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Magnetorquers represent a promising method for controlling CubeSat attitude. Both mag-

netorquers and CubeSats are used primarily in Earth orbit. Magnetorquers can be useful for

controlling spacecraft attitude due to their low mass, volume, and power requirements, and there-

fore represent an intriguing option for future CubeSat missions beyond Earth. A first-order analysis

is presented on the feasibility of controlling CubeSat attitude in lunar orbit using a magnetorquer

to de-spin the spacecraft about one axis. This first-order analysis examines the time required to

de-spin the spacecraft from 1°/s to 0.01°/s for a variety of altitudes, inclinations, and eccentricities,

using LADEEs orbital trajectory as a baseline. Due to the weak and erratic nature of the moons

magnetic fields, the de-spinning process is possible, but requires a sufficiently long time of roughly

50 days depending on the exact orbit.
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Chapter 1

Introduction

1.1 Background and Motivation

CubeSats are small satellites, usually around 1 L in volume, designed to accomplish a specific

task in orbit[1]. They have become popular in the last decade because they are inexpensive to

manufacture and launch. So far, CubeSats have primarily been considered for applications in Low

Earth Orbit (LEO), though Vermont Technical College has entered NASA’s CubeQuest program

to launch a CubeSat into lunar orbit.1

As a fully functional spacecraft, each CubeSat contains every subsystem of a larger satellite,

but their small size presents a major technical challenge for spacecraft designers. Traditional

methods of attitude control, like reaction wheels and gas thrusters, occupy valuable volume that

could otherwise be used for scientific payloads or telecom packages. Many CubeSats instead use

a magnetorquer for attitude control, because magnetorquers take up much less space than other

attitude control methods[2].

Magnetorquers have an extensive history of attitude control in LEO, but have never been

used in lunar orbit. The moon’s magnetic fields are weaker and more irregular than Earth’s dipole

magnetic field, but a magnetorquer could in theory control attitude even in the erratic lunar

environment[3]. This project investigates the feasibility of de-spinning a lunar-orbiting CubeSat

using magnetorquers. It was inspired by an effort to replicate the Lunar Atmosphere and Dust

Environment Explorer (LADEE) mission using a constellation of CubeSats. 2

1 Vermont Technical College CubeSat Laboratory, http://www.cubesatlab.org/ [Accessed 2015-03-28]
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Figure 1.1: NASA LADEE spacecraft in lunar orbit

This paper provides a first-order approximation on the length of time required for the CubeSat

to reach a stable attitude. This analysis first models lunar magnetic fields using spherical harmonics.

Then the spacecraft’s position in orbit relative to the moon is calculated and the magnetic field at

that location is determined. The analysis collects magnetic field data along the spacecraft’s path and

integrates over time to determine the spacecraft’s new attitude. For this first order approximation,

the model will determine the time required for a satellite to de-spin from 1 °/s to 0.01 °/s using

only the moon’s magnetic fields, neglecting an influence from terrestrial or solar magnetic fields.

The primary emphasis will compare different altitudes, inclinations, and eccentricities to a baseline

orbit modeled on LADEE’s orbit. The model assumes that the spacecraft is oriented such that the

torque applied by the magnetic field at each point in the orbit is maximized. As such, this analysis

produces the minimum time necessary for CubeSat de-spin to prove feasability. The conclusion

discusses methods for future work whereby this model can be refined.

2 Image Credit: NASA Ames / Dana Berry, http://www.nasa.gov/content/
ladee-above-the-lunar-surface-artists-concept/
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1.2 History of Magnetorquers in Orbit

Earth’s magnetic fields have affected spacecraft attitude since Vanguard I in 1958, which

was de-spun by 2.5 rps in its first two years in orbit. In 1960, Transit 1B intentionally used the

Earth’s magnetic fields and an on-board dipole to de-spin while aligning its axis of symmetry along

the Earth’s magnetic field lines[2]. Full 3-axis attitude control using magnetorquers was theoreti-

cally demonstrated by Wang, Shtessel, and Wang in 1998[4]. The development of CubeSats in the

new millenium has increased demand for a low-mass, low-power, low-maintenance attitude con-

trol system, and magnetorquers have frequently been enlisted to meet that need. CubeSats using

magnetorquers for attitude control include the University of Colorado’s DANDE3 and Stanford

University’s Gravity Probe B4 . Companies like Andrews Space5 and Zarm Technik6 have devel-

oped lines of magnetorquers for a range of spacecraft applications and Zarm in particular specializes

in magnetometers and magnetorquers. So far, magnetorquers have primarily been considered for

Earth-orbiting spacecraft.

