
End-to-End Flight Software Development and Testing:

Modularity, Transparency and Scalability across Testbeds

by

Mar Cols-Margenet

B.S., Polytechnic University of Catalonia, 2015

Doctoral committee members: Prof. Hanspeter Schaub, Prof. Daniel Kubitschek, Prof. Jay

McMahon, Prof. Marcus Holzinger, Prof. Hans-Juergen Herpel

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Aerospace Engineering Sciences

2020

ii

Cols-Margenet, Mar (Ph.D., Aerospace Engineering Sciences)

End-to-End Flight Software Development and Testing: Modularity, Transparency and Scalability

across Testbeds

Thesis directed by Prof. Hanspeter Schaub

This thesis investigates end-to-end flight software (FSW) development strategies and working

implementations that support having both desktop and embedded environments separately while

ensuring 1) transparent migration of the flight application and 2) consistent testing throughout dif-

ferent testbeds. In order for the flight algorithm migration to be transparent, it is critical that the

source code remains unchanged. Regarding consistent and high-fidelity testing throughout environ-

ments, such an endeavour can be effectively achieved by making use of a distributed communication

architecture. The idea behind a distributed architecture is to allow integration of heterogeneous

and independent mission components into a single simulation run that works seamlessly whether

FSW executes from desktop or embedded environments.

The term end-to-end used in this thesis implies that the entire FSW development cycle is

covered: starting from a preliminary desktop design and analysis all the way to testing on the flight

hardware –or rather, its emulated counterpart. The emulation of embedded systems is particularly

interesting because it provides pure software substitutions for expensive hardware components of

limited quantity that might be needed simultaneously for testing by different mission groups.

The different aspects of the FSW development process that are covered in this work are briefly

outlined following: desktop flight algorithm design and testing, migration of the flight application

into several flight targets (commercial processors as well as middleware layers), distributed closed-

loop simulations by means of a modern communication architecture, embedded development and

testing in a realistically emulated flat-sat and, finally, profiling of memory and CPU resources for

a modern yet embeddable FSW application.

All the development proposals and strategies pursued in this work consider exclusively open-

iii

source products and strive for the embedded system to be as close as possible to the desktop testbed

in terms of user friendliness and interaction functionalities, while still adhering to the needs of space:

determinism, concurrency and low use of resources. Currently, deploying an embedded flight system

and migrating flight algorithms on it is not an easy task. However, many small-satellite missions

or start-up companies without extensive FSW legacy would highly benefit from having available

an end-to-end FSW development tool suite like the one designed and proved in this thesis.

iv

Dedication

To Pete Balsells, a true source of inspiration both professionally and personally, who has

opened the doors of the University of Colorado Boulder to many citizens of Catalonia like myself

through the Balsells fellowship. To Dean Wang, the most influential English professor I have ever

had and without whom I would, most likely, not be in the United States today. To Hanspeter

Schaub, who gave me the unique opportunity to become a PhD student in the Autonomous Vehicle

Systems laboratory. To Scott Piggott, my technical mentor, from whom I have learnt the most

valuable skills I have today. To Matt Kappnius, who has taught me how to find comfort in discom-

fort and how to bring awareness into my own life. To Chris Kiehl, who keeps inviting me to step

out of my comfort zone and from whom I have learnt that most important things in life are not

taught in school. To my mother, for her unconditional support in every single stage of my life.

v

Acknowledgements

Thanks to Scott Piggott for his technical advice, supervision and support throughout every

single endeavour pursuit and presented in this thesis. Scott, you are an amazing flight software

engineer and without you none of this work would have been possible. Thanks to Hanspeter Schaub

for all his insight on spacecraft dynamics and controls, for sending me to conferences across the

globe to present my research and for believing in my potential until the end, despite all the ups

and downs. Thanks to Patrick Kenneally, with whom I had the pleasure to begin the Black Lion

project. Thanks to Wayne Sidney and Brian Kirby, users of the emulated flat-sat and contributors

to the tests performed.

vi

Contents

Chapter

1 Introduction 1

1.1 Background: FSW Development Environments . 4

1.1.1 Desktop Development Environment . 4

1.1.2 Embedded Environment . 11

1.1.3 Middleware Layers . 13

1.2 Literature Review: State-of-the-art Tools for FSW Development 14

1.2.1 Modular Desktop Development Tools . 14

1.2.2 Cross-Environment Development Tool Suites 16

1.3 Outline . 18

2 Desktop Flight Algorithm Development: Modular ADCS 21

2.1 The Basilisk Testbed . 21

2.2 Rotational Reference Motions for Distinct Guidance Profiles 23

2.2.1 Problem Statement . 24

2.2.2 Software Modules and Mathematical Development 26

2.2.3 Numerical Simulations . 34

2.3 Summary . 44

3 Flight Algorithm Migration into Commercial Flight Targets 45

3.1 The Raspberry Pi for Space Applications . 47

vii

3.2 Distributed Basilisk Simulation using the Raspberry Pi 47

3.3 Summary . 51

4 Flight Algorithm Migration into the core Flight System 53

4.1 The cFS Middleware . 54

4.2 From Basilisk into a cFS-FSW Application . 55

4.2.1 Setup Item: C Module Initialization . 55

4.2.2 Setup Item: Task Groups and Rates . 57

4.3 Translation Mechanism: the Auto-Setter . 58

4.4 Summary . 61

5 Emulated Flat-Sat Testing of cFS-FSW through Distributed Communication 63

5.1 Emulated Flat-Sat . 64

5.2 The Black Lion Communication Architecture . 67

5.2.1 Design and Architecture . 67

5.2.2 Data Transfer and Synchronization . 69

5.2.3 Applications . 71

5.3 FPGA registers and Avionics Hardware Modeling . 73

5.3.1 Register Space . 74

5.3.2 Avionic Models . 76

5.4 Emulated Flat-Sat Simulations . 76

5.4.1 Spacecraft Pointing Commands . 77

5.4.2 Mars Orbit Insertion . 80

5.4.3 Coarse Sun Sensors Corruption/Miscompare 83

5.5 Formation Flying Simulation through Black Lion . 85

5.6 Summary . 90

viii

6 Flight Algorithm Migration into MicroPython 93

6.1 From Basilisk into a MicroPython application . 94

6.2 Migration Mechanism: the Auto-Wrapper . 96

6.3 Post-Processing MicroPython Results . 97

6.4 Numerical Simulation: Testing Basilisk-MicroPython FSW 99

6.5 Summary . 100

7 Basilisk-MicroPython for Embedded Systems 103

7.1 Port of MicroPython to the LEON Flight Target . 104

7.1.1 Building the RTEMS toolchain and LEON BSP 106

7.1.2 Building the MicroPython executable . 107

7.1.3 Summary . 110

7.2 Basilisk-MicroPython Profiling: Use of Resources . 111

7.2.1 RAM Usage . 112

7.2.2 ROM Usage . 125

7.2.3 CPU Usage . 126

7.2.4 Summary . 127

8 Conclusions 129

Bibliography 135

Appendix

A Modular Attitude Guidance 139

A.1 Attitude Control MRP Feedback . 139

A.2 Additional Base Pointing Modules . 141

A.2.1 Inertial Pointing . 141

ix

A.2.2 Hill and Velocity Pointing . 141

B Python-based Introspection Tools 145

B.1 Auto-setter . 145

B.2 Auto-wrapper . 148

C Black Lion Data Transfer: ZMQ 153

C.1 Socket Patterns . 153

C.2 Connection Types . 154

C.3 Controller Requests and Node-Delegate Replies . 156

D Building the Basilisk-MicroPython FSW System for Unix 157

E Benchmarking Heap Memory Usage 160

E.1 Sensor example in Python . 162

E.2 Sensor example in MicroPython . 163

E.2.1 MicroPython with Garbage Collector . 163

E.2.2 MicroPython without Garbage Collector . 164

E.3 Sensor example in Basilisk-MicroPython without GC 166

x

Tables

Table

2.1 Initial orbital elements . 35

2.2 Control and spacecraft parameters . 35

2.3 Configuration data for the Euler angle rotation module 36

2.4 Configuration data for the raster manager module 39

xi

Figures

Figure

1.1 Flight algorithm targets: desktop computer, single-board computer (SBC) emulation

and SBC hardware . 2

1.2 Concept of emulated flat-sat with three components: ground system emulator, SBC

emulator and spacecraft physical simulation . 3

1.3 Evolution of software architectures . 6

1.4 Model-based development: from model in the loop (MIL), to software in the loop

(SIL), up into hardware in the loop (HWIL) . 8

1.5 Python wrapper with underlying C/C++ code: straight from software in the loop

(SIL) to hardware in the loop (HIL) . 9

1.6 Radiation-hardened microprocessors. Image extracted from [29] 12

2.1 Basilisk (BSK) desktop environment . 22

2.2 Break-down of sample mission profiles . 24

2.3 Attitude guidance generation . 24

2.4 Inputs and outputs of a compounded attitude reference chain 25

2.5 Constrained celestial two-body pointing scenario . 27

2.6 Sample scanning patterns . 30

2.7 Principal body frame (blue) and control frame (magenta) 33

2.8 Nadir-spinning stack . 36

xii

2.9 Nadir spinning: cascaded attitude sets . 37

2.10 Inertial asterisk scanning stack . 38

2.11 Asterisk scanning: attitude tracking error and control torque 40

2.12 Simulated asterisk scanning patterns . 40

2.13 Stack of modules for a spiral scanning maneuver . 41

2.14 Spiral scanning: nominal pointing vs. actual . 42

2.15 Spiral scanning: tracking error and wheel torques . 42

2.16 Triple-spiral scanning: nominal pointing vs. actual 43

2.17 Stack of modules for a triple-spiral scan . 43

3.1 Migration of the flight application . 46

3.2 Numerical simulation setup . 49

3.3 Results from the spacecraft physical simulation . 50

3.4 Results from the FSW process on the Raspberry Pi 51

4.1 Architecture of the core Flight System . 54

4.2 Translation of setup code from Python to C . 58

4.3 Embedded FSW application . 60

4.4 Emulated FPGA register space . 60

5.1 Emulated flat-sat components . 65

5.2 Heterogeneity of flat-sat models . 66

5.3 Black Lion interfaces: Central Controller and, for each node, Delegate and

Router APsd . 68

5.4 “Tick-tock” synchronization . 69

5.5 Black Lion application: emulated flat-sat . 71

5.6 Black Lion application: testing of formation flying concepts 72

5.7 cFS-FSW interaction: emulated FPGA registers and avionics hardware models . . . 73

xiii

5.8 Detailed view of the emulated FPGA registers and avionics hardware models 75

5.9 Closed-loop response: spacecraft’s main body attitude 77

5.10 Closed-loop response: reaction wheel speeds . 78

5.11 Closed-loop response: instruments pointing . 79

5.12 Mars orbit insertion scenario . 81

5.13 Addition of CFDP node for realistic uplink and downlink of data 82

5.14 CSS analog-to-digital converters: signal miscompare 84

5.15 FDP telemetry packets: faulted converter 1 and primary converter 2 85

5.16 Attitude guidance reference generation: modular vs. distributed 86

5.17 Distributed guidance: concept of operations and simulation setup 88

5.18 Distributed commanded guidance: connections between modules of the chief and the

deputy simulations . 89

5.19 Stack of attitude guidance modules for the chief and deputy FSW suites 89

5.20 Deputy true attitude states . 90

5.21 Deputy FSW states: tacking error and control torque 91

5.22 Relative asterisk pattern: commanded vs. true pointing angles 91

6.1 Flight algorithm migration into MicroPython through the AutoWrapper 97

6.2 Post-processing Python (desktop) and MicroPython (embedded) execution runs. . . 98

6.3 Closed-loop testing of MicroPython flight algorithms 99

6.4 Closed-loop testing of MicroPython-FSW: flight algorithm plots 101

7.1 Basilisk-MicroPython: system-level architecture for different targets 105

7.2 Port of the stand-alone MicroPython to the RTEMS-LEON target 106

7.3 Sample executable for RTEMS-LEON . 108

7.4 MicroPython executable for RTEMS-LEON . 108

7.5 MicroPython Makefiles: adapting QEMU-ARM port to QEMU-LEON 109

7.6 MicroPython kernel for QEMU’s emulation of LEON 110

xiv

7.7 Heap memory: fragmented vs. compacted . 113

7.8 View of the Basilisk-MicroPython system and breakdown of the FSW application

scripts . 115

7.9 Sample models, tasks and events . 116

7.10 Heap memory used at initialization of the FSW application 117

7.11 Heap memory used during execution of the FSW application for 40 virtual minutes . 118

7.12 Output of memory-profiler for the Execute call . 121

7.13 Heap memory used during execution of the FSW application for 400 virtual minutes

after removing use of Python dictionaries . 123

7.14 Basilisk-MicroPython open-loop simulation: inertial spinning 124

A.1 Flow between Guidance and Control Blocks . 139

A.2 Illustration of the Hill and Velocity Orbit Frames . 142

C.1 Socket patterns between the Central Controller and the nodes’ Delegate 154

C.2 Socket connections types: binding vs. connecting . 155

E.1 Sensor example in Python 3 . 162

E.2 Sensor example in MicroPython with GC . 164

E.3 Sensor example in MicroPython without GC . 165

E.4 Sensor example in Basilisk-MicroPython without GC 166

Chapter 1

Introduction

Space missions rely highly on the efficiency and reliability of the on-board flight algorithms

in order to perform autonomous attitude control or orbit corrections. These critical software func-

tions undergo a stringent review and validation process prior to flight which can be both costly

and time consuming. The complete engineering cycle to develop a FSW system encompasses an

involved path of deploying and running the flight algorithms within different testbed environments.

In a standard spacecraft mission there are three distinct computing environments to consider as

flight algorithm targets: desktop computer (for algorithm prototyping and rapid iteration), hard-

ware flight processor (for flat-sat testing and eventually flying) and emulated flight processor in

a virtual machine (for emulated flat-sat testing). These environments are illustrated in Fig. 1.1,

where the term single board computer (SBC) is used to refer to the flight processor. The two

latter environments (i.e. hardware and emulated flight processors) are considered to be embedded.

Since a regular desktop computer environment and an embedded flight processor environment are

very different in terms of resources, capabilities and end-user programmability, migrating the flight

algorithms from one environment to the other generally demands a significant engineering effort.

Further, there is also a disparity in the testing tools and procedures that each testbed currently

allows. This thesis investigates end-to-end FSW development strategies and working implementa-

tions that support having both desktop and embedded environments separately while minimizing

the existing gap between them in order to ensure:

(1) Transparent migration of the flight application.

2

 SBC hardwaredesktop SBC emulation

Figure 1.1: Flight algorithm targets: desktop computer, single-board computer (SBC) emulation
and SBC hardware

(2) Consistent testing throughout the different testbeds.

The term end-to-end used in this thesis implies that the entire FSW development cycle is

covered: starting from a preliminary desktop design and analysis all the way to testing on the flight

hardware.

Regarding desktop FSW development, this thesis focuses particularly on architecting flight

algorithms through modular designs and shared coding standards. At its aim, FSW is intended

to support the rest of the system for which it has been designed yet, in practice, it often ends up

slaying the other system components due to lacking architecture and proper implementation[5]. The

development of inflexible, mission-specific flight algorithms is, indeed, a recurrent and problematic

pattern in the aerospace industry that needs to be addressed[41]. Architectural design of flight

algorithms takes place in the desktop prototyping phase and the design decisions made here impact

portability and testability across all testbeds.

Regarding flight hardware, this thesis puts special emphasis on emulated flat-sat testing of

the embedded FSW. The emulation of embedded systems is particularly interesting because it

provides pure software substitutions for expensive hardware components of limited quantity that

might be needed simultaneously for testing by different mission groups[13, 31, 34].

The transition between desktop and embedded environments is a critical step in which conti-

nuity and homogeneity of the FSW testing process is often overlooked. Continuity can be enhanced

by ensuring that the migration process is transparent and the algorithm source code remains un-

3

Ground System
Emulator

FSW

Controls

Guidance

Navigation
Spacecraft Models

Environment

Kinematics

Dynamics

Telemetry

Commands

SBC Emulator

Figure 1.2: Concept of emulated flat-sat with three components: ground system emulator, SBC
emulator and spacecraft physical simulation

changed. The underlying idea being to stay as close as possible to the long-held NASA saying of:

“testing what you fly, flying what you test” –since the first day of development until the last one,

from the desktop all the way into the embedded environment.

Regarding consistent and high-fidelity testing throughout environments, such endeavour can

be effectively achieved by making use of a distributed communication architecture. Alongside the

prototyping of flight algorithms for a given mission, spacecraft physical models are also built with

the purpose of testing the FSW algorithm set in a simulated closed-loop. In a flat-sat configuration,

there are additional external models interacting with FSW, like the ground system for example.

On these lines, using a distributed communication architecture allows integrating independent mis-

sion components into a single simulation run which works seamlessly whether FSW executes from

either the desktop or the embedded environment. Having a testbed that is agnostic to FSW being

embedded or not is key to homogeneity and continuity of the FSW testing process. In turn, the

agnosticism of the testbed is granted by the distributed nature of the underlying communication

architecture. The testbed could be composed of hardware-only components, software-only compo-

nents or a combination of both. Figure 1.2 shows an emulated flat-sat conformed exclusively by

software components.

The end-to-end FSW development strategies pursued in this thesis consider exclusively open-

source products and strive for the embedded system to be as close as possible to the desktop testbed

in terms of user-friendliness and interaction functionalities, while still adhering to the needs of

4

space: determinism, concurrency and low use of resources. Currently, deploying an embedded

flight system and migrating flight algorithms on it is not an easy task. However, many small-

satellite missions or start-up companies without extensive FSW legacy would highly benefit from

having available an end-to-end FSW development tool suite. An interesting new trend in some

missions is to use commercial processors in redundant configurations instead of a single radiation

hardened processor[9, 17]. The increasing interest on alternatives to classic radiation-hardened

processors reveals the need for improvement in existing embedded flight systems.

As further developed in later sections, the use of middleware can aid portability of the flight

application across different targets. Other than middleware layers, there are different frameworks

that have been developed in the recent years in order to test FSW in the desktop environment yet

in a flight-like manner. For example, in the context of robotic FSW for Mars surface exploration

missions, JPL has developed the Surface Simulation (SSim)[46], which uses actual FSW instead of

a simplified model to perform rapid desktop testing. A similar testbed developed also at JPL is F-

Prime[6], which is specifically designed for small-scale flight systems. This manuscript investigates,

in particular, the use of classic and modern middleware layers.

1.1 Background: FSW Development Environments

This section aims to provide the reader with further context on desktop and embedded

systems. First, the general features of desktop development environments are described and two

different methodologies for desktop FSW prototyping are discussed: model-based development

and the use of Python wrapping C/C++ flight algorithm code. Next, the features of embedded

environments are presented and the concept of middleware is finally developed.

1.1.1 Desktop Development Environment

Desktop computers are the most flexible of the environments thanks to the use of state-of-the-

art processors and operating systems. This flexibility is shown in terms of computing speed, memory

availability, deployability and user friendliness among other. Because of its flexibility, the desktop

5

environment is used in the preliminary step of prototyping mission-specific flight algorithms. These

FSW algorithms are usually tested in closed-loop dynamics simulations with spacecraft physical

models until the desired algorithm performance is achieved and mission-specific requirements are

met. During the desktop FSW development phase, there are three different aspects that are worth

discussing:

(1) The importance of modular algorithm designs.

(2) The convenience of using scripting languages for rapid prototyping and iteration.

(3) The two main implementation approaches adopted: model-based development or Python

interface with underlying C/C++ code.

Each of these items is further explained next.

1.1.1.1 Importance of Modular Designs

As mentioned earlier, architectural design of flight algorithms takes place in the desktop

prototyping phase and the design decisions made here impact portability and testability across all

testbeds. Therefore, it becomes paramount to start the FSW design process by thinking about its

architecture. Figure 1.3 provide a very illustrative metaphor of the evolution of software architec-

tures throughout the past few decades: starting from a complete lack of architecture, moving to

monolithic algorithm architectures and finally transitioning to an architecture of micro-services or

atomic, individual and independent modules.

These generic software architectures apply to spacecraft FSW as well. Encapsulating GN&C

functionalities in completely independent modules, instead of using monolithic algorithms, is a

key aspect in terms of software safety; addition of independent FSW modules allows scaling up

functionality in a more safe and systematic manner. Complexity is built through layers of atomic

modules and the decoupling between these units simplifies the verification and validation process

because they can be individually tested and analyzed. While the verification of the individual

components by itself does not guarantee the combined algorithm is without errors, modularity

6

Figure 1.3: Evolution of software architectures

helps greatly on isolating errors effectively and identifying the root cause of emerging behaviors in

complex GN&C sequences.

1.1.1.2 Use of Scripting Languages

For the purposes of prototyping FSW in a desktop environment, the use of high-level script-

ing languages like Python or Matlab is extremely convenient as it enables rapid development and

iteration. However, regular desktop scripting languages are not suitable for embedded flight appli-

cations requiring low memory footprint and deterministic use of resources (CPU and RAM). For

this reason, if flight algorithm source code is firstly prototyped in the desktop environment using

desktop scripting languages, it is then usually translated into programming languages like Fortran,

C or C++ for migration into an embedded flight target.

Note that the previous statement refers specifically to “regular desktop scripting” languages,

7

in the sense that they are meant for general-purpose programming (like Python, Matlab, Ruby, Perl,

etc.). In the field of space engineering, command sequencing languages like VML[27], PLEXIL[47]

or Timeliner[8] are often also referred to as scripting languages because of their high-level nature.

Sequencing languages are used onboard the spacecraft to simplify operations as well as to provide

autonomy for onboard decision making. Although these languages express spacecraft commands

using high-level concepts, the languages themselves are simplified to ensure that spacecraft safety

can be guaranteed under all execution paths. In order to fit modestly sized flight processors, they

also present reduced memory footprint. In this manuscript, the term “scripting” language is used

to refer specifically to the former type, i.e. general-purpose desktop scripting language, which does

not present memory constrains nor provides guarantees on real-time determinism.

For proper deterministic programs, one needs both a language that guarantees determinism

on its operations (assuming the underlying machine is deterministic) as well as some rules for

writing programs. Scripting languages are high-level and, by definition, they have a large “distance”

from the underlying machine instructions. In contrast and for example, an operation in C generally

compiles down to one or a handful of machine instructions. This makes it highly deterministic, since

the machine itself is usually hard real-time. A common feature of desktop scripting languages is that

they rely heavily on dynamic memory allocation and garbage collection. However, resource-limited

systems cannot afford a non-deterministic call to the garbage collector. And if dynamic allocation

cannot be used because of the lack of memory, it is very important to have other mechanisms of

memory management, like placing data in custom addresses, as C pointers allow.

Going back to desktop prototyping, the two different approaches that are most commonly

adopted in the aerospace community for this kind of preliminary development are discussed next:

model-based development (MBD) and Python interface with underlying C/C++ code.

1.1.1.3 Approach 1: Model-based development

The MBD approach consists on performing architecture design and modeling of both soft-

ware functions and hardware subsystems using block-diagram programming software tools like,

8

 MIL SIL

auto-coding

 HWIL

embedding

Figure 1.4: Model-based development: from model in the loop (MIL), to software in the loop (SIL),
up into hardware in the loop (HWIL)

for example, Mathworks’s Simulink1 and National Instruments LabVIEW2 . Next, an automated

source-code-generation software tool is used to translate the graphic design into programming source

code. This step is often known as auto-coding. The MBD process is depicted in Fig. 1.4. In spite of

its convenience, MBD introduces another step in the flow of flight algorithms between environments

that adds on into the continuity problem: FSW validity from model-in-the loop (MIL) simulations

to software-in-the-loop (SIL) simulations cannot be readily inferred without further testing[4]. Ad-

ditional challenges with automatically generated code are that: 1) it can be less efficient in either

size or execution than optimized hand-written code and 2) it can be very challenging to edit and

debug due to lack of readability[7].

1.1.1.4 Approach 2: Python interface with underlying C/C++ code

An alternative to MBD is the use of Python wrapping C/C++ source code. The Python

language is recognized as an excellent scripting environment and code-development testbed that

would lend itself very well to the FSW development process if the code could run as FSW. However,

as a scripting language, the Python runtime is generally too slow and insufficiently well-controlled

for time-critical applications like those required for aerospace FSW. Without loss in generality,

runtime limitations are a tradeoff that the Python language pays in exchange for its dynamic

nature and versatility. Lack of timing controllability comes in the form of processes like dynamic

memory allocation and garbage collection, which take up variable amounts of time to complete.

Regarding Python’s speed limitations, there are multiple reasons behind the fact: it uses a global

1 https://www.mathworks.com/products/simulink.html
2 http://www.ni.com/en-us/shop/labview.html

https://www.mathworks.com/products/simulink.html
http://www.ni.com/en-us/shop/labview.html

9
 SIL HWIL

embedding

Figure 1.5: Python wrapper with underlying C/C++ code: straight from software in the loop (SIL)
to hardware in the loop (HIL)

interpreter lock that can only execute one operation at a time; it is interpreted and not compiled;

and it is a dynamically typed language.

Having said that, looking at the internals of the Python language itself reveals that most

built-in modules requiring speed are actually written in C/C++ and then wrapped into Python

using Python-language bindings. Using this logic, it makes good sense that Python could serve

as an excellent testbed for FSW development if the FSW code is written exclusively in C/C++

and then wrapped into Python for simulation, analysis, and testing. Such development proposal

is depicted in Fig. 1.5. In the desktop environment, there are several ways to extend the Python

language with custom C/C++ modules. CPython is the native way of creating these bindings but

there are also higher level libraries like SWIG (Simplified Wrapper and Interface Generator)3) that

conveniently handle this extension.

The advantage of this approach is that that there is no MIL development and, from a testing

perspective, the transition from MIL to SIL is skipped. While this improvement in continuity

comes at the expense of developers writing the algorithm source code directly in C/C++, testing

and post-processing can be done entirely in Python; hence, taking advantage of built-in libraries

and other optimized mechanisms that scripting languages provide for these very specific purposes.

For migration into the embedded target, the C/C++ source-code portion remains unmodified and

the Python portion in Fig. 1.5 is simply removed.

None of the desktop development approaches discussed (i.e. MBD and Python wrapping

C/C++ source code) provides a clear advantage for transitioning from SIL into hardware-in-the-

3 http://swig.org

http://swig.org

10

loop (HWIL). The migration into a flight target can actually be facilitated by the use of middleware,

but performance and compatibility issues still need to be addressed separately. Even with identical

source code and libraries, building an application for a new target introduces different configurations

and numerical reproducibility challenges that require further verification. Reference [4] provides

several guidelines to improve reproducibility and portability of numerical computations between

desktop host computers and flight targets. The point being made in this manuscript is that adopting

a Python-interface approach offers certain niceties shared with MBD (like scripting interface for

the user) while ensuring a more homogenous environment for FSW development. The environment

is more homogenous in the sense that the source code and mission-specific libraries are at least the

same for both desktop host computer and embedded flight target.

The most compelling part of the Python-wrapping-C++ approach is that it takes advantage

of two extremely powerful (and also extremely different) languages: Python and C/C++. Because

their differences are not strictly advantageous in one direction or the other (i.e. it depends on

the particular application), the idea is to exploit each language for the features that suit most the

particular endeavor of FSW development. The main differences between these languages can be

summarized in terms of: memory management, type declaration, language complexity and language

implementation (i.e. interpreted vs. compiled). Specific advantages of Python are the following:

(1) It presents an especially clean, straightforward syntax (which leads to faster development

and less mental overhead)

(2) It has a very large standard library

(3) Because Python is generally not compiled, Python interpreters are great for rapid testing

and exploration.

In turn, some advantages of C++ over Python are the following:

(1) The runtime performance is better and more predictable (since it does not have garbage

collection and encourages use of raw pointers to manage and access memory)

11

(2) It can target just about every known platform including embedded systems (since it is a

low-level language)

With all this in mind, the generalized interest in Python as a wrapper for C/C++ flight code

is not surprising and there are many state-of-the-art FSW tools that are adopting this approach. For

instance, the Basilisk astrodynamics framework is a desktop FSW testbed that seeks to capitalize

on the potential of using Python as a wrapper for flight algorithm source code that is actually

written in C/C++[39, 1, 18]. In the context of deep-space navigation design and analysis, there

is MONTE[44], which has been developed by JPL and consists of low-level C++ astrodynamics

libraries that are presented to the end user as an importable Python-language module. A different

tool developed by JPL which also leverages the use of Python as a C++ wrapper is Dshell[10]: a

physical simulator that supports both robotic and spacecraft simulations, software and hardware-

in-the-loop testing as well as mission telemetry visualization.

1.1.2 Embedded Environment

Time-critical applications like those of FSW usually demand the use of onboard processors

with drastically fewer resources available than a typical desktop computer. Therefore, FSW systems

are said to be constrained or embedded. Embedded environments are in essence electronic systems

that are managed by a microprocessor (like a hardware flight processor) or a micro-controller that

operates the whole system with precise timing. Embedded flight processor environments are defined

by the selection of two items: the microprocessor board and the real-time operating system (RTOS).

When programmed appropriately, a real-time system can guarantee that tasks execute con-

sistently in a specified time constraint. Determinism is, precisely, the characteristic that describes

how consistently a system executes tasks within a time constraint. A perfectly deterministic sys-

tem would experience no variation in timing for tasks. Typically, flight systems demand determin-

ism in both operations and CPU cycles. In addition, they present reduced memory availability

(RAM/ROM).

For the purposes of embedded testing, an alternative to using a hardware flight processor

12

is to emulate it on a virtual machine. Examples of processor board emulators are the open-

source QEMU4 or the closed-source EMU[25] created by the ESOC center of the European Space

Agency. As mentioned earlier, the advantage of using an emulation is that it provides a pure-

software substitution for an expensive and limited piece of hardware which, otherwise, cannot be

used simultaneously by different mission groups. Regardless of the flight processor board being

physical or emulated, it still represents an embedded environment. Embedded flight processors

lag state-of-the-art processors (like those in a desktop computer) by about 10 years due to flight

heritage and radiation-hardening requirements[29]. Radiation hardening of processors is important

in order to ensure their un-interrupted operation over long durations in the harsh environment

of space. Figure 1.6 shows several radiation-hardened processors commonly used for space explo-

ration (RAD750, ColdFire, LEON, etc.); all of them being very expensive and presenting similar

limitations in performance.

