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Thesis directed by Prof. Hanspeter Schaub

A primary source of spacecraft jitter is due to mass imbalances within momentum exchange

devices (MEDs) used for fine pointing, such as reaction wheels (RWs) and variable-speed control

moment gyroscopes (VSCMGs). Although these effects are often characterized through experi-

mentation in order to validate pointing stability requirements, it is of interest to include jitter in a

computer simulation of the spacecraft in the early stages of spacecraft development. An estimate of

jitter amplitude may be found by modeling MED imbalance torques as external disturbance forces

and torques on the spacecraft. In this case, MED mass imbalances are lumped into static and

dynamic imbalance parameters, allowing jitter force and torque to be simply proportional to wheel

speed squared. A physically realistic dynamic model may be obtained by defining mass imbalances

in terms of a wheel center of mass location and inertia tensor. The fully-coupled dynamic model

allows for momentum and energy validation of the system. This is often critical when modeling

additional complex dynamical behavior such as flexible dynamics and fuel slosh. Furthermore, it

is necessary to use the fully-coupled model in instances where the relative mass properties of the

spacecraft with respect to the RWs cause the simplified jitter model to be inaccurate. This thesis

presents a generalized approach to MED imbalance modeling of a rigid spacecraft hub with N

RWs or VSCMGs. A discussion is included to convert from manufacturer specifications of RW

imbalances to the parameters introduced within each model. Implementations of the fully-coupled

RW and VSCMG models derived within this thesis are released open-source as part of the Basilisk

astrodynamics software.
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Chapter 1

Introduction

1.1 Background

Momentum exchange devices (MEDs) are a fundamental component of most spacecraft. Used

primarily for attitude reconfiguration and pointing, MEDs trade angular momentum with the body

of a spacecraft using spinning flywheels. MEDs are an attractive device for attitude control since

they do not consume fuel as thrusters do, and are typically capable of achieving significantly greater

pointing precision than other actuators.[1] Examples of important uses for MEDs include pointing

a spacecraft’s solar panels towards the sun, pointing an instrument toward a target, and reorienting

a spacecraft to perform a thrust maneuver.

Reaction wheels (RWs), a very popular device due to their mechanical simplicity and associ-

ated lower cost, consist of a flywheel attached to a motor and bearing. Figure 1.1 shows examples

of various types reaction wheels. Spacecraft of all purposes and sizes, from CubeSats to Hubble,

use RWs for attitude control. RWs trade angular momentum with a spacecraft solely by changing

the speed of rotation of the flywheel. Other than spinning about a single body-fixed spin axis, the

flywheel is fixed with respect to the spacecraft and does not change orientation. When a torque is

applied using an electric motor, the flywheel experiences angular acceleration. Due to conservation

of angular momentum, the rotational analog of Newton’s third law of motion, the total angu-

lar momentum of the spacecraft and reaction wheel must remain constant. Thus, the spacecraft

counter-rotates and its attitude is changed. Euler’s equation is the fundamental equation govern-

ing the motion of a spacecraft and the MED system, and relates torque to the time derivative of
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angular momentum. This equation is,

L =
Nd

dt
H (1.1)

where L is torque and H is angular momentum. This equation is the main building block of the

derivations presented within this thesis. Spacecraft typically have three or more reaction wheels

dedicated to attitude control. This enables a full solution to the attitude control problem, since a

single reaction wheel can only rotate the spacecraft about one axis. When three reaction wheels

are used, it is advantageous to position them so that the three flywheel spin axes are mutually

orthogonal. In this case, torquing a reaction wheel does not directly effect the spacecraft’s motion

about the other two axes. Many spacecraft have more than three reaction wheels in order to create

a redundant attitude control solution or achieve larger control torques. This may be achieved by

placing the reaction wheels in a “pyramid” or tetrahedral orientation, in which the reaction wheels

work together to produce a net torque on the spacecraft. Utilizing more than three RWs also

has the added benefit of maintaining a 3D attitude solution in the case that one reaction wheel

fails, which is actually not uncommon.[2] RWs typically require “desaturation” due to momentum

buildup from external sources, such as drag, magnetic torquing, and gravity gradient torquing. An

external torque may increase the speed of the reaction wheel until it reaches its limit, at which point

loss of control and system brownout are of concern. Thus, particular attention must be paid to

controlling wheel speeds. Desaturation may be achieved using thrusters or, in the case of an earth

orbiting spacecraft, magnetic torque rods. In certain cases, spacecraft may also dissipate angular

momentum stored within the reaction wheels by assuming an orientation which allows an external

torque to lower the wheels speeds. In addition to saturation, high wheel speeds are undesirable

because they can cause the spacecraft to become dynamically “stiff” and require relatively large

torques to perform a maneuver due to the presence of gyroscopic torques caused by the spinning

reaction wheels. Numerous missions have employed reaction wheels for attitude control since the

dawn of spaceflight.

Control moment gyroscopes (CMGs) are a popular method to control larger spacecraft. A
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(a) A reaction wheel manufactured by Honey-
well.

(b) A reaction wheel manufactured by Clyde Space showing the sealed casing, rotor,
and motor/supporting electronics.

(c) A micro reaction wheel specifically for Cube-
Sats manufactured by Blue Canyon Technolo-
gies.

Figure 1.1: Various types of reaction wheels.



4

Figure 1.2: A control moment gyro used on the BETTII mission at NASA Goddard Space Flight
Center.

CMG, like a RW, trades angular momentum with the spacecraft body using a flywheel. However,

instead of changing the rate of rotation of the flywheel like a RW, a CMG changes the direction

of the spin axis of the flywheel and keeps wheel speed near constant. The axis about which the

CMG rotates the flywheel is called the gimbal axis. Thus, a CMG must have dedicated electric

motors for the flywheel and gimbal. CMGs have multiple benefits over reaction wheels. CMGs are

typically more power efficient because they only require a torque on the gimbal axis to actuate.

The wheel motor must simply maintain a constant wheel speed after the initial spin up of the

wheel. Thus, CMGs are particularly good at delivering large torques very quickly. However, a

minimum of three CMGs are required for a full 3D control solution, and a cluster of CMGs can

encounter singularities which prevent torque about certain axes and can lead to loss of control.

Furthermore, some CMGs are limited in the range that they can gimbal. This is usually due to

hard stops on the motor or to prevent cables from becoming twisted (see Figure 1.2). CMGs

are much more complex than reaction wheels and typically more expensive. Dual-gimbal control

moment gyros (DGCMGs), CMGs containing two gimbal axes, have been leveraged as an actuator

that can provide any torque vector. However, the additional complexity and cost of such a device

often outweighs the benefits. Prominent examples of CMGs being used in flight include Skylab and

the International Space Station (see Figure 1.3).

Several futuristic MEDs have been proposed. Of these, variable-speed control moment gyro-
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Figure 1.3: An astronaut handles one of the International Space Station’s 275 kg control moment
gyros.

scopes (VSCMGs) have gathered significant academic interest due to having properties of both RWs

and CMGs. By nature, a CMG and VSCMG are fundamentally the same device. Unlike CMGs,

VSCMGs leverage the additional degree of freedom in the rate of rotation of the flywheel. Clev-

erly devised control strategies allow the VSCMG to maneuver to avoid singularities by combining

wheel speed changes and gimbal rates. “Null-motion” reconfiguration allows a cluster of VSCMGs

to reconfigure without applying a net torque to the spacecraft hub.[3] Dual-gimbal variable-speed

control moment gyroscopes (DGVSCMGs) are an attractive attitude actuator due to their ability

to generate any 3D torque. DGVSCMGs have also been proposed as dual-function devices for both

attitude control and energy storage in place of chemical batteries.[4] This concept is called inte-

grated power/attitude control system (IPACS). Other futuristic MEDs include spherical reaction

wheels[5], which were originally proposed at the dawn of the space era by German engineer Walter

Häussermann in support of the Apollo program[6] (see Figure 1.4). Such devices pose high risk to

space missions due to their additional complexity and are mainly academic.

1.2 Motivation

A problem with using MEDs for attitude control is that they usually cause vibration or

“jitter” due to mass imbalances in the flywheels.[7, 8, 1] Characterization and mitigation of MED

induced jitter on a spacecraft is of interest to many missions due to increasingly rigorous attitude
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Figure 1.4: Diagram from Häussermann’s patent of a spherical reaction wheel. One of the earliest
conceptions of a momentum exchange device.
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Figure 1.5: An example of the jitter smearing effect on imagery taken from space.

stability requirements and the necessity of avoiding excitation of the spacecraft’s structural modes.

Many instruments require the spacecraft to be held extremely still in order to effectively operate

or collect data. Figure 1.5 illustrates the necessity of this. Optical instruments in particular often

require attitude stability of less than one arcsecond per second in order to avoid optical smear or

similar effects.[9, 10] Additionally, excessive vibration of a spacecraft may be detrimental to its

instruments and operation.

Mass imbalances are inherent within the manufacturing process of flywheels. There are two

primary types of mass imbalance: static imbalance and dynamic imbalance. Figure 1.6 demon-

strates the difference between these within the context of a wheel. In this figure, ĝs represents the

spin axis of the wheel and Ip represents a principle axis of inertia of the wheel. Static imbalance is

caused by an offset in the center of mass of the wheel from the spin axis of the wheel. As the wheel

rotates, the static imbalance effectively causes a force orthogonal to the spin axis of the wheel.

Fundamentally, this motion is governed by the equation

F s = mdΩ2û (1.2)

where F s is the force resulting from the imbalanced spinning wheel, Ω is the spin rate of the wheel,

d is the offset of the wheel spin axis from the center of mass, m is the mass of the wheel, and

û is a unit vector pointing from the spin axis to the center of mass. This equation is essentially

the force resulting from a centripetal acceleration, but it must be noted that when attached to a

spacecraft, this must be treated as an internal force, rather than an external disturbance. Because

static imbalance acts as a force, if the wheel is not located near the center of mass of the spacecraft
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ĝs

Ip

Static Imbalance Dynamic Imbalance

Figure 1.6: Reaction wheel static and dynamic imbalance.

it will cause an additional disturbance torque. Dynamic imbalance is caused by the spin axis of

the wheel not being a principle axis of inertia, as shown in Figure 1.6. Spinning a dynamically

imbalanced wheel causes a wobbling effect. The equation governing the motion of a dynamically

imbalanced wheel is

Ld = JΩ2v̂ (1.3)

where Ld is the torque resulting from the imbalance, J is the magnitude of the off-diagonal inertia,

and v̂ is a unit vector pointing in the direction of the mass imbalance. Again, when attached to

a spacecraft, dynamic imbalance acts as an internal torque, and the total angular momentum of

the system must remain constant without an external disturbance present. Note that in Eq. (1.2)

and Eq. (1.3) the magnitude of the force/torque is proportional to wheel speed squared, which may

be problematic for MEDs that operate at large wheel speeds. Since it is of interest to spacecraft

manufacturers to reduce mass imbalance as much as possible, MED flywheels are often put through

a “fine balancing” process to minimize the center of mass offset and off-diagonal inertia component.

This process involves identify the location of the imbalances by spinning the wheel and measuring

the phase and amplitude of jitter using load cells.[11] This process can be time consuming and

expensive, and does not completely remove the imbalance. Various methods of vibration isolation

have been proposed, including magnetic suspension of RWs as a means of circumventing the jitter

problem.[12, 13, 14]
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1.3 Literature Review

MED induced vibration on a spacecraft is usually characterized through experimentation

prior to flight in order to validate requirements. Empirical models of MEDs allow imbalance

parameters to be extracted.[15, 16] In addition to experimental demonstration of MED perfor-

mance on an integrated spacecraft, it is of interest to use an analytic model of a MED for sim-

ulation in the early stages of spacecraft development. A simplified model of MED jitter involves

including the forces (Eq. (1.2)) and torques (Eq. (1.3)) resulting from MED imbalance as exter-

nal disturbances.[8, 17, 18, 19] This model is well established and is attractive due to its non-

computationally expensive formulation – force and torque of jitter are simply proportional to wheel

speed squared. Furthermore, the simplified formulation allows a model to be constructed directly

from the typical MED manufacturer imbalance specifications: static imbalance and dynamic im-

balance. This allows MED mass imbalances to be implemented as lumped parameters instead of

using specific terms such as MED center of mass location and inertia tensor.[8] Previous literature

puts emphasis on empirical modeling of MED jitter and the effects of MED jitter within context of

spacecraft flexible dynamics.[20, 21, 22] Zhang and Zhang discuss a fully-coupled model of control

moment gyro (CMG) imbalance[23], but present the results without a full derivation and fail to

provide the complete system equations of motion. Furthermore, to the authors’ knowledge there

has been no direct method of implementing manufacturers’ imbalance specifications directly in a

fully-coupled model of a reaction wheel.

The simplified “lumped parameter” method of modeling MED jitter is not physically real-

istic due to the nonconservative nature of adding a system-internal forcing effect as an external

disturbance.[24] Since angular momentum is not conserved in this model, a time varying bias in

angular velocity is observed. The magnitude of the bias is dependent on the relative magnitude

of the spacecraft inertia versus the reaction wheel imbalance and the wheel speed. For analysis

purposes this does not necessarily present a problem. The overall effect of the angular velocity

bias is quite small for spacecraft that have small wheel imbalance to spacecraft inertia ratios. The
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amplitude of MED induced jitter may be computed by subtracting a polynomial fit of appropriate

order from the resulting angular velocity. For spacecraft with poorly balanced reaction wheels or

small wheel mass/imbalance to spacecraft inertia ratios this approach may become problematic.

Additionally, the simplified model does not allow for energy and momentum checks. For a simula-

tion that only includes MED jitter, validation of the model would not be too cumbersome because

of the simplicity of the model. However, if the model of spacecraft has other complex behavior such

as solar panel flexing or fuel slosh, the importance of energy and momentum validation increases

dramatically. The coupled nature of these complex spacecraft systems results in extreme difficulty

with debugging and validation. The energy and momentum checks become essential in this pro-

cess. Furthermore, more complicated momentum exchange devices such as variable-speed control

moment gyros (VSCMGs) violate conservation of momentum moreso than a MED without using a

fully-coupled model due simply to the additional complexity of a gimble axis.

1.4 Research Scope

This primary goal of this thesis is to present a general method of deriving the equations of

motion (EOMs) for a spacecraft containingN MEDs with imbalanced flywheels. The derivations are

shown for both RWs and VSCMGs. Naturally, the equations of motion governing a VSCMG apply

to a CMG as well. The derivations take a classical mechanics approach, rather than generalized

coordinates. Both derivations treat the jitter disturbances as true mass imbalances rather than

external disturbances forces and torques, and thus represents the true physics governing this fully

coupled phenomenon. Static imbalance takes the form of a center of mass offset from the spin axis

of the wheel, and dynamic imbalance takes the form of off-diagonal elements within the wheel’s

inertia tensor. As a result, energy and momentum validation tools are available using these models

due to the fact that the models obey conservation of angular momentum. A Newtonian/Eulerian

formulation approach is employed within both derivations. Since the spacecraft hub is considered

to be rigid, flexible dynamics are not considered. However, the formulation is developed in such a

way that adding other modes such as flexing and fuel slosh is relatively simple.[25, 26] Another key



11

aspect of this thesis is the ability to take manufacturers specifications characterizing RW imbalances

and convert them to the parameters introduced in this new derivation. A discussion is included on

this important conversion.

In summary, the goals of the research presented are:

(1) Derive from basic principles the translational, rotational, and motor torque equations for

reaction wheels and variable-speed control moment gyroscopes.

(2) Present a method of implementing standard manufacturer imbalance specifications within

the models developed.

(3) Demonstrate a software-friendly method of solving the equations of motion for each model.

(4) Use energy and angular momentum validation checks to demonstrate the validity of the

derived equations of motion

(5) Demonstrate the validity of the software implementation method by comparing the results

of VSCMG EOMs from two independent software implementations.

(6) Present numerical simulation results of each model and make recommendations for appro-

priate use of each fully-coupled model versus the simplified wheel jitter model.

The logic behind presenting the RW EOMs and VSCMG EOMs separately is to introduce

the reader to the methodology of the derivation before involving the added complexity of a gimbal

axis. Naturally, the EOMs of an imbalanced RW could easily be obtained from the imbalanced

VSCMG equations by simply zeroing out gimbal related terms. However, it is the author’s opinion

that there is value in presenting them separately if only because the majority of readers will likely

be most interested in the RW derivation.

A goal of the research presented within this thesis was to validate the EOMs and software

implementation using with energy and angular momentum results from two completely indepen-

dent software suites. This level of validation shows that the EOMs and software implementation
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method are correct beyond doubt. Implementations of the fully-coupled RW and VSCMG models

derived within this thesis will be released open-source in 2017 as part of the Basilisk astrodynamics

software.1

1 http://hanspeterschaub.info/bskMain.html



Chapter 2

Imbalanced Reaction Wheel

2.1 Problem Statement

When deriving the equations of motion (EOMs) for a spacecraft with N MEDs, an important

assumption is made in that the MEDs are symmetric and results in the EOMs to be simplified to

a convenient and compact form.[24] However, if the MEDs are imbalanced the EOMs have to be

rederived to account for the fully-coupled dynamics between the MEDs and the spacecraft. This

derivation follows a development path using Newtonian and Eulerian mechanics using a formulation

that uses a minimal coordinate description.[24]

2.1.1 Reference Frame Definitions

Figure 2.1 shows the frame and variable definitions used for the imbalanced RW problem.

The formulation involves a rigid hub with its center of mass location labeled as point Bc, and N

RWs with their center of mass locations labeled as Wci . The frames being used for this formulation

are the body frame, B : {b̂1, b̂2, b̂3}, the motor frame of the ith RW, Mi : {m̂si , m̂2i , m̂3i}, and

the wheel frame of the ith RW, Wi : {ĝsi , ŵ2i , ŵ3i}. The dynamics are modeled with respect to

the B frame which can be oriented in any direction. The Wi frame is oriented such that the ĝsi

axis is aligned with the spin axis of the RW, the ŵ2i axis is perpendicular to ĝsi and points in the

direction towards Wci . The ŵ3i completes the right hand rule. The Mi frame is defined as being

equal to the Wi frame at the beginning of the simulation and therefore the Wi and Mi frames

are offset by an angle, θi, about the m̂si = ĝsi axes. These are the necessary frame and variable
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Bc

b̂3

b̂2

B

✓i

di

ĝsi = m̂si

ŵ2i

ŵ3i

m̂3i
m̂2i

Wi

Wci

N

b̂1

c

C

Figure 2.1: Reference frame setup and variable definitions for the spacecraft + RW problem.

definitions needed for this formulation.

2.1.2 Variable Definitions

A few more key variables in Figure 2.1 need to be defined. Point B is the origin of the B

frame and is a general body-fixed point that does not have to be identical to the spacecraft center

of mass. Point Wi is the origin of the Wi frame and can also have any location relative to point B.

