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Saunders, Marc (M.S., Aerospace) 

Adaptive Formation Flying Maneuvers for Multiple Relative Orbits 

Thesis directed by Professor Hanspeter Schaub 

 Abstract: 

 In order to extend and preserve the mission of an earth orbiting satellite it is imperative 

that the on board maneuvers do not waste propulsion but maneuver the spacecraft optimally.  

The challenge for ground stations is to plan maneuvers for spacecraft that will achieve a desired 

orbit while minimizing fuel costs.  Increasing this challenge is the addition of specific keep-out 

zones (constraints on the spacecraft).  For example, a low-earth orbiter (LEO) may need to 

maintain a specific orbit plane for a sun-synchronous imaging mission but it now has to contend 

with opposing debris.  Computing a maneuver to avoid the debris could have consequences to 

the mission constraints and cause undesired affects to the desired orbit.  The purpose of this 

research is to develop some techniques that can aid in finding some optimal maneuvers (or 

maneuvers that use the least amount of energy) and will maintain mission requirements while 

preserving constraints. 

 Two different models will be developed that can minimize energy used in the maneuvers.  

The first model is a linear set of impulsive maneuvers derived from the Clohessy-Wilshire 

Equations.  This model can be used as a targeting equation for targeting a specific relative orbit 

that also minimizes the total energy among a series of maneuvers.  The second method is a 

nonlinear model using a Lyapunov Function in a feedback control loop; where the position of a 

spacecraft relative to a target orbit is minimized and the reference motion can be used to create 

keep-out zones. 
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CHAPTER 1 

INTRODUCTION 

1. Motivation 

 Due to size, power or other constraints when building a satellite; often it is the function of 

a well equipped ground station that conducts the management of a spacecraft mission.  One of 

the many functions of the ground station is to compute and command station-keeping maneuvers 

for a vehicle, in order to maintain an orbit that satisfies the mission requirements.  Many of these 

maneuvers can be computed with various techniques.  One such technique is to use Gauss’ 

Variational Equations (1) on the classic orbit elements to compute an impulsive (i.e. 

instantaneous) delta-velocity maneuver to change a specific orbit element.  This technique has 

the advantage (for example) of maintaining specific orbit parameters like increasing the semi-

major axis when atmospheric drag lowers the altitude of a spacecraft.  Other analytical maneuver 

techniques can include (but are not limited too) the classic Hohmann transfer, Bi-elliptic transfer 

and tangential maneuvers (2). 

 The emphasis in this paper is to investigate a technique to compute maneuvers relative to 

another orbit.  This can be achieved by creating a Fictitious Orbit and then compute maneuvers 

relative to it.  For instance, one may design a low-earth sun-synchronous orbit where the semi-

major axis and inclination are constant while the ascending node regresses one degree a day due 

to the oblate equator of the earth.  There are no other perturbations on this Fictitious Orbit so 

over time the mean orbit elements (3) do not change.  Once the desired mission orbit is designed, 

it is now possible to maneuver a secondary orbit (the actual orbit of the spacecraft) relative to the 
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primary (fictitious orbit).  Since there are many perturbations on the actual orbit, it will drift 

away from the primary mission designed orbit over time. 

 Placing the rotating Hill’s Frame on the primary orbit gives the ability to fly a formation 

of two spacecraft relative with each other.  In this case, it is desirable that the formation consists 

of one fictional orbit and one actual orbit.  Later it will be shown how relative orbit maneuvers 

can then be used to maintain a mission.  This would be accomplished by computing maneuvers 

relative to the primary orbit that would ultimately change the secondary orbit to match the 

primary.  This technique has an advantage over analytical formulations; where constraints can be 

added so that maneuvers can attempt to maintain mission requirements while avoiding certain 

keep-out zones. 

2. Potential Applications 

 This type of maneuvering can be applied to any earth orbiting mission.  What is 

convenient about this application is different types of maneuvers do not need to be distinguished 

from one another.  In many cases, station keeping maneuvers (small correctional maneuvers used 

to maintain an orbit) are considered different than maneuvers used to dock with a space station.  

And within station keeping maneuvers, there are many types of maneuvers used to correct 

different orbit elements depending on the type of orbit and the mission the spacecraft is 

performing.  Computing maneuvers in a relative manner (to another orbit) allows the ground 

controller the freedom to design a maneuver (no matter the current state of the actual orbit or 

current time) to achieve what should be the primary mission.  For example, certain station 

keeping maneuvers may only be performed when a spacecraft is eclipsed by the earth or is over a 

specific target on the ground. 
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 Maneuvering relative to another orbit also has applications when needing to change an 

orbit completely.  If the space shuttle had a mission to conduct maintenance on multiple 

spacecraft, such as docking with the space station and then leave to repair two other satellites 

that were in different orbits, this type of maneuvering would be greatly beneficial.  All that 

would need to be done is change the primary orbit in the formulations as the next target and find 

a series of maneuvers that use the least amount of fuel to get there.  If there were obstructions in 

the path of changing orbits (like debris or sunlight shining on a payload), then these maneuvers 

can also use some constraint information while still achieving the final orbit. 

 Finally, when flying a formation of satellites where a secondary deputy satellite has to 

maintain specific distances relative to a primary satellite (for example remote sensing missions); 

these maneuvers can be a great advantage.  In this case a fictitious primary orbit can be used to 

maintain the first spacecraft, and then the first spacecraft is then used as the primary target for 

the second one. 
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Figure 1: Landsat-7 and EO-1 flying in formation to each other1

 

. 

3. Literature Review 

 Extensive research had been conducted in the area of formation flying.  Much of the 

literature in this field shows where formation flying equations and techniques in space are 

derived from.  Also, many techniques in regards to this field show how to develop maneuvers 

                                                 

 

1 http://eo1.gsfc.nasa.gov/technology/Images/EO-1formationflying.gif 
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that can maintain a series of formation flying spacecraft together.  Among these techniques are 

developments using mean orbit elements that aid in maintaining J2 invariant orbits (4). 

 The techniques used here use traditional methods with Cartesian vectors (no orbit 

elements).  Instead of deriving maneuvers where particular orbit parameters are being maintained 

like using Gauss’ variational equations (3; 5), these maneuvers are computed in reference to using 

the chief orbit as a fictional ideal orbit that is being maintained. 

 The techniques of using least-squares and Lyapuov Functions are primarily used in this 

text to show how maneuvers can be computed in a relative sense. 
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CHAPTER 2 

TWO-BODY MOTION 

1. Equations of Motion 

 Formation flying or relative motion is the technique of flying one satellite relative to 

another.  To understand how a satellite flies in a formation, it is important to understand how a 

satellite orbits the earth. Many of the formulations found in this section are used later in order to 

derive the relative equations of motion.  Even though a satellite can fly in formation to another, 

both are still orbiting the earth. With that in mind, the following sections will show the 

development of key identities needed for understanding the relative equations of motion.  These 

equations will be needed later to understand how to maneuver one satellite relative to another. 

 

 

Figure 2: Two-body gravitational motion between the earth and a satellite in inertial space. 
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 To begin, a review of the Two-body equations of motion between an orbiting satellite and 

the earth are needed.  Sir Isaac Newton first introduced his laws of motion in Book I of The 

Mathematical Principles of Natural Philosophy (or simply the Principa) (1). There he described 

the three laws of motion which will be used to develop equations need for later. 

 

Table 1: Newton’s Laws (1) 

Law Description 
First A particle or mass continues in a state of rest or of uniform motion (velocity 

never changes) in a straight line unless it is compelled to change that state by 
forces impressed upon it. This law defines that the equations of motion must be 
in an inertial reference frame. In other words the frame cannot be accelerating. 

Second The rate of change of momentum is proportional to the force impressed and is 
in the same direction as that force. This is the famous 𝑭 = 𝑚𝒂 equation, where 
𝑭 is the vector force, m is the constant mass and a is the second-order derivative 
of the position of the mass (or acceleration). 

Third To every action there is always an opposed equal reaction. This law helps us 
build a free body diagram as we draw out the forces involved in a system of 
particles. 

 

 In order to derive the equations of motion needed for relative orbits, the equations must 

be related back to an inertial frame.  To do so, a fictional frame (N) is setup somewhere in space 

that is inertial (not accelerating) 𝑁: {𝐧�𝟏,𝐧�𝟐,𝐧�𝟑}.  Also another inertial frame that is fixed to a 

mass (m1) 𝐼: {�̂�𝐫, �̂�𝛉, �̂�𝐡} is defined. One other important formula that Newton developed in the 

Principa was the law of Universal Gravitation.  Where he determined that gravity between two 

point masses (or particles) was the product of their masses and inversely proportional to their 

distance squared.  The force of gravity between the two masses is found by some constant G, 

also known as the Universal Gravitational Constant. In theory any two masses have a 
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gravitational attraction between each other, but the only reason why it is not noticeable is the 

constant is extremely small2

 

.  This value is so small that for all practical applications it is 

ignored.  Although, when dealing with a large mass (like the earth) then the constant cannot be 

ignored.  Note that Eq. (2) is the vector form of Eq. (1). 

2
21

r

mGm
F =  (1) 

 rr

mGm
iF ˆ

2
21=  (2) 

 Referring to Figure 1 some definitions can be made in order to find the motion of an earth 

orbiting satellite.  Using vector geometry, it is apparent that the position of the satellite (m2) with 

respect to the earth (m1) can be defined as 𝐑1 + 𝐫 = 𝐑2, where the position from the earth to the 

satellite is defined as 𝐫 = 𝑟�̂�𝐫.  In this particular case R1 and R2 are not matrices but position 

vectors.  Differentiating twice, the motion of the satellite with respect to the earth is defined as 

 12 RRr 

 −=  (3) 

 In order to define the forces involved in this system Newton’s second law is used to find 

the force of gravity.  Combining the second law with the Universal Law of Gravitation the force 

of gravity is found (and their disturbance forces 𝐟𝐝𝟏 and 𝐟𝐝𝟐) on masses m1 and m2.  The 

                                                 

 

2 In fact the constant is approximately 6.673e-20 km3/(kg s2) (10) 
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disturbance forces are the sum of all forces that may cause the motion of the satellite to move 

from the ideal Two-body motion.  Such forces can include (but are not limited too) spherical 

gravity harmonics, third bodies (like the sun and the moon), solar radiation pressure and 

atmospheric drag. 

