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SIMPLIFIED ANALYSIS OF IMU SENSOR CORRUPTIONS ON

EXISTING PENDULATION CONTROL SYSTEM FOR

SHIP-MOUNTED CRANE

Jia Qi “Josh” Zhou

(ABSTRACT)

Ship-mounted boom cranes play an important role in the ship-to-ship offshore cargo trans-

port process. In recent years, there has been significant need to increase stability of the

payload during the cargo transport process for both safety and efficiency reasons. However,

the stability of the payload during the transport process directly correlates to the ship’s

pitch and roll motion that in turn relates to the current particular sea-state.

In this study, we analyze an existing Pendulation Control System (PCS) developed by Sandia

National Laboratories that reduces the payload’s pendulation movement during transport.

This system measures the ship motion through a complex inertial navigation system using

an IMU and dual GPS receivers. In trying to simplify the analysis of the IMU sensor,

we simulate new control solutions based solely on an IMU-only ship motion measurement

system using both position- and velocity-based controllers. This study shows that an optional

bandpass filter in the new control solution can reject a bias that appears in the estimated

accelerometer data at the expense of higher sensitivity for the control. This study also shows

that the velocity-based solution provides comparable if not better results than the position-

based solution. Both methods are sensitive to the difference between the ship motion period

and the center frequency of its bandpass filter. Lastly, it is shown that the bias of an

accelerometer is not a large source of payload disturbance as compared to the scale factor

error.

This work received support from the Naval Surface Warfare Center, Carderock, MD.
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Chapter 1

Introduction

Cranes apply the concept of simple machines to help humans alleviate the rigors of carrying

heavy loads from one place to another. They have been in use for many centuries by numerous

civilizations. During ancient times, a sign of a civilization’s prosperity is often reflected by

the sheer magnitude of its monuments, temples, and other prominent structures, for which

cranes had a big part in their constructions. In the current age of global economy, one telling

sign of a nation’s prosperity is often reflected in the amount of goods that are imported and

exported. Once again, cranes play a big part when it comes to loading and offloading

operations between ship-to-ship, ship-to-shore, and vice versa.

There are generally three common types of cranes. Their differences reside in the way the

cranes are supported. A gantry crane seen in Figure 1.1 has a trolley moving over a girder.

This type of crane is generally seen in construction sites, steel mills, assembly lines, and

docks of various ports because of its usefulness in moving cargo from one point on land to

another. The second type of crane seen in Figure 1.2 is the rotary crane. The rotary crane

rotates horizontally about a fixed vertical axis and provides both a translation and a rotation

movement. Rotary cranes are generally seen on building construction sites. The third type of

crane, which features the main object of this report, is the boom crane. As seen in Figure 1.3,

1
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Figure 1.1: An example of a gantry crane [5]

Figure 1.2: An example of a rotary crane [5]
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the boom tip provides the suspension point for payloads. This design provides rotations in

the horizontal plane as well as the vertical plane. The boom crane is advantageous over

the other two types of cranes because the boom support loads in compression as opposed to

bending. That is why in areas where space is not readily available, the presence of boom

cranes are common. These places include onboard ships, certain construction sites, as well

as vehicles for ease of mobility.

Figure 1.3: An example of boom cranes onboard a crane ship [6]

1.1 Motivation

The military has had a lot of interest when it comes to the safeguard of its supplies during

transport. To ensure flexibility and expedience, the U.S. Navy employs a fleet of crane ships

used to offload containers between ships as a part of the Container Off-loading and Transfer

System (COTS). These ships are especially useful in places where off-shore loading facilities

are not available or are inadequate. Typically, these Tactical Auxiliary Crane Ships (T-ACS)

anchor off the coast, then a larger cargo vessel and a lighter landing vessel each dock beside

the crane ship as shown in Figure 1.4. A crane operator adjusts the combination of crane’s
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Figure 1.4: Crane ship during cargo transfer [7]

hoist length, luff, and slew states (see Figure 1.5) to move the container from the cargo

vessel to the lighter vessel. In the process, the cargo container passes over the decks of all

the ships involved, as well as some of its personnel. If the payload swing is not excessive,

then the transport process should be a smooth one. However, it has been shown by Vaughers

and Mardiros [1] that even under sea-state level three (according to the Pierson-Moskowitz

Sea Spectrum with significant wave heights in the range of 1.0 – 1.6 m), the crane payload

can produce dangerous amounts of pendulation swing onboard the auxiliary crane ships.

Uncontrolled pendulation swing increases the risk of possible damage to the cargo, the ships

involved, and their personnel. Generally, the Navy suspends transport operations at a Sea

State level of greater than two.

The operation limitation caused by Sea State of level three prompted the development of

the Pendulation Control System (PCS) by Robinett, et al. [2] of Sandia National Laboratories

and was installed in the fall of 2002 onboard the T-ACS 5 vessel the Flickertail State (the

ship seen in Figure 1.3). Its goal was to reduce the payload pendulation and allow for safer

operation of ship cranes under more severe sea-states, and thereby reduce the time and
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Figure 1.5: Crane System with slew angle α, luff angle β, hoist length Lh

monetary cost for the Navy. The implemented PCS showed improvement in performance as

cargo transfers were able to be completed at higher ship roll angles. The improvement was

the result of comparing data from the PCS against data from existing crane control modes

from cranes with both RBTS (Rider Block Tagline System) and non-RBTS systems [3].

A newly proposed upgrade to the PCS involves changing its algorithm to use the ship’s

velocity data instead of its position data. This new rate-based control relies on the ship’s

measured angular rates and translational acceleration from the rate gyro and accelerometer

components of an IMU. More specifically, sensor information needed are the angular rate ω,

the acceleration g, the roll angle φ, and pitch angle θ. One clear benefit of the rate-based

control solution is the significant cost reduction in terms of moving from a fully integrated

GPS/IMU navigation system to an IMU-only system.

1.2 Problem Definition

The three primary sources of payload swing excitation are operator commands, sea-induced

motion, and external disburbances. To counter the sea-induced motion, various types of

sensors are incorporated in control solutions to ease operator’s workload and limit the swing.

Subsequently, there are three types of sensors that are used to keep track of various states
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of the payload at any given time. They are the inertial measurement unit (IMU), the

operator, and the swing sensors. This report focuses in on the IMU as it is assumed the

swing sensors provide accurate results. The current prototype pendulation control system

used to stabilize payload during transport process uses a GPS/IMU based system to sense

the crane ship position and motion. In order for the crane operator to move the payload in

a safe and swing-free maneuver, the GPS/IMU must have a high accuracy to compensate

for the motion of the occasional rough sea conditions. Higher accuracy translates into a

very high sensor cost for the Navy for each PCS installation. As with any other sensor, the

GPS is prone to different biases, noises, and other disturbances. It has been shown that the

GPS tends to show more deviations at higher latitudes due to scintillation effects caused by

disturbances in Earth’s ionosphere [4]. All of these variables are sources for errors that cause

inaccurate sensing during a payload transfer, resulting in longer operation times.

When referring to the new rate-based control method, one must realize that an IMU will

experience corruptions. In order to make a numerical simulation as real as possible, the es-

timator that processes the ship’s accelerometer and gyro data usually includes disturbances

such as sensor bias, drifts, noises, and scaling factors. Problems may arise during the simula-

tion due to the complexity of the existing full 3-D simulator, called CraneSim. CraneSim was

developed to model the current and the new rate-based control solution. The very detailed

simulation keeps track of the all six degrees-of-freedom of the current ship states (surge,

sway, heave, yaw, pitch, and roll) from the IMU as well as GPS data. Various types of

sensor disturbances are also modeled. For example, these include disturbances from all three

axes of motion from the accelerometer part of the IMU. There were also disturbances from

the encoders within the gyro part of the IMU. To simulate realistic behavior of the crane

hardware, errors in the crane servo motors were also included. While the full CraneSim is a

useful tool in simulating realistic results, it will not be as helpful if we only want to observe

the behaviors and effects caused by just the sensor errors.
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1.3 Approach

One way to isolate the effects from a combination of sensor errors is through the use of

a much simpler one-dimensional cart pendulum simulator to serve as a numerical test bed

for the new control solutions. For example, test cases can be conducted for various initial

conditions, along with the use of sweeps that can go through a full range of values for any

two variables to give a broader range of results. The choice of a cart pendulum was selected

because the dominant motion of the ship anchored at sea is its rolling motion. That rolling

motion is simulated by the cart’s back and forth motion as seen in Figure 1.6. The pendulum

Figure 1.6: Using cart pendulum to model the rolling motion of the ship

itself represents the payload, and the boom tip of the crane is modeled by the cart hinge

point. The control is applied at the boom tip. Here a digital control system is added in

order to damp out the pendulation swing. The movement of the cart mainly takes the

accelerometer readings into account, as the gyro readings do not have much effect due to

the assumption that we know the exact pitch angle θ and the roll angle φ measurements

in this 1-D case. The only attitude coordinate not directly measured will be the yaw angle

ψ, which does not have a dominant motion as compared to the ones caused by the ship’s

rolling motion. One of the features of the 1-D simulation is that it is modular, and as such,

can be adjusted to add any type of sensor corruptions. Its modular nature is also helpful

when adjustments are made on filters in order to see the effects stemming from changes in
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filter settings. That is why the 1-D cart pendulum simulation will concentrate only on the

modeling of the ship’s rolling motion.

1.4 Overview

Chapter 2 describes previous research that was conducted in the field of crane control, as

well as some current technologies that are in use in the field. The importance and differences

of sensors, mainly the accelerometer part of inertial measurement units, is explained in

more detail in chapter 3. We review some of the common concepts that are used within

the simulation in chapter 4. These include a description of the reference frame, and the

digital filtering method and some of its characteristics. In chapter 5, we detail the control

solution that is designed to make use of data from the accelerometer. The first part is

the rate-based control solution that uses the integrated position data to control the crane.

The second part shows the rate-based control that uses the integrated velocity data. The

structure of both control solutions is displayed through the use of flowcharts and algorithms.

Also, within each of the subsections in chapter 5, the application of the one-dimensional

cart pendulum simulation is applied and discussed. Chapter 6 provides comparisons of the

different numerical outputs from the various runs of the one-dimensional cart simulation.

Finally, chapter 7 presents a summary of the work that has been done, and possible areas of

this project that could require further exploration.



Chapter 2

Literature Review

This chapter describes different attempts and ideas used to stabilize the boom crane

payload during transport. The work done in the field of crane control both past and present

are described.

2.1 Relevant History

Work in the field of crane control started more than 50 years ago with Westinghouse YO-

YO crane which was tested in 1957 by the Army Corp of Engineer. This system uses a

variable electric motor to control a winch to reduce the error in heave based on a platform

movement of five feet. Then in 1968, the Rucker Transloader uses a hydraulic ram tensioner

in the load line of a crane cable system in order to adjust the cargo position. While useful

in dealing with small loads, the Rucker system produced large amounts of oscillation when

lifting heavier loads. These are two of the early efforts in ship-motion compensation.