Point C is the center of mass of the spacecraft including the RWs and vector c points from point

B to point C. Variable di is the center of mass offset of the RW, or the distance from the spin axis,

ĝsi to Wci . These variable and frame definitions are leveraged throughout the paper to derive the

EOMs.

2.2 Equations of Motion

The system under consideration is an N+6 degrees-of-freedom (DOF) system with the follow-

ing second order terms: inertial acceleration r̈B/N , angular acceleration ω̇B/N , and the acceleration

of each RW Ω̇1, . . . , Ω̇N . Thus, a total of N + 6 equations must be developed in order to solve for

all second order terms. Section 2.2.1 describes the derivation of the translational EOM and repre-

sents 3 DOF, section 2.2.2 describes the rotational motion and represents 3 DOF, and section 2.2.3
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describes the motor torque equation and represents N DOF.

2.2.1 Translational Motion

For the dynamical system considered, the center of mass of the spacecraft is not constant with

respect to the body frame. This results in the necessity to track the center of mass of the spacecraft

and its corresponding acceleration. Following a similar derivation as seen in Reference [25], the

derivation begins with Newton’s second law of motion for the center of mass of the spacecraft seen

in Eq. (2.1).

r̈C/N =
F

msc
(2.1)

F is the sum of the external forces on the spacecraft which has a mass labeled as msc. The notation

being used for this work can be seen in Reference [24]. For example, the vector vB/A is a vector

that points from point A to B. The inertial time derivative of vB/A is denoted by v̇B/A and the

time derivative taken with respect to the body frame is v′B/A.

Ultimately the acceleration of the body frame or point B is desired, which is expressed

through

r̈B/N = r̈C/N − c̈ (2.2)

where the center of mass equation is rewritten to yield

c =
1

msc
(mBrBc/B +

N∑
i=1

mWirWci/B
) (2.3)

Taking the first and second body frame time derivatives of point c results in

c′ =
1

msc

N∑
i=1

mWir
′
Wci/B

(2.4)

c′′ =
1

msc

N∑
i=1

mWir
′′
Wci/B

(2.5)
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Taking the first and second body frame time derivatives of rWci/B
results in

rWci/B
= rWi/B + rWci/Wi

= rWi/B + diŵ2i (2.6)

r′Wci/B
= dŵ′2i = ωWi/B × diw2i = Ωiĝsi × diw2i = diΩiŵ3i (2.7)

r′′Wci/B
= Ωiĝsi × diΩiŵ3i = diΩ̇iŵ3i − diΩ2

i ŵ2i (2.8)

Using the transport theorem [24] the inertial and body-relative time derivatives of c are related

through

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N ×
(
ωB/N × c

)
(2.9)

Substituting Eq. (2.8) and (2.9) into Eq. (3.6) and grouping second order terms on the left-hand

side yields the translational equation of motion.

r̈B/N−[c̃]ω̇B/N+
1

msc

N∑
i=1

mWidiŵ3iΩ̇i = r̈C/N−2[ω̃B/N ]c′−[ω̃B/N ][ω̃B/N ]c+
1

msc

N∑
i=1

mWidiΩ
2
i ŵ2i

(2.10)

Equation (2.10) shows that the translational acceleration, r̈B/N , is coupled with the rotational

acceleration, ω̇B/N , and the wheel accelerations, Ω̇i. This is a result of the fact that the reaction

wheels are imbalanced and therefore change the center of mass location of the spacecraft.[24]

2.2.2 Rotational Motion

The rotational motion equation of the spacecraft also needs to be modified. This derivation

starts with the angular momentum of the spacecraft about point B:

Hsc,B = HB,B +

N∑
i=1

HWi,B (2.11)

The EOM for the rotational motion is found using the definition of the inertial time derivative of

angular momentum when the body fixed coordinate frame origin is not coincident with the center

of mass of the body.[24]

Ḣsc,B = LB +mscr̈B/N × c (2.12)

The inertial derivative of the spacecraft angular momentum is expressed as

Ḣsc,B = ḢB,B +

N∑
i=1

ḢWi,B (2.13)
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Thus, in order to use Eq. (3.28), each derivative on the right-hand side of Eq. (3.29) needs to be

evaluated. The equation for finding the angular momentum about a point not coincident with the

center of mass of that object [24] is utilized and the following definitions are found

HB,B = HB,Bc +mBrBc/B × ṙBc/B (2.14)

HWi,B = HWi,Wci
+mWirWci/B

× ṙWci/B
(2.15)

where the angular momentum of the hub and reaction wheel about their respective center of masses

are

HB,Bc = [IB,Bc ]ωB/N (2.16)

HWi,Wci
= [IWi,Wci

]ωWi/N = [IWi,Wci
](ωB/N + Ωiĝsi) (2.17)

Taking the inertial time derivative of hub’s angular momentum yields

ḢB,B = [IB,Bc ]ω̇B/N + ωB/N × [IB,Bc ]ωB/N +mBrBc/B × r̈Bc/B (2.18)

and knowing that rBc/B is fixed with respect to the body the following are defined

ṙBc/B = r′Bc/B
+ ωB/N × rBc/B = ωB/N × rBc/B (2.19)

r̈Bc/B = ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B) (2.20)

Substitute Eq. (3.34) into Eq. (3.32) yields

ḢB,B = [IB,Bc ]ω̇B/N + ωB/N × [IB,Bc ]ωB/N

+mBrBc/B × (ω̇B/N × rBc/B) +mBrBc/B × (ωB/N × (ωB/N × rBc/B)) (2.21)

Employing the Jacobi triple-product identity, a×(b×c) = (a×b)×c+b×(a×c), on the right-hand

side of Eq. (3.35) and using the parallel axis theorem [IB,B] = [IB,Bc ]+mB[r̃Bc/B][r̃Bc/B]T , the hub

angular momentum derivative is finally written after extensive algebra as

ḢB,B =[IB,Bc ]ω̇B/N + [ω̃B/N ][IB,Bc ]ωB/N

+mB[r̃Bc/B][r̃Bc/B]T ω̇B/N +mB[ω̃B/N ][r̃Bc/B][r̃Bc/B]TωB/N

=[IB,B]ω̇B/N + [ω̃B/N ][IB,B]ωB/N

(2.22)
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Following an equivalent derivation procedure, the inertial time derivative of reaction wheel

angular momentum about point B is

ḢWi,B =[IWi,Wci
]′(ωB/N + Ωiĝsi) + [IWi,Wci

](ω̇B/N + Ω̇iĝsi) + ωB/N × [IWi,Wci
](ωB/N + Ωiĝsi)

+mWirWci/B
× r̈Wci/B

(2.23)

The body relative inertia tensor time derivative [IWi,Wci
]′ needs to be defined. For this general RW

model, the inertia matrix of the RW in the Wi frame is defined as

[IWi/Wci
] =

Wi

J11i J12i J13i

J12i J22i J23i

J13i J23i J33i

 (2.24)

The definition of [IWi/Wci
] allows for any RW inertia matrix to be considered. Section 4 describes

the characterization of the dynamic imbalance of the RW by defining parameters in [IWi/Wci
].

In order to take the body frame derivative of [IWi/Wci
], Eq. (3.62) is rewritten in a general

form using outer product expansions.

[IWi/Wci
] =J11i ĝsi ĝ

T
si + J12i ĝsiŵ

T
2i + J13i ĝsiŵ

T
3i

+ J12iŵ2i ĝ
T
si + J22iŵ2iŵ

T
2i + J23iŵ2iŵ

T
3i

+ J13iŵ3i ĝ
T
si + J23iŵ3iŵ

T
2i + J33iŵ3iŵ

T
3i

(2.25)

The body frame derivatives of wheel frame basis vectors are

ĝ′si = ωWi/B × ĝsi = Ωiĝsi × ĝsi = 0 (2.26)

ŵ′2i = ωWi/B × ŵ2i = Ωiĝsi × ŵ2i = Ωiŵ3i (2.27)

ŵ′3i = ωWi/B × ŵ3i = Ωiĝsi × ŵ3i = −Ωiŵ2i (2.28)
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Taking the body frame time derivative and using Eq. (2.26)-(2.28) to simplify yields

[IWi/Wci
]′ =J12iΩiĝsiŵ

T
3i − J13iΩiĝsiŵ

T
2i

+ J12iΩiŵ3i ĝ
T
si + J22iΩiŵ3iŵ

T
2i + J22iΩiŵ2iŵ

T
3i + J23iΩiŵ3iŵ

T
3i − J23iΩiŵ2iŵ

T
2i

− J13iΩiŵ2i ĝ
T
si − J23iΩiŵ2iŵ

T
2i + J23iΩiŵ3iŵ

T
3i − J33iΩiŵ2iŵ

T
3i − J33iΩiŵ3iŵ

T
2i

(2.29)

Eq. (2.29) is expressed in the wheel frame as

[IWi/Wci
]′ =

Wi


0 −J13i J12i

−J13i −2J23i J22i − J33i

J12i J22i − J33i 2J23i

Ωi (2.30)

The remaining term in Eq. (2.23) that needs to be defined is r̈Wci/B
. Following its definition,

the time derivatives are:

rWci/B
= rWi/B + diŵ2i (2.31)

ṙWci/B
= r′Wi/B

+ diŵ
′
2i + ωB/N × (rWi/B + diŵ2i) = diΩiŵ3i + ωB/N × (rWi/B + diŵ2i) (2.32)

r̈Wci/B
= diΩ̇iŵ3i − diΩ2

i ŵ2i + ω̇B/N × rWci/B
+ 2ωB/N × diΩiŵ3i + ωB/N × (ωB/N × rWci/B

)

(2.33)

Substituting Eq. (2.33) into Eq. (2.23) and applying the triple product identity and parallel axis

theorem [IWi,B] = [IWi,Wci
] +mWi [r̃Wci/B

][r̃Wci/B
]T results in

ḢWi,B =[IWi,B]′ωB/N + [IWi,B]ω̇B/N + [ω̃B/N ][IWi,B]ωB/N

+ [IWi,Wci
]′Ωiĝsi + [IWi,Wci

]Ω̇iĝsi + [ω̃B/N ][IWi,Wci
]Ωiĝsi

+mWirWci/B
× (diΩ̇iŵ3i − diΩ2

i ŵ2i) +mWiωB/N × (rWci/B
× r′Wci/B

)

(2.34)

Note that taking the body time derivative of the parallel axis theorem equation yields

[IWi,B]′ = [IWi,Wci
]′ +mWi [r̃

′
Wci/B

][r̃Wci/B
]T +mWi [r̃Wci/B

][r̃′Wci/B
]T (2.35)

Now the definition of the inertial time derivatives of the hub’s angular momentum and reac-

tion wheels’ angular momentum, Eq. (2.22) and (2.34) respectively, are substituted into Eq. (3.29)
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Ḣsc,B =[IB,B]ω̇B/N + [ω̃B/N ][IB,B]ωB/N +

N∑
i=1

[
[IWi,B]′ωB/N + [IWi,B]ω̇B/N + [ω̃B/N ][IWi,B]ωB/N

+ [IWi,Wci
]′Ωiĝsi + [IWi,Wci

]Ω̇iĝsi + [ω̃B/N ][IWi,Wci
]Ωiĝsi

+mWirWci/B
× (diΩ̇iŵ3i − diΩ2

i ŵ2i) +mWiωB/N × (rWci/B
× r′Wci/B

)
]

(2.36)

Noting that [Isc,B] = [IB,B] +
N∑
i=1

[IWi,B], Eq. (2.36) is simplified to

Ḣsc,B =[Isc,B]ω̇B/N + [ω̃B/N ][Isc,B]ωB/N + [Isc,B]′ωB/N

+
N∑
i=1

[
[IWi,Wci

]′Ωiĝsi + [IWi,Wci
]Ω̇iĝsi + [ω̃B/N ]

(
[IWi,Wci

]Ωiĝsi +mWi [r̃Wci/B
]r′Wci/B

)
+mWi [r̃Wci/B

](diΩ̇iŵ3i − diΩ2
i ŵ2i)

]
(2.37)

Eq. (2.37) is substituted into Eq. (3.28) to yield

LB +mscr̈B/N × c = [Isc,B]ω̇B/N + [ω̃B/N ][Isc,B]ωB/N + [Isc,B]′ωB/N

+
N∑
i=1

[
[IWi,Wci

]′Ωiĝsi + [IWi,Wci
]Ω̇iĝsi + [ω̃B/N ]

(
[IWi,Wci

]Ωiĝsi +mWi [r̃Wci/B
]r′Wci/B

)
+mWi [r̃Wci/B

](diΩ̇iŵ3i − diΩ2
i ŵ2i)

]
(2.38)

Grouping second order terms on the left-hand side yields the rotational EOM.

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +
N∑
i=1

(
[IWi,Wci

]ĝsi +mWidi[r̃Wci/B
]ŵ3i

)
Ω̇i

=

N∑
i=1

[
mWi [r̃Wci/B

]diΩ
2
i ŵ2i − [IWi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[IWi,Wci
]Ωiĝsi +mWi [r̃Wci/B

]r′Wci/B

)]
− [ω̃B/N ][Isc,B]ωB/N − [Isc,B]′ωB/N +LB (2.39)

Eq. (2.39) shows that the rotational EOM is coupled with the other second order variables. Similar

to the translational EOM, this coupling is due to the fact that the center of mass of the spacecraft

is not coincident with point B. The motor torque equation is the remaining necessary EOM to

describe the motion of the spacecraft and is defined in the following section.
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2.2.3 Motor Torque Equation

The motor torque equation is used to relate body rate derivative ω̇B/N and wheel speed

derivative Ω̇i. The motor torque usi is the spin axis component of wheel torque about point Wi.

The transverse torques acting on the wheel τw2i
and τw3i

are structural torques on the wheel and

do not contribute to the motor torque equation.

LWi =

Wi

usi

τw2i

τw3i

 (2.40)

Torque about point Wi relates to torque about Wci by [24]

LWi = LWci
+ rWci/Wi

×mWi r̈Wci/N
(2.41)

Euler’s equation [24] applies as follows.

LWci
= ḢWi,Wci

(2.42)

The RW angular momentum about Wci is expressed as

HWi,Wci
= [IWi,Wci

]ωWi/N = [IWi,Wci
](ωB/N + Ωiĝsi) (2.43)

To aid in the simplification of the motor torque equation, [IWi,Wci
] is expressed as an outer product

sum and distributed into Eq. (2.43).

HWi,Wci
= J11i ĝsi(ωsi + Ωi) + J12i ĝsiωw2i

+ J13i ĝsiωw3i

+ J12iŵ2i(ωsi + Ωi) + J22iŵ2iωw2i
+ J23iŵ2iωw3i

+ J13iŵ3i(ωsi + Ωi) + J23iŵ3iωw2i
+ J33iŵ3iωw3i

(2.44)
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Note that the Wi frame components of ωB/N and their corresponding derivatives are defined as

ωsi = ĝTsiωB/N (2.45)

ωw2i
= ŵT

2iωB/N (2.46)

ωw3i
= ŵT

3iωB/N (2.47)

ω̇si = ĝTsiω̇B/N (2.48)

ω̇w2i
= ŵT

2iω̇B/N + Ωiωw3i
(2.49)

ω̇w3i
= ŵT

3iω̇B/N − Ωiωw2i
(2.50)

Grouping like terms in Eq. (2.44) yields

HWi,Wci
= (J11iωsi + J11iΩi + J12iωw2i

+ J13iωw3i
)ĝsi + piŵ2i + qiŵ3i

(2.51)

where pi and qi are scalar components defined as

pi = J12iωsi + J12iΩi + J22iωw2i
+ J23iωw3i

(2.52)

qi = J13iωsi + J13iΩi + J23iωw2i
+ J33iωw3i

(2.53)

Taking the inertial derivative of wheel angular momentum about Wc gives

ḢWi,Wci
=(J11iω̇si + J11iΩ̇i + J12iω̇w2i

+ J13iω̇w3i
)ĝsi + ṗiŵ2i + q̇iŵ3i

+ (J11iωsi + J11iΩi + J12iωw2i
+ J13iωw3i

) ˙̂gsi + pi ˙̂w2i + qi ˙̂w3i

(2.54)

where the inertial derivatives of the Wi frame basis vectors are determined by evaluating the cross

product in wheel frame components such as

˙̂gsi = ωB/N × ĝsi = ωw3i
ŵ2i − ωw2i

ŵ3i (2.55)

Similarly, ˙̂w2i and ˙̂w3i are found to be

˙̂w2i = −ωw3i
ĝsi + (ωsi + Ωi)ŵ3i (2.56)

˙̂w3i = ωw2i
ĝsi − (ωsi + Ωi)ŵ2i (2.57)
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Substituting Eq. (2.55)-(2.57) into Eq. (2.54) and grouping like terms yields

ḢWi,Wci
=
[
(J11i ĝ

T
si + J12iŵ

T
2i + J13iŵ

T
3i)ω̇B/N + J11iΩ̇i + ωsi(J13iωw2i

− J12iωw3i
)

+ ωw3i
ωw2i

(J33i − J22i) + J23i(ω
2
w2i
− ω2

w3i
)
]
ĝsi + Piŵ2i +Qiŵ3i

(2.58)

Scalar quantities, Pi and Qi are the coefficients for ŵ2i and ŵ3i respectively. Since only the

coefficient of ĝsi relates directly to the motor torque equation as in Eq. (2.40)-(2.41), specifying Pi

and Qi is unnecessary as they do not contribute to usi .

The next step is to define the remaining terms in Eq. (2.41). This begins by determining the

second inertial derivative of r̈Wci/N
.

rWci/N
= rB/N + rWi/B + rWci/Wi

= rB/N + rWi/B + diŵ2i (2.59)

ṙWci/N
= ṙB/N + ωB/N × rWi/B + (ωB/N + Ωiĝsi)× diŵ2i (2.60)

r̈Wci/N
= r̈B/N + ω̇B/N × rWi/B + ωB/N × (ωB/N × rWi/B) + (ω̇B/N + Ω̇iĝsi)× diŵ2i

+ (ωB/N + Ωiĝsi)× diΩiŵ3i + ωB/N × [(ωB/N + Ωiĝsi)× diŵ2i ]

(2.61)

Each cross product in Eq. (2.61) is evaluated using wheel frame components. For example,

(ωB/N + Ωiĝsi)× diŵ2i = −diωw3i
ĝsi + di(ωsi + Ωi)ŵ3i (2.62)

Repeating this procedure several times yields the following expression for the right hand term of

Eq. (2.41) (Ri is the coefficient in front of ŵ3i and does need to be defined because only the ĝsi

component is desired):

rWci/Wi
×mWi r̈Wci/N

=mWidi

[
ŵT

3i r̈B/N − ŵ
T
3i [r̃Wi/B]ω̇B/N + ŵT

3i [ω̃B/N ][ω̃B/N ]rWi/B

+ di(ĝ
T
siω̇B/N + Ω̇i) + diωw2i

ωw3i

]
ĝsi −Riŵ3i

(2.63)

The motor torque equation is obtained by summing the ĝsi components of Eq. (2.58) and Eq. (2.63)

usi = (J11i ĝ
T
si +J12iŵ

T
2i +J13iŵ

T
3i)ω̇B/N +J11iΩ̇i+ωsi(J13iωw2i

−J12iωw3i
)+ωw3i

ωw2i
(J33i−J22i)

+ J23i(ω
2
w2i
− ω2

w3i
) +mWidiŵ

T
3i r̈B/N −mWidiŵ

T
3i [r̃Wi/B]ω̇B/N

+mWidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B +mWid

2
i (ĝ

T
siω̇B/N + Ω̇i) +mWid

2
iωw2i

ωw3i
(2.64)
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Grouping second order terms on the left-hand side yields the simplified motor torque equation.