Figure 1.6: Radiation-hardened microprocessors. Image extracted from [29]

4 http://qemu.org

http://qemu.org

13

1.1.3 Middleware Layers

Because a regular desktop computer environment and a flight processor environment operate

differently, migrating the flight application from one to another demands a significant migration

effort. Furthermore, this effort is intrinsically linked to the specific processor board and RTOS cho-

sen, tending to be mission-specific. An alternative target for the flight algorithms is a middleware

layer. Middleware can be regarded as an abstraction layer or “glue code” that ensures portability of

the flight application among different processors and RTOS. An example of middleware is the core

Flight System (cFS)[36, 21], which is an open-source product provided by NASA Goddard Space-

flight Center. While targeting middleware can be worthwhile in the long run to ensure portability

of the flight application, small missions do not tend to follow this approach given the complex-

ity and steep learning curve of the work entailed[7]. However, if a user-friendly, easily-deployable

middleware layer existed, the number of missions embracing reusability through middleware would

most likely increase.

Recently, a lean (i.e. memory lightweight), efficient (i.e. with fast execution) and highly

portable implementation of the Python 3 programming language has been developed. This new

implementation is named MicroPython and it is very compelling for use in embedded FSW systems

as it includes a small subset of the Python standard library and it is optimized to run on micro-

controllers and in constrained environments. The difference between MicroPython and conventional

programming languages is that it provides many advanced features (characteristic of scripting

languages) while having little memory footprint and being extremely compact (characteristic of

embedded programming languages). Regarding MicroPython’s portability, it currently supports

about 15 different ports available on GitHub.5 Some of these ports include: Unix, Windows,

STM32, QEMU-ARM, bare-ARM or EST32. This promising language is already being investigated

by ESA for Onboard Control Procedures (OBCPs) in spacecraft payloads [26, 30]. OBCPs are flight

procedures that provide a flexible way to operate the spacecraft by either extending the onboard

software functionality or modifying the behavior of onboard applications. Since OBCPs operate

5 https://github.com/micropython/micropython/tree/master/ports

https://github.com/micropython/micropython/tree/master/ports

14

separately from the main onboard FSW, this functionality is different from the one proposed in

this manuscript: the use of MicroPython is as a middleware layer for porting the main onboard

FSW into multiple flight targets.

1.2 Literature Review: State-of-the-art Tools for FSW Development

This section provides an overview of state-of-the-art software tools that are commonly used

in the aerospace sector for FSW development. Firstly, several frameworks that are suitable for

desktop algorithm design are reviewed. During this initial prototyping phase, it is critical to use

spacecraft astrodynamics models that are realistic enough to provide valuable information about

the flight algorithm performance through closed-loop tests. Secondly, the discussion is extended

to common combinations of software tools that can support cross-environment testing (i.e. from

desktop simulations to embedded ones).

1.2.1 Modular Desktop Development Tools

Desktop analysis through closed-loop dynamic simulations has become an essential part of

flight algorithm development, especially when it comes to the attitude determination and control

system (ADCS). There are numerous spacecraft astrodynamics frameworks in the market and

each of them presents its own strengths and weaknesses[1]. In general, though, these frameworks

have limited capability to represent a complete, physically realistic, dynamical representation of a

spacecraft that can be used for accurate ADCS analysis.

Frameworks that are not open source can easily become prohibitively expensive for low-budget

missions or student development. In turn, open-source products are –more often than not– poorly

maintained and not user-friendly enough to learn them in the timeline of a particular mission. In

addition to features like open sourcing and user friendliness, it is a plus for software frameworks to

be cross platform (i.e. suitable for Mac, Linux and Windows). For the specific purposes of ADCS

design and analysis, it is also critical that the simulation environment can support both real-time

HWIL testing and faster-than-real-time pure software testing with built-in repeatable Monte Carlo

15

options.

Mathworks’s Simulink and National Instruments LabVIEW, which where introduced earlier,

provide excellent platforms for building quick models of control systems for faster-than-real-time

and HWIL simulations. Downsides of these softwares are:

(1) Lack of a built-in visualization tool that allows fast and intuitive analysis.

(2) Cost of the tools, since they are not open source.

(3) Necessity of a fairly experienced user.

Softwares such as AGI’s Systems Toolkit (STK),6 a.i. solutions’ Freeflyer,7 and Applied De-

fense Solutions’ Spacecraft Design Tool8 all provide beautiful visualizations and highly efficient

simulation tools but they are oriented towards orbit and mission design rather than ADCS. STK

does provide a six-degree-of-freedom option for propagation of attitude states but relies on external

torque generation and has no way of implementing accurate sensor or actuator models during its

dynamic simulation. Furthermore, none of these three software packages are conditioned for HWIL

testing. Softwares such as NASA’s Trick9 and CS’s Orekit/Rugged10 are both specifically made

for spacecraft attitude dynamics simulation, but they still fall short in providing a fully-coupled dy-

namic representation of a spacecraft with complex actuators such as reaction wheels. Various other

open-source softwares exist for attitude dynamics simulation but are either poorly documented,

unmaintained, or lack critical features for all-in-one ADCS development[45].

After providing a brief review of state-of-the-art spacecraft simulation frameworks, the dy-

namic’s simulation side of the Basilisk testbed is introduced. Basilisk’s modeling of the spacecraft’s

physics is particularly relevant in the context of this thesis because it is used to design and test

ADCS algorithms in closed-loop dynamics. Basilisk provides a fully coupled dynamical represen-

tation of spacecraft attitude states, allowing for complex dynamics behaviors such as imbalanced

6 http://www.agi.com/products/stk/
7 https://ai-solutions.com/freeflyer/
8 http://www.applieddefense.com/products-and-services/sdt/
9 https://github.com/nasa/trick

10 https://www.orekit.org/

http://www.agi.com/products/stk/
https://ai-solutions.com/freeflyer/
http://www.applieddefense.com/products-and-services/sdt/
https://github.com/nasa/trick
https://www.orekit.org/

16

reaction wheels, solar panel hinging[3] and even fuel slosh[2]. Basilisk is an open-source and cross-

platform product, it is extensively documented and it offers an add-on visualization tool. It runs

natively faster than real time and it includes built-in Monte Carlo capabilities. As shown later in

this thesis, soft real-time numerical simulations with HWIL are also supported.

The next subsection discusses how these desktop tools can be combined with other frameworks

for cross-environment testing.

1.2.2 Cross-Environment Development Tool Suites

Currently, several software tools –or rather combinations of them– exist that support the

entire FSW development cycle (i.e. from desktop prototyping up to embedded integration and

testing). With some generalization, FSW development architectures are characterized by the de-

gree to which system components are coupled. The coupling between simulation components is

manifested by the simulation structure, where the overall system may be: integrated as a single

system of required components; integrated as a modular system with optional components; or devel-

oped as a group of cooperative yet stand-alone components. Some of the most comprehensive tool

suites include: MAX Flight Software11 together with the On-Board Dynamic Simulation System

(ODySSy)[23], both provided by Advanced Solutions Inc (ASI); Matlab’s Simulink12 and Matlab’s

Embedded Coder13 together with NASA’s Trick engine[38]; JPL’s Dshell system[10] together with

the NASA Operational Simulator (NOS)14 ; or the Basilisk desktop testbed15 together with the

Black Lion communication architecture[13].

These state-of-the-art options differ on the specific tools they use and on the degree of coupling

between them. ASI’s proposal is an example of a tightly coupled tool suite, where MAX Flight

Software is used for FSW design and ODySSy is used for closed-loop testing. While this option

provides testability in both desktop and embedded environments, it does so by requiring these tools

11 http://www.go-asi.com/solutions/max-flight-software
12 https://www.mathworks.com/products/simulink.html
13 https://www.mathworks.com/products/embedded-coder.html
14 https://www.nasa.gov/centers/ivv/jstar/jstar_simulation.html
15 https://hanspeterschaub.info/bskMain.html

http://www.go-asi.com/solutions/max-flight-software
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/embedded-coder.html
https://www.nasa.gov/centers/ivv/jstar/jstar_simulation.html
https://hanspeterschaub.info/bskMain.html

17

specifically and there are minimal options to substitute one component with another which was not

intended to operate with the ASI’s system. A more flexible combination is the one encompassing the

use of Mathwork’s Simulink for FSW design, Mathwork’s Embedded Coder for FSW migration and

NASA’s Trick engine for closed-loop testing. This specific tool suite is currently being applied to

the Orion mission[37]. The main caveat of either of these proposals (i.e. ASI’s and Orion’s) is that

they rely on an MBD approach for desktop development, which does not respect the principle of

migration transparency. Within ASI’s proposal, auto-coding is performed by MAX Flight Software;

within the Orion mission proposal, auto-coding is performed by Mathwork’s Embedded Coder. In

addition, none of these FSW development proposals addresses the integration of code into flight

targets beyond auto-coding. Note that auto-coding simply produces source code in the target

programming language, but this code still needs to be integrated into either a middleware layer or

a specific board and RTOS. Further, these tool suites do not natively offer a distributed testing

environment: both ODySSy and Trick (i.e. the spacecraft physical simulations) are meant to

migrate with FSW when the latter is embedded. Given the computing limitations of traditional

flight processors, running an embedded spacecraft simulation raises questions about the fidelity of

its physical models.

A software suite which demonstrates increasing modularity in its architecture is JPL’s pro-

posal through Dshell and NOS. While the Dshell system is a physical simulator, NOS consti-

tutes the communication framework to run distributed software simulations of independent mission

components[50, 28], with Dshell being one of its potential components. Although the combination

of Dshell and NOS conform a very compelling option for distributed closed-loop testing, which

would work seamlessly whether FSW resides in the desktop or in the embedded environment, these

software tools are not open source. Further, this tool suite does not provide a FSW development

environment on itself, which is let to be chosen by the specific mission.

In overall, the state-of-the-art tool suites that have been reviewed fall short in one or more of

the following categories: completeness of the tool suite as a FSW testbed, transparency of the fight

algorithm flow between testbeds, architectural flexibility to include external models for testing,

18

support of distributed simulations and open sourcing of the tools to the community.

The niche identified in existing end-to-end FSW development tool suites has motivated the

development of the Basilisk software testbed and the Black Lion communication architecture. This

thesis has contributed to both. As a quick recapitulation, Basilisk is an open-source, cross-platform,

desktop testbed for designing flight algorithms and testing them in closed-loop dynamics simula-

tions. It leverages Python’s ease of use as a testbed for FSW development provided that the

spacecraft models and the flight algorithm code are written exclusively in C/C++ and, then,

wrapped into Python for custom setup, desktop execution and post-processing. In turn, Black

Lion is a purely software-based communication architecture aimed at integrated testing of inde-

pendent spacecraft mission models –with Basilisk being one of its potential components. Black

Lion is architected to be reconfigurable and scalable, allowing for any number of heterogenous soft-

ware models, across one or multiple computing platforms, to be integrated into a single spacecraft

simulation run. Such architecture enables, for instance, seamless integration of legacy software

models that were never designed to work together. Both Basilisk and Black Lion are currently

being implemented by the Autonomous Vehicle Systems (AVS) laboratory at the University of

Colorado Boulder and the Laboratory for Atmospheric and Space Physics (LASP) in support of an

ongoing interplanetary spacecraft mission. Yet both tools are being built under the principles of

flexibility and reusability and, as demonstrated in this thesis, their application extends far beyond

this particular mission.

1.3 Outline

The different phases of the FSW development process that are covered in this thesis, as well

as their scope, are outlined next:

(1) Desktop flight algorithm development: modular attitude guidance reference

generation for distinct mission profiles. The relevance of architecting flight algorithms

through modular designs and shared coding standards is showcased through a guidance

19

application: onboard attitude reference generation in a modular fashion. The proposed

work involves: 1) Breaking up the mathematical transformations required to build up

complex guidance motions into atomic functions; 2) developing a suite of atomic guidance

software modules; and 3) integrating these modules in Basilisk for simulated closed-loop

testing. This work has been published into the AIAA Journal of Aerospace Information

Systems[18].

(2) Flight algorithm migration into commercial flight targets. This work describes the

migration of flight algorithms from the Basilisk desktop prototyping environment into a

commercial processor that has been considered for low-cost space applications: the Rasp-

berry Pi. For the first time, two Basilisk processes running on different platforms are

shown to close the loop in a distributed fashion. These contents were presented in the 26th

International Symposium on Space Flight Dynamics[17].

(3) Flight algorithm migration into the core Flight System. The technical steps re-

quired to migrate Basilisk-developed flight algorithms into a pure-C cFS application are

described. The resulting cFS-FSW application can then be ported across different embed-

ded systems (i.e. processor boards and RTOS). The novelty of the work lies in the migration

mechanism: the transition out of the Basilisk desktop environment is achieved by automat-

ically generating the integration code required to integrate the unmodified C/C++ flight

algorithm code into the cFS embeddable environment. The C integration code, which is

minimal and completely human-readable, is generated through Python’s introspection ca-

pabilities while the actual source code remains unchanged. This work was presented in the

24th DASIA conference[15] and it is currently undergoing the second review for publication

into the AIAA Journal of Aerospace Information Systems[19].

(4) Emulated flat-sat testing of cFS-FSW through distributed communication. The

cFS-FSW application is tested on an emulated flat-sat conformed by heteregeneous mission

models that were never designed to work together. The Black Lion communication archi-

20

tecture, which has been built to enable integration of all these components into a single,

distributed simulation run, is described. In addition, FPGA registers and avionic compo-

nent models are emulated to allow reading and writing of the cFS-FSW states from and to

the external world. The unprecedented level of fidelity inherent to these emulations makes

it possible for FSW to believe it is running on a hardware processor board, although it is

actually running on its emulated counterpart. Numerical simulations show various tests

performed on the emulated flat-sat as well as other applications of the Black Lion commu-

nication architecture. The work associated to Black Lion was presented in the 2018 John

L. Junkins Dynamical Systems Symposium[14] and it has been submitted for publication

into the AIAA Journal of Aerospace Information Systems[13]

(5) Flight algorithm migration into MicroPython. The technical steps involved in mi-

grating Basilisk-developed flight algorithms into the modern MicroPython are described.

In addition, tools aimed at automatizing this migration process are implemented and ex-

plained. The use-case of MicroPython is novel in the sense that, to the author’s knowledge,

it has not yet been considered as a potential middleware layer to ensure portability of

the onboard FSW application among different RTOS and flight processor boards. The

first proof of concept of the Basilisk-MicroPython flight system is showcased in the form

of a distributed numerical simulation. This work has been presented and submitted for

publication together with cFS-related work mentioned earlier[15, 19].

(6) Basilisk-MicroPython for Embedded Systems. The suitability of the Basilisk -

MicroPython system for constrained environments (i.e. with limited resources and deter-

ministic requirements) is analyzed. This work involves targeting a Basilisk-MicroPython

FSW application into 32-bit processors (like the family of LEON boards) as well as profiling

and optimizing the memory and CPU usage of the FSW application on Unix (with the aim

of targeting a constrained Unix environment that could be ready for flight). It is envisioned

to present this work in the 25th DASIA conference.

Chapter 2

Desktop Flight Algorithm Development: Modular ADCS

Architectural design of flight algorithms takes place in the desktop prototyping phase and

it is enabled by flexible development environments which, ideally, allow complete customization

of algorithm structure and contents while leveraging the recurrent yet time-consuming tasks of

deploying, building and compiling the executable to test. To this end, the Basilisk environment is

presented as a flexible, desktop FSW testbed that incarnates the desktop development proposal of

using Python as a user-interface language for prototyping and testing flight algorithm code that

is actually written in C/C++. Upon Basilisk, a modular scheme for generating attitude reference

motions is architected and implemented. The layered approach of building an attitude reference

is interesting because it promotes code reusability in a topic area that tends to be highly mission

specific: the generation of rotational guidance profiles. Once proved, the validity of the modular

guidance approach still holds out of the Basilisk environment.

2.1 The Basilisk Testbed

Basilisk is an open-source, cross-platform, desktop testbed for designing flight algorithms and

testing them in closed-loop dynamics simulations. Basilisk is architected in a modular and highly

reconfigurable fashion using C++ modules that perform spacecraft physical simulation tasks and

C modules that perform mission-specific GN&C tasks. The SWIG library is used to wrap the

C/C++ modules and make them available at the Python layer for setup, desktop execution

and post-processing. Some of the advantages of using Python as the user-facing interface

22

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Figure 2.1: Basilisk (BSK) desktop environment

are: ease of data analysis (which is comfortably leveraged through built-in libraries like NumPy,

Matplotlib and Pandas among other), capability of automated regression tests (via PyTest) and

rapid Monte-Carlo handling.

Figure 2.1 illustrates the nominal setup –but not necessary required– of a Basilisk desktop

simulation. This setup is conformed by two main processes: a high-fidelity simulation of the

physical spacecraft and a suite of GN&C flight algorithms. During a simulation run, the C and

C++ modules from the different processes communicate with each other through a custom Message

Passing Interface (labeled as “MPI” in Fig. 2.1). For the sake of clearness, in this manuscript the

acronym MPI is used to refer to the Basilisk custom message passing interface, which is completely

unrelated to the well-known MPI used in parallel computing.1 Basilisk’s MPI is written in C/C++

and it is based on a publish-subscribe pattern. The beauty of using a message interface is that

it delineates a very clean separation between the different processes. As shown in later section of

this manuscript, the clear separation of processes facilitates, in turn, the migration of the FSW

application into a different processor.

1 https://mpi.org

https://mpi.org

23

The modularity of the Basilisk system implies that each process is decomposed into a series

of simpler steps and exchangeable components. The cascading of modules is set at the Python

level, allowing different levels of simulation fidelity and flight software sophistication. Such lego-

like architecture allows, for example, the modular guidance application that is presented in the

next section.

2.2 Rotational Reference Motions for Distinct Guidance Profiles

Mission GN&C flight algorithms undergo a stringent review and validation process prior to

flight, which can be both costly and time consuming. Developing flight algorithms through mod-

ular designs (i.e. breaking up functionality into a series of simple independent pieces or modules

instead of having one large software piece that performs a complex function) has shown to im-

prove efficiency in terms of implementation and testing. Generally, talking about modularity of

GN&C would mean that there are separate modules used for sensory input, parameter identifica-

tion, reference trajectory selection/generation, position error determination, control, and output.

This kind of split is seen, for example, in the GN&C sequences presented in [24, 43]. Note that

“selecting” a reference implies that the motion is predefined by ground and uploaded onboard. In

turn, “generating” a reference implies computing the desired motion autonomously onboard and

this is, precisely, the concept of operations addressed in this work. The novelty lays on bringing

modularity one step further by dividing the reference generation into multiple, exchangeable sub-

components. The advantage of fractionating the reference generation is that, for a given set of core

modules, a wide variety of guidance behaviors can be achieved through combination and distinct

initialization. Figure 2.2 illustrates that common spacecraft attitude guidance profiles tend to share

core functionalities and this is the fact to be exploited in this work.

Without loss in generality, this work investigates a methodology to modularize any attitude

reference motion into three atomic parts: a base pointing reference, a dynamic reference that is

relative to the base, and an attitude offset. The final, desired reference motion is a result of

cascading these three attitude reference parts, as depicted in Fig. 2.3. Different combinations of

24

Earth Antenna Pointing Mars Instrument Scan

Celestial Body Point

Attitude Offset

Celestial Body Point

Attitude Offset

Euler Rotations

Solar Panel Charging

Celestial Body Point

Attitude Offset

Figure 2.2: Break-down of sample mission profiles

Pointing Base Reference:

Dynamic Reference:

Tracking Error:

R0/N

R1/R0

Final Ref ⌘ R/N

R/R1

Figure 2.3: Attitude guidance generation

pointing and dynamic references yield guidance scenarios of distinct complexity. All proposed

guidance schemes are applicable to any type of Keplerian orbit, including elliptic circumnavigation

and hyperbolic fly-by trajectories.

2.2.1 Problem Statement

For a given spacecraft, the goal of the onboard GN&C flight software is to estimate the

current state of the spacecraft body B (navigation task), generate a reference state R that can be

time-varying or not (guidance task), derive the attitude tracking error between the current state B

and the desired one R (also guidance task), and apply the required control torque to align B with

R (control task). Both the spacecraft-body state B and the reference state R computed onboard

are expressed with respect to an inertial frame N . Note that N is kept as a generic inertial frame to

be chosen (it could be J2000, Earth fixed-frame, Mars centered frame, etc.) since all that matters

is consistency throughout the entire flight algorithm suite. The computed reference state R is, in

25

Pointing Base Reference

Dynamic Reference 1

Tracking Error

R0 ⌘ {�R0/N , N!R0/N , N !̇R0/N}

R1 ⌘ {�R1/N , N!R1/N , N !̇R1/N}

Guidance Output ⌘
⇥
�B/R

B!B/R
B!R/N

B!̇R/N

⇤

Dynamic Reference 2

R2 ⌘ {�R2/N , N!R2/N , N !̇R2/N}

Att. O↵set ⌘
⇥
�R2/R

⇤ ⇥
�B/N

B!B/N

⇤
⌘ Nav

Figure 2.4: Inputs and outputs of a compounded attitude reference chain

this work, composed of three parameters:

R = [σR/N ,
NωR/N ,

Nω̇R/N] (2.1)

These parameters are: an inertial attitude measure, denoted through the Modified Rodrigues Pa-

rameters (MRP) set σR/N [42], an inertial angular rate vector NωR/N expressed in inertial frame

N components, and an inertial angular acceleration vector Nω̇R/N also in N -frame components.

The left-superscript denotes the frame with respect to which the vector components are taken. The

use of MRPs in this development is simply a convenient choice but, as a matter of fact, any other

attitude description like quaternions or Direction Cosine Matrices (DCM) could be used instead.

The use of MRPs is attractive because they are a non-redundant set (composed by 3 components

only) and their singularities can be avoiding by switching to the so-called shadow set[42].

Figure 2.4 illustrates the generation of a compounded compounded final reference R. The

final reference is computed through addition of a base pointing reference, two dynamic reference

motions (each one relative to the former one) and an attitude offset. The tracking error module

is always the last component in the guidance chain. This module reads the output of the latest

reference module and adds an attitude offset if applicable. An attitude offset is applied when the

generated attitude reference is meant for a spacecraft fixed frame that is not the main one. The

26

output of the tracking error module is the output of the entire attitude guidance block and it is

used to feed the control block next. Note that any number of dynamic references modules could be

sequentially chained to create increasingly complex rotational patterns. The key to this scalability

is that, as shown in Fig. 2.4, all the reference generation modules (both pointing base and dynamic)

output the same message structure defined in Eq. (2.1).

2.2.2 Software Modules and Mathematical Development

For each of the aforementioned core functionalities (base pointing reference, dynamic refer-

ence, and attitude offset) several software modules are implemented, which can be plugged-and-

played as lego-like pieces in order to achieve very different rotational patterns. The mathematical

derivation for each of the implemented modules is presented next.

2.2.2.1 Base Reference Modules

The first guidance stage consists of modules that generate a base pointing reference R0

that can be either inertial or non-inertial. The common feature of the base modules is that the

generated reference does not depend on any prior reference frame. The base reference modules

developed and later integrated to the Basilisk software framework are: inertial pointing, Hill orbit

pointing, velocity orbit pointing, and constrained two-body pointing. Both the inertial and orbit

frame references are widely used and well documented, but the novelty here lies on the scheme

upon which they are architected: through the modular stack and interface definition, base modules

can be used in stand-alone mode or as the base of complex dynamic behaviors. For this reason,

their development is presented in Appendix A. In turn, the constrained two-body pointing module

is a novel kinematic solution to a constrained attitude pointing requirement. The mathematical

transformations associated to the derivation of this module are presented next.

Within the constrained two-body pointing module, a base reference frame R0 : {r̂1, r̂2, r̂3}

is generated that tracks the center of a primary celestial target (e.g. pointing the communication

antenna at the Earth) and tries to align the second reference axis towards a second celestial body

27

as best as possible (e.g. pointing a solar panel normal axis to the sun). Two attitude conditions in

a three-dimensional space compose an overdetermined problem. Hence, a TRIAD-like approach is

used such that the main constraint is always prioritized over the secondary one.[42]

Figure 2.5 depicts the desired reference frameR0 : {r̂1, r̂1, r̂2} and the inertial frameN : {n̂1, n̂1, n̂2}.

The R frame has its origin in the spacecraft body B. The points P1 and P2 are the primary and

secondary celestial targets respectively. The initial states known by the module are the position

vector Ri/N , velocity vector Ṙi/N , and acceleration vector R̈i/N of the spacecraft (i = B) and of

the celestial bodies (i = P1,P2) with respect to the inertial frame.

The normal vector Rn is perpendicular to the plane defined by the two celestial targets and

the spacecraft location, and it is expressed as

Rn = RP1/B ×RP2/B (2.2)

The desired base reference frame R is computed such that the first unit base vector r̂1 points

to the primary target. The third base vector r̂3 is aligned with Rn while the last base vector r̂2

completes the right-handed triplet.

r̂1 =
RP1/B

|RP1/B|
(2.3a)

r̂3 =
Rn

|Rn|
(2.3b)

r̂2 = r̂3 × r̂1 (2.3c)

n̂3

n̂1

n̂2

R
P

1 /N

RP2
/N

R
B

/N

r
P
2/B

Rn

rP1/B

r̂1
r̂2

r̂3

B

N

P1

P2

Figure 2.5: Constrained celestial two-body pointing scenario

28

The celestial object locations relative to the spacecraft are found through

RP1/B = RP1/N −RB/N (2.4a)

RP2/B = RP2/N −RB/N (2.4b)

This setup aligns r̂2 as closely as possible with RP2/B. However, for general configurations it is not

not possible to align these vectors perfectly while meeting the primary constraint at the same time.

The DCM that maps from the inertial frame N to the desired reference frame R is given by:

[RN] =

N
r̂T1

N
r̂T2

N
r̂T3

(2.5)

The desired MRP attitude set σR0/N can then be directly obtained from [R0N]. The angular

velocity ωR0/N and acceleration ω̇R0/N still have to be computed. In order to do so, the time

derivatives of the reference base vectors are needed. The following expressions are found for the

first inertial time derivatives:

˙̂r1 = ([I3×3]− r̂1r̂
T
1)
ṘP1/B

|RP1/B|
(2.6a)

˙̂r3 = ([I3×3]− r̂3r̂
T
3)
Ṙn

|Rn|
(2.6b)

˙̂r2 = ˙̂r3 × r1 + rn × ˙̂r3 (2.6c)

where the first and second inertial time derivatives of Rn are

Ṙn = ṘP1/B ×RP2/B +RP1/B × ṘP2/B (2.7)

R̈n = R̈P1/B ×RP2/B + 2ṘP1/B × ṘP2/B +RP1/B × R̈P2/B (2.8)

Differentiating the unit vectors in Eqs. (2.6) yields:

¨̂r1 =
1

|RP1/B|
(([I3×3]− r̂1r̂

T
1)R̈P1/B − 2 ˙̂r1(r̂1 · ṘP1/B)− r̂1(˙̂r1 · ṘP1/B)) (2.9a)

¨̂r3 =
1

|Rn|
(([I3×3]− r̂3r̂

T
3)R̈n − 2 ˙̂r3(r̂3 · Ṙn)− r̂3(˙̂r3 · Ṙn)) (2.9b)

¨̂r2 = ¨̂r3 × r1 + rn × ¨̂r3 + 2 ˙̂r3 · ˙̂r1 (2.9c)

29

The reference angular rate is expressed in reference frame components as:

R0ωR0/N =

ωR0/N · r̂1

ωR0/N · r̂2

ωR0/N · r̂3

=

r̂3 · ˙̂r2

r̂1 · ˙̂r3

r̂2 · ˙̂r1

(2.10)

Taking the inertial derivative of Eq. (2.10) yields

R0ω̇R0/N =

ω̇R0/N · r̂1

ω̇R0/N · r̂2

ω̇R0/N · r̂3

=

˙̂r3 · ˙̂r2 + r̂3 · ¨̂r2 − ωR/N · ˙̂r1

˙̂r1 · ˙̂r3 + r̂1 · ¨̂r3 − ωR/N · ˙̂r2

˙̂r2 · ˙̂r1 + r̂2 · ¨̂r1 − ωR/N · ˙̂r3

(2.11)

Finally the angular rates and acceleration in equations Eq. (2.10) and Eq. (2.11) are mapped

to the inertial frame N

NωR0/N = [R0N]T R0ωR0/N (2.12a)

Nω̇R0/N = [R0N]T R0ω̇R0/N (2.12b)

All the variables conforming the output structure of the constrained two-body pointing module

have now been derived: R0 = {σR0/N ,
NωR0/N ,

Nω̇R0/N}.

2.2.2.2 Dynamic Reference Modules

The second stage consists of modules that define a dynamic reference motion relative to the

former one. The generated motions can be super-imposed, for instance, on top of any of the base

reference frames R0 shown earlier (inertial pointing, Hill-orbit pointing velocity-orbit pointing,

celestial two-body pointing, etc.). The dynamic reference modules developed and integrated into

Basilisk are: inertial 3D spinning and 3-2-1 Euler angle rotation.

The 3-2-1 Euler angle rotation module is particularly interesting because complex dynamic

motions can be achieved through elegantly simple constant Euler rates. While Euler angles are often

avoided in guidance algorithms because of their mathematical singularities, here the advantages of

the Euler sets are exploited in a robust and safe manner that is free of numerical issues. Multiple

30

Euler modules can be cascaded with one another and, through different initialization/setup of the

same module, a wide variety of rotational patterns can be achieved. Figure 2.6 illustrates three

sample scanning patterns that can be performed by consecutive requests of Euler angle offsets and

rates. In Fig. 2.6, the scanning is performed relative to the time-varying base reference frame

R0 : {r̂0,1, r̂0,2, r̂0,3}, which keeps track of the orbited celestial body.

Whereas the module presented uses a 3-2-1 Euler sequence, any of the twelve Euler sequences

could be equally implemented. Interestingly, by staging the 3-2-1 sequence module up to three

times, the twelve Euler combinations can be achieved. This is particularly relevant in terms of

code reusability: chaining the same one module multiple times with different initializations on each

stage provides the same functionality as developing the twelve modules of distinct sequences.

Next, the mathematical aspects of the 3-2-1 Euler angle rotation module are developed. An

initial 3-2-1 Euler angle orientation θR1/R0 and a constant set of rates θ̇R1/R0 are defined as inputs

to this dynamic module:

θR1/R0
: {ψ0, θ0, φ0}

θ̇R1/R0
: {ψ̇, θ̇, φ̇}

Because the module considers Euler rates that are constant, the associated differential kinematic

r̂0,2

r̂0,1

r̂0,3

n̂3

n̂1

n̂2

(a) Rectangular Raster Maneu-
ver.

 0

✓0

r̂0,1

r̂0,3

n̂3

n̂1

n̂2

(b) Asterisk Raster Maneuver.

r̂0,2

r̂0,1

✓̇

r̂0,3

�̇

n̂3

n̂1

n̂2

(c) Spiral Maneuver.