 1
ˆ

2
21

11 drr

mGm
m fiR +=  (4) 

 2
ˆ

2
21

22 drr

mGm
m fiR +−=  (5) 

 Solving for the positions of the two masses and substituting them into Eq. (3), a 

formulation for the motion of the satellite with respect to the earth is found. The disturbance 

accelerations are defined as 𝐚𝑑1 = 𝐟𝑑1 𝑚1⁄ , and 𝐚𝑑1 = 𝐟𝑑1 𝑚1⁄ .  The resulting equation of 

motion is now 

 ( ) 2121
ˆ

2 ddmm
rr

G aair +++−=  (6) 

 In order to reduce Eq. (6) some simplifying assumptions can be made.  First, assume that 

the mass of the earth is far greater than the mass of a satellite.  So much so, that the mass of the 

satellite can be neglected 𝑚1 ≫ 𝑚2 or 𝑚2 ≈ 0.  Also assume that the gravitational force of the 

earth is far greater than any of the disturbing forces acting on the satellite, as well as the 

disturbances on the earth are negligible.  In other words, the gravity of the earth is the primary 

force on the satellite 𝐺𝑚1
𝑟2

≫ 𝐚𝐝𝟏, and 𝐚𝟐 ≈ 𝟎.  Combining the Gravitational Constant and the 
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mass of the earth as a single constant the following relationship is defined as 𝜇 = 𝐺𝑚1.  Now Eq. 

(6) can be written into its final reduced form 

 rr 3r

µ
−=  (7) 

 Eq. (7) is the famous equation of motion of an orbiting satellite about the earth in the 

absence of any disturbances (i.e. Two-body motion).  In its current form this ordinary differential 

equation cannot be solved analytically but only numerically.  An analytical solution does exist 

for Eq. (7) but that is not in the scope of this discussion. 

2. Identities 

 Due to the rotational nature of the Hill’s Frame, it is necessary to define some 

relationships to the angular momentum of the orbit.  Since the relative orbit frame rotates along 

the angular momentum vector the following sections are useful definitions and will be helpful 

later on when reducing certain derivations. 

3. Angular Momentum Constant 

 From Eq. (7) some useful identities can be derived that will be needed later in our study 

of relative motion.  These identities only work in the Two-body motion case as this assumption 

is important in order to reduce the equations to simpler and solvable expression.  The first 

identity relates the angular momentum of the satellite to the instantaneous change of the true 

anomaly of the orbit.  The massless angular momentum is defined as the cross product of the 

position and velocity of the satellite and is aligned with the third component of the 

frame 𝐼: {�̂�𝐫, �̂�𝛉, �̂�𝐡}. 
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 rrh ×=  (8) 

  hhih ˆ=  (9) 

 It can be proven that the angular momentum is constant by taking the derivative and 

showing that it is zero.  Again, assuming that any disturbance forces acting on the satellite are 

negligible; the following is always true 

 0arrrrrrrrh =







+×=×=×+×= dr3

µ


  (10) 

 Of the six classic orbit elements that can be used to geometrically describe an orbit3

 

, the 

true anomaly is the only non-constant value and can be used to describe the instantaneous 

angular change of an orbit.  Taking the derivative of 𝐫 = 𝑟�̂�𝐫 with respect to the I frame 

θiir ˆˆ frr r


 +=  (11) 

 Then substituting the position and velocity terms into the angular momentum definition 

the following can be defined 

 hθrr frfrrr iiiih ˆ)ˆˆ()ˆ( 2


 =+×=  (12) 

                                                 

 

3 The six classical (or Keplarian) orbital elements are typically (𝑎, 𝑒, 𝑖,Ω,𝜔, 𝑓); semi-major axis, eccentricity, 

inclination, ascending node, argument of perigee and true anomaly.  Most literature interchange’s true anomaly with 

mean anomaly but for our purposes we will be using true anomaly only. 
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 Eq. (12) can be reduced to a scalar form by setting it equal to Eq. (9).  This identity 

shows in a Two-body case that the constant angular momentum is equal to the product of the 

position squared and the instantaneous change of the true anomaly which must also be constant. 

 frh 

2=  (13) 

 An identity that relates the second-order derivative of the true anomaly by taking the 

derivative of Eq. (13) can also be defined.  Remembering that the angular momentum is constant, 

and then the following can be true 

 frfrrh 





220 +==  (14) 

 Rearranging terms the second-order derivative of the true anomaly is now Eq. (15). 

 f
r
rf 



 2−=  (15) 

4. Angular Momentum and Gravity 

 Another useful identity is the relationship between the angular momentum constant and 

the gravitational parameter defined in Eq. (7).  By taking the derivative of the cross product of 

the velocity vector and the angular momentum vector 

 ( ) ( )rrrhrhr  ××−=×=× 3rdt
d µ  (16) 

 And using the vector triple cross product 𝐚 × (𝐛 × 𝐜) ≡ (𝐚 ∙ 𝐜)𝐛 − (𝐚 ∙ 𝐛)𝐜, Eq. (16) can 

be rewritten into a new form.  Using the relationship 𝐫 = 𝑟�̂�𝐫 and reducing terms, Eq. (16) can 

now be written in the following form 
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 ( )rrhr rr
r

 −=× 2
µ  (17) 

 Although not obvious, with a little bit of inspection one will notice that Eq. (17) can be 

rewritten into a new form that allows it to be integrated on both sides of the equation.  This is 

important so that it can be related the gravitational parameter, position and velocity terms only.  

Look at Eq. (18) carefully, that one can carry out the derivative and get back Eq. (17). 

 





=×

rdt
d rhr µ  (18) 

 ( ) 





=×

rdt
d

dt
d rhr µ  (19) 

If both sides of Eq. (19) are integrated; and then solve for a constant of integration then take the 

dot product of both sides of the equation and use the following dot product identity 𝐚 ∙ (𝐛 × 𝐜) ≡

𝐜 ∙ (𝐚 × 𝐛) the following is the result. 

 





−×=

r
rhrC µ  (20) 

 rh
r

µµ −=













−×⋅=⋅ 2rhrrCr   (21) 

 ( )CrCr ,cos <=⋅ rC  (22) 

 By equating the right sides of Eq. (21) and Eq. (22), the scalar value position can be 

solved for.  This equation is in the form of the polar equation of a conic section (5), Eq. (24). 
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Geometrically these equations are equivalent so they can be defined as an equation that relates 

the angular momentum to the product of the gravitational parameter and the semi-parameter of a 

conic section (p). 

 
),cos(1

2

Cr<+
=

µ
µ

c
hr  (23) 

 
)cos(1 fe

pr
+

=  (24) 

 ph µ=2  (25) 

 It is useful as well to find the derivative of Eq. (24) as later it will be shown that the 

relative equations of motion have the current orbit radius (r) and it’s derivative. 

 
)cos(1

)sin(
fe

ffrer
+

=


  (26) 
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CHAPTER 3 

FORMATION FLYING 

1. Relative Motion 

 

Figure 3: the relative orbit motion between two satellites. For reference, the primary satellite 
where the rotating frame is defined is called the chief. And the secondary satellite that is flying 
relative to the chief is the deputy. 

 

 Up to this point, only the motion of a single satellite about the earth has been defined.  In 

order to compute maneuvers that are relative to another spacecraft, it would be desirable to be 

able to relate the motion of one satellite relative to another as they both orbit the earth.  An 

example might be to fly the Space Shuttle relative to the International Space Station when 
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docking.  The following section shows the derivation of the Clohessy-Wilshire Equations (6) (in 

the rotating Hill’s Frame).  These equations are invaluable in order to understand how one might 

maneuver a spacecraft relative to another. To begin, the full nonlinear, second-order differential 

equations are derived.  After which, some simplifying assumptions are made.  Then the 

equations are reduced to a form where an analytic solution can be found.  This solution will help 

in formulating the first type of maneuvering that can be performed, in order to change the orbit 

of a deputy spacecraft relative to the chief. 

 Referring to Figure 3, an inertial frame and a rotating frame for the following derivations 

(𝐼: {�̂�r, �̂�θ, �̂�h} and 𝑂: {𝐨�r,𝐨�θ,𝐨�h}) are defined (5) (7).  The rotating O frame is considered to be the 

Hill’s Frame and is centered on the chief orbit.  Sometimes this frame is called the local-

horizontal/local-vertical frame (LVLH).  These two frames are related to each other through the 

first and third components.  The first component relates the two frames via the following 

identity 𝐫c = 𝑟𝑐𝐨�r.  Secondly, the two frames are related through the third component lining up 

with the angular momentum vector 𝐡 = ℎ�̂�h = ℎ𝐨�h.  The rotation of the chief orbit and 

subsequently the rotation of the O frame are found in the relationship 𝛚𝑂 𝐼⁄ = 𝑓̇𝐨�h.  The relative 

position of the deputy can be defined in the rotating frame with respect to the chief in Eq. (27) 

and Eq. (28). (5) 

 















=

z
y
xO

ρ  (27) 

 ( ) hrccd zyxr oooρrr ˆˆˆ +++=+= θ  (28) 
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 The relative velocity (in terms of the rotating frame) of the deputy can be found by taking 

the derivative of Eq. (28) and using the definitions defined above.  Reducing the equation by 

collecting like terms, the relative velocity is 

 ( ) ( ) hcrcd zfxfryfyxr ooor ˆˆˆ








 ++++−+= θ  (29) 

 Similarly, to find the relative acceleration (in terms of the rotating frame), take the 

derivative of Eq. (29) and collecting like terms, reducing where possible. (5) 

 ( )( ) ( ) ( )( ) hccrccd zfyfxrfxryfxrfyfyxr ooor ˆˆ2ˆ2 22








 +−++++++−−−+= θ  (30) 

 Eq. (30) is a second-order nonlinear differential equation that contains second-order 

terms in it.  This would be difficult to solve in this form so it is necessary to reduce it by 

eliminating the second-order differentials �̈�𝑐 and �̈�.  Using the following definition 𝐫c = 𝑟𝑐𝐨�r, and 

differentiating twice to get the following relationship of the acceleration 

 ( ) ( ) θoor frfrfrr ccrccc






 ++−= 22  (31) 

 Making the assumption that the two spacecraft (the deputy and chief) are flying in a Two-

body system without disturbances, and using Eq. (7) to make the following relationship, then Eq. 

(31) can be rewritten. 

 r
c

c r
or ˆ

2
µ

−=  (32) 

 2
2

c
cc r

fr µ
−= 

r  (33) 
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 Finally, using Eq. (25) and reducing, a relationship for the second-order derivative of the 

chief orbit radius can be substituted back into Eq. (30).  To eliminate the second-order derivative 

of the true anomaly in Eq. (30), substitute in Eq. (15) to get the final formulation. 

 h
c

c
r

cc

c
d zfyf

r
rxxy

r
fxf

r
ryyx ooor ˆˆ2ˆ2 2

2
2













 +









−








−++










−−








−−= θ

µ  (34) 

 Earlier the assumption was made that both the deputy and the chief orbits are flying in 

Two-body motion so now relate Eq. (34) in the rotating frame back to an inertial frame so it can 

be integrated.  With Eq. (28) and using the deputy’s x-component in the rotating frame the 

following definitions can be made. 
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 ( ) 222 zyxrr cd +++=  (36) 

 Substituting Eq. (35) into the left-hand-side of Eq. (34) the final nonlinear form of the 

relative equations of motion are complete.  These equations are good for both closed orbit types 

(circular and elliptical) and they can be inclined as well.  The only assumption made up to this 

point is the dynamics are Two-body so no disturbances are acting on the deputy or the chief 

orbits. 
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2. Close Proximity 

 An advantage of using Eq. (37) is that the deputy and chief orbits can be at any distance 

from each other, including very large distances.  For the purposes of this development, the 

interest is only in orbits that are in close proximity to one another.  It is desirable to be able to 

maneuver one orbit in order to follow some prescribed path relative to another orbit.  Therefore, 

a second assumption to Eq. (37) can be made to further reduce the formula.  By assuming that 

the components of the vector in Eq. (27) are small compared to the radius of the chief orbit, then 

Eq. (36) can be rewritten into the following form. 