1.3 Research Overview and Scope

This project arose out of a goal to replicate the LADEE mission using a constellation of lunar

CubeSats and represents an initial analysis for CubeSat attitude control in lunar orbit. As a first

order analysis, several simplifying assumptions were made to establish feasibility. The goal of the

research is to estimate the time required to de-spin a CubeSat in lunar orbit using magnetorquers;

that is, full 3-axis attitude control is not considered here. Specifically, the objective of this research

is to quantify the amount of time required to de-spin a CubeSat from 1°/s to 0.01°/s. The analysis

is conducted assuming the spacecraft is a 10cm x 10cm x 10cm cube spinning only around its major

axis, so the same spacecraft face points towards nadir at all times.

3 Colorado Space Grant Consortium, http://spacegrant.colorado.edu/about-dande/spacecraft [Accessed 2015-03-
28]

4 Stanford University Gravity Probe B, https://einstein.stanford.edu/TECH/technology2.html [Accessed 2015-
03-28]

5 http://andrews-space.com/torque-rods/ [Accessed 2015-02-04]
6 http://www.zarm-technik.de/ [Accessed 2015-02-04]
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Figure 1.2: Orientation of the CubeSat, where the same face always points toward nadir

The spacecraft is assumed to be homogeneous, so the center of gravity is located at the

center of the cube, and the magnetorquer passes through the spacecraft center of gravity. The

moon is considered a point mass for its gravitational fields so that two-body conditions apply.

The magnetorquer is assumed to work ideally and interact perfectly with the lunar magnetic fields

without interference from any on-board components. Finally, the moon’s magnetic field is assumed

to be constant with time, and no effects from Earth’s magnetic field or the sun are considered.

The goal of this research is to estimate the time required to de-spin the CubeSat. The scope

of the project is to analyze differing values for semi-major axis, eccentricity, and inclination, while

keeping magnetorquer strength constant. The project uses the LADEE mission as a baseline and

uses Zarm Technik’s 10 cm magnetorquer for reference7 .

7 http://www.zarm-technik.de/downloadfiles/ZARMTechnikAG CubeSatTorquers web2010.pdf [Accessed 2015-
02-04]
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1.3.1 Modelling Lunar Magnetic Fields

Earth’s moon is geologically inactive, so its core no longer generates a magnetic dynamo.

Remnant magnetism exists in patches of the moon’s crust, but they do not follow the familiar

dipole pattern of Earth’s magnetic field[5]. Instead, the lunar magnetic field is weak and erratic.

While Earth’s magnetic field strength is roughly 50,000 nT, the moon’s magnetic field strength

sporadically reaches only 100 nT[6]. The moon’s magnetic fields, unlike the Earth’s, cannot be

modeled as a planetary dipole, but spherical harmonics present a way to model the magnetic field

vectors throughout the CubeSat’s orbit. Spherical Harmonics represent the Legendre Polynomials

that are a solution to Laplace’s Equation. The coefficients for the Legendre Polynomials must be

collected experimentally. This report uses correlated spherical harmonics coefficients that Purucker

and Nicholas of NASA Goddard Space Flight Center compiled using data from the Lunar Prospector

mission[3].

1.3.2 Orbit Propagation

An orbit can be fully defined using Kepler’s five orbital elements: semi-major axis (a), eccen-

tricity (e), inclination (i), right ascension of the ascending node (Ω), and argument of perigee (ω).

Right ascension and argument of perigee locate the plane of the orbit in inertial space. For this

analysis, only the spacecraft position relative to the lunar surface is considered, so right ascension

and argument of perigee are set as constant. More precisely, right ascension of the ascending node

is replaced by longitude of the ascending node, and is set to 0°, and argument of perigee is also

set to 0°. This project varies a, e, and i, while keeping Ω and ω fixed above the near side of

the moon. After the orbit is defined, the spacecraft location within the orbit is determined by its

true anomaly, ν, which varies non-linearly with time. The orbit is propagated through time using

Kepler’s Equation to determine ν as time increments. With the spacecraft position defined in time,

the Keplerian Element Set can be converted to give the spacecraft’s location within a Cartesian or

Spherical coordinate system with an origin at the center of the moon. This allows for the magnetic
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field vector to be calculated at each spacecraft position.

