assumed to be a cannonball. The differential accelerations are modified by modu-

lating the attitude of the deputy. It is assumed that the deputy is equipped with a fully actuated

gyro system, and the controllability of the relative path planning problem is investigated using Lie

bracket theory. The contribution of this chapter is two fold: (1) provide tools to analyze the con-

trollability of nonlinear affine problems, and those tools are used to determine conditions for which

the spacecraft formation flying problem is controllable in a drag-plus-SRP-perturbed environment;

and (2) the geometric motion planner introduced in Chapter 2 is extended to generate trajectories

that solely require the accelerations from differential drag and differential SRP as the translational

propulsion capability. This chapter is organized as follows: Section 4.1 presents the controllability

results derived using the Lie bracket theory. Section 4.2 presents some simulation results showcasing

the fuel-free trajectory generation. Section 4.3 closes the chapter with some last remarks.
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4.1 Nonlinear Controllability Analysis of the Deputy’s Motion

The following section presents the controllability analysis for the relative dynamic problem

wherein the deputy spacecraft is modeled as a flat plate. In contrast, the chief spacecraft is mod-

eled as a cannonball. The purpose of the following analysis is to investigate whether the deputy

spacecraft can arbitrarily change its position and velocity by modifying its attitude. The differen-

tial acceleration (from SRP and drag forces) is the sole propulsive capability driving the deputy’s

motion, and it is assumed that the deputy is equipped with a fully actuated control gyro system.

First, the dynamic model is presented, then the Lie brackets criterion for controllability is used to

assess the feasibility of the path planning problem.

4.1.1 6DOF Dynamic Model for the Deputy Relative Motion

In the LVLH frame, the full nonliear dynamics of the deputy can be described by Eq. (4.1):

~̇x = f(~x) + b1(~x)u1 + b2(~x)u2 + b3(~x)u3 (4.1)

where

f =



1
4B(~σ)~ω

[I]−1 (−~ω × [I]~ω)

~ρ′

δ~a
g

+ δ~a
s

+ δ~a
d

+ ~Ξ


, b1 =



03×1

i1

03×1

03×1


, b2 =



03×1

i2

03×1

03×1


, b3 =



03×1

i3

03×1

03×1


(4.2)

~x = [~σ, ~ω, ~ρ, ~ρ′] where ~σ is the Modified Rodrigues Parameters (MRP) set representing the orien-

tation of the flat plate, ~ω is the body frame angular velocity, and the relative position and velocity

are ~ρ and ~ρ′. The kinematic matrix B maps the effects of the angular velocity of the plate on the

MRP’s rate of change, and it is written as B(~σ) =
(
(1− ~σᵀ~σ)[I3×3 ] + 2[σ̃] + 2~σ~σᵀ

)
. The skew

symmetric matrix [σ̃] is made of components of ~σ and represents the cross product operation. It is

assumed that the body frame is aligned with the principal body axis; thus, the moment of inertial [I]

is a diagonal matrix when expressed in the body frame (i.e.,[I] = [i1, i2, i3], where i1 = [i1, 0, 0]ᵀ,

i2 = [0, i2, 0]ᵀ, i3 = [0, 0, i3]ᵀ, and i1, i2, i3 ∈ R). The vector ~Ξ represents the effects of the
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rotating LVLH frame and is defined as ~Ξ = − ~̇Ω × ~ρ − 2~Ω × ~ρ′ − ~Ω × ~Ω × ~ρ. The vectors ~Ω and

~̇Ω are the angular velocity and acceleration with respect to the chief’s LVLH frame. The vectors

δ~a
g , δ~as , and δ~ad are the differential accelerations due to the effects of gravitational, solar radiation

pressure, and drag, respectively. Each of these accelerations are defined in further detail below.

(1) Differential gravitational acceleration : This quantity is defined in Eq.(2.4), but it is

repeated here for convenience. The full nonlinear expression for the relative gravitational

acceleration, assuming point mass gravity, is given below as components in the chief LVLH

frame is written as follows:

δ~a
g

= − µ

[(r + x)2 + y2 + z2]
3/2


r + x

y

z

+
µ

r2


1

0

0

 (4.3)

(2) Differential solar radiation pressure acceleration : The two SRP force models are

written as follows [65, 201]:

(a) Cannonball Force Model (Chief):

~a
s

c = −
PsrpCrAc

mc
δr̂ (4.4)

where δ~r = ~rc − ~rsun is the relative distance between the Sun and the chief, ~rc is the

position vector of the spacecraft, and ~rsun is the position vector of the sun. Both of

these quantities are expressed in the inertial frame. The unit vector δr̂ is the unit

vector pointing from the Sun to the spacecraft. Psrp is magnitude of the force exerted

on an object at a distance R = ‖~rsun‖ from the Sum and is given by:

Psrp =
P0

c

(
R0

R

)2

(4.5)

where Ro = 1AU is the distance from Earth to the Sun, P0 = 1367W/m2 is the solar

flux at 1 AU, and c = 299792458m/s is the speed of light.
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(b) Flat Plate Force Model (Deputy):

~a
s

d = − Ps
md

Ad〈n̂, r̂d〉
[
(1− ρs)r̂d + 2

(
ρs〈n̂, r̂d〉+

ρd
3

)
n̂
]

(4.6)

where r̂
d
is the unit vector from the deputy to the sun, n̂ is the normal vector of the

plate, Ad is the reflecting surface of the plate. ρs and ρd are the specular and diffusion

rates respectively.

(c) Differential SRP acceleration:

δ~a
s

= [CB]~a
s

d − ~a
s

c (4.7)

where [CB] is the Direct Cosine Matrix (DCM) that maps vectors from the deputy

body frame B into the chief’s LVLH frame C.

(3) Drag acceleration : The drag model used in this study is given by

~a
d

=
C

d
βA

2

(
δ~vᵀ

st
δ~vst
) 1

2 δ~vst (4.8)

where δ~vst = ~vst − ~v is the difference between the free stream velocity ~vst and the spacecraft

velocity ~v. Here Earth is assumed to be spherical, and the air particles are fixed in the

Earth-Fixed-Earth-Rotating (ECEF) frame (i.e., the air particles rotate at the same spin

rate as the Earth). C
d
is the drag coefficient, and the parameter β represents the air density,

and it is computed using the U.S. Standard Atmosphere of 1976 [149]. The reference area

A is the effective area facing the free stream flow and is given by:

A =


Ac, for the cannonball (chief)

Ad〈n̂, δ~vst〉 for the flat-plate (deputy)

(4.9)

4.1.2 Lie Brackets and Accessibility Algebra Criteria

A brief review of the geometric nonlinear control tools is provided. The following section

discusses the utilization of Lie brackets in characterizing the controllability of an affine control
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system (as the studied system is of this form). Let the differential equation of an n-dimensional

system be represented by the following affine control system:

~̇x(t) = f(~x(t)) +

m∑
i=1

bi(~x(t))ui(t) (4.10)

where ~x(t) is a curve on a solution manifold M . The multivariate function f(·) is called the drift

vector field and describes the behavior of the system in the absence of any controls. The multivariate

function bi(·) is the control vector field and defines how the ith control input affects the behavior of

the system. ~u ∈ U ⊂ Rm is the control input, where U is the set of admissible control. The triplet

Σ = {M ,F = {f , b1, . . . , bm},U } is typically used in the literature to represent affine control

systems.

Let T ∈ R+. The set of states that can be reached in time t ≤ T from the initial state ~x0 is

called the time T reachable set from ~x0 and is defined as:

RΣ(~x0 ,≤ T ) =
⋃

t∈[0,T ]

RΣ(~x0 , t) (4.11)

where RΣ(~x0 , t) = {~γ(t, ~x, ~u)|~γ(t, ~x, ~u) is a control trajectory for Σ, ~u ∈ U , and ~γ(0, ~x, ~u) = ~x0},

and [0, T ] the time interval on which the system is simulated. The set RΣ(~x0) denotes the of states

that are reachable from ~x0 in infinite time (i.e., T =∞).

In nonlinear geometric control, the concept of controllability is intrinsically linked to the char-

acteristics of the reachable sets. Given an affine control system Σ = {M ,F = {f , b1, . . . , bm},U },

the different forms of controllability are as follows [172]:

(1) Accessible: Σ is accessible from ~x0 if int(RΣ(~x0)) 6= ∅

(2) Strongly Accessible: Σ is strongly accessible from ~x0 if int(RΣ(~x0 ,≤ T )) 6= ∅ ∀ T > 0

(3) Locally Controllable: Σ is locally controllable from ~x0 if ~x0 ∈ int(RΣ(~x0 , T ))

(4) Small Time Locally Controllable(STLC): Σ is STLC from ~x0 if there exists T > 0 so

that ~x0 ∈ int(RΣ(~x0 ,≤ t) ∀ t ∈ [0, T ])

(5) Globally Controllable: Σ is globally controllable from ~x0 if RΣ(~x0) = M .
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Here int{·} means the interior set. These controllability definitions are gradually more stringent,

and they are determined by assessing the span of vector fields on the solution manifold. These

vector fields are computed by successive commutation of the drift and control vector fields, via the

Lie bracket operator shown in Fig. 4.1 and defined below:

[f , bi](~x): F → F

~x 7→ ∂bi
∂~x

(~x)f(~x)− ∂f

∂~x
(~x)b(~x)

(4.12)

Figure 4.1: Geometric interpretation of the Lie bracket

Given the vector fields ~X, ~Y , ~Z on a smooth manifold M and the smooth functions ξ, ψ :

M 7→ R, a Lie bracket operator has the following properties [123]:

(1) The flow map ( ~X, ~Y ) 7→ [ ~X, ~Y ] is R-bilinear1

(2) [ ~X, ~Y ] = −[~Y , ~X] (Skew Symmetry)

(3) [ ~X, [~Y , ~Z]] + [~Z, [~Y , ~Y ]] + [~Y , [~Z, ~X]] = ~0 (Jacobi identity)

(4) [ξ ~X, ψ ~Y ] = ξψ[ ~X, ~Y ] + ξL ~X
(ψ)~Y − ψL~Y

(ξ) ~X, where L ~X
(ψ) = ∂ψ

∂
~
X

( ~X)

1 A bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space,
and is linear in each of its arguments
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The mapping defined Eq. (4.12) is called the Lie bracket between the vectors fields f and bi

and represents a new attainable direction if it is independent of its generators f and bi. Conceptu-

ally, the Lie bracket between two vectors fields is a vector product generating another field which,

if independent of its generators, represents a new attainable direction for a curve to flow. A good

example is parallel parking a car. By alternating between the allowable velocities (vector fields),

one can generate a lateral motion.