 2

222

21
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cd r
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 Furthermore, Eq. (37) contains terms of 𝑟𝑑3, which can be modified so that the equation is 

no longer dependent on the deputy’s orbit radius.  By using the Taylor Series expansion the 
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linear form of 𝑟𝑑3 can be derived by taking the first-order derivative and dropping higher order 

terms. 
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 Substituting Eq. (42) into Eq. (35) the motion of the deputy in terms of the chiefs orbit 

radius can now be expressed.  Since the current assumption is that the two orbits are in close 

proximity to one another than a good approximation of the deputy’s motion in terms of the chief 

orbit radius can be defined. 
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 The terms in Eq. (43) can be further reduced by carrying out the multiplication of the 

terms in the 𝐨�r axis and drop the higher order terms based on the current assumption that the 

components of the relative orbit position are very small compared to the chief orbit radius. 

 ( ) xr
r
xxxrxr

r
x

c
c

cc
c

23331
2

−≈−−+=+







−  (44) 



 

21 

 

 














 −
−≈















 +
−

z
y

xr

r
z
y

xr

r

c
O

c

c
O

d

2

33

µµ  (45) 

 Combining Eq. (13) and Eq. (25) into the 𝜇
𝑟𝑐3

 term, Eq. (45) can be rewritten into a form 

that will make it dependent on the change in true anomaly to help reduce Eq. (37). 
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 Finally, substituting Eq. (45) and Eq. (46) into Eq. (37), combining like terms and reduce. 

This produces the revised equation of motion for a deputy orbit flying relative to the chief.  At 

this point only two assumptions have been made, that the orbits are flying without disturbances 

and that they are flying in close proximity to each other. (5) 
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 02 =+ zf
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3. Linear Solution 

 At this point it is now beneficial to see if an analytic solution exists for Eq. (47).  After 

careful inspection it is obvious that Eq. (47) is a nonlinear second order differential equation.  It 

carries a dependency on the change in true anomaly which is nonlinear. 
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 In order to find a solution it is necessary to make one more simplifying assumption.  

Assuming that the chief is flying in a circular orbit (similar to a low-earth or a geo-synchronous 

orbit’s) then the equations of motion can be further reduced.  This reduction now makes the 

second order differential equations linear.  Since we are assuming a circular chief orbit, the 

eccentricity of the orbit plane becomes zero.  Consequently, the semi-parameter (p) is now equal 

to the orbit radius (𝑟𝑐).  Also, the instantaneous change in the orbit radius is now zero, and the 

change in true anomaly is now equal to the mean motion (n) of the orbit.  Eq. (47) reduces to the 

following 

 0)21(2 2 =+−− xnynx   (48a) 

 0)11(2 2 =−−+ ynxny   (48b) 

 znz 2−=  (48c) 

 By simplifying Eq. (48), the final Clohessy-Wilshire equations for a relative orbit are 

found.  Since these equations are a linear second-order differential equation, an analytic solution 

can be found that will yield insight to how a relative orbit will behaves.  Later, the solutions to 

Eq. (48) will be used to begin developing a series of best fit energy impulsive maneuvers. (5) 

 032 2 =−− xnynx   (49a) 

 02 =+ xny   (49b) 

 02 =+ znz  (49c) 
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 To solve Eq. (49), begin by making the observation that the z component is a general 

spring-mass damper system 𝑎(𝑡) = 𝐶1 cos(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) where C1 and C2 are constants of 

integration.  Since the z component has no dependency on the x or the y components it is the 

easiest to solve.  For the other two components it will be necessary to solve for one of the 

components (x or y) first in terms of the other then substitute back into the other components 

solution.  For the z component the general solution can be written as 

 ( ) )sin()cos( 21 ntCntCtz +=  (50) 

 To find the constants of integration, the solutions are set to some initial conditions of the 

system.  For instance, the initial conditions for the solution will be at 𝑡 = 0. 
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 Setting Eq. (50) to 𝑡 = 0, shows that the initial value of the z component is equal to the 

integration constant C1.  Differentiating Eq. (50) and setting the time to zero again, fins C2 and 

the velocity term for z. 

 ( ) )sin()cos( 00 ntnzntztz −=   (52) 

 As stated earlier, to solve for the x and y components, some extra steps must be taken.  

First, the y component is integrated once to find its velocity term.  Just like in the z component 
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case, the initial conditions are set and the constant of integration is solved for.  This yields the 

following equation for the y velocity component. 

 00 22)( nxynxty ++−=   (53) 

 Eq. (53) is a function of the x component.  At this point it is necessary to solve for the x 

component and then substitute that solution back into Eq. (53) to get the final solution for y.  

Substituting Eq. (53) into the x component of Eq. (49), and integrating twice by using the general 

solution (described above) the solution for x and its derivative are found.  Again, setting the 

initial conditions in order to solve for the constants of integration will yield the following 

solutions. 
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 ( ) )sin(32)cos()( 000 ntnxyntxtx ++=   (55) 

 Substituting back into Eq. (53), integrating and setting the initial conditions the solutions 

for the y component and its derivative are also found.  Together with Eq. (50, 52, 54 and 55) the 

general solution can be summarized for Eq. (49). (2) 
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n
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 ( ) 000 )sin(2)cos()sin(3 yntxntxntntx  ++=  (56b) 
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 ( ) ( ) 000 )3)cos(4()sin(21)cos(6 yntxntxntnty  −+−−=  (56d) 

 ( ) 00
)sin()cos( z

n
ntznttz +=  (56e) 

 ( ) 00 )cos()sin( zntzntntz  +−=  (56f) 

 It is interesting to note from Eq. (56) that the deputy orbit will maintain a closed loop 

about the chief, so long as there is no secular drift that occurs.  Inspecting the solution further, 

the only possible secular drift that could happen is when �̇�0 starts off as non-zero.  For example, 

setting up the following initial conditions for a geo-synchronous circular orbit and updating for 

one period4

 

, we should see a closed loop for the deputy’s motion.  This statement is shown to be 

the case in Figure 4, where a closed loop relative orbit is achieved using the following initial 

conditions. 
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4 One sidereal day is approximately 1.002737909350795 (2). 
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Figure 4: an example of a closed relative orbit. With no secular drift, the deputy will continue to 
loop around the chief. 

 

 When using the same initial conditions as the previous example and setting the initial 

condition of  �̇�0 to 0.001m/s, it becomes apparent that the deputy will drift apart from the chief 

almost immediately, as in Figure 5. 
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Figure 5: an example of an un-closed relative orbit. With secular drift, the deputy will drift away. 

 

4. Inertial to Rotating Frames and Back 

 It is often necessary at times to be able to convert from the inertial frame to the Hill’s 

rotating frame and back again.  Remember that the first assumption was that both the chief and 

deputy orbits fly in the absence of any disturbances.  Then the following definitions also allow 

one to compute the acceleration in the rotating frame with disturbances. 

 These definitions help in converting relative states back to the inertial, so that one could 

(for example) see how the deputy’s orbit changes over time.  In order to take advantage of these 

equations with an equation of motion that includes disturbances, one would need to numerically 

integrate both the deputy and the chief in the inertial frame first. Then using the numerically 
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solved solutions they can then be used to compute the instantaneous relative position, velocity 

and accelerations.  Keep in mind by doing this there will be drift in the relative position even 

when the initial condition of �̇�0 is set to zero. 

 To convert from the inertial Cartesian vectors to the rotating relative frame start with Eq. 

(27) and (28).  To find the rotating velocity, differentiate once then differentiate twice to find the 

acceleration. 

 ( )cd rrONρ −=  (57a) 

 ( ) ( )rcd yxf oorrONρ ˆˆ −−−= θ


  (57b) 

 ( ) ( ) ( )( )rcd yxfyfxf oorrONρ ˆˆ −+−−−= 

 θ  (57c) 

 To convert from the rotating vectors back to the inertial frame use the following 

equations. 

 NOρrr += cd  (58a) 

 ( )( )rcd yxf ooρNOrr ˆˆ −++= θ


  (58b) 

 ( ) ( )( )( )rcd yxfyfxf ooρNOrr ˆˆ −+−++= 

 θ  (58c) 

The rotation matrix from the inertial N frame to the rotating O frame is defined as 
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And the transpose of Eq. (59) is from O to N frames are 

 TONNO =  (60) 
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CHAPTER 4 

STATE TRANSITION MATRIX 

 Now that an analytical solution for a relative orbit has been developed, it is possible to 

take advantage of the solution in a linear system of equations.  Keeping in mind the assumptions 

until now, Two-body motion, flying in close proximity and using only circular orbits a state 

transition matrix can be defined that can update a relative orbit state vector from an initial time to 

a final time.  Understanding how a linear set of equations behaves with this motion is important 

to develop a set of maneuvers that can be used to update a relative orbit. 

1. Circular 

 To begin the development of a linear system (and to define the state transition matrix) it 

is first necessary to define the state vector.  In this case it is the combination of the relative 

position and velocity. 

 



























=

z
y
x
z
y
x







X  (61) 

 With Eq. (56), the terms can be arranged properly to write the state transition matrix.  

This matrix can then be used to update the relative position (and velocity) over time as long as 

the chief orbit is circular. (8) 
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2. Elliptical 

 Although Eq. (62) works only for circular orbits, a state transition matrix can still be 

solved numerically for elliptic orbits.  It is possible to find an analytic solution for elliptic orbits 

by using orbit element differences (7).  For this discussion, a solution can be found in Cartesian 

space.  This is accomplished by using numerical integration (9), by initializing the state transition 

matrix to the identity then the general solution from Eq. (63) can be solved. 

 00 ),()( XX ttt Φ=  (63) 

 As mentioned before, to solve for the state transition matrix in the elliptical case it is 

possible to numerically integrate the following expression, where the A matrix is the partial 

differentials for the system of motion (8). 

 ),()(),( 00 ttttt ΦAΦ =  (64) 

 To define the A matrix, use Eq. (47) and take the partials with respect to each other.  