Figure 2.6: Sample scanning patterns

31

equations are integrable. The current Euler angles are thus expressed as

ψ(t) = ψ0 + ψ̇δt (2.13a)

θ(t) = θ0 + θ̇δt (2.13b)

φ(t) = φ0 + φ̇δt (2.13c)

The final time-varying attitude [R1N] is evaluated by adding the dynamic attitude [RR0] onto the

base reference attitude [R0N]:

[R1N] = [R1R0(ψ(t), θ(t), φ(t))][R0N(σR0/N)] (2.14)

The output orientation of this dynamic module is obtained by converting the [RN] matrix into the

equivalent MRP coordinates: [R1N]→ σR1/N .

Following, the angular velocity vector ωR1/N and its derivative ω̇R1/N are developed. The

final angular velocity vector is defined as:

ωR1/N = ωR1/R0
+ ωR0/N (2.15)

where ωR0/N (t) is the angular velocity of the base reference frame (input to the module). The

matrix R1ωR1/R0
is obtained from the 3-2-1 Euler angle differential kinematic equations:

R1ωR1/R0
=

− sin θ 0 1

sinφ cos θ cosφ 0

cosφ cos θ − sinφ 0

ψ̇

θ̇

φ̇

(2.16)

Substituting Eq.(2.16) into Eq. (2.15) yields the output state ωR1/N .

At this point, is important to follow up on the previous statement that the 3-2-1 Euler mod-

ule is free of singularities. As a matter of fact, each set of Euler angles has a geometric singularity

where two angles are not uniquely defined. Such geometric singularities result in mathematical sin-

gularities in the differential kinematic equations. These singularities appear always when mapping

from angular body rates to Euler angle rates. However, in the present development, it is the inverse

mapping takes place (i.e. the module maps Euler rates to angular velocity) and such mapping is

32

free of singularities. Any geometric singularity would be inevitably reflected in Eq. (2.16) and, as

shown by inspection of the equation, this is not the case.

The angular acceleration of the R1 reference is computed by taking the inertial derivative of

Eq. (2.15). The short hand dot notation is used to denote an inertial derivative of a vector.

ω̇R1/N = ω̇R1/R0
+ ω̇R0/N (2.17)

The inertial derivative of the spinning vector ωR1/R0
is evaluated using the transport theorem[42]

to be

ω̇R1/R0
=
Nd

dt
(ωR1/R0

) =
R1d

dt
(ωR1/R0

) + ωR1/N × ωR1/R0
(2.18)

Let us now develop the right-hand side of Eq (2.18). Making use of the fact that the defined Euler

rates are constant, the following expression is obtained for the R1-frame derivative of ωR1/R0
:

R1d

dt
(ωR1/R0

) =

−θ̇ψ̇ cos θ

(φ̇ cosφ cos θ − θ̇ sinφ sin θ)ψ̇ − φ̇θ̇ sinφ

−(φ̇ sinφ cos θ + θ̇ cosφ cos θ)ψ̇ − φ̇θ̇ cosφ

(2.19)

Simplifying Eq. (2.18) and joining this equation with Eq. (2.17), the N -frame angular acceleration

is eventually obtained

ω̇R1/N =
R1d

dt
(ωR1/R0

) + ωR0/N × ωR1/R0
+ ω̇R0/N (2.20)

With these, all the variables conforming the output structure of the 3-2-1 Euler rotation have

been derived: R1 = {σR1/N ,
NωR1/N ,

Nω̇R1/N}.

2.2.2.3 Tracking Error Module

The last component in the guidance chain is always the tracking error module, responsible

of ensembling the final reference R and computing the tracking errors with respect to the principal

body frame B. The novelty of this module is found in the strategy used for controlling a spacecraft-

fixed frame Bc that is not the principal one. Instead of expressing the guidance output in terms

of the specific control frame Bc (which would then have to be accounted for in the control law),

33

the offset between the main body frame B and the control frame Bc is added to the generated final

reference R. The advantage of this trick is that it reduces the number of transformations required

to guide and control a generic spacecraft fixed-frame that is not the principal one.

For example, Fig. 2.7 shows the spacecraft principal body frame B in blue and a body-

fixed control frame Bc in magenta. Here, the magenta frame is the one containing the instrument

boresight that has to perform the guidance scanning maneuver. However, recall from Fig. 2.4

that the output of the guidance block is designed to be expressed in the main body frame B as:

{σB/R, BωB/N , BωR/N , Bω̇R/N}.

Theoretically, the guidance output could be expressed in the specific control frame Bc for

each case. Nevertheless, it would then be necessary to keep track of the relationship between the

principal body frame and the control body frame [BcB] in multiple modules inside the guidance-

control sequence. Looking at the control law formulation presented in Eq. (A.1), it is observed

that all the vector and matrix components would then need to be mapped to this new body-fixed

control frame.

b̂1

b̂2

b̂3

b̂c3

b̂c1

Figure 2.7: Principal body frame (blue) and control frame (magenta)

34

An alternative tracking error solution that is more elegant is derived following. Let us define

the input reference to the attitude tracking error module as Ri = {σRi/N ,
NωRi/N ,

Nω̇Ri/N}, where

Ri has been generated by superposition of base and dynamic reference modules. In the general case

where the body-fixed frame to be controlled is not the spacecraft’s primary frame B, the control

frame Bc should be guided towards the desired reference Ri. The control body-frame Bc could

correspond to any body-fixed frame that differs from B by a constant angular offset [BcB]. Thus,

as Bc → R0, then B → R if R is defined such that

[BcB] = [RiR] (2.21)

As illustrated earlier in Fig. 2.4, the attitude tracking error module receives navigation data

containing the estimated spacecraft orientation σB/N . In addition, the offset between control and

principal body frames [BcB] is set as a configurable parameter within the tracking error module.

With this information along with the input reference [RiN(σRi/N)], the orientation of the final

reference frame R (such that B → R) can be readily derived:

[RN] = [RRi][RiN] = [BcB]T [RiN] (2.22)

With the discussed generalization, it is possible to correct any sensor or component frame

orientation using the same classical tracking error algorithms and control laws that deal with the

main body frame. Therefore, the need of creating particular code for the guidance and control of

different spacecraft-fixed frames is overcome.

2.2.3 Numerical Simulations

The rigid body equations of motion in Eq. (A.1) are numerically simulated in Basilisk to

validate and illustrate the performance of the presented guidance modules. The orientation is

controlled through a set of four RWs. The dynamic states are integrated using a Range-Kutta 4

scheme running at 10 Hz. The MRP feedback control in Eq. (A.4) is used to drive the spacecraft

orientation towards the desired reference motion using an update rate of 2Hz. The estimated

35

Table 2.1: Initial orbital elements

Parameter Value Units

Semi-major Axis 7471.618(≈ 2.2RMars) km
Eccentricity 0.4
Inclination 0.0 deg
Longitude of Ascendant Node 0.0 deg
Argument of Perigee 0.0 deg
True Anomaly 270.0 deg

Table 2.2: Control and spacecraft parameters

Parameter Value Units

Attitude Error Gain K 2.531 kg·m2

s

Rate Error Gain P 45.0 kg·m2

s

ĝs1 [−0.5, 0.5,−
√

2
2] -

ĝs2 [0.5, 0.5,−
√

2
2] -

ĝs3 [0.5,−0.5,−
√

2
2] -

ĝs4 [−0.5,−0.5,−
√

2
2] -

Jsi 0.1591549 kg·m2

I1, I2 700 kg·m2

I3 800.0 kg·m2

navigation data σB/N and ωB/N is without any sensor corruptions to better illustrate that the

control law does achieve asymptotic tracking of the reference motion. Each simulation has a

maneuver duration of 9600 seconds (≈ 2.7 hours). The spacecraft is simulated to be orbiting Mars

with the orbital parameters in Table 2.1 and the control-related parameters in Table 2.2.

The spacecraft is flying through the periapses region of a highly eccentric orbit. Consequently,

there is a considerably amount of variability on the spacecraft orbit rates. In the first control sce-

nario, asymptotically tracking this orbital motion emphasizes the challenges of properly evaluating

acceleration and rates. With the chosen proportional gain P , the control time decay constant [42]

is τ ≈ 30 sec. The K gain is computed to yield a critically damped system. This choice of gains

provides a non-aggressive control response. Although initial requests of large torques are unavoid-

able (i.e. detumbling phase), operating with non-saturated reaction wheels is guaranteed for the

rest of the simulation time (i.e. tracking phase).

36

2.2.3.1 Orbit Axis Rotation

The first simulation consists on performing a nadir-spinning maneuver by using the stack of

modules shown in Fig. 2.8. The base pointing module generates a reference that is initially aligned

with the Hill-orbit frame. By introducing an attitude offset in the tracking error module, a 180

degree rotation about the third body axis b̂3 is achieved. In this way, the resulting frame points

the first principal axis of the spacecraft body b̂1 towards the planet, i.e. in the nadir direction (-ı̂r)

instead of radially outwards. In addition, a dynamic spinning motion about ı̂r is superimposed on

top of the base reference. With proper tracking, b̂1 remains consequently fix while b̂2 and b̂3 rotate

in the local-horizontal orbit plane.

As shown in Fig. 2.8, both the Euler rotation module and the tracking error module need

to be configured with maneuver-specific parameters. The configuration parameters for the Euler

rotation module are provided in Table 2.3. In turn, the tracking error module is configured as

follows:

σBc/B = [0.0, 0.0, 1.0] (2.23)

Hill Spinning

Hill Pointing

Euler Angle
Rotation

Tracking Error
⇥
�Bc/B

⇤
⌘

⇥
�R/R1

⇤

✓R1/R0

✓̇R1/R0

�

Figure 2.8: Nadir-spinning stack

Table 2.3: Configuration data for the Euler angle rotation module

Parameter Value Units Description

θR1/R0
: {ψ, θ, φ} [0.0, 0.0, 0.0] deg/s Initial 3-2-1 set of Euler angles relative to the

base R0.

θ̇R1/R0
: {ψ̇, θ̇, φ̇} [0.0, 0.0, 0.3] deg/s Desired 3-2-1 set of Euler rates relative to the

base R0.

37

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
R

P
 A

tt
it

u
d
e
 S

e
t

σ1

σ2

σ3

(a) Base orbit-pointing attitude σR0/N

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

0

10

20

30

40

50

60

3
-2

-1
 E

u
le

r
S
e
t,

 r
a
d

ψ

Θ

φ

(b) Relative dynamic attitude θR0/R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

1.0

0.5

0.0

0.5

1.0

M
R

P
 A

tt
it

u
d
e
 S

e
t

σ1

σ2

σ3

(c) Final nadir-spinning attitude σR/N

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time, h

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
R

P
 A

tt
it

u
d
e
 S

e
t

σ1

σ2

σ3

(d) Attitude tracking error σB/R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time, h

0.015

0.010

0.005

0.000

0.005

0.010

A
n
g
u
la

r
R

a
te

,
ra

d
/s

ω1

ω2

ω3

(e) Rate tracking error ωB/R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time, h

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

T
o
rq

u
e
,
N
·m

u1

u2

u3

u4

(f) Applied control torque u

Figure 2.9: Nadir spinning: cascaded attitude sets

The first three plots in Fig. 2.9 shows the reference attitude sets generated at each stage.

Figure 2.9(a) illustrates the time varying Hill-frame orientation, denoted as R0 in this scenario.

38

The rapid change observed on the base pointing attitude is due to the spacecraft flying through the

periapses of a highly elliptic orbit. The constant Euler angle rates in Fig. 2.9(b) show that only

φ̇ 6= 0. Cascading these two reference frames together yields the final desired attitude shown in

Fig. 2.9(c). In turn, the last three plots in Fig. 2.9 displays the tracking errors and the commanded

control torque. Inspection of the tracking error plots reveals that the spacecraft body frame aligns

asymptotically with the desired reference frame; therefore, proving proper kinematic superposition

in the assembly of reference frames. The control torque in Fig. 2.9 is capped to a maximum RW

torque of 0.2 N·m. Note that the variable ui corresponds to the torque of each wheel and wheel

saturation only takes place at the very beginning of the maneuver. The commanded torques in

Fig. 2.9(f) do not converge to zero and this is, indeed, expected: a nadir-spinning maneuver is not

a natural equilibrium motion and, therefore, a certain torque will always be necessary to maintain

it.

2.2.3.2 Asterisk Scanning Maneuver

The second numerical simulation consists on performing an asterisk scanning pattern. An

asterisk pattern is conformed by a total of four raster lines and, by using the Euler rotation mod-

ule, the complete pattern can be achieved with only four command steps. The stack of modules

necessary to perform such maneuver is depicted in Fig. 2.10. Note that a raster manager module is

attached to the Euler rotation module. The raster manager commands a sequence of Euler angle

Asterisk Scanning

Inertial 3D
Pointing

Euler
Angle

Rotation

Tracking Error

R
as

te
r

M
an

ag
er

⇥
�R0/N

⇤

2
664

{✓R1/R0
, ✓̇R1/R0

, traster}1

{✓R1/R0
, ✓̇R1/R0

, traster}2

{✓R1/R0
, ✓̇R1/R0

, traster}3

{✓R1/R0
, ✓̇R1/R0

, traster}4

3
775

⇥
�Bc/B

⇤
⌘

⇥
�R/R1

⇤

Figure 2.10: Inertial asterisk scanning stack

39

Table 2.4: Configuration data for the raster manager module

Parameter Value Units Description

θR1/R0
: {ψ, θ, φ}1 [α, 0.0, 0.0] deg Initial 3-2-1 Euler angle set of the first raster.

θ̇R1/R0
: {ψ̇, θ̇, φ̇}1 [−α̇, 0.0, 0.0] deg/s 3-2-1 Euler angle rates of the first raster.

θR1/R0
: {ψ, θ, φ}2 [−α,−α, 0.0] deg Initial 3-2-1 Euler angle set of the first raster.

θ̇R1/R0
: {ψ̇, θ̇, φ̇}2 [α̇, α̇, 0.0] deg/s 3-2-1 Euler angle rates of the second raster.

θR1/R0
: {ψ, θ, φ}3 [α,−α, 0.0] deg Initial 3-2-1 Euler angle set of the third raster.

θ̇R1/R0
: {ψ̇, θ̇, φ̇}3 [−α̇, α̇, 0.0] deg/s 3-2-1 Euler angle rates of the third raster.

θR1/R0
: {ψ, θ, φ}4 [0.0, α, 0.0] deg Initial 3-2-1 Euler angle set of the forth raster.

θ̇R1/R0
: {ψ̇, θ̇, φ̇}4 [0.0,−α̇, 0.0] deg/s 3-2-1 Euler angle rates of the forth raster.

traster, i 1600 s Time duration of each commanded raster ma-
neuver.

offsets and rates at the configured raster times. Each raster lasts for 1600 seconds (≈ 0.45 hours)

and, as mentioned, a total of 4 Euler commands is used to complete the pattern.

The inertial pointing module and attitude tracking error module are initialized with the

following parameters:

σR0/N = [0.0, 0.0, 0.0] (2.24a)

σBc/B = [0.0, 0.0, 0.0] (2.24b)

Thus, the requested inertial attitude is that of the global inertial frame with R0 ≡ N . The control

body frame coincides with the principal body frame through Bc ≡ B or, equivalently, [BcB] = [I3×3].

The configuration parameters of the raster manager are provided in Table 2.4.

The parameters α and α̇ in Table 2.4 are defined as follows:

α = 8.0 deg (2.25)

α̇ =
2α

traster
(2.26)

Figure 2.11 shows plots of the attitude tracking error and the commanded wheel control

torques during the maneuver. Each peak corresponds to the commanding of a new raster line.

After each command, it is observed that the spacecraft quickly converges into the new raster.

Figure 2.12(a) compares the desired nominal raster lines (dark blue lines) with the actual

yaw-pitch angles scanned in the maneuver (magenta lines). In order to get into the desired rasters

40

on time, a small angle offset (αoffset) needs to be commanded, which is also depicted with light-blue

color. The value of αoffset is a tradeoff with the picked control gains K,P . In this case, an offset of

αoffset = 0.5α is found to work well for all the cases analyzed. The additional of this angular offset

demands, in turn, small adjustments on the commanded maneuver times, in order to make sure

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
R

P
 A

tt
it

u
d
e
 S

e
t

σ1

σ2

σ3

(a) Attitude tracking error σB/R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

T
o
rq

u
e
,
N
·m

u1

u2

u3

u4

(b) Applied control torque u

Figure 2.11: Asterisk scanning: attitude tracking error and control torque

Start/End

(a) Nominal Rasters vs. Achieved Maneuver for α = 8
deg.

(b) Achieved 3D Bore-sight Pointing for α = 24 deg.

Figure 2.12: Simulated asterisk scanning patterns

41

that the spacecraft does not move to the next raster before finishing the current one.

The raster lines in Fig. 2.12(a) are numbered from 1 to 4 according to their order of execution.

In addition, the starting point of each raster line is labeled with the letter a and the ending point

with the letter b. Upon arrival at the end point of the pattern (i.e. point 4(b)) the spacecraft is

smoothly driven back to beginning (i.e. point 1(a)).

Figure 2.12(b) shows the three-dimensional view of the spacecraft’s maneuver for a nominal

angle of α = 24 degrees. Note that the coordinates used in this case are Cartesian. The single blue

dot corresponds to the position of the spacecraft, from which the scanned pattern is projected on

a unit sphere.

2.2.3.3 Spiral Scanning Maneuver

The last numerical simulation performs a scanning maneuver that draws a spiral pattern

on the inertial frame. This scenario is particularly interesting to showcase the superposition of

multiple dynamic reference modules. A spiral motion can be easily defined through a 1-2 sequence

of constant Euler rates. The stack of modules required to perform a single-spiral maneuver is shown

in Fig. 2.13. In this stack, the inertial 3D pointing module is used as the base reference for the

sake of simplicity in analyzing the resulting plots. In order to simulate a 1-2 Euler sequence, two

Spiral Scanning

Inertial 3D
Pointing

Tracking Error
⇥
�Bc/B

⇤
⌘

⇥
�R/R2

⇤

321 - Euler
Angle Rotation

✓R1/R0

✓̇R1/R0

�

321 - Euler
Angle Rotation

✓R2/R1

✓̇R2/R1

�

⇥
�R0/N

⇤

Figure 2.13: Stack of modules for a spiral scanning maneuver

42

Euler rotation modules are staged as dynamic references.

Figure 2.14 shows numerical results of the commanded scan versus the one actually achieved.

Here, the nominal (i.e. commanded) pointing motion is depicted in magenta while the actual actual

angles scanned by the bore-sight are depicted in blue. After the helix pattern is completed, the

spacecraft’s bore-sight is smoothly driven back to the starting scanning point at the center of the

plot.

6 4 2 0 2 4 6

Yaw Angle, deg

6

4

2

0

2

4

6

P
it

ch
 A

n
g
le

,
d
e
g

Nominal
Actual

Figure 2.14: Spiral scanning: nominal pointing vs. actual

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

M
R

P
 A

tt
it

u
d
e
 S

e
t

σ1

σ2

σ3

(a) Attitude tracking error σB/R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time, h

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

T
o
rq

u
e
,
N
·m

u1

u2

u3

u4

(b) Commanded control torque u

Figure 2.15: Spiral scanning: tracking error and wheel torques

43

Figure 2.15 shows plots of the attitude tracking error and the commanded wheel torques

during the maneuver. Two peaks are observed in these plots: one at the beginning of the simulation

(when the spacecraft is first commanded to start the spiral pointing motion) and one in the middle

(when the spacecraft has finished the spiral-pointing maneuver and it goes back to fix inertial

pointing). Between the two peaks in Fig. 2.15(b), it is observed that the reference motion is

perfectly tracked with small wheel torques.

30 20 10 0 10 20 30

Yaw Angle, deg

30

20

10

0

10

20

30

P
it

ch
 A

n
g
le

,
d
e
g

Nominal
Actual

Figure 2.16: Triple-spiral scanning: nominal pointing vs. actual

Spiral Scanning

Inertial 3D
Pointing

Euler
Angle

Rotation

Tracking Error

R
as

te
r

M
an

ag
er

⇥
�Bc/B

⇤
⌘

⇥
�R/R2

⇤

Euler Angle
Rotation

✓R1/R0

✓̇R1/R0

�

⇥
�R0/N

⇤

2
4

{✓R2/R1
, ✓̇R2/R1

, traster}1

{✓R2/R1
, ✓̇R2/R1

, traster}2

{✓R2/R1
, ✓̇R2/R1

, traster}3

3
5

Figure 2.17: Stack of modules for a triple-spiral scan

44

To finalize this section, Fig. 2.16 shows how the single-spiral scanning can be extended into

multiple spirals. This extension can be easily achieved by using the raster manager module intro-

duced earlier. The corresponding stack of modules is illustrated in Fig. 2.17.

2.3 Summary

This chapter has introduced the Basilisk software framework, a desktop testbed for pro-

totyping flight algorithms and testing them in closed-loop dynamic simulations. Upon Basilisk, a

novel reference generation architecture is implemented where complex attitude patterns are achieved

through combination of atomic guidance modules that fulfill a well-defined functionality. As a quick

recapitulation, there are three core functionalities that conform all guidance reference motions: base

pointing reference, dynamic reference and attitude offset. For each one of these functionalities, dif-

ferent software guidance modules are implemented and showcased; the mathematical equations are

developed and numerical simulations illustrate how the individual components are arranged to sup-

port different rotational dynamics mission requirements. This layered strategy promotes reusability

of code throughout distinct mission profiles and, as a matter of fact, it is currently being applied

in an interplanetary spacecraft mission to perform science and nominal attitude maneuvers.

Chapter 3

Flight Algorithm Migration into Commercial Flight Targets

Once flight algorithms are proven to satisfy mission requirements in the desktop development

environment, the next step is to migrate them into the mission flight target of choice. As a

matter of fact, Basilisk-developed flight algorithms have been ported into several flight targets:

commercial processors (like the Raspberry Pi) as well as embeddable middleware systems (like cFS

and MicroPython). The migration into these kind of targets is illustrated in Fig. 3.1. A key aspect

conveyed by Fig. 3.1 is that FSW shall migrate from the desktop environment into another target

while preserving the capability of closing the loop with a dynamics simulation that remains on

the desktop computer. The reason for maintaining the dynamics simulation running on a desktop

computer is to preserve higher fidelity, since traditional spaceflight processors lag state-of-the-art

consumer technology notably.

The idea of use using commercial processors in redundant configurations (rather than a single

radiation hardened-processor) for flight applications has received increased attention and interest

in the recent decades[9, 48, 22, 17]. This chapter describes, in particular, the port of the Basilisk

flight architecture into the Raspberry Pi commercial hardware. The modular and scalable nature

of Basilisk and the performance and affordability of the Raspberry Pi are combined into a flight

system that is ideal for –although not restricted to– CubeSats and small-satellite form factors.

The idea pursuit in this chapter consists on installing the flight portion of Basilisk on the

Raspberry Pi and, then, performing a closed-loop maneuver with the setup illustrated in Fig. 3.1(a)

in order to prove the validity of the distributed architecture. While a Basilisk closed-loop simulation

46

BSK

FSW Algs (C)

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

(a) FSW on the Raspberry Pi: ARM processor and Linux OS

Middleware

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

SBC Emulator

FSW App

(b) FSW on middleware, embedded in an SBC (single-board computer)
emulator

Figure 3.1: Migration of the flight application

could run entirely on the Pi platform (i.e. single platform simulation containing both the flight

algorithms and the spacecraft physical simulation), the distributed configuration in Fig. 3.1(a)

replicates reality better.

The chapter is outlined as follows: first, a brief motivation for using commercial processors

like the Raspberry Pi in space applications is presented. Next, the challenges of porting Basilisk

into the Raspberry Pi are described. Then, the implementation of a peer-to-peer router that allows

distributed TCP communication is explained. Finally, numerical results of a distributed inertial

guidance maneuver, in which the flight algorithms run on the Raspberry Pi and the spacecraft

simulation run on a separate host computer, are shown.

47

3.1 The Raspberry Pi for Space Applications

Space is a harsh environment where it is difficult to ensure that a computer will operate

reliably for an extended period of time. Cosmic radiation interferes with transistors and can bit-

flip computer memory (e.g. single event upset crash). Generally, two approaches are employed,

independently or in combination, to protect the spacecraft’s electronic systems in the radiation

environment:

(1) Commercial-off-the-shelf (COTS) parts in redundant and duplicative configuration.

(2) Electronics hardened for radiation and environmental exposure.

Each of this methods presents its pros and cons[29]. However, while solving this problem through

radiation-hardening by electronics is traditionally highly expensive, using COTS technologies (i.e.

radiation-hardening by software architecture and redundancy) is an effective method to minimize

costs –hence, being very compelling for small-sat and low-cost missions.

Among the commercial tech products that could be suitable for low-cost space exploration,

NASA has considered the use of Arduino platforms and Raspberry Pi hardware[48]. For example,

the PhoneSat1 project is a technology demonstration mission launched in 2013 with the aim

of proving that smartphones could be used as avionic systems in nano-satellites and that they

would survive. In the context of realistic flight-like testing, the Pi-Sat project developed by NASA

Goddard proposes the Raspberry Pi as a flight computing environment on which to run the core

Flight System middleware[22]. Similarly, this chapter aims to use the Raspberry Pi as the flight

target in which to run Basilisk-developed FSW applications.

3.2 Distributed Basilisk Simulation using the Raspberry Pi

Now that the interest on using the Raspberry Pi as a flight processor has been introduced,

this section explains the process of 1) building Basilisk on the Pi platform and 2) testing the system

in distributed closed loop.

1 https://www.nasa.gov/directorates/spacetech/small_spacecraft/phonesat.html

https://www.nasa.gov/directorates/spacetech/small_spacecraft/phonesat.html

48

First, the technical challenges of porting Basilisk on the Raspberry Pi are outlined. The

Raspberry Pi has a built-in ARM processor and comes, out of the box, with the Debian operating

system, which is a flavour of Linux. While Basilisk is cross-platform in nature and supports Linux,

MacOS and Windows, compiling and building the Basilisk software on Debian required additional

technical effort, mainly due to the SPICE2 library included within Basilisk. It was necessary to

build from source the Cspice Linux 32bit version but manually modifying the compilation flags in

order to target the 64-bit CPU architecture of the latest Raspberry Pi hardware. All the other

Basilisk libraries were linked without problems.

Once Basilisk numerical simulations are proved to run on the Raspberry Pi, the next step

is to move from a single-platform simulation into a multi-platform simulation where the FSW

algorithms and the spacecraft physical models are executed on different computing platforms, as

in Fig. 3.1. In order to enable TCP communication, a Basilisk router module based on the Boost

C++ library3 was used. While Boost can handle both transport and serialization of data across

platforms, its memory footprint is quite large. The router module could act either as a server or

client and therefore it would only allow a peer-to-peer communication from one Basilisk process

(e.g. FSW process on the Raspberry Pi) to another one (e.g. spacecraft physical simulation on the

desktop computer). The one-to-one nature of this router module implies that the communication

map is not scalable to more than two processes and that, similarly, multi-broadcast architectures

are not supported. Despite these limitations, the router model is important for two reasons:

(1) It allowed the very first distributed numerical simulation within Basilisk.

(2) It paved the ground for the development of the flexible and scalable Black Lion communi-

cation architecture (see Section 5.2) .

Next, a distributed closed-loop numerical simulation is shown. In this simulation, the phys-

ical spacecraft (on the desktop computer) is initially tumbling and the FSW algorithms (on the

Raspberry Pi) are responsible of bringing the spacecraft into an inertial-pointing mode. The setup

2 https://naif.jpl.nasa.gov/naif/toolkit.html
3 https://www.boost.org

https://naif.jpl.nasa.gov/naif/toolkit.html
https://www.boost.org

49

BSK

FSW Algs (C)

MRP Feedback

Inertial 3D Pointing

Vehicle Config

TCP

BSK

SC Models(C++)

Earth Gravity Body

External Torque

SPICE Ephemeris

Attitude Tracking
Error

Attitude Sensor

Spacecraft Body

Router Module

Soft-Clock Module

Router Module

Soft-Clock Module

Attitude Data

Control Torque

Figure 3.2: Numerical simulation setup

of the distributed numerical simulation is shown in Fig. 3.1. Both Basilisk (BSK) processes contain

the corresponding modules plus a router module and a soft-clock module that allows both processes

to run in synch and in soft real time. There are two messages being exchanged via TCP connection:

(1) Sensed attitude data: from the spacecraft physical simulation to the FSW algorithms.

(2) Commanded control torque: from the FSW algorithms to the spacecraft physical simula-

tion.

Figure 3.3 shows plots of the spacecraft physical simulation in response to the closed loop

with FSW. In turn, Fig. 3.4 shows the closed-loop evolution of FSW states. The highlight of the

results is that the distributed maneuver is successfully achieved. In addition, Ref. [17] emphasizes

the fact that the FSW results are exactly the same whether the closed-loop simulation is executed

in a distributed multi-platform fashion (as in Fig. 3.1) or on a single computing platform.

50

(a) Spacecraft orbit around Earth

(b) Spacecraft inertial MRP attitude set, σB/N

(c) Spacecraft inertial angular rate, BωB/N

Figure 3.3: Results from the spacecraft physical simulation

51

(a) Angular rate error, BωB/R

(b) Control torque, Lr

Figure 3.4: Results from the FSW process on the Raspberry Pi

3.3 Summary

This chapter has introduced the interest on using commercial processors for flight appli-

cations. On these lines, the challenges associated into porting the Basilisk architecture into the

Raspberry Pi commercial hardware have been outlined. Most importantly, the first demonstration

of a distributed Basilisk simulation on a Raspberry Pi has been shown. The distributed nature

of the simulation implies that the flight algorithms and the spacecraft physical simulation run on

separate computing platforms, which is a key step towards more realistic, flight-like testing. In ad-

dition, the use of a peer-to-peer communication router that enables TCP communication between

a client and a server has been explained. This communication router is also an initial milestone

52

towards the development of the flexible and multi-propose Black Lion communication architecture

(described later on, in Chapter 5.2).

Chapter 4

Flight Algorithm Migration into the core Flight System

While the work with commercial targets shown in the previous chapter constitutes the first

proof of concept towards distributed testing of Basilisk flight applications, the present chapter

focuses on the migration of Basilisk flight algorithms into the cFS (i.e. a middleware target).