At every point ~x ∈M , one can define a tangent vector as the smooth mapping V :C∞(M )→

Rn. The set of all tangent vectors at ~x is denoted by T~xM and called the tangent space at ~x. The

family of vector field (i.e., the set of tangent vectors) describing the behavior of the dynmical

system defined in Eq. (4.10) is F
~x

= {f(~x), b1(~x), . . . , bm(~x)}. The set of independent vector

fields associated with F
~x
denoted ∆(F

~x
) is defined by [115]:

∆(F
~x
) = {X(~x) | X ∈ L (F

~x
)} ⊆ T~xM (4.13)

∆(F
~x
) and is called the accessibility distribution, and L (F

~x
) is the maximum set of linearly

independent vector fields obtained from successively taking Lie brackets of vectors in F
~x
. When

dealing with control affine systems with drift, as in Eq. (4.10), the accessibility distribution should

be constructed with no bad Lie brackets2 as those obstruct controllability by not allowing the flow

to be reversed by changing the sign of the control [189]. The P.Hall basis can be used to compute

good brackets. Indeed, the P.Hall basis of order k is a set of linearly independent Lie brackets of

order k. Table 4.1 show the P. Hall basis for four vector fields up to order three.

One of the classical results in geometric control theory, independently proven by W.L. Chow

and P.K. Rashevskii, provides sufficient condition for controllability of a nonlinear affine system

based on the properties of the accessibility distribution [29, 22, 172]. The Chow-Rashevskii Theorem

states that given a smooth manifold M and a smooth vector field F
~x

= {f(~x), b1(~x), . . . , bm(~x)}

defined on T~xM , the control system defined in Eq. (4.10) is locally controllable in any time (or

STLC) at every point of M if ∆(F
~x
) = T~xM for all ~x ∈ M . The idea of local controllability,

2 A bad Lie bracket is a vector field where the control g appears in the construction of the vector field (such as
[gi; [f ; gi]]).
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Table 4.1: P.Hall basis of order three for four vector fields

Bracket length Lie Brackets

one f , b1, b2, b3

two [f , b1], [f , b2], [f , b3], [b1, b2], [b1, b3], [b2, b3]

three

[f , [f , b1]], [f , [f , b2]], [f , [f , b3]], [f , [f , b1]],
[f , [b1, b2]], [f , [b1, b3]], [f , [b2, b3]],
[b1, [f , b1]], [b1, [f , b2]], [b1, [f , b3]],
[b1, [b1, b2]], [b1, [b1, b3]], [b1, [b2, b3]],
[b2, [f , b2]], [b2, [f , b3]], [b2, [b1, b2]],
[b2, [b2, b3]], [b3, [f , b3]], [b3, [b1, b3]], [b3, [b2, b3]]

depicted in Fig. 4.2, is formally defined as follows: For every ~x0 ∈ M , every T > 0, and every

neighborhood N of ~x0, there is a neighborhood O ⊂ N of ~x0 such that for any ~x1, ~x2 ∈ O, there

is a control ~u ∈ U such that the trajectory ~γ(t, ~x, ~u) : [0, T ]→M remains in N and steers ~x1 to

~x2 (i.e. ~γ(0, ~x, ~u) = ~x1 and ~γ(T, ~x, ~u) = ~x2).

Figure 4.2: Pictorial Meaning of a Locally Controllability Curve γ(t)

The condition ∆(F )~x = T~xM is known as the Lie Algebra Rank Condition (LARC) and is

equivalent to the Kalman rank condition for controllability in linear system theory. For a simply-
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connected solution manifold3 , the notion of local controllability implies global controllability [12].

4.1.3 Controllability Analysis of the 6DoF Relative Motion

The controllability of the path planning problem was studied for an SRP-perturbed, drag-

perturbed, and a drag-plus-SRP-perturbed environment, in that order.

(1) 6DoF Controllability of the SRP-Perturbed Relative Dynamics

Proposition 1 The SRP-perturbed relative dynamics problem is locally controllable every

time the SRP acceleration on the flat plat is nonzero.

Proof To access the controllability of the solar sailing problem, the accessibility distribution

is defined as follows:

∆ = [b1, b2, b3, ad
1
fb1, ad

1
fb2, ad

1
fb3, ad

2
fb1, ad

2
fb2, ad

2
fb3, ad

3
fb1, ad

3
fb2, ad

3
fb3] (4.14)

where adkfbi = [f , adk−1
f bi], ad1

fbi = [f , ad1
fbi] =

[
∂f
∂X

]
bi −

[
∂bi
∂X

]
f , and the acceleration

components of the vector field f does not contain the differential drag acceleration δ~ad .

The Jacobian with respect to the state X = [~σ, ~ω, ~ρ, ~ρ′]ᵀ is given by

∂f

∂X
=



∂
∂ ~σ
~̇σ ∂

∂ ~ω
~̇σ 03×3 03×3

03×3
∂
∂ ~ω
~̇ω 03×3 03×3

03×3 03×3 03×3
∂
∂~ρ′
~ρ′

∂
∂ ~σ
~ρ′′ 03×3

∂
∂~ρ
~ρ′′ ∂

∂~ρ′
~ρ′′


(4.15)

The first order Lie bracket between the drift vector field fd and the torque vector field

[b1, b2, b3] is defined as follows:

[ad1
fb1, ad

1
fb2, ad

1
fb3]ᵀ =

[
[I] ∂

∂ ~ω
~̇σ [I] ∂

∂ ~ω
~̇ω 03×3 03×3

]ᵀ
(4.16)

3 A solution manifold is to be simply connected if a path can connect every two points, and any closed path
connecting any two points can be shrunk to a point while remaining in the manifold (i.e., the solution manifold does
not have any holes).
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The second order Lie bracket of the ith torque vector field is given by

ad2
fbi = [f , ad1

fbi] =

[
∂f

∂X

]
ad1
fbi −

[
∂ad1

fbi

∂X

]
f

=



∂
∂ ~σ
~̇σ ∂

∂ ~ω
~̇σ 03×3 03×3

03×3
∂
∂ ~ω
~̇ω 03×3 03×3

03×3 03×3 03×3
∂
∂~ρ′
~ρ′

∂
∂ ~σ
~ρ′′ 03×3

∂
∂~ρ
~ρ′′ ∂

∂~ρ′
~ρ′′


ad1
fbi −


[−]3×3 03×3 03×6

03×3 [−]3×3 03×6

06×3 06×3 06×6

f (4.17)

=



[−]3×1

[−]3×1

03×1[
∂δ~a

s

∂ ~σ

]
ad1
fbi


where [−] s a nonzero matrix of appropriate size, and each instance of these quantities is

completely unrelated to the other. The second order Lie bracket can be consolidated as[
ad2
fb1, ad

2
fb2, ad

2
fb3

]ᵀ
=

[
[−]3×3 [−]3×3 03×3 [I]

[
∂δ~a

s

∂ ~σ

] [
∂ ~̇σ
∂ ~ω

]]ᵀ
(4.18)

Continuing on the same path, one can show that the third order Lie bracket due to torque

vector field is defined as[
ad3
fb1, ad

3
fb2, ad

3
fb3

]ᵀ
=

[
[−]3×3 [−]3×3 [I]

[
∂δ~a

s

∂ ~σ

] [
∂ ~̇σ
∂ ~ω

]
[−]3×3

]ᵀ
(4.19)

where [−] s is a nonzero matrix of appropriate size, and each instance of these quantities is

entirely unrelated to the other.

The distribution matrix in (4.14) is represented more succinctly as following expression:

∆ =



03×3 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

03×3 03×3 03×3 ∆34

03×3 03×3 ∆43 ∆44


(4.20)



57

where the sub-matrix ∆ij is a 3×3 fully populated matrix. The rows of ∆ can be rearranged

to produce the following upper-block matrix:

Φ =



∆21 ∆22 ∆23 ∆24

03×3 ∆12 ∆13 ∆14

03×3 03×3 ∆43 ∆44

03×3 03×3 03×3 ∆34


(4.21)

A sufficient condition for a general upper-block matrix to be full rank is that its subdiagonal

matrices have to be invertible [26]. In the case of the matrix Φ, all sub-blocks are 3 by 3.

It is worth mentioning that due to the sparse structure of the Jacobian
[
∂f
∂X

]
, ∆43 = ∆34.

The rank of the accessibility distribution is given by

rank(∆) = rank(Φ) = rank(∆21) + rank(∆12) + 2 rank(∆43) = n = 12 if ~a
s

B
6= 0

Where the ranks of the submatrices ∆21, ∆12, ∆43 are studied in Appendix D.

(2) 6DoF Controllability of the Drag-Perturbed Relative Dynamics

Proposition 2 The drag-perturbed relative dynamics problem is not locally controllable.

Proof The proof of Proposition 2 follows that of Proposition 1. In this instance, the vector

field f does not contain the differential SRP acceleration δ~as . The Jacobian w.r.t to the

state X = [~σ, ~ω, ~ρ, ~ρ′]ᵀ is given by

∂f

∂X
=



∂
∂ ~σ
~̇σ ∂

∂ ~ω
~̇σ 03×3 03×3

03×3
∂
∂ ~ω
~̇ω 03×3 03×3

03×3 03×3 03×3
∂
∂~ρ′
~ρ′

∂
∂ ~σ
~ρ′′ 03×3

∂
∂~ρ
~ρ′′ ∂

∂~ρ′
~ρ′′


(4.22)

The second and third order Lie bracket in this instance are given by the following expres-

sions: [
ad2
fb1, ad

2
fb2, ad

2
fb3

]ᵀ
=

[
[−]3×3 [−]3×3 03×3 [I]

[
∂δ~a

d

∂ ~σ

] [
∂ ~̇σ
∂ ~ω

]]ᵀ
(4.23)
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ad3
fb1, ad

3
fb2, ad

3
fb3

]ᵀ
=

[
[−]3×3 [−]3×3 [I]

[
∂δ~a

d

∂ ~σ

] [
∂ ~̇σ
∂ ~ω

]
[−]3×3

]ᵀ
(4.24)

The partial
[
∂δ~a

d

∂ ~σ

]
= −C

d
βAd

2

(
δ~vᵀ

st
δ~vst
) 1

2
(
δ~vstδ~v

ᵀ
st

)
∂n̂3

∂ ~σ
, and the span of its eigenspace is 1

because rank
([
δ~vstδ~v

ᵀ
st

])
= 1. By reconstructing the upper diagonal matrix Φ, it is trivial

to see that

rank(∆) = rank(Φ) 6= n because rank(∆43) = rank(∆34) = 1

This result implies that the drag alone cannot be used to connect arbitrarily chosen bound-

ary conditions.

(3) 6DoF Controllability of the Drag-Plus-SRP-perturbed Relative Dynamics

Proposition 3 The drag-plus-SRP-perturbed relative dynamics problem is locally control-

lable.

