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There are currently more than 19,000 trackable objects in Earth orbit, 1,300 of which are active.

With so many objects populating the space object catalog and new objects being added at an ever increas-

ing rate, ensuring continued access to space is quickly becoming a cornerstone of national security policies.

Space Situational Awareness (SSA) supports space operations, space flight safety, implementing international

treaties and agreements, protecting of space capabilities, and protecting of national interests. With respect

to objects in orbit, this entails determining their location, orientation, size, shape, status, purpose, current

tasking, and future tasking. For active spacecraft capable of propulsion, the problem of determining these

characteristics becomes significantly more difficult. Optimal control techniques can be applied to object cor-

relation, maneuver detection, maneuver/spacecraft characterization, fuel usage estimation, operator priority

inference, intercept capability characterization, and fuel-constrained range set determination. A detailed

mapping between optimal control applications and SSA object characterization support is reviewed and re-

lated literature visited. Each SSA application will be addressed starting from first-principles using optimal

control techniques. For each application, several examples of potential utility are given and discussed.
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Chapter 1

Problems in Space Situational Awareness

1.1 Space Situational Awareness Definition and Scope

As of April, 2009, there are approximately 19,000 objects in Earth orbit with a nominal diameter

greater than 10cm, 1,300 of which are active spacecraft [1]. These numbers are expected to grow by an

order of magnitude in the next decade due to increased tracking capabilities and additional launches [2].

With so many objects currently in the Space Object Catalog (SOC) and with new objects being added at an

increasing rate, ensuring continued access to space is quickly becoming a critical component of the United

States’ and other entities’ security policies. For the United States,

“The need for increased space protection of our space assets is paramount, and requires
enhanced Space Situational Awareness (SSA) capabilities ... [3].”

The current Department of Defense (DoD) Joint Publication 3-14 dictating roles and responsibilities for

Space Operations defines SSA as

“... a key component for space control because it is the enabler, or foundation, for ac-
complishing all other space control tasks. SSA involves characterizing, as completely as
necessary, the space capabilities operating within the terrestrial environment and the space
domain [4].”

Joint Publication 3-14 further emphasizes that SSA supports key objectives such as ensuring space operations

and space flight safety, implementing international treaties and agreements, protecting space capabilities,

and protecting military operations and national interests [4].

For each of the 19,000 and growing trackable objects in space, characterization may be further de-

scribed as
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“... knowing the location of every object orbiting the Earth, active or inactive, big or small;
and knowing why it is there, what it is doing now, and what we think it will be doing in the
future [5].”

Additional attributes whose determination supports SSA efforts include “shape, motion, and orientation

data” [6].

In short, high level space object chacteristics whose determination supports SSA efforts are:

• Location. Where is the object? What is its attitude? How well are these states known?

• Active. Is the object debris, dormant, active, etc.?

• Size. What size is the object?

• Shape. What shape is the object? Does the shape suggest specific capabilities?

• Motion. Is the spacecraft motion homogeneous or is it actively maneuvering?

• Purpose. Why is the object in its current orbit? What capabilities does it possess?

• Current Disposition. What task(s) is the object currently executing?

• Future Disposition. What task(s) could the object potentially do? What task(s) will the object

likely do?

Achieving SSA with respect to active spacecraft is both quite difficult and imperative, particularly when

active spacecraft are operated by uncooperative or noncooperative parties.

Of particular interest to this research effort are active spacecraft capable of propulsive maneuvers.

Such spacecraft, conducting maneuvers in carefully planned sequences, can deeply confound all SSA support

efforts listed above. This motivates the following Thesis Statement for this dissertation.

Thesis Statement:

Optimal Control methods can enable and improve critical Space Situational Awareness ac-
tivities, specifically track correlation, maneuver detection, fuel usage estimation, operator
priority inference, efficient intercept set computation, range set theory, and range set gener-
ation for maneuvering space vehicles.
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Based on inference only, determining the purpose, current disposition, and future disposition of active,

potentially maneuvering spacecraft is effectively an infinite-dimensional problem. To reduce the scope for

this research effort, the following guiding principles governing active, uncooperative / noncooperative, and

possibly maneuvering spacecraft are assumed:

[P1] The spacecraft available thrust, current fuel, and total fuel capacity are unknown

[P2] Fuel is a scarce on-orbit commodity. When an object maneuvers, all else being equal, it will do so

in a fuel-optimal maneuver (with or without time constraints)

[P3] When appropriate, system, boundary condition, and measurement uncertainty should be directly

considered

Together, guiding principles [P1], [P2], and [P2] suggest a rigorous application of optimal controls to efforts

supporting SSA. A short description on how the application of optimal control techniques can support SSA

efforts is given in the following section.

1.2 Optimal Control Problems in SSA

Problems in which careful application of optimal control techniques can support SSA efforts are

discussed in the following subsections. In order of discussion, they are object catalog support, object attribute

inference, and strategic / tactical planning.

1.2.1 Space Object Catalog Support

The Space Object Catalog (SOC) contains the current ephemerides, uncertainties, and status of all

trackable objects in Earth orbit. The herculean task of maintaining the SOC and incorporating new objects is

carried out by the Joint Space Operations Center (JSpOC) [4]. Maintaining orbit estimates and uncertainties

on potentially active satellites is a tremendously difficult task, particularly when objects are operated by

third parties and subject to unknown maneuvers. Also, due to limited tracking resources, some maneuvering

objects may be observed irregularly, generating large numbers of Uncorrelated Tracks (UCTs). In view of
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principles [P1], [P2], and [P3], maneuver detection and UCT correlation may benefit from optimal controls

methods in particular.

1.2.1.1 Object and Track Correlation

Correlating UCTs with specific objects is a persistent and critical endeavor in maintaining the SOC.

Fundamentally, object and track correlation is concerned with associating observations or sequences of ob-

servations with specific objects. This problem is made quite difficult due to limited tracking resources and

unknown, possibly unobserved maneuvers.

Range gating, where the new UCT is correlated with the object if the new measurements are within

a certain region of their expected values, is a common method currently in use. Other approaches that

directly incorporate uncertainty are the Mahalonobis Distance (M-D) [12], the Kullback-Leibler Distance

(KL-D) [7], the Bhattacharyya Distance (B-D) [8], and the Maximum a Posteriori Distance (MaP-D) (also

known as Bayesean). Unfortunately, none of these approaches to correlating UCTs with objects (or other

UCTs) account for maneuvering spacecraft.

Several approaches to object correlation accounting for maneuvers exist. In traditional tracking ap-

proaches, maneuvers are modeled as random processes, often as white noise [13]. As intuition would suggest,

on-orbit maneuvers are not random and are often as close to fuel optimal as operations allow. To account

for this, batch and sequential estimation methods can use force models that assume fuel-optimal maneuvers

[18]. Unfortunately, this approach has only been applied to continuous optimal thrust trajectories where the

thrust magnitude is known.

It remains, however, that significant room for application involving optimal control approaches re-

mains. Given two sets of UCTs generated from two distinct sequences of observations, control distance

metrics may be used to determine whether the UCTs likely belong to the same (possibly maneuvering) space

object. As is shown in Chapter 2, under specific conditions optimal control performance indices also posses

the properties of distance metrics, namely positivity, strict positivity, symmetry, and the triangle inequal-

ity. A carefully constructed performance index can represent fuel cost (or a fuel cost analog) and may be

considered a ‘control distance.’ Combined with enforcing boundary conditions consistent with UCTs or new
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measurements, the control distance of the connecting trajectory can be determined.

Given UCTs generated at different times belonging to the same object, if no maneuver has occurred,

the control distance metric will necessarily be zero as the fuel-optimal trajectory connecting the UCTs will

be homogeneous. However, if the object has executed a maneuver or experienced un-modeled accelerations,

the trajectory connecting the UCTs will have a strictly positive control distance and, further, the control

distance will quantify the required fuel to execute the maneuver(s). Also, if multiple objects are in close

proximity and it is known that each spacecraft is attempting to minimize fuel usage, the control distance

metric may be used to test all UCT association combinations and generate the combinations with the smallest

fuel usage.

Because UCTs and existing SOC state knowledge never precisely reflects truth, systemic uncertainty

must also be incorporated into the control distance formulation. For control distance calculations, this

uncertainty manifests as boundary condition uncertainty. In this instance optimal control methodologies

can be used to compute the distribution of control distances given distributions in the initial and final

boundary conditions or measurements.

1.2.1.2 Maneuver Detection

Detecting the time and magnitude of unknown maneuvers between measurements is a significant

problem in maintaining the SOC for active spacecraft. Traditional optimal variance batch and sequential

estimation methods require some modeling of accelerations acting on the spacecraft to accurately estimate

its state. If maneuver time, direction, and magnitude are known, this information can be directly given to

the optimal estimator and an excellent state estimate may be generated. However, if the maneuvers are

unknown, the quantity, timing, direction, and magnitude must be either estimated in additional to other

state variables or modeled as a sufficiently large model uncertainty.

Real-time maneuver detection often involves examining the Mahalonobis distance of the new measure-

ment. The nominal state and measurement uncertainties are projected into the measurement space, the new

measurement residual is computed, and it is determined whether that measurement residual is the result of

systemic uncertainty or the artifact of a maneuver. It remains, however, that even if a good estimate of the
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maneuver time is generated, the magnitudes and direction must still be estimated. Further, real-time ma-

neuver detection by definition requires that measurements are taken while the object maneuvers - something

that given existing tracking resources may not be guaranteed.

Maneuvers may also be detected by examining subsets of tracking data and examining changes in orbit

energy. If the orbit energy estimated from the new data is sufficiently different from the expected energy (as

measured by the Mahalanobis Distance), an event can be declared [19]. This method requires that a maneuver

change the orbit energy, but it can be imagined that changes in any constant of motion could be examined

in a similar fashion. Alternate methods use binary search algorithms to partition tracks or sequences of

tracks into segments where no maneuvers occur, then attempt to estimate maneuver timing, magnitudes,

and directions [20]. Various metrics of data fit goodness are used in these cases to determine when the

maneuver profile estimate is correct. Other methods propagate partial tracks forwards and/or backwards in

time and search for close approaches in position space. In situations where position differentials are small,

a maneuver time, size, and direction may be estimated [21]. This method implicitly assumes that only a

single maneuver has occurred between observations.

Again, if it is assumed that operators are maneuvering their spacecraft in an optimal manner, a control

distance metric approach may be used. Because boundary condition uncertainty is directly accounted for

in the control distance problem formulation and solution, a control distance distribution resulting from

connecting two UCTs or measurements can be divided into deterministic and uncertain components. By

treating the deterministic portion of the control distance as an instantiation of the uncertain component,

a probability that the measured control distance is the artifact of a maneuver (or some other anomaly).

As with real-time maenuver detection using the Mahalanobis-Distance, an anomaly / maneuver probability

threshold may be defined and, when exceeded, used to alert operators that a maneuver is likely to have

occurred. This approach has the additional advantage that the likely time, direction(s) and total effort of

the maneuver(s) can be reconstructed from the control distance calculations, seeding batch maneuver / state

estimators with better initial guesses.
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1.2.2 Object Attribute Inference

For the purposes of this research, object attribute inference is taken to mean determining the size,

shape, motion, and current disposition of an orbiting object. Characterizing these attributes for active

spacecraft is of particular interest. The following two subsections discuss particular ways in which the

application of optimal control techniques assists in object attribute inference.

1.2.2.1 Fuel Usage

Knowledge of uncooperative / noncooperative spacecraft fuel capacity and current fuel levels can

facilitate strategic and tactical decision making. Estimating fuel capacity and current reserves is quite

difficult and is intrinsically linked to spacecracft mass estimates and propulsion system characterization. If

it is known that a spacecraft is nearing the end of its operational life, maneuvers to de-orbit or place it in a

graveyard orbit can be anticipated. Also, as discussed in §1.2.3, estimates of a spacecraft fuel reserves can

aid planning and contingency exercises on both the tactical and strategic levels.

A fuel metric commonly used to quantify how much a spacecraft may modify its orbit is characteristic

velocity (often called ‘∆V ’). Characteristic velocity is a useful metric as it incorporates changes in spacecraft

mass due to fuel consumption as well as propulsion system efficiencies. This makes characteristic velocity a

platform-independent metric with which to measure trajectory fuel costs or distances. All trajectories ‘cost’

a specific quantity of ∆V , either zero for homogeneous trajectories or some positive value for trajectories

involving maneuvers.

Accurate estimates of cumulative fuel usage depend greatly on correctly estimating the size of every

maneuver. As such, cumulative fuel usage estimates can suffer from errors in maneuver detection and

characterization. Thus, fuel usage characterization is largely a function of the maneuver characterization

method used.

Control distance computations between observations or tracks can directly aid in this characterization

problem. If an object is observed sufficiently often, control distances may be computed and a running total

of ∆V expenditures may be kept. Combined with a-priori total ∆V capability estimates, these two numbers

can be used to estimate remaining fuel reserves in terms of ∆V , potentially providing insight into what
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maneuvers are within the spacecraft’s remaining capability to perform.

1.2.2.2 Inferences on Operator Priorities

As intuition suggests, minimization of trajectory ∆V usage is not necessarily the sole objective of

spacecraft operators. In many cases, operators may execute maneuvers or series of maneuvers that are not

fuel-optimal, but serve other operational priorities.

Outside of educated guesswork and inference, past work has leveraged the strong classification capa-

bilities of Bayesan belief networks [21]. In such networks, experts blend Bayes rule, contextual knowledge,

and known causal relationships to probabilistically classify events or operator intentions.

By measuring the control distances between previous state estimates and tracks or new observations,

valuable insight into operator priorities may be inferred. Specifically, if the maneuvers are consistently fuel

sub-optimal, then operator goals may not be limited to preserving fuel and extending spacecraft operational

life. Computing control distance distributions to include in analyses related to spacecraft operator priorities

can greatly increase the accuracy of such analyses, and in particular may be good inputs for Bayesan belief

networks.

1.2.3 Strategic and Tactical Planning

In land, air, and sea operations, concepts such as minimum-time intercept envelopes and vehicle

range sets are critical to strategic and tactical planning. The capability to compute and determine such sets

directly supports quantification of spacecraft future dispositions, an SSA cornerstone. Currently, there are

no rigorously defined analogs for spacecraft. Optimal control methodologies are uniquely suited to generating

such analogs, as there are a variety of methods available to generate sets of minimum time and minimum

fuel trajectories.

1.2.3.1 Intercept Reachability

In controls literature the full set of reachable states given an initial set of reachable states is called the

reachability set. Here the term intercept reachability is meant as the position subspace of the full reachability
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set. Position reachability subsets are of specific interest in intercept problems because when conjunctions

occur relative velocities are likely so large that their differences are irrelevant. Problematically, full state-

space reachability computations suffer from the curse of dimensionality; their computation time and memory

scale at an exponential rate dependent on the dimension of the state space. For 3-Degree of Freedom (DoF)

motion, which requires 6 states to fully specify, full minimum-time reachability set computation becomes

quite cumbersome and in general computationally intractable. Thus, methods to efficiently compute intercept

reachability sets (position reachability subspaces) can directly support SSA scenario evaluation.

Full-state, minimum time reachability has largely been the focus of optimal controls literature and

has been extensively studied. Reachability computation using zero-level sets of the value function in the

Hamilton Jacobi Bellman (HJB) PDE has been rigorously established [60, 62]. Some relationships between

minimum time reachability and maximum distance reachability sets are also explored [35] in this framework.

Reachability solutions found using the HJB PDE and zero-level set methods benefit tremendously from

existing numerical toolboxes [64]. Alternately, rather than propagating the HJB PDE and computing zero

level sets, the reachability set surface may be sampled and propagated as individual trajectories [66, 67].

Existing applications of minimum time reachability in aerospace center around collision avoidance and

safety-related computations. Collision avoidance may be treated as a differential game and used to compute

‘safe’ sets [39]. Similarly, for safety-related applications, safe sets for aerial refuling may be computed by

treating disturbances as worst-case adversarial inputs [40].

Intercept reachability has been examined using parametric optimization outside of a HJB PDE setting

[75]. This particular approach imposes a ∆V constraint and computes linearized changes in the positional

reachability over small time intervals assuming Keplerian motion. While this approach to computing position

reachability sets does not explicitly minimize time and assumes impulsive maneuvers, it highlights the utility

of intercept reachability set computation.

To circumvent this dimensionality-driven intercept set computation limitation, optimal control tech-

niques may again be leveraged. As intercept problems related to SSA are concerned with position conjunc-

tions, it is often unnecessary to compute relative velocities. In particular, by viewing the surface of the

intercept sets as a set of final states of individual optimal trajectories, necessary conditions of optimality
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governing boundary conditions may be applied to reduce the overall computational burden. By carefully

constructing the problem in view of these insights, the overall dimensionality of the minimum time position

intercept problem is reduced, making the problem computationally tractable. Though the approach given

in this dissertation uses minimum time as the implicit performance index, the approach can be modified to

accommodate minimum fuel computations as well.

1.2.3.2 Range Set Theory

The term ‘range’ has may possible interpretations. One can easily imagine defining range as how

far an object may travel with a fixed amount of time, fuel, money, etc. As discussed in the previous

section, minimum time reachability sets satisfy one potential definition of range. In SSA applications, useful

types of range could be minimum time, minimum fuel, minimum energy, or combinations between these.

Unfortunately, there does not exist any rigorously defined framework to compute reachability sets given

arbitrary constraints on independent parameters.

The aircraft range equation was first derived by Louis Breguet in the early 20th century using a

direct change of independent parameter from time to fuel mass [72]. Reachability given both time and fuel

constraints has also been preliminarily addressed in an optimal control setting by adding the cumulative

fuel usage as an auxilliary state and imposing boundary conditions [79]. More recently, spacecraft range was

preliminarily addressed in a parametric optimization setting under Keplerian motion for a single impulsive

maneuver with ∆V constraints and no time constraints [78]. While all of these approaches address range in

one manner or another, none do so under a unified optimal controls framework.

By carefully defining a new general independent parameter and its mapping function with respect

to time a General Independent Parameter (GIP) HJB PDE may be derived. Under the GIP HJB PDE

framework, reachability sets using arbitrary constraints on general independent parameters can be computed.

Further, as discussed in §1.2.1, performance indices with positive semi-definite Lagrangians are metrics. If

such a performance metric is used as the new independent parameter, the resulting GIP HJB PDE solution

is defined as a Generalized Metric Range Set. Such sets encompass all types of range discussed above (e.g.

minimum time, fuel, energy, combinations thereof). A Generalized Metric Range Set may be computed using
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methods found in controls literature for minimum time reachability sets.