Now using the state vector Eq. (61) take the first derivative to find the following 
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 The A matrix is defined as the partials of the derivative of X with respect to X itself.  

Similar to techniques used in orbit determination (8) the A matrix is shown in Eq. (66) and (67). 
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CHAPTER 5 

BEST FIT MANEUVERS 

 When flying a deputy satellite relative to the chief, it is now possible to “move” or 

change its position according to the motion of the chief.  Other than just changing the deputies’ 

position for formation flying (like docking with another satellite) it is possible to define the chief 

as a fictitious orbit.  In other words, conduct a formation flying mission where an actual 

spacecraft flies relative to an ideal orbit.  By defining the chief as a fictitious orbit it can be used 

as the mission requirements orbit.  Meaning, in the absence of disturbances that may cause the 

satellite to move out of its planned motion (i.e. atmospheric drag or solar radiation pressure) the 

chief orbit will always maintain the mission requirements.  The deputy is now defined as the 

“actual” satellite’s orbit with disturbances.  Over time as the chief maintains the ideal orbit, the 

deputy will drift from the ideal.  Using the following derivations, it is now possible to maneuver 

the deputy back to the ideal orbit using a series of best fit maneuvers.  These impulsive 

maneuvers are instant changes to the velocity of the deputy.  In reality a ground station will use 

the spacecrafts thruster models to convert these maneuvers to some amount of burn time for the 

thruster’s on board the vehicle. 

1. Targeting Equation 

 A targeting equation is a form of using the initial conditions (position and velocity) of a 

satellite and some prescribed linear motion to achieve the ending condition.  By using the state 

transition matrix, an impulsive maneuver can be found that will help achieve the end result given 

the initial and final conditions.  To begin this derivation, start by rewriting Eq. (63) into a vector 

form and use the following definitions. 
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 Introducing a change in velocity to the initial velocity component into Eq. (68) and 

solving for the delta, two types of targeting equations can be defined.  One equation is defined 

for achieving a desired final position.  The other equation is defined for achieving a desired final 

velocity. 
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 ( ) 001
1

2 xxφxφv −−=∆ −
a  (71) 

 ( ) 0031
1

4 xxφxφv  −−=∆ −
b  (72) 

2. Targeting Example 

 Take for example, an initial relative state of the deputy orbit (at GEO5

                                                 

 

5 A geo-synchronous orbit (GEO) has the same mean motion as the earth at 7.29211585529998e − 5 rad
s

 

) with some 

relative drift from the chief and an offset in the position.  Using the targeting equations Eq. (71) 

and (72), find two maneuvers set apart by ten minutes each to achieve a new relative state. 
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 The final (desired) relative state is to perch (zero relative velocity) the deputy one-

hundred meters to the west of the chief. 
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 The state transition matrix for updating the deputy for both maneuvers is the same since 

they are both ten minutes apart.  Using Eq. (62) the STM is 
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0599.2326.247-01005-8.3748e-
026.247599.81001.0029

)0,600(Φ  

 Both maneuvers are on the order of about five-hundred centimeters per second, and when 

applied at the correct times the final state is achieved.  Keep in mind that it is important that after 
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the first maneuver is applied then the second maneuver’s initial state is now the final state after 

first maneuver has applied. 

 ( )
s
mva 0.1450.506-0.005=∆  

 ( )
s
mvb 0.125-0.5030.061-=∆  

3. Least Squares Solution 

 The targeting equation is a great method for computing a single impulsive maneuver (or a 

pair of maneuvers), but it cannot be used for multiple maneuvers to target a final state.  Also, 

when applying the first maneuver, it does not have knowledge of where the final state will be 

when the next maneuver is applied.  This is because the single maneuver can only change three 

degrees of freedom and the relative orbit state has six.  That is why in the previous example it 

required two maneuvers to achieve the final relative state.  And even then, when the second 

maneuver is applied some time has passed with the relative state has changed. 

 If multiple maneuvers (more than two) are conducted in a series (for example every ten 

minutes) until a final orbit is achieved, then it would be possible for all the maneuvers to be 

computed in a best fit case.  With this idea in mind, it would be possible to extend Eq. (70) to 

allow multiple maneuvers to occur to achieve a final relative state.  In order to achieve this, it is 

possible to take advantage of the linear nature of the system of linear equations. 

 Since it takes exactly two maneuvers to achieve the final relative state, then computing 

more maneuvers would make this an over-determined system (more equations than unknowns) 
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(8).  To solve this equation, the performance index J can be used (8).  In an over-determined 

system it is desirable to reduce the amount of error by using the performance index. 

 εεTJ
2
1

=  (73) 

 In Eq. (73), the epsilon term is the amount of error in a linear system of equations.  In this 

case for relative motion, the error in the system is the difference between the states of the chief 

orbit versus the deputy.  Keeping in mind if there is an initial in-track velocity component in the 

deputy then there will be a difference (error) in orbit states over time (they will drift apart).  The 

attempt is being made to correct the error between the chief and deputy orbits by a series of best 

fit maneuvers.  In order to find a set of maneuvers that changes the state of the deputy and move 

it to the chief, rewrite Eq. (63) into the following while accounting for some error (epsilon) to be 

between the chief and the deputy states. 

 εΓXX += 0  (74) 

 Eq. (74) is considered to be a series of state transitions.  At each step in time, the initial 

state can be multiplied by a state transition matrix to find the final state.  The vector form of Eq. 

(74) is 
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 To reduce the errors (or differences between states) in the system, it is desirable to have 

the partials of the performance index with respect to the state vector be zero � 𝜕𝐽
𝜕𝑿

= 0�.  

Substituting Eq. (74) into Eq. (73), taking the partials and setting it to zero results in the 

following 

 ( ) 00 =−− ΓXXΓT  (76) 

 When solving for the final state vector (X), this will produce the state that minimizes all 

the errors in the system over time. 

 ( ) 0
1 XΓΓΓX TT −

=  (77a) 

 ( ) 0
1 WXΓWΓΓX TT −

=  (77b) 

 Eq. (77) is in the same form as the classic least-squares and weighted least-squares 

solution (8) (10).  Keep in mind, that computing the inverse of the matrix will only be valid if  𝚪T𝚪 

is positive definite.  In other words, the linear system of equations must be linearly independent 

from one another. 

 Now use Eq. (77) and solve for a series of maneuvers to move the deputy orbit to the 

fictitious ideal chief orbit that maintains the mission requirements.  The first step is to define the 

total difference between the chief and deputy orbits in the system.  This is established by 
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defining an aim-point in the orbit.  An aim-point could be any final state in the orbit where the 

actual orbit should be at some future time.  Looking ahead at some future time it would be 

possible to see what the state of the ideal orbit would be and define that as the aim-point.  

Therefore, at time (tf) the ideal chief orbit is known and will be at some state Xf.  Since the initial 

position is known for the actual orbit, then the actual orbit can be updated to the final time as 

well; and taking the difference between the actual and ideal orbits, will yield the total difference 

of the system. 

 ( ) 00, XΦXδ tt ffT −=  (78) 

 Upon inspecting Eq. (56) and Eq. (62), one will notice that the second and fourth 

quadrants of Eq. (69) are the only quadrants of the state transition matrix that change the velocity 

of the state vector.  These quadrants are only used because solving for the velocity component of 

the state vector will allow for creating maneuvers that will change the state in the system.  Given 

n number of maneuvers to plan, then a series of state transitions for the velocity component can 

be concatenated into a 6x3n matrix. 
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 In a least-squares sense, this is the set of linearly independent equations (or observations) 

of the system.  The variance-covariance matrix for the non-weighted and weighted system would 

be 

 ( ) 1−
= ΨΨP T  (80a) 
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 ( ) 1−
= WΨΨP T  (80b) 

 The set of impulsive maneuvers would be the solution to the system of linear equations.  

Beginning with Eq. (77), it is now possible to setup a similar formulation using Eq. (79).  Instead 

of using a series of state transitions matrices, use the series of state transitions of only the 

velocity components.  With the following formulation Δ𝒗 = (𝚿𝑇𝚿)𝚿𝑇𝛅𝑇 and substituting in 

Eq. (80), the maneuvers can be defined as 

 T
TδPΨv =∆  (81a) 

 T
T WδPΨv =∆  (81b) 

 The resulting set of impulsive maneuvers is the set of maneuvers that best fits the system 

of change between where the final actual orbit and ideal orbit would be.  Take note, that the 

result is a vector of 3nx1 elements.  If this vector is reshaped into a matrix of 3xn then the final 

set of maneuvers would be found as a set of column vectors.  Consequently, this best fit for the 

maneuvers is the best estimate for reducing the amount of error (or difference) between the chief 

and the deputy (𝜺 = 𝜹𝑇 −𝚿Δ𝒗). 

 For example, start with an initial relative state for the deputy to be the following 
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 Assume the chief is in a geo-synchronous circular orbit and it’s desired to use as little 

fuel as possible to move the deputy into a parking orbit at one-hundred meters trailing the chief 

with a small drift rate away from the chief. 
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 In this case, perform six maneuvers every ten minutes for the next hour to achieve the 

final parking orbit.  Using Eq. (81) (without any weighting), compute the following impulsive 

maneuvers 

Table 2: Relative orbit impulsive maneuvers 

Time [s] Maneuver Magnitude [m/s] Impulsive Maneuver [m/s] 
0 0.712 [0.004, 0.711, -0.042] 

600 0.425 [0.026, 0.423, -0.024] 
1200 0.137 [0.023, 0.135, -0.007] 
1800 0.153 [-0.006, -0.152, 0.011] 
2400 0.441 [-0.059, -0.436, 0.028] 
3000 0.728 [-0.138, -0.713, 0.046] 
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Figure 6: the initial state of the deputy (green) if it remains uncorrected. 

 

 Referring to Figure 6, the corrected (blue) line shows a final position of (-1.328, 94.95, 

0.337) meters and a final velocity of (-0.001, 0.010, -0.000) meters per second is achieved.  The 

exact aim-point is not achieved (0, 100, 0), due to the linear nature of the STM since the motion 

of the deputy is nonlinear.  But it is a very fast analytical solution that achieves great results. 

 One possible method for reducing this error would be to use a nonlinear iterative 

procedure.  The solution of this technique could be a first initial guess for using a full nonlinear 

solution.  Similar techniques would be a batch processor algorithm used in orbit determination 

where a first guess is used to initialize an iterative process that is used with nonlinear dynamics 

to refine the solution. (8) 
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CHAPTER 6 

NONLINEAR FEEDBACK CONTROL LAW 

 The linear state transition matrix is a great analytical approximation of computing a series 

of maneuvers in a nonlinear system.  As an alternative to impulsive maneuvers (computed with 

linear equations) another approach would be to compute continuous maneuvers in a feedback 

control system.  If the deputy (actual orbit) had the capability of performing a continuous thrust 

for a short period of time while monitoring its current state vector, then using this technique will 

allow an achievement greater results.  Also, it will be shown that this type of feedback control 

law has asymptotic stability, meaning that over time the amount of energy needed in the thrust 

will asymptotically decrease with time and remain stable. 