Proof Following the same derivation process, the submatrices ∆43 = ∆34 = [I]
[
∂δ~a

d

∂ ~σ
+ ∂δ~a

s

∂ ~σ

] [
∂ ~̇σ
∂ ~ω

]
,

and

rank(∆) = rank(Φ) = n if ~a
s

B
6= 0

4.2 Simulation, Results and Discussions

A numerical analysis was conducted for each of the two controllable cases discussed above to

ascertain the claims made in Section 4.1. Namely, the following section demonstrates a Medium

Earth Orbit (MEO) orbital transfer using an SRP (where the effects drag are negligible), and a

Low Earth Orbit (LEO) orbital transfer in a drag-plus-SRP perturbed environment. The deputy

attitude description is switched from MRP (used in the controllability analysis) to quaternions (used

in the simulations) because quaternions’ continuity is better suited to the ODE integrator used in

this analysis. The attitude computed by the geometric guidance is tracked, and no additional
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propulsion capability (other than SRP acceleration) is used to track the resulting position and

velocity. The generated paths are therefore fuel-free. The feedback steering control is developed

using Lyapunov theory and is given by the expression below [177]:

~τ = −k~ε− [P]δ~ω + [I]
(
~̇ωr − [ω̃]ωr

)
+ [ω̃][I]ω (4.25)

where the parameter k is a positive gain, ~ε = [q
1
, q

2
, q

3
]ᵀis the quaternion error, [P] is the (positive

definite) gain matrix. The body-frame angular velocity of the flat plate is given by ω while ωr = ~ω
rel

is the optimal angular velocity computed by the guidance algorithm. δ~ω = ω − ωr is the angular

velocity error, and ~̇ωr = −[I]−1 ([ω̃][I]ωr).

The initial orbital elements of the chief’s trajectory are given in Table 4.2, whereas the deputy’s

initial and final relative orbital elements are given in Table 4.3. The initial and final conditions for

the plate attitude and angular velocity are given in Table 4.4. The deputy mass was m = 4kg.

These parameters are the same for both simulations.

Table 4.2: Reference Orbit in Orbital Elements

Initial OE a [km] e i [rad] Ω [rad] ω [rad] f [rad]

Reference 2e4 0.5 50 10 10 0.0

Table 4.3: Initial differential orbital elements

∆OE δa [km] δe δi [rad] δΩ [rad] δω [rad] δf [rad]

Deputy1 (initial) 0.0 1/(5a) −50/(3a) 0.0 π × 1e−4 π × 1e−4

Deputy1 (final) 0.0 20/(3a) 25/a −2 ∗ π × 1e−6 −5 ∗ π × 1e−6 π × 1e−4
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Table 4.4: Boundary Conditions for the Deputy’s Attitude and Angular Velocity

qt0 (Not normalized) ωt0 qtf (Not normalized) ωt0

[6, 4, 9, 1] [−45, 40,−35]× 1e−3 [9, 5, 1, 8] [−9, 9,−3]× 1e−4

4.2.1 Fuel-Free SRP-Perturbed 6DoF Orbital Transfer at MEO

In this scenario, the deputy is modeled as a square with side l = 10m. The transfer time was

set to one chief’s orbital period. Figures 4.3(a) and 4.3(b) show 3D renderings of the initial guess

and the converged solution to the orbital transfer studied in this work. The initial and final parking

orbits (green and blue elliptic relative curves) are computed without incorporating the effect of

SRP. They are only added here to aid conveying the idea behind the simulation. The uncontrolled

trajectory of the deputy is shown in Fig. 4.3(a). The attitude of the deputy spacecraft is represented

in Fig. 4.3(c). The sun’s position changes in the deputy body frame throughout the transfer, and

Fig. 4.3(e) shows the pointing of the plate’s normal relative to the Sun’s position. This metric

is used to assess the controllability of the system throughout the transfer. Although the system

is not controllable when the plate rotates edge to the sun (i.e., cos(θ) = nᵀ
3δr = 0), the problem

remains controllable long enough to allow the path planner to generate a trajectory that connects

the boundaries conditions of the problem when using solar radiation pressure.
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(a) 3D trajectories (b) Close up to the boundary conditions

(c) Quaternion Tracking Over One Chief Period (d) Angular Velocity Tracking Over One Chief Period

(e) Cosine of the Conning Angle

Figure 4.3: Path Planning in an SRP-Perturbed Environment
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4.2.2 Fuel-Free Drag-SRP-Perturbed 6DoF Orbital Transfer at LEO

The analysis conducted above is extended to a Low Earth Orbit transfer. The chief parameters

are the same as in Table 4.2 except for the semi-major axis which is brought down to a = 3.689e3km

(i.e., the periapsis altitude is h = 1000km). The boundary conditions of the deputy are kept the

same as in Tables 4.3 and 4.4. However, the flat plate is modeled as a square with side l = 50m, and

the transfer time is set to three times the chief’s orbital period. It should be noted that a deputy

with a smaller area-to-mass ratio can still complete this transfer, but it will do so in a longer time

of flight than prescribed in this simulation.

Fig. 4.4(a) shows the trajectory computed by the geometric guidance algorithm. The uncon-

trolled trajectory is shown in green and can be seen to escape because of drag and SRP’s effects.

The optimal solution computed by the geometric planner is shown in orange. The dashed-magenta

line is the trajectory the deputy follows by tracking the attitude of the optimal trajectory. Fig.

4.4(b) shows a close-up on the boundary conditions, confirming that the computed trajectory meets

the boundary conditions despite the relatively large detour it takes. The trajectory traveled by

the deputy is long because the SRP acceleration is small compared to drag; therefore, the planner

computes a path that minimizes the effect of drag which removes energy in the system. Going lower

in the altitude requires an exponentially larger plate size because the atmospheric density increases

as the periapsis radius decreases. Still, there exists an altitude at which the effect of drag is just too

large to overcome with SRP only. Determining that altitude and the minimum time of flight (for

a given transfer) are still open-ended questions at this time. Nonetheless, the presented fuel-free

guidance can allow a flat-plate servicer spacecraft to bring defunct spacecraft to reentering orbit

and go back to higher altitude by solely using the acceleration provided by SRP. By being fuel-free,

such missions would be a sustainable way to address the space debris problem.
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(a) 3D trajectories (b) Close up to the boundary conditions

Figure 4.4: Path Planning in a Drag-SRP-Perturbed Environment

4.3 Conclusion

The 6DoF nonlinear guidance proposed in this analysis allows performing fuel-free orbital

transfers using natural forces. The algorithm performance was assessed on fuel-free transfer where

a flat plate deputy used differential solar radiation pressure to travel around a cannonball chief. The

problem was shown to be controllable using Lie bracket analysis. Then the path planning problem

was reframed into a gradient descent problem by leveraging ideas from Riemannian geometry and

the calculus of variations. An initial guess is iteratively updated to minimize a given cost function.

Simulation results show that the computed path allows the deputy to reach the specified boundary

conditions at the specified time.



Chapter 5

Distributed Estimator For Spacecraft Cooperative Localization

5.1 Introduction

This chapter briefly introduces a novel relative navigation algorithm developed for this disser-

tation. The developed filter allows each deputy spacecraft to navigate using relative measurements

between themselves. Each filter runs independently, and communication among the agents allows to

estimate the states of the whole formation conjointly. The UIF algorithm was chosen because it is a

hybrid between the unscented Kalman filter and the Fisher Information filter. The time update of

the UIF uses an unscented transform to accurately capture the moment parameters (mean and as-

sociated covariance) of the estimated process. The time history of the chief spacecraft is assumed to

be known by all the deputies. Its states are treated as deterministic parameters in each distributed

filter implementation. The distributed navigation algorithm aims to compute the deputy’s relative

states about a known chief’s solution using the relative measurements (taken by the other agents in

the formation). The proposed method is a stable-distributed nonlinear filter obtained by combining

the UIF and CI algorithms. The resulting distributed filter is agnostic to the constellation’s size and

robust to the introduction/removal of agents at any time (i.e., an ad hoc network). The remainder

of this chapter is organized as follows: In Section 5.2, the distributed estimator is derived. In Section

5.3, The estimator’s performance is investigated with a five-spacecraft formation. We conclude the

chapter in Section 5.4 with a summary of the presented work.
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5.2 Distributed Navigation Algorithm

5.2.1 Fisher Information and Covariance Matrix

The Unscented Information Filter (UIF) is a variation of the Unscented Kalman Filter [205]

which relies on unscented transforms to deal with nonlinearities in the dynamics and measurements.

The UIF operates on the Fisher information and uses a nonlinear transform to approximate the

resulting distribution as a Gaussian distribution. Let x ∈ Rn be the Gaussian random vector to be

estimated. Let’s assume that all realizations of x can be the represented using a multivariate normal

distribution p(x) ∼ N (x̂,P) with mean x̂ and a n×n variance-covariance matrix P. Consider the

dynamics of x modeled as a discrete-time nonlinear process and measured by m sensors nodes:

xk+1 = f (xk,wk) (5.1)

zk = h (xk) + vk (5.2)

where zk ∈ Rm is the measurement vector, wk ∈ Rn ∼ N (0,Qk) and vk ∈ Rm ∼ N (0,Rk)

represents zero-mean white Gaussian processes. During the time update step, the UIF uses 2n+ 1

weighted sample points (sigma points) drawn from the normal distribution N
(
x̂k|k,Pk|k

)
and prop-

agates them through the the nonlinear dynamics. At the end of the propagation, the sigma points

resulting from the mapping are used for the computation of a marginal probability distribution

N
(
x̄k|k−1,Pk|k−1

)
, which is the a-priori distribution at time k. Once a measurement is available,

it is used to update the a-priori state by calculating a conditional probability distribution which best

explains that measurement. The UIF leverages the duality of a Gaussian distribution to operate on

the information. The probability density function (PDF) of such a Gaussian distribution is:
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p(x) = N (x̂,P)

=
1√
|2πP|

exp
{
− 1

2
(x− x̂)ᵀP−1 (x− x̂)

}
=
e−

1
2
yᵀY−1y√
|2πY−1|

exp
{
− 1

2
xᵀYx + yᵀx

}
(5.3)

= N −1 (ŷ,Y)

where Y is the Fisher information matrix and y is the information vector. In Eq. (5.3), the

information parametrization of the Gaussian distribution is equivalent to the moment (covariance)

parametrization, and these two forms represent the duality of the Gaussian distribution. At every

time step k, one can go back and forth between them using the following mapping:

Yk|k = P−1
k|k (5.4)

yk = P−1
k|kxk = Yk|kxk (5.5)

If one assumes that both the state and the measurement are Gaussian distributions

p(x, z) = N


x̂x

x̂z

 ,
Px,x Px,z

Pz,x Pz,z


 = N −1


ŷx

ŷz

 ,
Yx,x Yx,z

Yz,x Yz,z


 (5.6)

For both the moment and information forms, the time and measurement update steps can be

represented in a compact form [72], as shown in Table 5.1. Here, it can be seen that the marginal

probability distribution is easily computed in the moment form. On the other hand, the conditional

probability distribution is readily implemented in the information form. Consequently, the proposed

algorithm performs the time updates in the moment form and the measurement updates in the

information form.
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Table 5.1: Relationship between the conditional and marginal probabilities

