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AN EXPLORATION INTO OPTIMAL MULTI-SPHERE METHOD
SPHERE POPULATION FOR ELECTROSTATIC INTERACTION

Himanshi Singhal∗, Trevor Bennett†, and Hanspeter Schaub‡

The Multi-Sphere Method provides an ability to model electrostatic interaction be-
tween spacecraft in orbit. However, no automated method exists for the sphere dis-
tribution which motivates exploration into sphere distribution algorithm research.
This study distributes spheres over a representative solar panel to investigate sev-
eral proposed methods of optimal sphere placement. The optimum is defined by
the smallest error between the capacitance computed using the proposed meth-
ods and finite element method(FEM) values. Proposed are the various distribution
methods, wave, simple grid and nested box method. Simple grid method involves
a large number of spheres making it unreliable. Nested box method seems to be
the most promising method as it has a sphere distribution more representative of
the FEM charge distribution. It further allows more control over the setup param-
eters such as density of nested boxes, which makes it better than others. Some
equations are still in development for this method. To pursue this method, this is
broken down into a smaller version and is discussed as single box method, which
will later be further modified to have multiple nested boxes.

INTRODUCTION

The growing defunct satellite and orbital debris population poses a threat to current and on-
going Earth-orbiting infrastructure. Therefore, it is of paramount interest to consider methods for
reducing/re-orbiting the debris. Active debris removal (ADR) is a primary strategy for reducing
the amount of orbital debris. Several methods such as harpoons, nets, and electrostatic interaction
are considered.2 This study further investigates into the electrostatic interaction removal strategy.
The FEM yields better accuracy while taking more computational time. Therefore surface Multi
Sphere Model(MSM) is used to enable faster than real-time implementation of electrostatic inter-
actions keeping the accuracy and computation time in mind.4 This approximates the electrostatic
interactions between the rigid spacecraft bodies as a collection of spherical conductors dispersed
throughout the respective craft.4 A rigid spacecraft is shown with a collection of spheres dispersed
in figure 1.

There are various challenges involved when it comes to using MSM. For instance, having more
number of spheres adds more fidelity to the system simultaneously making it more computationally
expensive. Therefore, placement of spheres is really an important aspect of study to get the best
possible solution using the method. This study investigates several sphere distribution methods to
get the most approximate sphere distribution to the real charge distribution. In general, spacecraft
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Figure 1. Conceptual Depiction of Multi Sphere Method4

have rectangular solar panels. The simple geometry and widespread use of a rectangular solar
panel provides a suitable test geometry for the proposed sphere population optimization and is
considered here. Prior work by Stevenson and Schaub show that sphere population on a sphere are
achieved by the golden spiral.4 Using the golden spiral, the optimal packing parameter γ is shown to
converge to a value of 0.8454, which is used as the constant value in all the methods explored in this
study. Constant packing parameter reduces the system complexity and makes it feasible to find the
radius sphere R using equation 1. This study is a first exploration into generic sphere distribution
characteristics and provides an initial foundation for sphere distribution automation.

ERROR AND OPTIMALITY

The performance measure for the proposed distribution methods is the difference between the
computed capacitance compared to the FEM capacitance. The relative error determines how good
a method is relative to FEM. In order to be as close as possible to the real charge distribution, the
relative error is desired to be within the range of ±5%. For comparison, the capacitance of a solar
panel with a length of l = 3 meters, a breadth of b = 1 meters, and a thickness of t = 0.01 meters
is given as 76.4678 ∗ 10−12 Farad using the Maxwell 3D electrostatic FEM software package.

METHODS

The controls of the system depend on the electrostatic forces and torques acting on it, the individ-
ual charge qi is required to compute using different sphere distributions. The charge on each sphere
is found using the prescribed electrostatic voltage and individual sphere radius R. Equation 2 is
used to find the charge qi on each individual sphere where the sphere radius R is found using the
packing parameter γ and n in equation 1. Note that VA is the prescribed voltage on all the spheres
in the model while the external sphere is held at VB . The method does not have the capability of
varying the voltages as it increases the complexity of the system. Also, keeping the voltage constant
is consistent with modeled conducting sphere which will be kept at a uniform and constant voltage
of 30 kV. The value of coulomb’s constant k is 8.99 ∗ 109 N.m2/C2. The other parameter which is
used in all the methods is the packing parameter and the value chosen for this is γ = 0.8454 for all
the methods.4 This is defined as the ratio of the area occupied by the total sphere distribution and
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the area of the object. The chosen value for γ is the converged optimal value for the Golden Spiral
Method and is kept constant in the current setup of algorithm.