[
mWidiŵ

T
3i

]
r̈B/N +

[
(J11i +mWid

2
i )ĝ

T
si + J12iŵ

T
2i + J13iŵ

T
3i

−mWidiŵ
T
3i [r̃Wi/B]

]
ω̇B/N +

[
J11i +mWid

2
i

]
Ω̇i

= J23i(ω
2
w3i
− ω2

w2i
) + ωsi(J12iωw3i

− J13iωw2i
) + ωw2i

ωw3i
(J22i − J33i −mWid

2
i )

−mWidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi (2.65)

As a form of validation, the balanced motor torque equation may be obtained by zeroing

out all imbalance terms (di, J12i , J13i , J23i) and making the assumption J22i = J33i . Under these

conditions, Eq. (2.65) may be simplified to

usi = J11i

(
ĝTsiω̇B/N + Ω̇i

)
(2.66)

Eq. (2.66) is equivalent to the balanced motor torque equation found in Reference [24].

This concludes the necessary derivations for the EOMs that are needed to describe the fully-

coupled jitter model for imbalanced RWs. Since the simplified RW jitter model [17] assumes an

external force and torque on the spacecraft, the EOMs for the fully-coupled model and the simplified

RW jitter model are significantly different. However, due to the coupled nature of the EOMs, the

similar terms in the simplified model compared to the fully-coupled model are not readily apparent

in EOMs presented thus far. In the following section, the paper addresses this discrepancy and

discusses the conversion from imbalance parameters from RW manufactures to the new parameters

in the formulation.



Chapter 3

Imbalanced Variable Speed Control Moment Gyroscope

3.1 Problem Statement

The problem consists of modeling static and dynamic imbalance of any number of wheel +

gimbal assemblies attached to a rigid spacecraft. In order to develop the equations of motion in a

general way, we consider arbitrary locations, inertia tensors, and center of mass locations for the

spacecraft hub, gimbal, and wheels. Additionally, the wheel center of mass is not assumed to lie

on the gimbal axis of the VSCMG, and the wheel frame origin and gimbal frame origin are not

assumed to coincide.

3.1.1 Reference Frame Definitions

The development considers the body frame and N gimbal and wheel frames as well as the

inertial frame. The body frame is denoted B. The basis vectors of the body frame are

B : {B, b̂1, b̂2, b̂3} (3.1)

The ith gimbal and wheel frames are denoted Gi and Wi, respectively. The basis vectors of Gi and

Wi are defined as

Gi : {Gi, ĝsi , ĝti , ĝgi
} (3.2)

Wi : {Wi, ĝsi , ŵ2i , ŵ3i} (3.3)

It is assumed that the ĝsi vectors of the Gi and Wi frames are always parallel.
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Figure 3.1: Reference frame setup and variable definitions for the spacecraft + VSCMG problem.

3.1.2 Variable Definitions

Parameters relating to the spacecraft hub are denoted with a subscript text B. Parameters

relating to the The ith gimbal and wheel are denoted with subscripts text Gi and Wi, respectively.

The hub, gimbal, and wheel each are allowed center of mass offsets from their respective coordinate

frame origins. The hub’s center of mass location is labeled as Bc. This location is described with

respect to the body frame origin as rBc/B. The gimbal is also allowed a general center of mass

offset from the gimbal frame origin. This location is labeled as Gci and is located with respect

to the gimbal frame origin as rGci/Gi
. The wheel’s center of mass location is labeled somewhat

differently. The wheel center of mass is assumed to lie on the ŵ2i axis a length di from the wheel

frame origin. This does not result in loss of generality since the parameters Li and `i describe

the axial and transverse offset, respectively, of the wheel origin. Thus, the wheel center of mass

location is allowed to vary in three dimensions with respect to the gimbal frame (and thus the body

frame as well, since the gimbal origin location does not vary with respect to the body). Since the

gimbal and wheel centers of mass change with time, so does the overall spacecraft center of mass.

The time-varying center of mass of the entire system is denoted c.
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3.2 Equations of Motion

The system under consideration is an 2N + 6 degrees-of-freedom (DOF) system with the fol-

lowing second order terms: inertial acceleration r̈B/N , angular acceleration ω̇B/N , the acceleration

of each wheel Ω̇1, . . . , Ω̇N , and the acceleration of the gimbal γ̈1, . . . , γ̈N . Thus, a total of 2N + 6

equations must be developed in order to solve for all second order terms. Section 3.2.1 describes the

derivation of the translational EOM and represents 3 DOF, section 3.2.2 describes the rotational

motion and represents 3 DOF, section 3.2.3 describes the gimbal torque equation and represents

N DOF, and section 3.2.4 describes the wheel torque equation and represents N DOF.

3.2.1 Translational Motion

The derivation of the translational EOMs begins with Newton’s second law for the center of

mass of the spacecraft.

r̈C/N =
F

msc
(3.4)

where

msc = mB +

N∑
i=1

(mGi +mWi) (3.5)

F is the sum of the external forces on the spacecraft which has massmsc. Ultimately the acceleration

of the body frame or point B is desired, which is expressed through

r̈B/N = r̈C/N − c̈ (3.6)

The center of mass c is time variant and is expressed as

c =
1

msc

(
mBrBc/B +

N∑
i=1

(mGirGci/B
+mWirWci/B

)
)

(3.7)

Find the second inertial derivative of c.

ċ = c′ + ω × c (3.8)

c̈ = c′′ + ω̇ × c+ 2ω × c′ + ω × (ω × c) (3.9)
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Find the body frame derivatives of c.

c′ =
1

msc

N∑
i=1

(mGir
′
Gci/B

+mWir
′
Wci/B

) (3.10)

c′′ =
1

msc

N∑
i=1

(mGir
′′
Gci/B

+mWir
′′
Wci/B

) (3.11)

The body frame derivatives of rGci/B
are given by

rGci/B
= rGi/B + rGci/Gi

(3.12)

r′Gci/B
= r′Gci/G

= ωGi/B × rGci/Gi
= γ̇iĝgi

× rGci/Gi
(3.13)

r′′Gci/B
=γ̈iĝgi

× rGci/Gi
+ γ̇iĝgi

× r′Gci/B

=γ̈i[˜̂ggi
]rGci/Gi

+ γ̇i[˜̂ggi
]r′Gci/B

(3.14)

The body frame derivatives of rWci/B
are given by

rWci/B
= rWci/Gi

+ rGi/B = diŵ2i + `iĝsi + Liĝgi
+ rGi/B (3.15)

r′Wci/B
= r′Wci/G

= diŵ
′
2i + `iĝ

′
si = diΩiŵ3i − diγ̇icθiĝsi + `iγ̇iĝti (3.16)

r′′Wci/B
=r′′Wci/G

= diΩ̇iŵ3i + diΩiŵ
′
3i − diγ̈icθiĝsi + diγ̇iΩisθiĝsi − diγ̇icθiĝ

′
si + `iγ̈iĝti + `iγ̇iĝ

′
ti

=
(
2diγ̇iΩisθi − diγ̈icθi − `iγ̇2

i

)
ĝsi +

(
`iγ̈i − diγ̇2

i cθi
)
ĝti − diΩ

2
i ŵ2i + diΩ̇iŵ3i

(3.17)

Note that the body frame derivatives of the gimbal and wheel frame basis vectors are given by,

ĝ′si = γ̇iĝgi
× ĝsi = γ̇iĝti (3.18)

ĝ′ti = γ̇iĝgi
× ĝti = −γ̇ĝsi (3.19)

ĝ′gi = 0 (3.20)

ŵ′2i = (γ̇iĝgi
+ Ωiĝsi)× ŵ2i = Ωiŵ3i − γ̇icθiĝsi (3.21)

ŵ′3i = (γ̇iĝgi
+ Ωiĝsi)× ŵ3i = γ̇isθiĝsi − Ωiŵ2i (3.22)
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Expanding Eq. (3.11) gives,

c′′ =
1

msc

N∑
i=1

[
mGi

(
γ̈i[˜̂ggi

]rGci/Gi
+ γ̇i[˜̂ggi

]r′Gci/B

)
+mWi

((
2diγ̇iΩisθi − diγ̈icθi − `iγ̇2

i

)
ĝsi +

(
`iγ̈i − diγ̇2

i cθi
)
ĝti − diΩ

2
i ŵ2i + diΩ̇iŵ3i

)]
(3.23)

Substitute c̈ into Eq. (3.6).

r̈B/N = r̈C/N − c′′ + [c̃]ω̇ − 2[ω̃]c′ − [ω̃][ω̃]c (3.24)

Substitute Eq. (3.23) into Eq. (3.24) and group second-order terms to obtain the translational

equations of motion.

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

[
mGi [

˜̂ggi
]rGci/Gi

−mWidicθiĝsi +mWi`iĝti

]
γ̈i +

1

msc

N∑
i=1

[mWidiŵ3i ] Ω̇i

= r̈C/N − 2[ω̃]c′ − [ω̃][ω̃]c− 1

msc

N∑
i=1

[
mGi γ̇i[

˜̂ggi
]r′Gci/B

+mWi

[ (
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

]]
(3.25)

This equation represents 3 DOF and contains all second order states (r̈B/N , ω̇, γ̈i, Ω̇i). Removing

wheel imbalance terms and assuming a symmetrical VSCMG (i.e. rGci/Gi
= 0, `i = 0, di = 0)

gives the following equation.

mscr̈B/N −msc[c̃]ω̇ = F − 2msc[ω̃]c′ −msc[ω̃]2c (3.26)

Thus, the balanced VSCMG translational equation of motion does not contain any second-order

terms relating to the wheel or gimbal, and agrees with Reference [24]. The following section shows

the derivation of the rotational equations of motion.

3.2.2 Rotational Motion

The derivation of rotational EOMs starts with the angular momentum of the spacecraft about

point B.

Hsc,B = HB,B +

N∑
i=1

(HGi,B +HWi,B) (3.27)
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The inertial time derivative of angular momentum when the body fixed coordinate frame origin is

not coincident with the center of mass of the body is

Ḣsc,B = LB +mscr̈B/N × c (3.28)

where LB is the vector sum of external torques acting on the spacecraft. Differentiating Eq. (3.27),

the inertial derivative of the spacecraft angular momentum is expressed as

Ḣsc,B = ḢB,B +

N∑
i=1

(ḢGi,B + ḢWi,B) (3.29)

Thus, in order to use Eq. (3.28), each derivative on the right-hand side of Eq. (3.29) needs to be

evaluated. The first step is to derive the hub angular momentum derivative ḢB,B. The hub angular

momentum about point Bc is given by

HB,Bc = [IB,Bc ]ωB/N (3.30)

Angular momentum about point Bc is related to point B using the following equation.

HB,B = HB,Bc +mBrBc/B × ṙBc/B (3.31)

Taking the inertial time derivative of the hub’s angular momentum yields

ḢB,B = [IB,Bc ]ω̇ + [ω̃][IB,Bc ]ω +mBrBc/B × r̈Bc/B (3.32)

Note that the body rate pseudovector ωB/N will be abbreviated as ω henceforth. Knowing that

rBc/B is fixed with respect to the body frame, the following are defined

ṙBc/B = r′Bc/B
+ ω × rBc/B = ω × rBc/B (3.33)

r̈Bc/B = ω̇ × rBc/B + ω × (ω × rBc/B) (3.34)

Substitute Eq. (3.34) into Eq. (3.32) yields

ḢB,B = [IB,Bc ]ω̇ + [ω̃][IB,Bc ]ω +mBrBc/B × (ω̇ × rBc/B) +mBrBc/B × (ω × (ω × rBc/B)) (3.35)
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Employing the Jacobi triple-product identity, a × (b × c) = (a × b) × c + b × (a × c), on the

right-hand side of Eq. (3.35)

ḢB,B = [IB,Bc ]ω̇ + [ω̃][IB,Bc ]ω +mB[r̃Bc/B][r̃Bc/B]T ω̇ +mB[ω̃][r̃Bc/B][r̃Bc/B]Tω (3.36)

The parallel axis theorem relates inertia about the hub center of Bc to the hub origin B.

[IB,B] = [IB,Bc ] +mB[r̃Bc/B][r̃Bc/B]T (3.37)

The hub angular momentum derivative simplifies to

ḢB,B = [IB,B]ω̇ + [ω̃][IB,B]ω (3.38)

The next step is to derive the gimbal angular momentum derivative ḢGi,B. Recall that the ith

gimbal frame is defined as

Gi : {Gi, ĝsi , ĝti , ĝgi}

Angular velocity of the gimbal frame with respect to inertial is

ωGi/N = ωB/N + ωGi/B = ω + γ̇iĝgi
(3.39)

The gimbal angular momentum about point Gci is given by

HGi,Gci
= [IGi,Gci

]ωGi/N = [IGi,Gci
](ω + γ̇iĝgi

) (3.40)

Angular momentum about point Gci is related to point B using the following equation.

HGi,B = HGi,Gci
+mGirGci/B

× ṙGci/B
(3.41)

Take the inertial derivative.

ḢGi,B = [IGi,Gci
](ω̇ + γ̈iĝgi

) + [IGi,Gci
]′ωGi/N + [ω̃][IGi,Gci

]ωGi/N +mGirGci/B
× r̈Gci/B

(3.42)

The next step is to define the gimbal inertia tensor about the gimbal center of mass [IGi,Gci
] and

its body frame derivative [IGi,Gci
]′. Expressed in the gimbal frame,

[IGi,Gci
] =

Gi
IGsi

IG12i
IG13i

IG12i
IGti

IG23i

IG13i
IG23i

IGgi

 (3.43)
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This tensor may be rewritten in a frame independent form as,

[IGi,Gci
] =IGsi

ĝsi ĝ
T
si + IG12i

ĝsi ĝ
T
ti + IG13i

ĝsi ĝ
T
gi

+ IG12i
ĝti ĝ

T
si + IGti

ĝti ĝ
T
ti + IG23i

ĝti ĝ
T
gi

+ IG13i
ĝgi
ĝTsi + IG23i

ĝgi
ĝTti + IGgi

ĝgi
ĝTgi

(3.44)

Taking the body frame derivative of this equation results in,

[IGi,Gci
]′ =IGsi

ĝ′si ĝ
T
si + IGsi

ĝsi ĝ
T ′
si + IG12i

ĝ′si ĝ
T
ti + IG12i

ĝsi ĝ
T ′
ti + IG13i

ĝ′si ĝ
T
gi

+ IG12i
ĝ′ti ĝ

T
si + IG12i

ĝti ĝ
T ′
si + IGti

ĝ′ti ĝ
T
ti + IGti

ĝti ĝ
T ′
ti + IG23i

ĝ′ti ĝ
T
gi

+ IG13i
ĝgi
ĝT ′si + IG23i

ĝgi
ĝT ′ti

(3.45)

Recall the following body frame derivatives.

ĝ′si = γ̇ĝti

ĝ′ti = −γ̇ĝsi

ĝ′gi = 0

Simplifying Eq. (3.45) gives the expanded form of the body frame derivative of the gimbal inertia.

[IGi,Gci
]′ =IGsi

γ̇ĝti ĝ
T
si + IGsi

γ̇ĝsi ĝ
T
ti + IG12i

γ̇ĝti ĝ
T
ti − IG12i

γ̇ĝsi ĝ
T
si + IG13i

γ̇ĝti ĝ
T
gi

− IG12i
γ̇ĝsi ĝ

T
si + IG12i

γ̇ĝti ĝ
T
ti − IGti

γ̇ĝsi ĝ
T
ti − IGti

γ̇ĝti ĝ
T
si − IG23i

γ̇ĝsi ĝ
T
gi

+ IG13i
γ̇ĝgi

ĝTti − IG23i
γ̇ĝgi

ĝTsi

(3.46)

This tensor may be written in gimbal frame components as,

[IGi,Gci
]′ = γ̇i

Gi
−2IG12i

(IGsi
− IGti

) −IG23i

(IGsi
− IGti

) 2IG12i
IG13i

−IG23i
IG13i

0

 (3.47)

The second inertial derivative of rGci/B
is needed. Define the body frame derivative and first

inertial derivative of rGci/B
, noting that point Gi is fixed with respect to point B.

rGci/B
= rGci/Gi

+ rGi/B (3.48)

r′Gci/B
= r′Gci/Gi

= γ̇iĝgi
× rGci/Gi

(3.49)

ṙGci/B
= r′Gci/B

+ ω × rGci/B
= γ̇iĝgi

× rGci/Gi
+ ω × rGci/B

(3.50)
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The second inertial derivative of rGci/B
is

r̈Gci/B
=γ̈iĝgi

× rGci/Gi
+ γ̇iĝgi

× r′Gci/Gi
+ ω̇ × rGci/B

+ ω × r′Gci/B
+ ω × ṙGci/B

=γ̈i[˜̂ggi
]rGci/Gi

+ γ̇i[˜̂ggi
]r′Gci/Gi

+ [r̃Gci/B
]T ω̇ + 2[r̃′Gci/B

]Tω + [ω̃][ω̃]rGci/B

(3.51)

Note that ,

r′′Gci/B
= r′′Gci/G

= γ̈i[˜̂ggi
]rGci/Gi

+ γ̇i[˜̂ggi
]r′Gci/Gi

(3.52)

Substitute into Eq. (3.42).