Parameter Form Marginal Probability Conditional Probability

Moment parameter
x̂ = x̂x x̂ = x̂x + Px,zP−1

z,z (Z − x̂z)

P = Px,x P = Px,x −Px,zP−1
z,zPz,x

Information parameter
ŷ = ŷx −Yx,zY−1

z,z ŷz ŷ = yx −Yx,zZ

Y = Yx,x −Yx,zY−1
z,zYz,x Y = Yx,x

5.2.1.1 Filter Time Update

The 2n+ 1 sigma points are obtained from the columns of the following augmented matrix:

Xk =
[
x̂k|k, x̂k|k +

√
(n+ λ)Pk|k, x̂k|k −

√
(n+ λ)Pk|k

]
(5.7)

where n is the number of states, λ = α2(n + κ) − n, κ = 3 − n, α < 1. The operation x̂k|k +√
(n+ λ)Pk|k returns an n × n matrix and is understood as the summation of the mean x̂k|k and

each column of
√

(n+ λ)P . The sigma points are then propagated forward in time through the

system’s non-linear dynamics, as shown below:

Xk|k−1 = f (Xk−1,wk−1) (5.8)

The state estimate resulting from the time propagation step is calculated as a weighted average

of the resulting sigma points. The covariance associated with this estimate is a measure of how much

the sigma points deviate from that average value. Both the a-priori state estimate and the a-priori

covariance expressed as

x̄k|k−1 =

2n∑
i=0

W m
i Xi,k−1 (5.9)

Pk|k−1 = Qk +
2n∑
i=0

W c
i

(
Xi,k−1 − x̄k|k−1

) (
Xi,k−1 − x̄k|k−1

)ᵀ (5.10)
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where 

W m
0 =

λ

n+ λ

W c
0 =

λ

n+ λ
+ (1− α2 + β)

W m
i = W m

i =
λ

2(n+ λ)

5.2.1.2 Filter Measurement Update

Once a measurement is received, the information it contains needs to be fused with any a-

priori knowledge of the system’s states to improve the quality of the estimates. Given a-priori

estimate (i.e., x̄k|k−1, Pk|k−1), the 2n+ 1 sigma points are computed at epoch k|k − 1 as follows:

Xk|k−1 =
[
x̄k|k−1, x̄k|k−1 +

√
(n+ λ)Pk|k−1, x̄k|k−1 −

√
(n+ λ)Pk|k−1

]
(5.11)

where x̄k|k−1 +
√

(n+ λ)Pk|k−1 returns an n× n matrix and is undertood as the summation of the

a-priori estimate x̄k|k−1 and and each column of the matrix
√

(n+ λ)Pk|k−1

The expected measurement is computed as a weighted average of the measurements associated

with each sigma point, as follows:

Zk|k−1 = h
(
Xk|k−1

)
(5.12)

z̄k =

2n∑
i=0

Wm
i Zi,k|k−1 (5.13)

The cross-correlation covariance between the a-priori state and the measurement is

Pxz =
2n∑
i=0

Wc
i

(
Xi,k−1 − x̄k|k−1

) (
Zi,k|k−1 − z̄k

)ᵀ (5.14)

Assuming that m sensor measurements are received at epoch k, all the available information

(both from the time update and the measurement update) can be added together into an information

vector, and information matrix respectively expressed as

yk = yk−1 + ik = P−1
k|k−1xk|k−1 +

m∑
j=1

Hᵀ
j,kR

−1
j,k

[
νj,k +Hj,kx̄k|k−1

]
(5.15)

Yk|k = Yk|k−1 + Ik = P−1
xk|k−1 +

m∑
j=1

Hᵀ
j,kR

−1
j,kHj,k (5.16)
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where Hj,k =
(
P−1
k|k−1Pj,xz

)ᵀ
is the jth sensor’s measurement matrix,which is the sensitivity

matrix mapping errors in the states to errors in the measurements. ik and Ik are information

contained in a new measurement at time k. The vector νj,k = zj,k − z̄k is the error between the jth

sensor’s measurement zj,k and the expected measurement z̄k = h
(
x̄k|k−1

)
[117]. The time-update

and measurement-update processes constitute the essence of the UIF. One of the major appeals

of this navigation algorithm is capturing the nonlinearity of the SFF problem via the unscented

transform. Another appeal in the UIF is embedded in the additivity of information. In a fully

distributed estimation algorithm, this property allows any given node to quickly accumulate the

relevant information from the messages communicated among nodes. It enables the information

collected from different sensors to be accumulated and fused with the a-priori knowledge to generate

a better estimate.

Ultimately, one would need to know the cross-correlation between sensors to generate the

linear unbiased estimate (i.e., the estimate generated from a centralized filter). Tracking each

spacecraft in a formation can be computationally expensive or intractable for large constellations.

Therefore, it is desirable to opt for a fusing algorithm that provides a consistent estimate of every

spacecraft’s states. Covariance Intersection (CI) is used to combine the information matrices and

vectors originating from the m sensor measurements in Eqs.(5.15) and (5.16). This approach allows

spacecraft in the formation to only keep track of their state/covariances and update their state

knowledge using relative measurements between them. The CI algorithm is further discussed in the

subsequent section.

5.2.2 Covariance Intersection

In the study of cooperative localization, it is customary to deal with the problem of “rumor

propagation”[16]. Rumor propagation occurs when correlated measurements between agents are

treated as independent, causing information to be fictitiously created and added to the network.

This phenomenon frequently occurs in dynamic networks where the connections between nodes are

made ad hoc. If left unaddressed, it leads to the double-counting of information and inconsistent
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filter estimates [37]. A covariance intersection (CI) scheme was introduced in the construction of the

algorithm to remedy this issue when the cross-correlation between filters’ estimates is unknown. CI

is a data fusion algorithm that combines two pieces of information with unknown cross-correlation

while avoiding the problem of rumor propagation.

5.2.2.1 Data Fusion For Estimates With Known Cross-Correlation

Let a and b be two pieces of information from two distinct sensors about a common phe-

nomenon. Let ā and b̄ be estimates of a and b, and let the statistics of these estimates be given

by

E[ã] = 0,E[ããᵀ] = P̄aa (5.17)

E[b̃] = 0,E[b̃b̃ᵀ] = P̄bb (5.18)

where ã = a − ā and b̃ = b − b̄ are the errors in the estimates. Assume that the true value of the

covariance matrices P̄aa and P̄bb are unknown, but there exists two known constant matrices Paa

and Pbb that bound P̄aa and P̄bb from above, as shown below

∃Paa | Paa ≥ P̄aa (5.19)

∃Pbb | Pbb ≥ P̄bb (5.20)

The inequalities in (5.19) and (5.20) are in the sense of positive definiteness of a matrix (i.e.,

given two n× n matrices A and B, A ≥ B ⇔ ∀x ∈ Rn, xᵀ (A−B)x ≥ 0).

The goal is to generate a new and consistent estimate c which fuses together the information

contained in both a and b. Let the cross-correlation between two estimates ā and b̄ be defined as

E[ãb̃ᵀ] = P̄ab (5.21)

and assume P̄ab to be known. One can construct a linear, unbiased estimator c as a convex combi-

nation of a and b

c = K1a+K2b (5.22)
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such that K1 +K2 = I. The statistics of the error in the new estimate are given as [43, 150]

E[c̃] = 0 (5.23)

P̄cc = E[c̃c̃ᵀ] = K1P̄aaK
ᵀ
1 +K2P̄bbK

ᵀ
2 +K1P̄abK

ᵀ
2 +K2P̄baK

ᵀ
1 (5.24)

In real-life applications, the statistics of the estimate may not be perfectly be known. To

account for these additional uncertainties, the upper bound Pcc on the statics of the error in a new

estimate, denoted P̄cc, is computed as shown below:

Pcc ≥ P̄cc (5.25)

where c̃ = c − c̄ and E[c̃c̃ᵀ] = P̄cc. Geometrically, the covariance ellipsoid representing Pcc com-

pletely encloses the P̄cc ellipsoid (see Fig. 5.1). The upper bound matrix Pcc is expressed as:

Pcc =

[
K1 K2

]Paa P̄ab

P̄ ᵀ
ab Pbb


K1

K2

 (5.26)

where the coefficient matrices K1 and K2 are chosen to minimize the trace of the solution of Pcc.

K1 and K2 are the solution of the following problem:

K∗ = min
K
KPKᵀ

where K

I
I

 = I, K =

[
K1 K2

]
and, P =

Paa P̄ab

P̄ ᵀ
ab Pbb


Fig. 5.1 shows the fusion of two estimates with known cross-correlation, in 2D. The blue

ellipsoid represents the Gaussian distribution of the error in state estimate a (i.e., Paa) and the

green ellipsoid represents that of the state estimate b (i.e., Pbb). The cyan lines represent all

realizations of the resulting distribution in the new estimate c (i.e., Pcc) for different values of the

known cross-correlation P̄ab. Let the set BP (l) = {xᵀP−1x < l}. Ref. [43] shows that:

BPcc(l) ⊂ {BPaa(l) ∩BPbb
(l)} (5.27)

In other words, all realizations of Pcc lie within the intersection of Paa and Pbb, which bounds P̄cc.
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Figure 5.1: Fusion of two estimates with known cross-correlation.

5.2.2.2 Data Fusion For Estimates With Unknown Cross-Correlation

In the event that the cross-correlation P̄ab is unknown, care must be taken when computing

the new estimate c and its associated covariance Pcc. One can demonstrate that the computation for

the n× n optimal matrices K1 and K2 can be reduced to a one dimensional optimization problem

[43]. A consistent and conservative approximation for Pcc is defined as

P−1
cc = ω∗P−1

aa + (1− ω∗)P−1
bb (5.28)

where ω∗ is the solution of the convex optimization problem, which aims at minimizing the size of

the resulting matrix. One such metric for judging the size of a matrix is the determinant [68, 109],

and ω can be chosen to be the solution to the following one-dimensional optimization problem.

ω∗ = min
ω

det{Pcc} (5.29)

s.t: 0 ≤ ω ≤ 1
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Other studies in the literature have used the trace as their metric [130, 220, 160], and the performance

of one metric versus the other is case-specific. This analysis uses the determinant metric. Eq.(5.29)

can be solved using a single value optimizer. Matlab’s built-in fminbnb is the optimizer used in this

work. It is an optimizer based on Golden Section search and parabolic interpolation and provides

a local minimum of a continuous function within the prescribed bounds.