R =

√
LBγ

n ∗ 4π
(1)

Vi =
kcqi
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(2)

The capacitance of the solar panel is computed using the charges qi on all the spheres and the
prescribed voltage. The equation4 used to find capacitance is

V = C−1q (3)
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In C−1, the distance is defined as ri,B = d− ri.4

A variety of methods were developed to look more into distinct charge distribution methods to
find the best possible computationally economic solution. All the methods are discussed in detail
below.

Wave method

The wave method consists of distributing spheres on a sine/cosine wave within the object. Given
an input number of waves and spheres, the individual sphere radius is obtained using Eq. 5 with a
packing parameter of γ = 0.8454. The number of spheres n is defined by the user. Equations 6
and 7 are used to find the x and y coordinates of the system using the number of waves nwave and
panel dimensions. Figure 2 shows the sine curve with 10 waves.

R =

√
LBγ

n ∗ 4π
(5)

x = 0 :
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2
B sin(
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L
) (7)

This method yields the capacitance relative error of about 4% with 40 spheres on 10 sine waves
keeping the error within bounds. However, this method does not model the real charge distribution
well as it is unable to capture the corner and edge effects of charging. This method had very few
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Figure 2. Distribution of spheres over the solar panel using the wave method

input parameters which reduced the complexity of the system substantially. Therefore it helped in
gaining an insight into how different distribution can still give the values within the acceptable range.
Figure 3 shows the error plotted with respect to the number of spheres onto the panel. The results
from this method lead to different methods to explore the behavior of the distribution patterns.

Simple Grid method

Using the insight gained by the wave method, a new method was developed that utilizes a grid
distribution. This method consists of making a grid on the panel. Given the initial number of rows
nr and columns nc as the input parameters, number of spheres n is approximated as the product of
nr ∗ nc. Similar to the wave method, the radius then is defined using Eq. 8. Since it is a simple grid
inside the panel, the equal spacing is defined as Eqs 9 and 10 .

R =

√
LBγ

n ∗ 4π
(8)

δx =
L

nc
(9)

δy =
B

nr
(10)

The algorithm designed to do this computation is automated to change the number of rows,
columns and spheres based on the feedback error it gets from the simulation. However, it is not
fully automated to do everything on its own as of now and is one of the future goals of this research.
Therefore, it allows the user to choose any number of rows, columns and spheres. The algorithm
can update these numbers based on the relations mentioned above in Equations 8, 9, 10 to get the

4



Figure 3. Relative error with respect to Number of spheres for wave method

right set of numbers to produce the relative error within the acceptable range. Figure 4 illustrates
the fashion in which the grid is formed.

Figure 5 shows the relative error plotted against the number of spheres. It is very evident from
the plot that it is possible to be within the maximum error range which is a plus for this model. But,
the drawback this model is the large number of spheres. This method takes somewhere between
250 to 300 spheres to be very close to −5%, which is a lot of spheres on a 3m*1m panel. Having
these many number of spheres on a small panel like that makes the method very inefficient and
computationally expensive.

Nested Box method

Again, after getting unsatisfactory results from the simple grid method either, the next method
developed was nested box method. As the name indicates, it consists of multiple boxes nested
together in a panel. This method seems very promising as it can account for a lot of parameters to
model the panel. But since it had a lot of parameters to deal with, it increased the complexity of the
problem beyond our ability to handle at once. Therefore, this problem has been broken down into
small chunks such as modeling a single box inside the panel for now. This is where the research is
currently at. Once the single box method works, then it can be used to replicate to model multiple
nested boxes with varying separation between them.

Single Box method This method uses only one box inside the panel for modeling it. Similar to
above methods, this also consists of finding the radius of the spheres using the number of spheres n
as an input to the system.

R =

√
LBγ

n ∗ 4π
(11)

Since the algorithm is not fully automated, n is redefined using the sets of equation given below.
Here kb and kl are the packing parameter for the breadth and length respectively, which both are
chosen to be 0.84 as of now. It can be changed in the simulation if needed. The current work in

5



Figure 4. Distribution of spheres over the solar panel using the Simple Grid Method

this method includes finding the optimum kb and kl values to optimize the system results. Variables
ns,b and ns,l defines the number of spheres on each length and breadth of the box. Hence sum of
twice of each ns,b and ns,l gives the new total number of spheres it should have given the radius and
dimensions of the box.

ns,b =
B ∗ kb
2R

(12)

R =

√
L ∗ kl
2R

(13)

nnew = 2(ns,b + ns,l) (14)

Therefore, the new number of spheres is updated in the algorithm using the difference between
the initial number of spheres and the number of spheres found by the equations. This is repeated
until the relative error is within the given range.