ḢGi,B =[IGi,Gci
](ω̇ + γ̈iĝgi

) + [IGi,Gci
]′ωGi/N + [ω̃][IGi,Gci

]ωGi/N

+mGi [r̃Gci/B
]
[
γ̈i[˜̂ggi

]rGci/Gi
+ γ̇i[˜̂ggi

]r′Gci/Gi
+ [r̃Gci/B

]T ω̇ + 2[r̃′Gci/B
]Tω + [ω̃][ω̃]rGci/B

]
(3.53)

The parallel axis theorem relating the gimbal inertia about point B to the gimbal inertia about

point Gci is given by

[IGi,B] = [IGi,Gci
] +mGi [r̃Gci/B

][r̃Gci/B
]T (3.54)

Note the following simplification (using the triple product identity):

[r̃Gci/B
][ω̃][ω̃]rGci/B

= [ω̃][r̃Gci/B
][r̃Gci/B

]Tω

Using Eq. (3.54), Eq. (3.53) simplifies to

ḢGi,B =[IGi,B]ω̇ + [IGi,Gci
]γ̈iĝgi

+ [IGi,Gci
]′ωGi/N + [ω̃][IGi,B]ω + [ω̃][IGi,Gci

]γ̇iĝgi

+mGi [r̃Gci/B
]
[
γ̈i[˜̂ggi

]rGci/Gi
+ γ̇i[˜̂ggi

]r′Gci/Gi
+ 2[r̃′Gci/B

]Tω
] (3.55)

The next step is to employ the body frame derivative of the parallel axis theorem.

[IGi,B]′ = [IGi,Gci
]′ +mGi [r̃

′
Gci/B

][r̃Gci/B
]T +mGi [r̃Gci/B

][r̃′Gci/B
]T (3.56)

Note the following simplification (using the triple product identity):

rGci/B
× (ω × r′Gci/B

) =(rGci/B
× ω)× r′Gci/B

+ ω × (rGci/B
× r′Gci/B

)

=[r̃′Gci/B
][r̃Gci/B

]Tω + [ω̃][r̃Gci/B
]r′Gci/B
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Eq. (3.55) is further simplified using Eq. (3.56) to give the gimbal angular momentum derivative.

ḢGi,B =[IGi,B]ω̇ + [IGi,B]′ω + [ω̃][IGi,B]ω + [IGi,Gci
]γ̈iĝgi

+ [IGi,Gci
]′γ̇iĝgi

+ [ω̃][IGi,Gci
]γ̇iĝgi

+mGi [r̃Gci/B
]
[
γ̈i[˜̂ggi

]rGci/Gi
+ γ̇i[˜̂ggi

]r′Gci/Gi

]
+mGi [ω̃][r̃Gci/B

]r′Gci/B

(3.57)

The next step is to derive the wheel angular momentum derivative ḢWi,B. Recall that the ith

wheel frame is defined as

Wi : {Wi, ĝsi , ŵ2i , ŵ3i}

Angular velocity of the wheel with respect to inertial is

ωWi/N = ωB/N + ωGi/B + ωWi/Gi = ω + γ̇iĝgi
+ Ωiĝsi (3.58)

The wheel angular momentum about point Wci is given by

HWi,Wci
= [IWi,Wci

]ωWi/N = [IWi,Wci
](ω + γ̇iĝgi

+ Ωiĝsi) (3.59)

Angular momentum about point Wci is related to point B using the following equation.

HWi,B = HWi,Wci
+mWirWci/B

× ṙWci/B
(3.60)

Take the inertial derivative.

ḢWi,B =[IWi,Wci
](ω̇ + γ̈iĝgi

+ Ω̇iĝsi + Ωγ̇ĝti) + [IWi,Wci
]′ωWi/N

+ [ω̃][IWi,Wci
]ωWi/N +mWirWci/B

× r̈Wci/B

(3.61)

The body relative inertia tensor time derivative [Irwi,Wci
]′ needs to be defined. For this general RW

model, the inertia matrix of the RW in the Wi frame is defined as

[IWi,Wci
] =

Wi

J11i J12i J13i

J12i J22i J23i

J13i J23i J33i

 (3.62)
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The definition of [IWi,Wci
] allows for any RW inertia matrix to be considered. In order to take the

body frame derivative of [IWi,Wci
], Eq. (3.62) is rewritten in a general form using outer product

expansions.

[IWi,Wci
] =J11i ĝsi ĝ

T
si + J12i ĝsiŵ

T
2i + J13i ĝsiŵ

T
3i

+ J12iŵ2i ĝ
T
si + J22iŵ2iŵ

T
2i + J23iŵ2iŵ

T
3i

+ J13iŵ3i ĝ
T
si + J23iŵ3iŵ

T
2i + J33iŵ3iŵ

T
3i

(3.63)

Take the body frame derivative.

[IWi,Wci
]′ =J11i ĝ

′
si ĝ

T
si + J11i ĝsi ĝ

T ′
si + J12i ĝ

′
siŵ

T
2i + J12i ĝsiŵ

T ′
2i + J13i ĝ

′
siŵ

T
3i + J13i ĝsiŵ

T ′
3i

+ J12iŵ
′
2i ĝ

T
si + J12iŵ2i ĝ

T ′
si + J22iŵ

′
2iŵ

T
2i + J22iŵ2iŵ

T ′
2i + J23iŵ

′
2iŵ

T
3i + J23iŵ2iŵ

T ′
3i

+ J13iŵ
′
3i ĝ

T
si + J13iŵ3i ĝ

T ′
si + J23iŵ

′
3iŵ

T
2i + J23iŵ3iŵ

T ′
2i + J33iŵ

′
3iŵ

T
3i + J33iŵ3iŵ

T ′
3i

(3.64)

Recall that the body frame derivatives of wheel frame basis vectors are (reprinted for convenience)

ĝ′si = γ̇iĝti

ĝ′ti = −γ̇ĝsi

ĝ′gi = 0

ŵ′2i = Ωiŵ3i − γ̇icθiĝsi

ŵ′3i = γ̇isθiĝsi − Ωiŵ2i

After an exhausting amount of algebra, Eq. 3.64 simplifies to the following tensor (given in wheel

frame components).

[IWi,Wci
]′ =

Wi


2γ̇i(J13isθi − J12icθi) γ̇i(Jaicθi + J23isθi)− J13iΩi γ̇i(Jbisθi − J23icθi) + J12iΩi

γ̇i(Jaicθi + J23isθi)− J13iΩi 2(J12i γ̇icθi − J23iΩi) γ̇i(J13icθi − J12isθi) + JciΩi

γ̇i(Jbisθi − J23icθi) + J12iΩi γ̇i(J13icθi − J12isθi) + JciΩi 2(J23iΩi − J13i γ̇isθi)


(3.65)
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Where,

Jai = J11i − J22i (3.66)

Jbi = J33i − J11i (3.67)

Jci = J22i − J33i (3.68)

Note that if we assume J12 = J23 = 0 this tensor becomes,

[IWi,Wci
]′ =

Wi


2γ̇iJ13isθi γ̇iJaicθi − J13iΩi γ̇iJbisθi

γ̇iJaicθi − J13iΩi 0 γ̇iJ13icθi + JciΩi

γ̇iJbisθi γ̇iJ13icθi + JciΩi −2J13i γ̇isθi

 (3.69)

Furthermore, by assuming J22i = J33i , J13 = 0, and θi = 0 (since the wheel frame does not rotate),

the equation above simplifies to

[IWi,Wci
]′ =

Wi


0 γ̇iJaicθi 0

γ̇iJaicθi 0 0

0 0 0

 (3.70)

The second inertial derivative of rWci/B
is needed. Note that the static imbalance is fundamentally

an impact of the wheel center of mass offset di. We arbitrarily allow this offset to act in the ŵ2i

direction. The center of mass of the wheel with respect to point Wi is thus given by

rWci/Wi
= diŵ2i (3.71)

Additionally, point W does not lie on the body fixed gimbal axis ĝgi
for all VSCMGs. Such an

offset subtly contributes to jitter. Thus, we introduce a radial offset `i of the wheel center of mass.

Point Wi is related to point Gi by

rWi/Gi
= `iĝsi + Liĝgi

(3.72)

where Li is the axial offset of the wheel from the gimbal origin that is common in many VSCMGs.

The time varying vector that relates the wheel center of mass to the body frame origin is then given

by

rWci/B
= rWci/Wi

+ rWi/Gi
+ rGi/B = diŵ2i + `iĝsi + Liĝgi

+ rGi/B (3.73)
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Recalling that rGi/B and ĝgi
are both body frame fixed vectors, we define the body frame derivative

and first inertial derivative of rWci/B
.

r′Wci/B
= r′Wci/G

= diŵ
′
2i + `iĝ

′
si = diΩiŵ3i − diγ̇icθiĝsi + `iγ̇iĝti (3.74)

ṙWci/B
= r′Wci/B

+ ω × rWci/B
(3.75)

The second inertial derivative of rWci/B
is

r̈Wci/B
=r′′Wci/B

+ ω̇ × rWci/B
+ ω × r′Wci/B

+ ω × ṙWci/B

=r′′Wci/B
+ [r̃Wci/B

]T ω̇ + 2[r̃′Wci/B
]Tω + [ω̃][ω̃]rWci/B

(3.76)

The second body frame derivative of rWci/B
was defined in Eq. (3.17) and is reprinted here for the

reader’s convenience.

r′′Wci/B
=
(
2diγ̇iΩisθi − diγ̈icθi − `iγ̇2

i

)
ĝsi +

(
`iγ̈i − diγ̇2

i cθi
)
ĝti − diΩ

2
i ŵ2i + diΩ̇iŵ3i

Substitute Eq. (3.76) into Eq. (3.61).

ḢWi,B =[IWi,Wci
](ω̇ + γ̈iĝgi

+ Ω̇iĝsi + Ωγ̇ĝti) + [IWi,Wci
]′ωWi/N + [ω̃][IWi,Wci

]ωWi/N

+mWi [r̃Wci/B
]
[
r′′Wci/B

+ [r̃Wci/B
]T ω̇ + 2[r̃′Wci/B

]Tω + [ω̃][ω̃]rWci/B

] (3.77)

The parallel axis theorem relating the gimbal inertia about point B to the gimbal inertia about

point Wci is given by

[IWi,B] = [IWi,Wci
] +mWi [r̃Wci/B

][r̃Wci/B
]T (3.78)

Using Eq. (3.78), Eq. (3.77) simplifies to

ḢWi,B =[IWi,B]ω̇ + [IWi,Wci
](γ̈iĝgi

+ Ω̇iĝsi + Ωγ̇ĝti) + [ω̃][IWi,B]ω + [ω̃][IWi,Wci
]ωWi/B

+ [IWi,Wci
]′ωWi/N +mWi [r̃Wci/B

]
[
r′′Wci/B

+ 2[r̃′Wci/B
]Tω

] (3.79)

The next step is to employ the body frame derivative of the parallel axis theorem.

[IWi,B]′ = [IWi,Wci
]′ +mWi [r̃

′
Wci/B

][r̃Wci/B
]T +mWi [r̃Wci/B

][r̃′Wci/B
]T (3.80)

Note the following simplification (using the triple product identity):

rWci/B
× (ω × r′Wci/B

) =(rWci/B
× ω)× r′Wci/B

+ ω × (rWci/B
× r′Wci/B

)

=[r̃′Wci/B
][r̃Wci/B

]Tω + [ω̃][r̃Wci/B
]r′Wci/B
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Eq. (3.79) is further simplified using Eq. (3.80) to give the wheel angular momentum derivative.

ḢWi,B =[IWi,B]ω̇ + [IWi,B]′ω + [ω̃][IWi,B]ω + [IWi,Wci
](γ̈iĝgi

+ Ω̇iĝsi + Ωγ̇ĝti) + [IWi,Wci
]′ωWi/B

+ [ω̃][IWi,Wci
]ωWi/B +mWi [r̃Wci/B

]r′′Wci/B
+mWi [ω̃][r̃Wci/B

]r′Wci/B

(3.81)

We may now formulate the rotational equations of motion. Euler’s equation is rearranged as

msc[c̃]r̈B/N + ḢB,B +

N∑
i=1

(ḢGi,B + ḢWi,B) = LB (3.82)

The rotational equations of motion are formulated by substituting Equations (3.38), (3.57), and

(3.81) into Eq. (3.82)

msc[c̃]r̈B/N + [Isc,B]ω̇ +

N∑
i=1

[
[IGi,Gci

]ĝgi
+mGi [r̃Gci/B

][˜̂ggi
]rGci/Gi

+ [IWi,Wci
]ĝgi

+mWi [r̃Wci/B
](`iĝti − dicθiĝsi)

]
γ̈i +

N∑
i=1

[
[IWi,Wci

]ĝsi +mWidi[r̃Wci/B
]ŵ3i

]
Ω̇i

=LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
[IGi,Gci

]′γ̇iĝgi
+ [ω̃][IGi,Gci

]γ̇iĝgi
+mGi [ω̃][r̃Gci/B

]r′Gci/B

+mGi γ̇i[r̃Gci/B
][˜̂ggi

]r′Gci/Gi
+ [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/B + [ω̃][IWi,Wci

]ωWi/B

+mWi [ω̃][r̃Wci/B
]r′Wci/B

+mWi [r̃Wci/B
]
[(

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

] ]
(3.83)

The total spacecraft inertia about point B is given by,

[Isc,B] = [IB,B] +
N∑
i=1

[Ivscmgi,B] (3.84)

where,

[Ivscmgi,B] = [IGi,B] + [IWi,B] (3.85)
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The rotational equation of motion for a VSCMG with balanced wheels may be found by setting

imbalance terms to zero.

msc[c̃]r̈B/N + [Isc,B]ω̇ +

N∑
i=1

IVgi
ĝgi

γ̈i +

N∑
i=1

IWsi
ĝsiΩ̇i

= LB − [ω̃][Isc,B]ω −
N∑
i=1

[
ωtγ̇i(IVsi

− IVti
+ IVgi

)ĝsi

+
[
ωsγ̇i(IVsi

− IVti
− IVgi

) + IWsi
Ωi(γ̇ + ωg)

]
ĝti − ωtIWsi

Ωiĝgi

]
(3.86)

This equation agrees with that found in the reference. However, for back-substitution, we need it

in the following form.

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

IVgi
ĝgi

γ̈i +
N∑
i=1

IWsi
ĝsiΩ̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
IWti

Ωγ̇ĝti + Ωiγ̇i(IWsi
− IWti

)ĝti

+ [ω̃][IGi,Gci
]γ̇iĝgi

+ [ω̃][IWi,Wci
]ωWi/B

]
(3.87)

The equations of motion for an imbalanced RW may be obtained by setting γ̈i = γ̇i = 0 in Eq. (3.83).

msc[c̃]r̈B/N + [Isc,B]ω̇ +

N∑
i=1

[
[IWi,Wci

]ĝsi +mWidi[r̃Wci/B
]ŵ3i

]
Ω̇i

=LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
[IWi,Wci

]′ωWi/B + [ω̃][IWi,Wci
]ωWi/B

+mWi [ω̃][r̃Wci/B
]r′Wci/B

−mWidiΩ
2
i [r̃Wci/B

]ŵ2i

]
(3.88)

Eq. (3.88) agrees with the formulation found in Reference [27]. Eq. (3.88) is further reduced by

setting all imbalance terms to zero.

msc[c̃]r̈B/N + [Isc,B]ω̇ +

N∑
i=1

[IWi,Wci
]ĝsiΩ̇i = LB − [ω̃][Isc,B]ω −

N∑
i=1

[ω̃][IWi,Wci
]ĝsiΩi (3.89)

If the center of mass of the spacecraft C is coincident with point B, this equation is reduced to

[Isc,B]ω̇ +
N∑
i=1

[IWi,Wci
]ĝsiΩ̇i = LB − [ω̃][Isc,B]ω −

N∑
i=1

[ω̃][IWi,Wci
]ĝsiΩi (3.90)

This equation represents N balanced reaction wheels, and agrees with Reference [24].
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3.2.3 Gimbal Torque Equation

The gimbal torque equation is used to relate body rate derivative ω̇B/N and gimbal rate

derivative γ̈i. The VSCMG motor torque ugi is the ĝgi
component of gimbal torque about point

Gi. The torque acting on a VSCMG at the joint between the motor and the gimbal assembly is

given by

LGi =

Gi
τgsi

τgti

ugi

 (3.91)

The transverse torques acting on the gimbal τgsi and τgti are structural torques and do not contribute

to the equation. Torque about point Gi is related to torque about the VSCMG center of mass Vci

using the following equation.

LGi = LVci +mVirVci/Gi
× r̈Vci/N (3.92)

Euler’s equation applies as follows.

LVci = ḢGi,Vci
+ ḢWi,Vci

(3.93)

The VSCMG motor torque is the ĝgi
component of the right-hand side of Eq. (3.92). This is found

in a frame independent format as

ugi = ĝTgiLGi = ĝTgi
(
ḢGi,Vci

+ ḢWi,Vci
+ rVci/Gi

×mVi r̈Vci/N
)

(3.94)

where the gimbal and wheel angular momentum derivatives about point Vci are related to point

Wci using the following equation.

ḢGi,Vci
= ḢGi,Gci

+mGirGci/Vci
× r̈Gci/Vci

(3.95)

ḢWi,Vci
= ḢWi,Wci

+mWirWci/Vci
× r̈Wci/Vci

(3.96)
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The inertial derivatives of the wheel and gimbal angular momentum about their respective centers

of mass were found in the previous section and are reprinted here for the reader’s convenience.