1.3.3 Magnetorquer Sizing

The Magnetorquer is how the spacecraft interacts with the moon’s magnetic fields. Magne-

torquers are electromagnets that use a set of perpendicular coils to control 3-axis attitude. When a

current is passed through the coil, the magnetorquer produces a magnetic field that interacts with

the external field to create a moment on the spacecraft. The size of the moment created depends

on the strength of the external field, the number of coils, and the current through the coils[7]. For

this analysis, it is assumed that the magnetorquer works ideally and no consideration was given to

the battery size required to power the magnetorquer. However, the magnetorquer itself was subject

to size constraints: each coil can be no longer than 10 cm so that it fits in a 1U CubeSat.



Chapter 2

Modelling Lunar Magnetic Fields

2.1 Research Goal

The moon’s magnetic field can be approximated as a combination of spherical harmonics,

which are the three dimensional solutions to Laplace’s Equation. The goal of this project is to

create in MATLAB a working 3-dimensional model of the moon’s magnetic field using sperheical

harmonics. The model will be validated when it produces a 3D representation of the moon’s

magnetic fields that match Mark Wieczorek’s image of the Lunar Prospector data.

2.2 Magnetic Field Models

The two main magnetic field models are the dipole model and the spherical harmonics model.

The dipole model imagines the body as a single large magnet with a north and south pole. Magnetic

field lines run parallel to each other from the south pole to the north pole and the field is strongest

near the surface of the body and near the poles. Earth and the Sun have active internal dynamos

and can be roughly modelled as dipoles. The spherical harmonic model poses a spherical isosurface

for the magnetic field with irregular protrusions where the magnetic field is stronger. The size and

shape of the protrusions are governed by a set of coefficients and resemble the electron shells within

an atom. Since the moon has irregular patches of magnetism dotting its surface, its magnetic field

is best modelled using spherical harmonics.
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2.3 Spherical Harmonics Model

Spherical harmonics were introduced by Laplace in 1782 and are solutions to Laplace’s

Equation[8]:

∇2φ = 0 (2.1)

The magnetic field vector can be calculated from the gradient of the local potential:

B = −∇V (2.2)

As stated by Davis[9], V is given by

V (r, θ, φ) = a

k∑
n=1

(
a

r
)n+2

n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (θ) (2.3)

Here, r, θ, and φ are spherical coordinates, a is the radius of the moon, g and h are experimentally

derived coefficients, and Pmn (θ) is the Schmidt quasi-normalized associated Legendre Polynomial.

Legendre Polynomials are orthogonal functions that satisfy Laplace’s Equation and can be calcu-

lated using Rodrigues’ formula

(1− 2vx+ x2)−1/2 =
∞∑
n=0

Pn(v)xn (2.4)

Associated Legendre Polynomials are related to normal Legendre Polynomials by

Pn,m(v) = (1− v2)1/2m dm

dvm
(Pn(v)) (2.5)

Normalization is the process that uses a set of linearly independent functions to make an orthogonal

basis with respect to a weighting function. There are two common normalization methods: Gaus-

sian normalization and Schmidt quasi-normalization. Historically, Schmidt quasi-normalization has

been used for magnetic field modelling[3], a convention that will be followed here. The normalized

Legendre polynomial is related to the associated Legendre polynomial by

Pmn = [
2(n−m)!

(n+m)!
]1/2Pn,m (2.6)
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The magnetic field vector is calculated using these normalized associated Legendre Polynomials:

Br = −∂V
∂r

=

k∑
n=1

(
a

r
)n+2(n+ 1)

n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (θ) (2.7a)

Bθ =
−1

r

∂V

∂θ
= −

k∑
n=1

(
a

r
)n+2(n+ 1)

n∑
m=0

(gmn cosmφ+ hmn sinmφ)
∂Pmn (θ)

∂θ
(2.7b)

Bφ =
−1

r sin θ

∂V

∂φ
=
−1

sin θ

k∑
n=1

(
a

r
)n+2(n+ 1)

n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (θ) (2.7c)

Note that gmn and hmn are also normalized using Schmidt quasi-normalization[9].