1.2.3.3 Orbit Range Computation

Computing minimum fuel range sets for spacecraft directly supports strategic planning efforts related

to SSA, as having such information allows space assets, capabilities, and interactions to be expressed in

an intuitive geometric manner. Contrary to traditional range computations for air, land, and sea vehicles,

space vehicle range computations are confounded by two unique and fundamental hurdles. First, spacecraft

in orbit are, by definition, always moving, making range measures difficult to define. Second, spacecraft are

not always expending fuel and often experience long periods of quiescence.

Past free-time, fuel-optimal reachability has been addressed in the neighborhood of reference orbit

using linearization techniques [76, 77]. Due to the linearization process, these methods are only approximate

and only appilcable in the vicinity of these reference orbits. Much more recently, Xue et al. applied

direct parametric optimzation to determine range sets by choosing the timing and direction of a single fixed

magnitude impulsive maneuver [78].

Both persistent motion and itermittent maneuvers may be addressed directly using the Generalized

Metric Range Set framework introduced in §1.2.3.2. First, the problem of consistent motion may be cir-

cumvented by using constants of motion as state-space coordinates, rather than traditional Earth Centered

Inertial (ECI) or Earth Centered Earth Fixed (ECEF) coordinates. Second, by changing the independent

parameter from time to ∆V and ensuring that important characteristics of the problem are preserved, sets

of reachable states given ∆V constraints may be computed using existing minimum time software. This

approach has the benefit of being time-independent and usable with any set of constants of motion, avoiding

coordinate singularities, and it can be shown to reproduce all known fuel optimal orbit transfers.

1.2.4 SSA Object Characterization Support Summary

Table 1.1 reviews which object characteristics listed in §1.1 are supported by optimal control applica-

tions. Mappings between object attributes and optimal control applications are not necessarily one-to-one,

and in many cases exhibit significant overlap. Also, because SSA activities such as determining object at-
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tributes in Table 1.1 are inherently very complicated and deeply interconnected, support of an activity does

not suggest that the activity in question is considered ‘solved.’ Of the attributes listed in §1.1, neither Size

nor Shape were directly supported by research included in this dissertation; future research may produce

approaches in which optimal control supports determination of Size and Shape, however such research is not

considered within the scope of this dissertation.
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1.3 Organization and Contributions

The organization of this dissertation and highlights of contributions in each chapter are summarized

here. Chapter 2 addresses problems introduced in §1.2.1. Optimal control problem distance metrics are

introduced and their metric properties on the space of optimal trajectories are demonstrated. This distance

metric property is applied to fuel usage metrics and used to define control distance metrics. Both full- and

partial-state boundary condition constraints are examined and control distance relationships are generated

for each. Uncertain boundary conditions are also considered, generating distributions of control distances.

Finally, maneuver detection and stochastic dominance are introduced before several examples are used to

illustrate the approach.

Traditional formulations for minimum time reachability are introduced and derived in Chapter 3.

The problem of computationally tractable, minimum time position intercept problems discussed in §1.2.3.1

are directly addressed. Several important concepts such as optimal control policies and switching times are

reviewed. The primary theorems and corollaries involved in reducing the dimensionality of the problem are

introduced, followed by an overview on potential solution procedures and several examples.

Chapter 4 elaborates on approaches to solve the free-time, minimum-fuel range set computation

discussed in §1.2.3.3. A mapping function between time and a new independent parameter coordinate is

first discussed, followed by a detailed derivation of the Hamilton Jacobi Bellman (HJB) PDE using the new

independent parameter coordinate. Implications of left-, right-, and full-invertibility of the mapping function

are discussed, and the methodology by which orbit range sets may be computed is outlined. The Generalized

Metric Range Set is defined and discussed. Several short illustrates and simple examples are given. Finally,

the approach is applied to Gauss’ Variational Equations (GVEs) and several range sets are computed using

semi-major axis, eccentricity, and inclination. The optimal control policy derived using this first principles

is found to generate all orbit maneuvers found in classical astrodynamics orbit transfers.

Finally, Chapter 5 reviews the successful application of optimal control techniques to the problems

discussed in §1.2 and enumerates several avenues for future research.

Table 1.3 summarizes how contributions contained within this dissertation relate to SSA applications
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as well as enumerates which existing literature is most applicable. Relevant author journal publications for

each application are also listed. Lastly, the chapter in which the material is addressed in this dissertation is

identified.
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Chapter 2

Object Correlation, Maneuver Detection, and Fuel Usage Characterization

The problem of properly correlating on-orbit object observations and characterizing object maneuvers

is a challenging and persistent endeavor. There are currently at least 19,000 trackable on-orbit objects,

1,300 of which are active [1], and these numbers are expected to grow significantly due to increasing tracking

capabilities and new launches [2]. Predicting conjunction events is a difficult task [10], however recent

events highlight the mutual interest national and private operators share in accurate object correlation and

maneuver detection capability [11].

Fuel usage is directly related to object correlation and maneuver detection, as maneuvers must be

correctly detected and attributed to the object in question. Similarly, fuel usage is convolved with operator

priority inference, as fuel-optimal maneuvers indicate that the operator is concerned with fuel usage, while

sub-optimal maneuvers suggest alternate priorities. Intuitively, under the assumption that maneuvers have

been both correctly detected and attributed to a specific object in the Space Object Catalog, fuel usage

can be as simple as a direct summation of estimated maneuver fuel costs. Operator priority, however, is for

obvious reasons much more difficult to quantify. Bayesean belief networks, in which a directed, acyclic graph

is tuned to represent conditional probabilities and observation correlations, has been proposed to identify

potential operator priorities [21].

Radar and visible sensor systems, archetypical sensors used in on-orbit applications, have an extensive

body of literature with respect to tracking and target association. Poore [13] gives an excellent overview of the

approaches and computational implications of the mutli-target / multi-sensor tracking problem. Examples of

tracking approaches in literature are Probabilistic Multi-Hypothesis Tracking (PMHT), Probabilistic Data
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Association Filter (PDAF), and Modified Gain Extended Kalman Filter (MGEKF) methods, which deal

with tracking faults, clutter, and dense target environments [14, 15, 16]. In many of these methods, target

maneuvers are partially modeled as Markov processes, with or without mode switching. Also, an integral

strength of these methods is that they maintain the state covariance of each track as a function of time and

actively blend new observations to minimize the state uncertainty of a given object.

Common metrics used to determine whether a new object should be correlated with a previously

tracked object include, amongst others, the Mahalonobis Distance (M-D) [12], the Kullback-Leibler Dis-

tance (KL-D) [7], the Bhattacharyya Distance (B-D) [8], and the Maximum a Posteriori Distance (MaP-D)

(also known as Bayesean). The Mahalanobis Distance in particular is often used to determine whether a

measurement residual is too large to be completely explained by initial state uncertainty, process noise, and

measurement noise [17]. All of these measures quantify a distance- or pseudo-distance metric in the presence

of uncertainty, and are typically applied to the state difference between a predicted object state and the best

estimate of the newly observed object state.

Problematically, it remains that none of the M-, KL-, B-, or MaP-distance metrics, when applied to

state distributions, directly quantifies the level of propulsive effort required to effect the state change given

a gap in observation. This difference is critical as very small fuel expenditures at specific points in an orbit

can produce outsized state discrepancies.

Approaches that account for the intrinsic uncertainties of the problem that also assume some form

of active optimal control are needed. There are two fundamental cases under consideration in this paper:

1) full state distributions from separate, Uncorrelated Tracks (UCTs) that serve as boundary conditions for

the Two Point Boundary Value Problem (TPBVP), and 2) full or partial state distributions that act as

boundary conditions in cases where full state knowledge is not available (such as when a new measurement

is taken after a long observation gap).

The first case is largely applicable to associating multiple UCTs with one another. An underlying

assumption is that, all else being equal, the UCT combinations with minimum control distance are most likely

[P2]. This problem is called the Uncertain Two Point Boundary Value Problem (UTPBVP). This proposed

method is fundamentally different from computing the statistical distance from the objects’ expected state
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distribution as it directly accounts for optimal control usage.

The second case may be used not only to detect maneuvers as they occur, but also generate the

distribution of the optimal control profile used in the maneuver. Again there is an assumption that the

spacecraft is executing a maneuver that minimizes control usage [P2]. This approach, called the Measurement

Residual Boundary Value Problem (MRBVP), is intrinsically different from measuring the Mahalanobis

distance of the measured residual. The MRBVP approach directly converts the residual and uncertainties

into a control distance metric, allowing not only maneuver detection but also maneuver characterization.

As discussed in §1.3 and summarized in Table 1.3, both cases discussed in this chapter support Space

Object Catalog and Object Characterization activities, specifically object correlation, maneuver detection,

fuel usage estimation, and inference of operator priorities. Object correlation is addressed using control effort

distance metrics to measure how close an object is from an expected homogeneous orbit. Maneuver detection

is done by comparing how much of the control distance the cause of systemic uncertainty and how much is

attributable to a possible maneuver. As a natural consequence of the choice of control distance metrics, fuel

usage estimation (and associated uncertainty) is directly supported by keeping track of maneuver sequences

and adding individual control distance estimates. Inferences on operator priority can be made by examining

how suboptimal maneuvers are; if maneuvers are not fuel-optimal, it can be inferred that the operators have

priorities other than strict fuel minimization, and educated analysis or Bayesan belief network can then be

applied.

The contributions of this chapter are a) the use of trajectory optimality as a distance metric to quantify

object track association control distance, b) the statistical treatment of boundary condition deviations for

tracking problems with large gaps in observations, c) the use of optimal control distance as a metric for op-

erational maneuver detection and characterization based on measurement residuals, d) the use of stochastic

dominance to rank individual and/or sums of performance function distributions, and e) hypothesis testing

to detect possible object maneuvers probabilities.
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2.1 Optimal Control Theory and Boundary Value Problems

This section has five primary constituents. The first discusses the objective function to be optimized

and its relation to optimal maneuvers and distance metrics, the second is a short derivation of the optimal

control policy, the third portion examines the control distance induced by nonlinear two-point boundary value

problems with boundary value uncertainty, the fourth constituent discusses how measurement residuals may

be interpreted in terms of control effort distance metrics, the penultimate portion introduces a sensible

approach to ranking control distance distributions, and the final section introduces hypothesis testing to

determine whether it is likely that a maneuver may have occurred.

2.1.1 Control Performance as a Metric

Before introducing the specific performance function used in this paper it is first necessary to demon-

strate that performance functions for Optimal Control Problems (OCPs) are metrics under certain conditions

(metric properties are fully defined in Naylor [23]).

Theorem 2.1.1. Optimal Control Problem Distance

The function

dOCP (a, b) = inf
u∈U

[∫

tb

ta
L(x(τ),u(τ), τ)dτ]

s.t. ẋ = f(x,u, t)

h(x) ≤ 0

g(xa, ta,xb, tb) = 0

(2.1)

is a distance metric defined over the arguments a and b, where x ∈ Rn, u ∈ Rm, t ∈ [t0, tf ], L ∶ Rn ×Rm ×R→

R, L(⋅, ⋅, ⋅) ≥ 0 ∀x,u, t is the trajectory cost, f ∶ Rn × Rm × R → Rn describes the system dynamics, and

g ∶ Rn × R × Rn × R → Rr is a function defining boundary conditions. The arguments a = (xa, ta) and

b = (xb, tb), each defined on the cartesian product of the state space and time coordinates (Rn × R) must

be members of the set of boundary values that satisfy the boundary condition equation g(xa, ta,xb, tb) = 0,

defined as

(a, b) ∈ G ≡ {(α,β) ∣ g(xα, tα,xβ , tβ) = 0}
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with α = (xα, tα) and β = (xβ , tβ). The boundary values a and b must also be members one another’s

reachability sets, defined as

b ∈R(U,h, a) ≡ {b = (xb, tb)∣(xb, tb) is reachable given U , h, and a} (2.2)

and

a ∈R(U,h, b) ≡ {a = (xa, ta)∣(xa, ta) is reachable given U , h, and b} (2.3)

The set R(U,h, a) is the reachability set relative to a, and is a function of the allowable control set U

and trajectory inequality constraints h (see Chapter 3 for a brief optimal controls reachability introduction).

Using this definition, given (a, b) ∈ G, it is required that b ∈R(U,h, a) or a ∈R(U,h, b). A shorthand notation

a, b ∈ G,R is used to represent both of these cases.

Proof:

To demonstrate that dOCP (a, b) is a metric four properties must be demonstrated: positive, strictly positive,

symmetry, and the triangle inequality. Each are now proven individually.

Positivity: dOCP (a, b) ≥ 0 ∀a, b ∈ G,R. This property is guaranteed by construction, as L(⋅, ⋅, ⋅) ≥ 0

∀x,u, t.

Strictly Positive: dOCP (a, b) = 0 if and only if a ≅ b ∀a, b ∈ G,R. Here, ‘≅’ is taken to mean that a ≅ b

if and only if a and b are in an equivalency class, meaning that there is precisely zero trajectory cost along

the entire connecting trajectory. For example, points along a ballistic trajectory in an equivalency class when

the Lagrangian measures fuel usage. Given a = (xa, ta) and b = (xb, tb) and observing that if xb lies along an

optimal zero-cost trajectory with xa (xb = φx(tb;xa,pa, ta)), such that L(x∗(t),u∗(t), t) = 0 over t ∈ [ta, tb],

then dOCP (a, b) = 0. The converse is true by inspection.

Symmetry: dOCP (a, b) = dOCP (b, a) ∀a, b ∈ G,R. The distance metric value for dOCP (a, b) may be

written as

dOCP (a, b) = ∫
tb

ta
L(x(τ),u∗(τ), τ)dτ

where u∗(t) is the global optimal control. Then the distance metric dOCP (b, a) may be written as

dOCP (b, a) = ∫
ta

tb
L(x(τ),u∗(τ), τ)dτ

= −∫

tb

ta
L(x(τ),u∗(τ), τ)dτ
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Defining s = −τ + tb and making a change of integration variables yields

dOCP (b, a) = −∫
tb

ta
L(x(τ),u∗(τ), τ)dτ

= ∫

tb

ta
L(x(−s),u∗(−s),−s)ds

which is identical to dOCP (a, b), demonstrating that dOCP (a, b) = dOCP (b, a).

Triangle Inequality: dOCP (a, b) ≤ dOCP (a, c) + dOCP (c, b) ∀a, b, c ∈ G,R. This property is guaranteed

by the Principle of Optimality. Given a = (xa, ta), b = (xb, tb), and c = (δxi, ti), where δxi is an arbitrary

intermediate variation in the optimal trajectory defined by dOCP (a, b). If δxi = 0 then the variation in the

optimal control problem cost (δdOCP (a, b)) is precisely zero. If δxi ≠ 0, then because the trajectory is now

sub-optimal (or equally optimal) the cost variation is either zero or positive; δdOCP (a, b) ≥ 0. Then,

dOCP (a, c) + dOCP (c, b) = dOCP (a, b) + δdOCP (a, b)

⇒ dOCP (a, c) + dOCP (c, b) ≥ dOCP (a, b)

◻

Corollary 2.1.1. Unconstrained Optimal Control Problem Distance

If the set U spans all of Rm, the system ẋ = f(x,u, t) is controllable, and h(x(t)) ≡ 0 ∀t ∈ [ta, tb], then the

reachable set starting from either a or b spans the cartesian product between the state space Rn and epochs

R.

R(U,h, a) =R(U,h, b) ≡ {α = (xα, tα)∣xα ∈ Rn, tα ∈ R}

and the boundary values a and b are only required to be members of G.

Proof:

This is seen to be true by realizing that if all control and trajectory constraints are removed and the system is

controllable, then given any boundary value a = (xa, ta) a feasible optimal trajectory connecting any b = (xb, tb)

may be constructed. The same is true if b is first specified.

◻

The metric dOCP (a, b) defined in (2.1) on the space a, b ∈ G,R is valid for a very large class of OCPs.
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Given the results demonstrated in Theorem 2.1.1 and Corollary 2.1.1 it is straightforward to argue that

P = dC(a, b) = ∫
tf

t0

1
2
u(τ)Tu(τ)dτ (2.4)

given boundary conditions a = (x0, t0) and b = (xf , tf), a, b ∈ Rn ×R, subject to dynamics ẋ = f(x,u, t) with

x ∈ Rn, u ∈ Rm, and t ∈ [t0, tf ] is a metric. This control distance metric is similar to an energy measure.

Ultimately, the metric of interest will measure the total change in velocity ∆V :

∆Vthrust = d∆V (a, b) = ∫
tf

t0
∥u(τ)∥2dτ (2.5)

Minimum ∆Vthrust (fuel) problems are much more difficult to solve than minimum energy analogs such as P

[25]. ∆Vthrust metrics require both that a maximum possible thrust constraint be enforced (often ∥u∥2 ≤ um,

0 < um <∞), requiring U ⊂ Rm, and also result in optimal control policies that involve on-off switching. In

the interest of progressing the theory presented in the next sections this chapter simply uses P . It can be

shown using the Cauchy-Schwartz inequality [26] that the performance function P bounds ∆Vthrust from

above:

∆Vimpulsive ≤ ∆Vthrust ≤ ∆VC =
√

2(tf − t0)P (2.6)

The minimum possible fuel cost ∆Vimpulsive is found using purely impulsive optimal maneuvers, and is

bounded above by the minimum possible thrusting fuel cost ∆Vthrust. This is necessarily true, as impulsive

control laws have U → Rm because um →∞, guaranteeing that ∆Vimpulsive ≤ ∆Vthrust. This value is further

bounded above by ∆VC , which is enforced by the Cauchy-Schwartz inequality. Thus, the performance

function P , an energy cost analog, can produce an upper conservative bound on the possible fuel cost

distribution. Written in terms of OCP distance metrics, d∆V (a, b) ≤ dC(a, b), which is in many ways

analogous to the Euclidean Distance and Manhattan Distance. Using P defined in (2.4) as the performance

function metric rather than (2.5) has the additional benefit that the control authority, the maximum possible

thrust um, need not be known, and that the optimal control is “always on.” Note also that in general, along

an arbitrary trajectory the following inequalities hold

∥un(t) + δu(t)∥2 ≤ ∥un(t)∥2 + δu(t)T δu(t) ≤ (un(t) + δu(t))
T
(un(t) + δu(t))
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meaning that while in this chapter variations in optimal control using the quadratic performance function

P are used, an analogous approach using

P̃ = ∫

tf

t0

1
2
(∥un(τ)∥2 + δu(τ)T δu(τ))dτ

will necessarily generate a less conservative control distance metric. An approach leveraging P̃ is considered

future work for the purposes of the current effort.