ḢGi,Gci
= [IGi,Gci

](ω̇ + γ̈iĝgi
) + [IGi,Gci

]′ωGi/N + [ω̃][IGi,Gci
]ωGi/N (3.97)

ḢWi,Wci
= [IWi,Wci

](ω̇ + γ̈iĝgi
+ Ω̇iĝsi + Ωγ̇ĝti) + [IWi,Wci

]′ωWi/N + [ω̃][IWi,Wci
]ωWi/N (3.98)

Define the terms on the right-hand side of Eq. (3.95).

rGci/Vci
= rGci/Gi

− rVci/Gi
(3.99)

ṙGci/Vci
= r′Gci/Vci

+ ω × rGci/Vci
(3.100)

r̈Gci/Vci
= r′′Gci/Vci

+ ω̇ × rGci/Vci
+ 2ω × r′Gci/Vci

+ ω × (ω × rGci/Vci
) (3.101)

Define the terms on the right-hand side of Eq. (3.96).

rWci/Vci
= rWci/Gi

− rVci/Gi
(3.102)

ṙWci/Vci
= r′Wci/Vci

+ ω × rWci/Vci
(3.103)

r̈Wci/Vci
= r′′Wci/Vci

+ ω̇ × rWci/Vci
+ 2ω × r′Wci/Vci

+ ω × (ω × rWci/Vci
) (3.104)

The body frame derivatives are given by

r′Gci/Vci
= r′Gci/Gi

− r′Vci/Gi
(3.105)

r′′Gci/Vci
= r′′Gci/Gi

− r′′Vci/Gi
(3.106)

r′Wci/Vci
= r′Wci/Gi

− r′Vci/Gi
(3.107)

r′′Wci/Vci
= r′′Wci/Gi

− r′′Vci/Gi
(3.108)

The VSCMG center of mass location with respect to point Gi and its body frame derivatives are

given by

rVci/Gi
=

1

mVi

(
mGirGci/Gi

+mWirWci/Gi

)
(3.109)

r′Vci/Gi
= ρGir

′
Gci/Gi

+ ρWir
′
Wci/Gi

(3.110)

r′′Vci/Gi
= ρGir

′′
Gci/Gi

+ ρWir
′′
Wci/Gi

(3.111)
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where the mass ratios are abbreviated as

ρGi =
mGi

mGi +mWi

(3.112)

ρWi =
mWi

mGi +mWi

(3.113)

Reprint Eq. (3.49), (3.52) for convenience.

r′Gci/Gi
= γ̇i[˜̂ggi

]rGci/Gi

r′′Gci/G
= γ̈i[˜̂ggi

]rGci/Gi
+ γ̇i[˜̂ggi

]r′Gci/Gi

Reprint Eq. (3.16), (3.17) for convenience.

r′Wci/G
= diŵ

′
2i + `iĝ

′
si = diΩiŵ3i − diγ̇icθiĝsi + `iγ̇iĝti

r′′Wci/G
=
(
2diγ̇iΩisθi − diγ̈icθi − `iγ̇2

i

)
ĝsi +

(
`iγ̈i − diγ̇2

i cθi
)
ĝti − diΩ

2
i ŵ2i + diΩ̇iŵ3i

r′′Wci/G
= (`iĝti − dicθiĝsi)γ̈i + diŵ3iΩ̇i +

(
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

Evaluate r̈Vci/N .

r̈Vci/N = r̈Vci/B + r̈B/N (3.114)

Find the second inertial derivative of rVci/B (note that r′Vci/G
= r′Vci/B

and r′′Vci/G
= r′′Vci/B

)

ṙVci/B = r′Vci/B
+ ω × rVci/B (3.115)

r̈Vci/B = r′′Vci/B
+ ω̇ × rVci/B + 2ω × r′Vci/B + ω × (ω × rVci/B) (3.116)
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Substituting into Eq. (3.94) and performing a massive rearrange gives the VSCMG gimbal torque

equation of motion.

ĝTgi

[
mVi [r̃Vci/Gi

]

]
r̈B/N + ĝTgi

[
[IVi,Vci

] +mVi [r̃Vci/Gi
][r̃Vci/B]T

]
ω̇ + ĝTgi

[
[IGi,Gci

]ĝgi

+ [IWi,Wci
]ĝgi

+ [Pi]
(
`iĝti − dicθiĝsi

)
+ [Qi][˜̂ggi

]rGci/Gi

]
γ̈i + ĝTgi

[
[IWi,Wci

]ĝsi + [Pi]diŵ3i

]
Ω̇i

= −ĝTgi

[
γ̇i[Qi][˜̂ggi

]r′Gci/Gi
+ [Pi]

[ (
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

]
+ [IGi,Gci

]′ωGi/N + [ω̃][IGi,Gci
]ωGi/N + [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/N

+ [ω̃][IWi,Wci
]ωWi/N +mGi [r̃Gci/Vci

]
(
2[ω̃]r′Gci/Vci

+ [ω̃]2rGci/Vci

)
+mWi [r̃Wci/Vci

]
(
2[ω̃]r′Wci/Vci

+ [ω̃]2rWci/Vci

)
+mVi [r̃Vci/Gi

]
(
2[ω̃]r′Vci/B

+ [ω̃]2rVci/B
)]

+ ugi

(3.117)

Where,

[IVi,Vci
] = [IGi,Vci

] + [IWi,Vci
] (3.118)

[IGi,Vci
] = [IGi,Gci

] +mGi [r̃Gci/Vci
][r̃Gci/Vci

]T (3.119)

[IWi,Vci
] = [IWi,Wci

] +mWi [r̃Wci/Vci
][r̃Wci/Vci

]T (3.120)

[Pi] = mWiρGi [r̃Wci/Vci
]−mGiρWi [r̃Gci/Vci

] +mWi [r̃Vci/Gi
] (3.121)

[Qi] = mGiρWi [r̃Gci/Vci
]−mWiρGi [r̃Wci/Vci

] +mGi [r̃Vci/Gi
] (3.122)

[ω̃]2 = [ω̃][ω̃] (3.123)

Removing all imbalance terms, Eq. (5.24) simplifies to the equation found in Reference [24].

IVgi
(ĝTgiω̇ + γ̈i) = ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt (3.124)

3.2.4 Wheel Torque Equation

The wheel torque equation is used to relate body rate derivative ω̇B/N and wheel speed

derivative Ω̇i. The wheel motor torque usi is the ĝsi component of wheel torque about point Wi.
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The torque acting on a RW at the joint between the RW motor and the RW rotor is given by

LWi =

Wi

usi

τw2i

τw3i

 (3.125)

The transverse torques acting on the gimbal τw2i
and τw3i

are structural torques and do not con-

tribute to the equation. Torque about point Wi is related to torque about Wci using the following

equation.

LWi = LWci
+ rWci/Wi

×mWi r̈Wci/N
(3.126)

Euler’s equation applied as follows.

LWci
= ḢWi,Wci

(3.127)

The VSCMG motor torque is the ĝgi
component of the right-hand side of Eq. (3.126). This is

found in a frame independent format as

usi = ĝTsiLWi = ĝTsi
(
ḢWi,Wci

+ rWci/Wi
×mWi r̈Wci/N

)
(3.128)

The inertial derivatives of the wheel and gimbal angular momentum about their respective centers

of mass were found in the previous section and are reprinted here for the reader’s convenience.

ḢWi,Wci
= [IWi,Wci

](ω̇ + γ̈iĝgi
+ Ω̇iĝsi + Ωγ̇ĝti) + [IWi,Wci

]′ωWi/N + [ω̃][IWi,Wci
]ωWi/N (3.129)

Define

r̈Wci/N
= r′′Wci/B

+ [r̃Wci/B
]T ω̇ + 2[r̃′Wci/B

]Tω + [ω̃][ω̃]rWci/B
+ r̈B/N (3.130)

The second body frame derivative of rWci/B
was defined in Eq. (3.17) and is reprinted here for the

reader’s convenience.

r′′Wci/B
=
(
2diγ̇iΩisθi − diγ̈icθi − `iγ̇2

i

)
ĝsi +

(
`iγ̈i − diγ̇2

i cθi
)
ĝti − diΩ

2
i ŵ2i + diΩ̇iŵ3i
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Substituting into Eq. (3.128) gives the wheel torque equation.

[
mWidiŵ

T
3i

]
r̈B/N +

[
ĝTsi [IWi,Wci

] +mWidiĝ
T
si [

˜̂w2i ][r̃Wci/B
]T
]
ω̇

+ [J12isθi + J13icθi −mWidi`isθi] γ̈i +
[
J11i +mWid

2
i

]
Ω̇i

= −ĝTsi

[
[IWi,Wci

]′ωWi/N + [ω̃][IWi,Wci
]ωWi/N +mWidi[

˜̂w2i ]
[
2[r̃′Wci/B

]Tω + [ω̃][ω̃]rWci/B

]]

+ (J13isθi − J12icθi)Ωγ̇ −mWid
2
i γ̇

2
i cθisθi + usi (3.131)

Removing imbalance terms gives (recall that for the simplified case θi = 0),

IWsi
(ĝTsiω̇ + Ω̇i) = −IWsi

ωtγ̇i + usi (3.132)



Chapter 4

Imbalance Parameter Adaptation

4.1 Simplified Imbalance Model

The well-used method to specify reaction wheel imbalance is to lump sources of imbalance

into scalar parameters. The simplified reaction wheel imbalance model directly utilizes such speci-

fications to model jitter as an external torque.[17, 8] Static imbalance, Us, typically given in units

of g·cm, specifies the proportionality of the square of wheel speed to the magnitude of disturbance

force caused by an offset in center of mass from the geometric center of the reaction wheel. That

is,

F si = UsiΩ
2
i ûi (4.1)

where ûi is an arbitrary unit vector normal to the wheel spin axis and F si is the resulting force on

the spacecraft. If the reaction wheel is not coincident with the spacecraft center of mass, torque on

the spacecraft resulting from the static imbalance force is given by the simplified model as

Lsi = rWi/B × F si = UsiΩ
2
i [r̃Wi/B]ûi (4.2)

Note that the simplified model uses the approximation rWci/B
≈ rWi/B since di is usually very

small and rWi/B 6= 0.

Dynamic imbalance Ud, typically given in units g·cm2, specifies the proportionality of the

square of wheel speed to the magnitude of disturbance torque caused by off diagonal terms in the

reaction wheel inertia tensor. That is,

Ldi = UdiΩ
2
i v̂i (4.3)
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where v̂i is an arbitrary unit vector normal to the wheel spin axis and Ldi is the resulting torque

on the spacecraft. Note that ûi and v̂i are only required to be normal to their corresponding

spin axis. This is because the lumped parameters Usi and Udi do not contain any information on

orientation/location of mass imbalances about ĝsi . Additionally, the initial value of the wheel angle

parameter is arbitrarily chosen, which further emphasizes the arbitrariness of the vectors ûi and

v̂i since they relate to the body frame through wheel angle θi.

4.2 Imbalance Parameter Adaptation

To relate the simplified model to the fully-coupled model developed within this paper,

Eq. (2.39) is analyzed to identify terms that directly contribute to torque on the spacecraft. Notic-

ing the presence of wheel speed squared and the cross product of wheel location in the term

mrwidiΩ
2
i [r̃Wci/B

]ŵ2i

it is equated to the simplified static imbalance model to yield

UsiΩ
2
i [r̃W/Bi

]ûi = mrwidiΩ
2
i [r̃Wci/B

]ŵ2i (4.4)

Rearranging this equation for Usi and making the approximation rWci/B
≈ rWi/B yields an expres-

sion for di

di =
Usi
mrwi

(4.5)

For the dynamic imbalance, the presence of wheel speed multiplied by [Irwi,Wci
]′ term results

in an inertia value times the wheel speed squared

[Irwi,Wci
]′Ωiĝsi

Equating this term to the simplified dynamic imbalance model yields

UdiΩ
2
i v̂i = [Irwi,Wci

]′Ωiĝsi = Ω2
i

W
0

−J13

J12

 (4.6)
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Rearranging this equation for Udi yields Eq. (4.7) and agrees with the relationship found in Refer-

ence [8].

Udi =
√
J2

13i
+ J2

12i
(4.7)

Thus, the fully-coupled model is under-constrained with respect to the implementation of the

simplified model, and some combination of J12 and J13 must be selected for each wheel such that

Eq. (4.7) is satisfied. Since the unit vector v̂i is arbitrary (as well as ŵ2i and ŵ3i due to the

arbitrariness of initial wheel angle), the following definitions are chosen

J13i = Udi (4.8a)

J12i = 0 (4.8b)

To complete the discussion of characterizing RW imbalance from manufactures’ specifications,

the full inertia matrix needs to be defined. The balanced reaction wheel inertia tensor is

[Irwi,Wci
] =

Pi

Jsi 0 0

0 Jti 0

0 0 Jti

 (4.9)

where Pi is the principal axes frame of the RW. Jsi and Jti are the spin axis inertia and transverse

axis inertia of the RW, respectively. For there to only be J13i terms present in theWi representation

of the RW’s inertia tensor, the rotation matrix between Wi and Pi, labeled as [WiPi] must be a

single axis rotation about the ŵ2i axis:

[WiPi] =


cos(βi) 0 − sin(βi)

0 1 0

sin(βi) 0 cos(βi)

 (4.10)

where βi is the angle of rotation. Transforming [Irwi,Wci
] from the Pi frame to the Wi frame using

Eq. (4.10) and using small angle approximations yields

[Irwi,Wci
] =

Wi


Jsi 0 (Jsi − Jti)βi

0 Jti 0

(Jsi − Jti)βi 0 Jti

 (4.11)
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However, from Eq. (4.8a), [Irwi/Wci
] can be written in the following form

[Irwi/Wci
] =

Wi

Jsi 0 Udi

0 Jti 0

Udi 0 Jti

 (4.12)

This gives the following relationship between the rotation angle, βi, and Udi

βi =
Udi

Jsi − Jti
(4.13)

This concludes the necessary steps to relate manufactures’ specifications of RW imbalances

to parameters needed for the fully-coupled jitter model. In addition, the simplified description

of [Irwi/Wci
] seen in Eq. (4.12) simplifies the EOMs developed in the previous sections due to

J12i = J13i = 0. In addition, Eq. (4.5), (4.8a) and (4.12) allow a direct comparison of the results

of the simplified model to the fully-coupled model which is discussed in the following section.



Chapter 5

Software Implementation

This chapter describes general methodology of implementing dynamical equations of mo-

tion into a software simulation, as well as methods of validation. Section 5.1 describes the back-

substitution method used to solve the coupled equations of motion of an balanced or imbalanced

RW or VSCMG in a computationally, software friendly way. Section 5.2 describes the energy and

angular momentum equations used to validate the fully-coupled EOMs.

5.1 Back-Substitution Method

In Chapter 2, the derivations of the translational, rotational, and motor torque equations

of an imbalanced reaction wheel resulted in N + 6 coupled equations. Likewise, Chapter 3 de-

rived the translational, rotational, gimbal torque, and wheel torque equations for an imbalanced

variable-speed control moment gyroscope, and resulted in 2N + 6 coupled equations - two for each

VSCMG, three relating to angular acceleration, and three relating to linear acceleration. The most

straightforward method of solving these coupled equations is to use the system mass matrix method.

However, this method of solving the EOMs involves taking the inverse of 2N + 6 by 2N + 6 matrix,

which can be computationally expensive when implementing the model in a software simulation. A

more computationally attractive method is to use back-substitution. Although more intricate than

the system mass matrix method, back-substitution can significantly reduce computation time when

solving the equations of motion. Back-substitution involves substituting the equations of motion

into each other so that the number of second order states in the translational and rotational EOMs
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is reduced, and may be solved by taking two the inverse of two 3×3 matrices. After this, the other

second order states may be solved for trivially.

The goal of back-substitution is to manipulate the rotational and translational equations of

motion to conform to the following form,[A] [B]

[C] [D]


 r̈B/N
ω̇B/N

 =

vtrans

vrot

 (5.1)

where [A], [B], [C], and [D] are 3x3 matrices representing r̈B/N and ω̇B/N coefficients within the

translational and rotational EOMs. vtrans is a 3x1 vector that represents the right-hand side (RHS)

of the translational EOM, and vrot is a 3x1 vector that represents the RHS of the rotational EOM.

The matrices [A], [B], [C], [D] and vectors vtrans, vrot are broken down as follows.

[A] = [Ahub] + [Acontr] (5.2)

[B] = [Bhub] + [Bcontr] (5.3)

[C] = [Chub] + [Ccontr] (5.4)

[D] = [Dhub] + [Dcontr] (5.5)

vtrans = vtrans,hub + vtrans,contr (5.6)

vrot = vrot,hub + vrot,contr (5.7)

where [Ahub] represents the contribution to [A] from the spacecraft hub and [Acontr] represents

the contribution to [A] from the effectors (i.e. RWs or VSCMGs), etc. [Ahub] etc are the same

regardless of the type of effector used, and are provided in the equation below.

[Ahub] = msc[I3×3] (5.8)

[Bhub] = −msc[c̃] (5.9)

[Chub] = msc[c̃] (5.10)

[Dhub] = [Isc,B] (5.11)

vtrans,hub = F − 2msc[ω̃]c′ −msc[ω̃]2c (5.12)

vrot,hub = LB − [Isc,B]′ω − [ω̃][Isc,B]ω (5.13)
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The contribution matrices [Acontr] etc are specific to the type of effector and will be solved for in the

following section for a imbalanced VSCMG and in Appendix B for a balanced VSCMG, balanced

RW, and imbalanced RW.

Using these vectors and matrices, ω̇B/N maybe be solved for using the following equation.

ω̇B/N =
(

[D]− [C][A]−1[B]
)−1

(vrot − [C][A]−1vtrans) (5.14)

Likewise, r̈B/N may be obtained by,

r̈B/N = [A]−1(vtrans − [B]ω̇B/N ) (5.15)

Now that r̈B/N and ω̇B/N are known, the other second order states may be solved for.

The following section shows the derivation of the back-substitution contribution matrices of

an imbalanced VSCMG.