2.3.1 NASA Lunar Prospector Dataset

Lunar Prospector was launched in 1998 and orbited the moon for over a year at very low

altitudes. During its extended mission, Lunar Prospector was lowered to an altitude of 30 km, which

allowed it to get much higher resolution of the moon’s magnetic and gravitational fields.1 Purucker

and Nicholas from the Goddard Space Flight Center present the full set of Schmidt-normalized

coefficients, which were used in this project.

2.3.2 Implementation in MATLAB

The algorithm for implementing Purucker and Nicholas’ coefficients to produce a model of

the moon’s magnetic fields borrows heavily from the algorithm and code developed by Jeremy

Davis. Both are designed to load Schmidt-normalized spherical harmonic coefficients. Thus, the

code simply increments through n and m to sum the values of Br, Bθ, and Bφ for the values of

r, θ, and φ specified by the user in the main function.The code converts the magnetic field from

spherical coordinates to Cartesian coordinates and plots the resulting magnetic field vectors on a

3-D plot. The implementation is verified because the resulting image matches the image produced

by Davis for Earth’s magnetic field. Davis performed his own validation and the model is further

validated for the lunar data by inspection with the image produced by Wieczorek.

1 LADEE mission and trajectory design, http://www.spaceflight101.com/ladee-mission-and-trajectory-design.htm
[Accessed 2015-03-03]
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(a) Jeremy Davis’ Isosurface Plot of Earth’s Magnetic
Field[9]

(b) Code-generated vector field of Earth’s Magnetic Field

Figure 2.1: Comparison between Davis magnetic field and code-generated magnetic field at 600 m

As expected, the magnetic field vectors around the Earth run primarily parallel to the Earth’s

surface and are stronger at the poles. Closely inspecting the magnetic field magnitude shows that

the minimum magnitude occurs just south of the equator, where the South Atlantic Anomaly occurs.

The general code architecture is validated, but the specific case using Purucker’s coefficients needs
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to be verified as well.

(a) Mark Wieczorek’s plot lunar surface magnetic field
strength

(b) Code-generated vector field of Lunar Magnetic Field at
an altitude of 0 km

Figure 2.2: Comparison between Wieczorek lunar magnetic field and code-generated lunar magnetic
field at 0 km

The moon’s magnetic fields are expectedly erratic and generally point away from the lunar

surface. On the right side of the image, the vectors are noticeable longer than anywhere else,

corresponding to the strong magnetic field on the far side of the moon seen on Wieczorek’s plot.2

The magnitude of the magnetic field vectors ranges from approximately 2 nT to 24.5 nT. This

is slightly less than what is shown in Wieczorek’s plot, but the difference is because the code-

2 http://upload.wikimedia.org/wikipedia/commons/3/37/Moon ER magnetic field.jpg Used with permission.
[Accessed 2015-03-01]
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generated plot has fewer data points and less resolution. It is likely that it did not sample the

highly magnetic peaks visible in Wieczorek’s plot. Nevertheless, the general structure of the field

and the higher magnitude vectors clustered on one side of the sphere verify that the MATLAB

code runs properly.



Chapter 3

Lunar Orbit Parameters and Spacecraft Location

3.1 Research Goal and Assumptions

Spherical harmonics determine the strength of the moon’s magnetic field at all points in

lunar orbit. Analyzing the magnetic torque acting on the spacecraft at a given time requires

knowing where the spacecraft is relative to the center of the moon. This analysis uses the same

selenocentric-fixed orbital frame used to orient the spherical harmonics.

3.2 Orbit Propagation Using Kepler’s Equation

In this first-order analysis, the moon and CubeSat are assumed to be in a two-body relation-

ship. This assumes that the mass of the spacecraft is negligable, the coordinate system is inertial,

the spacecraft and the moon are spherically symmetric and uniformly dense, and no other forces

act on the spacecraft or the moon[10]. The moon’s gravity field is treated as a point mass and the

J2 effect is ignored. These assumptions are made to focus on the attitude of the satellite, rather

than the magnetic field effects on the orbit itself. The Keplerian orbital elements that define the

orbit are: semi-major axis, eccentricity, inclination, longitude of the ascending node, argument of

perigee, and true anomaly. Longitude of the ascending node and argument of perigee are set to