The resulting estimate c can also be written in terms of the optimal weight ω∗ and initial

estimates a and b as

P−1
cc c = ω∗P−1

aa a+ (1− ω∗)P−1
bb b (5.30)

Figure 5.2: Fusion of two estimates with unknown cross-correlation

Eqs. (5.28) and (5.30) can be re-written in terms of the information matrix and information

vector. Eqs. (5.31) and (5.32) are better suited for this analysis because they utilize the results
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from the UIF developed in Section 5.2

Ic = ω∗Ia + (1− ω∗)Ib (5.31)

ic = ω∗ia + (1− ω∗)ib (5.32)

5.2.2.3 Distributed Estimator For SFF Cooperative Localization

In the setup for cooperative localization for the SFF problem, it is assumed that spacecraft

can take measurements of each other. A sensor is defined as any spacecraft measuring another

spacecraft, whereas a target is any spacecraft being measured by a sensor. Every agent in the

formation is considered either a sensor or a target, depending on whether it takes a measurement

or is being measured by a counterpart, respectively. The cross-correlation between the agents is

assumed to be unknown, and each agent only tracks its state and the associated covariance. The

communication range is further assumed to be larger than the sensor range; therefore, two agents

will be considered neighbors if a measurement is taken between them (i.e., a sensor and a target are

considered neighbors). Finally, let O i
k be the set of agents/sensors that have taken a measurement

of Agenti at epoch k. Ref [124] shows that, under mild conditions, the UKF converges to the

truth, and the associated covariance is exponentially bounded despite the intermittent measurements

from different sensors. To account for the sensor’s uncertainty, the measurement covariance matrix

associated with Agentj , j ∈ Oi, is inflated by the sensor uncertainty. The measurement update

equation is reformulated to the following expression:

ik = Hᵀ
j,k

(
Rj +Hj,kPj,k|kH

ᵀ
j,k

)−1 [
νj,k +Hj,kx̄k|k−1

]
Ik = Hᵀ

j,k

(
Rj +Hj,kPj,k|kH

ᵀ
j,k

)−1
Hj,k

(5.33)

The distributed algorithm proposed in this work is briefly presented in Algorithm 3. It takes

in a spacecraft’s state, covariance, and the measurements collected about it and returns the state

and covariance at the next filter epoch. Note the filter only estimates the state of a single agent

because tracking all the sensors will require increasing the size of the state space, causing matrix

inversion to be more expensive. Consequently, the state of the sensors is not estimated to minimize
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the computation performed by each filter, and N filters need to run in parallel to estimate a N

spacecraft formation.

Algorithm 3: Distributed Estimator For SFF Cooperative Localization (for Agenti)

Input: x̂ik−1|k−1, P
i
k−1|k−1, z

j
k, x̂

j
k|k, P

j
k|k (with j ∈ O i

k)
// Time Update:

X ik−1|k−1 =
[
x̂ik−1|k−1, x̂

i
k−1|k−1 +

√
(n+ λ)Pi

k−1|k−1, x̂
i
k−1|k−1 −

√
(n+ λ)Pi

k−1|k−1

]
x̄ik|k−1 =

∑2n
l=0 W m

l X il,k|k−1 where X ik|k−1 = f
(
X ik−1|k−1,wk

)
Pi
k|k−1 = Qi

k +
∑2n

l=0 W c
l

(
X il,k−1 − x̄ik|k−1

)(
X il,k−1 − x̄ik|k−1

)ᵀ
W m

0 = λ
n+λ , W c

0 = λ
n+λ + (1− α2 + β), W m

i = W m
i = λ

2(n+λ)

// Measurement Update:
if Agenti = Target then

iik = 0, Pi
k|k = 0

for j ∈ O i
k do

ij,k = Hᵀ
j,k

(
Rj +Hj,kPj,k|kH

ᵀ
j,k

)−1 [
νj,k +Hj,kx̄k|k−1

]
Ij,k = Hᵀ

j,k

(
Rj +Hj,kPj,k|kH

ᵀ
j,k

)−1
Hj,k

ω∗j = minω det (Pcc)

Iik = ω∗j I
i
k + (1− ω∗j )Ij,k

iik = ω∗j i
i
k + (1− ω∗j )ij,k

Pi
k|k =

(
P−1
i,k−1|k−1 + Iik

)−1

x̂ik|k =
(
P−1
i,k−1|k−1 + Iik

)−1
iik

else
Pi
k|k = Pi

k−1|k−1

x̂ik|k = x̄ik−1|k−1

Output: x̂ik|k,P
i
k|k

At the beginning of each filtering cycle, the state and covariance are propagated forward in

time using the unscented transform. The algorithm operates differently depending on whether the

spacecraft is a sensor or the target. If the agent is a sensor, it will send the relative measurement

and state/covariance to the target. On the other hand, if the agent is the target, the algorithm

merges the filter estimate and the measurement using covariance intersection. If multiple sensors

measure the same target, the information contained in those measurements is fused sequentially,

which allows for optimizing one variable per measurement (as opposed to a multi-variable nonlinear
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optimization problem) [57].

5.3 Simulation, Results, and Discussion

The performance of the Distributed Estimator was analyzed for a set of five spacecraft flying in

formation around an eccentric reference orbit. It is assumed that the chief’s trajectory is known by

each of the five deputies in the formation; therefore, no measurement from the reference trajectory

is required. Due to the distributed nature of the algorithm, each deputy only estimates its relative

position and velocity (i.e., the deputy i estimates xi = [ρi,ρ
′
i] = [xi, yi, zi, x

′
i, y
′
i, z
′
i]), and all the

filters are run in parallel. The equations of motion of a deputy (as seen in the chief’s Local-Vertical

Local-Horizontal frame) are given by:

E d

dt
(xi) = x′i =

 ρ′i

δai +−Ω′i × ρi − 2Ωi × ρ′i −Ωi ×Ωi × ρi

 (5.34)

where δai is the differential gravitational acceleration, and Ωi and Ω′i are the angular velocity and

the angular acceleration of the chief’s Local-Vertical Local-Horizontal frame, respectively. As the

different agents fly around, they can either measure other spacecraft that pass through the lines-

of-sight of their sensors or be measured if another agent’s sensors record them. It is assumed that

every deputy can measure range, range-rate, and relative orientation, and the measurements model

is written as follows:

hij =



αij

γij

Azij

Elij


=



∥∥ρi − ρj

∥∥
(ρi − ρj )

ᵀ(ρ′
i
− ρ′

j
)/αij

arcsin(zij/αij )

arctan(xij/yij )


(5.35)

where αij =
√
x2
ij + y2

ij + z2
ij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the norm of the relative

position of the sensor j taking the measurement of the target i.

In the simulation discussed below, a measurement is taken once every minute. The target (i.e.,

the spacecraft being measured) is chosen at random. The number of measurements is random for
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every filter epoch, and their origin is also randomly chosen. That is, at each filter epoch, a random

number q of randomly chosen spacecraft are chosen to be sensors, where 0 < q < N − 1. Therefore,

the target ID, the number of sensors, and their respective IDs are all randomly chosen quantities, ev-

ery time a measurement is taken. The reference orbit is eccentric (e = 0.2), and the initial deviations,

in [km] and [km/s], of the five deputies considered in this analysis are given in Table 5.2. The initial

error covariance P0 = diag ([100m, 100m, 100m, 1cm/s, 1cm/s, 1cm/s]) is set to be the same for each

deputy, and the sensor noise’s covariance matrix isR = diag ([1E−3m, 1E−6m/s, 1E−3rad, 1E−3rad]).

Table 5.2: Initial relative state in Cartesian coordinates

Initial ∆X δx [km] δy[km] δz[km] δẋ[km/s] δẏ[km/s] δż[km/s]

Deputy1 0.6667 -0.1500 0.2004 1.468e-05 -6.430e-4 1.3114e-05
Deputy2 0.6667 0.3303 0.3720 2.939e-05 -6.430e-4 8.2704e-05
Deputy3 0.6667 -0.4501 0.6012 4.404e-05 -6.430e-4 3.9344e-05
Deputy4 0.6667 0.6605 0.7440 5.878e-05 -6.430e-4 1.654e-4
Deputy5 0.6667 -0.7501 1.0019 7.339e-05 -6.430e-4 6.558e-05

Fig. 5.3(a) shows the evolution of the state residuals and the associated covariance envelope

for agent 1. The error in the estimates remains within the covariance bounds at all times and

approaches zero as more relative measurements are processed. The covariance envelopes shrink

accordingly, as well. The state residuals of the other agents exhibit similar behavior to that of agent

1. Fig. 5.4 shows the measurement residuals associated with agent 1. Fig 5.4(a) shows the post-fit

residuals for the relative measurements from the other agents in the formation. At the beginning

of the simulation, the uncertainty in the sensor location generates a faulty estimate, which in turn

causes the measurement residuals to be outside the 3σ noise. As more measurements are gathered

and processed, the distributed algorithm gradually constrains the state of all the agents, causing

the post-fit residuals to fall below the sensor noise level. Fig. 5.4(b) shows the histogram of the

post-fit residuals after one orbital period. These histograms show that measurement residuals are

zero-mean Gaussian white noise with a spread equal to the 3σ confidence interval of the sensors.

Finally, fig. 5.3(b) shows the time evolution of the trace of the covariance matrices associated with
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each agent. As the filter processes measurements, the location of the different agents gets more

constrained, and the errors in each filter decrease. As shown in Eq. (5.33), the covariance of every

agent is intertwined, causing the uncertainty of one agent to shrink and expand as the uncertainty

of the other agents tightens and loosens, respectively.

(a) State-estimates error agent 1 (b) Trace of covariances of each filter

Figure 5.3: Distributed Estimator: state residuals and covariance envelopes

(a) Post-fit residuals (b) Error histogram

Figure 5.4: Measurement residuals and error histogram over six orbital periods (agent 1)

A thousand Monte-Carlo simulations were used to assess the robustness of the proposed

algorithm. Fig. 5.5(a) shows the trace of the resulting covariances on a log scale. All the Monte-

Carlo runs are consistent, and the trace of each covariance matrix exhibits the same behavior. The

trace of the errors associated with the proposed solution is compared to a centralized filter, shown
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in black. In the centralized filter, the states of the agents are stacked in a 30 × 1 state vector.

Then, a single filter processes all the measurements associated with the large state vector. This

process considers all the cross-correlations between the agents. Consequently, all the information

is extracted from the relative observations. In each subplot of Fig. 5.5(a), the corresponding block

diagonal is extracted from the 30×30 centralized-covariance matrix, and its trace is plotted alongside

the trace of the distributed estimator algorithm. The covariance associated with the distributed

estimator algorithm is an upper bound to the true covariance retrieved from the centralized filter.

The distributed filter’s covariance does not converge to the centralized covariance for two reasons.

First, the addition of the term Hj,kPj,k|kH
ᵀ
j,k in Eq. (5.33) inflates the error associated with the

sensor j and reduces the amount of information available with measurement at epoch k. Second,

the fused covariance resulting from Eq. (5.29) is an approximation of the real combined covariance.