For the remainder of the chapter dC will be used as a shorthand notation to describe the deterministic

component of P given mean boundary conditions a = (x0, t0) and b = (xf , tf).

2.1.2 Optimal Control Policy

To compute the optimal control policy u∗ Hamiltonian-based optimal control methods are used [27, 28,

29]. Given general dynamics defined by ẋ = f(x,u, t), with x ∈ Rn, u ∈ Rm, and t ∈ [t0, tf ], the Hamiltonian

is defined as

H = inf
u

[L(x,u, t) + pT f(x,u, t)] (2.7)

with p ∈ Rn called the adjoint or co-state. From the definition of the performance function (2.4), the

Hamiltonian becomes

H = inf
u

[
1
2
uTu + pT f(x,u, t)]

The optimal control policy u∗ that minimizes (4.35) is then

u∗ = −
∂f
∂u

T

p (2.8)

The state and adjoint dynamics along the optimal trajectory may be written as

∂H

∂p
= ẋ = f(x,u∗, t) (2.9)

−
∂H

∂x
= ṗ = −

∂f
∂x

T

p (2.10)

Given boundary values a = (x0, t0) and b = (xf , tf), the optimal connecting trajectories for the state x(t)

and adjoint p(t) are written as

x∗(t) = φx(t;x0,p∗0, t0)

p∗(t) = φp(t;x0,p∗0, t0)
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and, as required in Theorem 2.1.1 and Corollary 2.1.1, it is still required that (a, b) ∈ G, meaning that it is

required that

((x0, t0), (φx(tf ;x0,p∗0, t0))) ∈ G

or

((φx(t0;xf ,p∗f , tf)), (xf , tf)) ∈ G

To ensure that the boundary conditions are satisfied, either p∗0 or p∗f must be found. The initial or final

adjoints of an optimal trajectory (x(t)∗,p∗(t)) must also satisfy the transversality conditions

p∗0 = −
∂V

∂x0

T

−
∂g
∂x0

T

λ

H0 =
∂H

∂t0
+
∂g
∂t0
λ

p∗f =
∂V

∂xf

T

+
∂g
∂xf

T

λ

Hf = −
∂H

∂tf
−
∂g
∂tf

λ

(2.11)

where V (x0, t0,xf , tf) is an initial / final cost term and has been assumed to be incorporated into the

Lagrangian, forcing ∂V /∂(x0, t0,xf , tf) = 0. The variables λ ∈ Rr are Lagrange multipliers associated with

enforcing the boundary conditions g(x0, t0,xf , tf) = 0. The transversality conditions are necessary conditions

of optimality on p∗0 or p∗f given boundary conditions and costs on the state. If both x0 and xf are fully

constrained by g, then p∗0 and p∗f are completely undetermined and the transversality conditions can not help

determine p∗0 and p∗f . Alternately, if the boundary conditions on the state are not fully specified (some of

the initial or final state elements have positive degrees of freedom), then due to the transversality conditions

some elements of p∗0 and/or p∗f will be identically zero. H. Yan et. al. [30] have also examined the optimal

control policies in the state and adjoint for LQR-type performance functions, of which the control distance

Lagrangian in (2.4) is a special case. Both the UTPBVP and the MRBVP solution approaches presented in

following subsections use the optimal control policy (2.8) as well as the dynamics along optimal trajectories

shown in (2.9) and (2.10). The UTPBVP and MRBVP approaches are now discussed sequentially.
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2.1.3 Uncertain Two-Point Boundary Value Problem (UTPBVP)

2.1.3.1 Problem Definition

The problem under consideration is illustrated in Figure 2.1. In this scenario, an initial object track

consisting of a sequence of observations ultimately produces a state estimate x0 and an associated estimate

covariance P0 (corresponding to some arbitrary time t0). We define this track UCT0 as the triplet (t0,x0,P0).

At some later time tf , a new object track is initiated based on new observations. After all of the new

observations are collected an estimate of the state and covariance from when the new track was first started

(at time tf ) can be generated, creating the new UCTf triplet (tf ,xf , Pf).

Supposing now that multiple initial and final UCTs exist, the problem of determining which UCTs

should be associated (or ‘paired’) with one another must be addressed, potentially requiring propulsive

thrusts. One way to do this is do compute a measure of how ‘expensive’ a maneuver between UCTs would

be. A logical assumption would be that UCTs with the smallest required connecting control effort should be

paired to one another, as on-orbit fuel is a scarce commodity [P2]. This concept is very similar to comparing

differences in propagated homogeneous states xf,p to new UCT states xf , as if xf,p ≈ xf , the minimum

optimal control is necessarily u∗(t) ≈ 0, yielding a control distance of dC = 0 (the Strictly Positive metric

property).

UCT0!

(x0,P0)!

UCTf!

(xf,Pf)!

Propagated x(t), P(t)
!

Propagated
!

Optimal Connecting x*(t) 

with maneuvers
!

‘State 

Distance’
!

Figure 2.1: UTPBVP Illustration

Since operational boundary conditions are estimates with uncertainty distributions, the resulting

distribution of the performance metric P must be determined.
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2.1.3.2 Optimal Control Distance Metric Distribution

Now a nominal optimal trajectory (xn(t),un(t)) connecting the nominal boundary conditions x0 and

xf is assumed (which may be numerical), and is expressed as

xn(t) = φx(t;x0,p0, t0)

pn(t) = φp(t;x0,p0, t0)

for times up to and including tf . In a manner similar to that of linear systems, the effect of random initial and

final states X0 and Xf are considered. If the trajectory space surrounding the nominal optimal trajectory

(xn(t),pn(t)) is linearized, then linear variations in the boundary conditions may be examined algebraically.

Taking the Taylor series expansion of xn(t) and pn(t) with respect to variations in x0 and p0:

xn(t) + δx(t) = φx(t;x0,p0, t0) +
∂φx
∂x0

δx0 +
∂φx
∂p0

δp0 +O(δ2
)

pn(t) + δp(t) = φp(t;x0,p0, t0) +
∂φp

∂x0
δx0 +

∂φp

∂p0

δp0 +O(δ2
)

Keeping only first order variations and realizing that x(t)−φx(t;x0,p0, t0) = 0 and p(t)−φp(t;x0,p0, t0) = 0,

the state transition matrix is produced:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx(t)

δp(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φxx(t, t0) Φxp(t, t0)

Φpx(t, t0) Φpp(t, t0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx0

δp0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

For this local linear approximation it is assumed that both δx0 and δxf are given, requiring δp0 and δpf to

be determined fully, as the transversality conditions (2.11) do not provide further information. Evaluating

(2.12) at t = tf the following solutions for δp0 and δpf are found:

δp0 = [ −Φxp(tf , t0)
†Φxx(tf , t0) Φxp(tf , t0)

† ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx0

δxf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δpf = [Φpx(tf , t0) −Φpp(tf , t0)Φxp(tf , t0)
†Φxx(tf , t0) Φpp(tf , t0)Φxp(tf , t0)

†]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx0

δxf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The symbol † is defined as the pseudo-inverse operation. Also, for t0 ≤ t ≤ tf , the adjoint variation δp(t)

may be found by solving

δp(t) = [Φpx(t, t0) −Φpp(t, t0)Φxp(tf , t0)
†Φxx(tf , t0) Φpp(t, t0)Φxp(tf , t0)

†]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx0

δxf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Λ(t, t0)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx0

δxf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that some of the state transition matrix portions are computed over the interval [t0, t] while others are

computed over [t0, tf ]. After this computation, there now exists a function Λ(t, t0) that maps variations in

the initial and final states to variations in the adjoint δp(t) at time t. Since the optimal control is defined

in terms of the adjoint, linear variations in the control are written as

u∗(t) = un(t) + δu(t) ≈ −
∂f
∂u

T

(pn(t) + δp(t))

Because un(t) = − ∂f
∂u

T
pn(t), the linear variation in the control is:

δu(t) = −
∂f
∂u

T

Λ(t, t0)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx0

δxf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Recall that ∂f/∂u is evaluated along the nominal optimal trajectory (xn(t),un(t)). Returning now to the

performance function P defined in (2.4),

P =
1
2 ∫

tf

t0
u∗(τ)Tu∗(τ)dτ,

and substituting u∗(τ) = un(τ) + δu(τ), the performance function becomes

P =
1
2 ∫

tf

t0
un(τ)Tun(τ)dτ

+∫

tf

t0
un(τ)T

∂f
∂u

T

Λ(τ,0)δzdτ

+
1
2 ∫

tf

t0
δzTΛ(τ,0)T

∂f
∂u

∂f
∂u

T

Λ(τ,0)δzdτ

where δzT = [δxT0 δxTf ] ∈ R2n. The variable δz does not depend on τ , so the following definitions are made:

dC =
1
2 ∫

tf

t0
un(τ)Tun(τ)dτ, (2.13)
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ω(tf , t0) = ∫
tf

t0
Λ(τ,0)T

∂f
∂u

un(τ)dτ, (2.14)

and

Ω(tf , t0) =
1
2 ∫

tf

t0
Λ(τ,0)T

∂f
∂u

∂f
∂u

T

Λ(τ,0)dτ, (2.15)

Note that dC is the control distance metric of the nominal optimal trajectory (xn(t),pn(t)) without boundary

condition variations. The performance index P is

P = dC +ω(tf , t0)
T δz + δzTΩ(tf , t0)δz

The approximation of P in the linear space about (xn(t),pn(t)) is a quadratic form in terms of the boundary

condition variations, δz.

2.1.3.3 Uncertain Boundary Conditions

From §2.1.3.1, δz may be treated as the realization of a Gaussian random vector δZ ∈ N(0,Pz), where

E [δZδZT ] = Pz =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P0 0

0 Pf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that if different distributions for the boundary conditions are used, the preceding results are still valid.

Rewriting the performance function as a scalar random variable the following form is obtained:

P = dC +ω(tf , t0)
T δZ + δZTΩ(tf , t0)δZ (2.16)

The quadratic form shown in (2.16) is an intuitive result, as if the variations in the boundary conditions are

reduced to zero, P = dC . Similarly, if the uncertainty in the boundary conditions is large, one would expect

the distribution of P to diffuse. From Appendix A.2, the exact expected value E [P ] may be written in a

more intuitive form as

µP = dC +Tr [ΩPz] (2.17)

Similarly, the second moment may be written as

σ2
P = ωTPzω + 2Tr [ΩPzΩPz] (2.18)

If third and higher moments are ignored, then the distribution of P may be modeled as a Gaussian distribution

PG with PG ∈ N(µP , σ
2
P ). Now, the question of computing the distribution of P using higher moments arises.
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Because (2.16) has a quadratic form, existing theory involving quadratic forms of normal random variables

may be applied. To apply existing results (see Appendix A.1) P must be transformed into a standard non-

central quadratic form, after which Pearson’s Approximation [31] may be used to capture the first three

moments of the true distribution of P . Note that in the special case that ω = 0 and the eigenvalues of Ω

are all 0 or 1, the control distance is exactly a χ2
v distribution with degree v equal to the number of unity

eigenvalues [31].

2.1.4 Measurement Residual Boundary Value Problem (MRBVP)

2.1.4.1 Measurement Model

Figure 2.2 describes elements composing the MRBVP approach. At time t0 the previous observation

ends and an observation gap begins. The nominal state x0 = x(t0) and uncertainty P0 = P(t0) is propagated

over the interval t ∈ [t0, tf ] to time tf , generating the homogeneous state xh and uncertainty Ph. The

expected measurement is computed using the sensor measurement model to be y = h(xh), where y ∈ Rs.

The sensor measurement ym is taken, and the measurement residual is defined as δy = ym −y = ym −h(xh).

The space surrounding the homogeneous trajectory xh(t) is linearized, and the measurement residual is

decomposed into three constituent residuals due to 1) state uncertainty in δxh, 2) sensor uncertainty ηm,

and 3) state deviations due to active control δxu,f . The linearization is written as

ym ≈ y + δy = h(xh) +
∂h
∂xh

δxh +
∂h
∂xh

δxu,f + ηm

For homogeneous trajectories about the linearized trajectory without process noise the final state deviation

δxh may be written in terms of the initial state deviation as δxh = Φxx(tf , t0)δxh,0. Defining ∂h/∂xh = H ∈

Rs×n and observing that y = h(xh), the residual is defined in the local linearization about xh as

δy = HΦxx(tf , t0)δxh,0 +Hδxu,f + ηm (2.19)

It is important to understand that there is no model uncertainty under this formulation; any modeling

errors will contribute to the total observable control distance. Note that in traditional applications without
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Figure 2.2: MRBVP Definition and Measurement Model

a state deviation due to control (δxu,f = 0), the expected variance of the measurement residual is

Var[δyh] = Py,h = E [δyhδy
T
h −E [δyh]E [δyh]

T
]

= E[HΦxx(tf , t0)δxh,0δxTh,0Φxx(tf , t0)
THT

+HΦxx(tf , t0)δxh,0ηTm + ηmη
T
m]

= HΦxx(tf , t0)P0Φxx(tf , t0)
THT

+R

where E [δxh,0δxTh,0] = P0 and E [ηmη
T
m] = R. Py,h is the Kalman filter pre-update measurement residual

covariance, and is often used in conjunction with the Mahalanobis distance to determine whether a new

measurement is statistically probable given the modeled systemic uncertainty.

2.1.4.2 Incorporation of the Measurement Model

The homogeneous solution xh(t) is now assumed to be integrated. Also, the adjoint for the homoge-

neous solution is guaranteed to be 0 over t ∈ [t0, tf ]. Both xh(t) and ph(t) are written as

xh(t) = φx(t;x0,p0 = 0, t0)

ph(t) = 0 = φp(t;x0,p0 = 0, t0)

To account for deviations due to active control in the state and adjoint, a Taylor expansion about the

homogeneous trajectory is again examined. The expansion becomes

xu(t) ≈ xh(t) + δxu(t) = φx(t;x0,p0 = 0, t0) +
∂φx
∂x0

δxu,0 +
∂φx
∂p0

δpu,0 +O(δ2
)
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pu(t) ≈ ph(t) + δpu(t) = φp(t;x0,p0 = 0, t0) +
∂φp

∂x0
δxu,0 +

∂φp

∂p0

δpu,0 +O(δ2
)

Keeping only first order variations and realizing that xh(t)−φx(t;x0,p0 = 0, t0) = 0 and ph(t)−φp(t;x0,p0 =

0, t0) = 0, the state transition matrix is produced:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δxu(t)

δpu(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φxx(t, t0) Φxp(t, t0)

Φpx(t, t0) Φpp(t, t0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δxu,0

δpu,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The measurement equation (2.19) is now considered a final state constraint on the local linear problem in

δxu(tf) = δxu,f of the form

gf(δxu,f , tf) = Hδxu,f +HΦxx(tf , t0)δxh,0 + ηm − δy = 0

where gf ∈ Rs, and δxh,0, ηm, and δy are considered given. Applying the transversality conditions (2.11)

generates

δpu,f =
∂gf
∂δxu,f

T

λ = HTλ

with λ ∈ Rs being the Lagrange multiplier associated with enforcing the final state constraint described by

the measurement equation (2.19). As with the UTPBVP the goal here is to determine the local optimal

control policy δu(t) over the interval t ∈ [t0, tf ]. To do so, the variation in the adjoint δpu(t) must first be

determined. Because the initial state deviation due to active control is δxu,0 = 0 by construction, the initial

adjoint may be written as

δpu,0 = Φpp(tf , t0)
−1δpu,f = Φpp(tf , t0)

−1HTλ

The state change due to active control at the final time tf is

δxu,f = Φxp(tf , t0)Φpp(tf , t0)
−1HTλ

Substituting δxu,f into gf(δxu,f , tf) generates

HΦxp(tf , t0)Φpp(tf , t0)
−1HTλ +HΦxx(tf , t0)δxh,0 + ηm − δy = 0

If rank(H) = s, then HΦxp(tf , t0)Φpp(tf , t0)
−1HT is invertible (and the inverse is equivalent to the pseu-

doinverse). Solving for λ:

λ = (HΦxp(tf , t0)Φpp(tf , t0)
−1HT

)
−1

[−HΦxx(tf , t0)δxh,0 − ηm + δy]
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yielding

δpu,0 = Φpp(tf , t0)
−1HT

(HΦxp(tf , t0)Φpp(tf , t0)
−1HT

)
−1

[−HΦxx(tf , t0)δxh,0 − ηm + δy]

The adjoint as a function of time may be written as

δpu(t) = Λ0,η(t, t0)δw +Λy(t, t0)δy

where

δwT = [ δxTh,0 ηTm ]

Λ0,η(t, t0)

= Φpp(t, t0)Φpp(tf , t0)
−1HT

(HΦxp(tf , t0)Φpp(tf , t0)
−1HT

)
−1

[ −HΦxx(tf , t0) −Is×s ]

Λy(t, t0) = Φpp(t, t0)Φpp(tf , t0)
−1HT

(HΦxp(tf , t0)Φpp(tf , t0)
−1HT

)
−1

The optimal control law u∗ is approximated by u∗ ≈ uh + δu = δu, yielding

u∗ ≈ −
∂f
∂u

T

Λ0,η(t, t0)δw −
∂f
∂u

T

Λy(t, t0)δy

Substituting this back into the control distance performance function (2.4) yields

P = ∫

tf

t0
[

1
2
δwTΛ0,η(τ,0)T

∂f
∂u

∂f
∂u

T

Λ0,η(τ,0)δw

+δyTΛy(τ,0)T
∂f
∂u

∂f
∂u

T

Λ0,η(τ,0)δw

+
1
2
δyTΛy(τ,0)T

∂f
∂u

∂f
∂u

T

Λy(τ,0)δy]dτ

Realizing that neither δw nor δy depend on time, both vectors are factored out of the integration operation.

To simplify notation, the following definitions are made:

Gww = ∫

tf

t0

1
2
Λ0,η(τ,0)T

∂f
∂u

∂f
∂u

T

Λ0,η(τ,0)dτ (2.20)

Gyw = ∫

tf

t0
Λy(τ,0)T

∂f
∂u

∂f
∂u

T

Λ0,η(τ,0)dτ (2.21)

Gyy = ∫

tf

t0

1
2
Λy(τ,0)T

∂f
∂u

∂f
∂u

T

Λy(τ,0)dτ (2.22)

This allows the control distance performance function P to be written as

P = δyTGyyδy + δyTGywδw + δwTGwwδw

which is a quadratic form in two vector variables (δw and δy). Note that the deterministic optimal control

distance metric dC for the MRBVP is dC = δyTGyyδy.
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2.1.4.3 Uncertain Boundary Conditions and Measurements

As discussed in §2.1.4.1 and §2.1.4.2, δxh,0 and ηm are considered random variables δXh,0 and ηm,

respectively. The random variables δXh,0 and ηm are now assumed to have the following statistical properties

E [δXh,0] = 0

E [ηm] = 0

and

Var [δXh,0] = E [δXh,0δX
T
h,0 −E [δXh,0]E [δXh,0]

T
] = P0

Var [ηm] = E [ηmη
T
m −E [ηm]E [ηm]

T
] = R

The vector δw is now allowed to be a random variable δW, which has the statistical properties

E [δW] = 0

Var [δW] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P0 0

0 R

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= PW

Note that the initial state covariance matrix P0 and the measurement uncertainty matrix R are uncorrelated.