5.1.1 Equations of Motion

The EOMs representing a spacecraft with N imbalanced VSCMGs were derived in Chapter 3

and are repeated here for the reader’s convenience. The first step is to rewrite the translational

equation of motion in a convenient form. The original equation is,

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

[
mGi [

˜̂ggi
]rGci/Gi

−mWidicθiĝsi +mWi`iĝti

]
γ̈i +

1

msc

N∑
i=1

[mWidiŵ3i ] Ω̇i

= r̈C/N − 2[ω̃]c′ − [ω̃][ω̃]c− 1

msc

N∑
i=1

[
mGi γ̇i[

˜̂ggi
]r′Gci/B

+mWi

[(
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

] ]
This equation may be abbreviated as,

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

uri γ̈i +
1

msc

N∑
i=1

vriΩ̇i = r̈C/N − 2[ω̃]c′ − [ω̃]2c− 1

msc

N∑
i=1

kri (5.16)



53

where,

uri = mGi [
˜̂ggi

]rGci/Gi
−mWidicθiĝsi +mWi`iĝti (5.17)

vri = mWidiŵ3i (5.18)

kri = mGi γ̇i[
˜̂ggi

]r′Gci/B
+mWi

[(
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

]
(5.19)

The next step is to rewrite the rotational equation of motion in a convenient form. The original

equation is,

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

[
[IGi,Gci

]ĝgi
+mGi [r̃Gci/B

][˜̂ggi
]rGci/Gi

+ [IWi,Wci
]ĝgi

+mWi [r̃Wci/B
](`iĝti − dicθiĝsi)

]
γ̈i +

N∑
i=1

[
[IWi,Wci

]ĝsi +mWidi[r̃Wci/B
]ŵ3i

]
Ω̇i

=LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
[IGi,Gci

]′γ̇iĝgi
+ [ω̃][IGi,Gci

]γ̇iĝgi
+mGi [ω̃][r̃Gci/B

]r′Gci/B

+mGi γ̇i[r̃Gci/B
][˜̂ggi

]r′Gci/Gi
+ [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/B + [ω̃][IWi,Wci

]ωWi/B

+mWi [ω̃][r̃Wci/B
]r′Wci/B

+mWi [r̃Wci/B
]
[(

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

] ]
This equation may be abbreviated as,

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

uωi γ̈i +
N∑
i=1

vωiΩ̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

kωi

(5.20)

where,

uωi = [IGi,Gci
]ĝgi

+mGi [r̃Gci/B
][˜̂ggi

]rGci/Gi
+ [IWi,Wci

]ĝgi
+mWi [r̃Wci/B

](`iĝti − dicθiĝsi)
(5.21)

vωi = [IWi,Wci
]ĝsi +mWidi[r̃Wci/B

]ŵ3i (5.22)

kωi = [IGi,Gci
]′γ̇iĝgi

+ [ω̃][IGi,Gci
]γ̇iĝgi

+mGi [ω̃][r̃Gci/B
]r′Gci/B

+mGi γ̇i[r̃Gci/B
][˜̂ggi

]r′Gci/Gi

+[IWi,Wci
]Ωγ̇ĝti + [IWi,Wci

]′ωWi/B + [ω̃][IWi,Wci
]ωWi/B +mWi [ω̃][r̃Wci/B

]r′Wci/B

+mWi [r̃Wci/B
]
[(

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

]
(5.23)
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The gimbal torque equation is,

ĝTgi

[
mVi [r̃Vci/Gi

]

]
r̈B/N + ĝTgi

[
[IVi,Vci

] +mVi [r̃Vci/Gi
][r̃Vci/B]T

]
ω̇ + ĝTgi

[
[IGi,Gci

]ĝgi

+ [IWi,Wci
]ĝgi

+ [Pi]
(
`iĝti − dicθiĝsi

)
+ [Qi][˜̂ggi

]rGci/Gi

]
γ̈i + ĝTgi

[
[IWi,Wci

]ĝsi + [Pi]diŵ3i

]
Ω̇i

= −ĝTgi

[
γ̇i[Qi][˜̂ggi

]r′Gci/Gi
+ [Pi]

[ (
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

]
+ [IGi,Gci

]′ωGi/N + [ω̃][IGi,Gci
]ωGi/N + [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/N

+ [ω̃][IWi,Wci
]ωWi/N +mGi [r̃Gci/Vci

]
(
2[ω̃]r′Gci/Vci

+ [ω̃]2rGci/Vci

)
+mWi [r̃Wci/Vci

]
(
2[ω̃]r′Wci/Vci

+ [ω̃]2rWci/Vci

)
+mVi [r̃Vci/Gi

]
(
2[ω̃]r′Vci/B

+ [ω̃]2rVci/B
)]

+ ugi

(5.24)

where,

[IVi,Vci
] = [IGi,Vci

] + [IWi,Vci
] (5.25)

[IGi,Vci
] = [IGi,Gci

] +mGi [r̃Gci/Vci
][r̃Gci/Vci

]T (5.26)

[IWi,Vci
] = [IWi,Wci

] +mWi [r̃Wci/Vci
][r̃Wci/Vci

]T (5.27)

[Pi] = mWiρGi [r̃Wci/Vci
]−mGiρWi [r̃Gci/Vci

] +mWi [r̃Vci/Gi
] (5.28)

[Qi] = mGiρWi [r̃Gci/Vci
]−mWiρGi [r̃Wci/Vci

] +mGi [r̃Vci/Gi
] (5.29)

[ω̃]2 = [ω̃][ω̃] (5.30)

The wheel torque equation is,

[
mWidiŵ

T
3i

]
r̈B/N +

[
ĝTsi [IWi,Wci

] +mWidiĝ
T
si [

˜̂w2i ][r̃Wci/B
]T
]
ω̇

+ [J12isθi + J13icθi −mWidi`isθi] γ̈i +
[
J11i +mWid

2
i

]
Ω̇i

= −ĝTsi

[
[IWi,Wci

]′ωWi/N + [ω̃][IWi,Wci
]ωWi/N +mWidi[

˜̂w2i ]
[
2[r̃′Wci/B

]Tω + [ω̃][ω̃]rWci/B

]]

+ (J13isθi − J12icθi)Ωγ̇ −mWid
2
i γ̇

2
i cθisθi + usi (5.31)
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5.1.2 Derivation of Back-Substitution

Solve the gimbal torque equation for γ̈i in terms of r̈B/N and ω̇B/N and Ω̇i

γ̈i = aTγi r̈B/N + bTγiω̇ + cγiΩ̇i + dγi (5.32)

where,

aγi = e−1
γi mVi [r̃Vci/Gi

]ĝgi
(5.33)

bγi = −e−1
γi

(
[IVi,Vci

]T ĝgi
−mVi [r̃Vci/B][r̃Vci/Gi

]ĝgi

)
(5.34)

cγi = −e−1
γi

(
ĝTgi [IWi,Wci

]ĝsi + diĝ
T
gi

[Pi]ŵ3i

)
(5.35)

dγi = −e−1
γi ĝ

T
gi

[
γ̇i[Qi][˜̂ggi

]r′Gci/Gi
+ [Pi]

[ (
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇

2
i cθiĝti − diΩ

2
i ŵ2i

]
+ [IGi,Gci

]′ωGi/N + [ω̃][IGi,Gci
]ωGi/N + [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/N + [ω̃][IWi,Wci

]ωWi/N

+mGi [r̃Gci/Vci
]
(
2[ω̃]r′Gci/Vci

+ [ω̃]2rGci/Vci

)
+mWi [r̃Wci/Vci

]
(
2[ω̃]r′Wci/Vci

+ [ω̃]2rWci/Vci

)
+mVi [r̃Vci/Gi

]
(
2[ω̃]r′Vci/B

+ [ω̃]2rVci/B
)]

+ e−1
γi ugi (5.36)

eγi = ĝTgi

[
[IGi,Gci

]ĝgi
+ [IWi,Wci

]ĝgi
+ [Pi]

(
`iĝti − dicθiĝsi

)
+ [Qi][˜̂ggi

]rGci/Gi

]
(5.37)

Solve the wheel torque equation for Ω̇i in terms of r̈B/N and ω̇B/N and γ̈i

Ω̇i = aTΩi
r̈B/N + bTΩi

ω̇B/N + cΩi γ̈i + dΩi (5.38)

where

aΩi = −e−1
Ωi
mWidiŵ3i (5.39)

bΩi = −e−1
Ωi

(
[IWi,Wci

]T ĝsi −mWidi[r̃Wci/B
][ ˜̂w2i ]ĝsi

)
(5.40)

cΩi = −e−1
Ωi

(J12isθi + J13icθi −mWidi`isθi) (5.41)

dΩi = −e−1
Ωi

[
ĝTsi [IWi,Wci

]′ωWi/N + ĝTsi [ω̃][IWi,Wci
]ωWi/N +mWidiĝ

T
si [

˜̂w2i ]
[
2[r̃′Wci/B

]Tω

+[ω̃][ω̃]rWci/B

]
+ (J13isθi − J12icθi)Ωγ̇ −mWid

2
i γ̇

2
i cθisθi + usi

] (5.42)

eΩi = J11i +mWid
2
i (5.43)
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Substitute Eq. (5.32) into Eq. (5.38).

Ω̇i =aTΩi
r̈B/N + bTΩi

ω̇B/N + cΩi

[
aTγi r̈B/N + bTγiω̇ + cγiΩ̇i + dγi

]
+ dΩi

=
aTΩi

+ cΩia
T
γi

1− cΩicγi
r̈B/N +

bTΩi
+ cΩib

T
γi

1− cΩicγi
ω̇ +

dΩi + cΩidγi
1− cΩicγi

=pTi r̈B/N + qTi ω̇ + si

(5.44)

where,

pi =
aΩi + cΩiaγi

1− cΩicγi
(5.45)

qi =
bΩi + cΩibγi
1− cΩicγi

(5.46)

si =
dΩi + cΩidγi
1− cΩicγi

(5.47)

Substitute Eq. (5.32) into the translational equation of motion Eq. (5.16).

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

uri

[
aTγi r̈B/N + bTγiω̇ + cγiΩ̇i + dγi

]
+

1

msc

N∑
i=1

vriΩ̇i

= r̈C/N − 2[ω̃]c′ − [ω̃]2c− 1

msc

N∑
i=1

kri

(5.48)

Group like terms.[
[I3×3] +

1

msc

N∑
i=1

uria
T
γi

]
r̈B/N +

[
− [c̃] +

1

msc

N∑
i=1

urib
T
γi

]
ω̇ +

1

msc

N∑
i=1

[
vri + uricγi

]
Ω̇i

= r̈C/N − 2[ω̃]c′ − [ω̃]2c− 1

msc

N∑
i=1

(
kri + uridγi

) (5.49)

Substitute Eq. (5.44) into Eq. (5.49) and group like terms. Also multiply each side of the equation

by msc. [
msc[I3×3] +

N∑
i=1

(
uria

T
γi +

(
vri + uricγi

)(
aTΩi

+ cΩia
T
γi

)
1− cΩicγi

)]
r̈B/N

+

[
−msc[c̃] +

N∑
i=1

(
urib

T
γi +

(
vri + uricγi

)(
bTΩi

+ cΩib
T
γi

)
1− cΩicγi

)]
ω̇

= F − 2msc[ω̃]c′ −msc[ω̃]2c−
N∑
i=1

(
kri + uridγi +

(
vri + uricγi

)(
cΩidγi + dΩi

)
1− cΩicγi

) (5.50)
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At this point, we’re done with translation. Repeat these steps for rotation. Substitute Eq. (5.32)

into the rotational equation of motion Eq. (5.20) and group like terms.[
msc[c̃] +

N∑
i=1

uωia
T
γi

]
r̈B/N +

[
[Isc,B] +

N∑
i=1

uωib
T
γi

]
ω̇ +

N∑
i=1

(
vωi + uωicγi

)
Ω̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω − 1

msc

N∑
i=1

(
kωi + uωidγi

) (5.51)

Substitute Eq. (5.44) into Eq. (5.51) and group like terms.[
msc[c̃] +

N∑
i=1

(
uωia

T
γi +

(
vωi + uωicγi

)(
aTΩi

+ cΩia
T
γi

)
1− cΩicγi

)]
r̈B/N

+

[
[Isc,B] +

N∑
i=1

(
uωib

T
γi +

(
vωi + uωicγi

)(
bTΩi

+ cΩib
T
γi

)
1− cΩicγi

)]
ω̇

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

(
kωi + uωidγi +

(
vωi + uωicγi

)(
cΩidγi + dΩi

)
1− cΩicγi

) (5.52)

5.1.3 Back-Substitution Contribution Matrices

The contributions are,

[Acontr] =

N∑
i=1

[
uria

T
γi +

(
vri + uricγi

)
pTi

]
(5.53)

[Bcontr] =
N∑
i=1

[
urib

T
γi +

(
vri + uricγi

)
qTi

]
(5.54)

[Ccontr] =
N∑
i=1

[
uωia

T
γi +

(
vωi + uωicγi

)
pTi

]
(5.55)

[Dcontr] =

N∑
i=1

[
uωib

T
γi +

(
vωi + uωicγi

)
qTi

]
(5.56)

vtrans,contr = −
N∑
i=1

[
kri + uridγi +

(
vri + uricγi

)
si

]
(5.57)

vrot,contr = −
N∑
i=1

[
kωi + uωidγi +

(
vωi + uωicγi

)
si

]
(5.58)

This concludes the derivation of the back-substitution of imbalanced VSCMGs. Appendix B pro-

vides the back-substitution contribution matrices for balanced VSCMGs, balanced RWs, and im-

balanced RWs.
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5.2 Energy and Angular Momentum Validation Method

A key benefit of using fully-coupled formulations of imbalanced RWs and VSCMGs is to

leverage angular momentum and energy validation tools. These tools are essential when simulating

combined complex models such as flexible dynamics, fuel slosh, etc, and simply as a tool to validate

the spacecraft dynamics in general. When implementing angular momentum and energy checks in a

computer simulation, it if often that the integration timestep must be significantly reduced in order

to propagate the spacecraft and effector states precisely enough so that the energy and angular

momentum are seen as conserved. The following sections describe the equations used to valid the

formulations derived within this thesis.

5.2.1 Angular Momentum

The angular momentum vector of the spacecraft + VSCMG system taken about point N is

defined as

Hsc,N = HB,N +HW,N +HG,N (5.59)

where,

HB,N = [IB,Bc ]ω +mBrBc/N × ṙBc/N (5.60)

HW,N = [IW,Wc ]ωW/N +mWrWc/N × ṙWc/N (5.61)

HG,N = [IG,Gc ]ωG/N +mGrGc/N × ṙGc/N (5.62)

where the inertial derivatives ṙBc/N etc were defined in section 3.2.2. If no external torques act on

the spacecraft, then

∆
∣∣NHsc,N

∣∣ = 0

that is, the change of the norm of the spacecraft angular momentum vector taken about point N

and represented in the N frame should be 0. This is conservation of angular momentum.
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5.2.2 Energy

The total mechanical energy of the spacecraft + VSCMG system is given by

Tsc = TB + TG + TW (5.63)

where,

TB = TB,trans + TB,rot =
1

2
mBṙ

T
Bc/N

ṙBc/N +
1

2
ωT [IB,Bc ]ω (5.64)

TG = TG,trans + TG,rot =
1

2
mGṙ

T
Gc/N

ṙGc/N +
1

2
ωTG/N [IG,Gc ]ωG/N (5.65)

TW = TW,trans + TW,rot =
1

2
mWṙ

T
Wc/N

ṙWc/N +
1

2
ωTW/N [IW,Wc ]ωW/N (5.66)

Note that each contribution to Tsc is the sum of the translational energy of the system about point

N and the rotational energy of the system with respect to the inertial frame N . If no internal or

external torques are present, then

∆Tsc = 0

This is conservation of energy. Alternatively, the orbital kinetic energy of the spacecraft center

of mass could be summed with the total rotational and deformational kinetic energy about the

spacecraft center of mass to arrive at the same equation.1

5.2.3 Energy Rate

When internal or external forces or torques are applied system energy is no longer conserved

and may not be directly used as a validation tool. However, the time rate of change of energy may

still be analyzed and used for validation. This is given by,

Ṫsc = ṙTB/NF + ωTB/NLB +

N∑
i=1

γ̇iugi +
N∑
i=1

Ωiusi (5.67)

If there are no unaccounted internal or external forces or torques on the system, the equation above

should be numerically equivalent to the time derivative of energy as computed in Eq. (5.63).

Ṫsc =
d

dt
Tsc (5.68)

1 Basilisk Technical Memorandum: FORMULATION OF THE ENERGY AND MOMENTUM OF THE SPACE-
CRAFT, Cody Allard, 2016
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In a computer simulation, the time derivative of Ṫsc may be computed numerically and compared

to the theoretical energy rate given by Eq. (5.67) to validate the dynamics. This form of dynamics

validation is particularly useful in the situation where the spacecraft attitude is being controlled

closed-loop by means of torquing the VSCMGs.



Chapter 6

Numerical Simulation Results

6.1 Spacecraft with N Imbalanced Reaction Wheels

Numeric simulations are provided to demonstrate the fully-coupled imbalanced reaction wheel

model. Angular momentum is calculated to confirm that when no external disturbances are present

angular momentum is conserved, and system energy is calculated to show that when no external

disturbances or reaction wheel motor torques are present, energy is conserved. The fully-coupled

model is directly compared to the simplified model using the formulation developed in Section 4.2.

Simulation parameters used are given in Table 6.1.

The first simulation that is included simulates three RWs. The purpose of this simulation is

to show the effect of RW jitter on a spacecraft that is initially inertially fixed, and therefore the only

perturbations to the spacecraft will be due to the RW jitter. Accordingly, the spacecraft has no

external forces present and has zero initial velocity and zero initial angular velocity. The spacecraft’s

attitude is parameterized in terms of Modified Rodriguez Parameters (MRPs). The RWs are

initially spinning with specified values seen in Table 6.1. Also, to give further confirmation in the

model, the motor torque in each RW has a nonzero time history and can be seen in Figure 6.3(b).

Note that the wheel orientation matrix [Gs] (which is useful for many controls applications [24]) is

formulated such that each column contains the spin axis unit vector for the ith wheel, ĝsi , and has

dimension 3×N .

[Gs] =

[
ĝs1 · · · ĝsN

]
(6.1)

Figures 6.1-6.4 show simulation results for the fully-coupled and simplified RW imbalance
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Table 6.1: : Simulation parameters for the fully-coupled model. Note that wheel parameters apply
to all wheels unless otherwise specified.

Parameter Notation Value Units

Number of reaction wheels N 3 -
Total spacecraft mass msc 662 kg

Hub mass mhub 644 kg
Wheel mass mrw 6 kg

Hub inertia tensor about hub CoM [Ihub,Bc ]

B 550 0.1045 −0.0840
0.1045 650 0.0001
−0.0840 0.0001 650

 kg·m2

Hub CoM. location wrt B rBc/B
B[

1 −2 10
]T

cm

Wheel orientation matrix [Gs]

B 0.7887 −0.2113 −0.5774
−0.2113 0.7887 −0.5774
0.5774 0.5774 0.5774

 -

Wheel static imbalance Us 1920 g·cm
Wheel static imbalance Ud 1540 g·cm2

Wheel CoM offset (derived from Us) d 3.2 mm

Wheel inertia tensor about wheel
CoM

(derived from Ud)
[Irw,Wc ]

W 0.0796 0 2.0E−4
0 0.0430 0

2.0E−4 0 0.0430

 kg·m2

Wheel 1 location vector rW1/B
B[

0.6309 −0.1691 0.4619
]T

Wheel 2 location vector rW2/B
B[−0.1691 0.6309 0.4619

]T
Wheel 3 location vector rW3/B

B[−0.4619 −0.4619 0.4619
]T

m

Initial position rB/N
N[

0 0 0
]T

m

Initial velocity vB/N
N[

0 0 0
]T

m/s

Initial attitude MRP σB/N
[
0 0 0

]T
-

Initial angular velocity ωB/N
B[

0 0 0
]T

deg/s

Initial wheel speeds Ω -558, -73, 242 RPM
Initial wheel angles θ 43, 179, 346 deg

Commanded wheel torques us 10, -25, 17.5 mN·m
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model with N = 3 wheels. In Figure 6.1, the attitude of the spacecraft is shown to be drifting

due to the imbalance in the RWs. The impact of jitter is visible in the spacecraft’s body rates.

Note that the simplified model compares well with the higher-fidelity angular velocity values, but

the attitude does slowly drift from the fully-coupled model. For simulations that last longer than

a few seconds this could cause significant error. Figure 6.1(c) shows the principal angle with the

drift subtracted out, so that only the jitter is visible. This shows that the RW jitter results in a

perturbation amplitude of around 8 arcseconds. These parameters are important to consider when

performing analysis of spacecraft pointing stability.

The translational position and velocity are shown in Figs. 6.2(a) and 6.2(b), respectively.

These plots demonstrate that there is a non-zero effect due to RW jitter on the position and velocity

of the spacecraft. The position and velocity comparison of the fully-coupled and simplified model

show that the simplified model is not able to track either position or angular velocity well for the

given set of initial conditions. The wheel rates seen in Figure 6.3(a) agree with the time history of

the motor torque seen in Figure 6.3(b). The fact that the wheel speed data for the fully-coupled

model and simplified model agree as shown in Figure 6.3(a) demonstrates that the variation in

wheel speed is primarily due to the coupling between the hub’s angular velocity and wheel speed.