In 1974, a new idea to eliminate payload pendulation came about using taglines. The

tagline concept attaches two auxiliary taglines onto the main hoist line in order to help

9
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support the load. The three lines are fixed at a hook block, which created obstacles during

certain loading efforts due to the fixed length of taglines. Once the fixed hook block was

changed so that it was free to ride along the main hoist lines, that eliminated the previous

obstackles and made the entire system more usable. The altered system is known as the

Rider-Block-Tagline System (RBTS) and seen in Figure 2.1. With the movable block in

place, the vertical positions are now controlled as well by the operator with the pulling and

releasing of the taglines. The placement of the rider block reduces the pendulation length of

the payload, and thus moves the payload pendulation frequency away from the ship’s natural

frequencies. This system can effectively reduce the payload pendulation with respect to the

crane ship, but due to rolling motion of the ship the cargo still sways back and forth with

respect to the target vessel.

Figure 2.1: An example of a Rider-Block-Tagline-System [8]
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In order to overcome the deficiencies of the RBTS, a passive RBTS system was developed

by the Navy and was demonstrated onboard the T-ACS 5 vessel. In this system, an IMU

measures the vertical ship motion [9]. The controller takes in the information from the

vertical velocity and defines a horizontal motion, vertical motion of the rider block and rate

of change of the inhaul angle. This yields a movement of the liftline and taglines that can

compensate and keep the payload at a fixed inertial height. However, this system does not

compensate for the horizontal ship motion.

Then in 1999, Sandia National Labratories developed a Pendulation Control System (PCS)

that controls three-dimensional payload motion [10] and was also demonstrated onboard

the same T-ACS 5 vessel. The current system uses a position-based control that requires

the translational coordinates of the ship, the crane, and the payload swing angles. An

accurate and expensive ship navigation system, the POS/MV, is used to measure the 6

ship states. This GPS/IMU package also contains two GPS receivers to measure the current

position. The control system compensates the ship motion in order to prevent payload swing.

By assuming the payload swing angles are accurate the payload swing can be rejected.

This system also avoids operator commanded payload swing due to modifications to the

commanded crane signals from the joystick. This system showed promising performance

during sea trials.

2.2 Alternate Solutions

There are numerous other attempts at crane control using varying control methods and de-

sign. Wagner Associates, Inc. developed an anti-sway crane called Smartcrane [11] that uses

a combination of a “bang-bang” method–in which the acceleration of the pivot is corrected

to remove the sway to the load everytime the fulcrum is moved–and a method in which a

sensor determines amount of sway and a control algorithm adjusts the fulcrum. This system

cannot compensate for the motion of the crane platform as it is ideally situated on ground.
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There are others who use open-loop techniques in their control algothrim, such as Sakawa

et al. [12], in which they use an optimization technique to generate a torque profile to transfer

a load along a pre-defined path while minimizing the payload pendulation. This model was

simulated at a constant luff angle, and shows payload pendulation develop along the path

and increase as the slew angle increases. Takeuchi et al. [13] developed a strategy to achieve

a time-optimal slew-only motion, while reducing pendulation similar to those used on a

gantry crane. However, simulations have shown that this strategy suppresses out-of-plane

pendulation, but not in-plane pendulation.

Some of the closed-loop techniques came from Sakawa and Nakazumi [14] in which they

used an open-loop controller to track the trajectory of the boom, and a LQR optimized

state feedback controller controls the slew, luff, and hoist to eliminate residual pendulation

at the end of maneuver. Simulations were unsuccessful as there were high pendulation angles

during the maneuver. Nguyen et al. [15] proposed a feedback control strategy that uses two

independent controllers. One to control the boom’s luff angle and payload pendulation, and

another to control the hoisting. Tests show that transient pendulation was reduced, but there

were oscillations of the boom around the path, and steady-state errors occur in the boom

angle and cable length. Gustafsson [16] used a control strategy using independent in-plane

and out-of-plane, linear position feedback controllers based on partial linearization of the

spherical pendulum to reduce inertia-induced payload pendulum. Simulation results show

stable responses for operator commanded slewing rates away from the natural frequency of

the cable, with the payload having small pendulation angles. Chin et al. [17] proposed a

nonlinear feedback control to suppress the parametric instabilities in payload motion due to

base excitation. It introduced a harmonic change in the cable length at the same frequency

as the base excitation to suppress the instability and result in a smooth response. Abdel-

Rahman and Nayfeh [18] used the reeling and unreeling of the cable to avoid pendulation

motions in 3-D when base excitation approach natural frequency of the entire assembly. Such

a scheme changes the dynamics of the payload motion, and allows the primary controller
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to damp a planar motion instead of dampening a 3-D motion. Nayfeh et al. (2003) also

used a delayed-position feedback together with luff and slew angle actuation to control cargo

pendulation.

Various structurally different designs to stabilize the cargo swing are also readily available.

For example, Belsterling [20] suggests a multi-cable crane system that uses operator control

by comparing cargo location with the location of a beacon using a combination of inertial

sensor, distance sensor, camera, and light source. An idea by Lee [21] describes the use

of a transverse frame that bridges two ships. It includes articulate arms and spreader bar

mounted on the frame. Sensors would track the movement of the vessel, and automatically

responsive controllers would automatically adjust motion and position of the spreader bar

to follow the motion of the vessel. Holland et al. [22] came up with a robotic cable array

system where cables from three or more folding, telescoping masts located on each corner of

the vessel help to guide the cargo with the aid of various sensors and cameras. These ideas

have not caught on primarily due to their complexity and impracticality.

2.3 Summary

In this chapter we presented some of the research that happened at the start of the effort

to reduce pendulation swing for cargos during transports. Then we discussed literature

reviews on various methods of crane control to reduce pendulation swing on the cargo. These

methods include using different control algorithms including open-loop, closed-loop systems,

as well as those that use entirely different structural designs to overcome the problem. Next

chapter includes additional background information on the sensors that are used to help

operate the cranes and stabilize the payloads.



Chapter 3

Sensor Details

3.1 How IMUs Operate

Sensors are the tools one uses to determine the state of another object. In our case,

inertial sensors that feature gyroscopes and accelerometers provide information about po-

sition, velocity, acceleration, and angles with the aid of a computer. Generally, a group of

three accelerometers orthogonally mounted on a gyro-stabilized element forms the basis to

an Inertial Measurement Unit (or IMU).

The most basic form of an accelerometer measures a force based on deflection of a movable

mass that is constrained by two equal springs. That deflection is taken as a measure of the

acceleration. When the measurement includes a vertical component, the gravitational force

of Earth needs to be taken into account so that a distinction can be made between the actual

acceleration of the instrument relative to a point on the earth and the effect of gravity at a

stationary point. However, a couple of natural phenomenon can also affect the gravitational

readings. First, the centripetal acceleration that come from planet’s rotation is the greatest

(about 3 mg) at the equator and zero at the poles. Second, the gravitational values also

vary depending on the latitude because the Earth is not an exact sphere. Therefore, the

14
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gravitational readings are susceptible to influences from additional tidal forces caused by the

moon [23]. In our simplified study, we assume the influences from the planet rotation, the

moon, and the bulge of the Earth, do not come into play.

3.2 Types of IMU Corruptions

As mentioned in the previous section, corruptions can creep into the data due to various

factors. The most common type of corruptions are the scale factor, bias, random drifts,

white noise, and several others. A brief explanation of each type of error is detailed in the

sections that follow.

3.2.1 Scale Factor

The scale factor is the ratio between a change in the output signal and the change in the

true input. Most sensors provide the output signal as directly proportional to the input

signal. However, if calibration is not perfect, the sensed motion will always be some percent

too small or too big. Therefore, the scale factor is usually a single number representing

the slope of the best-fit-line that results from applying a least squares method to the data

obtained by varying the input over a specific range. The scale factor can be seen in Figure 3.1

as the difference in the slope between the ideal and the actual data. It should be pointed out

that accelerometer scale factor only causes error when there is acceleration. Scale factors are

sometimes listed as a percentage. For example, a 1% scale factor in an environment where

there is a 2g acceleration can yield an uncertainty of 20mg. The more accurate sensors have

smaller scaling factors. However, different publications show scale factor in different ways,

such as using the inverse of the scale factor in units of deg/h/mA, deg/h/Hz, g/Hz.

The rate gyros have scale factor errors as well. The scale factor for rate gyros are im-

portant because the gyros must measure all the angular rates in order to help determine an
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Figure 3.1: Example of a scale factor error

orientation. Scale factor may very well play a part in corrupting the sensor readings. In this

study, we are not focusing at the gyro errors because we are assuming the gyro readings are

perfect. The scale factor error is usually referred to in units of ppm, and deg/time.

3.2.2 Bias

The bias of a sensor is generally caused by miscalibrations, imperfections during manufac-

ture, the weather, and it appears even when there is no input. The bias is measured in units

of gravity g for an accelerometer, and a change in angle over time for a gyro. As with any

corruption, the lesser this value, the better the sensor. An example of the constant offset

can be seen in Figure 3.2. It is important to remove the offsets before further calculation

because sensor bias is the source for integration instabilities. Thus affecting the subsequent

velocity and position data that is mentioned in Chapter 4. In actuality, bias in IMUs are

not constant. As long as these biases do not vary significant amount over time during the

crane operation, it is reasonable to assume they can be filtered out by software since we do

not require the exact bias in our ship motion estimation.
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Figure 3.2: Example of a bias

3.2.3 Random Drift

Within each day, natural conditions in the environment can change the scale factor and

bias by as much as 10 times compared to their in-run random drifts [23]. These natural

conditions include the temperature, amount of vibration, and magnetic fields at the time.

The aging of internal components (or in-run drifts) and other contamination can cause a

slow change over time. Noise may have peaks at different frequencies. In the case of gyros,

the ball bearing may produce noise depending on the ball size, number of balls, operating

speed, etc. This study does not include random drifts.

3.2.4 White Noise

White noise is an erroneous input signal which is random. The quality of a sensor is one

factor in determining how much white noise exists. As seen in the example in Figure 3.3,

they fluctuate about an ideal set of data. These noise levels usually have small effects on the

crane performance. The signals that have noise can be improved drastically with successive

integration steps as we shall see. For this study, no gaussian noise levels were considered

because the small noise levels do not introduce any significant corruptions in the integrated

states.



Chapter 3. Sensor Details 18

Figure 3.3: Example of white noise corruption

3.2.5 Other Errors

There are other sensor corruptions such as random walk, which is a long-term growth in

angle error. Sensors have a lower limit in which they cannot detect input changes below a

certain limit, or dead band. In cases of noisy sensors, a threshold defines the largest value of

minimum input (around zero) that produces an output of at least half expected value. The

resolution of a sensor can affect the accuracy readings for all the inputs as it is defined as the

largest value of the minimum input that produces an output proportional to the expected

value using the scale factor. Other sources of error exists, but they do not fall within the

scope of this project. It should be further noted that the concentration of this study is not

on the gyro errors as the gyro is assumed to be perfect for this part of project.

3.3 Types of IMU Sensors and Cost

IMU sensors can generally be split into three different grades based on their accuracy.