The measurement residual at the time of measurement is deterministic, so the control distance performance

function may be written as a random variable of the form

P = δyTGyyδy + δyTGywδW + δWTGwwδW (2.23)

Which is a random variable with a quadratic form in δW. Examining (2.23) it is clear that it has the same

quadratic form as (2.16), allowing the same approach used in the UTPBVP case to be used to compute

and/or approximate the control distance metric distribution. Leveraging the results in Appendix A.2, the

MRBVP distribution has a mean and variance of

µP = dC +Tr [GwwPW ]

σ2
P = δyTGywPWGT

ywδy + 2Tr [GwwPWGwwPW ]

It is now illustrative to examine several boundary cases of (2.23).

• Case 1: δy→ 0. In this situation there is precisely zero measurement residual between the predicted

measurement and the actual measurement. The control distance random variable P reduces to

P = δWTGwwδW
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which is not identically zero, and has positive finite probability density over [0,∞). The mean and

variance reduce to

µP = Tr [GwwPW ]

σ2
P = 2Tr [GwwPWGwwPW ]

This is because even though the residual is identically zero, it is possible that the initial state

uncertainty and measurement uncertainty may have exactly canceled the necessary control effort.

The control distance distribution must be positive to account for systemic uncertainty. Note that

the probability of this case occurring is P [δy = 0] = 0.

• Case 2: PW → 0. This case corresponds to a situation with perfect state and measurement

knowledge. The control distance P becomes

P = dC = δyTGyyδy

In this case the uncertainty has been completely removed from the problem and the apparent control

distance P = dC is now a deterministic function of the projected state discrepancy onto the sensor

measurement space.

• Case 3: δy → 0 and PW → 0. In this scenario, both the measurement residual and the system

uncertainty are identically zero. The control distance reduces to P = 0 as one would intuitively

expect.

Because (2.16) has a quadratic form, existing theory involving quadratic forms of normal random variables

may be applied. As with the UTPBVP, to apply existing results (see Appendix A.1) P must be transformed

into a standard non-central quadratic form. Once in this form Pearson’s Approximiation may be used.

2.1.5 Stochastic Dominance

The task of sensibly ranking probability distributions is confounded by the fact that many distributions

have positive finite densities over their entire intervals, which often have significant overlap. Thus, there is a

finite positive probability that a random variable X with a ‘smaller’ distribution with have a larger realized

value x than a realized random variable y with a ‘larger’ distribution. Figure 2.3(a) illustrates such a situation
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in which there is a nontrivial control distance distribution overlap between two different hypothetical UCT

pairings. The concept of stochastic dominance gives a framework with which one may sensibly rank random

variable distributions. The following definition and results are summarized from Meucci [32].

(a) Example of overlapping Control Distance
PDFs. Note that there exists a finite and non-
trivial probability that either UCT pairing may be
correct.

(b) CDF of overlapping Control Distances. Pairing
A is clearly more sensible than pairing B

Figure 2.3: Illustrative PDF and CDF of two candidate UCT Pairings

The question now faced is how to rank UCT pairings sensibly. Figure 2.3(b) illustrates how a UCT

pairing may rationally be made. Ideally, for every performance function value of 0 < p <∞, FA(p) > FB(p).

This is equivalent to choosing an arbitrary p and guaranteeing that P [PA ≤ p] ≥ P [PB ≤ p]. In words, this

means that it is more likely that UCT pairing A has a smaller control distance than UCT pairing B for all

possible control distances. This is called stochastic dominance, formally defined below:

Definition 2.1.1. Order-q Stochastic Dominance:

The distribution fA(p) is said to order-q dominate the distribution fB(p) if, for all p ∈ [0,∞], the following

inequality holds:

I
q
[fA(p)] ≥ I

q
[fB(p)] (2.24)

where the operator I [⋅] is the integration operator over p ∈ [0,∞). If q = 1 (FA(p) ≥ FB(p)), distribution

fA(p) is said to weakly dominate fB(p).

Brief inspection of (2.24) shows us that order q dominance implies order q + 1 dominance. Starting
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with q = 0, this gives the following result

0-dom⇒ 1-dom⇒ ⋅ ⋅ ⋅⇒ q-dom

Since 0-dom does not typically occur, the first order dominance that can reasonably be expected is q = 1.

Order q = 1 dominance is equivalent to the Cumulative Distribution Function (CDF) of the distribution of

Na being strictly less that the CDF of the random variable Nb. Orders higher than q = 1 do not always have

a clear, intuitive meaning. In general, there is no guarantee that there exists an order q such that any two

distributions may be consistently ranked.

2.1.6 Maneuver Detection

A critical question to resolve when considering candidate UCT pairings in the UTPBVP or MRBVP

problems is whether a maneuver has occurred or the computed control distance distribution is completely the

consequence of systemic uncertainty. It is argued here that assigning a probability to whether a maneuver

occurred or not may require additional non-quantitative information and is out of the scope of this analysis.

It is however possible to assign a probability that the nominal deterministic control distance dC (the control

distance in the absence of system uncertainty) is not explained by the modeled dynamics and uncertainty.

Said differently, given a distribution of control distances based purely on the uncertainty of the boundary

conditions or measurements, it is possible to determine the probability that the nominal cost is greater than

the system uncertainty. This is distinct from determining the probability that a maneuver has occurred, and

is in many ways similar to the traditional Mahanobis distance approach. If the probability that dC is larger

than the systemic uncertainty, then it is quite likely that an un-modeled disturbance, possibly a maneuver,

has occurred.

The approach outlined in the UTPBVP and MRBVP frameworks generates two important pieces of

information that may be used to detect maneuvers. Both performance distance metrics may be written in

the following form:

P = l +mTV +VTNV (2.25)

where V ∈ Rr is a zero-mean (E [V] = 0) random variable with distribution fv(v), l ≥ 0, l ∈ R, m ∈ Rr, and
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N ∈ S+,r×r. The nominal deterministic control distance is defined as dC = l, and the systemic uncertainty

is re-defined as a random variable Pu = mTV +VTNV with distribution Pu ∈ fu(pu). The distance metric

distribution may then be written as P = dC +Pu. To address the issue of detecting a possible maneuver two

assumptions are first made and then a null hypothesis H0 is formed.

(1) The initial and final state/measurement estimate distributions are unbiased.

(2) In the absence of truth knowledge, it is assumed that dC ≈ dC,true. The nominal control distance dC

is considered a working analog for the true distance dC,true.

The null hypothesis H0 is Pu ≥ dC . This is equivalent to stating that if a specific instantiation pu of the

systemic noise Pu ∈ fu(p) is greater than the deterministic control distance of the mean case dC , then H0 is

true. The probability that H0 is true is defined as

p0 = P [H0 is true] = P [Pu ≥ dC]

Note that choosing dC in the above equation is purely arbitrary, and other thresholds may be viewed as

engineering design parameters. The converse hypothesis H1 that Pu ≤ dC - that dC is larger than an

instantiated value pu of the systemic noise - may be written as

p1 = P [H1 is true ] = P [H0 is not true]

= 1 − P [Pu ≥ dC] = P [Pu ≤ dC]

because p0 + p1 = 1. The probability p1 that H1 is true may be rewritten as

p1 = P [Pu ≤ dC] = ∫

dC

−∞
fu(pu)dpu (2.26)

To interpret what p1 ∈ [0,1) means and what conditions lead to specific values of p1, nominal and boundary

cases are briefly examined.

• p1 is small: This occurs when the nominal control distance is quite small in relation to the systemic

uncertainty Pu. The probability that dC is not explained by the system uncertainty is small. In

other words, the nominal control distance dC is not anomalous.
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• p1 is large: Conversely, this occurs when the nominal control distance dC is large in relation to the

systemic uncertainty distribution fu(pu). The system uncertainty does not explain the deterministic

control distance and the object in question may have executed a maneuver.

• dC ≈ E [Pu]: When dC ≈ E [Pu] either H0 or H1 may be true with p0 ≈ p1. In this situation, if

a maneuver did occur, it may not be detectable, or at the very best, may be on the threshold of

detectibility.

The probability p1 that dC is not explained by the distriubtion fu(pu) is at this point completely

general, subject to the linearization about the nominal optimal trajectory (xn(t),pn(t)) or (xh(t),0). Op-

erationally, for each UCT correlation and for each measurement residual computation using the UTPBVP or

MRBVP framework, an anomalous probability threshold pa may be defined. If p1 ≥ pa, then the determinis-

tic control distance for the problem is insufficiently explained by the homogeneous dynamics and uncertainty

inherent in the boundary conditions / measurements. Such a case can be flagged for further analysis.

Computing the expected value E [Pu] can provide an intuitive lower limit on the detectible control

distance. Below this value p0 > 0.5, and it is more likely that the control distance from the inherent system

uncertainty is larger than any maneuver that may have occurred. Note that, as with choosing how p0 is

constructed and the value of the anomaly probability threshold pa, choosing p0 > 0.5 is an engineering design

parameter that must be chosen in the context of systems level design criterion.

2.1.6.1 Gaussian Uncertainty

If V has a zero-mean Gaussian distribution, then it may also be shown that

µu = E [Pu] = Tr [NPV ]

σ2
u = E [(Pu −E [Pu])

2
] = mTPV m + 2Tr [NPV NPV ]

Thus, the minimum maneuver detectibility threshold dC,d,min is defined here as

dC,d,min = Tr [NPV ] (2.27)
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Using the Cauchy-Schwartz inequality (2.6), an upper bound on the minimum detectible ∆Vd,min can be

computed:

∆Vd,min =
√

2(tf − t0)Tr [NPV ] (2.28)

Equations (2.27) and (2.28) are particularly useful as they capture the effects of the boundary condition

uncertainties (whether full state uncertainties or measurements), local dynamics (about the linearized con-

necting trajectories), geometries, and observation gaps to give an operator an upper bound on the minimum

detectible control cost (either dC,d,min or ∆Vd,min). Calculating such a detection threshold can help operators

make tasking decisions or guide engineering efforts during sensor system development and placement.

2.2 Simulation and Results

The computation of the control distance distribution is first validated for the UTPBVP problem, then

the UTPBVP and MRBVP approaches are individually illustrated with examples in this section. Simulations

were written in MATLAB and used un-perturbed Keplerian dynamics, but could be developed for general

perturbed dynamics as well.

2.2.1 Validation: Single Object Control Distance Distribution

To verify that the theoretical results accurately represent the true distribution of the performance

function a scenario with a single initial and final UCT is examined. The mean and covariance of UCT0 and

UCTf are described in Table 2.1. A 400 km altitude circular orbit is used as the reference orbit for the Hill

frame. The initial and final covariances P0 and Pf for each coordinate x0 and xf are formed as a diagonal

Table 2.1: Verification Test Case Boundary Conditions and Associated Uncertainty

Coordinate x0 σ0 xf σf
Radial - r (m) 0 1 0 1

Along-Track - s (m) -100 1 100 1
Cross-Track - w (m) 0 1 50 1

Radial - ṙ (m/s) 0 0.05 0 0.05
Along-Track - ṡ (m/s) 0 0.05 0 0.05
Cross-Track - ẇ (m/s) 0 0.05 0 0.05
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covariance matrix of the form

P = diag([ σ2
r σ2

s σ2
w σ2

ṙ σ2
ẇ σ2

ẇ
])

The time interval under consideration is [t0, tf ] = [0,0.5] orbits. Four methods are used to verify the theory

developed in this paper:

• Monte Carlo Simulation (‘Truth’): Individual realizations of the distribution of X0 ∈ N(x0,P0) and

X0 ∈ N(x0,P0) are randomly generated and simulated. 10,000 simulations are run, their control

distance is determined, and the composite numerical PDF and CDF is computed.

• Gaussian Approximation: The Gaussian approximation (2.17) and (2.18) discussed in §2.1.3 is gen-

erated and the corresponding PDF and CDF are analytically determined.

• Sampled Distribution: The known boundary condition distribution of δZ ∈ N(0,Pz) is instantiated

and the corresponding control distance realization computed according to (2.16). 100,000 realizations

are generated and the corresponding PDF and CDF approximations are determined.

• Pearson’s Approximation: Given computed values for ω(tf , t0) and Ω(tf , t0), Pearson’s Approxima-

tion is used to generate the first three moments of the true distribution.

The Monte Carlo (method 1) results are considered ‘Truth’ for the purposes of this validation. Figures 2.5(a)

and 2.5(b) show the verification results of the PDF and CDF using methods 1-4 outlined above.

The Gaussian approximation of the distribution agrees nicely with the Monte Carlo results. It is

clear that not all of the PDF or CDF is captured, as the Monte Carlo PDF has a ‘long tail’ and absolutely

zero probability for P < 0, where the Gaussian approximation has neither attribute. However, the Gaussian

approximation CDF matches very nicely with all other validation curves. The sampled distribution found

by directly generating δZ ∈ N(0,Pz) and computing each corresponding realization p matched the Monte

Carlo results very closely. As expected, P [P < 0] = 0, and the sampled distribution exhibited a ‘long tail’

very similar to the Monte Carlo simulations. Lastly, Pearson’s Approximation appears to do an excellent

job of approximating the Monte Carlo and sampled distributions of the control distance.
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Figure 2.4: Nominal trajectory for the validation test case. 10 representative optimal trajectories from the
Monte Carlo simulations are shown to demonstrate the variation in the optimal trajectory paths.
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(a) Computed PDF

(b) Computed CDF

Figure 2.5: Validation of PDF and CDF Computation Methodologies.
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2.2.2 Example 2.1: Geostationary Cluster Cross-Tagging

This example is inspired by Intelsat constellation TLE cross-tagging [33]. The scenario involves a

two-spacecraft cluster in GEO in which the first spacecraft executes a small maneuver (UCT0,1 executes a

5 m/s impulsive maneuver in the inertial z direction). It is assumed that each spacecraft has been tracked

long enough before the maneuver so that they have nominal pre-maneuver ephemeris estimates. Because

changes in observation angles may not be significant during or immediately after an orbit maintenance

maneuver at GEO, this scenario assumes that the maneuver occurs immediately after observation ends.

New observations are made starting the next available observation period, approximately 14 hours later and

continue over the next several days. Collected observations are used to generate post-maneuver UCTs for

both spacecraft. After both the initial and final UCTs are formed the objective is then to compute the control

distance distributions for each individual association as well as the combined control distance distributions

for mutually exclusive cases.

Table 2.2 shows the initial orbit elements, Table 2.3 shows the uncertainties for each UCT, and

Table 2.4 describes the mutually exclusive association combinations to be examined. The nominal adjoints

pn(t) were found using a shooting-based Newton-method descent and the control distance distributions were

computed using Pearson’s Approximation. Figure 2.6 depicts the optimal connecting trajectories between

each combination of initial and final UCTs. Table 2.5 enumerates the detectible maneuver threshold, the

nominal connecting trajectory distance, and the probability that the nominal control distance is larger than

the systemic uncertainty for each candidate correlation. Figure 2.7(a) shows the associated control distance

metric distribution CDF for each combination and Figure 2.7(b) shows the combined control metric CDFs

for each mutually exclusive case.

Table 2.2: Example 2.1 initial orbit elements for both satellites

œ œ0,1 œ0,2

a (km) 42,086 42,086
e () 0.0005 0.0005
i (deg) 0.05 0.05
Ω (deg) 0 0
ω (deg) 0 0
f (deg) 0 -0.1
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Table 2.3: Example 2.1 geostationary cluster Initial and final UCT Uncertainties

ECI
Unc. UCT0,1 UCT0,2 UCTf,1 UCTf,2
σx (m) 100 100 50 25
σy (m) 50 100 75 50
σz (m) 75 100 75 75
σẋ (m/s) 0.5 0.5 0.75 0.25
σẏ (m/s) 1.0 1.0 1.25 0.5
σż (m/s) 1.0 1.0 1.25 0.5

Table 2.4: Example 2.1 object association case descriptions

Case Pairing Associations

1
a
b

UCT0,1 → UCTf,1
UCT0,2 → UCTf,2

2
a
b

UCT0,1 → UCTf,2
UCT0,2 → UCTf,1

Table 2.5: Example 2.1 maneuver detection quantities

∆Vd,min (m/s) ∆VC (m/s) p1

1-a 4.416 6.697 0.819
1-b 3.167 0.068 0.000
2-a 3.168 3.961 0.732
2-b 4.416 7.818 0.883

Figure 2.6: Example 2.1 candidate optimal connecting trajectories in a rotating Hill frame (circular reference
orbit, a = 42,086 km, i = 0 deg)
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(a) Individual control distances in terms of ∆V

(b) Mutually exclusive control distances for cases 1 and 2 in terms of ∆V .