Figure 6.4 shows the change in energy and momentum plotted versus time for the fully-

coupled and simplified models. Energy is plotted for a 3.5 second duration because the motor

torque is zero during this time and the change in energy should be zero. However, Figure 6.4(a)

shows that using the simplified model causes energy to fluctuate whereas the fully-coupled model

only includes integration error. Angular momentum, by definition, should be conserved for a closed

system under the influence of internal torques, and is thus plotted for the entire duration of the

simulation in Figure 6.4(b). It can be seen that the simplified model violates conservation of

angular momentum and the fully-coupled model only exhibits integration error. For numerical

simulations of a spacecraft, angular momentum and energy conservation is an important check to

validate EOMs. For long simulation times the error in the simplified model will grow. This need

for validation checks and error propagations are important characteristics to consider between both
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(a) Attitude MRP of the spacecraft for the fully-
coupled and simplified models with N = 3

(b) Body rates of the spacecraft for the fully-coupled
and simplified models with N = 3

(c) Principal angle jitter for the fully-coupled and
simplified models with N = 3

Figure 6.1: Attitude, principle angle, and body rates of spacecraft

models. A second simulation is included in the following section to directly compare results of the

two models using a fixed-axis scenario.

6.2 Reaction Wheel Jitter Comparison Using a Fixed-Axis Rotation Scenario

The fully-coupled model is directly compared to the simplified model using a fixed-axis sce-

nario in order to focus on the comparison of jitter. These simulations involve similar initial con-

ditions as seen in Table 6.1, except only one RW is included for simplicity. Figure 6.5(a) shows

principal angle jitter of the spacecraft (drift subtracted out) for each model. This result gives

confidence that the imbalance parameter adaptation method developed in section 4 is accurate

for converting manufacturers’ specifications on RW imbalances to the parameters needed for the

fully-coupled simulation. However, this also shows that there is a noticeable difference between

the two simulations which is a result of the fully-coupled simulation modeling the RW jitter as in
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(a) Inertial position of the spacecraft for the fully-
coupled and simplified models with N = 3

(b) Inertial velocity of the spacecraft for the fully-
coupled and simplified models with N = 3

Figure 6.2: Position and velocity of the spacecraft

(a) Wheel speeds for the fully-coupled and simplified
models with N = 3

(b) Open-loop wheel motor torques for the fully-
coupled and simplified models with N = 3

Figure 6.3: Wheel angle, wheel speed, and motor torque of RWs

(a) System energy ∆ for the fully-coupled and simpli-
fied models with N = 3

(b) System angular momentum ∆ for the fully-
coupled and simplified models with N = 3

Figure 6.4: Change in energy and momentum of the spacecraft
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(a) Comparison of principal angle jitter results for the
fully-coupled and simplified models with N = 1

(b) Comparison of energy results for the fully-coupled
and simplified models with N = 1

(c) Comparison of momentum results for the fully-
coupled and simplified models with N = 1

Figure 6.5: Comparison of results for the fully-coupled and simplified models with N = 1

internal rather than an external force and torque on the spacecraft. Figures 6.5(b) and 6.5(c) show

the energy and momentum, respectively, for each model for the one wheel simulation. This data

further demonstrates that the simplified model is not appropriate where energy and momentum

tools are needed for validation purposes.

6.3 Spacecraft with N Imbalanced VSCMGs

Numeric simulations are provided to demonstrate the fully-coupled imbalanced VSCMG

model. Angular momentum is calculated to confirm that when no external disturbances are present

angular momentum is conserved System energy is calculated to show that when no external dis-

turbances or internal torques are present, energy is conserved. The system energy rate of the

fully-coupled and simplified models are compared to the theoretical value as defined in section 5.2.

In all plots, the fully-coupled model is directly compared to the simplified model using the formu-

lation developed in Section 4.2. Simulation parameters used are given in Table 6.2. The scenario

used to demonstrate the fully-coupled imbalanced VSCMG EOMs involves a rigid spacecraft hub

and N = 4 VSCMGs. Figures 6.6-6.12 show the results of the simulation.
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Table 6.2: : Simulation parameters for the fully-coupled model. Note that wheel parameters apply
to all wheels unless otherwise specified.

Parameter Notation Value Units

Number of VSCMGs N 4 -
Total spacecraft mass msc 862 kg

Hub mass mB 750 kg
Wheel mass mW 4 kg
Gimbal mass mG 24 kg

Hub inertia tensor about hub CoM [Ihub,Bc ]

B900 4.15 2.93
4.15 800 2.75
2.93 2.75 600

 kg·m2

Hub CoM location wrt B rBc/B
B[−0.02 0.01 10

]T
cm

Wheel static imbalance Us 32 g·cm
Wheel dynamic imbalance Ud 15.4 g·m2

Wheel CoM offset (derived from Us) d 8.0 mm

Wheel inertia tensor about wheel
CoM

(derived from Ud)
[IW,Wc ]

W 0.2 0 1.54E−2
0 0.1 0

1.54E−2 0 0.1

 kg·m2

Gimbal inertia tensor about gimbal
CoM

(derived from Ud)
[IG,Gc ]

W 9 0.81 0.24
0.81 11 0.93
0.24 0.93 5

 kg·m2

VSCMG 1 location vector rG1/B
B[−30 0 0

]T
cm

VSCMG 2 location vector rG2/B
B[

30 0 0
]T

cm

VSCMG 3 location vector rG3/B
B[

0 −30 0
]T

cm

VSCMG 4 location vector rG3/B
B[

0 30 0
]T

cm

Initial position rB/N
N[

0 0 0
]T

m

Initial velocity vB/N
N[

0 0 0
]T

m/s

Initial attitude MRP σB/N
[
0 0 0

]T
-

Initial angular velocity ωB/N
B[

4.58 0.57 0
]T

deg/s

Initial wheel speeds Ω 2000, 350, -11, 2 RPM
Initial wheel angles θ 0, 0, 0, 0 deg

Initial gimbal speeds γ̇ -1.72, 0.63, 0, 0 deg/s
Initial gimbal angles γ 0, 0, 0, 0 deg

Commanded wheel torques us 0, 250, -250, 0 mN·m
Commanded gimbal torques us 100, -100, 0, 0 mN·m
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Figure 6.6 shows the attitude and body rates of the spacecraft for the duration of the simu-

lation. In Figure 6.6(a), the spacecraft attitude computed using the simplified model is shown to

rapidly drift from that of the fully-coupled model. The third MRP component in particular drifts

in the opposite direction. This information is reflected in the spacecraft body rates as shown in

Figure 6.6(b). The body rates as computed by the simplified model drift rapidly from those using

the fully-coupled model, although the higher frequency variations are similar in amplitude. It is

evident from this data that the body rates and attitude MRP of the spacecraft would likely be

wildly different between the simplified and fully-coupled models if the simulation were propagated

for longer than t = 2 seconds. Figure 6.7 shows the principle angle of the spacecraft with respect

to inertial. Figure 6.7(a) shows the raw principle angle computed from the attitude MRP in Fig-

ure 6.6(a) and reflects much of the same information. After 2 second, the two models show principle

angles that are different by several degrees. Figure 6.7(b) shows the higher frequency modes of the

principle angle by subtracting out a polynomial fit of the data shown in Figure 6.7(a) to act as a

high-pass filter of sorts.

Figure 6.8 shows the translational position and velocity. These plots demonstrate that there

is a non-zero effect due to VSCMG jitter on the position and velocity of the spacecraft. The position

and velocity comparison of the fully-coupled and simplified model show that the simplified model

is not able to track either position or angular velocity well for the given set of initial conditions. In

Figure 6.8(b), it is evident that the simplified model has wildly underestimated the magnitude of

the imbalance vibration effect on spacecraft velocity.

Figure 6.9 shows the VSCMG gimbal rate and wheel speeds. Again, it is evident that the

simplified model has underestimated the effect of the vibration on each of the rates. The gimbal

rate of VSCMG 1 in particular, shown in Figure 6.9(a), varies greatly between the two models. The

fully-coupled model has a high frequency chatter with an amplitude of approximately 75 deg/s,

whereas the simplified model shows no visible signs of chatter and slowly drifts in the same overall

trend as the fully-coupled model. The wheel speed for gimbal 1, however, does not appear to closely

match the same trend between the fully-coupled and simplified models. VSCMG 2 shows similar
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(a) Attitude MRP of the spacecraft for the fully-
coupled and simplified models with N = 4

(b) Body rates of the spacecraft for the fully-coupled
and simplified models with N = 4

Figure 6.6: Attitude and body rates of the spacecraft

(a) Principal angle for the fully-coupled and simpli-
fied models with N = 4

(b) Principal angle jitter for the fully-coupled and
simplified models with N = 4

Figure 6.7: Principle angle and jitter of the spacecraft

(a) Inertial position of the spacecraft for the fully-
coupled and simplified models with N = 4

(b) Inertial velocity of the spacecraft for the fully-
coupled and simplified models with N = 4

Figure 6.8: Position and velocity of the spacecraft
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(a) Wheel speeds for the fully-coupled and simplified
models with N = 4

(b) Open-loop wheel motor torques for the fully-
coupled and simplified models with N = 4

Figure 6.9: Wheel speed and gimbal rate of the VSCMGs

(a) Open-loop gimbal torques for the fully-coupled
and simplified models with N = 4

(b) Open-loop wheel torques for the fully-coupled and
simplified models with N = 4

Figure 6.10: Wheel torque and gimbal torque of the VSCMGs

(a) System energy ∆ for the fully-coupled and simpli-
fied models with N = 4

(b) System angular momentum ∆ for the fully-
coupled and simplified models with N = 4

Figure 6.11: Change in energy and angular momentum of the system
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(a) System energy rate for the fully-coupled and sim-
plified models with N = 4

(b) System energy rate error for the fully-coupled and
simplified models with N = 4

Figure 6.12: Energy rate and energy rate error of the system

information regarding gimbal rate. The wheel speeds and gimbal rates agree with the time history

of the applied wheel and gimbal torques as shown in Figures 6.10(b) and 6.10(a), respectively. The

effect of the wheel torque is evident from looking at the wheel rates. The effect of the gimbal torque

on the gimbal rates is not evident to the eye since the gimbal has a significantly larger moment of

inertia.

Figure 6.11 shows the change in energy and angular momentum of the system for the fully-

coupled and simplified models. Energy is plotted for a 1.5 second period since the wheel and gimbal

torques are zero during this time and energy should be conserved. However, Figure 6.11(a) shows

that using the simplified model causes energy to fluctuate whereas the fully-coupled model only

includes integration error. Angular momentum, by definition, should be conserved for a closed

system under the influence of internal torques, and is thus plotted for the entire duration of the

simulation in Figure 6.11(b). It can be seen that the simplified model violates conservation of

angular momentum and the fully-coupled model only exhibits integration error. For numerical

simulations of a spacecraft, angular momentum and energy conservation is an important check to

validate EOMs. For long simulation times the error in the simplified model will grow. This need

for validation checks and error propagations are important characteristics to consider between both

models.

Figure 6.12 shows the energy rate of and the energy rate error of the system for the fully-

coupled and simplified models. Figure 6.12(a) shows the energy rate during the time period that

the VSCMG has nonzero wheel and gimbal torques (from t = 15s to t = 1.9s), thus highlighting
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the difference between the fully-coupled and simplified models. The fully-coupled model has clearly

visible fluctuation whereas the simplified model does not. Figure 6.12(b) shows the absolute error

between the theoretical energy rate based on the internal torques and the numerically calculated

energy rate based on numerically differentiating the energy Tsc, as described in section 5.2.3. It

is clear that the simplified model violates the theoretical energy rate, whereas the fully-coupled

model has little error. Due to numerically differentiating the system energy Tsc, the comparison

does show a larger error than in Figures 6.11(a)-6.11(b): approximately 10−7 compared to 10−12.



Chapter 7

Conclusions

Most previous work related to modeling jitter due to momentum exchange device (MED)

imbalances models the effect as an external force and torque on the spacecraft. In reality, this

effect is an internal force and torque on the spacecraft and thus requires a different formulation.

The work presented in this thesis develops the general fully-coupled model of reaction wheel (RW)

and variable-speed control moment gyroscope (VSCMG) imbalances. The fully-coupled model

allows for momentum and energy validation to be implemented in a simulation. Additionally, a

discussion is included that aids in converting manufacturers’ specifications of RW imbalances to

the parameters needed for the fully-coupled simulation.

Simulation results are provided to demonstrate the fully-coupled model compared to the

simplified model for RWs and VSCMGs. Energy is shown to be conserved when the motor torques

are zero, and momentum is conserved throughout the length of the simulations. Energy rate is

shown to closely match the theoretical energy rate for the imbalanced VSCMG model. This provides

validation of the fully-coupled models and highlights drawbacks to the simplified model, which

violates conservation of momentum and energy. A comparison between the fully-coupled model

and the simplified model shows that the imbalance parameter adaptation is adequate because the

fully-coupled and simplified models give similar high-level results, for a fixed-axis scenario. However,

because the simplified model is not valid in terms of conservation of energy and conservation of

angular momentum it is undesirable when including additional complex dynamical models such as

flexible dynamics or fuel slosh and causes error propagation to be a concern for lengthy simulation
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times.

The research presented within this thesis validated the EOMs and software implementation

using with energy and angular momentum results from two completely independent software suites.

Additionally, the states versus time were validated between the two simulations. This level of

validation shows that the EOMs and software implementation method are correct beyond doubt.

Implementations of the fully-coupled RW and VSCMG models derived within this thesis will

be released open-source in 2017 as part of the Basilisk astrodynamics software.1

1 http://hanspeterschaub.info/bskMain.html



Bibliography

[1] J. Wertz and W. Larson. Space Mission Analysis and Design. 3rd edition, 1999.

[2] A. Vanderburg and J. Johnson. A Technique for Extracting Highly Precise Photometry for
the Two-Wheeled Kepler Mission. Publications of the Astronomical Society of the Pacific,
126(944):948, 2014.

[3] H. Schaub and J. Junkins. Singularity Avoidance Using Null Motion and Variable-speed
Control Moment Gyros. Journal of Guidance, Control, and Dynamics, 23(1):11–16, 2000.

[4] T. Sasaki, J. Alcorn, H. Schaub, and T. Shimomura. Convex Optimization for Power Tracking
of Double-Gimbal Variable-Speed Control Moment Gyros. AIAA Journal of Spacecraft and
Rockets, 2017.

[5] J. Chabot and H. Schaub. Spherical Magnetic Dipole Actuator for Spacecraft Attitude Control.
Journal of Guidance, Control, and Dynamics, pages 911–915, 2016.

[6] J. Alcorn. The Contributions of Walter Haussermann to Rocket Development. International
Astronautical Congress, Oct. 3–7 2011.

[7] M. Sidi. Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge
Aerospace Series. Cambridge University Press, 1997.

[8] F. Markley and J. Crassidis. Fundamentals of Spacecraft Attitude Determination and Control,
volume 33. Springer, 2014.

[9] L. Dewell, N. Pedreiro, C. Blaurock, K. Liu, J. Alexander, and M. Levine. Precision Telescope
Pointing and Spacecraft Vibration Isolation for the Terrestrial Planet Finder Coronagraph.
SPIE Space Telescope Optomechanics and Dynamics, 2005.

[10] M. Rizzo, S. Rinehart, J. Alcorn, D. Fixsen, A. Gore, A. Rau, S. Weinreich, A. Cotto, et al.
Building an Interferometer at the Edge of Space: Pointing and Phase Control System for
BETTII. SPIE Space Telescopes and Instrumentation, 2014.

[11] D. Cheon, D. Choi, E. Jang, and H. Oh. Disturbance Reduction on the Small Satellite Actuator.
In International Conference on Instrumentation Control and Automation (ICA), pages 31–34.
IEEE, 2011.

[12] D. Kamesh, R. Pandiyan, and A. Ghosal. Passive Vibration Isolation of Reaction Wheel
Disturbances Using a Low Frequency Flexible Space Platform. Journal of Sound and Vibration,
331(6):1310–1330, 2012.



76

[13] J. Park, A. Palazzolo, and R. Beach. MIMO Active Vibration Control of Magnetically Sus-
pended Flywheels for Satellite IPAC Service. Journal of Dynamic Systems, Measurement, and
Control, 130(4):041005, 2008.

[14] J. Park and A. Palazzolo. Magnetically Suspended VSCMGs For Simultaneous Attitude Con-
trol And Power Transfer IPAC Service. Journal of Dynamic Systems, Measurement, and
Control, 132(5):051001, 2010.

[15] R. Masterson and D. Miller. Development of Empirical and Analytical Reaction Wheel Dis-
turbance Models. AIAA Structures, Structural Dynamics, and Materials, 1999.

[16] R. Masterson, D. Miller, and R. Grogan. Development and Validation of Reaction Wheel
Disturbance Models: Empirical Model. Academic Press Journal of Sound and Vibration,
2002.

[17] L. Liu. Jitter and Basic Requirements of the Reaction Wheel Assembly In the Attitude Control
System. Massachusetts Institute of Technology.

[18] H. Gutierrez. Performance Assessment and Enhancement of Precision Controlled Structures
During Conceptual Design. PhD thesis, Massachusetts Institute of Technology, 1999.

[19] D. Li, X. Chen, and B. Wu. Analysis of Reaction-Wheels Imbalance Torque Effects On Satellite
Attitude Control System. In Control and Decision Conference (CCDC), 2016 Chinese, pages
3722–3725. IEEE, 2016.

[20] K. Liu, P. Maghami, and C. Blaurock. Reaction Wheel Disturbance Modeling, Jitter Analysis,
and Validation Tests for Solar Dynamics Observatory. 2008.

[21] S. Miller, P. Kirchman, and J. Sudey. Reaction Wheel Operational Impacts On the GOES-N
Jitter Environment. In AIAA Guidance, Navigation and Control Conference and Exhibit,
pages 2007–6736, 2007.

[22] D. Kim. Micro-vibration Model and Parameter Estimation Method of a Reaction Wheel
Assembly. Journal of Sound and Vibration, 333(18):4214–4231, 2014.

[23] Y. Zhang and J. Zhang. Disturbance Characteristics Analysis of CMG Due to Imbalances and
Installation Errors. IEEE Transactions on Aerospace and Electronic Systems, 50(2):1017–1026,
2014.

[24] H. Schaub and J. Junkins. Analytical Mechanics of Space Systems. AIAA Education Series,
Reston, VA, 3rd edition, 2014.

[25] C. Allard, H. Schaub, and S. Piggott. General Hinged Solar Panel Dynamics Approximating
First-Order Spacecraft Flexing. In AAS Guidance and Control Conference, Breckenridge, CO,
Feb. 5–10 2016. Paper No. AAS-16-156.