Naturally the cost is proportional to these accuracy levels. The three grades are 1) low

grade, 2) tactical or high grade, and 3) inertial or navigational grade. Generally, a low grade

IMU has a resolution of around 1 deg/sec for its gyro, and an accelerometer bias on the order

of g. An example of a low grade IMU would be the micromachined silicon accelerometer
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(MSA). These devices are generally used in cars with a gyro resolution of 0.5 deg/sec [24],

and usually costs less than $100. Their size is usually small, making them more portable

and easier to implement.

The next grade of IMU is the tactical or high grade that has a gyro resolution on the

order of 10−2 deg/sec and an accelerometer bias on the order of milli-g. This class of IMUs

generally cost in the thousands of dollar range and are widely used in industry.

The last grade of IMU is the inertial or navigational grade. They are the most accurate

IMU sensors having a gyro resolution on the order of 10−3 deg/sec and an accelerometer

bias on the order of micro-g. The cost of one of these units is in the tens to hundreds of

thousands of dollars range. Table 3.1 [26] lists some of the different IMUs out on the market,

along with their errors and estimated price range. It should be noted that the POS/MV 320

sensor shown in Figure 3.4 is the current GPS/IMU sensor package in use on the PCS. It is

also extremely accurate, and because it is used on the high seas, it is also considered part of

the marine grade of IMUs. Some of the error values from these sensors is used later in the

simulation to see whether the application of those sensors into the control algorithms will

yield useful results.

Figure 3.4: Existing GPS/IMU system, POS/MV 320 [25]



Chapter 3. Sensor Details 20

Table 3.1: Listing of IMU, errors and estimated cost.

Grade Navigation Tactical Low Grade

IMU Honeywell HG9900 Litton LN200 Crossbow IMU 400CA

Accelerometer Quartz Silicon Silicon

Bias <25µg 200µg - 1mg ±30mg

Scale Factor (ppm) <100 300 <10000

Noise - 50µg/
√
Hz 0.15 m/s/

√
Hz

Gyro Ring Laser Fiber Optic MEMS

Bias (◦/h) <0.003 1-10 3600

Scale Factor (ppm) <5 100 <10000

Noise (◦/h/
√
Hz) <0.002 0.04-0.1 <0.85

Cost >$100,000 $20,000 $1,000-$10,000

3.4 Summary

In this chapter, the basic operation of an IMU was mentioned, as well as different types

of corruptions that usually occurs. Also described were various types of sensors out on

the market, and their approximate cost. Next chapter includes concepts that govern the

controllers which uses various results from sensors.
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Relevant Concepts

Before detailing the simplified one-dimensional cart pendulum simulation, it is important

to discuss some items used in the new rate-based control simulations. These include the

description and the selection of the frame of reference, some crane dynamics detailing the

ship-crane system, and the filtering process. The filtering process includes methods used

to conduct digital filtering, the choice of filters, as well as the expected frequency response

from our choice of filters. In order to demonstrate the behaviors of the filter, a simple one-

dimensional cart pendulum simulation showing the position-based control, similar to the

PCS that is currently onboard the Flickertail State, is used.

4.1 Slow Drifting Frame

Just like the existing position-based control solution, the rate-based control also relies on

a frame of reference that is not locked into an absolute inertial frame I. Meaning, we are

not looking at the ship’s position with respect to the Earth. If that were the case, then the

slow ship drifts caused by wind and sea conditions over time will fool the control and allow

the payload to move further away from the ship as time progresses. Instead, the main focus

21
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falls on the drifting frame, I ′, from which the ship is allowed to drift slowly about a point as

seen in Figure 4.1. Selecting the anchor point of the crane ship as the reference point makes

sense because as the cargo vessels dock with the crane ship during transport operation, it

can be assumed that both ships move as a single entity. Therefore, as slow drifts occur, the

I ′ frame drifts along with the loading ship along with our crane ship.

Figure 4.1: Example of the slow drifting reference frame I ′

The frame I ′ is naturally aligned with the surge, sway, and heave axes of the ship, which

helps isolate some of the ship’s motions that occur. One of these motions is the short period

motion that is generally caused by the ship roll motion. Short period motion is the dominant

ship motion as its frequencies fall between 0.06 and 0.10 Hz. This range of frequencies also

falls within the range of the natural payload pendulation frequencies. So it is vital for the

control to compensate for this type of ship motion. Another type of motion is a long period

motion. However, the long period motion will not cause as large a payload swing as the
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short period motion, and is therefore not considered a dominant motion. Slow drift about

the anchor point is an example of the long period motion. If the PCS were to account for the

slow drift over time, the control will react continuously without end as the control believes

the error is continually increasing.

4.2 Crane Kinematics

Now that the new inertial frame I ′ has been established, there are a couple more local

reference frames that need to be addressed as they play an important part in the dynamics

of the crane-ship system and the control solutions.

Each individual crane has a crane reference frame C with components {ĉ1, ĉ2, ĉ3}. The ĉ1

axis points straight ahead towards the bow of the ship. However, the axis does not have to

lie exactly on the centerline of the ship because the crane is not located on the centerline of

the ship. As shown in Figure 4.2, the ĉ1 axis is aligned where the slew angle α is zero degree.

Using the normal right-hand rule notation, the ĉ2 axis points toward the port (left) side of

the ship at a slew angle of +90◦. That makes the ĉ3 axis point vertically and matches the

slew rotation axis of the crane. Figure 4.2 shows the top view that contains the slew angle,

as well as the ĉ1 and ĉ2 axes.

Figure 4.2: Top view showing crane frame and slew angle, α
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The side view diagram of Figure 4.3 shows the slew axis ĉ3 in relation to ĉ1 which points

toward the bow of the ship. Note that the hinge of the boom does not lie on the slew

axis, and the distance between them is specified by ad. This offset is a factor during the

calculation of the dynamics. The boom length is indicated by the variable Lb, and the hoist

length is Lh. The β parameter indicates the crane luffing angle. Using trigonometry and

Figure 4.3: Side view showing crane frame and luff angle, β

the luff angle β, the boom tip position vectors with respect to the crane frame are expressed

using C frame components as:

Crb/C =

C
(Lb cos β − ad) cosα

(Lb cos β − ad) sinα

Lb sin β

 = ( )ĉ1 + ( )ĉ2 + ( )ĉ3 (4.1)

where Crb/C is the vector from the crane frame origin to the boom tip in terms of the crane

frame C and its components ĉ1, ĉ2, ĉ3.

In order to see the big picture of the entire ship/crane system, two other reference frames

need to be addressed. They are the inertial frame and the ship’s sensor frame–designated

by I and S, respectively. Both of these reference frames are seen in Figure 4.4. The inertial

frame used here is the same slow drifting frame I ′ described earlier. The ship’s sensor frame,
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S with components {ŝ1, ŝ2, ŝ3} is located on a fixed point onboard the ship. The S frame

does not need to be perfectly aligned to the vertical, or to the bow of the ship. The position

vectors and frame orientation at the crane frame relative to the ship frame can be attained

with proper measurements and calibrations.

Figure 4.4: Inertial, Ship Sensor, and Crane Coordinate Frames

Figure 4.4 illustrates all vectors that lead to the inertial final position of the payload given

by

rp/I = rS/I + rC/S + rb/C + rp/b (4.2)

The Crb/C term from Equation (4.1) is just one of the terms that makes up Equation (4.2).

Also, the swing position vector of the payload relative to the boom tip expressed using the
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I frame is

Irp/b =

I
0

0

−Lh

 (4.3)

Note that the Irp/b term can also be represented as Lh
I ĝ if there is zero swing, and only the

gravitational vector [0;0;-1] exists.

In their current state, the vectors in Equation (4.2) are all expressed respect to different

coordinate frames. The choice was made to use the I frame so that the inertial component

î3 is aligned to the direction of the gravity. In order to continue down this path, the ship

sensor frame S and the crane frame C components will require 3× 3 rotation matrices to get

them all into a common reference frame. As an example, the rotation matrix [IS] can map

the vector with S components into the I frame using the ship roll, pitch, and yaw angles

(φ, θ, ψ). Similarly, the [SC] rotation matrix can map components from the crane frame into

the ship’s sensor frame. After these two rotation matrices are known, the rotation matrix

[IC] can be found using the product of the two known rotational matrices

[IC] = [IS] [SC] (4.4)

It should also be noted here that in this particular case, the [SC] matrix is constant because

once the sensor is installed onboard, its distance and orientation relative to the crane frame

do not change. Now if we rewrite Equation (4.2) using the proper frame coordinates, it

appears as

I r̃p/I = IrS/I + [IS] SrC/S + [IC] Crb/C + Irp/b (4.5)

Equation (4.5) is key to conducting inverse kinematics calculations for both the current GPS

position based control solution, and the new rate-based control solutions that can use both

position and velocity. More specifically, some of the terms in Eq. (4.5) include the crane

states that stabilizes the payload such as the slew angle α, luff angle β, and the hoist length

Lh. By knowing these three main states, the controller can input a rate command so that the
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crane will move a set amount to reach the specified states and thereby stabilize the payload.

More detail on the inverse kinematics of each type of controls is provided in Chapter 5.

4.3 Digital Filtering of Ship Motion Sensing

4.3.1 Advantages of Digital Filters

The use of digital filtering techniques is prevelant in modern industrial systems because

of the small sampling instants produced by today’s digital computer readouts. Usually,

the time interval between two sampling instants is so short that data between the instants

can be approximated by interpolation [27]. Digital filters are also easily programmable on

computers, therefore they can be changed without affecting any hardware. Working in a

virtual environment means that we do not have to deal with circuits, which leads to a

reduction of drifts, and makes the filter not temperature dependent. The digital filter also

handles low frequency signals accurately [28].

4.3.2 Application

In our case, the discretization process is used to approximate the readouts from the ac-

celerometer. The method in which we analyze the discrete-time system is with the Z-

transformation. The role of the Z-transformation in discrete-time systems is similar to that

of the Laplace transformation in linear, time-invariant, continuous-time systems. Such a

similarity between the two methods makes it possible for the formulas that generated our

digital filter algorithms to start off in Laplace space as X(s) and Y (s)–representing digital

signals x(t) and y(t), respectively. Then the input/output transfer function H(s) can be

expressed as the ratio of the output Y over the input X as

Y (s)

X(s)
= H(s) (4.6)
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A transfer function for the filter can be introduced as F (s), which takes the place of the

current transfer function H(s) in Eq. (4.6). With the new filter transfer function, one can

include any desired characteristics needed to be implemented into the filter. Some examples

include combining multiple types of filters, or a specific type of filter with a differentiation

term (by multiply by a s term) so that the transfer function serves both as a differentiator

and a signal filter. Including a 1
s

term instead of the s term results in integration instead of

differentiation.