The relevance of migrating Basilisk-developed flight algorithms into cFS is clear in that the latter

is a standard and widely-used middleware layer for space missions that ensures portability of the

flight application among different radiation-hardened processors and RTOS. The result of migrating

Basilisk flight algorithms into the cFS middleware is a cFS-FSW application that can be readily

integrated into an embedded system like an emulated flight processor (as in Fig. 3.1(b)). Such

strategy is being currently employed for the development of the interplanetary mission in which

LASP and the AVS laboratory are collaborating. The challenges associated to this work is that

the cFS middleware is an embeddable system and, by nature, there is a considerable gap between

the Basilisk desktop environment and the cFS environment.

This chapter is outlined as follows: first, the architecture of the cFS middleware is described.

Next, the technical work required to migrate the Basilisk flight application (which is written in a

combination of Python and C) into a pure-C cFS application is presented. Then, the tool developed

to smoothen out the transition process back and forth desktop and cFS environments is showcased.

This tool is named AutoSetter, it is currently available as an open-source tool and, in addition,

pseudo-code revealing its working mechanisms is provided in Appendix B. To finalize the chapter,

a summary section highlighting the shown results is included.

54

4.1 The cFS Middleware

First and foremost, let us provide further insight on the cFS itself. The cFS is a middleware

layer aimed at ensuring portability of flight applications among different RTOS and processor

boards. It is an open-source product developed by NASA Goddard that has inherited software

from flight missions for over 20 years. It is mostly written in the C programming language and

its architectural design of cFS is depicted in Fig. 4.1. Starting from the highest level of the

architecture to the lowest: first, there is the application layer, which is where the mission-specific

flight algorithms reside –therefore this layer is always customized by the user. Below, there is a

library layer, where common components that are typically part of a FSW system are available

for sharing and reuse (e.g. file delivery protocol, checksum, housekeeping, etc.). In the middle

there is the core Flight Executive layer (cFE), which is the central piece of cFS and provides five

core services: executive, event, software bus, table and time services. One level lower there is the

platform and OS abstraction layer, which are the key pieces enabling portability. Finally, the very

bottom is where the boot software resides.

Now that the cFS middleware has been properly introduced, let us dive into the technical

steps required for migrating Basilisk flight algorithms into a cFS application.

RTOS/Boot Layer

OS Abstraction Layer

cFE Executive Layer

Library Layer Executive Service
Event Service

Software Bus Service
Table Service
Time Service

Application Layer
Controls

Guidance

Navigation
FSW App

Figure 4.1: Architecture of the core Flight System

55

4.2 From Basilisk into a cFS-FSW Application

This section explains what it takes to migrate Basilisk-developed flight algorithms into a cFS

application that is embeddable. Recall that Basilisk is written in a combination of Python, C and

C++ whereas cFS only supports pure-C applications. In particular, Basilisk uses Python for:

(1) Setup of the underlying C/C++ modules. It involves two items:

(a) Variable initialization of each individual C module.

(b) Grouping of modules in tasks that run at certain task rates.

(2) Desktop execution of the FSW simulation process

(3) Post-processing of results

There is one of these Python functionalities that needs to be translated into C in order to yield

a fully functional C FSW application: the setup code for the C modules. Each setup item (i.e.

module variable initialization and grouping of modules in task) is further developed next.

4.2.1 Setup Item: C Module Initialization

Each Basilisk C module is a stand-alone model or self-contained piece of logic. In the context

of FSW, a module could be: a specific navigation filter, a control law, a torque-to-voltage converter

or, simply, a container for static vehicle data (i.e. spacecraft parameters like inertia or center of

mass). All Basilisk C modules are characterized for having a C configuration struct and four main

methods operating on the defined struct. In functionality, these main methods are common to all

modules and they perform: module self-initialization, cross-initialization, update and reset. These

generic functions are externally called from Python during desktop execution. Listing 1 shows a

snippet of code from a very simple module, the vehicle configuration one.

56

Listing 1: C module source code (vehicleConfigSource.h)

// Configuration struct

typedef struct{

double ISCPntB_B[9]; // inertia

double CoM_B[3]; // center of mass

char outputMsgName[MAX_LENGHT] // unique name for the output message

}VehicleConfigStruct;

// Main algorithms

void SelfInit_vehConfig(VehicleConfigStruct *data, ...);

void CrossInit_vehConfig(VehicleConfigStruct *data, ...);

void Update_vehConfig(VehicleConfigStruct *data, ...);

void Reset_vehConfig(VehicleConfigStruct *data, ...);

In the desktop environment, SWIG automatically handles the conversion of types from C

and C++ into Python and, to date, there has not been any C or C++ variable type that could

not be SWIGed (including nested C structures and custom C++ classes). Initializing the C and

C++ variables of all the modules in Python is handy because it makes the simulation completely

reconfigurable: changing the initialization values from Python does not force recompilation of the

C code again. This feature is specially useful to handle Monte-Carlo testing. By decoupling the

high-level Python functionality (i.e. configuration and initialization) from the low-level C module

implementation (i.e. algorithm source code), the principle of dependency inversion is applied.

When following this principle in object-oriented design, the conventional dependency relationships

established from high-level and policy-setting functionality to low-level modules are reversed, thus

rendering high-level functionality independent of the low-level module implementation details. A

snippet of Python code initializing the C vehicle configuration module is shown in Listing 2.

57

Listing 2: Python setup code (for vehicle configuration module)

Instantiate C config struct as a Python object

self.VehicleConfigObj = VehicleConfigStruct()

Initialize variables

def SetVehicleConfig(self):

Define a unique model tag for the Python object

self.ModelTag = "veh"

Initialize the C struct variables as if they were Python object variables

self.VehicleConfigObj.ISCPntB_B = [600.0, 0.0, 0.0,

0.0, 600.0, 0.0,

0.0, 0.0, 600.0]

self.VehicleConfigObj.CoM_B = [0.0, 0.0, 1.0]

self.VehicleConfigObj.outputMsgName = "adcs_config_data"

return

All the module variables that in the desktop environment are initialized from Python, in the

cFS embedded environment must be initialized directly in C. Further, in order to keep consistency

in the testing throughout both environments, the values of these variables need to match exactly.

4.2.2 Setup Item: Task Groups and Rates

The other setup item leveraged from Python in the desktop environment is the definition of

C/C++ tasks that run at the defined task rates. Any number of modules can be added to a task

and calling priorities are also stablished from Python. In the desktop simulation, Python itself loops

through the tasks cyclically and, for each task, calls the update method of all the modules in that

task. In the embedded environment, it is desired to maintain the same task groups. Therefore,

C calls need to be implemented that, for each task, contain callbacks to all the methods of the

modules belonging to that task. These C callbacks should respect the module priority established

58

in the Python desktop script.

4.3 Translation Mechanism: the Auto-Setter

Now that the kind of setup code that needs to be translated from Python to C has been

explained, let us describe the interesting part: the translation mechanism. Figure 4.2 illustrates

the conversion of the flight application from a Basilisk desktop simulation into a pure-C application

that can be readily integrated into cFS. A key remark here is that the flight algorithm source code

(FSW Algs in Fig. 4.2) remains unchanged. The pure-C application is conformed by the unmodi-

fied flight algorithms plus one additional header and one source file (i.e. (setup.h and setup.c)

containing the setup code written in C. The translation of the setup code from Python to C is

handled automatically via an independent script written in Python: the AutoSetter. The beauty

of the AutoSetter is that it is not a black box but, rather, a simple template mapping Python

variable types into their C counterparts. The resulting C setup code is minimal and completely

human readable. In essence, the workings of the AutoSetter rely on Python’s introspection capa-

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)
module init & tasks def

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

AutoSetter.py

Figure 4.2: Translation of setup code from Python to C

59

bilities. Looking at oneself is something that neither C or C++ can accomplish without significant

investment in source parsing. In contrast, Python can easily realize that, inside the FSW simulation

process (written in C but wrapped in Python), there is a list of tasks. And inside each task, there

is a list of modules that, despite being written in C, now appear as Python objects. Therefore,

these modules now present built-in Python properties like module , name , type(), dir(),

getattr() and so on, which are the key to introspection. Listing 3 shows a snippet of the C code au-

tomatically generated by the AutoSetter. Note that this C setup code (output of the AutoSetter)

corresponds to the Python code shown previously in Listing 2 (input of the AutoSetter). Let us

take a closer look, for instance, at the inertia variable (ISCPntB T in Listing 3). In Python, the

inertia is initialized as a list of 9 floats, with only 3 of them being actually non-zero values; for the

AutoSetter this unambiguously translates into a C array of 9 doubles, with the same indices filled

with-non zero values as in the Python list.

Listing 3: Sample of AutoGenerated C Setup Code

typedef struct{ // Struct with all FSW modules

VehicleConfigStruct veh;

// [...] More modules below

} AllConfig;

void AllConfig_DataInit(AllConfig *data){ // Modules initialization

memset(data, 0x0, sizeof(AllConfig));

// VehicleConfig module init

data->veh.CoM[1] = 1.0;

data->veh.ISCPntB_B[0] = 600.0;

data->veh.ISCPntB_B[4] = 600.0;

data->veh.ISCPntB_B[8] = 600.0;

strcpy(data->veh.outputMsgName, "adcs_config_data");

// [...] More modules below

}

60

It is worth clarifying that absolutely no naming convention is imposed on the module variables

in order for the AutoSetter to find them and parse them appropriately. Developing this tool was

a matter of investigating which Python built-in properties would provide the information required

to create C code out of the SWIGed modules instantiated and initialized in the existing desktop

Python scripts. It was stablished since the beginning that the AutoSetter should not impose any

ad-hoc restriction nor change in the original scenario scripts and source code. Appendix B contains

pseudo-code for the AutoSetter (see Listing 5). It is important to notice that, by design, the

AutoSetter script is specifically linked to the workings of Basilisk. Having said that, it constitutes

a general proof of Python’s effectiveness in introspection and parsing. Any other FSW testbed that

uses Python wrapping C/C++ code could use an equivalent translation mechanism.

As a quick recapitulation, and as illustrated in Fig. 4.3, the unmodified FSW algorithms

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

CFS

Controls

Guidance

Navigation
FSW App

Figure 4.3: Embedded FSW application

CFS

Controls

Guidance

Navigation
FSW App

SBC Emulator

FPGA
Registers

Figure 4.4: Emulated FPGA register space

61

plus the auto-generated C setup code constitute a cFS application that is embeddable. The em-

bedded cFS-FSW application can be tested in an emulated flat-sat configuration. The concept

of emulating a flat-sat configuration for the purposes of integrated testing is depicted earlier in

Fig. 1.2. In such case, the cFS-FSW application runs within an SBC emulator, which is responsible

for enabling interaction between FSW and the external world. Once FSW is embedded, however,

it is no longer that simple to access the FSW states for reading and writing; in contrast to the

desktop environment, now there is no longer a flexible Python layer that allows easy interaction

with the external world. In order to overcome this challenge and enable communication between

the embedded FSW and the external world, FPGA registers have been modeled within the SBC

emulator. These registers have been modeled as a memory map for the input and output of raw

binary data. The layout of the combined cFS-FSW and modeled registers within the SBC emulator

is illustrated in Fig. 4.4.

4.4 Summary

This chapter has described the transition of the flight application from Basilisk into the cFS

middleware. While Basilisk is a flexible desktop environment useful for prototyping and performing

rapid testing of flight algorithms, the cFS is a middleware layer widely use in space applications

that ensures portability of the flight application among different targets (flight processor boards

and RTOS). The most interesting part of the migration process is the use of the AutoSetter, a

Python tool that has been developed for the specific purposes of translating the Python portion of

the Basilisk flight architecture into C code. The resulting C code, which is minimal and completely

human-readable, is generated through Python’s introspection capabilities. Such transition mecha-

nism is generally applicable to any desktop testbed that, similar to Basilisk, leverages the use of

Python for wrapping underlying C/C/C++ code. The generated C code plus the original flight

algorithm source code are then compiled together into a pure-C cFS FSW application that can be

embedded into an emulated processor board. The need of modeling the FPGA registers within

the emulated board has also been introduced. Yet, given the complex relationship between the

62

cFS-FSW states and the register space, this topic is treated separately later on in the manuscript

(see Section 5.3). At this point and before providing further details on the modeled register space,

it is convenient to step back and introduce the specific flat-sat configuration in which the cFS-FSW

is to be tested. This is done in the following chapter.

Chapter 5

Emulated Flat-Sat Testing of cFS-FSW through Distributed Communication

The previous chapter has shown the generation of a cFS-FSW application that is actually

embeddable. The embedded flight target could be a hardware processor board (for flat-sat testing

and eventually flying) or its emulated counterpart (for emulated flat-sat testing). This chapter fo-

cuses on the integration of an emulated flat-sat testbed that allows realistic testing of the cFS-FSW

application. The advantage of a flat-sat emulation is that it provides pure software substitutions for

expensive hardware components of limited quantity that might be needed simultaneously for test-

ing by different mission groups[13, 31, 34]. While embedded testing in an emulated flight processor

does not replace actual hardware testing, its use can reduce bottlenecks and alleviate schedule con-

straints by allowing system-wide testing early on in a mission program’s schedule. Further, if flight

hardware is emulated in proper high fidelity (which, as it will be shown, is a non-trivial endeav-

our), the transition from emulated flat-sat testing into hardware flat-sat testing can be smooth and

straightforward. An additional challenge associated to the assembly of an emulated flat-sat is the

need of dealing with legacy software models that were never design to work together. Integration of

independent and heterogeneous mission models into the a single integrated simulation run demands

the need for a flexible communication architecture underneath.

With these considerations in mind, this chapter is outlined as follows. First, the legacy soft-

ware models conforming the emulated flat-sat in which the cFS-FSW application is to be tested

are described. Then, the design and implementation of the Black Lion communication architecture

is presented as part of the main work in this thesis. Black Lion is designed to support any type of

64

distributed simulations and the discussion in this chapter covers: functionality, architecture, rele-

vant implementation details and applications. Next, the focus goes back to the specific interaction

between the cFS-FSW application and the other components of the emulated flat-sat. This inter-

action is enabled thanks to the modeling of the FPGA registers and the inclusion of accompanying

avionics hardware models; both of which are specially interesting for their implementation chal-

lenges. Then, three numerical simulations in the emulated flat-sat are showcased, exemplifying the

usage of Black Lion, the emulated registers and the avionic component models. These numerical

tests involve:

(1) Spacecraft pointing commands.

(2) Mars orbit insertion (MOI) maneuver.

(3) Fault-detection of coarse sun sensor (CSS) corruptions.

Next, yet another application of Black Lion is showcased: a distributed formation flying simulation.

Finally, a summary section remarking the highlights of the chapter is included.

5.1 Emulated Flat-Sat

This section presents a specific incarnation of an emulated flat-sat in which the cFS-FSW

application is to be tested. Such incarnation is illustrated in Fig. 5.7 and it is being applied

to support an interplanetary spacecraft mission. In the configuration of Fig. 5.7, the cFS-FSW

application corresponds to the actual onboard executable and it runs on a flight processor emulator

which, in turn, interacts with external applications. As shown in Fig. 5.7, the four main components

in the emulated flat-sat are the following: flight processor emulator, spacecraft physical models,

ground system (GS) model and visualization tool. These components are further explained next:

Flight-processor emulator: LEON board emulated by QEMU with RTEMS on top.

The QEMU emulator is used to emulate a LEON-3 board; the RTEMS real time operating

system runs on top. The emulated flight processor contains the cFS-FSW application as

well as the modeled FPGA registers. Four different registers have been implemented: two

65

input/output board registers (IOB), the solid state recorder register (SSR) and the single

board computer register (SBC). Through the FPGA registers, FSW reads and writes in a

hardware-like fashion that also replicates interrupts.

Spacecraft Models: Basilisk Dynamics Simulation. Basilisk is used to compute the dy-

namics and kinematics of the spacecraft in the space environment as well as to simulate

onboard hardware components like antennas, sensors (e.g. star tracker, gyroscope, coarse

sun sensors...) and actuators (reaction wheels, attitude control thrusters, ∆V thrusters).

In addition, the spacecraft physical simulation has been expanded with mission-specific

Flight Processor Emulator
 Leon board + RTEMS

FPGA Registers

Spacecraft Models

Environment

Ground System Emulator

Commands Database

Telemetry Database

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation
FSW App

TCP

TCP

Visualization

TCP

Figure 5.1: Emulated flat-sat components

66

avionic hardware models that are meant to interact with the FPGA registers.

Ground System (GS) Emulator: LASP in-house model named Hydra. It includes the

command and telemetry databases for the mission. The GS system provides a graphi-

cal interface for the user to manually send commands to FSW as well as to upload tables

and command sequences. The graphical interface also allows the user to monitor teleme-

try provided by FSW. Commands and telemetry come in and out in the form of CCSDS

packets.[11]

Visualization: Unity-based interface named Vizard. It is an open-source graphic tool dis-

tributed together with the Basilisk framework and it allows realistic visualization of the

spacecraft simulated behavior[49].

Interestingly, all these models conforming the emulated flat-sat are independent and stand-

alone applications that were never designed to work together. Therefore, they are inherently het-

erogeneous: they are written in different programming languages, they have different execution

speeds (asynhcronous vs. synchronous, faster than real time vs. slower), some are single-threaded

applications while others run on multiple threads and they also present different endianness (little

endian vs. big endian). The heterogeneity of the models in terms of programming languages and

data structures is represented in Fig 5.2.

Flight Processor Emulator (QEMU)
C / C++

Ground System Emulator (Hydra)
C++

Spacecraft Models (Basilisk)
Python / C++

Visualization (Vizard)
C#

CCSDS packets

raw bin data

C++ structs

C# structs

CCSDS packets

raw bin data

C++ structs

C# structs

Figure 5.2: Heterogeneity of flat-sat models

Given the unique and distinct nature of each model in the flat-sat, the integration of all the

67

models into a single simulation run demands for a solid communication architecture underneath.

On these lines, Black Lion is presented as a purely software-based distributed communication

architecture that has been developed to support the aforementioned interplanetary mission[13].

The Black Lion communication architecture is described in detail in the next section.

5.2 The Black Lion Communication Architecture

Black Lion is a pure-software communication framework aimed at distributed testing of inde-

pendent spacecraft mission models. The framework is architected to be scalable and reconfigurable,

allowing for any number of heterogenous software models, across one or multiple computing plat-

forms, to be integrated into a single simulation run. While the development of Black Lion was

initially motivated to support an interplanetary spacecraft mission, the system is built under the

principles of reusability and scalability and its applications extend beyond the flat-sat use case. As

a communication architecture, Black Lion accomplishes four main tasks:

(1) Transport of binary data between components/nodes.

(2) Serialization of binary data: each node must know how to convert the received bytes into

structures that can then manage internally.

(3) Synchronization: all the nodes need to be in lock-step during a simulation run.

(4) Dynamicity in the connections map: nodes shall not static and required components in the

network but, rather, dynamic clients able to come and go on the fly.

5.2.1 Design and Architecture

The goal of Black Lion is to achieve the described communication tasks while being as

abstracted as possible from the internals of each node. A communication layer that is transparent

and abstracted from the source code of the nodes/components allows users to plug and play their

models of choice. In order to achieve the desired level of abstraction, the Black Lion architecture

has been designed as a single central controller and two APIs (Application Programming Interfaces)

68

that are attached to each node. Such architecture is depicted in Fig. 5.3 and the functionality of

each Black Lion interface is defined next:

Central Controller: it is the only static piece in the network (i.e. it has a static IP address). It

acts as a message broker for data exchange and it also governs synchronization through a

“tick-tock” mechanism. The Central Controller is written in Python.

Delegate API: it is a generic interface that manages sockets and network connections with the

Central Controller. The same script is attached to all the nodes. The Delegate class

is currently implemented in Python, C++ and C#.

Router API: it is a generic interface class with node-specific callbacks. Its purpose is to route

data in and out of the internals of the node. Hence, it is an intermediary between the

generic Delegate class and the specific node application. The Router class is also available

in Python, C++ and C#.

In order to exemplify the functionality of the different BL interfaces it is convenient to use a human-

Node 1

Router

Delegate

BLACK LION
Central Controller

Node 2

Router

Delegate

Node 3

Router

Delegate

Node N

Router

Delegate

Figure 5.3: Black Lion interfaces: Central Controller and, for each node, Delegate and Router

APsd

69

language analogy. Each node can be seen as an individual that speaks a different language (i.e.

Spanish/French/German in the analogy or, in terms of Black Lion, Python/C/C++/C#). The

Router acts as a translator from the individual’s language to a common standardized language (i.e.

metaphorically English, and hexlified byte-string in Black Lion). If the Router is the translator,

the Delegate can be seen as the communicator (i.e. the person who reads the translation out loud

or, in Black Lion, the interface who sends out the standardized data through the sockets). The final

result is an English conversation in which each individual node does not have to learn the particular

language of every other participant in the conversation. This property of the communication

architecture is key to its scalability.

5.2.2 Data Transfer and Synchronization

Regarding data transfer between applications, Black Lion takes advantage of the ZeroMQ

(ZMQ) Message Library1 . In order to fully understand how the communication hub operates, the

reader is pointed to Appendix C, which describes in detail the socket types, connection types and

communication commands used in the system.

1 http://zeromq.org

TOCK

Publish

Subscribe

Step Sim

B
la

ck
 L

io
n

TICK

Figure 5.4: “Tick-tock” synchronization

http://zeromq.org

70

In terms of synchronization, Black Lion uses a “tick-tock” mechanism to maintain all the

applications in lock step. The synchronization is based on a request-reply pattern where the

Central Controller requests a “tick” and the Delegate of each node replies a “tock” after the

node has performed its duty. Figure 5.4 illustrates the actions that each node performs at each

time step: Publish, Subscribe and StepSimulation forward. These three actions are performed

sequentially upon receiving a “tick” request. They are further described next:

Publish: In the Publish internal call, the node’s Router collects the application internal data and

makes it available to the node’s Delegate for publication to the controller’s frontend.

Subscribe: In the Dubscribe internal call, the node’s Delegate receives external data coming

from the controller’s backend and passes the data to the node’s Router, who is responsible

for writing these messages down into the internals of the application.

Stem Simulation: In general terms, the StepSimulation internal call implies executing the

application forward for a ∆t period in order to generate new data. ∆t is basically a time

step and its duration is determined by the Controller and sent to the node’s Delegate as

part of the “tick” message.

Although there are nuances in the precise meaning of StepSimulation for nodes that are syn-

chronous (i.e. run in cycles, like FSW or the spacecraft physical simulation) and for nodes that are

asynchronous (i.e. that are event-based like the ground system), the “tick-tock” mechanism works

seamlessly with either. For asynchronous applications, the Black Lion interfaces simply need to

run on a separate thread than the main application.

It is relevant to mention that, during a Black Lion run, the communication commands (like

the“tick” request) are sent at once by the Central Controller such that all the applications start

running in parallel. Because the applications present different execution speeds, there are some

that can step forward faster and reply back with a “tock” earlier. The trick here is for the Central

Controller to wait until it has received the “tock” from all the applications before sending them

the following “tick”. In this manner, all the components are kept in lock step and the overall Black

71

Lion simulation speed is driven by the slowest of the components.

In hybrid simulations that include both software and hardware in the loop, the “tick-tock”

synchronization mechanism can be exploited to satisfy real-time hardware constraints. The only

limitation of this strategy appears when different applications impose competing, hard time con-

straints. For instance, if two components had distinct time requirements, the “tick-tock” strategy

could only comply with the slowest of them.

5.2.3 Applications

Through the described architecture, Black Lion has been able to enable communication

between nodes whose heterogeneity spans from: multithreaded vs. single-threaded nodes, asyn-

SBC Emulator (QEMU) C / C++
 Leon board + RTEMS

FPGA Registers

Spacecraft Models (BSK)
Py / C++

Environment

GS Emulator (Hydra) C++

Commands Database

Telemetry Database

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

Viz Interface

Visualization (Unity) C#

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation
FSW App

BL Central Controller

Figure 5.5: Black Lion application: emulated flat-sat

72

Deputy

Chief

b̂2 b̂3 b̂1

b̂1

b̂2 b̂3

(a) Mars Atmosphere Exploration

Deputy

Chief
Deputy

b̂1

b̂3b̂2

b̂1

b̂1

b̂3

b̂3b̂2

b̂2

(b) Asteroid Surroundings Exploration

Figure 5.6: Black Lion application: testing of formation flying concepts

chronous vs. synchronous nodes, little-endian vs. big endian nodes, as well as for a variety of

programming languages: Python, C, C++ and C#. The applications for Black Lion are diverse

and numerous. One of the most interesting ones is the emulated flat sat in Fig. 5.5, which was

indeed the driver for the development of Black Lion. Another use case of Black Lion is realistic

testing of formation flying concepts. For example, the communication between a chief spacecraft

and a deputy spacecraft can be realistically emulated through Black Lion. This idea is depicted in

Fig. 5.6 and showcased through numerical simulation in Section 5.5

While Black Lion simulations can be executed in a completely distributed fashion using TCP

communication, as in Fig. 5.5 (where each component of the flat sat runs on a separate computing

platform), it is granted the all the components can also be executed from the same machine using,

for example IPC communication or other local protocols. For the case in which all the Black Lion

components run on the same computing platform, a Bootstrapper file whose function is to launch

all the different components/applications at once has been developed. The Bootsrapper file is

written in Python and uses the language’s Popen feature to launch any external executable. This

feature is extremely convenient for users to start a single-platform Black Lion simulation with a

single click.

Now that the Black Lion communication has been described, let us move forward with the

73

flat-sat application. Next section picks up from earlier and deepens into the interaction between

FSW and the external world through the FPGA registers, which store the FSW data that will then

shipped across Black Lion.

5.3 FPGA registers and Avionics Hardware Modeling

Flight Processor Emulator
 Leon board + RTEMS

FPGA Registers

Spacecraft Models

Environment

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation
FSW App

TCP

Figure 5.7: cFS-FSW interaction: emulated FPGA registers and avionics hardware models

Figure 5.7 illustrates a subset of components in the emulated flat-sat. The underlying Black

Lion architecture is now simply represented as a TCP connection. The white boxes in Fig. 5.7

highlight the specific parts that have been developed for the purpose of enabling reading and writing

of FSW states: FPGA registers (modeled within the processor board emulator) and accompanying

avionics hardware (modeled within the spacecraft physical simulation). Through the different

registers, FSW interacts with the external world by reading and writing in a hardware-like fashion

that also replicates interrupts. For instance, FSW receives commands and returns telemetry from

and to the GS emulator (by means of CCSDS packets that are stored directly into the registers),

it commands the actuators in the spacecraft simulation and it also receives simulated sensor data

through the registers. In turn, the avionics hardware models in the spacecraft physical simulation

leverage complex functionality that would otherwise have to be implemented within the registers

74

as well.

5.3.1 Register Space

As mentioned earlier, four different registers have been implemented: two input/output board

registers (IOB), the solid state recorder register (SSR) and the single board computer register

(SBC). The idea is that each register has an associated memory buffer, and specific FSW states are

mapped to specific addresses within these buffers. Not all the internal FSW states are mapped to

the register’s buffers, but only those that require interaction with the external world. These shared

states are referred to as snorkels, in the sense that they are direct connection pipes to the internals

of the cFS-FSW application. The different snorkels that have been implemented within the register

space, as well as the specific connection of these snorkels to the external world, are illustrated in

Fig. 5.8.

In terms of implementation, the challenge is that all these snorkels are intrinsically different

from each other: some are unidirectional (they could be either reader or writers with respect to

FSW) while other are bidirectional (they have both a reader and a writer associated); some operate

by packet address while others require both packet and descriptor addresses (the descriptor being

a separate word that describes something important about the packet); some snorkels store single-

word packets while others queue them; some packets contain a fixed number of bytes while others

present variable size; a few snorkels need to add or remove header bytes before providing/retrieving

the packets to/from FSW; and most of the snorkels are required to handle endianness, which is a

non-trivial task. Because big endian ordering has the most significant byte in the lowest address

while little endian has the most significant byte at the highest byte address, sharing information

between different machines can be complicated. It is necessary to know the size of the data be-

ing transferred as well as the endianness of the source and target machines. Otherwise shared

information may appear to be incorrect due to data conversions being done incorrectly.

75

Spacecraft Models

SSR Register

IPC

interrupts: UM, IPC

SBC Register

Master VTC: coarse time,
fine time, fine divider, IRQ

IPC: housekeeping &
NVM storage

CSS converter

RW converter

PCU

TX: telemetry

RX: command

Interrupts: TX, RX

DKE

Actuators

Sensors

Clock

UM / PCU: controller, prop
& switch cards

DPU’s: fused attitude &
MIRU data queues

CSS

IOB 2 Register

RW2 & RW4
torque commands

RW2 & RW4 speeds

Interrupts

IOB 1 Register

RW1 & RW3
torque commands

RW1 & RW3 speeds

Interrupts

Slave VTC: coarse time,
fine time, fine divider, IRQ Ground Sys Model

Telemetry

Commands

CFS-FSW

Figure 5.8: Detailed view of the emulated FPGA registers and avionics hardware models

76

5.3.2 Avionic Models

Regarding the avionics hardware models that accompany the registers’ snorkels, the following

models (shown in Fig. 5.8) have been implemented: a reaction wheel (RW) converter, a coarse sun

sensor (CSS) converter, a clock model, the power computing unit (PCU) and the interconnect

peripheral component (IPC). The PCU and IPC are particularly complex models responsible of

managing avionics cards (i.e. controller, propulsion and switch cards), storing and retrieving non-

volatile-memory commands, and producing house-keeping packets. While the specific snorkels and

avionic hardware models described here are mission-specific, the register space with its readers and

writers constitutes a generic framework that can be applied to any FSW application. The use of

this same register space into a different FSW application (which is not cFS based) is shown in later

chapters of this manuscript.

The next section presents several numerical simulations exemplifying the use of the emulated

registers and avionic models in order to test the closed-loop behavior of the cFS-FSW application.

In these simulations, FSW interacts with the other flat-sat components (i.e. GS model, spacecraft

physical simulation and visualization) through the distributed Black Lion communication architec-

ture.

5.4 Emulated Flat-Sat Simulations

This section showcases three different numerical simulations corresponding to different tests

on the emulated flat-sat. The first numerical simulation consists on performing a series of space-

craft pointing maneuvers by sending individual commands from the ground system model. This

simulation serves to show the core functionality of the modeled FGPA registers on enabling commu-

nication between FSW and the external world for the purposes of closed-loop testing. The second

numerical simulation consists on performing a Mars orbit insertion by uplinking the corresponding

block-command sequence. This simulation is particularly interesting for its complexity and reliance

on multiple avionic hardware models. The third and last numerical simulation is a fault-detection

77

test which has been designed and implemented by the author in support to the aforementioned

spacecraft mission. In this test, the Black Lion communication architecture is exploited to trigger

a fault on the simulated coarse sun sensors in the middle of a distributed run. Then, the ground

system model is used to monitor FSW telemetry and check for correct detection of the injected

fault.