1. Derivation 

 To begin the analysis, the following definitions are made.  Letting u be the continuous 

control thrust vector the relative motion to be can be defined as 

 uρρ += )(f  (82) 

 Where the relative nonlinear equation of motion is taken from Eq. (47) and repeated here. 

Keep in mind that Eq. (83) works for all circular and non-circular orbits and the only 

assumptions made were Two-body motion and that the two orbits are in close proximity to 

one another compared to the radial distance of the chief orbit. 
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 In order to be able to maneuver and change the deputy’s orbit, the next thing to define is 

the reference relative motion.  This is similar to the final aim-point defined earlier where it is 

a state vector that is desired.  The delta change in the state vector is then defined as the 

current state minus the reference state. 

 rρρρ −=∆  (84) 

 Choosing a positive definite scalar Lyapunov Function (V) that is in the form of an 

energy function similar to the performance index earlier is how one can derive an asymptotically 

stable control.  This function should be dependent on both the position and velocity as the desire 

is to not only meet the reference position but also the reference velocity as well.  A gain matrix 

(K1) can be added to the function to allow it to be tuned to the feedback gain on the position of 

the deputy.  This is useful for being able to better model the thrusting on a spacecraft.  For larger 

thrusts, the gains would be higher and vice-versa for smaller thrusts. (5) (4) 

 ( ) ρKρρρρρ ∆∆+∆∆=∆∆ 12
1

2
1, TTV   (85) 
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 In order to feedback the system with the current motion of a satellite, the derivative of 

Eq. (85)  needs to be found and substituted into Eq. (83).  Simplifying the derivative and 

collecting terms shows (5) 

 ( ) ( )ρKuρρρρρ ∆++−∆=∆∆ 1)()(, r
T ffV 

  (86) 

 Eq. (86) is a scalar function that is dependent on the equations of motion and the control 

thrust.  This function should be minimized in order to make the system asymptotically stable.  

Ideally Eq. (86) should be negative definite.  Where it is negative in all cases, but by inspection 

there could be cases where it will not always be negative and in particular can be zero (e.g. Δ�̇� =

𝟎).  So the best that can be done, is an attempt to make Eq. (86) negative semi-definite 

where 𝑉 = (Δ𝝆,Δ�̇�) ≤ 0.  Eq. (87) can be used to drive the control law negative but it is not 

negative definite as it is not a function of the position error. 

 ρKρ 

 ∆∆−= 2
TV  (87) 

 Setting Eq. (86) equal to Eq. (87) and solving for the control thrust, the negative semi-

definite nonlinear feedback control thrust is (5) 

 ( ) ρKρKρρu ∆−∆−−−= 12)()( rff  (88) 

 Since Eq. (88) is negative semi-definite, then it cannot be proven that this control law is 

asymptotically stable.  In order to make that proof it is necessary to find a higher order derivative 

of Eq. (88) when Δ�̇� = 𝟎.  And if that higher order derivative is an odd number and is negative 

definite, then asymptotic stability can be proven.  The scalar derivative of Eq. (87) is 
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 ρρK 

 ∆∆−= TV 22  (89) 

 Take the derivative again, this time with Eq. (89) will find the next odd numbered 

derivative.  Now set the condition Δ�̇� = 𝟎 to see if it is negative definite. 

 02)0,( 121 <∆∆−==∆∆ ρKKKρρρ TTV 

  (90) 

 In this case Eq. (90) is an odd numbered derivative and it is always negative.  Therefore, 

it can be stated that the control law in Eq. (88) is asymptotically stable.  Where, over time the 

control thrust will drive the relative state to the reference state.  There is no guarantee that it will 

be in the shortest amount of time but the control will asymptotically decrease reducing the 

amount of energy used in the thrust. 

 Using the example in chapter five and numerically integrating the equations of motion in 

Eq. (83), the new nonlinear feedback control can be tested.  While integrating (after each 

successful step) the feedback control thrust is applied with gains of (𝑲1 = 2𝑒−3𝑰 and 𝑲2 =

3𝑒−3𝑰) to drive the actual orbit to its reference.  The following table is a sampling of the control 

thrust over six minutes time, keeping in mind it is really a continuous thrust. 

 

Table 3: Relative orbit feedback control thrust. 

Time [s] Thrust Magnitude [m/s] Thrust [m/s] 
0 6.220 [-0.299, 6.200, -0.400] 

36 1.160 [-0.112, 1.152, -0.075] 
72 0.191 [0.033, -0.187, 0.012] 

108 0.220 [0.045, -0.214, 0.014] 
144 0.077 [0.018, -0.075, 0.005] 
180 0.010 [0.002, -0.010, 0.001] 
216 0.004 [-0.002, 0.004, -0.000] 
252 0.003 [-0.001, 0.003, -0.000] 
288 0.001 [-0.000, 0.001, -0.000] 
324 0.000 [-0.000, 0.000, -0.000] 
360 0.000 [0.000, 0.000, 0.000] 
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Figure 7: feedback control law applied to a geo-synchronous relative deputy orbit. 

 

 Reviewing Figure 7, the final state after applying the continuous thrust for six minutes 

was (-0.016, 100.033, -0.002, -0.005, 0.009, -0.001).  This solution is much closer to the 

reference aim-point than the linear solution earlier. Also notice that the control is asymptotically 

stable. 

2. Modifying the Reference Motion 

 Up to this point the maneuvers developed have only investigated how one might change 

the orbit of a spacecraft satellite relative to another.  It is worth mentioning how one can 

change the orbit of a satellite relative to two other satellites using the previous derivations.  

An advantage to the previous feedback control would be to define keep-out zones (other 
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relative states about the chief the actual orbit should avoid) while still maintaining mission 

requirements.  For example, if the space shuttle were to dock with the International Space 

Station but the shuttle must avoid a particular region of the ISS because its sensors will be in 

the field of view of the sun, or some debris may impact the shuttle.  This could cause not 

only serious damage to the vehicle but to the mission and its crew as well.  Instead of waiting 

until the sun is out of view or making guesses at the thrust direction, why not find a thrust 

that will push the shuttle closer to the ISS while staying away from the keep-out zone. 

 Using the derivations of the previous section, a second relative orbit can be defined.  This 

second orbit is also flying relative to the chief (or ideal) orbit.  It could represent some space 

debris or an area where the deputy (or actual) orbit must stay away from.  Begin the 

definitions by defining the relative state of the two deputy satellites as flying relative to the 

chief. This definition is similar to Eq. (61) 
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 If the second orbit is the orbit to stay away from, then the reference orbit can be set to the 

second with a sign change.  This is done after each step of numerical integration when the 

control thrust is computed.  Given some tolerance (which may be set by mission requirements), 

if the second relative state moves to within that tolerance to the ideal orbit then the reference 

motion is switched to be relative to the second.  This can be done with the following 

 2ρρ −=r  (92) 

 Once the distance between the second relative state and the ideal orbit are outside the 

tolerance, then the reference motion can be set back to the ideal orbit again.  One way of 

accomplishing this task could use the following algorithm before computing the feedback control 

thrust. (5; 11) 
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 Eq. (93) shows if the radial distance between the second relative position and the 

reference motion (in this case is zero since it is centered on the chief), is less than the tolerance; 

then the reference is set to the second relative orbits position with a sign change.  While the ideal 

orbit continues to move on its path, then the actual orbit will fly relative to the second state 

computing a control thrust that will move the actual orbit away.  Once the ideal orbit is a safe 
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distance away (greater than the tolerance) then the reference motion is set back to zero and the 

control thrust can be computed to move the actual orbit to the ideal. 

 Similar to the example in the previous section, the equations of motion are numerically 

integrated, using the previous nonlinear feedback control.  Thruster gains are applied again to the 

control thrust of (𝑲1 = 2𝑒−3𝑰 and 𝑲2 = 3𝑒−3𝑰).  This time, for a geo-synchronous circular 

orbit, the following relative orbit state is used for the actual orbit. 
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The second relative orbit (that the actual orbit should stay away from) is moving about the chief 

at twenty meters lower radial, forty meters in-track and some velocity components. 
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 Conducting the above example, the following table is a sampling of the control thrust 

over five minutes of time, keeping in mind it is really a continuous thrust. 

Table 4: Relative orbit feedback control thrust with one keep-out zone. 

Time [s] Thrust Magnitude [m/s] Thrust [m/s] 
0 0.362 [0.300,-0.200, -0.040] 

30 0.131 [0.118, 0.054, -0.016] 
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60 0.029 [0.024, -0.015, 0.006] 
90 0.007 [0.004, -0.005, 0.002] 

120 0.002 [-0.001, 0.002,0.000] 
150 0.002 [-0.002, 0.001,0.000] 
180 0.001 [-0.001,0.000,0.000] 
210 0.001 [0.001,0.000,0.000] 
240 0.000 [0.000,0.00,0.000] 
270 0.000 [0.000,0.000, 0.000] 
300 0.000 [0.000,0.000,0.000] 

 

Figure 8: feedback control law applied to a geo-synchronous relative deputy orbit with a keep-
out zone. 

 Looking at Figure 8, the final state after applying the continuous thrust for five minutes 

was (0.011, -0.001, -0.002, 0.003, 0.001, -0.000).  As far as the relative position and velocity are 

concerned they settled out asymptotically, which was desired.  When inspecting the control 

thrust more closely it becomes apparent that between twenty and forty seconds (roughly), the 

control changed (specifically in the radial and along-track directions).  This was the expected 

behavior, as the second relative orbit approached the ideal, some corrective action was taken to 
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stay away from the second orbit until it was safe again for the control to settle out on the ideal 

reference motion again. 
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CHAPTER 7 

CONCLUSIONS 

1. Conclusion 

 Two techniques were developed that can aid in computing maneuvers in the relative 

rotating orbit frame.  The first was a technique that leveraged on the Clohessy-Wilshire (CW) 

Equations.  Using a state transition matrix, a set of impulsive maneuvers can be computed that 

can help attain a final orbit in a certain period of time where each maneuver is equally spaced.  

This technique provides the ability to quickly compute the maneuvers and achieve very accurate 

results.  The best fit maneuver technique is only good for chief orbits that are circular and that 

the orbits are in close proximity to one another. 

 The second technique was to use a nonlinear approach by creating a feedback control law 

that is asymptotically stable.  The advantages to this technique are the increase in accuracy and 

the chief orbit does not have to be circular.  Implementing this control law is much more difficult 

as it requires numerical integration while updating the integration steps with the control thrust.  