In order to map from the Laplace domain from Eq. (4.6) to the Z-domain, a trapezoidal

rule shown in Eq. (4.7) is applied because it is more versatile when dealing with differences

between the frequency of the sample and the critical filter frequency.

s =

(
2

h

)
1− z−1

1 + z−1
(4.7)

The resulting s = f(z−1) function is substituted into Eq. (4.6) and results in the recursive

relationship

b0y +
N∑

i=1

biyz
−i = a0x+

N∑
i=1

aixz
−i (4.8)

With k as the time step, and the rule that

yz−1 = yk−ixz
−1 = xk−i (4.9)

we get the filtered step at time step k with the following formula

yk =
1

b0

[
a0xk +

N∑
i=1

(aixk−i − biyk−i)

]
(4.10)

The N represents the highest order in the transfer function H(s). The recursive formula in

Eq. (4.10) can be used for any combination of filters depending on its ai and bi values.

4.3.3 Filter Types

There are numerous digital filters and each serves its own purpose. Some of these filters

include lowpass, highpass, notch, bandpass filter, and all pass filters. There are filter types
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that resemble a combination of multiple filter types, along with possible integration, differ-

entiation, and higher order version of these various filters. Each type of filter has its benefits

and drawbacks. For example, a lowpass filter can allow for low frequency signals to pass,

but it produces a phase lag. A highpass filter can allow high frequency signals to pass, yet

it results in a phase lead. An allpass filter changes the signal phase but not its amplitude.

A notch filter allows the lower and higher frequencies to pass, forming a valley in the middle

of its magnitude bode plot. The bandpass filter has characteristics that is the opposite of

the notch filter because it allows the signals within a certain range around a predetermined

center frequency to pass, and filters out rest of the signals. The bandpass filter is in essence

a compromise between a lowpass and highpass filter. It acts as a highpass filter for low

frequencies and lowpass filter for high frequencies.

4.3.4 Filter Selection and Algorithm

The bandpass filter is chosen to filter out certain ship motion in the current PCS system

because it is a combination of a highpass and lowpass filter. Just like the notch filter, the

bandpass filter also employs a bandwidth, BW , that specifies a symmetrical range around a

center frequency, ωc. Any signal with frequencies above or below that range is filtered out.

As with all filters, a 1st-order filter can reject a constant signal x. A 2nd-order filter can

reject a linearly growing signal over time, and so on. However, only two orders are needed

for the existing GPS-based PCS because as the order of the filter increases, so follows the

sensitivity of the center frequency. The higher order filter will cause the entire filter to be

less robust as a result. Thus, the use of a 1st or 2nd-order bandpass filters are sufficient to

cancel out the linearly growing signal terms that will come out of our integration steps.

The 1st-order transfer function of bandpass filter is seen by Eq. (4.11).

Y (s)

X(s)
=

sBW

s2 +BWs+ ω2
c

(4.11)
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The 2nd-order transfer function is merely the square of the 1st-order with an extra dimen-

sionless damping term ξ, as seen in Eq. (4.12).

Y (s)

X(s)
=

BW 2s2

(s2 + ω2
c )

2 + 2BWsξ(s2 + ω2
c ) +BW 2s2

(4.12)

After performing the Z-transform in Eq. (4.7), both bandpass digital filter’s 1st and 2nd-

order recursive algorithm are as follows:

yk =
1

4 + 2hBW + h2ω2
c

[yk−1(8− 2h2ω2
c )

+ yk−2(−4 + 2hBW − h2ω2
c )

+ 2hBW (xk − xk−2)]

(4.13)

yk =
1

4h2BW 2 + (4 + h2ω2
c )

2 + 4hBW (4 + h2ω2
c )ξ

[

yk−1(4(4− h2ω2
c )(4 + h2ω2

c + 2hBWξ))

+ yk−2(2(−48 + 4h2BW 2 + 8h2ω2
c − 3h4ω4

c ))

+ yk−3(4(4− h2ω2
c )(4 + h2ω2

c − 2hBWξ))

+ yk−4(−4h2BW 2 − (4 + h2ω2
c )

2 + 4hBW (4 + h2ω2
c )ξ)

+ 4h2BW 2(xk − 2xk−2 + xk−4)]

(4.14)

The units for BW is in Hz, center frequency ωc is in rad/s, and digital sampling period h in

seconds. As mentioned before, the xk, yk terms represent the current ship state measurement

and the filtered ship state at current time step k, respectively. Thus, the xk−1 and yk−1

represent their previous time step measurement.

4.3.5 Filter Behaviors on POS/MV Based Control

We apply the recursive algorithm for the bandpass filter in Eq. (4.14) to the POS/MV

based control, which is the current GPS/IMU system that is onboard the crane ship. The

outcome allows us to see the effects of the filters in the context of the control system. As

seen from the diagram in Figure 4.5, the input xtrue is a prescribed true position of the ship.
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Figure 4.5: Filtering Process of POS/MV Based Control

The true position is then corrupted with a sensor drift that was applied using real error data

for a good, medium, and bad days. A MATLAB code was written by my colleague Chris

Romanelli, that represents these data as corrupted signals over a user defined time duration

and time step. The different outputs of these drift conditions can be observed in Figure 4.6.

The signal that comes after the drift corruption is a sensed position, xsensed. Using the

2nd-order bandpass filter as seen in Equation (4.14), we were able to get rid of the drift and

stabilize the payload. A plot of the true, sensed, and filtered position is seen in Figure 4.7.

In the plot, the red line indicates the prescribed true position. It deviates from the blue

line, which shows the drift corruption that was added. The green line represents the filtered

position, which was not in sync with the true position (red) at the start. But as time goes

on, one can see the filter doing what it should be doing as the filtered and the true positions

match very closely with each other. Thus, the filter meets its goal of eliminating drifts.

4.3.6 Filter Behaviors on IMU-Based Control

We see the filtering technique work for a model of the existing pendulation control, now it

is time to try it on the newly proposed IMU-based controls. The IMU-based controls include

both rate-based control solution that use both position and velocity. As seen in Figure 4.8,

the process starts off with a prescribed true acceleration reading from the accelerometer.

That signal is then corrupted with a constant accelerometer bias and scaling factor that

results in a sensed accelerometer reading, asensed. An optional 1st-order bandpass filter can

be placed here to eliminate the constant offset caused by the bias. The resulting signal

will be a filtered acceleration reading, which is then put through a recursive algorithm that
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Figure 4.6: Error signals on a)Calm Day, b)Medium Day, c)Rough Day



Chapter 4. Relevant Concepts 33

Figure 4.7: Comparison of True, Sensed, and Filtered Position of POS/MV Based Control

Figure 4.8: Filtering Process of IMU Based Control
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integrates and has a 1st-order bandpass filter component. The filtered velocity, vfiltered is

the outcome. The IMU based control that uses only velocity will pass this result onto the

controls. Even though only the velocity is used, a position reading still needs to be obtained.

The reason for this will be explained later in the controls section in Chapter 5. The same step

that got us velocity from acceleration reading will get us the position readings from velocity

in terms of putting the signal through an integrator and a 1st-order bandpass combination.

This results in a filtered position, xfiltered. Trial runs that support the use of this additional

1st-order filter can be seen in Chapter 6.

4.4 Summary

In this chapter, we identified several local and inertial coordinate frames and their rela-

tionship with each other through a series of vectors. The basics of digial filtering and ship

motion sensing was also discussed as it deals with smoothing out corruptions that come from

the sensor data. Current PCS data were used to show the effectiveness of digital filtering.

Next chapter, we apply all that we have seen up to now and use them in the new rate-based

control solutions.



Chapter 5

Differences Between Control Solutions

5.1 3D Inverse Kinematics

The method of inverse kinematics is useful in cases when a final condition is known, but

the parameters that lead up to the final condition are unknown. This is in contrast to

normal kinematics in which a certain number of parameters are given or can be solved for

that leads to a final solution. Inverse kinematics applies in our crane control scenario because

the location of the payload is known due to the need to keep it stable. However, the boom

orientations (slew & luff angles, and the hoist length) are the unknowns. Once these three

crane state parameters are known, they are passed into the control system. In the current

POS/MV based system, the three parameters are just the two angles, slew & luff, and the

hoist length. In the IMU based control solution that uses velocity, the rate of the slew and

luff angle, and the rate that the hoist length moves are the control inputs. The inverse

kinematics of the IMU based control that uses position relies on the same parameters as the

POS/MV based control, the only difference lies in the method used to sense ship position

states.

35
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5.1.1 3D Inverse Kinematics of Position Based Control

For the control solution that is position based, the main goal is to obtain the crane position

and then numerically differentiate its crane states to be used by the crane’s servo system.

From Equation (4.5) and Figure 4.4, we see that the vector r̃p/I is the desired payload position

in the inertial frame. This may be called a nominal position as well, where the payload swing

is nonexistent. From this configuration, the ideal crane states can be calculated. We start

with showing the unit gravity vector ĝ in terms of the crane and the inertial frame as

ĝ = −î3 =

C
g1

g2

g3

 = [CI]

I
0

0

−1

 (5.1)

With vector ĝ, the payload position vector with respect to the boom tip can be written as

Crp/b = Lh
Cĝ (5.2)

Using the above equation, Equation (4.5) can be rewritten in the crane frame C as

[CI]
(I r̃p/I − IrS/I − [IS] SrC/S

)
= Crb/C + Lh

Cĝ (5.3)

and the right side of the equation involves the crane states α, β, and Lh. They are represented

in the crane frame as

Crb/C + Lh
Cĝ =

C
(Lb cos β − a) cosα+ Lhg1

(Lb cos β − a) sinα+ Lhg2

Lb sin β + Lhg3

 (5.4)

The result of Equation (5.4) produces the three necessary crane states, but its nonlinear

equation needs a quintic polynomial function to solve for (α, β, Lh).

In the inertial frame, we do not need to know the ship motion respect to the true inertial

frame, only the slow drifting frame. Therefore, we see a nominal payload position as having
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zero translation with respect to the drifting frame. So, if a slew or luff maneuver is performed,

then the nominal angles for both slew and luff parameters are increased. It is also assumed

that there is no swing of the payload. Similar to Eq. (4.1), using the nominal slew α̃ and

luff β̃, the nominal boom tip position relative to the crane frame C is

Cr̃b/C =

C
(
Lb cos β̃ − a

)
cos α̃(

Lb cos β̃ − a
)

sin α̃

Lb sin β̃

 (5.5)

Not forgetting the nominal hoist length L̃h, the payload’s position vector relative to the

boom tip is

I r̃p/b =

I
0

0

−L̃h

 (5.6)

With the Cr̃b/C and I r̃p/b terms, the nominal inertial payload position can be computed with

I r̃p/I =
(S r̃C/S + [SC] Cr̃b/C

)
+ Iδr + I r̃p/b (5.7)

The boom tip damping correction is the δr term included to damp out swings. A pre-selected

gain value is attached to this term which moves the boom tip in the opposite direction as the

sensed swing, thus dampens the pendulation swing. The gain value matches the value on

the real PCS and is unchanged here. This is simply a small position vector that approaches

zero if the swing angle goes to zero. When compared to the overall vector equation (4.5), one

difference is the missing rotation matrix, [IS]. That matrix essentially cancels out because

we assume the nominal ship frame to have the same attitude as the inertial frame, so there is

no orientation difference, resulting in [IS] being an identity matrix. In the end, the nominal

payload position r̃p/I can be computed if we know the nominal crane states α̃, β̃, and L̃h,

as well as the boom tip’s Cartesian damping correction δr.
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5.1.2 3D Inverse Kinematics of Velocity Based Control w/ IMU

The IMU-based control senses the ship motion with accelerometer and rate gyro data, as

well as the true roll and pitch angles. The inverse kinematics of the velocity based control

directly computes the crane rates that is used to control the crane to compensate for the

measured ship motion.