[26] C. Allard, M. Diaz-Ramos, and H. Schaub. Spacecraft Dynamics Integrating Hinged Solar Pan-
els and Lumped-mass Fuel Slosh Model. In AIAA/AAS Astrodynamics Specialist Conference,
Long Beach, CA, Sept. 12–15 2016.

[27] J. Alcorn, C. Allard, and H. Schaub. Fully-Coupled Dynamical Jitter Modeling of a Rigid
Spacecraft With Imbalanced Reaction Wheels. In AIAA SPACE 2016, Long Beach, CA, Sep.
13–16 2016. Paper No. 2490836.



77

[28] M. Margenet, H. Schaub, and S. Piggott. Modular attitude guidance development using the
basilisk software framework. In AIAA SPACE 2016, Long Beach, CA, Sep. 13–16 2016. Paper
No. 2490836.

[29] C. Allard, M. Diaz Ramos, and H. Schaub. Spacecraft dynamics integrating hinged solar panels
and lumped-mass fuel slosh model. In AIAA SPACE 2016, Long Beach, CA, Sep. 13–16 2016.
Paper No. 2490836.

[30] C. Allard, H. Schaub, and S. Piggott. General hinged solar panel dynamics approximating
first-order spacecraft flexing. In AAS Guidance and Control Conference, Breckenridge, CO,
Feb. 5–10 2016. Paper No. AAS-16-156.

[31] S. Piggott, J. Alcorn, M. Margenet, P. Kenneally, and H. Schaub. Flight Software Development
Through Python. 2016 Workshop on Spacecraft Flight Software, Dec. 13-15 2016.

[32] J. Alcorn. Simulating Attitude Actuation Options Using the Basilisk Astrodynamics Software
Architecture. International Astronautical Congress, Sep. 26–30 2016.

[33] H. Schaub and V. J. Lappas. Redundant Reaction Wheel Torque Distribution Yielding In-
stantaneous l2 Power-optimal Attitude Control. AIAA Journal of Guidance, Control, and
Dynamics, 32(4):1269–1276, July–Aug. 2009.

[34] R. Blenden and H. Schaub. Regenerative Power-optimal Reaction Wheel Attitude Control.
AIAA Journal of Guidance, Control, and Dynamics, 35(4):1208–1217, July–Aug. 2012.

[35] J. Alcorn, H. Schaub, and S. Piggott. Attitude Control Performance Analylsis Using Dis-
cretized Thruster With Resdidual Tracking. In AAS Guidance and Control Conference, Breck-
enridge, CO, Feb. 5–10 2016. Paper No. AAS-16-038.



Appendix A

Basilisk Software Architecture

A.1 Basilisk Overview

The Basilisk astrodynamics software is being developed by the University of Colorado Boul-

der’s Autonomous Vehicle Systems (AVS) Laboratory and the Laboratory for Atmospheric and

Space Physics (LASP). Basilisk provides deterministic, integrated faster than realtime simulation

while at the same time providing HWIL simulation capabilities using a modular and fast C/C++

architecture.[32] This source code is then wrapped in Python allowing the convenience of a fully

scriptable Python user interface. The modular architecture and fully-coupled dynamical repre-

sentation allows for complex actuators to be simulated without sacrificing accuracy. Basilisk has

been used internally by the University of Colorado/LASP for simulation of flexible dynamics [30],

fuel slosh[29], reaction wheel jitter[27], thrust pulsing algorithm evaluation[35], guidance algorithm

development[28], and for analysis and support of ADCS sub-system developments. Basilisk of-

fers many of the same core benefits as Commercial-off-the-Shelf (COTS)/Government-off-the-Shelf

(GOTS) softwares and is open-source, cross-platform, and has a fully-scriptable user interface using

the common programming language Python.

The Basilisk framework has been designed from inception to support several different (often

competing) requirements.

• Speed: Even though the system is operated through a Python interface, the underlying

simulation executes entirely in C/C++ which allows for maximum execution speed. The
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Bas i l i s k

Figure A.1: The Basilisk logo.

requirement for the Mars mission are sufficiently accurate vehicle simulation with at least

a 365x realtime speeds (“a year in a day”).

• Reconfiguration: The user interface executes natively in Python which allows the user

to change task-rates, model/algorithm parameters, and output options dynamically on the

fly.

• Analysis: Python-standard analysis products like numpy1 and matplotlib2 are actively

used to facilitate rapid and complex analysis of data obtained in a simulation run without

having to stop and export to an external tool. This capability also applies to the Monte-

Carlo engine available natively in the Basilisk framework.

• HWIL: Basilisk provides synchronization to realtime via clock tracking modules. This

allows the package to synchronize itself to one or more timing frames in order to provide

deterministic behavior in a realtime environment. External communication is handled via

the Boost library3 with ethernet currently available and serial planned in the near future.

Figure A.1 shows the Basilisk logo. The name Basilisk was chosen to reflect both the reptilian

(Python) nature of the product-design as well as a nod to the speed requirements as the South

American common basilisk runs so fast that it can even run across water.

1 http://www.numpy.org/
2 http://matplotlib.org/
3 http://www.boost.org
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Figure A.2(a) shows a diagram of the Basilisk software architecture. The Python user inter-

face layer allows the simulation to be easily reconfigured which allows the user complete freedom in

creating their own simulation modules and FSW modules. Scenario scripts utilizing the user-defined

simulation can be used to configure spacecraft properties, initial conditions, events, and various

simulation parameters such as timing. The Python user interface layer abstracts logging/analysis

which allows a single compilation of the source code to support completely different simulations.

Most simulation modules are written in C++ to allow for object-oriented development while the

FSW modules are written in C to allow for easy portability to flight targets. Simulation modules

and FSW modules communicate through the message passing interface (MPI), which is a singleton

pattern. Figure A.3 shows an auto-generated visualization of the Basilisk message passing interface.

The MPI allows data traceability and ease of test. The MPI is capable of visual data mapping,

which allows the user to visualize data flow between modules. Modules are limited in their ability

to subscribe to messages and write messages, thus setting limitations on the flow of information and

the power of modules to control data generation.[32] The messaging system is also instrumented

to track data exchange, allowing the user to visualize exactly what data movement occurred in a

given simulation run. The Python interface to the C/C++ layer relies on the Simplified Wrapper

and Interface Generator (SWIG) software4 , a cross-platform, open-source software tasked solely

with interfacing C/C++ with scripting languages. Basilisk is inherently cross-platform in nature,

currently used on Mac, Windows, and Linux systems.

A.2 Basilisk Dynamics Architecture

The Basilisk dynamics engine heavily leverages the back-substitution method as described

in section 5.1. The equations of motion of the spacecraft hub are contained entirely within [Ahub],

[Bhub], [Chub], [Dhub] matrices and vtrans,hub, vrot,hub vectors. Each attachment to the spacecraft,

whether it be reaction wheel, VSCMG, solar panel, fuel tank, etc, is considered either a dynamic

effector or a state effector and has it’s own contribution matrices and vectors. The dynamics

4 http://swig.org/
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manager class aggregates all contributions and solves the aggregate system EOMs. States belonging

to the effectors such as Ω̇i or γ̈i are solved for within the corresponding effector class. Additionally,

each effector is responsible for registering its own states with the dynamics manager, and computing

its energy, momentum, and mass contributions at each timestep.

The Basilisk dynamics engine relies heavily on Eigen C++ libraries5 in order to perform the

massive amount of matrix algebra required to solve the spacecraft system of equations.

A.3 Visualization

Basilisk has an accompanying visualization that allows the user to observe the simulated

spacecraft’s operations realtime. The visualization uses Qt6 /OpenGL7 to visualize the spacecraft,

planets, and various qualitative data and indicators for sensors and actuators. Simulation events

and device faults may be triggered directly from the visualization. Figure A.4 shows an example

of the visualization with a spacecraft in Mars orbit. The control panel on the right hand side

allows the user to view sensor and actuator data and trigger events. Reference frame axes may be

enabled/disabled from the control panel. The visualization also demonstrates thruster plumes and

the field of view of sensors such as star trackers and course sun sensors.

5 https://eigen.tuxfamily.org/
6 https://www.qt.io/
7 https://www.opengl.org/
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Figure A.4: Basilisk visualization example of a Mars orbiting spacecraft.



Appendix B

Additional Back-Substitution Derivations

B.1 Back-Substitution Derivations

Chapter 5 provided the derivation of the back-substitution contribution matrices for an im-

balanced VSCMG as an example. This section provides the derivation of the back-substitution

contribution matrices of a balanced RW, imbalanced RW, and balanced VSCMG for reference,

and builds upon the the material presented in Chapter 5. Consideration should be given to im-

plementing these equations in software separately from imbalanced VSCMG equations, since it is

more computationally efficient to have a separate set of equations to solve rather than zero out

imbalance terms or gimbal states.

B.1.1 Balanced Reaction Wheel Back-Substitution

B.1.1.1 Equations of Motion

The equations of motion of a balanced reaction wheel were provided in Chapter 2, and are

repeated here for the reader’s convenience. The translational equation of motion is not coupled

with Ω̇ as show below.

msc[I3×3]r̈B/N −msc[c̃]ω̇B/N = F ext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c (B.1)
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The rotational equation of motion includes Ω̇ terms, and is thus coupled with the wheel motion as

seen below.

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +
N∑
i=1

Jsi ĝsiΩ̇i = −[ω̃B/N ][Isc,B]ωB/N −
N∑
i=1

(ωB/N × JsiΩiĝsi) + LB

(B.2)

The motor torque equation is coupled with ω̇B/N as shown below.

Ω̇i =
usi

Jsi

− ĝTsiω̇B/N (B.3)

B.1.1.2 Back-Substitution Derivation

Since translation is not coupled with wheel speed, the back-substitution equation may be

obtained by simply plugging Eq. (B.3) into Eq. (B.2)

msc[c̃]r̈B/N + ([Isc,B]−
N∑
i=1

Jsi ĝsi ĝ
T
si)ω̇B/N = −[ω̃B/N ][Isc,B]ωB/N −

N∑
i=1

(ĝsiusi +ωB/N ×JsiΩiĝsi)

− [I ′sc,B]ωB/N +LB (B.4)

The contribution matrices using for solving the coupled EOMs may now be defined.

B.1.1.3 Back-Substitution Contribution Matrices

The back-substitution contribution matrices provide the dynamical contribution of the RWs

to the general form given by Eq. (5.1). Thus, any terms that do not contain RW terms are known
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and are the same for any type of device. The following are defined from the coefficients of Eq. (B.4)

[Acontr] = [03×3] (B.5)

[Bcontr] = [03×3] (B.6)

[Ccontr] = [03×3] (B.7)

[Dcontr] = −
N∑
i=1

Jsi ĝsi ĝ
T
si (B.8)

vtrans,contr = 0 (B.9)

vrot,contr = −
N∑
i=1

(ĝsiusi + ωB/N × JsiΩiĝsi) (B.10)

B.1.2 Imbalanced Reaction Wheel Back-Substitution

B.1.2.1 Equations of Motion

The equations of motion of an imbalanced reaction wheel were provided in Chapter 2, and

are repeated here for the reader’s convenience. The translational equation of motion is

r̈B/N−[c̃]ω̇B/N+
1

msc

N∑
i=1

mrwidiŵ3iΩ̇i = r̈C/N−2[ω̃B/N ]c′−[ω̃B/N ][ω̃B/N ]c+
1

msc

N∑
i=1

mrwidiΩ
2
i ŵ2i

(B.11)

The rotational equation of motion is

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +
N∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
Ω̇i

=

N∑
i=1

[
mrwi [r̃Wci/B

]diΩ
2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi [r̃Wci/B

]r′Wci/B

)]
− [ω̃B/N ][Isc,B]ωB/N − [Isc,B]′ωB/N +LB (B.12)

The motor torque equation is

[
mrwidiŵ

T
3i

]
r̈B/N +

[
(J11i +mrwid

2
i )ĝ

T
si + J13iŵ

T
3i −mrwidiŵ

T
3i [r̃Wi/B]

]
ω̇B/N +

[
J11i +mrwid

2
i

]
Ω̇i

= −J13iωw2i
ωsi +ωw2i

ωw3i
(J22i−J33i−mrwid

2
i )−mrwidiŵ

T
3i [ω̃B/N ][ω̃B/N ]rWi/B +usi + ĝTsiτ ext,i

(B.13)
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B.1.2.2 Derivation of Back-Substitution

First, we solve the motor torque equation for Ω̇i.

Ω̇i = −
( mrwidiŵ

T
3i

J11i +mrwid
2
i

)
r̈B/N −

1

J11i +mrwid
2
i

[
(J11i +mrwid

2
i )ĝ

T
si

+ J13iŵ
T
3i −mrwidiŵ

T
3i [r̃Wi/B]

]
ω̇B/N +

1

J11i +mrwid
2
i

(
ωw2i

ωw3i
(J22i

− J33i −mrwid
2
i )− J13iωw2i

ωsi −mrwidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi

)
(B.14)

The following coefficients are defined from Eq. (B.14), and are used to de-clutter the final equations.

aΩi = − mrwidi
J11i +mrwid

2
i

ŵ3i (B.15)

bΩi = − 1

J11i +mrwid
2
i

[
(J11i +mrwid

2
i )ĝsi + J13iŵ3i +mrwidi[r̃Wi/B]ŵ3i

]
(B.16)

cΩi =
1

J11i +mrwid
2
i

(
ωw2i

ωw3i
(J22i − J33i −mrwid

2
i )− J13iωw2i

ωsi

−mrwidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi + ĝTsiτ ext,i

)
(B.17)

Rewrite Eq. (B.14) in compact form.

Ω̇i = aTΩi
r̈B/N + bTΩi

ω̇B/N + cΩi (B.18)

Plugging the equation above into Eq. (B.11) and multiplying both sides by msc, we arrive at,[
msc[I3×3] +

N∑
i=1

mrwidiŵ3ia
T
Ωi

]
r̈B/N +

[
−msc[c̃] +

N∑
i=1

mrwidiŵ3ib
T
Ωi

]
ω̇B/N

= F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+
N∑
i=1

[
mrwidiΩ

2
i ŵ2i −mrwidicΩiŵ3i

]
(B.19)
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So the same step for the rotational EOM.[
msc[c̃] +

N∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
aTΩi

]
r̈B/N

+

[
[Isc,B] +

N∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
bTΩi

]
ω̇B/N

= −[ω̃B/N ][Isc,B]ωB/N − [Isc,B]′ωB/N +LB

+
N∑
i=1

[
mrwi [r̃Wci/B

]diΩ
2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi [r̃Wci/B

]r′Wci/B

)
−
(

[Irwi,Wci
]ĝsi +mrwidi[r̃Wci/B

]ŵ3i

)
cΩi

]
(B.20)

We now have all the information needed to define the back-substitution contributions matrices for

imbalanced reaction wheels.

B.1.2.3 Back-Substitution Contribution Matrices

The imbalanced reaction wheel back-substitution contribution matrices are given by,

[Acontr] =

N∑
i=1

mrwidiŵ3ia
T
Ωi

(B.21)

[Bcontr] =

N∑
i=1

mrwidiŵ3ib
T
Ωi

(B.22)

[Ccontr] =
N∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
aTΩi

(B.23)

[Dcontr] =
N∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
bTΩi

(B.24)

vtrans,contr =

N∑
i=1

[
mrwidiΩ

2
i ŵ2i −mrwidicΩiŵ3i

]
(B.25)

vrot,contr =
N∑
i=1

[
mrwi [r̃Wci/B

]diΩ
2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi

+mrwi [r̃Wci/B
]r′Wci/B

)
−
(

[Irwi,Wci
]ĝsi +mrwidi[r̃Wci/B

]ŵ3i

)
cΩi

]
(B.26)
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B.1.3 Balanced VSCMG Back-Substitution

B.1.3.1 Equations of Motion

The balanced VSCMG equations of motion are reproduced here for the reader’s convenience.

The balanced translational equation of motion as derived in Eq. (3.26) is given below. Note that

translation is not coupled with Ω̇ or γ̈i.

mscr̈B/N −msc[c̃]ω̇ = F − 2msc[ω̃]c′ −msc[ω̃]2c

The rotational equation of motion includes Ω̇i and γ̈i terms, and is thus coupled with VSCMG

motion as seen below.

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

IVgi
ĝgi

γ̈i +
N∑
i=1

IWsi
ĝsiΩ̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
+ IWti

Ωγ̇ĝti + Ωiγ̇i(IWsi
− IWti

)ĝti

+ [ω̃][IGi,Gci
]γ̇iĝgi

+ [ω̃][IWi,Wci
]ωWi/B

]
The gimbal torque equation as derived in Eq. (3.124) is given below.

IVgi
(ĝTgiω̇ + γ̈i) = ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt

The wheel torque equation as derived in Eq. (3.132) is given below.

IWsi
(ĝTsiω̇ + Ω̇i) = −IWsi

ωtγ̇i + usi

B.1.3.2 Back-Substitution Derivation

Solve the gimbal torque equation for γ̈i in terms of ω̇B/N .

γ̈i =
1

IVgi

(
ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt − IVgi
ĝTgiω̇

)
(B.27)

Solve the wheel torque equation for Ω̇i in terms of ω̇B/N

Ω̇i = −ωtγ̇i − ĝTsiω̇ +
usi

IWsi

(B.28)
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Plug Eq. (B.27) and Eq. (B.28) into the rotational equation of motion and group like terms.

msc[c̃]r̈B/N +
[
[Isc,B]−

N∑
i=1

(
IVgi

ĝgi
ĝTgiω̇ + IWsi

ĝsi ĝ
T
si

)]
ω̇

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[(
usi − IWsi

ωtγ̇i
)
ĝsi + IWsi

Ωγ̇ĝti

+
(
ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt
)
ĝgi

+ [ω̃][IGi,Gci
]γ̇iĝgi

+ [ω̃][IWi,Wci
]ωWi/B

]
(B.29)

We now have all the information needed to define the back-substitution contribution matrices for

a balanced VSCMG.

B.1.3.3 Back-Substitution Contribution Matrices

The balanced VSCMG back-substitution contribution matrices are given by,

[Acontr] = [03×3] (B.30)

[Bcontr] = [03×3] (B.31)

[Ccontr] = [03×3] (B.32)

[Dcontr] = −
N∑
i=1

[
IVgi

ĝgi
ĝTgi + IWsi

ĝsi ĝ
T
si

]
(B.33)

vtrans,contr = 0 (B.34)

vrot,contr = −
N∑
i=1

[(
usi − IWsi

ωtγ̇i
)
ĝsi + IWsi

Ωγ̇ĝti +
(
ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt
)
ĝgi

+ [ω̃][IGi,Gci
]γ̇iĝgi

+ [ω̃][IWi,Wci
]ωWi/B

]
(B.35)
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