0°for simplicity. The analysis uses LADEE’s orbit1 as a baseline:

a = 1791 km

1 LADEE-Mission and Trajectory Design, http://www.spaceflight101.com/ladee-mission-and-trajectory-
design.html [Accessed 2015-03-03]
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e = 0.0091

i = 157°

Subsequently, e is incremented by 0.055 from 0 to 0.5, i is incremented by 10°from 0°to 90°,

and a is incremented from 10 km to 10,000 km in 10 logarithmic increments. For each orbit, the

spacecraft is given an inital rotation rate of 1°/s and is de-spun until it reaches 0.01°/s. At the

beginning of the simulation, ν is set to 0. Time is incremented by 60 seconds and ν is calculated

again using Kepler’s Problem. Kepler’s Problem uses Mean Anomaly to determine the spacecraft

position in time. True anomaly is related to mean anomaly via eccentric anomaly. Eccentric

anomaly is calculated by:

tan
E

2
=

√
1− e
1 + e

tan
ν

2
(3.1)

Eccentric Anomaly is related to Mean Anomaly by:

M = E − e sinE (3.2)

As time increments, the new Mean Anomaly is calculated by

M = M0 +

√
µ

a3
∆t (3.3)

Note that µ is the gravitational parameter of the moon, 4902.799 km3/s2[10]. The new True

Anomaly is then determined by calculating the Eccentric Anomaly that corresponds to the new

Mean Anomaly and the True Anomaly that corresponds to the new Eccentric Anomaly. The

Eccentric Anomaly must be calculated numerically since Equation 3.2 is non-linear, but when E is

known then ν can be calculated by solving Equation 3.1 for ν. All six Keplerian elements are now

defined for each increment of t and so the spacecraft’s inertial position in cartesian coordinates can

be calculated, which is necessary to correlate the position of the spacecraft to the local magnetic

field. First, the position vector is calculated in the perifocal frame[10]:

rPQW =


p cos ν

1+e cos ν

p sin ν
1+e cos ν

0

 (3.4)
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Here, p is the semi-parameter, which is defined as

p = a(1− e2) (3.5)

The perifocal frame is transformed into the inertial coordinate system with a transformation matrix

as follows:

rXY Z =

∣∣∣∣∣∣∣∣∣∣∣
cos Ω cosω − sin Ω sinω cos i − cos Ω sinω − sin Ω sinω cos i sin Ω sin i

sin Ω cosω + cos Ω sinω cos i − sin Ω sinω + cos Ω cosω cos i − cos Ω sin i

sinω sin i cosω sin i cos i

∣∣∣∣∣∣∣∣∣∣∣
rPQW

(3.6)

3.3 Implementation in MATLAB

A main program was written to cycle through the values for a, e, and i. The main program

calls a subfunciton that calculates the spacecraft position with ν starting at 0. For each time

iteration, ν is updated using Kepler’s Problem as described above, using Newton-Raphson iteration

to solve for Eccentric Anomaly from Mean Anomaly numerically. True Anomaly is updated, and

the spacecraft position is updated and the process begins again with a new time increment. Intially,

this continued for a user-specified time duration, but it was eventually updated to stop whenever

the spacecraft spin rate was below 0.01°/s, as discussed in Chapter 5. The final version of the code,

designed to save time, propagates around 1 orbit and extrapolates the time to de-spin based on

the deceleration experienced over the one orbit. The main function went through inclination first,

then eccentricity, then semi-major axis. It produced three sets of 3-D graphs, representing a vs e,

a vs i, and e vs i.



Chapter 4

Magnetorquer Sizing

4.1 Research Goal and Assumptions

Finally, this investigation analyzes how the lunar magnetic fields interact with the CubeSat

as it orbits the moon. In this spacecraft architecture, the primary interface between the CubeSat

and the lunar magnetic fields occurs in the magnetic torque bars.

4.2 Magnetorquer Operation and Types

There are two main methods for controlling spacecraft attitude using magnetorquers. The

spacecraft attitude can be controlled directly through the interaction between the magnetorquer

and the environment’s magnetic fields, or the magnetorquers can be used to desaturate on-board

reaction wheels. Each method has its advantages. The reaction wheel method can use smaller

magnetorquers and therefore less power to maintain its attitude and is able to absorb larger attitude

perturbations more easily. Direct control has less mass and mechanical complexity because it

does not utilize reaction wheels. It also actively controls spacecraft attitude instead of correcting

perturbations from a desired attitude and is therefore the method that is used for this analysis.

The most common architecture for direct attitude control using magnetorquers is to mount

a set of three torque rods orthogonally so that each one aligns with one of the spacecraft axes.