In section 4.2, Equation (4.2) shows the payload position vector. Then, the payload

velocity becomes the time derivative of the position.

ṙp/I = ṙS/I + ṙC/S + ṙb/C + ṙp/b (5.8)

However, when taking the time derivative of the position vector, one must take into account

that the base vector directions of the chosen coordinate system may be time varying also.

Thus, a transport theorem [31] is used that allows one to take the derivative of a vector

with respect to one coordinate system, even though the vector itself has its components in

another system. For example,
Sdx
dt

stands for the time derivative of x seen by the S frame.

In our case, the vector rC/S is expressed in the S frame, and the rb/C in the C frame, the

transport theorem has to be used. The resulting payload velocity in inertial frame is

ṙp/I = ṙS/I +
Sd

dt

(
rC/S

)
+ ωS/I × rC/S +

Cd

dt

(
rb/C

)
+ ωS/I × rb/C + ṙp/b (5.9)

It should be noted that the the vector, rC/S , from the sensor to the crane frame is a constant

as seen by the ship frame, so its derivative is zero. Also, the ωS/I term has three components

that are the rate measurements from the gyro sensor. The crane boom tip position term rb/C

is seen in Eq. (4.1). Here, we need to take its derivative as seen by the C frame, which is

Cd

dt

(Crb/C
)

=

C
−(Lb cos β − a) sinαα̇− Lb sin β cosαβ̇

(Lb cos β − a) cosαα̇− Lb sin β sinαβ̇

Lb cos ββ̇

 (5.10)
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where the position vector of the payload rp/b relative to the boom tip in the inertial frame

is seen in Equation (5.6), its derivative is simply

ṙp/b =

I
0

0

−L̇h

 = L̇hĝ (5.11)

The previously defined gravity vector is in terms of the inertial frame. In order to convert

this vector to the crane frame, rotation matrix [IC] is needed so that

Cĝ = [IC]T


0

0

−1

 = [IC]T I ĝ =

C
g1

g2

g3

 (5.12)

Now if we substitute Eq. (5.12) and Eq. (5.8), we get

N ṙp/I − N ṙS/I − [IS]
(SωS/I × SrC/S

SωS/I × [SC] Crb/C
)

= [IC]

( Cd

dt

(Crb/C
)

+ [CN ]N ṙp/b

)
(5.13)

In the above equation, the vectors are in several different frames I, S, and C. The rotation

matrices [SC] and [IS] are the same, and the matrix [IC] maps components from the crane

frame to the inertial frame. Terms on the left hand side include inertial payload velocity,

inertial ship motion velocity, attitude matrix of the ship, ship’s rotation rate, and the boom

tip position vector. The right hand side includes the rate of the ship crane states that we

need. The right hand side of the equation is equivalent to the following equation

Cd

dt

(Crb/C
)

+ L̇h
Cĝ (5.14)

Transforming eq. (5.14) into its matrix form results in,

Cṙb/C =


−(Lb − a) cos β sinα −Lb sin β cosα g1

(Lb − a) cos β cosα −Lb sin β sinα g2

0 Lb cos β g3




α̇

β̇

L̇h

 (5.15)

Once we have sensor measurements and a nominal inertial payload velocity, we can calculate

the left hand side of the Equation (5.13). Then, we can take the inverse of the 3 × 3 matrix
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and multiply that by the known left hand side values to get us the necessary α̇, β̇, L̇h values

needed for the control.

The inverse kinematics of the velocity-based control requires a nominal inertial payload

motion. Similar to the position-based inverse kinematic solution, we can use the nominal

crane concept to get a nominal inertial payload velocity vector ˙̃rp/I . The nominal inertial

payload position can be seen in Eq. (5.7). One needs to keep in mind that the term r̃C/S is

constant. Therefore its derivative is zero. If we take the derivative of r̃p/I , then the nominal

inertial payload velocity vector is

˙̃rp/I =
(
˙̃rb/C

)
+ δṙ + ˙̃rp/b (5.16)

The rate of the damping correction term δṙ is computed by numerically differentiating the

δr term from the position-based control, and the ˙̃rb/C term from Eq. (5.10). In the end, the

nominal payload velocity ˙̃rp/I can be computed if we know the nominal crane rates ˙̃α, ˙̃β,

and ˙̃Lh, as well as the rate of boom tip’s Cartesian damping correction δṙ.

5.2 Simplifying from 3D to 1D

It is common perception that any three-dimensional system is more complicated than a

one-dimensional system. The crane system is no different. The crane dynamics alone adds to

the complexity of any simulation, which does not even include all of the various mechanical

devices onboard the crane that needed to be simulated. In real life, mechanical parts are

never absolutely perfect. In our boom crane, sources of imperfection can stem anywhere from

the crane’s hydraulic systems such as winches, servos, various measurement sensors, not to

mention the unpredictability from the ocean itself. The full three-dimensional simulation

that is used to model the existing PCS has to be as detailed as possible. Numerous biases

and noises are included within the full simulation to ensure the maximum amount of realism.

On top of that, the full three dimensional equation of motion is quite extensive, as can be
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seen in [29]. Whereas if one were to make use of a less complicated system of equations to

model the same problem, it will be easier to do control designs.

The main purpose of the 1-D cart pendulum simulation is to serve as a numerical testbed

for new control solutions. As discussed in Chapter 1, our interest is in simulating the ship’s

dominant motion–its rolling motion. The rolling motion of the ship can be simulated by a

prescribed sinusoidal motion. As the ship rolls, the payload will generate swings as well.

This payload motion can be simulated by the pendulation swing of a mass connected to

a cart pendulum that can move according to the ship’s prescribed motion as be seen in

Figure 5.1. A digital control system, in the form of a commanded motion u(t) is added

to the cart pendulum. Specifically, the portion that hangs from the horizontal track on

the cart body represents the boom tip control to damp out the pendulation swing. On

the crane ship, the control motion u(t) is equivalent to the controlled boom tip motion.

With the 1-D simulation, it is easier to gauge the effectiveness of the accelerometers without

Figure 5.1: Diagram of 1-D Cart Pendulum

various interferences from all the other simulated imperfections in the full 3-D simulation

that may deviate the results. The hope is to see whether or not cheaper and less accurate

sensors can be implemented onto the PCS while maintaining its ability to reduce payload

pendulation. The cart pendulum simulation consists of numerous function files such as ones

that prescribe ship motion, payload equation of motion, and the numerous digital filtering

steps. The modular attribute is useful because it allows the user to quickly make changes
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as they focus on a specific part of the simulation. The modular nature of the program also

creates ease for the user as they do not need to go through all the lines of codes in a long

sequential file. If the test case shows promise in the simpler cart pendulum simulation, then

it can be modified to be used on the full-scale simulation for more realistic results.

The rest of this chapter includes the derivation of the equations of motion for the cart

pendulum system. The equations of motion are incorporated into both the rate-based po-

sition and velocity control simulations. The differences between the two type of rate-based

control solutions are explained as well.

5.3 Equations of Motion

5.3.1 Derivation Using Lagrange’s Equation

Lagrange’s Equations use concepts from energy to describe motions. The benefit of using

Lagrange’s Equations is that they work in any coordinate system. Its generalized form is

seen in Eqs. (5.17) and (5.18).
d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0 (5.17)

L = T − V (5.18)

where L is the Lagrangian, T is the kinetic energy, V is the potential energy, and θ is the

displacement.
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5.3.2 Applying Lagrange’s Equation to the 1-D Cart Pendulum

The Cartesian coordinate system is used for this cart pendulum simulation. The resulting

kinetic energy T, and the potential energy V are

T =
1

2
mV 2 =

m

2

(
Ẋ2 + Ẏ 2

)
(5.19)

V = −mgL cos θ (5.20)

It should be noted that the V in Eq. (5.19) is the velocity term, which was then broken

down into the derivatives of its x and y position components centered around the origin. As

illustrated in Figure 5.1, the position in the horizontal and vertical direction are as follows

X = x(t) + u(t) + L sin θ(t) (5.21)

Y = −L cos θ(t) (5.22)

The x(t) is the x-position of the cart, that represents the ship rolling motion. The u(t) is

the commanded position control that reacts to the change in the x-position, and is located

in the boom tip. The L is the length of the hoist cable, and θ(t) is the swing angle at a time

t. Take their derivatives with respect to time, and the resulting velocity components become

Ẋ = ẋ+ u̇+ L cos θ · θ̇ (5.23)

Ẏ = L sin θ · θ̇ (5.24)

Use the results from Eq. (5.23) and (5.24) and substitute into Eq. (5.19). With all of the

kinetic and potential energy terms present, Eq. (5.18) can be completed. The last step is

to take the partial derivatives and the normal derivatives as seen in Eq. (5.17). Thus, the

non-linear pendulation equation becomes:

θ̈ +

(
ẍ+ ü

L

)
cos θ +

g

L
sin θ = 0 (5.25)

In order to make the equation of motion in Eq. (5.25) work with the simulations, it has

to be converted from a single 2nd-degree non-linear differential equation into a system of
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two-1st degree equations. Within the programs, variables X1 = θ and X2 = θ̇ represent the

swing angle, θ, and the swing angle rate, θ̇, respectively. In doing so, the system of equations

that is used throughout the cart pendulum simulations is

θ̇ =
d

dt
(θ) (5.26)

θ̈ = −
(
ẍ+ ü

L

)
cos θ +

g

L
sin θ (5.27)

Equations (5.26) and (5.27) are the equations of motion for the simplified 1D cart pendulum

system.

5.3.3 Solving the Equations of Motion

In order to solve the system of differential equations and let it be applicable to the dis-

cretization process, numerical analysis is applied. More specifically, the Fourth Order Runge-

Kutta method is selected to solve the equations. Other methods, such as the Taylor method,

have the desirable property of high-order local truncation error, but it requires the compu-

tation of derivatives of the function. Taylor method tends to result in a complicated and

time-consuming process, which is why it is not used. The benefit of the Runge-Kutta method

is that it has high-order local truncation error of the Taylor methods, while eliminating the

need to compute and evaluate derivatives by using an iterative process as seen below. The

differential form of Runge-Kutta method of order four is the following [30].

w0 = α (5.28)

k1 = hf(ti, wi) (5.29)

k2 = hf

(
ti +

h

2
, wi +

1

2
k1

)
(5.30)

k3 = hf

(
ti +

h

2
, wi +

1

2
k2

)
(5.31)

k4 = hf(ti+1, wi + k3) (5.32)

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4) (5.33)
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for each i = 0, 1, ..., N − 1. The variable α is an initial value, h is the time step, t is the

specific time, and w keeps track of the answer to each iterative process. The Runge-Kutta

method is used in all of the cart pendulum simulations related to this project.