Figure 6 shows a box inside the solar panel with the updated number of spheres. Figure 7 is
the plot of relative error against the number of spheres. This plot shows that changing the number
of sphere merely by 1 affects the relative error by a significant amount and converging to a smaller
value. These results seems promising because replicating this for multiple nested boxes with varying
separation distances between them would help enable to model the real charge distribution on the
panel, which is more concentrated on the outer sides and edges of the box.

Multiple Boxes Once the single box method works and outputs the results within error bounds,
the method can be modified to accommodate multiple nested boxes. The method is planned to
have the capability of controlling the distance between the nested boxes to replicate the real charge
distribution. Since the charges accumulate on the corners and edges of an object, the distribution
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Figure 5. Relative error with respect to Number of spheres for simple grid method

will be denser at the edges and sparse in the center. Below are some proposed equations that will be
used for this method in future. The input parameters to this system will be the number of spheres
n and dimensions of the panel. Using γ, the sphere radius R can be found using Eq 1. The model
will have an even number of boxes making it easier to deal with in pairs. The pairs are defined as
outer box being the odd numbered box and inner box being the even numbered box in each pair.
The number of spheres that will be placed on each box is found using the equations 15 and 16. The
number of boxes nboxes then are defined using the the total number of spheres using equation 17,
where n is the sum of nouter and ninner. The method is still in development and therefore other
plotting parameters aren’t fully defined yet. But it will all be done in a similar fashion to the single
box method.

nouter = 2(L+B) (15)

ninner = 2(L+B − 1) (16)

nboxes =
n

4(L+B)− 2
(17)

CONCLUSION

In an attempt to find a better charge distribution model to be as close as possible to the FEM
value while keeping few parameters constant, three more methods were developed and were looked
more into in details. One of the goals kept in mind throughout the process was to keep the system as
simple as possible by having least number of spheres, input parameters etc. The wave method is the
simplest way but it’s simplicity costs on the other hand. It does not have the capability of modeling
the real charge distribution. Although this method did not replicate real charge distribution but still
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Figure 6. Distribution of spheres over the solar panel using the Single Box Method

gave a very useful insight into the distribution pattern keeping the relative error within the desired
range. The simple grid method is the next simplest method which gave good results in terms of
the error range but the drawback it had was the enormous number of spheres making this method
inefficient and expensive. The third proposed method is the nested box method, which currently
seems the most promising method as it accounts for a variety of parameter controls simultaneously
increasing the complexity of the system. Therefore, this is broken down into a simple problem
currently dealing with only one box which later can be replicated to have multiple nested boxes.
The single box produced good results and the nested box method is expected to produce better
results with all the parameters accounted in to optimize the system. Future work of this research is
to develop the nested box method followed by making the algorithm more automated if this method
gives the charge distribution model close enough to FEM within the error bounds. If not, then keep
looking into more ways of charge distribution to come up with the best possible method.

REFERENCES
[1] L. E. Z. Jasper, C. R. Seubert, H. Schaub, V. Trushlyakov, and E. Yutkin, “Tethered Tug for Large Low

Earth Orbit Debris Removal,” AAS/AIAA Spaceflight Mechanics Meeting, Charleston, South Carolina,
Jan. 29 – Feb. 2 2012. Paper AAS 12-252.

[2] E. Hogan and H. Schaub, “Space Debris Reorbiting Using Electrostatic Actuation,” AAS Guidance and
Control Conference, Breckenridge, CO, Feb. 3–8 2012. Paper AAS 12–016.

[3] T. Bennett and H. Schaub, “Touchless Electrostatic Three- Dimensional Detumbling of Large Geo De-
bris,” AAS/AIAA Spaceflight Mechanics Meeting, January 26-30 2014.

[4] D. Stevenson, “Optimization of Sphere Population for Electrostatic Multi Sphere Model,” 12th Space-
craft Charging Technology Conference, Kitakyushu, Japan, May 14–18 2012.

8



Figure 7. Relative error with respect to Number of spheres for Single Box method
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