Each of the rods is wired to create a magnetic field in either direction, depending on the direction

of the current, so that a magnetic field can be generated in any direction. This will be utilized for

this analysis, by assuming that the magnetorquer magnetic field is oriented orthogonal to the lunar
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magnetic field at all times. The torque acting on the spacecraft is

τ = µ×B (4.1)

Here, τ is the torque on the spacecraft, µ is the magnetorquer magnetic field, and B is the local

lunar magnetic field. The magnetic field produced by the magnetorquer is found from Ampere’s

Law to be:

B =
µNI

L
(4.2)

B is the magnetic field, oriented along the direction vector of the magnetorquer, µ is the permeability

of the magnetorquer material, N is the total number of coils in the magnetorquer, I is the current

through the wire, and L is the total length of the magnetorquer. Zarm Technik Magnetorquers

are an industry standard for magnetorquers and have been used on many CubeSats and more

traditional spacecraft, including GOCE and GRACE, so all values are taken from Zarm’s datasheets

on Magnetic Torquers for Micro-Satellites. Zarm magnetorquers use a Nickel-alloy core with a

permeability of 4.4 × 10−4H/m. Their 10 cm magnetorquer model takes a current of 55 mA.

Zarm’s 10 cm magnetorquer has a magnetic dipole moment of 0.5Am2 1 . While varying orbital

parameters, this value is kept constant.

4.3 Implementation in MATLAB

The theoretical CubeSat has one magnetorquer corresponding to each axis, allowing for the

magnetic field to be oriented in any direction. The spacecraft is assumed to be rotating around its

major axis but otherwise fixed in inertial space, so the magnetorquer field is configured such that

the resulting torque vector is along the major axis of the spacecraft as well. The dipole moment

is assumed to be constant at 0.5Am2 in this analysis, though it would vary between 0.5Am2 and

0.707Am2 as the spacecraft rotated. This is implemented in the parameters of the main file while

the orbital parameters are varied. Since only 1-axis attitude control is considered for this feasibility

1 Magnetic Torquers for Micro-Satellites, http://www.zarm-technik.de/downloadfiles/ZARMTechnikAG
CubeSatTorquers web2010.pdf [Accessed 2015-02-04]
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study, this analysis provides an upper bound on the time required to de-spin. A full 3-axis attitude

control system using magnetorquers would require significantly more time to de-tumble.



Chapter 5

Full Model Implementation and Results

All of the analysis in this investigation is done in MATLAB. While varying orbit parameters,

the magnetorquer was as strong as possible, taking up the full 10 cm allocated to it. An industry-

standard magnetorquer can have 250,000 turns in its coil and carry a current of 63 mA[7], leading to

a magnetic moment of 0.5Am2. This value was kept constant while varying the orbital parameters

and was used to calculate the moment acting on the satellite.

The main function in the code iterates through values of a, e, and i. For each combination,

it sets the initial value of ν to 0 and calculated the initial inertial position of the spacecraft. It

calculates the magnetic field at that location using the subfunction derived from code developed

by Jeremy Davis. This allows the torque on the satellite to be calculated. Since the CubeSat is

assumed to be a 10 cm x 10 cm x 10 cm homogeneous cube, the moment of inertia is calculated by

I =
ml2

6
(5.1)

The mass of the CubeSat is assumed to be 1.33 kg, the maximum allowed for a CubeSat[1]. The

resulting moment of inertia is calculated to be 0.0022kgm2 and the angular deceleration of the

spacecraft is calculated using this value by

τ = Iα (5.2)

Time is incremented by one minute, over which the angular acceleration is assumed to be con-

stant. The spacecraft’s angular velocity is updated and the true anomaly is updated using Kepler’s

Problem. The process then begins again with the inertial position being calculated. This process
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is repeated over the course of one orbit and the final angular velocity is compared to the initial

angular velocity. The time required to de-spin is calculated by multiplying the time to complete

one orbit by the number of orbits required to decrease angular velocity from 1°/s to 0.01°/s. It is

assumed that there are no perturbing forces on the spacecraft so the moment it experiences from

the moon’s magnetic fields is constant between orbits. Once the time to de-spin is calculated, in-

clination is incremented by 10°. Once the ten inclination values have been calculated, eccentricity

is inremented by .056. Finally, semi-major axis is incremented logarithmically from 1747.4 km (10

km altitude) to 11737.4 km (10,000 km altitude). The output is a matrix that contains the time

to de-spin in the first column and the corresponding orbital elements in the 2-4 columns. Then,

MATLAB’s 3-D plotting function, plot3, is used to plot the time to despin vs a and e, a and i, and

e and i.