5.4 Simplified 1D Control Using Position Based In-

verse Kinematics

The flowchart shown in Figure 5.2 is the general flowchart of the position-based control

solution that uses the IMU for the 1-D cart pendulum simulation. Please note that this is the

Figure 5.2: Flowchart of the Rate-Based Position Control

exact same control system as the current PCS and nothing is changed or added. The input

signal comes from the accelerometer data to simulate the ideal ship motion. In this case, it

is the ship’s rolling motion that is being simulated as mentioned in a previous section. This

acceleration is the true acceleration and is represented by the atrue symbol in the flowchart.
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A constant bias, a scaling factor, and even random noise can be added here in order to

corrupt the data. All of the corruption values can be adjusted as well. The result from

this corruption process is a sensed accelerometer reading, asensed. At this point, we have the

option of applying a single first order bandpass filter to the sensed accelerometer reading to

cancel out the constant sensor offset. This additional bandpass filter is set as a toggle in the

code, which can be turned on or off by the user. If this extra filter is turned on, we label the

outcome as the filtered accelerometer reading, ẍfiltered and the process continues according

to the flowchart. All of these filtering steps are necessary in order to make the simulation as

realistic as possible. If the extra filter option is turned off, then our previous sensed reading

automatically becomes the filtered reading from the accelerometer. The signal then goes

through a combination of bandpass filters and integrators, seen by the box labeled “
∫
BP”.

In these steps, the transfer function of the first order bandpass filter seen in Eq. (4.11) is

multiplied with the Laplace integration step of 1
s
, then undergoes a Z-transformation to get

the recursive algorithm which gives us a filtered velocity, ẋfiltered. Repeat the procedure once

more by passing the filtered velocity through another bandpass/integration step to get the

filtered position, xfiltered.

Since this particular rate-based control uses position data, a commanded position control is

applied to counter whatever position offset is currently being sensed. The control algorithm

that is applied here is

uk = −xk + δxk (5.34)

where uk is the commanded position at current time interval k, xk is the current sensed

position, and the δxk is the damping correction term. The damping correction term is

needed in order to bring the cart (or boom tip) back to its initial position with certain gain

selection and the current swing angle. The damping correction term is defined as

δxk =
1

1 + hKd

(δxk−1 + hKθk) (5.35)

The swing feedback gain Kd and the cart feedback gain K are initially set by the user.

Variable h is the timestep, and the k and (k − 1) stand for the current and the previous
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time steps, respectively. The performance of the cart pendulum simulation is affected by

varying these two gain values, along with any changes in the initial angular conditions and

the length of the hoist cable. In our simulation, the selection of the gain values matches the

values that are in use in the actual crane PCS.

The control algorithm uses a commanded position value, u, to counter the changes in

position. However, our equations of motion in Eqs. (5.26 & 5.27) require both the current

real and commanded acceleration values. So successive differentiation steps are required by

passing the u to u̇ using algorithm in Eq. (5.36) and from u̇ to ü using the algorithm in

Eq. (5.37).

u̇ =
1

h
(uk − uk−1) (5.36)

ü =
1

h
(u̇k − u̇k−1) (5.37)

The u̇ term is the crane servo control because the commands sent by crane operator’s joystick

are in the form of velocity commands.

Now the equations of motion are computed with the availability of the initial angle θ,

angular rate θ̇, commanded acceleration ü, and true acceleration ẍ. Steps for solving the

equation of motion was described in Section 5.1.3 using Equations (5.12 to 5.17). Initially, the

starting conditions are specified by the user. After the first time step, every time step h from

that moment on relies on the conditions θ and θ̇ of the previous time step. Also, it should

be noted that each time step h is divided into ten smaller time increments with changing

ẍ(t) that represented the true acceleration at that instant. Yet, the u(t) that corresponds

to the time step h remains unchanged. The reason for having the control update ten times

faster than the simulation is to provide a more accurate true acceleration. The simulation

runs for a specified amount of time, which is also set by the user. The outcome is a series of

swing angles θ, and swing angule rates θ̇ from each time step. The process continues until

the end of the user specified time frame. The MATLAB code can be seen in Appendix A.1.
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5.5 Simplified 1D Control Using Velocity Based In-

verse Kinematics

There are lots of similarities between the rate-based velocity control and the previous rate-

based position control. As mentioned before, the crane operator commands the crane using

velocity inputs. Therefore, by using the velocity based control algorithm, we can eliminate

one differentiation step, thus limiting errors and possibly yield equal if not better results.

As seen in the flowchart of Figure 5.3, the process starts just like the rate-based position

control with the true accelerometer data. The similarity continues through the corruption

phase, as well as the filtering/integration phase until the vfiltered output. Since this is a

control solution based on velocity, the vfiltered value goes into the controller in the following

equation

u̇k = −ẋk + δẋk (5.38)

where the damping term (in its velocity form) keeps track of the cart’s position. The resulting

commanded velocity u is then differentiated into an acceleration and used in the equation of

motion, along with the true acceleration data and the angular rate. Basically, we still need

to integrate from the velocity to get a set of position values to be used within the controller

of Equation 5.38, we are simply reducing one differentiation step in the data manipulation

that feeds into the controller.

The hope is to eliminate any propagating error due to one less differentiation process. The

subsequent calculation of the Equation of Motion follows Equations (5.12 to 5.17) using the

fourth order Runge Kutta method.
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Figure 5.3: Flowchart of the Rate-Based Velocity Control

5.6 Summary

In this chapter we looked at the 3D inverse kinematic for the different types of controls.

Then we started with the derivation of the equation of motion using Lagrange’s Equation

for the cart pendulum system in order to simulate only the rolling motion of the ship. The

different types of simplified 1D control were the position-based control using IMU/GPS

system, the current rate-based position control that is implemented, as well as the new rate-

based velocity control. Next chapter presents some of the outputs that resulted from running

the simulation and the comparisons of different sensor performances.



Chapter 6

Results

On the market, there are numerous IMU sensors with varying specifications. The values

used in the simulations are based on the disturbance data from various IMUs. Trial simula-

tions are conducted to compare the effectiveness of the IMU-only control solutions, for both

the new position- and velocity-based crane control solutions.

6.1 Applying the Optional Filter

The use of the optional 1st order bandpass filter (Section 4.3.6) is designed to eliminate

the accelerometer sensed bias that exists. We run the test cases in the 1-D simulation to

see the effects of the filtering process. The first set of runs has the proposed extra filter

turned off, and then turned on for the second set of runs. In Figure 6.1, the first plot is the

acceleration plot with true and sensed values. For both on and off cases, an exaggerated

constant bias is used to make for easier viewing. The constant offset that results from the

bias is easily seen. Since the extra filter that would have cancelled this constant offset is not

available, the next plot is that of the true and the filtered velocity. Integration leads to the

function having one higher order. The bandpass filter cancelled that raised power, but the

50
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initial constant offset is still noticeable. Same can be applied for transition from velocity to

the position plot.

Figure 6.1: Effects of Filtering Without Additional Filter in IMU-Based Control

Now we turn the extra filter on, which eliminates the constant offset from the bias from

the start. In Figure 6.2, we see in the first plot for acceleration that the offset exists between

the sensed and the true acceleration. However, it takes between 15 to 20 seconds for the

filtered acceleration to match the true acceleration as the red and the green lines overlap.

Having already cancelled the initial constant offset, the integration step raises the function
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to the next power, but the bandpass filter eliminates any additional offsets. In the velocity

plots of Figure 6.2(b), the true and the filtered velocity match up after about 10 seconds.

Same can be said about integrating from velocity to position as it took 15 to 20 seconds for

the true and the filtered position signals to converge.

Figure 6.2: Effects of Filtering With Additional Filter in IMU-Based Control

The effects of the optional first order bandpass filter can also be seen in the performance of

the PCS. The differences of both the position- and velocity-based controllers each with the
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optional filter turned on and off are shown in Figures 6.3 and 6.4, respectively. The plots

Figure 6.3: Effect of Optional Bandpass Filter in Rate-based Position Control

Figure 6.4: Effect of Optional Bandpass Filter in Rate-based Velocity Control

represent the location of the payload, in the form of the pendulum in our cart pendulum

simulation. Both figures have a constant bias in the beginning and takes approximately

20 seconds for the control to damp out the pendulation swing. The blue lines show the

cart pendulum behavior when the extra filter is off, and they show a 1m offset. The red

lines show a lack of a constant offset introduced by the initial bias, as its pendulation swing

reduces about the nominal position of 0m. This type of offset can show up in the form of our
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aforementioned slow drifting frame. Over a matter of hours, the crane ship and ship docked

alongside of it may mirror the behavior of a constant offset by slowly drift away from the

nominal position. Such an error is easily correctable since there is a crane operator available.

That person simply has to manually adjust for the difference using the crane joystsick.

The PCS has its center frequency ωc of its filters set to match the period of the ship rolling

motion period. If the sensor’s center frequency deviates from the ship’s rolling motion period,

then the system is prone to phase leads and lag, and results in severe pendulation. However,

the actual PCS includes an updated center frequency that corresponds to the motion of the

ship in order to avoid such a problem.

6.2 Sweeps When Varying Different IMU Sensor Pa-

rameters

The ship and sensor parameters in the simulation are based on actual sensor data from

Table 6.1. As the sweep simulation conducts its runs, two chosen parameters vary. The

results of each run are shown in terms of a root mean square average of the residual oscillatory

motion of the payload. Each data on the plot represents an average payload position error

compare to the desired nominal position, after the removal of bias and initial transient effects.

The two varying parameters, along with their corresponding RMS error value, are recorded

and the entire sweep is presented in the form of contour plots.

The following test cases are the result of the cart pendulum simulation and is conducted

to see the sensitivity of the sensors when IMU sensor parameters, such as corruptions and

settings, are varied. The tests are run with the optional bandpass filter turned on and off to

see the differences caused by accelerometer’s constant offset. As seen in Figures 6.6 to 6.9,

the ship amplitude and the ship motion period are the two variables being swept. To clarify,
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Table 6.1: List of Parameters Used in Cart-Pendulum Simulation

Parameter Value

Ship Motion Amplitude 1 m

Ship Motion Period 11 sec

Hoist Length 35 m

Time Step 1/40 sec

Period of the Filter Center Frequency ωo 11 sec

Filter Bandwidth BW 0.1 Hz

Filter Damping Coefficient ξ 0.707

Accelerometer Bias (Expensive) 2x10−3 g

Accelerometer Bias (Cheaper) 30x10−3 g

Scale Factor (Expensive) 1%

Scale Factor (Cheaper) 5%
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the ship amplitude that is described here is the horizontal boomtip motion caused by rolling

motion of the crane ship. A sample correlation between the ship roll angle and horizontal

boomtip motion is seen in Figure 6.5 with various crane luff angles β. The crane boom

length is 37.5m, and we assume the base of the crane boom is approximately 20m off the sea

level.