5.4.1 Spacecraft Pointing Commands

The first numerical simulation consists on commanding the spacecraft into a series of pointing

maneuvers. In this case, the user utilizes the ground system interface to manually send commands

to FSW as well as to monitor the reported telemetry. The different commands issued by the user

are the following:

(1) Nav monitoring and inertial pointing command

(2) Ephemeris correlation and Mars pointing command

 Inertial Point

 Mars Point

 Sun Point

GS command:
inertial point

GS command:
Mars point

GS command:
Mars point

GS command:
Sun point

�
1

�
2

�
3

Figure 5.9: Closed-loop response: spacecraft’s main body attitude

78

(3) Sun pointing command

(4) Mars pointing command

These commands are stored in the FPGA registers and picked up by the cFS-FSW applica-

tion in order to reconfigure the onboard pointing mode. In the meanwhile, sensor data from the

spacecraft physical simulation is being continuously updated within the registers. Once the nav

monitoring command is received, FSW starts using the sensor data as an input to the navigation

filters in order to achieve attitude lock. The user is able to monitor the ADC (Attitude Dynamics

and Controls) packets in the telemetry stream through the GS interface; hence, keeping track of

Inertial
Point

Sun
Point

Mars
Point

Mars
Point

GS command:
Mars point

GS command:
inertial point

GS command:
Sun point

GS command:
Mars point

 Mars Point

 Sun Point

 Earth Point

Figure 5.10: Closed-loop response: reaction wheel speeds

79

�1

 Mars point
convergence

(a) Mars miss angle

 Sun point
convergence

(b) Sun miss angle

Figure 5.11: Closed-loop response: instruments pointing

the current FSW attitude states. Once attitude lock is achieved and a pointing command (e.g.

inertial pointing) is issued, FSW estimates the spacecraft’s current pointing attitude, derives the

associated tracking errors and computes the control torques required to drive the spacecraft into the

desired attitude. The control torques are stored in the registers and sent across Black Lion to the

spacecraft physical simulation, where a set of four reaction wheels is used to apply the commanded

control torque.

Figure 5.9, Fig. 5.10 and Fig. 5.11 show the closed-loop response of the spacecraft physical

simulation. In particular, the plots in Fig. 5.9 correspond to the MRP attitude of the spacecraft’s

main body frame; the plots in Fig. 5.10 show the reaction wheel speeds driven by the control

voltage commanded by FSW; and Fig. 5.11 displays the miss angle (in degrees) of the onboard Mars

80

instrument and solar arrays. These plots help testing not only the flight algorithm performance

but also the validity of the GS commands. In addition, they constitute a proof of adequate register

modeling and exchange of data across Black Lion.

5.4.2 Mars Orbit Insertion

The second integrated simulation involves a Mars orbit insertion (MOI) scenario. Validating

the FSW performance in such complex and long scenario is not easily done by simply looking at

plots of individual parameters. In this case, the visualization tool that is integrated as part of

the emulated flat-sat turns extremely handy. A visual movie of the spacecraft can be watched

live stream during a simulation run.2 In addition, the tool also offers offline playback capability.

Figure. 5.12 shows a series of screenshots from the visualization movie of an MOI test.

Behind the scenes of the MOI run, the register snorkels and avionics hardware models play

a crucial role. In addition, another component is integrated into the emulated flat-sat: the CFDP

(CCSDS File Delivery Protocol) node. Through CFDP, data files like command sequences can be

uplinked to FSW in a flight-like manner. The addition of the CFDP node as a transition point

between the GS model and the embedded FSW application is illustrated in Fig. 5.13.

In the MOI scenario, one of the most important models is the power computing unit (PCU),

responsible of managing the propulsion cards within the Solid State Recorder register of the FPGA,

in order to trigger the ∆V and ACS thrusters to fire. As depicted earlier in Fig. 5.8, the PCU

model has been implemented in two pieces: a PCU snorkel within the processor board emulator

and an accompanying PCU avionic model within the spacecraft physical simulation. The snorkel

and avionic model communicate through each other across Black Lion in a bidirectional fashion.

The PCU avionic model initializes the bytes within the snorkel’s cards. These cards are a controller

card, two propulsion cards and four switch cards. In turn, when FSW commands the thrusters to

fire, it does so by writing burn times in certain addresses of the register’s propulsion cards. These

burn times are shipped across Black Lion and received by the PCU avionic model on the spacecraft

2 https://hanspeterschaub.info/basilisk/Vizard/Vizard.html

https://hanspeterschaub.info/basilisk/Vizard/Vizard.html

81

(a) Approach to Mars (b) ACS thruster control

(c) ∆V burn (d) Orbit capture

Figure 5.12: Mars orbit insertion scenario

simulation side. The avionic model transforms the received burn times into commands that the

thrusters modelled within Basilisk understand. The thruster activity within the spacecraft physical

simulation is observed in Fig 5.12(b) and Fig 5.12(c).

Another interesting pair of register snorkel plus avionics model, which is also used in MOI,

is the spacecraft clock. In Fig. 5.8, the clock snorkel is labeled as VTC, which stands for vehicle

time clock, and its function is to provide accurate time data to the onboard flight algorithms.

The use of the clock interfaces allows accounting for times when FSW is asleep but the spacecraft

physical simulation has to keep running. In general, it has always been a challenge to use flight

software simulators when dealing with simulations that need to account for times when FSW is

asleep. For instance, a rover on Mars goes to sleep at night to conserve energy, but the environment

keeps going (temperature goes down, wind keeps blowing, etc.). The clock model implemented as

82

Flight Processor Emulator
 Leon board + RTEMS

FPGA Registers

Ground System Emulator

Commands Database

Telemetry Database

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation
FSW App

CFDP

UPLINK

UPLINK

DOWNLINK

DOWNLINK

Figure 5.13: Addition of CFDP node for realistic uplink and downlink of data

half snorkel and half avionics component (as in Fig. 5.8) can gracefully handle this situation by

allowing FSW time jams. The idea is that, when FSW wakes up, the flight clock needs to catch

up and be syncrhonized with the current virtual time in the spacecraft physical simulation. In the

MOI scenario of Fig. 5.12, the FSW clock time is jammed for the purpose of transitioning from

the cruise period up into the time when MOI is scheduled. Integrating the capability of jamming

the spacecraft clock time was more challenging than it seems at first sight because of the complex

interaction between FSW and its time providers. Two different snorkels had to be implemented: a

master VTC and a slave VTC. Both of them had to be separate snorkels yet in synch all the time.

Some of the data provided by these snorkels includes coarse time, fine time and hardware-interrupt

status among other. As a matter of fact, for most snorkels to work properly, it is necessary to

83

replicate and trigger hardware interrupts at the right times –the aim is to make FSW believe it is

running on the hardware flight processor rather than on its emulated counterpart.

An additional capability integrated into the emulated flat-sat in the context of MOI testing

has to do with FSW resets. The MOI block-command sequences uplinked to FSW actually contain

FSW resets, as it will happen in flight. Rather than modifying those sequences, it was desired

to add the capability of simulating FSW resets within the emulated flat-sat as well. In order

to achieve this, an IPC snorkel and and IPC avionic model were implemented within the FPGA

registers and the spacecraft simulation respectively. The IPC avionic model is responsible of 1)

producing housekeeping packets and 2) storing non-volatile-memory (NVM) data. In turn, the IPC

snorkel is responsible of 1) arranging the NVM data that FSW writes into complete packets and

2) requesting either the storage or the retrieval of the NVM packets to the IPC avionic model.

5.4.3 Coarse Sun Sensors Corruption/Miscompare

The last numerical simulation is particularly interesting because it represents a test done

in support to the Fault Detection and Protection (FDP) group at LASP for the aforementioned

interplanetary spacecraft mission. This test contemplates a mismatch between the data provided

by the two pyramids of coarse sun sensors (CSS) onboard the spacecraft. The nature of the fault

makes it impossible to run the test on on the actual spacecraft hardware; the only viable way to

test the FSW response in presence of a CSS corruption is by means of the emulated flat-sat.

Six different faulted cases are considered:

(1) All sensors in one pyramid rail high.

(2) All sensors in one pyramid rail low.

(3) All sensors in one pyramid babble.

(4) One sensor in one pyramid rails high.

(5) One sensor in one pyramid rails low.

(6) One sensor in one pyramid babbles.

84

These cases were assessed separately for each of the two pyramids; hence, conforming a total of 12

different tests.

Figure 5.14 shows the introduction of a fault into all the CSS in pyramid 1. Pyramid 1

is shown in blue and pyramid 2 in red. To be more precise, the plotted signals correspond to

the output of the analog-to-digital converter for each CSS. In the case shown in Fig. 5.14, all the

sensors in pyramid 1 start babbling. The fault is introduced into the Basilisk sensors in the middle

of the simulation through Black Lion. The fault is triggered after 200 seconds of nominal operation,

shortly after the spacecraft has stabilized into safe mode. In this simulation, the GS interface is

Converter 1 signal

Converter 2 signal

Figure 5.14: CSS analog-to-digital converters: signal miscompare

85

Figure 5.15: FDP telemetry packets: faulted converter 1 and primary converter 2

used to monitor the FDP telemetry packets provided by FSW. These packets reveal that FSW

has detected a miscomparision between the signal of the two converters. In addition the packets

also point to the converter that FSW believes is faulted. Figure 5.15 is a screenshot of the GS

interface showing the FDP telemetry packets for the faulted case in Fig. 5.14. Note that converter

1 is correctly identified as the one being faulted.

5.5 Formation Flying Simulation through Black Lion

This section extends the concept of modular attitude guidance on a single spacecraft (pre-

sented earlier in Chapter 2) into distributed guidance across a constellation of satellites[12]. Such

extension is achieved by means of the Black Lion communication architecture. Without loss in

generality, two spacecraft are considered: a chief spacecraft and a deputy. The chief computes a

nadir-pointing reference and, through Black Lion, it communicates this time-varying base reference

to the deputy spacecraft, which aligns with it and superimposes a relative dynamic motion on

top. The final guidance reference of the deputy is a scanning pattern on the surroundings of the

86

chief’s pointing target. To make it even more interesting, the numerical simulation presented in

this section includes a Raspberry Pi in the loop; the flight algorithms of the deputy run separately

on the Raspberry Pi hardware.

Pointing Base Reference:

Dynamic Reference:

Tracking Error:

R0/N

R1/R0

Final Ref ⌘ R/N

R/R1

Single Spacecraft

(a) Single-spacecraft modular guidance

Pointing Base Reference:

Tracking Error:

R0/N

Final Ref ⌘ R/N

R/R0 Dynamic Reference:

Tracking Error:

Final Ref ⌘ R/N

R1/R0

R/R1

DeputyChief

(b) Multi-spacecraft distributed guidance

Figure 5.16: Attitude guidance reference generation: modular vs. distributed

Figure 5.16 illustrates the concept of extending modular attitude guidance maneuvers into

their distributed counterpart. With the distributed scheme in Fig. 5.16(b), the deputy spacecraft

has constrained autonomy in the sense that it relies on the base reference generated by the chief

but not on the ground, while the chief spacecraft is completely autonomous (i.e. it builds its final

87

reference onboard).

Figure 5.17 shows the concept of operations as well as the setup of the distributed simulation.

The idea behind the concept of operations is the following: the guidance reference for the chief

spacecraft is a time-varying pointing reference, e.g. pointing towards the center of the orbited

celestial body. Note that the pointed celestial object could be any target for which the chief has

onboard ephemeris: a planet, moon, asteroid, etc. In turn, the goal of the deputy spacecraft is to

scan the surroundings of the chief’s target in search of additional science opportunities or events.

As the chief keeps orbiting, the base pointing reference will change, and the deputy will realign to

match this time-varying base, on top of which the scanning pattern will continue. In the orbit of

Fig. 5.17, the base reference is seen in the alignment of both spacecrafts while the relative dynamic

motion of the deputy is represented by the asterisk scanning pattern. Of course, the drawing in

Fig. 5.17 does not illustrate the time-varying nature of the base pointing reference but it is actually

simulated. An interesting aspect of this concept is that the deputy does not require any kind

of knowledge about the nature of the target; it simply scans the surrounding area of the chief’s

pointing reference. Note also that such concept is valid for any relative distribution between chief

and deputies, which could certainly be on different orbits.

The setup of the distributed numerical simulation is the following: each spacecraft has a

separate FSW process (labeled as “Chief FSW” and “Deputy FSW” in Fig. 5.17) and a spacecraft

physical simulation process (labeled as “Chief SC” and “Deputy SC” in Fig. 5.17). For the chief,

both processes run on the same computing platform. For the deputy, the physical simulation pro-

cess runs on a desktop computer while the FSW process runs on a separate commercial processor,

the Raspberry Pi. Note that each physical simulation is conformed by dynamic, kinematic and

environment (“DKE” in Fig. 5.17) models as well as spacecraft hardware models like sensors and

actuators. In turn, each FSW process is conformed by navigation tasks (sensor processing, esti-

mation, etc.), guidance tasks (reference generation, tracking error, etc.) and control tasks (control

law, torque mapping, etc).

A priori, a distributed guidance maneuver could work in two different modes: it could be

88

either commanded or sensed. In the commanded case, the deputy receives the base pointing refer-

ence from the chief through a communication receiver (i.e. using radio frequency). In the sensed

case, the deputy spacecraft uses a relative attitude sensor in order to estimate the current attitude

and angular rate of the chief spacecraft. The numerical simulation presented next focuses on the

former case: distributed commanded guidance. Figure 5.18 shows a more detailed version of the

simulation setup used for the commanded case considered. In Fig. 5.18, the specific connections

between FSW and hardware models of the chief and the deputy are specified. Here, the chief FSW

computes the Mars pointing reference and transmits this guidance reference to the communication

receiver on the deputy. The data received on the deputy hardware model is then transmitted to

the deputy guidance algorithms.

The particular guidance modules used by the chief and the deputy to assemble their final

references are shown in Fig. 5.19. The chief’s final reference is nadir Mars pointing, which can be

achieved by means of the Hill-orbit pointing module and the addition of an attitude offset. In turn,

the deputy’s final reference is an asterisk scanning relative to the chief’s pointing, which can be

Chief SCChief FSW

Controls

Guidance

Navigation

Actuators

Sensors

DKE

Deputy SC Deputy FSW

Actuators

Sensors

DKE

Controls

Guidance

Navigation

b̂2 b̂1

b̂3

b̂1

b̂2

b̂3

Deputy

Chief

Figure 5.17: Distributed guidance: concept of operations and simulation setup

89

achieved through four timely commands to the Euler rotation module.

Figure 5.20 show the true attitude states (i.e. computed in the spacecraft physical simulation)

of the deputy. The peaks in Fig. 5.20(b) coincide with to command of a new raster. It is observed

that, after each command, the angular rates stabilize into a non-zero reference, which reveals the

time-varying nature of the Mars pointing base reference. In turn, Fig. 5.21 displays the tracking

Chief SC

Deputy SC

Actuators

Comm. Rcvr

Deputy FSW

Controls

Guidance

Chief FSW

Controls

Guidance Actuators

Dynamics

MPI

⇥
R0/N

⇤
⌘

⇥
R/N

⇤

⇥
R/N

⇤
⌘ Comm Guid

Figure 5.18: Distributed commanded guidance: connections between modules of the chief and the
deputy simulations

Deputy FSW GuidanceChief FSW Guidance

Hill Pointing Module

Tracking Error Module

R0 ⌘ {�R0/N , N!R0/N , N !̇R0/N}

Mars ephem

Att. O↵set ⌘
⇥
�R0/R

⇤

Tracking Error Module

Euler Rotation Module

2
664

{✓, ✓̇, traster}1

{✓, ✓̇, traster}2

{✓, ✓̇, traster}3

{✓, ✓̇, traster}4

3
775

R1 ⌘ {�R1/N , N!R1/N , N !̇R1/N}

2
664

�B/R
B!B/R
B!R/N
B!̇R/N

3
775 ⌘ Chief Guid Output

Att. O↵set ⌘
⇥
�R0/R

⇤

2
664

�B/R
B!B/R
B!R/N
B!̇R/N

3
775 ⌘ Deputy Guid Output

Chief Nav ⌘

�B/N

B!B/N

�
�B/N

B!B/N

�
⌘ Deputy Nav

Figure 5.19: Stack of attitude guidance modules for the chief and deputy FSW suites

90

error and control torque computed by the deputy FSW. As expected, these converge to zero,

indicating that the proper superposition of base and dynamic references –if there were discrepancies

between the reference attitude states, the tracking error could not asymptotically converge to zero.

Finally, Fig. 5.22 shows the relative scanning pattern: as commanded by FSW in Fig. 5.21(a) and

as achieved in the spacecraft physical simulation in Fig. 5.21(b).

5.6 Summary

This chapter has described all the technical challenges associated to the assembling of an

emulated flat-sat with unprecedented level of fidelity. Using this emulation, it is possible to test the

performance of an embedded FSW application in a distributed and flight-like manner. There are

two main tasks or aspects that have been critical to the successful implementation of the flat-sat

emulation:

(1) Development of the Black Lion communication architecture.

(2) Modeling of FPGA registers and accompanying avionic hardware models.

While the development of Black Lion was initially motivated for an interplanetary mission,

0 10 20 30 40
Time, min

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

M
RP

1

2

3

(a) MRP body attitude σBN

0 10 20 30 40
Time, min

0.030

0.025

0.020

0.015

0.010

0.005

0.000

An
gu

la
r R

at
e,

 ra
d/

s

1

2

3

(b) Body angular rate ωBN

Figure 5.20: Deputy true attitude states

91

0 10 20 30 40
Time, min

0.0

0.1

0.2

0.3

0.4

M
RP

1

2

3

(a) Attitude tracking error σBR

0 10 20 30 40
Time, min

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

Co
nt

ro
l T

or
qu

e,
 N

m

L1
L2
L3

(b) Computed 3D control torque Lr

Figure 5.21: Deputy FSW states: tacking error and control torque

1.start1.end

2. start

2. end

3.start

3.end 4.start

4.end

(a) Commanded relative angles (deputy FSW) (b) True scanned angles (deputy physical simulation)

Figure 5.22: Relative asterisk pattern: commanded vs. true pointing angles

this communication system has been built under the principles of reusability and scalability and its

applications extend beyond the flat-sat example discussed here. For instance, the use of Black Lion

in a formation flying simulation with hardware-in-the-loop components has been demonstrated.

92

Additional use cases of Black Lion could involve: the integration of large clusters of spacecraft,

having complex simulation components running on super-computers or cloud servers, as well as

hybrid distributed simulations including both software and hardware spacecraft components.

For the aforementioned mission, emulated flat-sat testing through Black Lion has proved to

be an extremely cost-effective means of performing system-wide testing early on in the mission’s

program, alleviating schedule constraints by using software models only. In addition, the flexibility

of Black Lion has allowed running fault detection tests that could not be executed in any other

testbed.

In turn, the modeling of FPGA registers and avionic components stands out for its high-

level of fidelity. In addition to performing complex operations on FSW packets, these models

also replicate hardware interrupts, making FSW believe it is running on an actual flight processor

board –despite being actually a software emulation. While the presented avionic models and packet

handlers are mission specific, the register space with its readers and writers constitutes a generic

framework that can be applied to any FSW application. The registers have been designed and

implemented in a generic manner where high-level handlers can be customized to satisfy particular

mission needs. As a matter of fact, a simplified version of the same register space is used in the

next chapter to test a different FSW application that is based on MicroPython rather than on cFS.

Chapter 6

Flight Algorithm Migration into MicroPython

Seeing the generalized interest in Python for desktop FSW development, it makes good sense

to consider MicroPython as a middleware for embedded development. As a quick recapitulation,

MicroPython is a lean and efficient implementation of the Python 3 programming language that

includes a small subset of the Python standard library and that is optimized to run in micro-

controllers and in other constrained environments. It presents many advanced scripting features

while being compact enough to fit and run within just 256k of code space and 16k of RAM.

The compelling aspects of the modern and open-source MicroPython is that it has the po-

tential of providing an embeddable infrastructure that is similar to desktop environments (in terms

of user friendliness and interaction functionalities) while adhering to the needs of space (in terms

of determinism and minimal use of resources). The endeavour pursuit in this chapter consists on

building a Basilisk-based flight application on top of MicroPython and prove, through numerical

simulation, that it is indeed feasible. The challenge is that these two software frameworks were

never designed to work together and, therefore, their compatibility is a priori an open-ended ques-

tion. While Basilisk uses Python, MicroPython is only a subset of the library and limitations are

prompted to appear. In addition, in the Basilisk desktop environment the underlying C andC++

modules are wrapped through the SWIG library, which is as handy as it is large (and therefore

cannot be used within MicroPython). While MicroPython can interface with native C code, the dif-

ficulty of creating your own custom modules still need to be assessed –recall that Basilisk C modules

are complex flight algorithms and their interaction with the Python layer is also non-trivial.

94

With these considerations in mind, the chapter is outlined as follows: first, the technical

steps required to migrate the flight algorithms out of the Basilisk desktop environment into the

MicroPython embeddable environment are described. Next, a pure-Python tool developed to au-

tomatize and aid in the migration process is presented. This tool is named AutoWrapper and it is

born from the same principle as the AutoSetter tool shown earlier: Python’s introspection capabil-

ities. Then, a mechanism to post-process numerical simulation results coming from the constrained

MicroPython environment is suggested and described. Numerical simulation results of a Basilisk-

MicroPython FSW application tested in closed-loop are shown to demonstrate the feasibility of

the system and the successful implementation of all the tools previously described in this chapter.

Finally, a summary section describing the highlights of the results is included.

6.1 From Basilisk into a MicroPython application

The idea proposed in this manuscript is to use MicroPython for embedded setup and em-

bedded execution of the same (unmodified) C flight algorithm code as in the Basilisk desktop

environment. However, the standard way of extending MicroPython with custom C modules in-

volves a lot of boilerplate code. For this reason, another open-source software tool is introduced:

the MicroPython C++ Wrap1 is a header-only C++ library that provides some interoperability

between C++ and the MicroPython programming language. Using the MicroPython C++ Wrap

the process of integrating C++ modules within MicroPython is drastically reduced. However, this

comes at the cost of requiring all the modules to be written in C++ rather than in C; recall that,

currently, all the FSW modules within Basilisk are written in C. With this in mind, the technical

work required to migrate Basilisk flight algorithms into MicroPython can be broken down into three

steps:

(1) Creating a C++ class for every C FSW module: Since the MicroPython C++

wrapper is specially designed to wrap C++ code, the suggested approach for wrapping the

unmodified C FSW algorithms, as they currently exist in Basilisk, is to a create a C++

1 https://github.com/stinos/micropython-wrap

https://github.com/stinos/micropython-wrap

95

wrapper class (new .hpp file) for every module (.h and .c file) there is. The C++ class is

a wrapper in the sense that it does not implement new functionality: it simply provides

callbacks and easy access to the underlying C variables and methods from the MicroPython

layer.

(2) Generating integration code for every C++ class that needs to be available at

the MicroPython layer. MicroPython is meant to interact directly with the recently

created C++ wrapper classes, treating them as if they were native Python modules. In or-

der to achieve this behavior, it is necessary to recompile MicroPython after having declared

and registered the different C++ classes, functions and types.

(3) Adapting existing desktop Python scenario scripts into MicroPython. Since

MicroPython is only a light version of the Python 3 programming language, some advanced

Python functionalities and large libraries (like those usually employed for post-processing)

are not supported. If this constraint is accounted for, the desktop Python scripts could, in

principle, be seamlessly used within MicroPython, provided that they are written in version

3 of the language. With respect to Basilisk, however, MicroPython scripts currently import

the C++ wrapper classes while desktop Python scripts import directly the C modules. In

this sense, the import and instance of modules is different between MicroPython and Python

scenario scrips –which is a small adjustment.

These three technical steps are necessary in order to integrate Basilisk into MicroPython. In

addition to integrating these software frameworks together, it is also necessary to compile them and

build them jointly. Because the Basilisk-MicroPython system encompasses the use of three distinct

software repositories and tools (i.e. Basilisk, the MicroPython C++ Wrapper and MicroPython),

building the system together is an involved endeavour. Appendix D provides step-by-step guidelines

on how to build the Basilisk-MicroPython FSW system for Unix.

96

6.2 Migration Mechanism: the Auto-Wrapper

The interesting part of the described migration tasks is that the creation of the C++ wrap-

per classes and the generation of the MicroPython integration code can be handled automatically.

Let us recall the introspection capabilities that are inherent to the Python language. Similarly to

how the AutoSetter produces specific C setup code for integration within cFS (see Section 4.3

and Appendix B for reference), an equivalent script has been developed to automate the integra-

tion of Basilisk modules within MicroPython. This new introspective script is referred to as the

AutoWrapper and it is also written in Python. Pseudo-code for the AutoWrapper is also presented

in Appendix B.

The process of migrating Basilisk FSW modules from the desktop environment into MicroPy-

thon through the AutoWrapper is illustrated in Fig. 6.1. Note that the input to the AutoWrapper is

simply a desktop Python scenario script and the output are the corresponding C++ wrapper classes

and the MicroPython integration code patch. The AutoWrapper tool uses the same mechanism as

the AutoSetter to figure out the variable and method names of the underlying C modules. Once

introspection is granted, the code for the C++ wrapper classes and the MicroPython integration

can be generated through templates. Listing 6 showcases a sample C++ wrapper class that has

been automatically generated by the AutoWrapper, while Listing 7 provides pseudo-code for the

Python template that the AutoWrapper uses to define how the C++ classes are to be written.

The combination of the C++ wrapper classes and the MicroPython integration code is equiv-

alent to the functionality that SWIG provides out of the box for Python in a regular desktop

environment. Thanks to this, Basilisk FSW simulations can be set up and executed from the

embeddable MicroPython layer in the same way they are executed from Python in the desktop

environment.

97

MPyFSWSim

FSW Algs (C)

Controls

Guidance

Navigation

MPI

User Scripts (MicroPython)

C++ wrapper classes

MicroPy integration patch

BSK

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)

AutoWrapper.py

“Auto-Wrap” code
C++ classes & integration patch

DesktopFSW Sim

Figure 6.1: Flight algorithm migration into MicroPython through the AutoWrapper

6.3 Post-Processing MicroPython Results

Recall from earlier that, in the desktop prototyping environment, Python is used for 1) setup,

2) desktop execution and 3) post-processing of the simulation results. However, MicroPython

cannot handle post-processing because it is meant to be embedded and, not suprisingly, large

libraries for analysis and plotting are not supported. Then, the question that raises immediately is

how to validate the results from a MicroPython simulation run. As a matter of fact, MicroPython

is capable of logging all the data from an execution run. Since the problem is about pulling and

plotting such data within the constrained environment, an alternative solution is to archive the

data in a binary file. Thanks to the interoperability between MicroPython and regular Python, the

archived results can be loaded without modification back into the desktop Python environment for

98

DesktopFSW Sim

MPyFSWSim

Log Data

Pull & Plot Logs

Archive Logs

User Scripts (MicroPython)

User Scripts (Python)

Log Data

Archive Logs

PostProcess Sim

Load Archive

Pull & Plot

Figure 6.2: Post-processing Python (desktop) and MicroPython (embedded) execution runs.

regular post-processing. Figure 6.2 illustrates the suggested post-processing mechanism through

an archived binary file. The key aspect of this approach is that the post-processing simulation

is agnostic of the archive file being created out of the Python desktop simulation or out of the

MicroPython embedded simulation. Such agnosticism contributes towards a more homogenous and

smooth process for cross-environment testing.

In order to elaborate further on how the archived binary file is structured, it is necessary to

go back to Basilisk’s architecture, since they are intrinsically linked. All the Basilisk simulations

are actually instances of a simulation-base class written in C++ and this class contains a member

variable that is a message logger. Recall that Basilisk is based on a publish-subscribe messaging

interface; meaning that all the modules instantiated in a simulation communicate with each other

through messages that have unique message names and IDs. The message logger of the simulation-

base class is used at the Python level in order to define which message names are to be logged and at

which logging rate. For each message name to be logged, a log element is created as a C++ class.

This log element has an associated memory buffer, which increases over time as more instances

of the same message are being stored. Once the simulation is over, the buffer associated to each

99

element/message can be retrieved back at the Python layer for post-processing. Additionally, these

buffers can also be written into a file (i.e. the binary archive). The archive is simply created by

looping through the different log elements (or message names) and, for each element, writing out

the message data (message name, message ID, number of logs and raw buffer) into the file using

I/O functions from the C++ standard library.

6.4 Numerical Simulation: Testing Basilisk-MicroPython FSW

In order to fully prove the validity of MicroPython as a FSW target, it is necessary to test

the performance of the embedded flight algorithms in simulated closed-loop. With this purpose in

mind, several Basilisk modules have been integrated within MicroPython: a subset of the C FSW

modules, the basic C++ architectural modules (e.g. process containers, task containers, messaging

system) and a register-like module that enables interaction between FSW and the external world.

A simplified illustration of the MicroPython-FSW setup, as well as its interaction with an external

spacecraft simulation, is shown in Fig. 6.3. The register interface module in Fig. 6.3 is actually a

FSW Algs (C)

Controls

Guidance

Navigation

MPI

User Scripts (MicroPython)

C++ wrapper classes

MicroPy integration patch

Registers
(C++)

Interface

MPyFSWSim

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

Actuators

Sensors

Desktop Dyn Sim

Figure 6.3: Closed-loop testing of MicroPython flight algorithms

100

simplified version of the complex FPGA register space implemented earlier in the context of cFS.

The concept of snorkel readers and writers is exactly the same.

An inertial pointing guidance maneuver is used in order to prove the validity of MicroPython

as a target for Basilisk flight algorithms. The FSW modules involved in this closed-loop maneuver

are the following:

• Vehicle configuration: contains vehicle static data used by other modules.

• Reaction wheel (RW) configuration: contains RW static data used by other modules.

• Inertial pointing (guidance module): computes an inertial 3D reference, which is

conformed by an MRP attitude set, angular rate and angular acceleration.

• Attitude tracking error (guidance): computes the tracking error between the current

state and the desired reference.

• MRP feedback (controls module): computes a 3D control torque.

• Reaction wheel motor torque (controls): maps the 3D control torque into individual

motor torques for the RW pyramid (a set of four RWs is used in the physical simulation).

Figure 6.4 illustrates numerical results from the closed-loop simulation. Figure 6.4(a) displays the

attitude tracking error evolution as computed by FSW, while Fig. 6.4(b) illustrates the control

torques commanded to the reaction wheel pyramid. The FSW states computed within MicroPy-

thon have been post-processed and plotted a posteriori on a desktop post-processing simulation as

described earlier. The FSW algorithms running within MicroPython bring the spacecraft (which

is initially tumbling) into an inertial 3D pointing state. The spacecraft simulation, which runs on

a separate platform, is set in a Mars orbit.