These plots show that the time to de-spin is heavily influenced by the spacecraft’s distance

from the lunar surface. Small values of a and large values of e result in the shortest time to de-spin.

The shortest time to de-spin is 5.02 × 105s (about 5.8 days), which occurs when a = 10 km and

e = 0.5. Unfortunately, the periselene for this orbit is lower than the surface of the moon. The

optimal orbit analyzed that stays above the lunar surface is when a = 1837.4 km and e = 0.11 and

the time to de-spin is 4.0107× 106s (about 46.4 days). The minimum time to despin a spacecraft

in a feasible orbit is in the same order of magnitude up to a = 3891.8 km, where t = 64.2 days, but

when a jumps to 6379.0 km, t = 282.6 days. Using the LADEE orbit baseline, the spacecraft will

despin in 48.6 days, which is reasonably close to the minimum de-spin time.
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(a) Time to Despin vs a and e

(b) Time to Despin vs a and i

(c) Time to Despin vs e and i

Figure 5.1: Variation of time to despin vs orbital parameters



Chapter 6

Discussion and Conclusion

6.1 First-Order Feasibility

The data suggest that de-spinning a spacecraft using magnetorquers and lunar magnetic fields

is feasible. Using magnetorquers that already exist in a homogeneous CubeSat, it takes around 50

days to de-spin from 1°/s to 0.01°/s, depending on the exact orbit. The response is too slow to

provide full 3-axis attitude control at all times, but could be utilized in initial de-spin procedures,

provided sufficient time is allowed. It should also be noted that this first-order analysis represents

the ideal de-spin case and in practice the time required will likely be even greater than 50 days.

Moreover, since other methods of attitude control must be used to maintain full 3-axis control, those

same methods would likely be preferable for the de-spin stage of the mission as well, even though

de-spinning using magnetorquers in lunar orbit is feasible. However, should the LADEE mission be

recreated using CubeSats with magnetorquers, the LADEE orbit can be used with nearly optimal

results. In the first-order feasibility, the LADEE orbit only takes 5 hours longer to de-spin than

the optimal orbit. Future work should be done to analyze the full 3-axis attitude control for both

the LADEE orbit and the optimal orbit.

6.2 Comparison to Other Forms of Attitude Control

Currently, reaction wheels are the most common method of attitude control in satellites

around the moon. LADEE, which this project was meant to emulate, used reaction wheels to

achieve 3-axis stabilization and the SFL CanX CubeSat in Earth oribt also used reaction wheels.
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SFL’s reaction wheels can achieve a torque of 2 mNm[11]. Assuming this moment from the reaction

wheel is constant over time and as the satellite slows down, these 2 mNm reaction wheels can de-spin

a 10x10x10 homogeneous CubeSat from 1°/s to .01°/s in 0.99s, six orders of magnitude quicker than

the fastest possible magnetorquer de-spin. Small on-board chemical thrusters can achieve similar

results, but these are rarely used on CubeSats because of the volume required for the propellant

tanks.

6.3 Future Work

Three orthogonal magnetorquers at the center of gravity of a CubeSat do not provide an ad-

vantage over existing technologies for CubeSats in lunar orbit. However, a potential lunar CubeSat

mission in the future may be volume constrained and find that reaction wheels occupy too much

volume. Additional work could be done to determine whether the external casing of the CubeSat

can be used as a magnetorquer system. This would restore the space advantages magnetorquers

typically provide. However, more work still should be done before launching a magnetorquer-

controlled CubeSat to lunar orbit. In particular, this project assumed the initial attitude of the

CubeSat was oriented to align with the moon’s magnetic fields. Future work should analyze the

impact of different initial spacecraft attitudes, using a Monte Carlo simulation to determine which

initial attitudes are likely to be encountered. This analysis discussed de-spinning the satellite in

1-D to provide a first-order feasibility study. Future work should investigate full 3-axis detumble

feasibility. Work should also be done to analyze the spacecraft orbit more precisely. This analysis

did not consider the moon’s J2 effect or other gravity perturbations, and work should also be done

to investigate the presence of magnetic perturbations on the spacecraft’s orbit.
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