Figure 6.5: Ship Rolling Angle vs Horizontal Boomtip Motion with Varying Luff Angle

From the sweeps of Figures 6.6 to 6.9, the velocity-based PCS of both the more expensive

and cheaper IMU performed better than the position-based solution in terms of their average

payload position error over a set period of time of 100 seconds. The velocity-based control

show improvements (in the average payload position error) of up to 1m in certain cases

compare to the same parameters in the position-based control. All of the velocity-based

control sweeps (rightside of Figures 6.6 to 6.9) have more blue region than the position-

based control sweeps (leftside of Figures 6.6 to 6.9). Higher average payload position error

means more pendulation swing. In all of the cases, as the amplitude of the ship rolling

motion increase, so does its average payload position error. Also, as the ship motion period

diverges from the center frequency of the bandpass filter (preset at a value of 11 seconds), the

average position errors increase–result in more pendulation swing. This behavior is expected

due to the phase lead or lag in the system when the pre-set center frequency of the filter and

the motion period are out of sync.
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Figure 6.6: Ship Motion Amplitude vs Ship Motion Period for a)Position and b)Velocity-

Based PCS with Expensive IMU and Filter On

Figure 6.7: Ship Motion Amplitude vs Ship Motion Period for a)Position and b)Velocity-

Based PCS with Cheaper IMU and Filter On
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Figure 6.8: Ship Motion Amplitude vs Ship Motion Period for a)Position and b)Velocity-

Based PCS with Expensive IMU and Filter Off

Figure 6.9: Ship Motion Amplitude vs Ship Motion Period for a)Position and b)Velocity-

Based PCS with Cheaper IMU and Filter Off
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A further observation is made when we compare Figures 6.6 and 6.7 with the optional

first order bandpass filter on, to Figures 6.8 and 6.9 with the filter off. The cases where

the filter is off, the colors are more toward the cooler colors, meaning there are less residual

oscillatory motion for the payload (without bias or initial transients) than the cases with

the filter turned on. This differences between the two sets of results show the presence of

the optional bandpass filter makes the entire system more sensitive to change. While the

optional filter serves its purpose of smoothing out the initial bias, it adds another degree

to the filtering algorithm when combined with the other two existing filters from the two

integration steps that get position data from acceleration data. Therefore, the trial runs

with optional filter off in Figures 6.8 and 6.9 are more tolerant to the changes in ship motion

period and the motion amplitude than the runs where the optional filters are turned on.

Figure 6.10 is a sweep of ship motion period and the bandpass filter center frequency (in

terms of its period) for both the position- and velocity- based control solutions. The ship

Figure 6.10: Filter center frequency vs Ship Motion Period for a)Position and b)Velocity-

Based PCS

motion period is swept between 8 to 14 seconds, while the bandpass filter center frequency

is swept between 9 to 15 seconds. The darkest of the blue regions are areas with the least
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amount of payload motion. These regions correspond to times when the ship motion period

matches the center frequency of the filter. Both sets of control solutions yield similar results.

It appears that the average payload positions does not deviate far from the nominal position

even when the motion period and center frequency are off by at least 1 second. As the average

payload position error reaches beyond the 1m range (orange and red areas in Figure 6.10),

there are more severe payload motion as our system is becoming unstable due to phase lead

and lag. A filter that is less sensitive allows the control to better adjust to a greater differences

between the period and the center frequency. The tradeoff is the speed at which the control

can do its job, which in this case is the reduction of pendulation swing. It should be noted

that the existing PCS is also provided with updated ship motion period information in order

to make the bandpass filter less sensitive to changes in the center frequency ωc. Therefore,

the filter center frequency should not deviate from the actual ship motion period to ensure

the least error on the actual PCS.

An additional observation regarding Figure 6.10 is that the regions on the lower right

shows darker colored results than those in the upper left region. This shows that the ship is

rolling faster has more effect on the payload motion than the changes in the setting of the

filter center frequency.

Figure 6.11 is a sweep of the accelerometer bias and the scale factor in percentage using

the position-based controller with the optional bandpass filter both on and off. Figure 6.12

is the sweep from the velocity-based control. The accelerometer bias is ranged from 0mg to

values beyond 200mg, which surpasses the bias specifications of even the low grade IMUs.

The result of these test runs show that the average payload position error increases with

the scale factor of the IMU, while the accelerometer bias increase does not have much effect

on average payload position error as the horizontal colors remain unchanged. As the scale

factor increases, the average payload position error ranges from 0 to approximately 1.3m. A

payload position error of 1.3m signifies the existence of pendulation swing when using lower
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Figure 6.11: Cart Pendulum Sweep Analysis of Scale Factor vs Bias in Position-based Control

with Optional Bandpass Filter a)Off, b)On

Figure 6.12: Cart Pendulum Sweep Analysis of Scale Factor vs Bias Velocity-based Control

with Optional Bandpass Filter a)Off, b)On
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grade IMU sensors. When comparing both Figures 6.11 and 6.12 side-by-side, we see (based

on the amount of blue/light blue regions) that the use of the optional first order bandpass

filter in the beginning of the simulation yields similar data than if the filter is not used. This

result makes sense because this sweep compares only the scale factor and the bias, and the

bias are rejected for the most part through the filtering process. Meanwhile, the setting of

the center frequency is still close to the rolling motion period for these runs. However, as seen

in Chapter 3, the cost of an IMU inversely corresponds to its scale factor value. Therefore,

one should be aware that even though the filters can eliminate the bias, a high scale factor

can still drive up the payload position error and swing during payload transfer.

6.3 Summary

In this section, plots and sweeps from the cart pendulum simulation were presented to

show the workings of the additional bandpass filter, and the sensitivity of the sensors. Along

with the comparison between the position and velocity based control solutions using IMU.



Chapter 7

Conclusion

A focused analysis of an existing PCS is conducted using a cart pendulum model sim-

ulation. The cart pendulum simulation helps to narrow down to a one dimensional study

regarding the rolling motion of the crane ship during cargo transfer maneuvers to reduce its

pendulation swing. The modular nature of the program allows the changing of variables in

crane states, as well as sensor parameters. The simulation can then be swept to generate a

contour plot detailing two ranges of variables, as well as an average payload position error

from a nominal point that indicates the amount of swing.

We simulate two control solutions based solely on an IMU-only system using both position-

and velocity- based controllers. Results show that the optional bandpass filter in the new

control solutions work as expected in rejecting the constant bias in the accelerometer while

being more sensitive due to the presence of a higher order filter process. Therefore, the cases

without the optional filter show about the same level or performance in certain conditions,

and slightly better performance in more extreme conditions because a lower-ordered filters are

more robust. This study also shows the velocity-based control solution provides comparable

if not better results than the position-based solution. Both methods are sensitive to the

difference between the ship motion period and the center frequency of the bandpass filter.

63
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Lastly, it is shown that the bias of an accelerometer is not a large source of disturbance as

compared to scale factor due to the fact that the bias can be filtered out. Therefore, a low

grade IMU sensor is not recommended due to its high scale factor error. A mid-level quality

IMU sensor may be the best option due to the combination of its cost and the amount of

scale factor error it has.
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Appendix A

MATLAB Codes

A.1 Main Program

%PROGRAM NAME: cp3.m

%ASSOCIATED FILES: TrueShipAccel3.m, SensedShipAccel3.m,

% FilteredShipVel3.m, FilteredShipMotion3.m, OneDShipAccel.m

% BPincp3.m, FilteredShipVel3i.m

%xddtrue -> xddsensed -> (xddfiltered ->) xdfiltered -> xfiltered

clear all

global L g h BW wo SF bias_value

%Sample Inputs

A = 1; Pd =11; L = 35; %Amplitude (m), Period (s), Hoist length (m)

t0 = 0; tfinal = 180; %t(0) and final time (s)

theta0 = 0; thetaDot0 = 0; %theta(0) (rad), theta-dot(0) (rad/s)

h = 1/40; %Timestep (s)

K = 14.828; %Gain (to stabilize pendulum swing)

Kd = 0.1669; %Gain (to put back to original position)

Transient_CUT = 30; %Amount of transient time to be discounted (s)

CutOut = Transient_CUT/h; %Number of actual time steps eliminated

SF = 0; %Accelerometer’s Scaling Factor

BW = 2*pi*(.1); %bandwith 2*pi*Hz=(rad/s)

wo = 2*pi*(1/11); %cutoff/center frequency 2*pi/Pd (rad/s)

DEG2RAD = pi / 180;

g = 9.81;

68



Appendix 69

back = 1; %a counter of sorts

BP_Switch = 0; %switch to turn on 3rd BP filter (0=off,1=on)

bias_value = 0.0015; %Sensor bias

%Initialize arrays

last_value = 1/h*tfinal+1+back;

X1 = zeros(1,last_value); %theta

X2 = zeros(1,last_value); %theta_dot

u = zeros(1,last_value);

udot = zeros(1,last_value);

udotdot = zeros(1,last_value);

dx = zeros(1,last_value);

xddtrue = zeros(1,last_value); %true acceleration data

xddsensed = zeros(1,last_value); %sensed acceleration data

xdfiltered = zeros(1,last_value); %filtered velocity data

xfiltered = zeros(1,last_value); %filtered x-position data

xtrue=zeros(1,last_value); %TESTING ONLY, true position

xdtrue=zeros(1,last_value); %TESTING ONLY, true velocity

utrue=zeros(1,last_value);

%Set initial conditions

X1(1,1:2) = theta0 * DEG2RAD; %set theta(0)

X2(1,1:2) = thetaDot0 * DEG2RAD; %set theta_dot(0)

[xddtrue xdtrue xtrue] = TrueShipAccel3(tfinal, A, Pd);

%*****MANIPULATE GAUSSIAN HERE******

[xddsensed] = SensedShipAccel3(tfinal, xddtrue);

if (BP_Switch == 1) %if switch is on, add 3rd BP filter

xddfiltered = zeros(1,last_value); %if switch is on, start xddfiltered

[xddfiltered] = BPincp3(tfinal, xddsensed);

[xdfiltered] = FilteredShipVel3i(tfinal,xddfiltered);

else if (BP_Switch == 0)

[xdfiltered] = FilteredShipVel3(tfinal, xddsensed);end

end

[xfiltered] = FilteredShipMotion3(tfinal, xdfiltered);

dx(1,1) = K*h*X1(1,1); %initialize delta_x term

i = 2;

for t = t0:h:tfinal
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dx(1,i) = 1/(1+h*Kd)*(dx(1,i-1) + K*h*X1(1,i));

u(1,i) = -xfiltered(1,i) + dx(1,i); %Current pendulation ctrl sys

udot(1,i) = (u(1,i) - u(1,i-1))/h;

udotdot(1,i) = (udot(1,i)-udot(1,i-1))/h; %Perfect drive system

%Runge Kutta Start

a = t; b = t + h;

m = 2; %represents 2 eqns in the system

h1 = (b-a)/10; %divide each run in 10 sections

N = (b-a)/h1; %# of increments

alpha(1) = X1(1,i); %current initial conditions

alpha(2) = X2(1,i);

t_temp = a;

for j = 1:m

w(j) = alpha(j);

end

for p = 1:N

TimeInc = t_temp; %from OneDShipAccel.m

xdotdot = OneDShipAccel(A,Pd,TimeInc); %acc @ true time increment

k(1,1)=h1*w(2);

k(1,2)=h1*(-(xdotdot + udotdot(i)) / L * cos(w(1)) - g / L ...