The gains will have to be tuned as well depending on the thrusters on the vehicle. 

 Using the nonlinear approach, it was possible to modify the reference motion of a deputy 

orbit to modify its trajectory.  Using the control law developed, earlier it was possible to set the 

reference motion as a function of another relative orbit.  This technique has the advantage of 

computing a thrust that will maintain a relative orbit to the chief while avoiding any keep out 

zones. 
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2. Future Work 

 Due to the assumptions made in chapter three (excluding section four), all of these 

developments only work with Two-body motion.  Since analytic solutions exist for elliptic and 

J2 (earth oblateness), using classic elements (7) (3), some future work would include translating the 

Cartesian solutions to orbit element solutions in order to include higher fidelity information that 

may contain perturbations like J2.  Using the classic orbit elements as a 6x1 vector, it is possible 

to obtain a direct linear mapping between the Cartesian relative orbit state and a set of orbit 

element differences (5). 
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APPENDIX 

The following source code was used to produce all of the results and validate the equations, 

including plots and example output.  The software was implemented in MATLAB® by 

Mathworks (www.mathworks.com). 

 

0001 % THESIS 
0002 % $Id: thesis.m 2439 2011-05-10 03:11:51Z msaunder $ 
0003 % 
0004 % Description: 
0005 %   Execute the examples and plots. 
0006 % 
0007 % Prototype: 
0008 %   thesis 
0009 % 
0010 % Inputs: 
0011 %   None 
0012 % 
0013 % Outputs: 
0014 %   None 
0015 % 
0016  
0017 % 
0018 % Copyright (C) 2011 Marc Saunders 
0019 % 
0020 % Licensed by Marc Saunders; 
0021 % you may not use this file except in compliance with the License. 
0022 % 
0023 % Unless required by applicable law or agreed to in writing, software 
0024 % distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 
0025 % WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the 
0026 % License for the specific language governing permissions and limitations 
0027 % under the License. 
0028 % 
0029  
0030 function thesis 
0031     clc; clear 
0032     global we gmu twopi todeg torad 
0033     we = 7.29211585529998e-5; % Earth's rotational rate [rad/sec]. 
0034     gmu = 398600.4418e9; % Earth's gravitational parameter [m^3/s^2]. 
0035     twopi = 2*pi; % Two-PI. 
0036     todeg = 180.0 / pi; % Radians to degrees. 
0037     torad = pi / 180.0; % Degrees to radians. 
0038  
0039     test1 
0040     test2 
0041     test3 
0042     test4 
0043     test5 
0044 end 
0045  
0046 function test1 
0047     global we 
0048  
0049     % Initialize the initial state and desired final state. 
0050     X0 = [-50, 200, -75, 0.1, 0.01, -0.02]'; 
0051     Xf = [0, -100, 0, 0, 0, 0]'; 
0052  
0053     % Get the STM. 
0054     phi = stm(600, we); 