6.5 Summary

The previous results constitute an initial feasibility analysis for running Basilisk-developed

flight algorithms within MicroPython. In this first proof of concept, the potential of MicroPython

as a middleware for space applications is already showing. Therefore, early comparisons between

101

0 2 4 6 8 10 12 14
Time, min

0.4

0.2

0.0

0.2

0.4

M
RP

1
2
3

(a) MRP attitude tracking error

0 2 4 6 8 10 12 14
Time, min

0.75

0.50

0.25

0.00

0.25

0.50

0.75

W
he

el
 T

or
qu

es
, N

m

u1
u2
u3
u4

(b) Reaction wheel commands

Figure 6.4: Closed-loop testing of MicroPython-FSW: flight algorithm plots

MicroPython and cFS can be drawn.

(1) Reduced migration effort: by means of MicroPython, the migration effort is reduced in

the sense that the generated integration code is no longer specific but reconfigurable. The

C setup code generated by the AutoSetter for cFS integration is specific to every single

FSW configuration in a given Python scenario script; in contrast, the FSW C++ classes

and MicroPython integration code generated by AutoWrapper are only written once. At

this point, all the FSW states become fully reconfigurable from the MicroPython layer

without need of recompiling the source code again.

102

(2) FSW states access: Because MicroPython has full access to the message passing interface

of the FSW application, it is possible to fully capture all the FSW states at any point in a

simulation run. Further, the modeling of FPGA registers can be greatly simplified for the

purpose of emulated flat-sat testing.

(3) Portability: Last but not least, MicroPython guarantees the portability of a middleware

layer without the replicated functionality imposed by cFS.

Chapter 7

Basilisk-MicroPython for Embedded Systems

The previous chapter has shown the first proof of concept for using the Basilisk flight archi-

tecture together with a MicroPython interpreter in order to yield a user-friendly, light-weight and

flexible flight operating system that can seamlessly run in desktop environments and, potentially,

in constrained flight environments. In the initial proof of concept, MicroPython runs on top of

the Unix operating system but, indeed, the real use case of the Basilisk-MicroPython FSW ap-

plication is to run in a constrained environment on top of an RTOS. Yet, the previous technical

demonstration served to show that, by making use of the MicroPython C++ Wrap library, Mi-

croPython can easily interface with Basilisk’s C/C++ algorithm source code. As stated earlier,

common requirements of spacecraft FSW involve:

• Interfacing to native C and C++ code.

• Real-time determinism: consistent and repeatable execution within a time constraint.

• Concurrency: processing multiple streams of events at the same time.

• Low use of resources: RAM, ROM and CPU.

The next sections of this manuscript analyze, precisely, the suitability of the Basilisk -

MicroPython application to run in constrained environments with limited resources and deter-

ministic requirements. This work involves targeting the application into 32-bit processors (like the

family of LEON boards) as well as profiling and optimizing the memory and CPU usage of the

104

Basilisk-MicroPython application on Unix (with the aim of targeting a constrained Unix environ-

ment).

Figure 7.2 displays a system-level view of the Basilisk-MicroPython system for three differ-

ent targets: unconstrained Unix (on the left), constrained Unix (in the middle) and embedded

RTEMS-LEON. The system structure is the following: the highest level corresponds to the FSW

application/executable, which in this case is conformed by the Basilisk C/C++ flight algorithms

and the MicroPython scripts. The layer below contains 3rd party libraries, like the MicroPython

C++ Wrapper (which is common in all three targets) and ZMQ. The ZMQ messaging library is

used in the unconstrained unix target in order to perform closed-loop testing. The work in this

chapter makes use of open-loop FSW simulations in order to analyze the suitability of the system

in constrained environments. Because ZMQ would not be part of the onboard executable, there is

no need to include it.

This chapter is outlined as follows: firstly, the port of MicroPython to the LEON target is

presented. The different steps taken during the porting process are described and challenges are

outlined. This first section also provides a summary describing the current limitations faced when

attempting to integrate the Basilisk flight algorithms on top of MicroPython on 32-bit platforms like

LEON. The second section in this chapter profiles the use of resources demanded by the Basilisk-

MicroPython system when running a sample FSW application. In addition, optimizations are made

to avoid dynamic memory allocation.

7.1 Port of MicroPython to the LEON Flight Target

MicroPython supports, out of the box, 64-bit architectures and a few 32-bit architectures.

Each of these MicroPython ports is hardware specific and creating a port to a new architecture is

a non-trivial task, specially when it comes to 32-bit targets. Currently, the family of LEON boards

does not have a port available on the MicroPython repository. For this reason, before targeting

the Basilisk-MicroPython application into LEON, there is a natural intermediate step that consists

on porting the stand-alone MicroPython to LEON. The challenges of building a Basilisk-based

105

Hardware (LEON)

Real-Time OS

board support package
(LEON)

kernel (RTEMS)

3rd Party Libraries

MicroPy C++ Wrapper

Application

MicroPython

Basilisk

Hardware (PC)

Unix

3rd Party Libraries

ZMQ

MicroPy C++ Wrapper

Application

MicroPython

Basilisk

kernel (Linux)

Hardware (constrained
board)

Unix

3rd Party Libraries

MicroPy C++ Wrapper

Application

MicroPython

Basilisk

kernel (Linux)

HIGHEST
LEVEL

LOWEST
LEVEL

Figure 7.1: Basilisk-MicroPython: system-level architecture for different targets

application on top of MicroPython for any 32-bit target are described at the end of this section.

For the moment, the focus is kept on building the stand-alone MicroPython for a new 32-bit port:

LEON. The port to LEON is particularly interesting in the context of this thesis because these

boards are widely used in flight applications. In addition, recall that an emulated LEON board

was also used in the emulated flat-sat presented earlier.

As a matter of fact, ESA has also considered the use of MicroPython on LEON[33], but their

work is only available under an ESA Community License of Type 3; implying that only companies

belonging to the European Union can access this software repository. This thesis also aims to

port MicroPython to LEON (or, equivalently, its virtual counterpart) and report the lessons learnt.

Once MicroPython is granted to run on LEON, then the integration of Basilisk flight algorithms

106

can be considered.

Hardware (LEON)

Real-Time OS

board support package
(BSP for LEON)

kernel (RTEMS)

Application

MicroPython

Figure 7.2: Port of the stand-alone MicroPython to the RTEMS-LEON target

Figure 7.2 shows the architecture for the port of the stand-alone MicroPython to RTEMS-

LEON. The realization of such architecture can be decomposed into two main steps:

(1) Build the RTEMS toolchain and the LEON board support package (BSP)

(2) Build the MicroPython executable using the RTEMS-LEON toolchain in the previous step

Each of this steps is further discussed next.

7.1.1 Building the RTEMS toolchain and LEON BSP

Firstly, the concepts of toolchain and board support package are explained. The notion of

a toolchain is usually used in the area of embedded systems and it is defined as a set of distinct

software tools chained together in order to compile, link, and deploy software from a development

host to a target device. In most embedded devices, the device itself does not have enough capability

to support development directly on the device –therefore, a toolchain is needed. Generally, a

toolchain will contain a cross-compiler and linker for the target, possibly a debugger (to allow

107

embedded on-device debugging), possibly a simulator for testing on the host, and a mechanism

for deploying software to the device. The toolchain itself is often presented as a collection of

command-line tools to use in the host; the RTEMS toolchain used in this work is indeed a suite

of command-line tools for Unix. The RTEMS sources1 are available on Git and, in order to

build the toolchain, it is necessary to clone and bootstrap the RTEMS kernel and the RTEMS

source-builder.[40]

In turn, in embedded systems, a board support package (BSP) is the layer of software contain-

ing hardware-specific drivers and other routines that allow a particular operating system (usually

an RTOS) to function in a particular hardware environment (a computer or CPU card), integrated

with the RTOS itself. In order to support a specific RTOS on a particular hardware, it is necessary

to create a BSP that allows that RTOS to run on the target platform. In this thesis the RTEMS

toolchain is used to build a BSP for the LEON target.

With the RTEMS toolchain and the LEON BSP bundled together, it is then possible to

compile and link an executable that can run on a LEON board (or its emulated counterpart) with

the RTEMS operating system on top. In order to test the bundle, a sample hello-world application

is built. The resulting kernel is then executed as an RTEMS task within an emulated LEON board.

This test is graphically illustrated in Fig. 7.3.

7.1.2 Building the MicroPython executable

Once the created RTEMS toolchain and LEON BSP are proven to work, the next step is to

use them to compile and link the MicroPython executable. Such endeavour is depicted in Fig. 7.4.

Since MicroPython is much more complex than a sample hello-world application written in C, the

question is where to start in the building process. As mentioned earlier, in the current MicroPython

repository there are several ports available that target 32-bit processors; for instance, there is a

bare-ARM port, a QEMU-ARM port and an STM32 port among other. The target platform of

this work is LEON, which implements a SPARC V8 instruction set. The SPARC architecture is a

1 https://github.com/RTEMS

https://github.com/RTEMS

108

printf(“Hello World! \n”);
build executable

(a) Hello-world application built with the RTEMS toolchain and LEON BSP

Hello World!

(b) Hello-world application running as an RTEMS
task on QEMU’s emulation of LEON

Figure 7.3: Sample executable for RTEMS-LEON

32-bit RISC machine that is very similar to the ARM architecture. Therefore, the modus operandi

used in this work is to take the Makefile from MicroPython’s QEMU-ARM port as a start point

and make the edits required for SPARC. This process is depicted in Fig. 7.5

Two set of edits are required in the Makefile and associated source code. The first set of edits

build executable
MicroPython

Figure 7.4: MicroPython executable for RTEMS-LEON

109

EDITS

Makefile Makefile

Figure 7.5: MicroPython Makefiles: adapting QEMU-ARM port to QEMU-LEON

consists on removing and/or replacing ARM specific code:

• UART (universal asynchronous receiver/transmitter) file: since UART ports are hardware

specific and such interface is not required for QEMU’s emulation of LEON, the UART

source file within MicroPython’s QEMU-ARM port is simply removed.

• Startup file: the startup file is used to initialize the given hardware board (or, in this case,

its emulated counterpart). The file contains handlers for: bootstrapping the system, calling

MicroPython’s main, exiting, resetting and defining the interrupt service routine. Some of

these handlers are embedded assembly functions and, therefore, they are target specific. It

is then necessary to adapt the startup-related assembly functions from ARM to SPARC.

The second set of edits is related to certain shortfalls of the RTEMS toolchain with respect to the

GNU ARM embedded toolchain. The RTEMS version used in this work is the latest one available,

which is version 5. The shortfalls are the following:

• Assert function (assert func): MicroPython uses assert func in order to catch run-

time errors. Since the RTEMS 5 toolchain does not come with an assertion source file, a

custom assert.c for SPARC needs to be added.

110

MicroPython

Figure 7.6: MicroPython kernel for QEMU’s emulation of LEON

• Jump calls (setjmp and longjmp): as pointed out in Ref. [33], MicroPython requires a

non-local jump mechanism to handle exceptions. This can be provided by the standard

C setjmp/longjmp calls, or by some custom code, which usually needs to be written in

assembler. Because RTEMS 5 does not include setjmp/longjmp, a custom version for

SPARC needs to be provided. Ref. [33] provides pseudo-code for the implementation of the

setjmp/longjmp assembler functions.

After integrating the described changes into the Makefile, the MicroPython executable is

compiled and linked using the RTEMS-LEON toolchain (as in Fig. 7.4). Then, the resulting

executable is loaded as a kernel for QEMU’s emulation of LEON as in Fig. 7.6. The relevance of

the porting of MicroPython to LEON and the challenges and limitations associated to integrating

Basilisk flight modules on top are discussed in the next summary section.

7.1.3 Summary

This section has shed light on the challenging steps required to port MicroPython to LEON

platforms. Whereas this endeavour has also been accomplished by ESA[33], their software repos-

itory is not open to access; therefore, it seems crucial to report and document the details of this

technical task in the hope that future researchers can build up from here.

Within the scope of this thesis, it was desired to port not only MicroPython to LEON but also

the MicroPython C++ Wrapper and the Basilisk flight modules, as in Fig. 7.2. In the pursuit of

this objective, it has been attempted to compile and link together MicroPython, the C++ Wrapper

111

and Basilisk for several 32-bit ports: the recently created QEMU-LEON port as well as the QEMU-

ARM and STM32 ports that are already available in the MicroPython repository. However, the

MicroPython C++ wrapper library has many dependencies on advanced C++ functionality, which

is not easily supported by embedded toolchains like RTEMS-LEON and GNU ARM. As a matter

of fact, the MicroPython C++ wrapper library, which acts as the glue between MicroPython and

Basilisk, is still a project in beta stage and it has only been tested for Unix and Windows. Although

a lot of effort has gone into solving the encountered compile errors, the full Basilisk-MicroPython

application could not be successfully built for any of the considered 32-bit targets.

7.2 Basilisk-MicroPython Profiling: Use of Resources

This section aims to profile (and constrain if necessary) the resources that the Basilisk-

MicroPython application takes up when running on the Unix environment. The proposed analysis

is relevant for different reasons:

(1) Although traditional flight processors are 32-bit platforms, it is still possible to determine in

a 64-bit platform whether a certain FSW application meets the constraints of an embedded

system or not. For example, the LEON board that is considered in previous sections runs

at 80MHz and has at least 8 megabytes of RAM memory. Determining how much resources

are allocated for running the Basilisk-MicroPython FSW application on Unix can tell us

if the complete FSW application could fit into LEON. The main advantage of profiling

the use of resources in Unix is that there are many tools available to do it. For instance,

Python’s memory-profiler2 module, Valgrind’s Massif3 or Valgrind’s Callgrind.4 The

Valgrind tools are applicable to any kind of executable (i.e. they are not linked to a specific

programming language) and therefore can be perfectly used for MicroPython. In turn,

Python’s memory-profiler can be used to perform support analysis on the Python desktop

scripts that are equivalent to those in MicroPython (recall Fig. 6.2 for reference).

2 https://pypi.org/project/memory-profiler/
3 https://valgrind.org/docs/manual/ms-manual.html
4 https://valgrind.org/docs/manual/cl-manual.html

https://pypi.org/project/memory-profiler/
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/cl-manual.html

112

(2) As mentioned earlier, there is an increasing interest on using commercial-off-the-shelf pro-

cessors for flight applications[9, 17]. In the lines of more modern approaches to space mis-

sions, the Basilisk-MicroPython application could be considered ready for flight if adapted

to a constrained Unix environment.

In order to determine the suitability of an application/executable for a given processor board,

there are three main resources to look at: RAM (random-access memory) usage, ROM (read-only

memory) usage and CPU usage. Each of these resources is analyzed separately in the upcoming

sections. While the resources demanded by the stand-alone MicroPython executable are already

studied in Ref. [33], this thesis focuses on determining the use of resources demanded by the Basilisk-

MicroPython FSW application. As pointed out in Ref. [33], in space applications minimizing RAM

usage is usually a priority above all other design considerations. It is also important to keep in mind

that, when optimizing for minimal resource usage, RAM, ROM and CPU optimizations usually play

off against each other. With all these considerations, the usage of the different resources is discussed

next.

7.2.1 RAM Usage

Allocation of RAM memory comes in two different flavours: static memory (data stored in

the stack) and dynamic memory (data stored in the heap). Whereas stack usage is fixed (i.e.

memory is allocated when the program is compiled), heap memory is allocated at run time. The

size of the heap is limited by the size of virtual memory. Synchronous applications like the onboard

FSW executable run in cycles and, therefore, heap memory allocation (if any) occurs in a control

loop. The problem of using a finite resource (heap memory) in an “infinite” control loop becomes

obvious. Having said that, because data on the heap can be accessed randomly at any time (i.e. it

is RAM), it is also possible to allocate and deallocate (or free) blocks of memory at any time.

113
Fragmented heap memory

Compacted heap memory

Figure 7.7: Heap memory: fragmented vs. compacted

7.2.1.1 Garbage Collection and Alternatives

In the context of a control loop, the function of the garbage collector (GC) is precisely to

free resources such that they can be reused the next time around. However, keeping track of

which parts of the heap are allocated and which are free is a non-trivial task and the question

boils down to what to free and when to do it. The non-precise nature of most garbage collectors

implies that determinism is not guaranteed: freeing memory takes up variable amounts of time to

complete and these calls are not made in a fixed pattern. Another potential problem associated to

garbage collection is the fragmentation of the heap, which can happen after lots of allocations and

deallocations. This problem is illustrated in Fig. 7.7. For example, the heap might have x words

free which are spread out as one word in x places; this means that any allocation request greater

than one word would fail.

As described earlier in Section 1.1.1.2, dynamic memory allocation and garbage collection

are features of scripting languages like Python. However, MicroPython is capable of performing

many operations without allocating heap memory. In the scope of this thesis, it is desired to

determine when heap memory allocation is needed and when is not. In the light of all the challenges

associated with implementing a deterministic garbage collector[33], the proposed approach is to

remove completely garbage collection and, instead, work towards the development of a Basilisk-

114

MicroPython FSW application that does not allocate heap memory beyond initialization.

Appendix E provides some benchmarks for the heap memory consumption of different appli-

cations when running the same sample script. The different applications analyzed are the following:

(1) Python 3

(2) MicroPython with GC

(3) MicroPython without GC

(4) Basilisk-MicroPython

The results presented in Appendix E motivate the use of MicroPython without GC and showcase

that the addition of the Basilisk modules to the MicroPython built does not suppose a performance

hit in terms of RAM usage.

7.2.1.2 Deterministic Basilisk-MicroPython FSW Application

This section aims to analyze the RAM usage of the Basilisk-MicroPython system when run-

ning a sample FSW application. For the purposes of profiling RAM, the FSW application is tested

in open loop, meaning that the Black Lion communication architecture and the spacecraft physical

simulation are, in this case, not present. In this application, FSW performs a guidance maneuver

that consists on spinning inertially. The reason for using an open-loop simulation is that its closed-

loop counterpart would require the integration of the ZMQ message library and of the Black Lion

communication interfaces. However, in real flight, none of them would be present. Therefore, they

should not be included in the profiling analysis.

The profiling of heap usage is achieved using Valgrind’s Massif tool, as in Appendix E. Before

showing these results, it is critical to understand both the script that is being executed (i.e. the FSW

application script written in MicroPython) as well as the system that is running it (i.e. Basilisk-

MicroPython). Figure 7.8 illustrates the Basilisk-MicroPython system on the left and a breakdown

of the FSW application scripts on the right. It is relevant to mention that the overall structure

115

MicroPy C++ Wrapper Lib

FSW C++ wraps

MicroPy integration

Scenario Scripts
(MicroPython)

Basilisk C modules

Controls

Guidance

Navigation

MicroPython System

MicroPy C++ Wrapper Lib

FSW C++ wraps

MicroPy integration

Scenario Scripts
(MicroPython)

Basilisk C modules

Controls

Guidance

Navigation

FSW_models.py
(C modules

instantiation & init)

FSW_sim.py
Models = FSW_models()

Tasks
Events
Logs

Parent Class:
SimBaseClass.py

Initialize()
Execute()

main.py

sim = FSW_sim()
sim.mode = “inertial_spinning”

sim.stop_time = 400 min
sim .Initialize()
sim .Execute()

Figure 7.8: View of the Basilisk-MicroPython system and breakdown of the FSW application scripts

of the FSW application scripts is not tied to the specific sample maneuver being considered in

this demonstration. The breakdown shown in Fig. 7.8 is the same for all Basilisk-based scenarios.

As a quick recapitulation, the Basilisk C modules (blue box) run within MicroPython (yellow

box); thanks to the integration of the MicroPython C++ Wrapper library and the additional “glue

code” generated by the AutoWrapper (i.e. FSW C++ wraps and MicroPython integration patch

in Fig. 7.8), the Basilisk C modules appear as importable modules within MicroPython. The FSW

scenario scripts written in MicroPython (orange boxes) are then used to initialize and execute

cyclically the underlying C flight algorithms. Without loss in generality, the scenario scripts can

be divided into three categories: FSW models, FSW sim (which is a child class of a generic Python

class named SimBaseClass) and the main. Each of these scripts and associated classes are reviewed

next:

116

• FSW models: this MicroPython script instantiates the FSW C++ wraps and initializes the

underlying C modules in a given configuration. These models are tied to specific FSW

application/scenario being considered and, therefore, they are mission specific.

• FSW sim: this MicroPython script defines the scenario to be tested by: importing the

desired FSW models, arranging them in tasks, creating FSW events (which in turn activate

certain task groups) and defining the messages to be logged for testing purposes. Figure 7.9

exemplifies the arrangement of Basilisk C modules into tasks as well as the definition of FSW

events. The FSW simulation itself is also mission specific and meant to be customized by the

user. However, all the simulations are child classes of the same parent class: SimBaseClass.

This parent class defines the skeleton of all Basilisk-based simulations and, therefore, it is

the critical file to be profiled.

• main: this MicroPython script runs the actual scenario: it imports the FSW sim to be

executed, it defines the FSW event to be tested, it defines the test duration, it initializes

the system and it executes the control loop. Note that in Fig. 7.8 the initialize and

execute calls belong to SimBaseClass. These are precisely the function calls that need to

be analyzed in terms of RAM usage.

Guidance Task

Control Task

Models (C modules)

MRP feedback

attitude tracking

RW data

RW torques

inertial pointing

vehicle data

Init Task

MRP feedback

attitude tracking

RW data

RW torques

inertial pointing

vehicle data

Event: “inertial_spinning”

Init Task

Guidance Task

Control Task

inertial spinning

inertial spinning

Figure 7.9: Sample models, tasks and events

117

Valgrind’s Massif is used in order to figure out how much RAM memory is consumed during,

firstly, initialization of the FSW application and, secondly, execution. Figure 7.10 shows the mem-

ory consumed up to initialization. Note that the graphic shows the heap memory usage in function

of “time in B”, meaning that the time unit corresponds to the number of bytes allocated/deallo-

cated on the heap and stack(s). In addition, the legend shows the principal sources of memory

consumption. However, this thesis is only interested in the total memory heap consumption rather

Figure 7.10: Heap memory used at initialization of the FSW application

118

than on its breakdown. Looking at the total memory consumption in Fig. 7.10, it is observed that

the peak at 202.0 KiB coincides with initialize call from SimBaseClass.py. The earlier peak

highlighted in red (at about 165 KiB) corresponds to the memory required just to bring up the

Basilisk-MicroPython system (i.e. memory used previously to the instantiation of any of the FSW

modules). To contextualize, for the application being profiled, the seven modules shown in Fig. 7.9

are instantiated, initialized and arranged in tasks and events during the initialize call.

Figure 7.11: Heap memory used during execution of the FSW application for 40 virtual minutes

119

In turn, Fig. 7.11 shows the memory consumed by the FSW application when executing

for a simulated time of 40 minutes. It is observed that the memory usage grows linearly with

time, indicating that at every cycle there are Python objects being created and, since the garbage

collector is not there to collect them, they keep accumulating despite being out of scope. In the

light of the results in Fig. 7.11, the next steps consist on:

(1) Tracking down where the leak is happening with the MicroPython scenario scripts.

(2) Identifying which operations in MicroPython require heap memory allocation and should

be therefore avoided.

In order to track down all the potential memory leaks in a reliable and efficient manner,

the PyPi memory-profiler5 comes in handy. The memory-profiler is a pure python module for

monitoring memory consumption of a process as well as line-by-line analysis of memory consumption

for python programs. The memory-profiler can be used to track memory consumption in the

desktop Python simulation and, in this way, reveal where Python (and equivalently MicroPython)

are consuming heap memory during the execute call. Extrapolating analysis results (from the

desktop Python simulation into the constrained MicroPython simulation) is possible thanks to the

equivalence between the FSW scripts in both the Basilisk-Python and the Basilisk-MicroPython

systems.

For reference, pseudo-code for the execute method in SimBaseClass.py is provided in List-

ing 4. The operations happening within execute are non-trivial in the sense that they involve

calls to both Python and C code. Similarly, some of the parameters governing the while loop are

changed by the Python layer and, under the hood, by the C layer as well. The code in Listing 4 is

only provided to showcase how the memory-profiler works; basically, the output of the profiler is a

description of how much memory is used in executing each line of code. This output is shown in

Fig. 7.12.

Listing 4: Code for the Execute() call within SimBaseClass.py

5 https://pypi.org/project/memory-profiler/

https://pypi.org/project/memory-profiler/

120

def ExecuteSim(self):

Initialize control-loop parameters

self.initializeEventChecks()

nextStopTime = self.TotalSim.NextTaskTime

nextPriority = -1

Execute control loop until the end of the simulation

while(self.TotalSim.NextTaskTime <= self.StopTime):

Figure out time of next event

if (self.nextEventTime <= self.TotalSim.CurrentNanos and self.nextEventTime >= 0):

self.nextEventTime = self.CheckEvents()

self.nextEventTime = self.nextEventTime if \

self.nextEventTime >= self.TotalSim.NextTaskTime \

else self.TotalSim.NextTaskTime

Figure out next stop time

if (self.nextEventTime >= 0 and self.nextEventTime < nextStopTime):

nextStopTime = self.nextEventTime

nextPriority = -1

Execute the C flight algorithms (TotalSim is actually a C++ FSW process class)

self.TotalSim.StepUntilStop(nextStopTime, nextPriority)

Set stop time for next time around

nextPriority = -1

nextStopTime = self.StopTime

nextStopTime = nextStopTime if nextStopTime >= self.TotalSim.NextTaskTime \

else self.TotalSim.NextTaskTime

As revealed by the Increment column in Fig. 7.12, there are only two lines of code within

the while loop that use up memory:

(1) checkEvents: this is a call to another Python function, which needs to be profiled sepa-

rately.

(2) TotalSim.StepUntilStop: this is actually a call to the underlying C++ code; TotalSim

121

Figure 7.12: Output of memory-profiler for the Execute call

is a C++ class wrapped through SWIG in the Python desktop environment and wrapped

through the MicroPython C++ Wrapper in the MicroPython constrained environment. As

a matter of fact, SWIG returns the underlying C++ class every time that the StepUntilStop

method is called. Therefore, objects are being generated at the Python layer at every cy-

cle. Recall that the profile in Fig. 7.12 is for the Python desktop environment (because the

memory-profiler does not work with MicroPython). Having said that, the MicroPython

C++ Wrapper does not return the underlying C++ class when it is being called. There-

fore, this memory leak that shows up in Python is not present in MicroPython. The only

remaining culprit is then the checkEvents call.

After tracing down and separately analyzing all the Python operations that take place under-

neath the call to checkEvents, it was discovered that the memory leak was being caused by the use

of dictionaries in the Python layer. Python dictionaries are implemented using hash tables, which

make look-up’s fast at the cost of using up memory. When the garbage collector is not around,

iterating over dictionary entries, accessing dictionary keys by name and updating dictionary values

at every time step increases the memory consumption over time. Under the light of this finding,

the FSW application scripts written in MicroPython have been modified to not use dictionaries. In

the heap-consuming application profiled in Fig. 7.11, dictionaries were being used for two different

122

purposes:

(1) Mark FSW events as active

(2) Check which message names had to be logged for testing purposes

However, none of this purposes is critical to the proper execution of the control loop. Figure 7.13

displays the memory consumed by the Basilisk-MicroPython system when running the FSW ap-

plication after removing the use of dictionaries. Now the heap memory consumption is flat and

stabilized at 320 KiB.

Although this FSW application only includes a subset of C FSW modules and it is therefore

smaller than a regular onboard executable, the results are very compelling. Because all the simu-

lation structure required to run any FSW scenario is already in place (and profiled in Fig. 7.13),

expanding the FSW application to include more modules, tasks and events will have a relatively

small memory impact. The execution of the control loop, in particular, is agnostic to the number

of modules present (in terms of RAM usage).

Having now proved that, after editing the FSW scripts adequately, the heap memory usage

does not increase during execution of the control loop, it is important to showcase that the FSW

process is actually running underneath. With this purpose in mind, the same exact FSW simulation

(performing an inertial spinning maneuver) is executed again but, this time, logging messages and

archiving them in a binary file.

The results obtained from post-processing the binary file back in the desktop environment

are illustrated in Fig. 7.14. In particular, Fig. 7.14(a) shows the MRP attitude reference σR/N

resulting from superimposing the inertial pointing and inertial spinning guidance modules. Next,

Fig. 7.14(b) shows the attitude tracking error σB/R. Note that the attitude reference and the

tracking error only differ in the sign of the components. This is because this maneuver is being

tested in open-loop and, therefore, the sensed/filtered body attitude σB/N is simply zero. Finally,

Fig. 7.14(c) shows the torques commanded by FSW to the pyramid of reaction wheels. Note that

these torques are actually quite large; yet, this is only because the maneuver is in open loop.

123

Figure 7.13: Heap memory used during execution of the FSW application for 400 virtual minutes
after removing use of Python dictionaries

In summary, the continuous nature of the plots in Fig. 7.14 confirm that the underlying

flight algorithms are performing its computations and exchanging messages properly. After having

successfully profiled and optimized the RAM memory usage, it is interesting to look at ROM and

CPU usage as well.

124

0 50 100 150 200 250 300 350 400
Time, min

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
RP

1
2
3

(a) MRP attitude reference

0 50 100 150 200 250 300 350 400
Time, min

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
RP

1
2
3

(b) MRP tracking error

0 50 100 150 200 250 300 350 400
Time, min

1.0

0.5

0.0

0.5

1.0

W
he

el
 T

or
qu

es
, N

m

u1
u2
u3
u4

(c) Commanded wheel torques

Figure 7.14: Basilisk-MicroPython open-loop simulation: inertial spinning

125

7.2.2 ROM Usage

ROM memory (or flash) provides permanent storage and it is where the executable firmware

is stored. ROM chips often have a storage capacity of 4 to 8 MB. The amount of ROM necessary to

store the Basilisk-MicroPython executable is obtained by looking at the code size. For comparison,

it is also interesting to look at the code size of the stand-alone MicroPython executable when built

for different ports: the Unix port, the so-called minimal-Unix port and the QEMU-ARM port (all

of them being available in the MicroPython repository). Both the minimal-Unix and QEMU-ARM

ports are compiled for 32-bit platforms. In addition, minimal-Unix only compiles a small subset of

the MicroPython modules that are included in the regular 64-bit Unix port. As mentioned earlier,

MicroPython provides many compile-time configuration options to enable or disable features of

the Python language. By disabling unnecessary features, the code size can be drastically reduced;

although this comes at the cost of less Python compatibility between desktop and embeddable

environments. The code size of the stand-alone MicroPython executable in the aforementioned

ports as well as the code size of the Basilisk-MicroPython executable in the Unix port are provided

next:

• Basilisk-MicroPython executable for Unix: 1,691,816 bytes

• MicroPython executable for Unix: 408,976 bytes

• MicroPython executable for minimal-Unix: 170,216 bytes

• MicroPython executable for QEMU-ARM: 364,860 bytes

In the Unix port, building Basilisk on top of MicroPython almost triplicates the code size.