The covariances resulting from distributed estimator algorithm consistently converge to the same

amplitude. Because this algorithm is completely distributed, it is easily scalable. The filter’s fidelity

is analyzed in fig. 5.5(b) where the state residuals of each agent are normalized by their respective

covariance. Across all the Monte Carlo simulations, the state residuals of all the agents remain

within their 3σ covariance bound. The proposed filter consistently generates a zero-mean estimate

for all the agents across every Monte Carlo simulation.

(a) Distributed estimator and centralized filter comparison (b) Consistency Analysis for the distributed estimator

Figure 5.5: Results of a one thousand Monte Carlo simulations
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Finally, the versatility of the algorithm was tested for scenarios where a deputy spacecraft is

added to the filtering network at a later epoch. To be more specific, spacecraft 1 is introduced into

the filtering loop half an orbit after the beginning of the simulation. Agent 1 starts with the same

initial convariance as the other agent, but does not perform any measurement update for one half

orbit, causing its covariance to grow. It is then introduced into the filtering loop (with a covariance

envelope ten times larger than its initial value). This scenario would correspond to a spacecraft

inserted into an already existing distributed navigation network. Fig. 5.6(a) shows the trace of the

covariance of each agent. The uncertainty in agent 1 increases over the period of time it does not

receive any measurements (blue box in fig. 5.6(a)). Then agent 1 is subject to an acclimation phase,

where it uses the other agents’ measurements to shrink its covariance and get a better estimate of

its state. The acclimation phase is shown in dark orange in fig. 5.6(a). During this phase, agent

1 does not contribute to the distributed filter; agent 1 only gathers information from the relative

measurements it receives. During the acclimation, the state residuals are outside the covariance

bounds (see the first subfigure of fig. 5.6(c)). The covariance envelope shrinks drastically, and it

takes a few filtering cycles for the navigation algorithm to adjust the state errors, as seen in fig.

5.6(b). During the acclimation phase, agent 1 was not allowed to introduce/add new information

into the distributed network to stop its error from propagating across the network. Adding and

removing agents at any time makes the proposed filter suitable for the navigation of heterogeneous

constellations and for providing navigation data for collision avoidance maneuvers.
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(a) Trace of the covariance of each for all the agents

(b) State-estimates error agent 1 (c) Normalized state residuals

Figure 5.5: Insertion of agent 1 into a pre-existing constellation

5.4 Conclusion

This chapter presented a novel algorithm for distributed spacecraft cooperative localization.

The proposed algorithm elegantly blends the UIF and the CI algorithms to achieve exponential

convergence under intermittent measurements. The UIF takes advantage of the duality of the

Gaussian distribution to efficiently perform both the time and the measurement updates of the

navigation filter. The measurements originating from neighboring agents are continuously fused
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using a CI scheme. The algorithm is designed to be agnostic to the number of spacecraft partaking in

the navigation process, and every agent only tracks its local state and covariance. The particularity

of the proposed approach is that it works well for both fixed topologies and ad hoc networks. The

stability and consistency of the distributed algorithm were analyzed via Monte Carlo simulations.

The proposed method allows arbitrarily large constellations to estimate their state trading relative

information. Also, the fully distributed nature of the filter allows adding or removing new agents

at any instant with no detrimental effect to the filter.



Chapter 6

Stochastic Distributed Motion Planning: Chance Constraint Implementation

Up to this point, it was assumed that the system was deterministic; that is there was com-

plete knowledge of the state and dynamics of every spacecraft in the formation. However, real-world

systems are uncertain and stochastic. Therefore, it is imperative to incorporate navigation infor-

mation when generating safe trajectories in uncertainties environments. For the remainder of this

study, it will be assumed that the system is subject to zero mean Gaussian noise due to state and

measurement noises.

Fig. 6.1(a) represents the maneuvering spacecraft’s behavior when an uncertain obstacle is

detected. The trajectories are denoted by γ, and a subscript (i.e., i or j) is used to assign a

path to an agent. The superscript k marks the guidance epoch. Each path γk is computed using

the distributed Geometric Guidance algorithm discussed in chapters 2 and 3. The focus of this

study is to replace the avoidance sphere used in Chapter 4 by covariance envelopes provided by the

distributed filter developed in Chapter 5. A chance constraint algorithm will be derived to integrate

filter information in the existing Geometric Guidance.

To date, many methods for robust control have been utilized for trajectory planning for sys-

tems with uncertainties [21]. However, these methods are conservative and ill-suited for distributions

with unbounded support (i.e., noises with Gaussian distribution). Within the realm of stochastic

optimal control, unbounded uncertainties are handled with chance-constrained trajectory optimiza-

tions. This formulation guarantees, with a given level of confidence ε, that a constraint g(~x) ≥ 0 is
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(a) Chance Constraints (b) Stochastic Geometric Planner

Figure 6.1: Concept Behind Proposed Algorithm

met for the random variable ~x. The constraint is written as the following probability:

Pr (g(~x) ≥ 0) ≥ δ (6.1)

The probabilistic constraint presented in Eq. (6.1) must be reformulated as a deterministic

constraint on the mean value of its distribution to be integrated into the geometric solver. It

is essential to look back at some definitions from probability theory to better understand how

probabilistic constraints are converted into deterministic constraints.

6.1 Review of Probability Theory

A random variable X can intuitively be understood as a variable whose value cannot be

known with certainty until it is sampled. However, it can also be understood as a mapping from an

experiment to a real number. As such, one can define the cumulative distribution function FX(ε),

the most fundamental property of a random variable X, as follows:

FX(ε) = Pr (X ≤ ε) =

∫ ε

−∞
fX (x) dx (6.2)
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where fX is the probability density function1 (pdf). Equation (6.2) relates a random variable to

a deterministic expression. The CDF can be determined analytically or imperially (data-driven).

The meaning of the probability of the random variable is shown in Fig. 6.2.

(a) Probability Density Function (b) Cumulative Distribution Function

Figure 6.2: Meaning of Probability Pr (X ≤ ε)

The mean µ of a probabilistic distribution is the first moment about the origin, and the

standard deviation σ is the (positive) square root of the second moment about the mean. They are

both given by the following expressions:

µ = E
[
x

]
=

∫ ∞
−∞

xfX (x) dx (6.3)

σ2 = E
[
x− µ

]
=

∫ ∞
−∞

(x− µ)2 fX (x) dx (6.4)

where E[·] symbolizes the expectation operator. The expected value of the image of the random

variable x through any generic functional g is given by:

E
[
g (x)

]
=

∫ ∞
−∞

g (x) fX (x) dx (6.5)

1 The pdf is defined such that fX(ε) ≥ 0 and
∫∞
−∞ fX(x)dx = 1
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6.2 Stochastic Guidance With Constant Covariance

Let’s return to constrained trajectory optimization. Let a,x ∈ Rn, c ∈ R, and ε ∈ [0.5, 1]. If

it is assumed that the decision variable x ∼ N (x̄,Σ), then (see Appendix C)

Pr (aᵀx ≤ c) ≥ ε ⇐⇒ aᵀx̄+ F−1
X (ε)

√
aᵀΣa ≤ c (6.6)

where FX(ε) is the cumulative distribution function for a standard Gaussian variable (i.e., zero

mean and unit standard deviation) [35]. Conceptually, chance constraints can be thought of as a

confidence set ellipsoid where the probability that the random variable ~x ∼ N (~µ,Σ) belongs to a

feasible set B(~µ,Σ) is larger than ε (i.e., Pr(~x ∈ B(~µ,Σ)) ≥ ε). Here,the ellipsoid B is defined as:

B(~µ,Σ) = {~x|(~µ− ~x)ᵀΣ(~µ− ~x) ≤ 1} (6.7)

The parameter ε controls how far away from the ellipsoid the point ~x is. The diagonal entries of Σ

are the standard deviations that control how far the surface of the ellipsoid is from the mean ~µ.

Assume for instance that a maneuvering spacecraft Agenti and a uncooperative obstacle

Agentj are on a collision course. The collision avoidance constraint between agents i and j can be

expressed as δρij ≥ ri+rj , where δρij = ‖~ρj(t)− ~ρi(t)‖ is the relative distance between two agents,

and ri, rj are the radius of the sphere enclosing agent i and j, respectively. Now, assume that both

agents are subject to zero-mean Gaussian white noises (i.e., xi ∼ N (x̂i,Σi) and xj ∼ N (x̂j ,Σj)).

If the noises are independent (i.e., E[x̂ᵀ
i x̂j ] = 0n×n where n is the dimension of the state space),

the collision probability between agents can be approximated by the following equation [194]:

P (c) = Vi

∫
xi

p (xj = xi|xi) p (xi) dxi (6.8)

=
Vi√

det (2πΣc)
exp [− 1

2
(x̂i − x̂j)ᵀ Σ−1

c (x̂i − x̂j) ]

where Σc = Σi + Σj is the combined-state covariance, and Vi is the volume of the sphere enclosing

the spacecraft.

For uncertain states, the collision avoidance constraint in Eq. 6.1 can be converted into a
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deterministic contraint on the mean relative position between the two agents as shown bellow:

l (δρij)) , (x̂i − x̂j)ᵀ Σ−1
c (x̂i − x̂j) ≥ −2 ln

(
1− ε
Vr

√
det (2πΣc)

)
(6.9)

Now, let the following barrier function:

ψj(
#»ρ i,

#»ρ j) = Kj exp

(
−
(
l(δρij)

Pij

)2
)

(6.10)

Eq. (6.10) is a repelling function that causes the optimized cost function to increase as the

intersecting volume between the covariance matrices increases. The chance constraint can seamlessly

be integrated in the Geometric Guidance algorithm by multiplying ψ(~x) with the Riemannian

metric:

Gi(~x) = ψ(~x)
(
F̄−ᵀ(~x)DF̄−1(~x)

)
(6.11)

6.2.1 Application to a Two-Agent Formation

In the following example, two deputy spacecraft are traveling between two sets of boundary

conditions. The orbital elements of the chief’s trajectory and the relative orbital element of each

deputy spacecraft are given in Tables 6.1 and 6.2, respectively.

Table 6.1: Reference Orbit in Orbital Elements

Initial OE a [km] e i [rad] Ω [rad] ω [rad] f [rad]

Reference 1.42e04 0.5 50 10 10 0.0
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Table 6.2: Initial Differential Orbital Elements

∆OE δa [km] δe δi [rad] δΩ [rad] δω [rad] δf [rad]

Deputy1 (initial) 0.0 1/(6a) −1/(3a) 0.0 −2π ∗ 1e− 5 π ∗ 1e− 6

Deputy2 (initial) 0.0 1/(8a) 2/(10a) −π ∗ 1e− 5 π ∗ 1e− 5 π ∗ 1e− 6

Deputy1 (final) 0.0 1/(6a) 1/(2a) 0.0 0.0 0.0

Deputy2 (final) 0.0 −1/(8a) −1/(20a) π ∗ 1e− 6 −5 ∗ π ∗ 1e− 7 0.0

It is assumed that each agent’s state is corrupted by Gaussian random noise. The noise

level is kept constant throughout the simulation, and the position covariance is arbitrarily set

to Σ = diag ([1, 1, 1]) km for each spacecraft. The scenario presented in Fig. 6.3 is an orbital

transfer where two spacecraft fly very close to one another. The duration of the transfers is half

of the chief’s orbit. In both Figs. 6.3(a) and 6.3(b), the two error covariances are plotted, as grey

ellipsoids, at the distance of the closest approach. Initially, the two spacecraft travel on paths that

violated the probabilistic constraints. The intersecting covariance envelopes represented in Fig.