http://www.mathworks.com/�
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0055     phi1 = phi(1:3, 1:3); 
0056     phi2 = phi(1:3, 4:6); 
0057     phi3 = phi(4:6, 1:3); 
0058     phi4 = phi(4:6, 4:6); 
0059  
0060     % Compute the first maneuver and apply. 
0061     dva = phi2\(Xf(1:3) - phi1*X0(1:3)) - X0(4:6); 
0062     Xf1 = phi*([X0(1:3); X0(4:6) + dva]); 
0063  
0064     % Compute the second maneuver and apply. 
0065     dvb = phi4\(Xf(4:6) - phi3*Xf1(1:3)) - Xf1(4:6); 
0066     Xf1 = phi*([Xf1(1:3); Xf1(4:6) + dvb]); 
0067  
0068     % Output the results. 
0069     fprintf('Targeting Eqn. Impulsive Maneuvers\n'); 
0070     fprintf('norm=%.3f, dva=[%.3f, %.3f, %.3f] (m/s)\n', norm(dva), dva); 
0071     fprintf('norm=%.3f, dvb=[%.3f, %.3f, %.3f] (m/s)\n', norm(dvb), dvb); 
0072     fprintf('\nTarget final state\n'); 
0073     fprintf('[%.3f, %.3f, %.3f, %.3f, %.3f, %.3f]\n', Xf); 
0074     fprintf('\nFinal state after maneuvers\n'); 
0075     fprintf('[%.3f, %.3f, %.3f, %.3f, %.3f, %.3f]\n\n', Xf1); 
0076 end 
0077  
0078 function test2 
0079     global we 
0080  
0081     % Create a plot for a closed relative orbit solution. 
0082     t = (0:1:86400)'; 
0083     x0 = -0.1; y0 = 0.2; z0 = -0.2; % [m] 
0084     dx0 = 0.01; dy0 = 0.0; dz0 = -0.02; %[m/s] 
0085     rho = soln([x0; y0; z0; dx0; dy0; dz0], t, we); 
0086  
0087     figure(1); clf 
0088     plot3(rho(:,1), rho(:,2), rho(:,3)); grid on 
0089     axis square; view(-60, 10); 
0090     xlabel('Radial [m]'); 
0091     ylabel('Along-Track [m]'); 
0092     zlabel('Out-of-Plane [m]'); 
0093  
0094     % Create a plot for a non-closed relative orbit solution. 
0095     dy0 = 0.001; 
0096     rho = soln([x0; y0; z0; dx0; dy0; dz0], t, we); 
0097  
0098     figure(2); clf 
0099     plot3(rho(:,1), rho(:,2), rho(:,3)); grid on 
0100     axis square; view(-60, 10); 
0101     xlabel('Radial [m]'); 
0102     ylabel('Along-Track [m]'); 
0103     zlabel('Out-of-Plane [m]'); 
0104 end 
0105  
0106 function test3 
0107     global we 
0108  
0109     % Compute a weighting matrix. 
0110     num = 6; 
0111     W = diag([0.1, 1, 0.1, 0.01, 1, 0.01]); % weighting matrix [x,y,z,dx,dy,dz] 
0112  
0113     % Compute the relative maneuvers. 
0114     tf = 3600; 
0115     rho0 = [150, -3000, 200, -0.3, 0.02, -0.01]'; % [m, m/s] 
0116     aimpt = [0, 100, 0, 0, 0.01, 0]'; % [m, m/s] 
0117     [tm, dvs] = mnvrs(num, tf, rho0, aimpt, we, W); % [s, m/s] 
0118  
0119     % Compute the relative orbit over time. 
0120     dt = 1; 
0121     t = (0:dt:tf)'; 
0122     phi = stm(dt, we); 
0123     rho1 = zeros(length(t), 6); 
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0124     rho2 = zeros(length(t), 6); 
0125  
0126     % Loop over time. 
0127     for i = 1:length(t) 
0128         % Initialize. 
0129         if (i == 1) 
0130             prevRho1 = rho0; 
0131             prevRho2 = rho0; 
0132         else 
0133             prevRho1 = rho1(i-1, :)'; 
0134             prevRho2 = rho2(i-1, :)'; 
0135         end 
0136  
0137         % Apply (impulse) the maneuver. 
0138         index = find(tm == t(i)); 
0139         if (~isempty(index)) 
0140             dv = dvs(index, :); 
0141             rho1(i,:) = prevRho1; 
0142             rho2(i, :) = phi*prevRho2; 
0143             rho1(i,4:6) = rho1(i,4:6) + dv; 
0144             continue; 
0145         end 
0146  
0147         % Propagate. 
0148         rho1(i, :) = phi*prevRho1; 
0149         rho2(i, :) = phi*prevRho2; 
0150     end 
0151  
0152     % Output the results. 
0153     fprintf('Relative Orbit Impulsive Maneuvers\n'); 
0154     for i = 1:size(dvs, 1) 
0155         fprintf('%5g (s) - norm=%.3f, dv=[%.3f, %.3f, %.3f] (m/s)\n', ... 
0156             tm(i), norm(dvs(i,:)), dvs(i,:)); 
0157     end 
0158     fprintf('\nFinal state\n'); 
0159     fprintf('rho = [%.3f, %.3f, %.3f, %.3f, %.3f, %.3f]\n\n', rho1(end,:)); 
0160  
0161     % Plot the paths. 
0162     figure(3); clf; hold on 
0163     plot3(rho1(:,1), rho1(:,2), rho1(:,3), 'b-', ... 
0164           rho2(:,1), rho2(:,2), rho2(:,3), 'g-'); 
0165     axis square; grid on; view(-105, 10); 
0166     xlabel('Radial [m]'); 
0167     ylabel('Along-Track [m]'); 
0168     zlabel('Out-of-Plane [m]'); 
0169     legend('Corrected', 'Uncorrected', 'Location', 'NorthWest'); 
0170     hold off 
0171 end 
0172  
0173 function test4 
0174     global chief K1 K2 idx rhor torad u 
0175  
0176     % Initialize the chief orbit. 
0177     chief = [42164169.6341702, 0.001, 10*torad, 0, 0, 0]'; 
0178  
0179     % Initial the deputy relative orbit state. 
0180     X0 = [150, -3000, 200, -0.3, 0.02, -0.01]'; % [m, m/s] 
0181  
0182     % Initialize some values. 
0183     idx = 1; 
0184     K1 = 2e-3*eye(3); 
0185     K2 = 3e-3*eye(3); 
0186     rhor = [0, 100, 0, 0, 0.01, 0]'; % Reference orbit state, [m, m/s] 
0187  
0188     % Integrate the EOM. 
0189     [t, X] = rk4(@test4Dydx, [0 360], X0, 0.05, @test4Step); 
0190  
0191     % Relative orbit results. 
0192     rho  = X(:, 1:3); 
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0193     drho = X(:, 4:6); 
0194  
0195     % Output the results. 
0196     fprintf('Relative Orbit Feedback Control Maneuvers\n'); 
0197     di = fix(0.1*size(u, 1)); 
0198     for i = 1:di:size(u, 1) 
0199         fprintf('%5g (s) - norm=%.3f, dv=[%.3f, %.3f, %.3f] (m/s)\n', ... 
0200             t(i), norm(u(i,:)), u(i,:)); 
0201     end 
0202     fprintf('\nFinal state\n'); 
0203     fprintf('rho = [%.3f, %.3f, %.3f, %.3f, %.3f, %.3f]\n\n', ... 
0204         rho(end,:), drho(end,:)); 
0205  
0206     % Plot results. 
0207     % Relative position. 
0208     figure(4); 
0209     subplot(2, 2, 1); 
0210     plot(t, rho(:, 1), t, rho(:, 2), t, rho(:, 3)); grid on 
0211     xlabel('Time [s]'); 
0212     ylabel('Relative Position [m]'); 
0213     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0214     axis([t(1) t(end) -3000 3000]); 
0215  
0216     % Relative position (zoomed). 
0217     subplot(2, 2, 2); 
0218     plot(t, rho(:, 1), t, rho(:, 2), t, rho(:, 3)); grid on 
0219     xlabel('Time [s]'); 
0220     ylabel('Relative Position (zoomed) [m]'); 
0221     legend('Radial', 'Along-Track', 'Out-of-Plane', ... 
0222         'Location', 'NorthWest'); 
0223     axis([150 t(end) -500 500]); 
0224  
0225     % Relative velocity. 
0226     subplot(2, 2, 3); 
0227     plot(t, drho(:, 1), t, drho(:, 2), t, drho(:, 3)); grid on 
0228     xlabel('Time [s]'); 
0229     ylabel('Relative Velociy [m/s]'); 
0230     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0231     axis([t(1) t(end) -500 500]); 
0232  
0233     % Control thrust. 
0234     subplot(2, 2, 4); 
0235     plot(t, u(:, 1), t, u(:, 2), t, u(:, 3)); grid on 
0236     xlabel('Time [s]'); 
0237     ylabel('Control Thrust [m/s^2]'); 
0238     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0239     axis([t(1) t(end) -6 6]); 
0240  
0241     % Clear globals 
0242     clear global chief K1 K2 idx rhor u 
0243 end 
0244  
0245 function dX = test4Dydx(t, X) 
0246     global chief 
0247  
0248     % Get the current state. 
0249     x  = X(1); 
0250     y  = X(2); 
0251     z  = X(3); 
0252     dx = X(4); 
0253     dy = X(5); 
0254     dz = X(6); 
0255  
0256     % Update the chief orbit and convert to Cartesian. 
0257     [rc, drc, f] = kep2cart(chief, t); 
0258  
0259     % Find some common orbit values. 
0260     a = chief(1); % semi-major axis 
0261     e = chief(2); % eccentricity 
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0262     p = a*(1 - e^2); % semi-parameter 
0263     h = norm(cross(rc, drc)); % angular momentum 
0264  
0265     % Initialize some common values. 
0266     rc = p/(1 + e*cos(f)); % orbit radius 
0267     df = h/rc^2; % change in angular rate 
0268     drc = (rc*e*df*sin(f))/(1 + e*cos(f)); % change in orbit radius 
0269     rcp = rc/p; 
0270     drc1 = drc/rc; 
0271     df2 = df^2; 
0272  
0273     % Compute the second-order derivatives. 
0274     ddx =  2*df*(dy + y*drc1) + x*df2*(1 + 2*rcp); 
0275     ddy = -2*df*(dx - x*drc1) + y*df2*(1 - rcp); 
0276     ddz = -rcp*df2*z; 
0277  
0278     % Return the derivatives. 
0279     dX = [dx; dy; dz; ddx; ddy; ddz]; 
0280 end 
0281  
0282 function rho = test4Step(t, rho0) 
0283     global K1 K2 idx rhor u 
0284  
0285     % Compute the tracking errors. 
0286     delRho = rho0 - rhor; 
0287  
0288     % Compute the nonlinear formation flying feedback control. 
0289     dX = test4Dydx(t, rho0);  frho = dX(4:6); 
0290     dX = test4Dydx(t, rhor); frhor = dX(4:6); 
0291     u0 = -(frho - frhor) - K2*delRho(4:6) - K1*delRho(1:3); 
0292  
0293     % Save the control for plotting. 
0294     u(idx, :) = u0; 
0295     idx = idx + 1; 
0296  
0297     % Return the new state. 
0298     rho = rho0; 
0299     rho(4:6) = rho0(4:6) + u0; 
0300 end 
0301  
0302 function test5 
0303     global chief K1 K2 idx torad u 
0304  
0305     % Initialize the chief orbit. 
0306     chief = [42164169.6341702, 0.001, 10*torad, 0, 0, 0]'; 
0307  
0308     % Initial the deputy's relative orbit states. 
0309     X1 = [-150,  100, 20, 0.1, -0.05, -0.01]'; % [m, m/s] 
0310     X2 = [-20, 40, 0, 1, -1, 0]'; % [m, m/s] 
0311     Xr = [0, 0, 0, 0, 0, 0]'; % [m, m/s] 
0312  
0313     % Initialize some values. 
0314     idx = 1; 
0315     K1 = 2e-3*eye(3); 
0316     K2 = 3e-3*eye(3); 
0317  
0318     % Integrate the EOM. 
0319     [t, X] = rk4(@test5Dydx, [0 300], [X1; X2; Xr], 0.05, @test5Step); 
0320  
0321     % Relative orbit results. 
0322     rho1  = X(:, 1:3); 
0323     drho1 = X(:, 4:6); 
0324  
0325     % Output the results. 
0326     fprintf('Relative Orbit Feedback Control Maneuvers\n'); 
0327     di = fix(0.1*size(u, 1)); 
0328     for i = 1:di:size(u, 1) 
0329         fprintf('%5g (s) - norm=%.3f, dv=[%.3f, %.3f, %.3f] (m/s)\n', ... 
0330             t(i), norm(u(i,:)), u(i,:)); 
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0331     end 
0332     fprintf('\nFinal state\n'); 
0333     fprintf('rho = [%.3f, %.3f, %.3f, %.3f, %.3f, %.3f]\n\n', ... 
0334         rho1(end,:), drho1(end,:)); 
0335  
0336     % Plot results. 
0337     % Relative position. 
0338     figure(5); 
0339     subplot(2, 2, 1); 
0340     plot(t, rho1(:, 1), t, rho1(:, 2), t, rho1(:, 3)); grid on 
0341     xlabel('Time [s]'); 
0342     ylabel('Relative Position [m]'); 
0343     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0344  
0345     % Relative velocity. 
0346     subplot(2, 2, 2); 
0347     plot(t, drho1(:, 1), t, drho1(:, 2), t, drho1(:, 3)); grid on 
0348     xlabel('Time [s]'); 
0349     ylabel('Relative Velociy [m/s]'); 
0350     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0351  
0352     % Control thrust. 
0353     subplot(2, 2, 3); 
0354     plot(t, u(:, 1), t, u(:, 2), t, u(:, 3)); grid on 
0355     xlabel('Time [s]'); 
0356     ylabel('Control Thrust [m/s^2]'); 
0357     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0358  
0359     % Relative position (zoomed). 
0360     subplot(2, 2, 4); 
0361     plot(t, u(:, 1), t, u(:, 2), t, u(:, 3)); grid on 
0362     xlabel('Time [s]'); 
0363     ylabel('Control Thrust (zoomed) [m/s^2]'); 
0364     legend('Radial', 'Along-Track', 'Out-of-Plane'); 
0365     axis([19 41 -0.15 0.2]); 
0366  
0367     % Clear globals 
0368     clear global chief K1 K2 idx rhor u 
0369 end 
0370  
0371 function dX = test5Dydx(t, X) 
0372     global chief 
0373  
0374     % Get the current state. 
0375     x1  = X(1); 
0376     y1  = X(2); 
0377     z1  = X(3); 
0378     dx1 = X(4); 
0379     dy1 = X(5); 
0380     dz1 = X(6); 
0381  
0382     x2  = X(7); 
0383     y2  = X(8); 
0384     z2  = X(9); 
0385     dx2 = X(10); 
0386     dy2 = X(11); 
0387     dz2 = X(12); 
0388  
0389     xr  = X(13); 
0390     yr  = X(14); 
0391     zr  = X(15); 
0392     dxr = X(16); 
0393     dyr = X(17); 
0394     dzr = X(18); 
0395  
0396     % Update the chief orbit and convert to Cartesian. 
0397     [rc, drc, f] = kep2cart(chief, t); 
0398  
0399     % Find some common orbit values. 
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0400     a = chief(1); % semi-major axis 
0401     e = chief(2); % eccentricity 
0402     p = a*(1 - e^2); % semi-parameter 
0403     h = norm(cross(rc, drc)); % angular momentum 
0404  
0405     % Initialize some common values. 
0406     rc = p/(1 + e*cos(f)); % orbit radius 
0407     df = h/rc^2; % change in angular rate 
0408     drc = (rc*e*df*sin(f))/(1 + e*cos(f)); % change in orbit radius 
0409     rcp = rc/p; 
0410     drc1 = drc/rc; 
0411     df2 = df^2; 
0412  
0413     % Compute the second-order derivative for X1. 
0414     ddx1 =  2*df*(dy1 + y1*drc1) + x1*df2*(1 + 2*rcp); 
0415     ddy1 = -2*df*(dx1 - x1*drc1) + y1*df2*(1 - rcp); 
0416     ddz1 = -rcp*df2*z1; 
0417  
0418     % Compute the second-order derivative for X2. 
0419     ddx2 =  2*df*(dy2 + y2*drc1) + x2*df2*(1 + 2*rcp); 
0420     ddy2 = -2*df*(dx2 - x2*drc1) + y2*df2*(1 - rcp); 
0421     ddz2 = -rcp*df2*z2; 
0422  
0423     % Compute the second-order derivative for Xr. 
0424     ddxr =  2*df*(dyr + yr*drc1) + xr*df2*(1 + 2*rcp); 
0425     ddyr = -2*df*(dxr - xr*drc1) + yr*df2*(1 - rcp); 
0426     ddzr = -rcp*df2*zr; 
0427  
0428     % Return the derivatives. 
0429     dX1 = [dx1; dy1; dz1; ddx1; ddy1; ddz1]; 
0430     dX2 = [dx2; dy2; dz2; ddx2; ddy2; ddz2]; 
0431     dXr = [dxr; dyr; dzr; ddxr; ddyr; ddzr]; 
0432     dX  = [dX1; dX2; dXr]; 
0433 end 
0434  
0435 function X = test5Step(t, X0) 
0436     global K1 K2 idx u 
0437  
0438     % Get the current state. 
0439     rho1  = X0(1:3); 
0440     drho1 = X0(4:6); 
0441     rho2  = X0(7:9); 
0442     drho2 = X0(10:12); 
0443     rhor  = X0(13:15); 
0444     drhor = X0(16:18); 
0445  
0446     % Compute the equations of motion. 
0447     dX = test5Dydx(t, X0); 
0448     frho1 = dX(4:6); 
0449     frho2 = dX(10:12); 
0450     frhor = dX(13:15); 
0451  
0452     % Compute the distance between the reference motion and rho2. 
0453     d = norm(rho2 - rhor); 
0454     if (d < 20) 
0455         ref  = -rho2; 
0456         dref = -drho2; 
0457         frho = -frho2; 
0458     else 
0459         ref  = rhor; 
0460         dref = drhor; 
0461         frho = frhor; 
0462     end 
0463  
0464     % Compute the tracking error. 
0465     delRho = rho1 - ref; 
0466     delRhoDot = drho1 - dref; 
0467  
0468     % Compute the nonlinear formation flying feedback control. 
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0469     u0 = -(frho1 - frho) - K2*delRhoDot - K1*delRho; 
0470  
0471     % Save the control for plotting. 
0472     u(idx, :) = u0; 
0473     idx = idx + 1; 
0474  
0475     % Return the new state. 
0476     X = X0; 
0477     X(4:6) = X0(4:6) + u0; 
0478 end 
0479  
0480 % Convert classic Kepler orbit elements to Cartesian vectors. 
0481 function [r, dr, f] = kep2cart(orb, dt) 
0482     % Declare globals. 
0483     global gmu twopi 
0484  
0485     % Set dt to zero if it is not given. 
0486     if (nargin == 1) 
0487         dt = 0; 
0488     end 
0489  
0490     % Set the orbit elements. 
0491     a = orb(1); 
0492     e = orb(2); 
0493     i = orb(3); 
0494     O = orb(4); 
0495     w = orb(5); 
0496     p = a * (1 - e^2); % Semi-parameter 
0497     f = mean2tru(orb, dt); % Find the tru anomaly. 
0498  
0499     % Correct the orbit plane if we are an elliptical orbit for circular 
0500     % and equitorial cases. 
0501     tol = 1e-8; 
0502     if (a > 0) 
0503         if (e < tol) 
0504             if (i < tol) 
0505                 % Circular and equitorial. 
0506                 f = xmod(O + w + f, twopi); 
0507                 w = 0; 
0508                 O = 0; 
0509             else 
0510                 % Circular and inclined. 
0511                 f = xmod(w + f, twopi); 
0512                 w = 0; 
0513             end 
0514         else 
0515             % Elliptical and equatorial. 
0516             if (i < tol) 
0517                 w = xmod(O + w, twopi); 
0518                 O = 0; 
0519             end 
0520         end 
0521     end 
0522  
0523     % Pre-compute some common values. 
0524     cosO = cos(O); 
0525     sinO = sin(O); 
0526     cosW = cos(w); 
0527     sinW = sin(w); 
0528     cosI = cos(i); 
0529     sinI = sin(i); 
0530     cosF = cos(f); 
0531     sinF = sin(f); 
0532  
0533     % Perifocal system unit vectors. 
0534     phat = [ 
0535         cosO*cosW - sinO*sinW*cosI, ... 
0536         sinO*cosW + cosO*sinW*cosI, ... 
0537         sinW*sinI ... 
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0538     ]'; 
0539  
0540     qhat = [ 
0541         -cosO*sinW - sinO*cosW*cosI, ... 
0542         -sinO*sinW + cosO*cosW*cosI, ... 
0543          cosW*sinI ... 
0544     ]'; 
0545  
0546     % Position magnitude. 
0547     rmag = p / (1 + e*cosF); 
0548  
0549     % Position and velocity vectors. 
0550     r  = ((rmag*cosF) * phat) + ((rmag*sinF) * qhat); 
0551     dr = sqrt(gmu / p) * (-sinF*phat + (e + cosF)*qhat); 
0552 end 
0553  
0554 % Given classic orbit elements with mean anomaly and an optional change in 
0555 % time, return the true anomaly. 
0556 function f = mean2tru(orb, dt) 
0557     % Declare globals. 
0558     global gmu twopi 
0559  
0560     % Set dt to zero if it is not given. 
0561     if (nargin == 1) 
0562         dt = 0; 
0563     end 
0564  
0565     % Get the orbit elements. 
0566     a  = orb(1); 
0567     e  = orb(2); 
0568     M0 = orb(6); 
0569  
0570     % Elliptic 
0571     % Propagate the orbit (without disturbances) if dt is not zero. 
0572     M = M0; 
0573     if (dt ~= 0) 
0574         n = sqrt(gmu / a^3); % Mean angular motion 
0575         M = M0 + n*dt; 
0576     end 
0577  
0578     % Use a Newton root finder to compute anomaly. 
0579     E = M; 
0580     dE = 1e10; 
0581     while (abs(dE) > 10*eps) 
0582         dE = (E - e * sin(E) - M) / (1 - e * cos(E)); 
0583         E  = E - dE; 
0584     end 
0585  
0586     % True anomaly. 
0587     tanf2 = sqrt((1 + e) / (1 - e)) * tan(E / 2); 
0588     f = xmod(2 * atan(tanf2), twopi); 
0589 end 
0590  
0591 % Return maneuvers. 
0592 function [t, dvs] = mnvrs(num, tf, rho0, aimpt, n, W) 
0593     % Handle the input arguments. 
0594     if (nargin < 6) 
0595         W = eye(length(rho0)); 
0596     end 
0597  
0598     % Compute the time of each dv. 
0599     dt = tf/num; 
0600     t = (0:dt:tf)'; 
0601     t = t(1:end-1); 
0602  
0603     % Compute the error between the current state and the final aim-point. 
0604     phi = stm(tf, n); 
0605     err = aimpt - phi*rho0; 
0606  
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0607     % Loop through all the points. 
0608     j = 1; 
0609     psi = zeros(length(rho0), 3*num); 
0610     for i = 0:num-1 
0611         phi = stm(tf - i*dt, n); 
0612         psi(:, j:j+2) = phi(:, 4:6); 
0613         j = j + 3; 
0614     end 
0615  
0616     % Solve the weighted least squares problem to find the DV's. 
0617     H = psi; 
0618     P = pinv(H'*W*H); 
0619     dvs = P*H'*W*err; 
0620  
0621     % Reshape the matrix into the dvs. 
0622     m = size(dvs, 1); 
0623     dvs = reshape(dvs, 3, m/3)'; 
0624 end 
0625  
0626 % Numerically integrate using the Fourth-order Runge-Kutta method. 
0627 function [t, y] = rk4(odefun, tspan, y0, h, stepfun) 
0628     % Initialize the time steps. 
0629     t0 = tspan(1); 
0630     tf = tspan(2); 
0631     dt = tf - t0; 
0632  
0633     % Set a default step-size if one was not given. 
0634     if (nargin == 3) 
0635         h = 1e-3; 
0636     end 
0637  
0638     h = abs(h) * sign(dt); 
0639     hhalf = 0.5 * h; 
0640  
0641     % Compute the coefficients. 
0642     a = [sqrt(0.5) - 0.5, 1 - sqrt(0.5), 1 / sqrt(2), 1 + sqrt(0.5)]'; 
0643     b = [1/6, 1/3*(1 - sqrt(0.5)), 1/3*(1 + sqrt(0.5)), 1/6]'; 
0644  
0645     % Initialize the integration. 
0646     i = 1; 
0647     n = abs(fix(dt / h)) + 1; 
0648     t = zeros(n, 1); 
0649     y = zeros(n, length(y0)); 
0650     ytmp = y0; 
0651  
0652     % Loop until the end of the time span. 
0653     for ttmp = t0:h:tf 
0654         % Store the output values. 
0655         t(i) = ttmp; 
0656         y(i, :) = ytmp; 
0657         i = i + 1; 
0658  
0659         % Compute the weighted averages. 
0660         k1 = h * feval(odefun, ttmp, ytmp); 
0661         k2 = h * feval(odefun, ttmp + hhalf, ytmp + k1/2); 
0662         k3 = h * feval(odefun, ttmp + hhalf, ytmp + a(1)*k1 + a(2)*k2); 
0663         k4 = h * feval(odefun, ttmp + h, ytmp - a(3)*k2 + a(4)*k3); 
0664  
0665         % Compute the next value. 
0666         ytmp = ytmp + (b(1)*k1 + b(2)*k2 + b(3)*k3 + b(4)*k4); 
0667  
0668         % Call the step function (if given). 
0669         if (nargin == 5) 
0670             ytmp = feval(stepfun, ttmp, ytmp); 
0671         end 
0672     end 
0673 end 
0674  
0675 % Returns the solution of the two-body relative orbit. 