Given that the integrated Basilisk C code is pretty minimal, the observed code-size increase can

be attributed to the integration of the MicroPython C++ Wrapper library. Further optimization

in code space could be achieved by:

(1) Removing all unused functionality (and associated code) within the MicroPython C++

Wrapper library.

126

(2) Finding a middle ground between the Unix and minimal-Unix ports in terms of enabled

features. As it currently stands, the minimal-Unix port is too minimal to support the

integration of the MicroPython C++ Wrapper library along with the Basilisk C modules.

Having said that, the 1.7 MB of code space required by the Basilisk-MicroPython executable are

still far from the storage limit of ROM chips, between 4 and 8 MB.

7.2.3 CPU Usage

CPU time is the time between the start and the end of execution of a given program and

it is a true measure of processor/memory performance. CPU time depends on the program being

executed, including:

(1) Number of instructions executed.

(2) Types of instructions executed and their frequency of usage.

Next, the time that it takes for different systems to execute the same FSW application script

is analyzed. The systems are Basilisk-MicroPython without GC, Basilisk-MicroPython with GC

and Basilisk-Python. Once more, the FSW application consists on performing an inertial spinning

maneuver for a simulated time of 400 min. The time-average results are the following:

• Basilisk-MicroPython without GC: t = 649.29 ms

• Basilisk-MicroPython with GC: t = 720.1 ms

• Basilisk-Python (with GC): t = 824.37 ms

It is not surprizing that the execution time is faster when the GC is not present, since calls to the

GC actually take variable amounts of time to complete. In addition, calling the GC implies that

a higher number of instructions is executed; therefore, it only makes sense that the time increases.

By using Valgrind’s Callgrind tool it has been observed that, in each run of the sample maneuver,

3.5 billion instructions are read without the GC and 3.8 billion when the GC is present (over the

execution times reported above).

127

The fact that MicroPython is faster than Python is an achievement in the sense that MicroPy-

thon is specifically optimized to reduce RAM usage and, as stated earlier, resource optimizations

usually demand a tradeoff between each other. It is also interesting to realize that all the average

times are actually in the same order of magnitude. Very likely, this could be driven by the fact that

the underlying Basilisk flight algorithms are actually implemented in C and they are the same for

all the systems. In this sense, the more complex computations (which drive the overall execution

speed) are being performed at the C level and Python/MicroPython simply acts as the executive

layer.

Another relevant and very compelling advantage of running Basilisk-MicroPython without

GC on specifically Unix is that, for testing purposes, it runs much faster than real time (400

simulated minutes run in 0.65 seconds). In turn, running in soft real-time could be easily achieved

as shown earlier in Section 3.2, where a Basilisk FSW application on the Raspberry Pi runs in

synch with a software-based clock.

7.2.4 Summary

This section has profiled the use of resources (RAM, ROM and CPU) demanded by a sample

Basilisk-MicroPython FSW application. In addition, the FSW scripts that are core to all Basilisk

simulations have been optimized to avoid using up heap memory in the control loop when the GC

is not present. This enhancements are not tied to the particular scenario being executed and they

would hold true for any suite of maneuvers.

Being able to execute the Basilisk-MicroPython system without the GC is a key capability

towards ensuring determinism on timing (in the sense that non-deterministic calls the GC do not

take place) and proving that memory is not allocated dynamically (avoiding also the problem of

heap fragmentation). Hence, making the system flight-like. In summary, flying Basilisk on top of

MicroPython for Unix is very promising in that:

(1) Basilisk FSW executions happen in a predictable manner that excludes the GC.

128

(2) The simulation speed is roughly the same –actually, slightly faster– than in the Python

desktop environment, which is extremely convenient for testing.

(3) The memory usage is drastically reduced, hence fitting very moderate-size processors.

With increasing small-sat missions using commercial-off-the-shelf hardware and software solutions

for flight exploration, running a Basilisk-MicroPython FSW application on top of Unix in flight

could be a very interesting option. Future work to be done in this line consists on making the

Unix operating system to behave in real time, which could be achieved by using a real-time Linux

kernel.6 Such enhancement would guarantee that the Baslisk-MicroPython system is real-time

deterministic not only in terms of the executable (as proved in this section) but also in terms of

the underlying operating system.

As a final and quick recapitulation, for any reader who might be interested on building upon

the work presented, the Basilisk-MicroPython system can be integrated together as described in

Section 6.1, built as explained in Appendix D and optimized as described in Section 7.2. With this

basic infrastructure in place, the users/readers can customize the system with their own Basilisk

FSW modules.

6 http://wiki.linuxfoundation.org/realtime/start

http://wiki.linuxfoundation.org/realtime/start

Chapter 8

Conclusions

This thesis has designed and implemented end-to-end FSW development strategies and tools

that guarantee migration transparency and testing continuity across testbeds: starting with flight

algorithm prototyping on desktop environments, transitioning into middleware integration and

ending with embedded testing in constrained environments. The strategies presented in this work

are all based upon the principles of flexibility, scalability and reusability. In addition, the results and

tools that are the outcomes of this thesis’ research have been all documented and made available as

open-source products. On these lines, the niche identified among state-of-the-art FSW development

tool suites has been filled, satisfying: completeness of the tool suite as a FSW testbed, transparency

of the fight algorithm flow between testbeds, architectural flexibility to include external models for

testing, support of distributed simulations and open sourcing of the tools to the community. In

order to conclude, it becomes useful to provide a brief summary of the particular highlights of each

chapter.

Chapter 2 is dedicated to the desktop prototyping phase of the FSW development process.

This chapter introduces the Basilisk software framework (a desktop testbed for prototyping flight

algorithms and testing them in closed-loop dynamic simulations), upon which a novel strategy to

autonomously generate attitude guidance references is implemented. Using the proposed guidance

approach, complex attitude patterns are achieved through combination of atomic guidance modules

that fulfill a well-defined functionality. As a quick recapitulation, there are three core functional-

ities that conform all guidance reference motions: base pointing reference, dynamic reference and

130

attitude offset. For each one of these functionalities, different software modules are implemented in

the C language, tested and verified. In this manuscript, the mathematical equations behind each

software module/algorithm are developed and numerical simulations illustrate how the individual

components can be arranged to support different rotational dynamics mission requirements. This

layered strategy for building an attitude guidance reference promotes code reusability throughout

distinct mission profiles and, as a matter of fact, it is currently being applied to perform science

and nominal attitude maneuvers in an actual interplanetary spacecraft mission.

Chapter 3 focuses on the migration of Basilisk-developed flight algorithms into commercial

processors, in particular, the Raspberry Pi. This chapter emphasizes the rising interest on using

commercial processors for flight applications. In addition, the challenges associated into porting

the Basilisk architecture into the Raspberry Pi commercial hardware are explained. One of the

most important parts of this chapter is the demonstration of the very first distributed Basilisk

simulation. The distributed nature of the simulation implies that the flight algorithms and the

spacecraft physical simulation run on separate computing platforms, which is a key step towards

more realistic, flight-like testing. In addition, the use of a peer-to-peer communication router that

enables TCP communication between a client and a server is introduced. This communication

router is, actually, an initial milestone towards the development of the flexible and multi-propose

Black Lion communication architecture (one of the core tools developed within the scope of this

thesis).

Chapter 4 describes the transition of the flight application from Basilisk into the core Flight

System (cFS) middleware. While Basilisk is a flexible desktop environment that becomes extremely

handy for prototyping and performing rapid testing of flight algorithms, the cFS is a widely-used

middleware layer for space applications that ensures portability of the flight application among

different targets (i.e. flight processor boards and RTOS). The most interesting part of the migration

process is the use of the AutoSetter, a Python tool that has been developed for the specific

purposes of translating the Python portion of the Basilisk flight architecture into C code. The

resulting C code, which is minimal and completely human-readable, is generated through Python’s

131

introspection capabilities. Such transition mechanism is generally applicable to any desktop testbed

that, similar to Basilisk, leverages the use of Python for wrapping underlying C/C++ code. The

generated C code plus the original flight algorithm source code are then compiled together into a

pure-C cFS FSW application that can be embedded into an emulated processor board.

Chapter 5 describes all the technical challenges entailed in assembling an emulated flat-sat

with unprecedented level of fidelity. Using this emulation, it is possible to test the performance

of an embedded FSW application in a distributed and flight-like manner. There are two main

tasks/aspects that have been critical to the successful implementation of the flat-sat emulation:

1) development of the Black Lion communication architecture and 2) modeling of FPGA registers

and accompanying avionic hardware models. Emulated flat-sat testing through Black Lion has

proved to be an extremely cost-effective means of performing system-wide testing early on in the

mission’s program, alleviating schedule constraints by using software models only. In addition, the

flexibility of Black Lion has allowed running fault detection tests that could not be executed in any

other testbed. In turn, the modeling of FPGA registers and avionic components stands out for its

high-level of fidelity. In addition to performing complex operations on FSW packets, these models

also replicate hardware interrupts, making FSW believe it is running on hardware –although it is

actually a software emulation. While the presented avionic models and packet handlers are mission

specific, the register space with its readers and writers constitutes a generic framework that can

be applied to any FSW application: these registers have been designed and implemented in an

abstract manner where high-level handlers can be customized to satisfy particular mission needs.

Chapter 6 presents an initial feasibility analysis for running Basilisk-developed flight al-

gorithms within the modern and promising MicroPython. This analysis is accompanied by the

development of another Python-based introspection tool that facilitates the migration across envi-

ronments: the AutoWrapper. In the first proof of concept presented in this chapter, the potential

of MicroPython as a middleware for space applications already shows and certain advantages of

MicroPython over cFS can be drawn in terms of: migration effort, FSW states accessibility and

application portability.

132

Chapter 7 is aimed at analyzing the suitability of the Basilisk-MicroPython system for con-

strained environments with reduced resources and real-time determinism needs. This chapter is

divided into two main sections. The first section sheds light on the challenging steps required to port

MicroPython to LEON platforms. Whereas this endeavour has also been accomplished by ESA[33],

their software repository is not open to access; therefore, it seemed crucial to report and document

the lessons learnt. Within the scope of this thesis, it was desired to port not only MicroPython

to LEON but also the MicroPython C++ Wrapper and the Basilisk flight modules. However, the

MicroPython C++ wrapper library has many dependencies on advanced C++ functionality, which

is not easily supported by embedded toolchains like RTEMS-LEON. Suggested future work is to

collaborate with the MicroPython C++ Wrapper project to make it suitable for 32-bit platforms.

The second section of Chapter 7 profiles the use of resources (RAM, ROM and CPU) demanded

by a sample Basilisk-MicroPython FSW application. In addition, the FSW scripts that are core

to all Basilisk simulations are optimized to avoid heap memory usage in the control loop when

the garbage collector (GC) is not present. Being able to execute the Basilisk-MicroPython system

without the GC is a key capability towards making the system flight-like. With increasing small-sat

missions using commercial-off-the-shelf hardware and software solutions for flight exploration, run-

ning a Basilisk-MicroPython FSW application on top of Unix in flight could be a very interesting

option.

Potential future work that could be built upon all the material presented is the following:

(1) Enhancement of Black Lion to support multiple time constraints. With the current “tick-

tock” synchronization mechanism (see Section 5.2.2), the overall simulation speed is driven

by the slowest of the components. Therefore, only the time requirement of the slowest

component can be satisfied. This limitation is not a problem as long as the components

either present the same timing constraint (e.g. real time) or have adjustable execution

speeds.

(2) Investigation and/or development of alternatives to QEMU for emulating flight processor

133

boards. The rational behind this task is to avoid the main caveats of QEMU, which is mostly

written in C (and therefore not object oriented nor modern), it is not user friendly, it has a

steep learning curve and, in addition, its execution speed for the SPARC emulation is slower

than real time (which strongly limits the amount of testing that can be accomplished).

(3) Generalization of the FSW snorkels and avionic hardware models used for emulated flat-sat

testing (see Section 5.3). While the idea of an FPGA register space modeled as a memory

map for the input and output of raw binary data constitutes a generic framework that can

be applied to any FSW application, the specific handlers (i.e. snorkels) and avionic hard-

ware models that have been implemented are actually mission specific. Yet, because many

spacecraft have similar avionic systems, it is left for future work to generalize the afore-

mentioned models such that they can be customized through initialization/configuration

rather than containing mission-specific source code.

(4) Automatization of the building process of the Basilisk-MicroPython system. Although

guidelines for building MicroPython together with Basilisk FSW modules through the Mi-

croPython C++ Wrapper are provided in Appendix D, this process is rather involved. As

future work, it would be ideal to find a way to deliver the system in a single and complete

bundle that can be directly customized for user-specific applications without having to

worry about integration and joint compilation of the different software tools (i.e. Basilisk,

MicroPython and the MicroPython C++ Wrapper).

(5) Collaboration with the developers of the MicroPython C++ Wrapper library in order to

target 32-bit ports. As explained in Section 7.1.3, after all the work of porting the stand-

alone MicroPython to LEON platforms, it was not possible to get the MicroPython C++

Wrapper to build properly for LEON nor for any other 32-bit target platform. The reason

behind this limitation is that the MicroPython C++ Wrapper has many dependencies on

advanced C++ functionality, which is not easily supported by embedded toolchains like

RTEMS-LEON and GNU ARM. As a matter of fact, the MicroPython C++ Wrapper

134

library, which acts as the glue between MicroPython and Basilisk, is still a project in beta

stage and it has only been tested for Unix and Windows in 64-bit targets. For future

applications, it would be desirable to collaborate with the developers of the MicroPython

C++ Wrapper tool to include real-time operating systems and 32-bit platforms among

their tested targets.

(6) Run and test the Basilisk-MicroPython system on a constrained Unix environment that

operates in real time. Recalling from Section 7.2.4, this could be achieved by applying the

real-time kernel patch for Linux.

Bibliography

[1] John Alcorn, Hanspeter Schaub, Scott Piggott, and Daniel Kubitschek. Simulating attitude
actuation options using the Basilisk astrodynamics software architecture. In 67th International
Astronautical Congress, Guadalajara, Mexico, Sept. 26–30 2016.

[2] C. Allard, M. Diaz-Ramos, and H. Schaub. Spacecraft dynamics integrating hinged solar panels
and lumped-mass fuel slosh model. In AIAA SPACE, Long Beach, CA, Sep. 13–16 2016.

[3] C. Allard, H. Schaub, and S. Piggot. General hinged solar panel dynamics approximating
first-order spacecraft flexing. In AAS Guidance and Control Conference, Breckenridge, CO,
Feb. 5–10 2016.

[4] Andoni Arregi and Fabian Schriever. Numerical reproducibility for model-based software-
engineering. In DASIA, 2019.

[5] S. Blanchette. Giant slayer: Will you let software be David to your Goliath system? Journal
of Aerospace Information Systems, 13(10):407–417, 2016.

[6] Robert Bocchino, Timothy Canham, Garth Watney, Leonard Reder, and Jeffrey Levison. F
prime: An open-source framework for small-scale flight software systems. In AIAA/USU
Conference on Small Satellites, 2018.

[7] Mike Briggs, Nathaniel Benz, and Douglas Forman. Simulation-centric model-based develop-
ment for spacecraft and small launch vehicles. In 32nd Space Symposium, Colorado Springs,
Colorado, April 11–12 2016.

[8] J. Busa, E. Braunstein, R. Brunet, R. Grace, T. Vu, R. Brown, and W. Dwyer. Timeliner:
automating procedures on the ISS. In SpaceOps, 2002.

[9] Stephan Busch, Philip Bangert, Slavi Dombrovski, and Klaus Schilling. UWE-3, in-orbit
performance and lessons learned of a modular and flexible satellite bus for future pico-satellite
formations. In Acta Astronautica, volume 117, pages 73–89, December 2015.

[10] Jonathan Cameron, Abhinandan Jain, Burkhart Dan, Erik Bailey, J Balaram, Eugene Bon-
figlio, Havard Grip, Mark Ivanov, and Evgeniy Sklyanskiy. DSENDS: Multi-mission flight
dynamics simulator for NASA missions. AIAA Space 2016, (September):1–18, 2016.

[11] CCSDS Secretariat, , Office of Space Communication . CCSDS recommendation for space
packet protocol. Technical report, National Aeronautics and Space Administration, Washing-
ton, DC, September 2003.

136

[12] M. Cols-Margenet, H. Schaub, and S. Piggott. Sequentially distributed attitude guidance across
a spacecraft formation. In International Workshop on Satellite Constellations and Formation
Flying, University of Strathclyde, Glasgow, Scotland, July 2019.

[13] Mar Cols Margenet, Patrick Kenneally, Hanspeter Schaub, and Scott Piggott. Distributed
simulation of heterogeneous mission subsystems through the Black Lion framework. Submitted
to AIAA Journal of Aerospace Information Systems, 2019.

[14] Mar Cols Margenet, Patrick W. Kenneally, Hanspeter Schaub, and Scott Piggott. Simulation
of heterogeneous spacecraft and mission components through the Black Lion framework. In
John L. Junkins Dynamical Systems Symposium, number 7, College Station, TX, May 20–21
2018.

[15] Mar Cols Margenet, Hanspeter Schaub, and Scott Piggot. An end-to-end FSW development
approach using Micropython and the Basilisk software testbed. In DASIA (Data Systems In
Aerospace), Torremolinos, Spain, June 4–6 2019.

[16] Mar Cols Margenet, Hanspeter Schaub, and Scott Piggott. Modular attitude guidance de-
velopment using the Basilisk software framework. In AIAA/AAS Astrodynamics Specialist
Conference, Sept. 12–15 2016.

[17] Mar Cols Margenet, Hanspeter Schaub, and Scott Piggott. Modular platform for hardware-in-
the-loop testing of autonomous flight algorithms. In International Symposium on Space Flight
Dynamics, Matsuyama-Ehime, Japan, June 3–9 2017.

[18] Mar Cols-Margenet, Hanspeter Schaub, and Scott Piggott. Modular attitude guidance: Gen-
erating rotational reference motions for distinct mission profiles. AIAA Journal of Aerospace
Information Systems, 15(6):335–352, June 2018.

[19] Mar Cols Margenet, Hanspeter Schaub, and Scott Piggott. Flight software development,
migration and testing in desktop and embedded environments. Submitted to AIAA Journal
of Aerospace Information Systems, 2019.

[20] Mar Cols Margenet, Hanspeter Schaub, and Scott Piggott. Avionics hardware modeling and
embedded flight software testing in an emulated flat-sat. In AAS Guidance, Navigation and
Control Conference, Breckenridge, CO, Jan. 30–Feb. 5 2020.

[21] Alan Cudmore. NASA/GSFC’s flight software architecture: core Flight Executive and core
Flight System. In Flight Software Workshop, Johns Hopkins University Applied Physics Lab-
oratory, MD, 2011.

[22] Alan Cudmore. Pi-sat: A low cost small satellite and distributed spacecraft mission system test
platform. Technical report, NASA Goddard Space Flight Center, Greenbelt, MD, September
9 2015.

[23] John Cuseo. STK/SOLIS and STK/ODYSSY flight software: Supporting the entire spacecraft
lifecycle. In 2011 Workshops on Spacecraft Flight Software, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD, October 19-21 2011.

[24] Jean de Lafontaine, Jeroen Buijs, Pierrik Vuilleumier, Pieter Van den Braembussche, and
Karim Mellab. Development of the PROBA attitude control and navigation software. 2000.

137

[25] JR Garćıa-Blanco, Beatriz Lacruz-Alcaraz, Nuno Santos, and Daniel Silveira. Increasing rep-
resentativeness of SIL VV simulators. In Dasia, 2019.

[26] Damien George, David Sanchez de la Llana, and Tiago Jorge. Porting of Micropython to
LEON platforms. Technical report, George Robotics Ltd. and ESA ESTEC, 2016.

[27] Christopher Grasso. The fully programmable spacecraft: procedural sequencing for JPL deep
space missions using VML (virtual machine language). In Aerospace Conference, 2002.

[28] Matthew Grubb, Justin Morris, Scott Zemerick, and John Lucas. NASA operational simulator
for small satellites (NOS3): Tools for software-based validation and verification of small satel-
lites. In Proceedings of the AIAA/USU Conference on Small Satellites, Logan, Utah, August
2016.

[29] Andrew Keys, Michael Watson, Donald Frazier, James Adams, Michael Johnson, and Elizabeth
Kolawa. High performance, radiation-hardened electronics for space environments. In 5th
International Planetary Probes Workshop, Bordeaux, France, June 28 2007.

[30] Thomas Laroche, Pierre Denis, Paul Parisis, Damien George, David Sanchez de la Llana, and
Thanassis Tsiodras. Micropython virtual machine for on board control procedures. In Dasia,
2018.

[31] D.S. Lauretta. OSIRIS-REx Asteroid Sample-Return Mission, volume Handbook of Cosmic
Hazards and Planetary Defense. Springer, 2015.

[32] Christopher Lim and Abhinandan Jain. Dshell++: A component based, reusable space system
simulation framework. In SMC-IT, 2009.

[33] George Robotics Limited. Porting of Micropython to LEON platforms. Technical report, ESA
contract, June 2017.

[34] Mark Mangieri and Jason Vice. Kedalion: NASA’s adaptable and agile hardware/software
integration and test lab. In AIAA SPACE, Long Beach, CA, 2011.

[35] Robert Martin. Clean Architecture: A craftsman’s Guide to Software Structure and Design.
Prentice Hall Press, 2017.

[36] David McComas. NASA/GSFC’s flight software core Flight System. In Flight Software
Workshop, San Antonio, TX, Nov. 7–9 2012.

[37] Ryan Odegard, Joel Henry, Zoran Milenkovic, and Michael Buttacoli. Model-based GNC
simulation and flight software development for Orion missions beyond LEO. In IEEE Aerospace
Conference, Big Sky, Montana, 2014.

[38] John Penn and Alexander Lin. The Trick simulation toolkit: A NASA open-source frame-
work for running time based physics models. In AIAA Modeling and Simulation Technologies
Conference (Sci-Tech), San Diego, CA, 2016.

[39] Scott Piggott, John Alcorn, Mar Cols Margenet, Patrick W. Kenneally, and Hanspeter Schaub.
Flight software development through Python. In 2016 Workshop on Spacecraft Flight Software,
JPL, California, Dec. 13–15 2016.

138

[40] RTEMS Project and Contributors. RTEMS user manual. Technical Report 5.a23b1fb, 17th
May 2020.

[41] H. L. Rarick, S. H. Godfrey, J. C. Kelly amd R. T. Crumbley, and J. M. Wilf. Nasa software
engineering benchmarking study. SP 2013-604, NASA, May 2013.

[42] Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Systems. AIAA
Education Series, Reston, VA, 4th edition, 2018.

[43] Peter Z. Schulte and David A. Spencer. Development of an integrated spacecraft guidance,
navigation, and control subsystem for automated proximity operations. October 2014.

[44] Jonathon Smith, William Taber, Theodore Drain, Scott Evans, James Evans, Michelle Gue-
vara, William Schulze, Richard Sunseri, and Hsi-Cheng Wu. MONTE Python for deep space
navigation. In Proceedings of the 15th Python in Science Conference (SCIPY), 2016.

[45] Andrew Turner. An open-source, extensible spacecraft simulation and modeling environment
framework. PhD thesis, Citeseer, 2003.

[46] Chris Leger Vandi Verma. SSim: NASA Mars rover robotics flight software simulation. In
IEEE Aerospace Conference, 2019.

[47] V. Verma, A. Jónsson, C. Pasareanu, and M. Iatauro. Universal executive and PLEXIL: Engine
and language for robust spacecraft control and operations. In AIAA Space, 2006.

[48] Daniel Violette. Arduino/Raspberry Pi: Hobbyist hardware and radiation total dose degrada-
tion. In EEE Parts for Small Missions, Greenbelt, MD, September 10-11 2014.

[49] J. Wood, M. Cols-Margenet, P. Kenneally, H. Schaub, and S. Piggott. Flexible Basilisk as-
trodynamics visualization software using the Unity rendering engine. In AAS Guidance and
Control Conference, Breckenridge, CO, February 2–7 2018.

[50] Scott A. Zemerick, Justin R. Morris, and Brandon T. Bailey. NASA operational simulator
(NOS) for V and V of complex systems. 875205(May 2013):875205, 2013.

Appendix A

Modular Attitude Guidance

This appendix is aimed to support to the work presented in Chapter 2.

A.1 Attitude Control MRP Feedback

This section is related to controls rather than guidance and, therefore, it is not a core part

of the work in Section 2.2. Yet, it is relevant to allow replication of the numerical simulations

presented in Section 2.2. Seeing the control equations presented here is also useful to realize how

the final output of the attitude reference chain is used downstream in the FSW process. Figure A.1

Pointing Base Reference

Dynamic Reference

Tracking Error

R0 ⌘ {�R0/N , N!R0/N , N !̇R0/N}

R1 ⌘ {�R1/N , N!R1/N , N !̇R1/N}

Attitude O↵set ⌘
⇥
�R1/R

⇤

Guidance Output ⌘
⇥
�B/R

B!B/R
B!R/N

B!̇R/N

⇤

Control Law

Torque Mapping

Lr =
⇥
L1 L2 L3

⇤

Controls Output ⌘ ue↵ectors = [u1, . . . , uN]

⇥
�B/N

B!B/N

⇤
⌘ Nav Data

Figure A.1: Flow between Guidance and Control Blocks

140

depicts the flow from the attitude guidance block to the attitude control block. The equations

outlined next belong to the algorithms that compute a control torque (i.e. “Control Law” module

in Fig. A.1) and map it to the set of chosen spacecraft actuators (i.e. “Torque Mapping” module).

In the numerical simulations presented in Section 2.2, a rigid spacecraft with N = 4 reaction

wheels (RWs) is modeled. The associated differential equations of motion (EOM) are the following:

[I]ω̇B/N = −[ω̃B/N]
(
[I]ωB/N + [Gs]hs

)
− [Gs]us +L (A.1)

where [I] is the spacecraft inertia tensor, L is an external torque and us is the set of RW motor

torques. The RW spin axis are defined in the 3×N projection matrix

[Gs] =

[
ĝs1 · · · ĝsN

]
(A.2)

with ĝsi being the ith RW spin axis. The N × 1 RW inertial angular momentum matrix hs is

hs =

Js1(ωB/N · ĝs1 + Ω1)

...

JsN (ωB/N · ĝsN + ΩN)

(A.3)

where Jsi is the RW spin axis inertia.

Given the EOM in Eq. (A.1), the control law implemented is an MRP feedback law that is

globally asymptotically stabilizing:

[Gs]us = KσB/R + [P]ωB/R −ωR/N × ([I]ωB/N + [Gs]hs) + [I](ωB/N ×ωR/N − ω̇R/N) +L (A.4)

Here us is the control torque being computed, K is the attitude error gain and [P] is the rate error

gain matrix. The control block is fed with the guidance output, as illustrated in Fig. A.1. This

information includes the MRP attitude error σB/R, the body rate error BωB/N , the reference rate

BωR/N and the reference inertial acceleration Bω̇R/N .

Note that the vectors and matrices in in Eq. (A.4) are expressed in body B-frame components.

This implies that controlling a spacecraft frame that is not the main body B-frame (e.g. star tracker

component frame, Bc), has an impact in the guidance-control sequence. A common approach is to

141

map the vector and tensors of Eq. (A.4) into the component body Bc-frame aimed to be guided

and controlled. In this work, a different strategy is proposed that is more efficient: the offset from

the main body frame B to the control frame Bc is added to the generated reference. This function

is performed as part of the “Attitude Tracking Error” (see Section 2.2 for more details).

On a final note, it is important to remark that the particular feedback law outlined in

Eq. (A.4) is not critical to the presented work. Any other asymptotically stable attitude control

law could be used instead without impacting the guidance results.

A.2 Additional Base Pointing Modules

This section provides the mathematical derivations associated to the implementation of the

following base pointing modules: inertial pointing, Hill-orbit pointing and velocity-orbit pointing.

Both the inertial and orbit frame references are widely used and well documented, but the novelty

here lies on the scheme upon which they are architected: through the modular stack and interface

definition, base modules can be used in stand-alone mode or as the base of complex dynamic

behaviors.

A.2.1 Inertial Pointing

The inertial pointing module is the simples one. Here the constant reference frame R0 is in a

fixed general orientation relative to the inertial frame N . The desired inertial orientation is given

through an imput MRP set σR0/N , while the reference frame rates and accelerations are internally

set to zero.

ωR0/N = ω̇R0/N = 0 (A.5)

A.2.2 Hill and Velocity Pointing

The Hill and velocity base modules are strongly related and therefore presented jointly.

Assume the spacecraft is to align with the orbit Hill frame R0 ≡ H : {ı̂r, ı̂θ, ı̂h} or the velocity

frame R0 ≡ V : {ı̂n, ı̂v, ı̂h}. Both frames are completely defined by the position and velocity vectors

142

ı̂r

ı̂n

R
B

/N

rB/P

ı̂✓

n̂3

ı̂v

n̂1

n̂2

ı̂h

R
P/N

P B

N

Figure A.2: Illustration of the Hill and Velocity Orbit Frames

of the spacecraft. The frames H and V are each conformed by their own right-handed set of axes

where: ı̂r is the nadir axis pointing radially outward, ı̂v is tangent to the orbit and parallel to the

velocity vector, ı̂h is defined normal to the orbital plane in the direction of the angular momentum,

and finally ı̂θ and ı̂n complete their respective right-handed triplet.