6.3(a) indicates a high likelihood of collision. After constructing the barrier function presented in

Eq. 6.10, a stochastic-aware replanning sequence is initiated onboard the maneuvering agent. The

newly computed path, shown in Fig. 6.3(b), ensures the covariance envelopes of the two spacecraft

do not to intersect. Fig. 6.3(c) shows the norms of the relative position between the two agents, for

both the initial paths (in red) and the constrained paths (in blue). The distance of closest approach

is less than one kilometer in the deterministic guidance case. By imposing the chance constraint, the

stochastic-aware guidance is able to increase that distance to more than two kilometers (between

the distributions’ mean values).
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(a) Deterministic Guidance (b) Stochastic Guidance

(c) Separation Distance

Figure 6.3: Chance Constraint Probabilistic Maneuvering

6.3 Stochastic Guidance with Variable Covariance

Assume that an optimal path ~γ∗(t) between two boundary conditions has been computed,

as shown in Fig. 6.4. Assume that a feedback control ~u∗(t) strategy has been developed to track

the optimal trajectory and zero out the initial deviation (i.e., ~u∗(t) =⇒ limt→∞ δ~r(t0) = 0). If



90

the initial deviation is corrupted by the normally distributed random disturbance ~ε(t) ∼ N (0,P),

the system’s dynamics will cause the error associated with the random variable to grow over time

regardless of the feedback control strategy (i.e., P(t0) ≤ P(t1) ≤ · · · ≤ P(tf )), assuming no mea-

surements.

Figure 6.4: Dynamic Evolution of the Covariance

For multi-agent systems, the error associated with each agent will grow over time. This

phenomena, if not dealt with, will induce collisions for trajectories whose optimal paths are not

intersecting, as shown in Fig. 6.5. In the event where a boundary condition of an agent lies in the

error zone of another agent, there does not exist a solution that solves the constrained optimization

problem. It then becomes imperative to manage the growth of the covariance uncertainty when

doing guidance on stochastic systems. The size of the covariance matrix is shrunk by integrating

measurements information via a navigation filter.

Figure 6.5: Collision Induced by Covariance Growth
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The covariance propagation is done through an unscented transform because of the nonlinear

nature of the dynamical system studied [205]. Let f (xi) and h (xi)the dynamic and measurement

model for each agent. The navigation algorithm’s process can be discretized as follows:

xi,k+1 = f (xi,k) +wi,k

zi,k = h (xi,k) + vi,k

(6.12)

where wi,k ∼ N
(
0,Qi,k

)
and vi,k ∼ N (0,Ri,k) represent zero-mean white Gaussian se-

quences in the dynamics and measurements, respectively. Let n designate the size of the solution

manifold. To propagate the uncertainty associated with agent i, 2n + 1 sigma points are sampled

from the distribution N
(
x̂i,k−1|k−1,Pi,k−1|k−1

)
and propagate through the nonlinear dynamics in

Eq. (6.12). The weighted samples are defined below:

Xk−1|k−1 =
[
x̂k−1|k−1, x̂k−1|k−1k +

√
(n+ λ)Pk−1|k−1, x̂k−1|k−1 −

√
(n+ λ)Pk−1|k−1

]
(6.13)

where λ = α2(n + κ) − n, κ = 3 − n, α < 1. Let Xi,k|k−1 = f
(
Xi,k−1|k−1

)
represent the images

of the sigma points resulting from the nonlinear propagation, and let Zi,k|k−1 = h
(
Xi,k|k−1

)
be

their images. The expected value of the state after the propagation can be approximated by the

following:

x̄k|k−1 = E
[
xk|k−1

]
=

2n∑
l=0

W m
l Xl,k|k−1

where W m
0 =

λ

n+ λ
, W c

0 =
λ

n+ λ
+ (1− α2 + β), W m

l = W m
l =

λ

2(n+ λ)

(6.14)

Likewise, the expected measurement after the nonlinear propagation is given by:

z̄k|k−1 = E
[
h
(
xk|k−1

)]
=

2n∑
l=0

W m
l Zl,k|k−1 (6.15)

To ensure that the uncertainties remain bounded (i.e., the covariance envelope does not grow

infinitely large) during the planning horizon, a constant frequency of measurement will be assumed.

The guidance algorithm is run in parallel with the navigation algorithm. When a guidance sequence

is initiated, the covariance is propagated forward in time without any measurement update (i.e.,

the covariance is always increasing as far as the guidance algorithm is concerned). It is therefore
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imperative to run the navigation algorithm at a higher frequency than the guidance to start the

planning sequence with a small error and avoid the scenario depicted in in Fig. 6.5. The collected

measurements are the relative states between the agents. If m measurements are collected at filter

epoch k the covariance P−1
k|k is given by the expression below:

P−1
k|k = P−1

xx +

m∑
j=1

(
P−1
xxPxz

)
R−1

(
P−1
xxPxz

)ᵀ
where Pxx = Qk +

2n∑
l=0

W c
l

(
Xl,k|k−1 − x̄k|k−1

) (
Xl,k−1 − x̄k|k−1

)ᵀ
Pxx =

2n∑
l=0

W c
l

(
Xl,k|k−1 − x̄k|k−1

) (
Zl,k−1 − z̄k|k−1

)ᵀ
(6.16)

Because real measurements are not generated in this analysis, the state distribution’s mean

values will be left unchanged. Although conservative (because the mean values are not updated), the

resulting recursive guidance considers the uncertainties of all the agents when generating trajectories.

6.3.1 Application to a Six-Agent Formation

In the following example, a six-agent formation is considered, and the initial error of each

agent is sampled from the following normal distribution:

Pi = diag ([0.5km, 0.5km, 0.5km, 0.1m/s, 0.1m/s, 0.1m/s]) , i ∈ {1, 2, 3, 4, 5, 6}

Table 6.3: Deputies’s Orbit in Relative Orbital Elements (k ∈ {1, 2, 3, 4, 5, 6})

∆OE δa [km] δe δi [rad] δΩ [rad] δω [rad] δf [rad]

Deputy k (initial) 0.0 −4k
3a −10

a (−1)k −2πE−5(−1)k 0.0 πE−4(−1)k

Deputy k (final) 0.0 k
2a

10
a (−1)k kπ

3 E−3 kπ
15 E−3 πE−6

The chief’s parameters are the same as in Table 6.1, and the deputy’s parameters are given

in Table 6.3. The navigation algorithm received measurements once per minute, and the agent

being updated is chosen at random. This implies that the covariance of all the agents do not shrink

at the same rate, and some agents may have better knowledge of their whereabouts compared
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to their counterparts. The guidance update is performed every fifteen minutes. The filter’s high

frequency helps minimize the error at the beginning of each guidance sequence. Fig. 6.6(a) shows

the trajectory of each agent before and after the replanning sequences. The dark ellipsoids along

the paths are a plot of a the covariance matrices along each path at different filter epochs. As noted

above, not all agents are updated simultaneously. This causes agent 1’s covariance to increase during

the initial portion its transfer. On the other hand, in the example studied here, other agents receive

measurement more regularly causing their covariance envelopes to become very small (appearing as

black dots along the constrained paths). Fig. 6.6(b) shows the average relative distance between

the agents for the initial and the constrained trajectories.

Considering the error associated with the agent causes the constrained trajectories to move

further apart from each other, especially later in the propagation where the uncertainty is the

largest during the guidance update (i.e., earlier guidance updates only propagate the covariance

with no measurement updates). This causes Agent 2 to deviate from Agent 3 even though their

respective covariances are relatively small throughout the transfer, as shown in Fig. 6.7(a). In this

scenario, Agent 2 identifies Agent 3 as an obstacles earlier in their transfers. This fact is confirmed

by Fig. 6.7(b) where Agent 2’s constrained trajectory moves away from Agent 3 relatively early in

the simulation.

One last interesting case is that of Agents 3 and 6, where the initial and constrained paths

are relatively unchanged. Analogous to the observations made above, Agent 6 does not enter the

collision cone of Agent 3 until later in the simulation. By then, their covariances are small and the

time remaining in the simulation is small. The time propagated covariances P3(tf ) and P6(tf ) do

not intersect, implying that no course correction is needed.
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(a) Trajectories And Covariance Envelopes Throughout Orbital Transfer (b) Average Relative Separation

Figure 6.6: Stochastic Guidance for all the Agents

(a) Trajectories And Covariance Envelopes Throughout Orbital Transfer (b) Relative Separation

Figure 6.7: Stochastic Guidance for Agents 2 and 3
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(a) Trajectories And Covariance Envelopes Throughout Orbital Transfer (b) Relative Separation

Figure 6.8: Stochastic Guidance for Agents 3 and 6

6.4 Conclusion

This chapter demonstrated how uncertainty could be integrated into geometric guidance.

The probabilistic constraints are transformed into a deterministic condition on the mean of the

distribution using a chance constraints formulation. All the system states were modeled as Gaussian

distributions, the ellipsoid envelope associated with each covariance was imposed as a keep-out zone.

A navigation filter was run in parallel with the Geometric Guidance to bound the growth of the

normal distributions over time. And the navigation algorithm has to run at a higher frequency

than the guidance algorithm to ensure the existence of feasible paths. Simulations show that the

proposed algorithm can be implemented for distributed formation flying guidance. A replanning is

initiated only when the covariance envelopes intersect, and the mean separation between the agents

increases to accommodate for the uncertainty in the system.



Chapter 7

Conclusion and Future Work

7.1 Conclusion on Completed Work

Coming at the end of this work, we have developed a GNC algorithm that addresses all the

problems we set out to solve in chapter 1. Specifically, a geometric guidance algorithm was devel-

oped using insights from nonlinear geometric control. The fuel-optimal problem was cast as a curve

length minimization (geodesic) on a Riemannian manifold. It was shown how to impose constraints

through the Riemannian metric. Also, the guidance was suitable for large formation control if the

computation is distributed across every agent in a formation. The distributed guidance is a receding

horizon algorithm that iteratively replans spacecraft’s paths as they sense approaching obstacles.