Figure 2.7: Example 2.1 control distance distributions for candidate connecting trajectories and mutually
exclusive association cases

Examining Figure 2.7(a) it is clear that connecting either UCT0,1 or UCT0,2 to UCTf,1 (the final state

following the 5 m/s ∆V inclination maneuver) pushes the control distance distributions right by at least 5

m/s, as well as further diffuses the distribution. This is as expected as UCTf,1 possesses larger uncertainties
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in both position and velocity. There is no large difference due to changes in the along-track direction when

compared to the rather large inclination maneuver. However, the control distance metric differential due to

the combined along-track maneuver is large enough for Figure 2.7(b) to exhibit a lower cost for Case 1 (as

found by applying Definition 2.1.1), which is known to be the truth. Examining the CDF shown in Figure

2.7(b) also indications that mean ∆V distance is slightly more than 8 m/s. While at first this seems large

with respect to the known size of the impulse (5 m/s), it is important to realize that the mean control metric

distance of 8 m/s is for all possible combinations of boundary conditions, each of which has a 1-σ magnitude

of approximately 1 m/s. In this context the mean control metric distance of 8 m/s matches our intuition.
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2.2.3 Example 2.2: Geostationary Maneuver Detection

Real-time maneuver detection is illustrated in this example by examining scenario in which a GEO

spacecraft executes a small North-South maneuver to correct for an inclination error of 0.25 degrees. Before

the maneuver an observer is assumed to be filtering optical measurements of the object and propagating

an estimate and covariance in real-time. To correct the spacecraft inclination error an impulsive maneuver

immediately after time t0 of ∆V = 13.4 m/s is executed, unknown to the observer. The maneuver occurs

immediately after the observer’s filter processes its last measurement. The time between the initial maneuver

(which is also the time of the previous measurement and filter update) and the next measurement is ∆t = tf−t0

= 42 hours. The satellite initial orbit elements are œ0 = [a, e, i,Ω, ω, f] = [42086 km, 0, 0.25 deg, 0 deg, 0

deg, 0 deg]. The state uncertainty of the geostationary satellite at time t0 is σx = 40 m, σy = 20 m, σz =

20 m, σẋ = 3.0 m/s, σẏ = 1.5 m/s, and σż = 1.5 m/s. The optical measurement uncertainty at the final

time tf is σm = 5 arcseconds. The observing ground station is located where the inertial x axis intersects

the surface of the Earth at time tf . The measurement equation for the optical boresight azimuth β and

elevation γ is then
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β

γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= y = h(x) =

⎡
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⎢
⎢
⎣
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y√
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)
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)
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.29)

Because the measurement residual δy = ym−h(x) is a random variable that is realized for each measurement

(it is considered constant for each measurement and control metric distribution computation cycle), distribu-

tions corresponding to several residuals must be computed. The measurement residuals for the maneuvering

case is enumerated in Table 2.6

Table 2.6: Example 2.2 measurement residuals at tf = 42 hours

nominal σ-point 1 σ-point 2 σ-point 3 σ-point 4
δβ (rad) 2.46e-05 2.46e-05 2.46e-05 4.89e-05 3.86e-07
δγ (rad) 4.33e-03 4.36e-03 4.31e-03 4.33e-03 4.33e-03

Figure 2.8 plots Pearson’s Approximation of the control distance distribution. The traditional ap-

proach to maneuver detection would compute the Mahalanobis distance of the pre-update residual. In the
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absence of process noise the covariance used to compute the Mahalanobis distance is

Var [δy] = HΦxx(tf , t0)P0Φxx(tf , t0)
THT

+R

In the nominal case with the ∆V maneuver, the Mahalanobis distance is M-D = 8.92, well into the region

in which Mahalanobis-based methods would detect the maneuver (though not characterize the maneuver).

Figure 2.8: Example 2.2 control distance Probability Density Function (PDF) and Cumulative Distribution
Functions (CDFs). The vertical black line is the true maneuver magnitude, The vertical dashed-grey line is
the nominal control distance in ∆V space ∆VC , the red and dashed-blue lines are the nominal and sigma-
point control distance distributions found using Pearson’s Approximation, and the green line is the sampled
distribution with N = 100,000.

For illustrative purposes, if there were no maneuver and the measurement residual were precisely zero,

the control distance distribution would be as shown in Figure 2.9.

The distribution of the systemic uncertainty is compared directly with the nominal control distance

dC in Figure 2.10. The probability that the deterministic control distance dC is greater than the system

uncertainty is p1 = P [Pu ≤ dC] ≈ 0.99981. The nominal performance in ∆V -space is ∆VC = 18.9 m/s, the

upper bound on the minimum detectible ∆V is ∆Vd,min = 3.6 m/s, and the true maneuver size is ∆V = 13.4

m/s. The mean ∆V distance including systemic uncertainty is E [∆V ] = 19.2 m/s. Examining this data,

one can conclude that because p1 is large, it is likely that the deterministic portion of the control distance
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Figure 2.9: Example 2.2 control distance CDF for a non-maneuvering spacecraft. Both the true maneuver
and nominal control distance are precisely zero.

is not an artifact of the systemic noise and that a maneuver may have occurred.

Figure 2.10: A direct comparison of the deterministic control distance dC and the systemic uncertainty
represented by the random variable Pu. The probability that H1 is true is computed as p1 = 0.95688,
indicating that the dC is very likely too large to be an artifact of systemic uncertainty; it is likely that either
the object maneuvered or there are unmodeled perturbations at work.

As indicated by the discussion for this example, the approach used for the MRBVP generates a
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control distance distribution that incorporates the inherent system uncertainty and has metric and optimality

guarantees. It should however be emphasized that the method is only capable of detecting maneuvers that

are observable (based on the observation geometry, dynamics, observation gap duration, etc.).
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2.3 Chapter Summary

In this chapter performance indices are leveraged to use trajectory optimality itself to quantify the

optimal control distance metric between a homogeneous trajectory and a given optimal trajectory connecting

two boundary conditions. In general, a large class of performance functions are shown to have the same prop-

erties as distance metrics. Hamiltonian-based optimal control approaches are used to determine the optimal

control policy given system dynamics. The Uncertain Two-Point Boundary Value Problem (UTPBVP) is

defined and with uncertain boundary conditions shown to have a control distance metric distribution that

is a quadratic form. The UTPBVP is further shown to be a potential approach to assist in Uncorrelated

Track (UCT)-based object correlation. Real-time maneuver detection and characterization is shown to be

supported by the Measurement Residual Boundary Value Problem (MRBVP), which measures the control

metric distance distribution based on partial state boundary conditions generated by measurement resid-

uals. The approach is found to generate control distance distributions based on observable state changes.

Stochastic dominance is introduced and its utility in comparing control distance distributions is discussed.

Hypothesis testing is invoked to generate probabilities that the deterministic control distance in the trajec-

tory is too large to be explained by systemic uncertainty. In cases where this probability is high it is likely

that a maneuver may have occurred. The general uncertain boundary condition approach and subsequent

control distance distribution approximation is validated using Monte Carlo approaches and direct sampling

of the random boundary conditions. A numerical example inspired by operational cross-tagging problems

in geosynchronous orbit demonstrates how the UTPBVP approach may be leveraged to correlate objects

correctly. A second example is given showing how real-time measurement residuals may be used to both

detect and characterize maneuvers.



Chapter 3

Computing Reachability Set Subspaces

Intercept reachability sets, defined here as the position subspace of a full state reachability set, has

tremendous utility in strategic and tactical SSA applications. As discussed briefly in the introduction,

computation of the full reachability set, from which the intercept reachability set can be determined, is

hampered by dimensionality-related computation issues. Position subpsace reachability sets can also support

object search efforts. If the control authority of an object is known, the position set of the object must

necessarily contain the object and can therefore be used to identify specific regions of space in which to search

for the object. This chapter investigates alternate analytical formalisms to compute the intercept reachability

subspace without computing the full state reachability set, thereby reducing or avoiding dimensionality-

driven computational issues.

Reachability theory provides a robust framework in which controller synthesis may be evaluated for

both capability and safety. Because a reachable set contains every possible trajectory of a system, it can

account for a large class of control failure modes and is also an appropriate metric of control capability. In

aerospace systems applications such as vehicle collision avoidance, operational safety planning, and capa-

bility demonstration are directly related to reachability set computation, and can benefit immensely from

reductions in the computation requirements for computing such sets. In particular the problem of correlating

orbiting objects executing un-observed maneuvers may benefit greatly by bounding search regions to within

computed reachable sets

The theory supporting formalized reachability has been extensively developed in controls literature

and may be directly derived from optimal control theory [34, 35, 36, 37, 38]. Computing the reachability set
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for a given system involves satisfying the dynamic programming principle and/or solving the HamiltonJacobi

Bellman partial differential equation (HJB PDE), which has direct analogs in solving general optimal control

problems. Traditional applications of reachability theory have focused on continuous differential systems, and

have since been further generalized to apply to a variety of additional problems. Several of these applications

will be discussed, followed by a motivation for and summary of the contents of this paper.

Reachability theory has been successfully applied to differential game settings, specifically to aircraft

mid-air collision avoidance where one aircraft is avoiding another [39] and to automated aerial refueling [40].

In both applications the controller attempts to accomplish goals whilst an adversarial control (either an

adversary or worst-case disturbance) attempts to move the system towards an ‘un-safe’ configuration.

Hybrid system control applications have leveraged reachable set computation for control synthesis [41]

and safety validation [42]. Reachability theory has also been applied to hybrid systems in a differential game

setting [43], further widening its applicability.

Direct analytical computation of reachable sets is difficult and has motivated significant research aimed

at determining which classes of systems may be analytically solved as well as various numerical techniques

to reduce the computation burden and generate over/under-approximated reachability sets. Research into

whether an analytical solution exists for a given reachability problem has demonstrated that some classes of

dynamics may be analytically computed, specifically linear integrator or pure undamped oscillator systems

[44]. Further, some problems have been found to be reducible to geometric problems based on insight into

the propagation of the dynamics [45]. For systems with polynomial equations of motion it has been shown

that reachability problems can be re-cast as a sum of squares formulation using barrier certificates and solved

either directly or iteratively [46].

Over-approximations of reachable sets are desirable as they are typically performed in the context of

system safety, where conservative reachability set computations are useful for risk reduction. For multi-affine

systems it has been demonstrated that the state-space may be partitioned iteratively using rectangles to effe-

ciently generate overapproximations of the reachable state-space [47]. Polytopic reachability sets, which have

straightforward parameterization and computation, have been shown to provide accurate conservative outer

bounds for linear and norm-bounded nonlinear systems [34, 48]. Vast improvement in over-approximated
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reachability set computation efficiencies has been realized for linear systems using zonotopes [49] and support

functions [50]. Similar work has computed reachability sets for nonlinear systems by linearizing at each prop-

agation step and conservatively accounting for uncertainty, also generating conservative over-approximations

expressed using zonotopes [51]. Ellipsoidal reachability set over- and under-approximations have been pro-

posed for some time and have been applied to several problems [34, 52]. Similar to over-approximation

approaches, ellipsoidal techniques have been used to incorporate uncertainty into reachability set compu-

tation [53, 54]. In these settings uncertainty is added as an adversarial input to the system, producing a

worst-case open-loop reachable set.

In general, the computation of reachable sets is severely hampered by the dimensionality of the prob-

lem, with the required computation typically scaling as an exponential of the problem dimension (O(kn−1)),

with n being the dimension of the state-space and k being some discretization of the state-space. Exceptions

to this dimensionality-driven computational limitation are many of the over/under-approximation methods

discussed above, as well as some limited cases in which analytical computation is possible. For general

non-linear systems, however, exact reach set computation retains exponential scaling.

Operationally, optimal estimation algorithms such as batch estimation (Least Squares, Nonlinear Least

Squares, etc.) and minimum variance estimation (Kalman Filters, Extended Kalman Filters, Unscented

Kalman Filters, etc.) are used to process observations and provide optimal state estimates [55]. This being

the case, operational reachability analyses must leverage available information, specifically state estimates

and associated covariance matrices. Previous work has generated directly applicable results to this problem

in the context of differential games [56]. In this case it is assumed that the initial reachability set, the

unsafe set, and the control input are all modeled as ellipsoids, and ellipsoidal over-approximations of the

reachability set are derived for Linear Time-Invariant (LTI) systems.

The primary contributions of this chapter are a) necessary and sufficient conditions that may be used

to find exact state maxima within state-space partitions for nonlinear reachability problems with ellipsoidal

initial sets, b) application of state partition maxima to position and velocity subspaces, allowing for O(n)

tests for nonlinear reachability necessary conditions, c) a method to add initial condition constraints to

position- and velocity-subspace extrema calculations, providing a method to compute exact position- and
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velocity reachability set subspaces in O(kn/2−1) calculations for systems with nonlinear dynamics, d) a

means by which one may compute exact position reachability subspaces for nonlinear systems as seen by

observing instrumentation, and e) the relationship of control singularities to position reachability maxima

with nonlinear dynamics.

Background reachability theory and notation are introduced in §3.1 along with common reachability

set computational methods and caveats. In §3.2.1 existing reachability and optimal control theory are applied

to a large class of nonlinear systems and their behavior is examined in detail. Ellipsoidal initial reachabil-

ity sets are considered in particular due to their direct relationship with covariance ellipsoids generated by

industry-standard optimal estimation methodologies. The optimal control for the class of problems exam-

ined is generated. The contributions of the paper are derived in §3.2.2 by leveraging classical results from

optimal controls to generate necessary and sufficient conditions with which optimal trajectories producing

subspace extremals may be found. Several observations are made and a short discussion of the computa-

tional properties of the methods is given. A candidate solution procedure to compute the exact position

reachability subspace is outlined based on Newton’s method in §3.3. Examples illustrating the contributions

of the paper and applicability to on-orbit object correlation and tracking are given in §4.3. Finally, §3.5

discusses conclusions and future work.

3.1 Reachability Theory

The Hamilton-Jacobi Bellman (HJB) PDE formulation for reachability is based on a general perfor-

mance index similar to the Problem of Bolza. Because the aim is to find the maximum set of reachable

states it is desirable to maximize the performance index. For completeness a common derivation [57, 58]

using optimal controls is given here. The performance index P ∈ R for a differential system ẋ = f(x,u, t),

with x ∈ Rn, u ∈ Rm, and t ∈ [t0, tf ] is specified as

P = ∫

tf

t0
L(x(τ),u(τ), τ)dτ + V (xf , tf) (3.1)
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with L(⋅, ⋅, ⋅) ∈ R called the the trajectory performance and V (⋅, ⋅) ∈ R called the final value function. The

performance index can be restated using the Dynamic Programming Equation as

V (x0, t0) = opt
u∈U

[∫

tf

t0
L(x(τ),u(τ), τ)dτ + V (xf , tf)] (3.2)

which relates the current cost to go (V (x0, t0) with the cost to go at a future time tf (V (xf , tf)) and where

the ‘opt’ argument is understood to be ‘min’, ‘max’, ‘inf’, or ‘sup,’ depending on the application. If t0 and

tf is chosen such that t0 = t and tf = t + δt, then (3.2) is re-written as

V (x, t) = opt
u∈U

[∫

t+δt

t
L(x(τ),u(τ), τ)dτ + V (x + δx, t + δt)]

Individually, each term is now expanded using a Taylor series. Starting with the integration term, along an

optimal trajectory (x∗,u∗),

∫

t+δt

t
L(x∗(τ),u∗(τ), τ)dτ = L(x∗,u∗, t)δt +O(∥δt∥2

)

For the optimal value function at time t + δt,

δx =
dx
dt
δt +O(∥δt∥2

) = f(x,u, t)δt +O(∥δt∥2
)

Making

V (x + δx, t + δt) = V (x, t) +
∂V

∂x

T

f(x,u, t)δt +
∂V

∂t
δt +O(∥δt∥2

)

Substituting this back in to the expression for V (x, t) generates

V (x, t) = opt
u∈U

[L(x,u, t)δt + V (x, t) +
∂V

∂x

T

f(x,u, t)δt +
∂V

∂t
δt +O(∥δt∥2

)]

Subtracting V (x, t) from both sides and observing that (∂V /∂t)δt does not depend on u generates

∂V

∂t
δt + opt

u∈U
[L(x,u, t)δt +

∂V

∂x

T

f(x,u, t)δt +O(∥δt∥2
)] = 0

Ignoring terms that are O(∥δt∥2) and dividing by δt generates the traditional form of the HJB PDE.

∂V

∂t
+ opt

u∈U
[L(x,u, t) +

∂V

∂x

T

f(x,u, t)] = 0 (3.3)

The HJB PDE (3.3) is a necessary condition of optimality along all optimal trajectories. Note that the

‘opt’ argument has been retained, as no second-order assumptions have been made (no minimum/maximum
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assumptions). As with individual optimal trajectories discussed in Chapter 2, the second term is often called

the Optimal Control Hamiltonian, defined as

H
∗
(x,

∂V

∂x

T

,u, t) = opt
u∈U

[L(x,u, t) +
∂V

∂x

T

f(x,u, t)]

As such, the state and adjoint dynamics along optimal trajectories are the same [58, 59]. The reachability

Hamiltonian H∗ state and adjoint dynamics along optimal trajectories with the input u∗ are

ẋ =
∂H∗

∂p
(3.4)

ṗ = −
∂H∗

∂x
(3.5)

where, due to the Transversality Conditions (2.11), the adjoint p is equivalent to (∂V/∂x)T . To reduce the

full HJB PDE to the minimum time reachability HJB PDE, the Lagrangian must be chosen such that the

underlying performance index P represents time. In this case

P = ∫

tf

t0
L(x(τ),u(τ), τ)dτ = ∫

tf

t0
1dτ = tf − t0 = ∆t

Substituting this into the HJB PDE produces

∂V

∂t
+ 1 + opt

u∈U
[
∂V

∂x

T

f(x,u, t)] = 0

It can be observed that the optimal control policy u that optimizes the Optimal Control Hamiltonian H∗

is in no way influenced by the minimum time Lagrangian. Thus, the minimum time HJB PDE is typically

written without the Lagrangian L(x,u, t) = 1 as

∂V

∂t
+ sup

u∈U
[
∂V

∂x

T

f(x,u, t)] = 0 (3.6)

and the corresponding Hamiltonian for minimum time reachability problems is

H
∗
= sup

u∈U
[pT f(x,u, t)] (3.7)

To solve the HJ PDE, it is also required that the problem statement include an initial boundary condition

V (x0, t0) ≤ 0 whose zero-level set defines the initial reachability set boundary [60, 61, 62]. From this definition

of the initial reachable set and from the transversality conditions (2.11) the initial conditions for p may also
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constructed:

p0 =
∂V (x0, t0)

∂x0
(3.8)

Formally, using the HJB PDE framework the reachability set is defined as

R(t;V (x0, t0)) = {x∣V (x, t) ≤ 0} (3.9)

Where for present purposes t ≥ t0 and the final value function V (x, t) is the solution the the HJ PDE

(3.6). This notation differs somewhat from the notation used in Chapter 2, where the reachability set

was qualitatively defined using the feasible control set U , trajectory inequality constraints h(x(t), t) ≤ 0,

boundary condition constraints g(x0, t0,xf , tf) = 0, and initial time t0. A trajectory solution method samples

a specific x0 and p0 that satisfies V (x0, t0) = 0 and utilizes their respective differential equations (3.4) and

(3.5) to numerically propagate a single point or region of the reachability set [66, 67]. Another alternative is

to solve (3.6) for V (x, t) and use level-set methods to identify the reachability set. The solution for V (x, t) is

typically difficult to obtain analytically and in general is not smooth. Viscosity solution numerical methods

for solving 1st-order PDEs such as (3.6) are often used to approximate V (x, t) [60, 61, 62, 63, 64]. In the

majority of applications numerical methods are used to generate local solutions of V (x, t), whereas in this

chapter the analytical forms are examined to provide additional insight.