* sin(w(1)));

w1_new = w(1)+0.5*k(1,1);

w2_new = w(2)+0.5*k(1,2);

t_new = t_temp + h1/2;

TimeInc = t_new;

xdotdot = OneDShipAccel(A, Pd, TimeInc);

k(2,1) = h1*w2_new;

k(2,2) = h1*(-(xdotdot + udotdot(i)) / L * cos(w1_new) ...

- g / L * sin(w1_new));

w1_new = w(1)+0.5*k(2,1);

w2_new = w(2)+0.5*k(2,2);

t_new = t_temp + h1/2;

TimeInc = t_new;

xdotdot = OneDShipAccel(A, Pd, TimeInc);

k(3,1) = h1*w2_new;
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k(3,2) = h1*(-(xdotdot + udotdot(i)) / L * cos(w1_new) ...

- g / L * sin(w1_new));

w1_new = w(1)+k(3,1);

w2_new = w(2)+k(3,2);

t_new = t_temp + h1;

TimeInc = t_new;

xdotdot = OneDShipAccel(A, Pd, TimeInc);

k(4,1) = h1*w2_new;

k(4,2) = h1*(-(xdotdot + udotdot(i)) / L * cos(w1_new) ...

- g / L * sin(w1_new));

w(1) = w(1) + (k(1,1)+2*k(2,1)+2*k(3,1)+k(4,1)) / 6;

w(2) = w(2) + (k(1,2)+2*k(2,2)+2*k(3,2)+k(4,2)) / 6;

t_temp = a + p*h1;

end %Runge Kutta ends

if (i <= length(xddtrue) - 1) %Stopping point

X1(1,i+1) = w(1); %Store value for graphing

X2(1,i+1) = w(2);

utrue(1,i+1) = utrue(1,i) + udot(1,i)*h;

i = i + 1;

else

break

end

end

%To reduce data by PREVIOUSLY SPECIFIED TIME

counter = CutOut; %The new starting time [time steps]

for c1 = 1:(last_value-CutOut)

New_Theta(c1) = xfiltered(counter)+u(counter)+L*sin(X1(counter));

counter = counter + 1;

end

%To find the root mean squared error

Ideal_Result = 0; %Payload’s position difference that we want

Total_Diff = 0; %This variable to track of sum of differences

nn = length(New_Theta);

%RMS, SQUARE each term, AVG of squares, SQRT of the avg

for iii = 1:nn

Local_Diff = (New_Theta(iii)-Ideal_Result)^2;

Total_Diff = Local_Diff + Total_Diff;
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end

MeanError = sqrt(1/nn*Total_Diff);

fprintf(’RMS Error of payload’’s position difference = %f meters’,MeanError)

%%PLOTTING%%%

figure

plot([t0:h:tfinal+h], xddtrue, ’r’)

hold on

plot([t0:h:tfinal+h], xddsensed)

legend(’True Accel’,’Sensed Accel’)

if (BP_Switch == 1)

plot([t0:h:tfinal+h], xddfiltered, ’g’) %only if extra BP is on

legend(’True Accel’,’Sensed Accel’,’Filtered Accel’)

end

xlabel(’Time, t (sec)’)

ylabel(’Ship Acceleration (m/s^2)’)

title(’Ship Acceleration Comparisons’)

hold off

figure

plot([t0:h:tfinal+h], xdfiltered)

hold on

plot([t0:h:tfinal+h], xdtrue, ’r’)

legend(’Filtered Velocity’,’True Velocity’)

xlabel(’Time, t (sec)’)

ylabel(’Velocity (m/s)’)

title(’Ship Velocity Comparison’)

hold off

figure

plot([t0:h:tfinal+h], xfiltered)

hold on

plot([t0:h:tfinal+h], xtrue,’r’)

legend(’Filtered Position’,’True Position’)

xlabel(’Time, t (sec)’)

ylabel(’Ship Position, (m)’)

title(’Ship Position Comparison’)

hold off

%

% figure

% plot([t0:h:tfinal+h], X1(1,:)*180/pi,’o’)
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% xlabel(’Time, t (sec)’)

% ylabel(’Pendulum Swing Angle, \theta (deg)’)

% title(’Pendulum Swing Angle vs Time’)

% grid on

%

% figure

% plot([t0:h:tfinal+h], xfiltered(1,:)+u(1,:)+L*sin(X1(1,:)))

% xlabel(’Time, t (sec)’)

% ylabel(’Payload Position Difference, (m)’)

% title(’Difference in Payload Position vs Time’)

% grid on

%

% figure

% plot([t0:h:tfinal+h], xfiltered)

% hold on

% plot([t0:h:tfinal+h], u, ’r’)

% legend(’Ship Motion’, ’Ctrl Motion’) %Ideally should reflect each other

% xlabel(’Time, t (sec)’), ylabel(’Motion in X-Direction (m)’)

% title(’Comparison of Ship Motion and the Control Motion Against It’)

figure %%%NOT NEED TO BE PLOTTED ALL THE TIME%%%

plot(xfiltered(1,:)+u(1,:)+L*sin(X1(1,:)), L*cos(X1(1,:)),’go’)

%axis([-10,10,0,35]) %Set axis

set(gca,’XDir’,’default’, ’YDir’, ’reverse’) % reverse y axis

xlabel(’x Position (m)’)

ylabel(’y Position (m)’)

title(’Inertial Position of Pendulum’)

hold on

plot(xfiltered(1,1)+u(1,1)+L*sin(X1(1,1)), L*cos(X1(1,1)),’k*’) %start

plot(xfiltered(1,last_value)+u(1,last_value)+L*sin(X1(1,last_value)), ...

L*cos(X1(1,last_value)),’r*’) %end point

legend(’Pendulum Path’, ’Start Point’, ’End Point’)

%Graph in x vs. t

figure

%plot([t0:h:tfinal+h], xfiltered(1,:)+u(1,:)+L*sin(X1(1,:)),’go’)

plot([t0:h:tfinal+h], xtrue(1,:)+u(1,:)+L*sin(X1(1,:)),’go’)

%axis([-10,10,0,35]) %Set axis

%set(gca,’XDir’,’default’, ’YDir’, ’reverse’) % reverse y axis

xlabel(’Time t (sec)’)

ylabel(’Payload(Cart) x-Position (m)’)

title(’Cart Position vs Time’)
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hold on

% plot(xfiltered(1,1)+u(1,1)+L*sin(X1(1,1)), L*cos(X1(1,1)),’k*’) %start

% plot(xfiltered(1,last_value)+u(1,last_value)+L*sin(X1(1,last_value)), ...

L*cos(X1(1,last_value)),’r*’) %end point

% legend(’Pendulum Path’, ’Start Point’, ’End Point’)

A.2 Function Files

%FUNCTION NAME: TrueShipAccel3.m

function [xddtrue,xdtrue,xtrue] = TrueShipAccel3(tfinal, A, Pd)

global h

t = 0:h:tfinal+h;

xddtrue = -4*A*pi^2*sin(2*pi/Pd*t)/Pd^2;

xdtrue = 2*A*pi*cos(2*pi*t/Pd)/Pd;

xtrue =A*sin(2*pi*t/Pd);

%FUNCTION NAME: SensedShipAccel3.m

%A function that adds noise to the ship acceleration. Represents sensed

% data from instrument

function [xddsensed] = SensedShipAccel3(tfinal, xddtrue)

global h g bias_value SF

t = 0:h:tfinal+h;

%noise = 0; %Default noise function

bias = bias_value*g; %units m/s^2

%Start of Gaussian:

u1 = 0; %Initial value

N = length(t); %Number of terms/trials

mean = 0; sigma = 0.00*g; %Mean, noise(m/s^2)

noise = zeros(1,N); %Initialize matrix

for j = 1:N

for i = 1:6

u1 = u1 + rand(1);

end

u1 = u1 - 3;



Appendix 75

noise(1,j) = mean + sigma * u1;

u1 = 0; %Reset u1 variable

end

%End Gaussian

Scaling_Factor = 1+SF; %Scaling Factor. 1.005 = 0.5%SF

xddsensed = bias + Scaling_Factor*xddtrue;

%FUNCTION NAME: FilteredShipVel3.m

%A function that integrates xsensed doubledot to xsensed dot, and also adds

%in a filter.

function [xdfiltered] = FilteredShipVel3(tfinal, xddsensed)

global h BW wo xi

t = 0:h:tfinal+h;

length = 1/h*tfinal+1+1;

xdfiltered(1,1:2)=xddsensed(1,1:2);

%1st order bandpass and integrator

for q = 3:1:length

Term1 = xdfiltered(1,q-1)*(8-2*h^2*wo^2);

Term2 = xdfiltered(1,q-2)*(-4+2*BW*h-h^2*wo^2);

Term3 = xddsensed(q)*BW*h^2;

Term4 = xddsensed(q-1)*2*BW*h^2;

Term5 = xddsensed(q-2)*BW*h^2;

xdfiltered(1,q) = 1/(4+2*BW*h+h^2*wo^2)*(Term1+Term2+Term3+Term4+Term5);

end

%FUNCTION NAME: FilteredShipMotion3.m

%A function that takes the filtered ship velocity, and integrates to turn it

%into filtered ship motion to be used in main program

function [xfiltered] = FilteredShipMotion3(tfinal, xdfiltered)

global h BW wo xi

t = 0:h:tfinal+h;
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length = 1/h*tfinal+1+1;

xfiltered(1,1:2)=xdfiltered(1,1:2);

%1st order bandpass and integrator

for q = 3:1:length

Term1 = xfiltered(1,q-1)*(8-2*h^2*wo^2);

Term2 = xfiltered(1,q-2)*(-4+2*BW*h-h^2*wo^2);

Term3 = xdfiltered(q)*BW*h^2;

Term4 = xdfiltered(q-1)*2*BW*h^2;

Term5 = xdfiltered(q-2)*BW*h^2;

xfiltered(1,q) = 1/(4+2*BW*h+h^2*wo^2)*(Term1+Term2+Term3+Term4+Term5);

end

%FUNCTION NAME: BPincp3.m

function [xddfiltered] = BPincp3(tfinal, xddsensed)

global h BW wo xi

t = 0:h:tfinal+h;

length = 1/h*tfinal+1+1;

%1st order bandpass (don’t need integrator)

xddfiltered(1,1:2) = xddsensed(1,1:2);

for q = 3:1:length

Term1 = xddfiltered(1,q-1)*(8-2*h^2*wo^2);

Term2 = xddfiltered(1,q-2)*(-4+2*BW*h-h^2*wo^2);

Term3 = 2*h*BW*(xddsensed(q)-xddsensed(q-2));

xddfiltered(1,q) = 1/(4+2*BW*h+h^2*wo^2)*(Term1+Term2+Term3);

end