The guidance algorithm was extended to incorporate stochasticity using a chance constraints for-

mulation. The stochastic-aware distributed guidance is shown to generate feasible paths in the

presence of dynamics uncertainties and errors in the relative measurements between the agents. In

the last chapter, a distributed relative navigation is presented to generate covariance information

to be fed to the stochastic guidance. The aim of this dissertation was to introduce the novel frame

work for distributed motion planning in a stochastic environment. Many possible extensions can

stem from analysis conducted in the earlier chapters, and some of them are briefly discussed in the

next section.
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7.2 Extensions and Future Work

The work presented in this dissertation offers many opportunities for extensions, and some of

them are discussed below:

(1) Automate the tuning of the Geometric Guidance Algorithm: The tuning parame-

ters λ > 0 in the Riemmanian metric affect the convergence time as well as the quality of

the solution (see Eq. (2.15)). A considerable amount of time was spent carefully selecting

these terms for each of the studies conducted in this dissertation. In fact, the relative size

between λ dictates how important some constraints are compared to others. But for systems

in a cascade where some states depend on others (i.e., in SRP 6DoF plate, the derivative of

the velocity depends on the attitude), the relative importance of constraints is not straight-

forward. The difficulty associated with the algorithm’s tuning increases with the dimension

of the problem. For example, the algorithm is less sensitive to the choice of penalties for

a three degree of freedom of trajectory optimization versus a six degree of freedom. A

logical extension to this research would be to automate the selection of these parameters

to make the algorithm more autonomous. A preliminary research investigation literature

review suggests that Reinforcement Learning techniques could provide an exciting avenue

to address this problem. Namely, stochastic gradient descent (SGD) with momentum would

offer an efficient way to select the penalty weights, especially for higher-dimensional prob-

lems [108, 132, 190]. If training data is available for different dynamical regimes, an SGD

algorithm can make Geometric guidance more versatile to drastic changes in dynamical

conditions. For an Earth-moon transfer, for example, the spacecraft will transition from

an Earth-centric dynamic to a Restricted three-body problem and then to a moon-centric

dynamics to the moon.

(2) Analyze the reachable set of the SRP based guidance: In Chapter 4, we use Lie

brackets theory to argue the controllability of the relative motion of a flat plate deputy

around a cannonball chief. It was shown that the system is controllable if differential
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SRP is used to generate the propulsion capability between the two agents. However, Drag

cannot arbitrarily change the relative states because it dissipates energy in the system.

Let’s assume that the area of the deputy is constant. As the two crafts dive closer to

the surface, the atmospheric density, and consequently the magnitude of the drag force,

increases. The value of SRP is constant at Earth (see Eq. (4.5)). There exists a critical

altitude at which the magnitude of the differential SRP can not overcome the dissipative

effect of Drag. The guidance algorithm will fail to converge onto a fuel-free trajectory at

that altitude because such a path does not exist. Therefore, it is imperative to map out

the reachable set (minimum height) achievable using SRP and Drag. Two potential ways

to conduct this analysis are analyzing the eigenvalues of the accessibility matrix (defined in

Eq. (4.14)) and performing a modal decomposition of the system dynamics [30, 164].

(3) Extend the Stochastic guidance to hardware in the loop demonstration: The

Stochastic Distributed Motion Planning presented in Chapter 6 assumes that measurements

are received at a constant frequency; Therefore, the covariance matrix, which is continuously

updated, remains bounded. Although realistic, this assumption is used in place of hardware-

in-the-loop implementation, where the collected measurements reflect changes in the system.

Sampling actual measurements will allow for updating the mean of the state distributions

and further constrain the states of the system. One can anticipate seeing less conservative

solutions in the hardware-in-the-loop implementation. We also proposed in Chapter 5 a

relative filter that could be used to generate the state estimates. It would be interesting

to explore the applicability of such a filter in real-life scenarios and the adaptability of the

guidance algorithm to other navigation algorithms.
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Appendix A

Equivalence Between Geodesic and Euler-Lagrange Equation

The Euler-Lagrange equations for an n-dimesional manifold are written as

d

dt

(
L(~x, ~̇x)

∂ẋi

)
=
∂L(~x, ~̇x)

∂xi
(A.1)

Here, the Einstein summation convention applies and summation is implied over repeated indices

that occur as a subscript and superscript pair. xi and ẋi are the ith local coordinate of representation

of ~x and ~̇x, respectively. The Lagrangian of our problem is the length of the curve ~γ on the

Riemannian manifold M and is written in terms of local coordinates as

L(~x, ~̇x) =
1

2
gikẋ

iẋk (A.2)

where gik are the components of the Riemannian metric G. Plugging Eq. (A.2) into Eq. (A.1)

yields the following expressions:

d

dt

(
∂(1

2gmkẋ
mẋk)

∂ẋi

)
=
∂(1

2gmkẋ
mẋk)

∂xi

=⇒ gikẍ
k +

∂gik
∂xm

ẋmẋk =
1

2

∂gmk
∂xi

ẋmẋk

=⇒ gikẍ
k +

1

2

(
∂gik
∂xm

+
∂gim
∂xk

− ∂gmk
∂xi

)
ẋmẋk = 0

=⇒ ẍi +
1

2
gij
(
∂gjk
∂xm

+
∂gjm
∂xk

− ∂gmk
∂xj

)
ẋmẋk = 0

=⇒ d2xi

dt2
+
dxm

dt
Γimk

dxk

dt
= ∇~̇x~̇x = 0

Here Γimk = 1
2g
ij
(
∂gjk
∂xm +

∂gjm
∂xk
− ∂gmk

∂xj

)
and the scalars gij are the components of the inverse Rie-

mannian metric G−1 (i.e., gijgjk = δik, where δik = 1 if i = k and δik = 0 if i 6= k).



Appendix B

Lyapunov Feedback Tracking Control

Let the ~δX = [ ~δr ~δv]ᵀ be the tracking error between the deputy’s states and the reference

state to be tracked. Let ~δa denote the acceleration error. The candidate Lypunov function can be

defined as follows:

V( ~δr, ~δv) =
1

2
~δvᵀ ~δv +

1

2
~δrᵀ[k] ~δr (B.1)

where ~δr(t) = ~ri(t)−~r∗(t, smax) is the difference between the instantaneous position of the deputy

~ri(t) and the desired position ~r∗(t, smax). Likewise, ~δv(t) = ~vi(t)−~v∗(t, smax) is deviation between

the instantaneous velocity ~vi(t)and the desired velocity ~v∗(t, smax). The derivative of Eq. (B.1) is

given by the following expression:

V̇ = ~δvᵀ
(
~δa+ [K] ~δr

)
(B.2)

where ~δa is the difference between the instantaneous acceleration of the deputy and the acceleration

along the optimal path. By setting the time derivative of the Lyapunov function to d
dtV ( ~δr, ~δv) =

− ~δvᵀ[P1] ~δv, one obtains the following expression:

V̇ = − ~δvᵀ[P] ~δv (B.3)

=⇒ ~u = − ~δa− [P] ~δv − [K] ~δr (B.4)

The control matrices [K1] and [P1] are the sensitivity of the controller to deviation in position and

velocity, respectively.



Appendix C

Meaning of Chance Constraints

let a,x ∈ Rn, c ∈ R, and ε ∈ [0.5, 1]. If x ∼ N (x̄,Σ), then γ = aᵀx ∼ N (γ̄,Γ) where

γ̄ = aᵀx̄, and Γ = aᵀΣa. The probabilistic expression

Pr (γ ≤ c) =
1√

2π
√

Γ

∫ c

−∞
exp

(
−(γ − γ̄)ᵀ Γ−1 (γ − γ̄)

2

)
dx (C.1)

Let γ = Γ
1
2 z + γ̄. It is trivial to show that z ∼ N (0, 1). Substituting every value γ in

Eq.(C.1) of by the corresponding z yields:

Pr (γ ≤ c) =
1√
Γ

1√
2π

∫ Γ−
1
2 (c−γ̄)

−∞
exp

−
(

Γ
1
2 z + γ̄ − γ̄

)ᵀ
Γ−1

(
Γ

1
2 z + γ̄ − γ̄

)
2

Γ
1
2dz

=
1√
Γ

1√
2π

∫ Γ−
1
2 (c−γ̄)

−∞
exp

(
−z

ᵀz

2

)
Γ

1
2dz

=
1√
2π

∫ Γ−
1
2 (c−γ̄)

−∞
exp

(
−z

ᵀz

2

)
dz (C.2)

= FX
(

Γ−
1
2 (c− γ̄)

)
Note that the CDF of the standard Gaussian distribution FX(z) = 1√

2π

∫ z
−∞ exp

(
− zᵀz

2

)
dz is

invertible. The probabilistic constraint

Pr (aᵀx ≤ c) ≥ ε ⇐⇒ FX
(

Γ−
1
2 (c− γ̄)

)
≥ ε

⇐⇒ c− γ̄ ≥ F−1
X (ε)

√
Γ

⇐⇒ aᵀx̄+ F−1
X (ε)

√
aᵀΣa ≤ c (C.3)



Appendix D

Proof of the Lie Rank Condition for 6DoF Fuel-Free Motion Planning

(1) Submatrix ∆21:

∆21 =

[
i1 i2 i3

]
=


i1 0 0

0 i2 0

0 0 i3

 (D.1)

where i1, i2, and i1 are the principal axis moments of inertia. The determinant ∆21 is

det(∆21) = i1i2i3 6= 0 =⇒ rank(∆21) = 3

(2) Submatrix ∆12:

∆12 = [I]
[
∂ ~̇σ
∂ ~ω

]
=

1

4
[I]B(~σ) =

1

4
[I]
(
(1− ~σᵀ~σ)[I3×3 ] + 2[σ̃] + 2~σ~σᵀ) (D.2)

The determinant of ∆12 is

det(∆12) =
i1i2i3

(
σ2

1 + σ2
2 + σ2

3 + 1
)3

64
6= 0 ∀~σ =⇒ rank(∆12) = 3

(3) Submatrix ∆43:

∆43 =

[
∂δ~a

s

∂~σ

]
∆12 (D.3)

[
∂~a

s

∂~σ

]
= − Ps

md
Ad

[ (
(1− αs) r̂ + 2

(
αsn̂

ᵀ
3r̂ +

αd
3

)
n̂3

)
r̂ᵀ+

n̂ᵀ
3r̂
(

2
(
αsn̂

ᵀ
3r̂ +

αd
3

) [
I3×3

]
+ 2αsn̂3r̂

ᵀ
) ] [∂n̂3

∂~σ

]
(D.4)
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The matrix
[
∂n̂3

∂ ~σ

]
is of rank 2, and its right null space is n̂3. The matrix

[
∂~a

s

∂ ~σ

]
is full rank

if the position of deputy relative to the sun has a component in the plate normal direction

(i.e., n̂ᵀ
3r̂ 6= 0⇔ ~a

s

B
6= 0). Finally, rank

([
∂~a

s

∂ ~σ

])
= 3 =⇒ rank (∆43) = 3
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