3.2 A Method to Compute Reachability Set Subspaces

3.2.1 A Class of Nonlinear Dynamics

Before investigating methods to compute reachability set subspaces the class of dynamics for which the

analysis is done must be reviewed. For general systems, an ellipsoid can be specified as the initial boundary

of the reachability set:

V (x0,c, t0) = [xc − x0,c]
T E [xc − x0,c] − 1 = 0

Where E is a symmetric positive definite matrix (E ∈ Sn×n+ ), x0,c is the initial absolute state, and xc is the

point about which the initial reachability set is centered. To ease notation, the coordinate system may be

translated or referenced to a nominal trajectory such that xc −x0,c can be replaced with a relative state x0,
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yielding

V (x0, t0) = xT0 Ex0 − 1 = 0 (3.10)

An ellipsoidal initial reachability set such as (3.10) is chosen because it precisely represents the set of states

that exist within a level set of a Gaussian probability density function as is readily available from typical

estimation algorithms, such as batch filters or minimum variance estimators [55].

Definition 3.2.1. Ellipsoidal Reachability Problem Statement (ERPS)

A problem is an ERPS when there exists an initial reachability boundary condition ellipsoid V (x0, t0) =

xT0 Ex0 − 1 ≤ 0, E ∈ Sn×n+ , dynamics ẋ = f(x,u, t), and admissible control set u ∈ U , where U is defined as

U = {u ∣ uTu ≤ u2
m} (3.11)

where um ∈ R, um > 0. This definition of the admissible control set U is assumed for the remainder of this

paper.

Understanding that initial states on the outter-most boundary of the initial reachability set defined

by V (x0, t0) = 0 will ultimately form the surface of the maximal final reachability set surface, (3.10) may

be considered to be an equality constraint of the form xT0 Ex0 − 1 = 0. From this condition, applying the

Transversality conditions (2.11) [58, 59] produces the adjoint state initial condition

p0 = −2λ0Ex0 (3.12)

where λ0 is the Lagrange multiplier associated with the initial condition constraint. Note that (3.12) differs

from slightly from the traditional definition given in (3.8) due to considering the surface of the ellipsoid an

initial equality constraint rather than a zero-level set of V (x0, t0). The general nonlinear system dynamics

are written as ẋ = f(x,u, t), where x ∈ Rn and u ∈ Rm. Using (3.7), the Hamiltonian H∗ is then

H
∗
= sup

u∈U
[pT f(x,u, t)]

where the feasible control set U = {u∣ ∥u∥2 ≤ um}. In general, there are two cases for the optimal feasible

control:
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(1) u∗ lies on the surface of the feasible control set

(2) u∗ lies strictly within the feasible control set

For dynamic systems that are affine in control, such as Keplerian motion (in cartesian coordinates) and

Gauss’ Variational Equations, the optimal control u∗ generating the maximum reachability surface lies on

the surface of the control constraint surface, so case 1 will be assumed for this analysis (this case also includes

‘bang-bang’ type optimal contol). To find the optimal control law u∗ that maximizes the reachability set,

the problem is reformulated as

u∗ = arg max
u∈U

pT f(x,u, t)

with the equality constraint gu:

gu(u) = 0 =
1
u2
m

uTu − 1

Using parametric optimization methods [58, 59], the parametric optimization Lagrangian L is formed (in-

troducing the associated Lagrange multiplier λu) and the first and second derivatives with respect to u are

taken:

L = pT f(x,u, t) + λugu(u)

∂L

∂u
= pT

∂f
∂u

+ λu
∂gu
∂u

∂2L

∂u2
= pT

∂2f
∂u2

+ λu
∂2gu
∂u2

The analytic forms of ∂gu/∂u and ∂2gu/∂u2 are

∂gu
∂u

=
2
u2
m

uT

∂2gu
∂u2

=
2
u2
m

Im×m

The first-order necessary condition becomes

pT
∂f
∂u

+
2λu
u2
m

uT = 0

yielding

u∗ = −
u2
m

2λu
[
∂f
∂u

T

p]
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The second-order necessary condition becomes

pT
∂2f
∂u2

+
2λu
u2
m

I < 0

giving

λuI < −
u2
m

2
[pT

∂2f
∂u2

] (3.13)

Enforcing the equality constraint gu(u∗) = 0:

1
u2
m

(−
u2
m

2λu
)

2

[pT
∂f
∂u

∂f
∂u

T

p] − 1 = 0

producing

λu = ±
um
2

∥
∂f
∂u

T

p∥
2

which, after substituting into the expression for u∗, finally provides

u∗ = ±um
∂f
∂u

T
p

∥ ∂f
∂u

T
p∥

2

(3.14)

where the sign of the expression depends on the second-order inequality expression (3.13).

Remark 3.2.1. Assumptions on the Class of Nonlinear Dynamics

In the above optimal control solution it was assumed that the optimal control u∗ reside on the boundary of

the admissible control set U . This is always the case for system dynamics that are affine with control (for

example if ẋ = f(x, t) + g(x, t)u). Such systems are representative of typical Newtonian equations of motion

(Keplerian motion, N-body motion, Gauss’ Variational Equations, etc.).

Definition 3.2.2. Class of Nonlinear Systems

If a nonlinear system under consideration has an optimal control u∗ that resides on the boundary of the

control set U defined in (3.11), it is termed a Restricted Nonlinear System (RNS).

Using the optimal control shown in (3.14) the Hamiltonian then becomes

H
∗
= pT f(x,u∗, t) (3.15)
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We may then write the state and adjoint dynamics along optimal trajectories as

∂H∗

∂p
= ẋ = f(x,u∗, t) (3.16)

and

−
∂H∗

∂x
= ṗ = −(

∂f
∂x

T

)p (3.17)

where again, u∗ is defined in (3.14). Recalling from (3.12) that p0 = −2λ0Ex0, It is now convenient to define

the solutions to (3.16) and (3.17) as

x(t) = φx(t;x0,−2λ0Ex0, t0) (3.18)

and

p(t) = φp(t;x0,−2λ0Ex0, t0) (3.19)

In general, the solutions x(t) = φx(t;x0,−2λ0Ex0, t0) and p(t) = φp(t;x0,−2λ0Ex0, t0) do not have an

analytical form and in many cases must be simultaneously numerically computed.

3.2.2 Analytical Results

With the background theory for reachability introduced and the class of nonlinear systems under

consideration defined the analytical results are now derived. Combining the optimal control (3.14) with the

optimal ajdoint trajectory (3.19) generates

u∗ = ±um
∂f
∂u∗

T
φp(t,x0,−2λ0Ex0, t0)

∥ ∂f
∂u∗

T
φp(t,x0,−2λ0Ex0, t0)∥2

, (3.20)

there are two distinct cases that must be examined.

(1) ∂f
∂u∗

T
φp(t,x0,−2λ0Ex0, t0) ≠ 0 at time t: In this case the optimal control (3.20) is well defined and

continuous (observe that p(t) ∈ C0 for all time t).

(2) ∂f
∂u∗

T
φp(t,x0,−2λ0Ex0, t0) = 0 at time t: This situation results in causing u∗ to become singular

exactly at time t. This case necessitates the definition

P(t,x0, λ0,E, t0) =
∂f
∂u∗

T

φp(t,x0,−2λ0Ex0, t0) (3.21)
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where P(t,x0, λ0,E, t0) ∈ Rm. Note that P(t,x0, λ0,E, t0) = ∂f
∂u∗

T
φp(t,x0, t0) = 0 when p(t) = 0 or

when p(t) is in the nullspace N of [∂f/∂u∗]T .

The possibility of a control singularity requires additional investigation. If the adjoint p(t) evolves such that

P(t,x0, λ0,E, t0) = 0, then as limits are taken before and after the singularity it can be shown that the unit

vector defined in (3.20) effectively ‘switches’ direction at some special time t. This motivates the following

definition and theorem:

Definition 3.2.3. Switching Time

Given an initial state x0 belonging to an ERPS, the time t at which P(t,x0, λ0,E, t0) = 0, if such a t exists,

is defined as the switching time Ts for that initial state.

Lemma 3.2.1. Switching Time Existence

An initial state x0 in an ERPS with dynamics ẋ = f(x,u, t) and m < n has a switching time Ts if and only

if P(t,x0, λ0,E, t0) = 0, where x0 ≠ 0.

Proof: This result follows directly from observing that, by definition, E is full rank and the Lagrange

multiplier λ0 ≠ 0, yielding p0 ≠ 0, and Rank([∂f/∂u∗]T ) ≤ m. This being the case, the null-space dimen-

sionality Dim(N ([∂f/∂u∗]T )) ≥ n −m > 0. Therefore, there exists a set of non-trivial initial conditions x0

that are currently switching at any time t = Ts ∈ (−∞,∞) if and only if P(t,x0, λ0,E, t0) = 0, where x0 ≠ 0. ◻

Lemma 3.2.1 will be used in the following sections to demonstrate switching times for specific optimal

trajectories. To simplify notation and to emphasize the need to solve both x and p simultaneously, the state

and adjoint dynamics are now concatenated into a larger state z ∈ R2n such that

z =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

p

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦



68

From which it follows that

ż =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ

ṗ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂H∗

∂p

−∂H
∗

∂x

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= fz(x,p, t)

and

z(t) = φz(t;x0,Ep0, t0) = ∫
t

t0
fz(x(τ),p(τ), τ)dτ

With the initial conditions x(τ = t0) = x0 and p(τ = t0) = −2λ0Ex0. Using this notation the following general

result is demonstrated:

Theorem 3.2.1. State Partition Reachability Maximum

Given an ERPS with RNS dynamics, a state and adjoint partition

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xr

xs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, p =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pr

ps

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with xr and pr ∈ Rr, xs and ps ∈ Rs, r + s = n, r ≥ 1, and with u in the norm-bounded set U , the absolute

maximum partitioned state value xr,f at the final time tf as well as the corresponding initial conditions x0

satisfying (3.10) are found by solving

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xr,f

xr,f

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Tφz(tf ;x0,−2λ0Ex0, t0) (3.22)

and

xT0 Ex0 − 1 = 0 (3.23)

for xr,f , x0, and λ0, with

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0

0 0 I 0

0 0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and λ0 defined as the Lagrange multiplier associated with the initial condition constraint (3.23).

Proof: This result is obtained by choosing an appropriate final performance index to maximize and

applying the Transversality conditions (2.11) [58] to impose conditions on (and eliminate) the adjoint states.
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Choosing the performance index at the final time to be

K(xf , tf) =
1
2
xTr,fxr,f =

1
2
xTf

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir×r 0r×s

0s×r 0s×s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xf

then the Transversality conditions, which are necessary conditions of optimality relating initial and final

boundary conditions of the states and adjoints, impose the following values for the initial and final adjoint

states:

p0 = −
∂K

∂x0
− λ0

∂g

∂x0
= −2λ0Ex0 (3.24)

pf =
∂K

∂xf
+ λf

∂g

∂xf
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir×r 0r×s

0s×r 0s×s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xf (3.25)

The notation ∂K/∂x0 and ∂g/∂x0 is used to show that the partials are evaluated at x = x0 (similarly ∂V /∂xf

and ∂g/∂xf are evaluated at x = xf ). Examining (3.24) and (3.25), it can be seen that

pf =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pr,f

ps,f

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xr,f

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= φp(tf ;x,−2λ0Ex0, t0) (3.26)

Further, xr,f must be the result of an optimal state trajectory which may be written as

xr,f = [ Ir×r 0r×s ]φx(tf ;x0,−2λ0Ex0, t0) (3.27)

Lastly, the initial condition constraint (3.23) must be satisfied. Together, these relations yield n+ r + 1 equa-

tions with the corresponding n + r + 1 unknowns (xr,f , x0, and λ0). Satisfying the necessary conditions of

optimality reflected in (3.26), (3.27), and (3.23) then generates the maximum reachable xr,f along with the

corresponding initial conditions x0 and Lagrange multiplier λ0. ◻

With the result demonstrated in Theorem 3.2.1 for general ERPS systems with RNS dynamics, the

following results are generated for applications related to space object correlation. For such systems it is

often convenient to form the state and adjoint dynamic equations such that the state partitions are in terms
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of position and velocity:

xT = [ dT vT ]

pT = [ pTd pTv ]

where d,v,pd,pv ∈ Rn/2, r = s = n/2. Position-/velocity-specific results are now derived.

Theorem 3.2.2. Reachability Position Maximum

Given an ERPS with RNS dynamics, where u is in the norm-bounded set U , the absolute maximum position

df at time tf as well as the corresponding initial conditions xT0 = [dT0 vT0 ] satisfying (3.10) are found by

solving the following system of equations:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

df

df

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Mφz(tf ;x0,−2λ0Ex0, t0) (3.28)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 = 0 (3.29)

for d0, v0, df , and λ0, where

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0

0 0 I 0

0 0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦ 3

2n×2n

and λ0 is the Lagrange multiplier associated with the initial condition constraint (3.29).

Proof: This proof follows the same approach as Theorem 3.2.1, generating the equations

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

df

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= φp(tf ,x0,−2λ0Ex0, t0) (3.30)

and

df = [ I 0 ]φx(tf ,x0,−2λ0Ex0, t0) (3.31)

Equations (3.30) and (3.31) may be combined to form (3.28), and in conjuction with the constraint (3.29)

provide 3n/2 + 1 equations and 3n/2 + 1 unknowns (d0, v0, df , and λ0). Thus, by solving (3.28) and (3.29)
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one may determine not only the maximum distance df , but also the associated initial conditions d0 and v0. ◻

Theorem 3.2.3. Reachability Velocity Maxima

Given an ERPS with RNS dynamics, where u is in the norm-bounded set U , the absolute maximum reachable

velocity vf at time tf as well as the corresponding initial conditions xT0 = [dT0 vT0 ] satisfying (3.10) are found

by solving the following equations:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vf

0

vf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Nφz(tf ;x0,−2λ0Ex0, t0) (3.32)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 = 0 (3.33)

where

N =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 I 0 0

0 0 I 0

0 0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦ 3

2n×2n

and λ0 is the Lagrange multiplier associated with the initial condition constraint (3.33).

Proof: This argument is the same as for Theorem 3.2.1 with the following changes:

K(xf , tf) =
1
2
xTf

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xf (3.34)

pf =
∂K

∂xf
+ λf

∂g

∂xf
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xf = pf (3.35)

providing the following 3n/2 + 1 equations:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

vf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= φp(tf ,x0,−2λ0Ex0, t0) (3.36)
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 = 0 (3.37)

vf = [ 0 I ]φx(tf ,x0,−2λ0Ex0, t0) (3.38)

Solving for (d0, v0, vf , and λ0) using (3.32) and (3.33) is now possible. ◻

With Theorems 3.2.1, 3.2.2, and 3.2.3 established, reachability necessary conditions may now be for-

malized. Additionally, the results in Theorems 3.2.2 and 3.2.3 can be leveraged to derive results for a-priori

position- or velocity-direction reachability extrema.

Corollary 3.2.1. Reachability Necessary Conditions

Given an ERPS with RNS dynamics, if an initial state x0 satisfies (3.10), and the state-space x is partitioned

into q ≤ n disjoint subspaces xr1 ,xr2 , . . . ,xrq−1 ,xrq such that r1+r2+ ⋅ ⋅ ⋅+rq−1+rq = n, then the resulting final

state xf using any admissible control law at time tf must satisfy

xTr,fixr,fi ≤ xTr,f,mxixr,f,mxi , i = 1, . . . , q (3.39)

where xr,f,mxi is the state maxima for the ith partition found using Theorem 3.2.1.

Proof: For each partition xri , i = 1, . . . , q, Theorem 3.2.1 may be applied to compute the maximum

possible state partition final value xr,f,mxi at the final time tf . Since the partitions are disjoint and jointly

compose the state-space x, any reachable final state xf must satisfy (3.39). ◻

In the case that q = n (each partition is one-dimensional), then using Corollary 3.2.1 a conservative

outer bound may be generated for an ERPS with RNS dynamics in O(n) zero-finding operations in n+ r+1

variables.

Corollary 3.2.2. Position and Velocity Reachability Necessary Conditions

Given an ERPS with RNS dynamics, if an initial state (d0, v0) satisfies (3.10), then the resulting state (df ,

vf ) using any admissible control law at time tf must satisfy
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dTf df ≤ dTf,mxdf,mx (3.40)

and

vTf vf ≤ vTf,mxvf,mx (3.41)

where df,max and vf,max are the disjoint position and velocity maxima found using Theorems 3.2.2 and 3.2.3

independently.

Proof: Defining df,mx as the maximum reachable distance vector found by using Theorem 3.2.2, and

vf,mx as the maximum reachable velocity vector found by using Theorem 3.2.3, it is clear that both df,mx

and df,mx are extremal solutions that maximize the performance indicies

Pd = dTf df

and

Pv = vTf vf

respectively. Thus, any non-extremal solution (df ,vf) of ẋ = f(x,u, t) with u ∈ U subject to the restrictions

discussed in Definition 3.2.2 and with (d0, v0) satisfying (3.10) must be inclusively bounded by (df,mx,vf,mx).

◻

Corollary 3.2.3. A-Priori Position-Direction Reachability

Given an ERPS with RNS dynamics, where u is in the norm-bounded set U , and an initial position direction

d̂0 is specified, the absolute maximum reachable position df at time tf as well as the corresponding initial

direction magnitude d and velocity v0 satisfying (3.10) are found by solving the equations given in Theorem

3.2.2 with the substitution d0 = dd̂0.

Proof: With the substitution d0 = dd̂0, equations (3.28) and (3.29) form a set of n + 2 equations with

the n + 2 unknowns df , λ0, d, and v0. ◻
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Corollary 3.2.4. A-Priori Velocity-Direction Reachability

Given an ERPS with RNS dynamics, where u is in the norm-bounded set U , and an initial velocity direction

v̂0 is specified, the absolute maximum reachable velocity vf at time tf as well as the corresponding initial

direction d0 and velocity magnitude v satisfying (3.10) are found by solving the equations given in Theorem

3.2.3 with the substitution v0 = vv̂0.

Proof: With the substitution v0 = vv̂0, equations (3.32) and (3.33) form a set of n + 2 equations with

the n + 2 unknowns vf , λ0, d0, and v. ◻

Figure 3.1 visualizes the concepts proven in Theorem 3.2.2 and Corollary 3.2.3, but applies equally

well to Theorem 3.2.3 and Corollary 3.2.4.

Reachability
Subspace

Initial
Direction

Maximum
Reachability

Rpos(tf ;V (x0, t0))

dmax

d̂0

Figure 3.1: Visualization of Theorem 3.2.2 and Corollary 3.2.3 with initial arbitrary ellipsoid surface de-
scribed by V (x0, t0) = 0. The absolute maximum position is df,max, which can be used to construct a maxi-
mum bound (dashed circle). The maximum directional position surface is represented by Rpos(tf ;V (x0, t0)).