Figure A.2 illustrates the Hill and velocity frame orientations, each having their origin on the

spacecraft location. The inertial frame N : {n̂1, n̂2, n̂3} is also depicted. The inertial position and

velocity vectors of the spacecraft (RB/N ,vB/N) and the celestial body (RP/N ,vP/N) are the only

variables assumed to be known by the module. The relative position of the spacecraft with respect

to the planet rB/P and relative velocity vB/P , are obtained through

rB/P = RB −RP (A.6a)

vB/P = vB − vP (A.6b)

The Hill H and velocity V frame orientations with respect to the inertial frame N are defined

through the following Direction Cosine Matrices (DCMs):

[HN] =

Ĥır
T

Ĥıθ
T

Ĥıh
T

[V N] =

Vı̂n
T

Vı̂v
T

Vı̂h
T

(A.7)

143

where the associated unit direction vectors are defined as:

ı̂r =
rB/P

|rB/P |
(A.8a)

ı̂v =
vB/P

|vB/P |
(A.8b)

ı̂h =
rB/P × vB/P
|rB/P × vB/P |

(A.8c)

ı̂θ = ı̂h × ı̂r (A.8d)

ı̂n = ı̂h × ı̂v (A.8e)

The corresponding Hill orbit and velocity orbit MRP attitude sets can be directly obtained from

their corresponding DCM (see Ref. [42] for details on the mapping):

[HN]→ σH/N ≡ σR0/N or [V N]→ σV/N ≡ σR0/N (A.9)

Next, the reference frame rates and accelerations are determined. In the case of the Hill

frame H, the angular rate of the reference is that of the orbital motion:

ωR0/N = ωH/N = ḟ ı̂h (A.10a)

ω̇R0/N = ω̇H/N = f̈ ı̂h (A.10b)

Where f is the true anomaly angle, whose variation is expressed through the following general

astrodynamics relation:

ḟ =
rB/P × vB/P
rB/P · rB/P

(A.11a)

f̈ = −2
vB/P · ı̂r
|rB/P |

ḟ (A.11b)

The velocity frame V orientation differs from the Hill frame orientation by a single-axis

rotation of angle −β in the orbital plane about ı̂h. The DCM that maps from H to V is expressed

in terms of the flight path angle β or the classical set of orbital elements as follows:

[V H] =

cosβ − sinβ 0

sinβ cosβ 0

0 0 1

=

1 + e cos f√
1 + e2 + 2e cos f

− e sin f√
1 + e2 + 2e cos f

0

e sin f√
1 + e2 + 2e cos f

1 + e cos f√
1 + e2 + 2e cos f

0

0 0 1

(A.12)

144

The inertial angular rate and acceleration of the velocity frame V are obtained by

ωV/N = ωV/H + ωH/N (A.13a)

ω̇V/N = ω̇V/H + ω̇H/N (A.13b)

Where

ωV/H = −β̇ı̂h (A.14a)

ω̇V/H = −β̈ı̂h (A.14b)

An analytical expression for β is derived from Eq. (A.12), whose inertial time derivatives are:

β̇ =
e(e+ cos f)

1 + e2 + 2e cos f
ḟ

β̈ =
e(e+ cos f)

1 + e2 + 2e cos f
f̈ +

e(e2 − 1) sin f

(1 + e2 + 2e cos f)2
ḟ2

The velocity-frame base pointing module rates and accelerations are thus defined as

ωR0/N = ωV/N = (ḟ − β̇)ı̂h (A.16)

ω̇R0/N = ω̇V/N = (f̈ − β̈)ı̂h (A.17)

All the variables conforming the output structure of the orbit pointing modules have now

been derived: R0 = {σR0/N ,
NωR0/N ,

Nω̇R0/N}.

Appendix B

Python-based Introspection Tools

B.1 Auto-setter

Listing 5 provides pseudo-code for the AutoSetter tool, showing its working mechanisms:

looping through the C modules of each FSW task defined in a given Python scenario and parsing

the modules’ main algorithms as well as their variables and values. Note that, in order to handle

nested structures and arrays, the variables need to be parsed recursively. Listing 5 also includes

comments exemplifying the parsing of the vehicle configuration module (defined earlier in Listing 1

and initialized in Listing 2). The pseudo-code provided in Listing 5 focuses, particularly, on

the introspection part of the tool. Once introspection is granted, C output can be generated by

defining output templates. The template strategy is shown for the AutoWrapper in Listing 6 and

Listing 7.

Listing 5: Pseudo-code for the AutoSetter.py

def main():

FSW process containing GN&C tasks and modules

sim = FSW_process()

Define the specific tasks to be handled by the autosetter.

These correspond to a subset of all the tasks created in the sim

task_list = ["initialization", "sensor_read", "inertial_point", "feedback_control"]

146

Run the autosetter

parse_modules(sim, task_list, output_file_name="c_setup_code")

Look for the tasks in the sim that are also defined in the task_list.

For each of these tasks, start looping through the modules contained in the task

def parse_modules(sim, task_list, output_file_name):

source_file = open(output_file_name ’.c’, w+) # create a C source file

for i in range(0, len(sim.tasks)):

task = sim.tasks[i]

if task.name in task_list:

for j in range(0, len(task.models)):

model = task.models[j] # refers to the Py object wrapping the C module

e.g. model = Basilisk.vehicleConfigSource.VehicleConfigStruct;

proxy of <Swig Object of type ’VehicleConfigStruct *’ at address..

model_tag = task.models[j].ModelTag # e.g. model_tag = "veh"

autocode_variables(model, model_tag, source_file)

autocode_methods(model, model_tag, source_file)

This function looks for the specific names of the main methods in each module

(e.g. SelfInit_vehConfig, CrossInit_vehConfig, Update_vehConfig and Reset_vehConfig)

def autocode_methods(model, model_tag, source_file):

Get the name of the C module underneath the Python/SWIG layers

c_module_name = model.__module__ # Basilisk.vehicleConfigSource

Create the header line to include int the AutoSetter output file

split_names = module.split(’.’) # e.g. [Basilisk, vehicleConfigSource]

create_header(split_names) # e.g. ’#include "Basilisk/vehicleConfigSource.h"’

Get the name of the C structure

c_struct_name = str(type(model).__name__) # e.g. VehicleConfigStruct

Get the actual C module to perform some more introspection

system_model = sys.modules[c_module_name]

147

sys.modules above is a Python built-in dictionary

methods_list = dir(system_model)

dir() provides the Python and C functions of the module

#e.g. methods_list = [elfInit_VehicleConfigData, _file_, ...)

for method_name in methods_list: # parse the methods

method_object = eval(’sys.modules["’ + module + ’"].’ + method_name)

if type(method_object).__name__ == "SwigPyObject":

then you have found the name of the module-specific methods

e.g. "SelfInit_VehicleConfig"

...

Once the main method names in a module are known,

they can be used in a C template to create part of the AutoSetter’s output

...

return(...)

This is a recursive method evaluating which (and how)

variables are to be translated into C

def autocode_variables(model, model_tag, source_file):

e.g. model = Basilisk.vehicleConfigSource.VehicleConfigStruct;

e.g. model_tag = "veh"

field_names = dir(module) # dir provides all module variables (C and Python)

e.g. field_names = ["CoM", "ISCPntB_B", "_class_", ..., "outputMsgName"]

for k in range(0, len(field_names)):

field = field_names[i] # e.g. field = "CoM"

field_value = getattr(module, field) # e.g. field_value = [0.0, 0.0, 1.0]

field_type = type(field_value).__name__ # e.g. field_type = "list"

Here we parse the current field and decide whether to auto-code it or not

if <the field is a Python/SWIG built-in variable>:

these variables either have names starting with "__" or "this->"

148

or the field_type is "SwigPyObject" or "instancemethod"

continue # ignore this variable and move on to the next one

elif field_type=="class":

recursion:

nested_model_name = model_tag + field_name

autocode_model(model=field_value, model_tag=nested_model_name, ...)

elif field_type=="list" and type(field_value[0])=="class":

recursion: it’s a list of class/struct objects

for <each class element in the field_value list>:

autocode_model(...)

elif field_type=="list": # numeric lists

Translate non-zero elements of the list into C

for m in range(0, len(field_value)):

if field_value[m] != 0: # e.g. for CoM, field_value[1] = 1.0

write_val_to_source(...) # Output example: veh.CoM[1] = 1.0;

elif field_type=="str": # character array

write_str_to_source(...)

#Output example: strcpy(veh_model_tag.outputMsgName,"adcs_config_data");

else: # non-array type. E.g. X=2.0, letter="a", etc.

write_val_to_source(...)

B.2 Auto-wrapper

As mentioned earlier, the objectives of the AutoWrapper tool are to generate a C++ wrapper

class around each C FSW module and to generate the integration (or glue) code between MicroPy-

thon and the C++ classes. Listing 6 shows the C++ wrapper class that has been automatically

generated for the vehicle configuration C module. This C++ wrapper class is described next. The

C++ class contains the original C struct of the vehicle configuration module as a private variable.

For reference, recall that this C struct is provided earlier in Listing 1. For each member in the C

struct, a setter function and a getter function are created in the C++ wrapper class. The reason

149

for this is that the MicroPython C++ Wrapper library does not support direct interoperability

between MicroPython and C++ class variables (only between MicroPython and C++ class func-

tions). In addition, the C++ class in Listing 6 also contains callbacks to the main four C algorithms

of the vehicle configuration module. Recall that these main calls (i.e. self-init, cross-init, update

and reset) are used for execution in the Python desktop environment, and they will also be used

for execution in MicroPython.

The combination of the C++ wrapper classes with their setters and getters and the

MicroPython integration code, which is not shown in this manuscript, is equivalent to the

functionality that SWIG provides out of the box for Python in a regular desktop environment.

Although the functionality achieved is the same, the memory footprint with the MicroPython

wrapping approach is drastically reduced. The AutoWrapper tool uses the same mechanism as

the AutoSetter to figure out the variable and method names of the underlying C modules. Once

introspection is granted, the code for the C++ wrapper class and the MicroPython integration

patch can be generated through templates. Pseudo-code for the Python template describing how

to generate the C++ wrapper class of a C module is provided in Listing 7.

Listing 6: AutoGenerated C++wrapper class (vehicleConfigSource.hpp)

#ifndef WRAP_vehConfigData_HPP

#define WRAP_vehConfigData_HPP

#include <iostream>

#include "utilities/linearAlgebra.h"

#include "_GeneralModuleFiles/sys_model.h"

#include "vehicleConfigData/vehicleConfigData.h"

class vehClass: public SysModel {

public:

/* Constructor: memset 0 the C struct member variable */

150

vehClass(){ memset(&this->config_data, 0x0, sizeof(VehicleConfig));}

~ vehClass(){return;}

/* Callbacks to the C model’s generic algorithms */

void SelfInit(){ SelfInit_vehicleConfig(&(this->config_data), ...); }

void CrossInit(){ CrossInit_vehicleConfig(&(this->config_data), ...); }

void UpdateState(uint64_t callTime){ Update_vehicleConfig(&(this->config_data), ...); }

void Reset(uint64_t callTime){ Reset_vehicleConfig(&(this->config_data), ...); }

/* Setter and getter for the "outputPropsName" variable of the C struct */

void Set_outputPropsName(std::string new_outputPropsName){

memset(this->config_data.outputPropsName, ’\0’, sizeof(char) * MAX_STAT_MSG_LENGTH);

strncpy(this->config_data.outputPropsName, new_outputPropsName.c_str(), ...);

}

std::string Get_outputPropsName() const{

std::string local_outputPropsName(this->config_data.outputPropsName);

return(local_outputPropsName);

}

/* Setter and getter for the inertia "ISCPntB_B" variable of the C struct */

void Set_ISCPntB_B(std::vector<double>new_ISCPntB_B) {

m33Copy(RECAST3X3 new_ISCPntB_B.data(), RECAST3X3 this->config_data.ISCPntB_B);

}

std::vector<double> Get_ISCPntB_B() const {

std::vector<double> local_ISCPntB_B(this->config_data.ISCPntB_B, ...);

return (local_ISCPntB_B);

}

/* Setter and getter for the center of mass "CoM_B" variable of the C struct */

void Set_CoM_B(std::vector<double>new_CoM_B) {

v3Copy(new_CoM_B.data(), this->config_data.CoM_B);

}

std::vector<double> Get_CoM_B() const {

std::vector<double> local_CoM_B(this->config_data.CoM_B, ...);

151

return (local_CoM_B);

}

private:

/* Define the model’s C struct as a private member variable */

VehicleConfig config_data;

};

#endif

Listing 7: Python pseudo-code for the C++ templates

class CppWrapClassTemplate(object):

def __init__(self):

...

def create_new_template(self, model_tag, header_line, c_struct_name, algs_dict, hpp_line):

e.g. model_tag = "veh"

hpp_line = ’#include "vehicleConfigSource.h"’

c_struct_name = "VehicleConfigStruct"

algs_dict = ["CrossInit_vehicleConfig", "SelfInit_vehicleConfig", ...]

self.current_model = model_tag

Create C++ class

compile_def_name = ’WRAP_%s_HPP’ % model_tag

str_compile_def = ’#ifndef ’ + compile_def_name + ’\n’ + \

’#define ’ + compile_def_name + ’\n\n’

class_name = model_tag + "Class" // e.g. class_name = "vehClass"

str_class = ’class %s: public SysModel {\n’ % class_name + \

Constructor

’public: \n’ + \

’\t%s(){ memset(&this->config_data, 0x0, sizeof(%s));}\n’ %

(class_name, c_struct_name) + \

Destructor

’\t~%s(){return;}\n’ % class_name

152

...

str_c_data = ’private: \n’ + \

’\t%s config_data;’ % c_struct_name

str_end = ’\n}; \n\n#endif’

def add_string_property(self, field_name): #e.g. field_name = "outputPropsName"

Getter

getter_str = "\tstd::string Get_%s() const{\n" % field_name + \

"\t\tstd::string local_%s(this->config_data.%s);\n" %

(field_name, field_name) + \

"\t\treturn(local_%s);\n" % field_name + \

"\t}\n"

Setter (...)

return (...)

Appendix C

Black Lion Data Transfer: ZMQ

Black Lion takes advantage of the ZeroMQ (ZMQ) Message Library1 in order to transfer

data between applications. ZeroMQ is a high-performance asynchronous messaging library aimed

at use in distributed or concurrent applications. It allows the transport of data to be fast, reliable

and protocol independent. The ZMQ interfaces are available in a wide range of programming

languages, which can perfectly interact with each other.

C.1 Socket Patterns

In order to understand how the data transfer work, it is critical to first explain upfront the

socket types and connection types used in the system. Two types of ZMQ socket patterns are used

to transport data: the request-reply pattern and the publish-subscribe pattern. Within the Black

Lion architecture, the publish-subscribe pattern is applied in two different flavors. , as described

next:

Request (REQ) - Reply (REP): the Central Controller has a REQ socket for each node

instantiated in the simulation. As the name indicates, REQ sockets are used to make

requests, which demand a reply before the program can continue its execution. In turn,

each node has a REP socket that receives and parses the request, performs the commanded

task, and replies back indicating accomplishment.

1 http://zeromq.org

http://zeromq.org

154

Publish (PUB) - Subscribe (FRONTEND SUB): Every node has a PUB socket to share its

own internal data through broadcasting or publications. In turn, the Central Controller

has a frontend with a SUB socket that subscribes to the publications from all nodes.

Publish (BACKEND PUB) - Subscribe (SUB): Additionally, the Central Controller has

a SUB-frontend and a PUB-backend. The messages received at the frontend are internally

routed to the backend, which then re-publishes the data. In turn, each node has a SUB

socket that subscribes to the messages of interest coming from the controller’s backend.

The relationship between sockets just described is exemplified in Fig.C.1. The figure depicts the

Central Controller in the middle and two sample nodes highlighted in magenta and blue. As

shown in Fig. C.1, the sockets are encapsulated by the Delegate API.

C.2 Connection Types

Now that the socket types are defined, the connections of these sockets to a given IP address

and port are discussed. All the socket connections in the system fall into either one of these cate-

gories: static connection (i.e. binding type in ZMQ terms) or dynamic type (i.e. connecting type

in ZMQ terms). The static connections are all associated to sockets in the Central Controller,

while the dynamic connections are associated to the sockets in each of the nodes’ Delegate API.

Central Controller: it is the only static piece in the network thanks to the frontend-backend

Central ControllerDelegate

BACKEND PUB

FRONTEND SUB

REQ REP

PUB

SUB

Delegate

REP

PUB

SUB

REQ

Figure C.1: Socket patterns between the Central Controller and the nodes’ Delegate

155

(broker) approach. The controller acts as a server in the sense that it binds to a static IP

address. With the same address, it uses a total of (2 +N) ports, where N is the number of

nodes instantiated: One port for the frontend, one port for the backend, and a command

port for each of the node-request sockets.

Nodes’ Delegate API: through the Delegate API attached to each one of the nodes, the nodes

become dynamic clients that can come and leave without bringing down the rest of the

system. This dynamicity is reflected in the fact that the nodes only connect to an address

and port, rather than bind.

Through the described strategy, the server (i.e. Central Controller) is always required and the

clients are independent entities that do not intrinsically rely on each other. The use of ZMQ also

allows all the connections to be protocol independent (TCP, IPC, etc.). The idea of socket binding

(static nature) versus socket connecting (dynamic nature) is illustrated in the topology showcased

in Fig. C.2. The figure also reflects the fact that there is only one static IP address in the entire

Black Lion system and multiple ports are associated with that IP address. As before, the figure

displays the Central Controller (server) in the middle and two sample nodes (clients) highlighted

in magenta and blue colors.

ServerClient

bind
backend_port

bind
frontend_port

connect
cmd_port_1

connect
frontend_port

connect
backend_port

Client

connect
cmd_port_2

connect
frontend_port

connect
backend_port

bind
cmd_port_1

bind
cmd_port_2

Figure C.2: Socket connections types: binding vs. connecting

156

C.3 Controller Requests and Node-Delegate Replies

The Central Controller makes five types of requests to the Delegate of each node. Some

of these request come in the form of multi-part ZMQ messages.

(1) “Initialize” request: it is a multi-part message containing the “Initialize” signal, the

controller’s frontend address and port and the controller’s backend address and port. The

actions taken by the requested node are: self initialization, connect its pub-socket to the

controller’s frontend and connect its sub-socket to the controller’s backend.

(2) “Provide Desired Message Names” request: it instructs each node to report all the

message names to which the node wishes to subscribe.

(3) “Match Message Names” request: it is a multi-part message with the ”Match” signal

and a list of all the message names for which the other nodes have asked. The requested

node returns a reduced list with the message names for which it has found an internal

match.

(4) “Tick” request: it is used at every time-step of the SW-sim run for synchronization

purposes. This request contains the time duration of the next time-step (i.e. ∆t). Once

the requested node has accomplished all the tasks that must happen after a “Tick”, it sends

back a “Tock” reply.

(5) “Finish” request: it is a signal for the node to close the sockets, clean up and shut down.

Appendix D

Building the Basilisk-MicroPython FSW System for Unix

This chapter provides the reader with guidelines on how to build the Basilisk-MicroPython

system for Unix. Such built exemplifies an effective manner of integrating custom C modules (e.g.

FSW modules) into MicroPython by means of the MicroPython C++ Wrapper tool. The technical

aspects described in this chapter aim to compensate for the fact that the Basilisk-MicroPython

system cannot be easily made open source to the community as a single and complete bundle

due to the use of multiple independent software repositories. While Basilisk, MicroPython and the

MicroPython C++ Wrapper are all free software tools, their corresponding repositories are managed

independently by different individuals and groups. This thesis has combined them together in order

to come up with a flexible, lightweight and portable FSW system.

Dovetailing together Basilisk and MicroPython consists of, essentially, and integration process

and a build process. The integration process is greatly simplified by the use of the AutoWrapper

tool introduced earlier, which is now available as an open-source product through the Basilisk

repository. While the AutoWrapper tool automatically generates the “glue” code between Basilisk

and MicroPython, this integration code then needs to be added into the proper places for building

–and this is, in part, what this chapter describes. Despite building the Basilisk-MicroPython system

is not a simple process, the system can be replicated and built by following the guidelines provided

next.

(1) The first step consists on cloning the MicroPython repository and making sure that the

Unix port builds successfully. Such built is done with only a few command lines that are

https://github.com/micropython/micropython/tree/master/ports/unix

158

outlined here. Then, the MicroPython executable can be launched from command line by

typing ./micropython within the Unix port. After having tested that MicroPython runs

on Unix, it is suggested to clean the build –since it is going to be the MicroPython C++

Wrapper which builds the MicroPython executable next.

(2) The second step consists on cloning the MicroPython C++ Wrapper repository and calling

its Makefile to build MicroPython’s Unix port together with the C++ Wrapper, which is

in turn linked as a static library.

To provide context and as explained in this example, the core of the MicroPython C++

Wrapper library is its module.cpp file, which creates a Micropython module that is named

upywraptest and to which several C++ classes and functions are added. In order for this

module to become actually importable from MicroPython, it is necessary to modify the

main.c file in the MicroPython’s Unix port. In particular, there are three edits required

around the main call of the main.c file. Pseudo-code for the main call is shown in Listing 8

and the edits correspond to lines 1, 2 and 6. The function of these edits is to declare and

register the upywraptest module such that it can then be imported from MicroPython by

simply typing import upywraptest. Then, all the C++ classes and functions implemented

within this module can be used as if they were MicroPython objects.

With these edits of MicroPython’s main in place, the user can build the MicroPython exe-

cutable together with the C++ Wrapper static library by cd-ing into the micropython-wrap

directory and typing make staticlib.

(3) The final step is customization, which involves: implementing your own C++ modules,

adding them to the Wrapper’s Makefile to compile and link (in the same way that is

currently done for module.cpp) and then editing the module.cpp file to define not only the

upywraptest module but also your custom MicroPython module (e.g. upywrap fsw). The

idea is that within upywrap fsw the different C++ FSW classes and functions that need

to be available at the MicroPython layer are declared. For the case of the Basilisk FSW

http://github.com/micropython/micropython
http://github.com/stinos/micropython-wrap/blob/master/Makefile
https://github.com/micropython/micropython/tree/master/ports/unix
http://github.com/stinos/micropython-wrap#example
https://github.com/stinos/micropython-wrap/blob/master/tests/module.cpp
https://github.com/micropython/micropython/blob/master/ports/unix/main.c
https://github.com/micropython/micropython/blob/master/ports/unix/main.c
http://github.com/stinos/micropython-wrap/blob/master/Makefile

159

modules, these declarations are described as “MicroPython integration patch” in Fig. 6.1

and they are generated automatically by the AutoWrapper tool. The generated integration

code is meant to be added underneath the custom MicroPython module (i.e. upywrap fsw)

within the module.cpp file.

After customization, the system can be built again as described in Item (2).

Listing 8: Edits in MicroPython’s Unix main.c file

#include <py/objmodule.h> // line 1

extern mp_obj_module_t* init_upywraptest(); // line 2

MP_NOINLINE int main_(int argc, char **argv) { // line 3

...

mp_init(); // line 5

mp_module_register(qstr_from_str("upywraptest"), init_upywraptest()); // line 6

...

}

https://github.com/stinos/micropython-wrap/blob/master/tests/module.cpp

Appendix E

Benchmarking Heap Memory Usage

This section aims to provide reference memory benchmarks by comparing the heap memory

consumption of different systems when running the same script. The different systems to be

analyzed are the following:

(1) Python 3

(2) MicroPython with garbage collector (GC)

(3) MicroPython without GC

(4) Basilisk-MicroPython

The generic script to use is a sensor example extracted from Ref. [33]. Pseudo-code for this sensor

example is presented in Listing 9. The script is conformed by two parts: initialization and execution

(or control loop). The interesting aspect is that the control loop does not allocate heap memory:

objects, classes and data structures are preallocated during initialization. Then, the control loop

only uses a restricted set of constructs that do not require heap allocation. In MicroPython, the

following operations are known to not require heap usage:

• Small integers, which are stored in object pointers.

• Functions, which use the C stack and do not need binding to be called.

• For loops over a range of integers.

Operations that would require heap usage are, for instance:

161

• Floating point number arithmetics.

• General iteration construct (other than iteration over integers).

The sensor example script in Listing 9 is deterministic in the sense that it does not allocate

memory dynamically beyond initialization. Therefore, the heap memory consumed by the different

systems when executing the main loop is supposed to be a flat line. Having said that, these flat lines

will present offsets between each other and these offsets are precisely what reveals the performance

of each system. The Massif1 tool provided by Valgrind is used to profile the heap memory for each

application.

Listing 9: Deterministic Sensor Example. Extracted from Ref. [33].

class Sensor:

def __init__(self, ...): ...

def sample(self): return(...)

class Indicator:

def __init__(self, ...): ...

def toggle(self): ...

def create():

sensors = {"sensor_1": Sensor(),"sensor_2": Sensor()}

indicators = {"indic_1": Indicator(),"indic_2": Indicator()}

return sensors, indicators

def loop(sensors, indicators):

for i in range(2000): # iteration over range of ints

num = sensors["sensor_1"].sample()+["sensor_2"].sample()

if num > 50: # integer condition

indicators["indic_1"].toggle()

1 https://valgrind.org/docs/manual/ms-manual.html

https://valgrind.org/docs/manual/ms-manual.html

162

else: indicators["indic_2"].toggle()

def main():

sensors, indicators = create() # preallocate objects

loop(sensors, indicators) # control loop

E.1 Sensor example in Python

Figure E.1 shows the heap memory consumed by Python 3 when running the script in List-

ing 9. This plot is obtained using Massif’s visualizer and the time is represented in number of bytes

Figure E.1: Sensor example in Python 3

163

allocated/deallocated on the heap and stack (i.e. time in B). The peak heap consumption coincides

with the flat consumption at 1.1 MebiByte (MiB).

It is relevant to mention that all Python 3 installations come with built-in garbage collector

algorithms: a reference counting collector (which is fundamental to Python workings and cannot

be disabled) and a cyclic garbage collector (i.e. the gc module, which is optional and can be

enabled/disabled manually). For the execution profiled in Fig. E.1, garbage collector algorithms

were present (i.e. built within Python 3) although not used because the program/script does not

allocate memory dynamically.

In order to discuss results further, it is convenient to see how Python compares with Mi-

croPython. The profiling results for MicroPython are presented next.

E.2 Sensor example in MicroPython

In contrast to Python, MicroPython does not come as a complete bundle ready to be installed;

instead, it is mean to be built for specific targets and customized for specific needs. On these

lines, MicroPython provides many compile-time configuration options to fine tune the build of the

MicroPython executable. One of these options is to build MicroPython without the GC. Next, the

heap usage of MicroPython when running the script in Listing 9 is profiled in two different cases:

when MicroPython is built with and without the GC respectively.

E.2.1 MicroPython with Garbage Collector

Figure E.2 shows the heap memory usage of MicroPython, built with the GC, when running

the sensor example. The heap usage is, as expected, constant and the consumption peak equals

the flat value of the main loop (at 2.1 MiB). Surprisingly, MicroPython with GC demands 1MiB

more than regular Python3. However, this is only because of the presence of the GC which, as seen

next, is stored in RAM.

164

Figure E.2: Sensor example in MicroPython with GC

E.2.2 MicroPython without Garbage Collector

Figure E.3 shows the heap memory usage of MicroPython, built without the GC, when

running the same sensor example script. In this case the memory peak is 104.8 KiB, which happens

at initialization. The memory consumption is flat during the control-loop execution and has a

constant value of 57 KiB approximately. Comparing now the memory usage of Python 3 versus

MicroPython without GC, the peak consumption is reduced by one order of magnitude.

The profile in Fig. E.3 also proves that, indeed, the script in Listing 9 does not allocate heap

165

memory in the control loop. If runtime objects were being created cyclically, the heap usage would

increase proportionally to the number of cycles –since the GC is not present to free resources that

run out of scope.

In MicroPython the GC is stored in RAM. Therefore, getting rid of it is a great way of

optimizing the RAM usage, provided that certain rules are followed when it comes to writing

programs in MicroPython.

Figure E.3: Sensor example in MicroPython without GC

166

E.3 Sensor example in Basilisk-MicroPython without GC

Seeing that building MicroPython with the GC supposes a considerable hit in RAM usage,

the next question to address is: how much RAM memory is required to build MicroPython together

with the Basilisk FSW modules and the MicroPython C++ Wrapper? Figure E.4 shows the memory

consumed by Basilisk-MicroPython (without the GC) when running the example sensor script in

Listing 9. Note that, in this case, the Basilisk FSW modules are present but they are not used.

The peak memory consumption happens at initialization and has a value of 206.8 KiB, while the

Figure E.4: Sensor example in Basilisk-MicroPython without GC

167

flat consumption in the control loop settles at 160 KiB approximately. Hence, building Basilisk

together with MicroPython requires only 100 KiB of RAM.

	Introduction
	Background: FSW Development Environments
	Desktop Development Environment
	Embedded Environment
	Middleware Layers

	Literature Review: State-of-the-art Tools for FSW Development
	Modular Desktop Development Tools
	Cross-Environment Development Tool Suites

	Outline

	Desktop Flight Algorithm Development: Modular ADCS
	The Basilisk Testbed
	Rotational Reference Motions for Distinct Guidance Profiles
	Problem Statement
	Software Modules and Mathematical Development
	Numerical Simulations

	Summary

	Flight Algorithm Migration into Commercial Flight Targets
	The Raspberry Pi for Space Applications
	Distributed Basilisk Simulation using the Raspberry Pi
	Summary

	Flight Algorithm Migration into the core Flight System
	The cFS Middleware
	From Basilisk into a cFS-FSW Application
	Setup Item: C Module Initialization
	Setup Item: Task Groups and Rates

	Translation Mechanism: the Auto-Setter
	Summary

	Emulated Flat-Sat Testing of cFS-FSW through Distributed Communication
	Emulated Flat-Sat
	The Black Lion Communication Architecture
	Design and Architecture
	Data Transfer and Synchronization
	Applications

	FPGA registers and Avionics Hardware Modeling
	Register Space
	Avionic Models

	Emulated Flat-Sat Simulations
	Spacecraft Pointing Commands
	Mars Orbit Insertion
	Coarse Sun Sensors Corruption/Miscompare

	Formation Flying Simulation through Black Lion
	Summary

	Flight Algorithm Migration into MicroPython
	From Basilisk into a MicroPython application
	Migration Mechanism: the Auto-Wrapper
	Post-Processing MicroPython Results
	Numerical Simulation: Testing Basilisk-MicroPython FSW
	Summary

	Basilisk-MicroPython for Embedded Systems
	Port of MicroPython to the LEON Flight Target
	Building the RTEMS toolchain and LEON BSP
	Building the MicroPython executable
	Summary

	Basilisk-MicroPython Profiling: Use of Resources
	RAM Usage
	ROM Usage
	CPU Usage
	Summary

	Conclusions
	 Bibliography
	Modular Attitude Guidance
	Attitude Control MRP Feedback
	Additional Base Pointing Modules
	Inertial Pointing
	Hill and Velocity Pointing

	Python-based Introspection Tools
	Auto-setter
	Auto-wrapper

	Black Lion Data Transfer: ZMQ
	Socket Patterns
	Connection Types
	Controller Requests and Node-Delegate Replies

	Building the Basilisk-MicroPython FSW System for Unix
	Benchmarking Heap Memory Usage
	Sensor example in Python
	Sensor example in MicroPython
	MicroPython with Garbage Collector
	MicroPython without Garbage Collector

	Sensor example in Basilisk-MicroPython without GC