 

67 

 

0676 function rho = soln(rho0, t, n) 
0677     x0 = rho0(1); 
0678     y0 = rho0(2); 
0679     z0 = rho0(3); 
0680     dx0 = rho0(4); 
0681     dy0 = rho0(5); 
0682     dz0 = rho0(6); 
0683  
0684     nt = n*t; 
0685     cosnt = cos(nt); 
0686     sinnt = sin(nt); 
0687     ninv = 1/n; 
0688  
0689     x = (4 - 3*cosnt)*x0 + dx0*ninv*sinnt + 2*ninv*(1 - cosnt)*dy0; 
0690     y = 6*(sinnt - nt)*x0 + y0 + 2*ninv*(cosnt - 1)*dx0 + ... 
0691         (-3*t + 4*ninv*sinnt)*dy0; 
0692     z = cosnt*z0 + dz0*ninv*sinnt; 
0693     dx = 3*n*sinnt*x0 + cosnt*dx0 + 2*sinnt*dy0; 
0694     dy = 6*n*(cos(nt) - 1)*x0 - 2*sinnt*dx0 + (4*cosnt - 3)*dy0; 
0695     dz = -n*sin(nt)*z0 + cosnt*dz0; 
0696  
0697     rho = [x, y, z, dx, dy, dz]; 
0698 end 
0699  
0700 % Returns the state transition matrix. 
0701 function phi = stm(t, n) 
0702     % Initialize some common values. 
0703     nt = n*t; 
0704     cosnt = cos(nt); 
0705     sinnt = sin(nt); 
0706     ninv = 1/n; 
0707  
0708     % Set STM values. 
0709     % phi11 
0710     phi = zeros(6, 6); 
0711     phi(1, 1) = 4 - 3*cosnt; 
0712     phi(2, 1) = 6*(sinnt - nt); 
0713     phi(2, 2) = 1; 
0714     phi(3, 3) = cosnt; 
0715  
0716     % phi12 
0717     phi(1, 4) = ninv*sinnt; 
0718     phi(1, 5) = 2*ninv*(1 - cosnt); 
0719     phi(2, 4) = 2*ninv*(cosnt - 1); 
0720     phi(2, 5) = 4*ninv*sinnt - 3*t; 
0721     phi(3, 6) = ninv*sinnt; 
0722  
0723     % phi21 
0724     phi(4, 1) = 3*n*sinnt; 
0725     phi(5, 1) = 6*n*(cosnt - 1); 
0726     phi(6, 3) = -n*sinnt; 
0727  
0728     % phi22 
0729     phi(4, 4) = cosnt; 
0730     phi(4, 5) = 2*sinnt; 
0731     phi(5, 4) = -2*sinnt; 
0732     phi(5, 5) = 4*cosnt - 3; 
0733     phi(6, 6) = cosnt; 
0734 end 
0735  
0736 % Returns the extended modulo of two values. 
0737 function z = xmod(x, y) 
0738     if (y == 0) 
0739         z = x; 
0740         return; 
0741     end 
0742  
0743     z = x - y .* floor((x./y) + 0.5); 
0744 end 
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