Remark 3.2.2. Final Position / Velocity Reachability Surface Computation Reduction

The results discussed in Corollaries 3.2.3 and 3.2.4 enable a discretized sampling of the true maximum

position or velocity reachability surfaces (respectively) using a sample-space of the initial reachability set

in n/2 − 1 dimensions (O(kn/2−1) operations), rather than n − 1 dimensions (O(kn−1) operations), where

x ∈ Rn. This reduction in problem dimensionality can significantly decreases computation requirements for

generating either maximum position or velocity reachability sets. Thus, for a 3-DOF problem (n = 6),

only a 2-dimensional set of initial position (velocity) directions parameterized by d̂0 (v̂0) must be used
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to compute a set of corresponding final positions df (velocities vf ) representing a sampling of the ex-

act reachability surface at time tf . The position reachability set and velocity reachability sets are rep-

resented by Rpos(tf ;V (x0, t0)) and Rvel(tf ;V (x0, t0)), respectively. Note also that Rpos(tf ;V (x0, t0)) ⊂

R(tf ;V (x0, t0)) and Rvel(tf ;V (x0, t0)) ⊂R(tf ;V (x0, t0))

Corollary 3.2.5. Projected Position Reachability Maxima

Given a 3-DOF ERPS with RNS dynamics, u in the norm-bounded set U , and an orthonormal transformation

H from the inertial frame I (the frame in which the dynamics are based) to an observer frame O, the projected

maximum position hf ∈ R2 at time tf with initial direction d̂0 as well as the corresponding initial direction

magnitude d and velocity v0 satisfying (3.29) are found by solving

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

df

H̃T H̃df

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Mφz(tf ;x0,−2λ0Ex0, t) (3.42)

and
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dd̂0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dd̂0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 = 0 (3.43)

for d, v0, df , and λ0, where

H̃
T
= [ ĥ1 ĥ2 0 ]

and

HT
= [ ĥ1 ĥ2 ĥ1

]

with ĥ1 and ĥ2 being the two basis vectors of O that are orthogonal to the observer line-of-sight unit vector

ĥ3, and the projected distance hf defined by hf = H̃df .

Proof: This proof progresses along similar lines to the proof in Corollary 3.2.3, with the exception that

the final value function is constructed to maximize hTf hf , and is defined as

V (xf , tf) =
1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

df

vf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H̃
T
H̃ 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

df

vf

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.44)
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Using the transversality condition for pf and following the steps outlined in Theorem 3.2.2,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H̃
T
H̃df

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= φp(tf ;x0,−2λ0Ex0, t) (3.45)

which, when combined with the state dynamics

df = [ I 0 ]φx(tf ;x0,−2λ0Ex0, t)

provides 8 equations to solve 8 unkowns (df , d, v0, and λ0), from which hf = H̃df may be computed. ◻

Remark 3.2.3. Projected Position Reachability Surface Utility

The result from Corollary 3.2.5 benefits from Remark 3.2.2 in addition to the following: For cases in which

an observer is searching for where the final state could be, it may be very convenient to define an projected

position reachability set in terms of azimuth and elevation coordinates. After the position reachability set

at time tf has been projected to a plane perpendicular to the observer’s line-of-sight vector ĥ3 this becomes

a straightforward process and can significantly aid search strategies. Put another way, a search space in

azimuth-elevation space in an observer frame O can be constructed with a sampling of k2 points spanning

feasible initial directions d̂0.

Figure 3.2: Visualization of 3D position reachability set planar projection orthogonal to an observer line-of-
sight vector ĥ3

Remark 3.2.4. Hamiltonian Value

For both Theorems 3.2.2 and 3.2.3 and Corollaries 3.2.3, 3.2.4, and 3.2.5, the transversality conditions
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require that

H
∗
0 =

∂V

∂t0
+ λ

∂g

∂t0

and

H
∗
f = −

∂V

∂tf
− λ

∂g

∂tf

Then if the optimal Hamiltonian H∗ does not have any explicit dependence on time, i.e.

dH∗

dt
=
∂H∗

∂t
= 0

then H∗ = 0 over t ∈ [t0, tf ]. This property is useful for monitoring the health of numerical integration

methods.

Finally, we are now able to relate position maxima with the optimal control switching time as well as

generalize the applicability of the transversality condition results.

Theorem 3.2.4. Partition Maxima and Switching Time

Given an ERPS with RND dynamics, u ∈ U , n >m, a state partition such that xT = [xTr xTs ] with xr ∈ Rn−m

and xs ∈ Rm, initial state (x0) satisfying (3.10), and control gradient ∂f/∂u such that

∂f

∂un×m
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0n−m×m

∂fv
∂u m×m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.46)

and Rank(∂fv/∂u) = m < n, the partiation state xr,f at time tf is a maxima if and only if the control is

switching and tf = Ts.

Proof: First, proving (pm,f = 0) ⇒ (tf = Ts). From (3.25) it is clear that pTf = [ pTr,f 0T ]T ,

requiring pm,f = 0 and causing pf to be within the nullspace of ∂f/∂u, forcing P(t,x0, λ0,E, t0) = 0, forcing

t to be a switching time Ts.

For (tf = Ts) ⇒ (pm,f = 0). If t = Ts then by Lemma 3.2.1 the control is currently switching and

P(t,x0, λ0,E, t0) = 0. Due to the form of ∂f/∂u and since Rank(∂fv/∂u) = m < n, we may conclude that

the only pf that satisfies [∂fv/∂u]
Tpm,f = 0 is the trivial solution pm,f = 0. ◻
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This is an interesting result, as for position/velocity state partitions Theorem 3.2.4 implies that if all

of the velocity states have explicit control in their dynamics, then position extrema are guaranteed to have

switching controls at time Ts = tf .

3.3 Solution Procedure

In this section, a solution procedure for Theorem 3.2.2 is examined in detail. With minor modifications,

the same procedure can be adapted to Theorem 3.2.3 and Corollaries 3.2.3 and 3.2.4, and 3.2.5. The method

shown here is by no means the only solution approach; it is simply the approach used to generate the results

discussed in §4.3. The form of the equations to be solved from Theorem 3.2.2 presents the problem of

actually computing d0, v0, df , and λ0. Fortunately, the form of equations (3.28) and (3.29), lends itself to

adaptation to a Newton’s method solving schema. Defining the unknown variables as

ζT = [ dT0 vT0 dTf λ0
] (3.47)

The constraints (3.28) and (3.29) are re-written as

g1(ζ)9×1 = Mφz(t;

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,−2λ0E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t) −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

df

df

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

g2(ζ)1×1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 = 0

and are then combined into a composite function g(ζ)

g(ζ)T = [ g1(ζ)
T g2(ζ) ]

whose zeros we are interested in computing (thereby satisfying the equations in Theorem 3.2.2). Using a

Taylor expansion, g(ζ) is written as

g(ζ0 + δζ) = g(ζ0) +
∂g
∂ζ0

δζ +O(∥δζ∥2
)
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where ζ0 is the value about which the Taylor expansion is computed. Dropping second-order terms and

higher, introducing an iteration based notation, and requiring that g(ζ0 + δζ) = 0, we obtain

δζk = − [
∂g
∂ζk

]

−1

g(ζk)

which provides the iteration formula:

ζk+1 = ζk − [
∂g
∂ζk

]

−1

g(ζk) (3.48)

This formulation motivates the computation of ∂g/∂ζ

∂g
∂ζ

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂g1
∂ζ

∂g2
∂ζ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂g1
∂d0

∂g1
∂v0

∂g1
∂df

∂g1
∂λ0

∂g2
∂d0

∂g2
∂v0

∂g2
∂df

∂g1
∂λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.49)

which is a (3n/2 + 1) × (3n/2 + 1) matrix. Examining the partial derivatives of g1(ζ):

∂g1

∂d0 9×3

= M
∂φz
∂d0

(3.50)

∂g1

∂v0 9×3

= M
∂φz
∂v0

(3.51)

∂g1

∂df 9×3

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

I

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.52)

∂g1

∂λ0 9×1

=
∂φz
∂λ0

(3.53)

Similarly, for g2(ζ):

∂g2

∂d0 1×3

= 2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∂g2

∂v0 1×3

= 2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∂g2

∂df 1×3

= 0

∂g2

∂λ0 1×1

= 0

By definition, the trajectory solution φz(⋅) is one-to-one and onto with respect to d0, v0, pd,0, and

pv,0. Also by definition, E is full rank. Since (d0,v0) is on the surface of (3.10), it may never be the trivial
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solution (x0 = 0).

There is now both a set of equations given by Theorem 3.2.2 that determine the maximum distance reacha-

bility given an ellipsoidal initial reachability set and all the necessary equations to apply Newton’s method

in solving those equations.

3.3.1 Linear Time-Varying Dynamics

In the case that an ERPS has dynamics of the form ẋ = A(t)x +B(t)u, many simplifications of the

results in Section 3.2.1 can be made.

The co-state dynamics may be written as

ṗ = −A(t)Tp

Giving the time-parametric solution:

p(t) = Φp(t, t0)p0

Because p0 = −2λ0Ex0, this further simplifies to

p(t) = 2Φp(t, t0)Ex0 (3.54)

The time-parametric optimal control u∗(t) becomes

u∗(t) = um
B(t)TΦp(t, t0)Ex0

∥B(t)TΦp(t, t0)Ex0∥2
(3.55)

The state equation of motion then becomes

ẋ = A(t)x + umB(t)
B(t)TΦp(t, t0)Ex0

∥B(t)TΦp(t, t0)Ex0∥2

providing the state time-parametric solution:

x(t) = Φx(t, t0)x0+

um ∫
t

t0
Φx(τ, t0)B(τ)

B(τ)TΦp(τ, t0)Ex0

∥B(τ)TΦp(τ, t0)Ex0∥2
dτ

(3.56)
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This realization is similar to previously derived equations of motion for LTV systems with ellipsoidal feasible

control sets U [56]. The switching time criterion P(t,x0, λ0,E, t0) reduces to

P(t,x0, λ0,E, t0) = 2B(t)TΦp(t, t0)x0

and is only dependent on t and x0. The reachability results from Section 3.2.1 may now be applied to the

time-parametric solutions for x(t) and p(t), which now have forms that are much easier to compute than in

the general nonlinear case. Note also that if a state transition matrix for z(t), Φz(t, t0) is available, then

∂φz
∂z0

= Φz(t, t0) (3.57)

yielding

∂φz
∂d0 2n×n/2

= Φz(t, t0)2n×2n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

0

−2λ0Edd

−2λ0E
T
dv

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦2n×n/2

and

∂φz
∂v0 2n×n/2

= Φz(t, t0)2n×2n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

I

−2λ0Edv

−2λ0Evv

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦2n×n/2

with Edd, Edv, and Evv being the appropriate sub-matrices of the ellipsoid matrix E.

3.3.2 Linear Time-Invariant Dynamics

If the dynamics of an ERPS happen to be of the form ẋ = Ax+Bu, the the results from §3.3.1 may be

further simplified, as the state-transition matrix Φp(t, t0) for the adjoint state may be computed analytically

as

Φp(t, t0) = e
−AT (t−t0) (3.58)

yielding an analytical solution for the adjoint as a function of time. Note that this also produces an analytic

function of u∗(t), for which potential switching times may be algebraically computed. This result will be

demonstrated in several following examples.
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3.4 Examples

This section contains examples illustrating the Theorems, Corollaries, and Remarks discussed above.

Examples 3.1, 3.2, and 3.3 are all analytically solvable as mentioned in the Introduction and shown by [44].

Example 3.4 applies the results of this paper to a 4-dimensional nonlinear relative orbit motion problem.

3.4.1 Example 3.1: Single DOF Free Motion

A single DOF free motion example is very instructive in emphasizing the results in Theorems 3.2.2,

3.2.3, and 3.2.4, as well as Corollary 3.2.2. To begin with, the boundary condition V (x0, t0), x ∈ R2, t0 = 0,

is chosen to be

V (x0, t0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

0

0 1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 ≤ 0

For free motion, the dynamic equations are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ḋ

v̇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d

v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u (3.59)

From equations (3.12), (3.18), (3.19), (3.20), and dynamics (3.59), the following results and closed-loop

optimal dynamics are obtained:

pv(t) = −d0t + v0 (3.60)

P(t,x0, λ0,E, t0) = [ −t 1 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d

v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.61)

u(t) = um
pv(t)

∥pv(t)∥
= um

−d0t + v0

∥ − d0t + v0∥
(3.62)

−d0Ts + v0 = 0 (3.63)

The piece-wise continuous time-parametric dynamics for 0 ≤ t ≤ Ts are:
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d(t) = d0 + v0t + um
1
2
v0

∣v0∣
t2 (3.64)

v(t) = v0 + um
v0

∣v0∣
t (3.65)

and for t > Ts (after the switching time):

d(t) = dTs + vTs(t − Ts) − um
1
2
v0

∣v0∣
(t − Ts)

2 (3.66)

v(t) = vTs − um
v0

∣v0∣
(t − Ts) (3.67)

The switching time Ts can be negative, however since t0 = 0 ≤ t, then any initial condition (d0, v0) such that

v0/d0 < 0 will not result in a switching trajectory (it will have in a sense already switched). For the purposes

of this example, the maximum control is chosen to be um = 1 and the reachability surface in both position

(d) and velocity (v) will be examined at times tf = 0, tf = 0.5, tf = 1, tf = 1.5, and tf = 2. Figure 3.3 shows

a sampling of points located on the initial reachability set propagated according to (3.64) and (3.65). Table

3.1 demonstrates the principles in Theorem 3.2.2 by solving (3.28) and (3.29) for this problem. Similarly,

Table 3.2 does the same for Theorem 3.2.3 by solving (3.32) and (3.33).

Table 3.1: Position maxima, associated initial condtions, Lagrange multiplier, and computed switching time
for Example 1

tf = 0 tf = 0.5 tf = 1 tf = 1.5 tf = 2
df,mx 1.414 1.706 2.500 3.675 5.162
d0 1.414 1.265 1.000 0.784 0.632
v0 0.000 0.632 1.000 1.177 1.265
λ0 -1.000 -1.349 -2.500 -4.684 -8.162
Ts 0 0.500 1.000 1.500 2.000

Table 3.2: Velocity maxima, associated initial condtions, and Lagrange multiplier for Example 1

tf = 0 tf = 0.5 tf = 1 tf = 1.5 tf = 2
vf,mx 1.414 1.914 2.414 2.914 3.414
d0 0.000 0.000 0.000 0.000 0.000
v0 1.414 1.414 1.414 1.414 1.414
λ0 -1.000 -1.354 -1.707 -2.061 -2.414

Note in Figure 3.3 that the necessary conditions for a given final state pair to have originated in
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Figure 3.3: 1-DOF free motion reachability phase-space at times tf = 0, tf = 0.5, tf = 1, tf = 1.5, and tf = 2
(red lines). Note that the distance (position) maxima occur exactly when the control u(t) is switching,
demonstrating Theorem 3.2.4.

the initial reachability set are that (df , vf ) be strictly bounded by the df and vf values shown in Tables

3.1 and 3.2, just as required in Corollary 3.2.2. The numerically generated results in Tables 3.1 and 3.2

match the analytical trajectories and switching times given above to within the stopping criteria of the zero-

finding procedure. Further, As shown by Theorem 3.2.4 and Table 3.1, the position maxima occur exactly

when tf = Ts, which for this example is tf = v0/d0. It is also important to observe that the surface of the

reachability set is not guaranteed to be smooth at any time t > t0, as can be seen on the tf = 2 surface in

Figure 3.3 where the optimal position trajectory is currently switching.

3.4.2 Example 3.2: Single DOF Oscillator

A single DOF oscillator is instructive in emphasizing the results in Theorems 3.2.2, 3.2.3, and 3.2.4,

as well as Corollary 3.2.2. To begin with, the boundary condition V (x0, t0), x ∈ R2, t0 = 0, is chosen to be

V (x0, t0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

0

0 1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 ≤ 0

For an oscillator, the dynamic equations are
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ḋ

v̇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

−ω2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d

v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u (3.68)

where ω is the natural frequency of the oscillator. From equations (3.12), (3.18), (3.19), (3.20), and dynamics

(3.68), the following results and closed-loop optimal dynamics are obtained:

pv(t) = −
1
ω

sin(ωt)d0 + cos(ωt)v0 (3.69)

P(t,x0, λ0,E, t0) = [ − 1
ω

sin(ωt) cos(ωt) ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d

v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.70)

u(t) = um
− 1
ω

sin(ωt)d0 + cos(ωt)v0

∥ − 1
ω

sin(ωt)d0 + cos(ωt)v0d0∥
(3.71)

Ts =
1
ω

tan−1
(ω

v0

d0
) (3.72)

Note that since pv(t) is periodic, the switching time Ts is periodic as well (T ′s = Ts + k2π, k ∈ Z). The

pre-switching time-parametric dynamics are:

d(t) = cos(ωt)d0 + sin(ωt)v0+

um
2
ω2 sin ( 1

2
ωt)

2
u(t)

(3.73)

v(t) = −ω sin(ωt)d0 + cos(ωt)v0 +
1
ω

sin(ωt)u(t) (3.74)

The post-switch time-parametric equations are easily computed. For this example, um = 1 and ω = 1. The

reachability set at times tf = 0, tf = π/4, tf = π/2, tf = 3π/2, and tf = π are computed and shown along

with sample trajectories on Figure 3.4. As with Example 3.1, Theorems 3.2.2 and 3.2.3 are applied and

the results are shown in Tables 3.3 and 3.4. Figure 3.6 visualizes Corollary 3.2.2 by plotting df,mx and

vf,mx for tf = π/2 directly on the reachability phase-plane. Inspection of Figure 3.6 emphasizes that if a

trajectory starts within the initial reachability set it will be strictly contained within the bounds computed

using Theorems 3.2.2 and 3.2.3.

Figure 3.6 demonstrates the computation gain to be realized if only necessary conditions for reachabil-

ity are desired. Parameterizing the 1-DOF problem and discretizing the surface of the original reachability
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Figure 3.4: 1-DOF oscillator reachability phase-space at times tf = 0, tf = π
4

, tf = π
2

, tf = 3π
4

, and tf = π (red
lines)

Figure 3.5: 1-DOF oscillator reachability phase-space at times tf = 0 to tf = 2π (red lines) to emphasize
periodicity of reachability sets.

surface requires k points, each of which must be propagated (using methods discussed in Section 3.1) from t0

to tf . Conversely, applying Theorems 3.2.2 and 3.2.3 requires only two zero-finding computations. Extending

this to a 3-DOF system, the discretization of the initial reachability surface (a hyper-ellipsoid of dimension 5)
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Table 3.3: Position maxima, associated initial condtions, Lagrange multiplier, and computed switching time
for Example 3.2

tf = 0 tf =
π
4

tf =
π
2

tf =
3π
4

tf = π
df,mx 1.414 1.707 2.414 3.121 3.414
d0 1.414 1.000 0.000 -1.000 -1.414
v0 0.000 1.000 1.414 1.000 0.000
λ0 -0.500 -0.604 -0.854 -1.104 -1.207
Ts 0.000 0.785 1.571 2.356 3.142

Table 3.4: Velicty maxima, associated initial condtions, and Lagrange multiplier for Example 3.2

tf = 0 tf =
π
4

tf =
π
2

tf =
3π
4

tf = π
vf,mx 1.414 2.121 2.414 2.707 3.414
d0 0.000 -1.000 -1.414 -1.000 0.000
v0 1.414 1.000 0.000 -1.000 -1.414
λ0 -1.000 -1.500 -1.707 -1.914 -2.414

Figure 3.6: 1-DOF oscillator reachability at time tf = π/2 (solid red) is bounded by df,mx = 2.414 and
vf,mx = 2.414 (dashed red)

contains k5 points which must be propagated, after which the reachability hyper-surface must be projected

down to position and velocity space. However, determining the necessary conditions for reachability using

Theorems 3.2.2 and 3.2.3 still only requires two zero-finding computations (albeit in higher dimensions). As

with the free motion example, the numerically generated results in Tables 3.3 and 3.4 match the analytical

trajectories and switching times given above to within the stopping criteria of the zero-finding procedure.
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3.4.3 Example 3.3: Two DOF Free Motion

The purpose of this example is to apply the developed theory to the same system as in Example 3.1 in

a higher-dimensional problem, allowing for some deeper insight into Corollaries 3.2.3 and 3.2.4. The initial

reachability set is represented by V (x0, t0), with x0 ∈ R4 and t0 = 0:

V (x0, t0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
I 0

0 1
2
I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 ≤ 0

For 2-DOF Free Motion, the dynamics are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ḋ0

v̇0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 I

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u (3.75)

Again, from equations (3.12), (3.18), (3.19), (3.20), and dynamics (3.75), the following results and closed-loop

optimal dynamics are obtained:

pv(t) = −d0t + v0 (3.76)

P(t,x0, λ0,E, t0) = [ −tI I ]x0 (3.77)

u(t) = um
pv(t)

∥pv(t)∥
= um

−d0t + v0

∥ − d0t + v0∥
(3.78)

Ts = {t∣P(t,x0, λ0,E, t0) = 0} (3.79)

For this example there is only a switching time Ts for a trajectory starting at (d0,v0) if d0 and v0 are

parallel. As Lemma 3.2.1 shows, problems of dimension n only have m switching dimensions at any time t,

meaning that many initial states satisfying V (x0, t0) = 0 will not switch (and thus, according to Theorem

3.2.4, will never be position maxima). The time-parametric state dynamics are:

d(t) = d0 + v0t + um ∫
t

0
τ

−d0τ + v0

∥ − d0τ + v0∥
dτ (3.80)

v(t) = v0 + um ∫
t

0

−d0τ + v0

∥ − d0τ + v0∥
dτ (3.81)
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Because of the higher-dimensionality of this example and in the interest of brevity, only the maximum

position reachability set illustrating Corollary 3.2.3 is computed. For this example, the maximum control

input is chosen to be um = 1. Figure 3.7 depicts a discretization of the exact position reachability set found

by choosing initial directions d̂0 and applying equations (3.28) and (3.29) with the substitution d0 = dd̂0, as

shown in Corollary 3.2.3.

Because this is a 2-DOF example, initial directions are parameterizable in terms of a single angle θ,

which is varied from θ = 0 to θ = 2π in π/64 increments. This being the case, the entire maximum position

reachability set at time tf = 1 is determined with k = 129 zero-finding operations, rather than exploring

the entire feasible space of kn−1 = k3 = 2,146,689 initial conditions, integrating, and searching for position

maxima.

Figure 3.7: 2-DOF free motion reachability illustration of Corollary 3.2.3. Note that all of the optimal
trajectories satisfy Theorem 3.2.4 and are currently switching at time tf = Ts = 1.

To gain additional insight into Theorem 3.2.4, Figure 3.8 shows a single trajectory that touches the

maximum position reachability surface at t = 1 compared with neighboring trajectories. All of the trajectories

shown in Figure 3.8 have the same initial position vector dT0 = [
√

2,
√

2]
T

, but are allowed to vary v0 while

satisfying the ellipsoid constraint (3.29). The optimal trajectory is indeed switching, as evaluting pv(t)

yields
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pv(t) = −d0t + v0 = −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2

√
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

t +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2

√
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0

which implies that t = Ts = 1.

Figure 3.8: Visualization of optimal position extrema trajectory (solid black) and neighboring suboptimal
trajectories (thin grey). Observe that the sub-optimal trajectories are slowly curving away from the optimal
trajectory.

As with Example 3.2, Theorem 3.2.2 may be applied to this problem, and a bounding circle with

radius df,mx can be found with a single zero-finding computation. Because of the ellipsoid E choice in this

example, such a circle would exactly overlap the maximum position reachability set boundaries found using

Corollary 3.2.3.

3.4.4 Example 3.4: 2-DOF Nonlinear Relative Orbital Motion

Given an arbitrary reference orbit solution xr(t), the reference radius (rr), radius time derivative (ṙr),

and true anomaly rate (ḟr) can be directly computed. In this case, the relative equations of motion can be
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written in the form ẋ = f(x, t) +Bu [65]:

ẋ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ

ẏ

ẍ

ÿ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ

ẏ

2ḟr (ẏ − y ṙrrr ) + xḟ
2
r +

µ
r2r
−

µ
r3

(rr + x)

−2ḟr (ẋ − x ṙrrr ) + yḟ
2
r −

µ
r3
y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+Bu (3.82)

where

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

02×2

I2×2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the inertial radius of the spacecraft is r, defined as

r =
√

(rr + x)
2
+ y2

∂f/∂x can now be computed. These equations of motion are in a rotating Hill frame, meaning that the

radial axis (x) always points along the radius vector from the Earth, and the along-track axis (y) is defined

as orthogonal to the radial vector and positive in the direction of the reference orbit velocity. In this frame,

the negative (x) axis always points towards Earth. The partial with respect to the control input, ∂f/∂u, is

simply

∂f
∂u

= B (3.83)

To compute ∂φz/∂d0 and ∂φz/∂v0, Φz(t, t0) must be integrated over the interval s ∈ [t0, t] with the initial

condition Φz(t0, t0) = I. The equation to integrate is

Φ̇z(s, t0) = AzΦz(s, t0)

where Az = ∂fz/∂z evaluated at z = z(s), s ∈ [t0, t] (note that z(s) must be integrated simultaneously with

Φz(s, t0)). For this example, Az becomes

Az =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f
∂x

umB ( I
∥BTp∥ −

BTppTB
∥BTp∥3 )BT

∂
∂x

(− ∂f
∂x

T
p) − ∂f

∂x

T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.84)

As with previous examples, the initial reachability set represented by V (x0, t0) is chosen to be

V (x0, t0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
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⎢
⎢
⎣

1
r2
d

I 0

0 1
r2v

I
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⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0

v0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1 ≤ 0
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with rd set to 1m and rv set to 0.1 m/s. Because motion in the z direction is only weakly coupled with x

and y motion, and because two-dimensional figures have a more straightforward interpretation, the problem

is restricted to motion in x and y, causing x0 ∈ R4.

The chosen reference orbit is in a equatorial circular Low Earth Orbit (LEO) with an altitude of

400km. The argument of perigee is 0 degrees, and the initial true anomaly is 0 degrees (the object starts at

perigee). This is integrated over the time interval [0, P ], where P is the orbit period (P = 5556s), to produce

rr(t) and vr(t), from which rr(t), ṙr(t), and ḟr(t) are determined. The available control authority is chosen

to be um = 2e−5m/s2, equivalent to a 500kg spacecraft with a 0.01N thruster. In using Corollary 3.2.3, d̂0

is varied within the x-y plane over [0,2π] at samplings sufficient to generate detailed surfaces. Figure 3.9

shows the maximum position reachability set and associated trajectories in the rotating Hill frame (in which

the coordinates are set) at tf = 3
4
P , and Figure 3.10 shows the same set with tf = [ 1

4
P, 1

2
P, 3

4
P,P ].

Figure 3.9: Position-Reachability Set for 2-DOF Nonlinear Relative Keplerian motion in a rotating Hill
frame.

As seen in Figures 3.9 and 3.10, despite evenly distributed initial directions, the dynamics cause

significant distortion in the distribution of the final positions, with the vast majority of final positions df
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Figure 3.10: Position-Reachability Set for 2-DOF Nonlinear Relative Keplerian motion at times tf =

[ 1
4
P, 1

2
P, 3

4
P,P ] in a rotating Hill frame

being clustered as time progresses. Also, because the control authority um is relatively weak compared

to the local dynamics, the reachability set expands and contracts over time, implying that relative points

reachable at one time may not be reachable at subsequent times. It should be noted that, as the final time

tf increased, the solutions for each directional reachability trajectory exhibited increasingly larger residuals

when trying to satisfying the equations shown in Corollary 3.2.3. At this time it is suspected this is due

to a skewing of the integrated state-transition matrix Φz(tf , t0), as a straightforward Runga-Kutta 4th/5th

integration algorithm was used. In concordance with Remark 3.2.4, Ḣ = 0 for these dynamics, suggesting

that the structure of the Hamiltonian would best be preserved using Symplectic integration methods.

3.5 Chapter Summary

Previous related work and theory development is discussed, along with several examples of applied

reachability in existing literature. Connections between optimal control, the Hamilton Jacobi Bellman

PDE, and minimum time reachability set computation are examined. The Hamilton Jacobi Bellman PDE
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reachability formalism is applied to Restricted Nonlinear Systems (RNSs) with ellipsoidal initial reachability

sets, making derived results consistent with and directly applicable to industry-standard optimal estimation

schema. For RNSs with ellipsoidal initial reachability sets, the optimal control is developed and switching

conditions examined.

The concept of switching times in the context of reachability is formalized, and control switching

is proven to occur for RNSs with ellipsoidal initial reachability sets and where n > m. Maximal position

and velocity cases in optimal control were examined to prove that maximum bound calculations for both

position- and velocity-space can be directly computed by solving two sets of 3n/2+1 equations O(k), rather

than exhaustively searching the entire feasible set of initial conditions in n− 1 dimensions (O(kn−1)). Taken

together, the position and velocity extrema provide two necessary conditions for reachability from an initial

ellipsoidal reachability set, offering a quick test for reachability. A further constrained application of optimal

control yield a methodology to compute the exact maximum position- or velocity-reachable set by solving a

set of n + 2 equations over n/2 − 1 dimensions (O(kn/2−1)), rather than searching the feasible set of initial

conditions in n − 1 dimensions (O(kn−1)). However, the computational complexity is difficult to compare in

the general case as the operation types are very different.

For RNSs in which input acts as an acceleration, it is shown that as a special case of Theorem 3.2.4

position extrema trajectories (global or directional) are always experiencing optimal control is switching

precisely at the time in question.

Several examples are used to illustrate the theorems and corollaries developed in this chapter. Global

position- and velocity-extrema are computed using the described methods, and the computational advan-

tages are emphasized. A 1-DOF double-integrator and 1-DOF harmonic oscillator are analyzed in detail

to emphasize extrema computation, reachability necessary conditions, and switching times. A 2-DOF free-

motion example is examined to provide insight into the computation benefits of exact position reachability

surface calculation. Lastly, a nonlinear 2-DOF Keplerian orbit relative motion example is given, highlighting

the main thrust of nonlinear applicability derived in this paper.



Chapter 4

Generalized Metric Range Sets and Orbit Range

As discussed extensively in Chapter 1, computation of orbital range sets can provide significant tactical

and strategic benefits to SSA activities. As a necessary pre-condition to computing orbit range sets, a rigorous

framework supporting optimal generalized range theory must be developed. Two basic requirements on such

a generalized range set are that all manner of range sets can be described by the new framework, and that

the ranges be computed represent distance metrics (in the general sense). Building on results discussed

in Chapter 2 regarding Optimal Control Problem (OCP) distance metrics, this chapter demonstrates how

general independent parameter mapping functions may be constructed, examines cases in which generalized

independent parameters also represent metrics, and rigorously defines Generalized Metric Range Sets. Orbit

range is addressed first as a motivational problem with a resulting Lemma describing how singularities

caused by coasting arcs may be avoided. Orbit range is addressed directly as an extended, detailed example,

demonstrating how orbit range may be computed.

Range, whether for automobiles or aircraft, is typically defined as the time-independent maximum

distance a vehicle can travel given a specified quantity of fuel. Such range sets are often used in strategic

and tactical settings to determine where assets should be located. Range is also a useful mission planning

tool; once generated it is very easy and intuitive to determine which objects are within or outside of the

range set. Strategic, tactical, and mission planning tools such as range would be very useful for on-orbit

spacecraft operations, however objects in orbit present two complications: 1) they are always moving along

their potential fields, and 2) they may experience long periods of quiescence between maneuvers.

When endeavoring to compute an optimal reachability set with arbitrary integral constraints it is
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convenient to use a framework that leverages proven results for traditional time-constrained reachability. A

particularly useful example of such an optimal reachability set is the range set, often used in the context of

aircraft, defined here as the set of reachable states in the state-space given an integral constraint that is also

a metric. Integration constraints that possess distance metric properties are desirable as they are natural

and intuitive measures of range.

Background literature in optimal reachability sets given time integral constraints (specifically integrat-

ing over t ∈ [t0, tf ]) is extensive. If the optimal value function in the Dynamic Programing Equation (DPE)

is not discontinuous it can be shown that the Hamilton Jacobi Bellman Partial Differential Equation (HJB

PDE) must be satisfied along all optimal trajectories generating an optimal reachability set [34, 35, 37, 38, 57].

A short derivation of optimal reachability set theory given time integral constraints is given in §3.1.

Analytical solutions to the HJB PDE are rarely found, however many methods may be used to

approximately generate optimal reachability sets given an initial or final set. Two methods briefly discussed

here are viscosity solution methods and trajectory based methods. In general, viscosity solution methods

directly integrate the HJB PDE given an initial condition (set) over time, either forwards or backwards, and

compute the zero-level sets of the resulting value function [60, 61, 62, 63, 64]. Alternately, rather than treating

the reachability set as a viscosity solution to the HJB PDE, individual optimal trajectories or expansions

about these trajectories may be used to sample and represent the reachability set surface [66, 67, 24].

Alternative integration constraints of interest may include performance function costs, capital allo-

cation limits, fuel mass, or control effort. High fidelity computations of fuel limited aircraft and/or launch

vehicle range, electric motor angle/angle-rate reachability given total energy constraints may be useful.

The problem of computing optimal reachability sets for space applications has received considerable

attention. There are two important sub-problems of reachability set computation: those of rendezvous,

where the object’s position and velocity is controlled, and those of interception, where only the position

subspace must be controlled. Spacecraft rendezvous is particularly well studied, though typically in a fixed-

time framework with individual trajectories. An example of an approach combining sequences of impulsive

maneuvers and intermediate parking orbits is given by Marec [25] and more recently in Lou, et al [73].

Intercept trajectories or intercept rechability sets for space objects have been largely investigated in the
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context of missile defense [74, 75]. Past studies first posed and solved free-time, fuel constrained reachability

in the vicinity of initial orbits [25], as well as more general free-time, fuel constrained reachability sets for

co-aligned, co-planar elliptical orbits [77]. More recently, direct parametric optimization of impulse timing

and direction has begun to re-address the fuel-optimal, time-free orbit reachability problem [78] using only

a single impulse outside of the purview of classical orbit transfer results [71, 80].

Motivated specifically by minimum-fuel orbital reachability but with other forms of integral constraint

reachability sets in mind, the goal of this paper is to adapt the typical optimal reachability framework

using general alternate independent parameters and constraints, as well as identify and address problematic

mappings. Because under specific conditions optimal control performance indices have the same properties as

metrics (Theorem 2.1.1), a rigorous definition of Generalized Metric Range Sets is given and several common

instances discussed.

The extended example at the end of this chapter endeavors to demonstrate how ∆V -constrained

range sets in orbit element space may be computed using the General Independent Parameter (GIP) HJB

PDE, optimal control policies, and existing numerical reachability set tools. §4.4.1 discusses the chosen

coordinates and equations of motion, assumptions, the mapping from time- to ∆V -integration space, the

optimal control policy derivation, and the optimal state and adjoint equations of motion. In §4.4.2 three

detailed examples are given. The first verifies the numerical results using classical ellipse-to-ellipse optimal

trajectory maneuvers, the second demonstrates relative control authority in various orbit-element regions,

and the third example examines some of the advantages of using implicitly defined surfaces to represent the

surface of the range set. An extended discussion is given, followed by a Chapter Summary.

The specific contributions of this chapter are a) the introduction of a general alternate independent

parameter and its mapping function with time, b) the derivation of the Hamilton-Jacobi-Bellman (HJB)

PDE using an General Independent Parameter, c) the necessary conditions on the independent parameter

mapping function for a mapping to be invertible, d) the definition and discussion of Generalized Metric

Range Sets, e) an approach to transform a class of problems with discontinuous value functions to problems

with continuous value functions, f) the use of ∆V as an independent parameter to compute orbit range

sets, g) derivation of the resulting optimal control policy that recovers classical astrodynamics maneuvers
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from the necessary conditions for optimal control, h) validation of the propagated orbit element range set

using analogous classical maneuvers, and e) the demonstration of potential strategic, tactical, and mission

planning applications of range sets.

A motivating problem is briefly outlined and some fundamental problems in computing a maximum

range set (fuel-limited reachability) are discussed in §4.1. In §4.2 the independent parameter mapping

function is introduced, followed by the detailed derivation of a General Independent Parameter (GIP) HJB

PDE. Necessary conditions on the independent parameter mapping function integrand are developed and a

discussion is given. A short verification of the adjoint state dynamics in the new integration space and several

illustrations of interest are given and discussed. §4.2 closes with a Lemma detailing how ∆V integration

space discontinuities may be circumvented through intelligent choice of state-space coordinates. Worked

examples of the utility of the approach are given in §4.3, including a detailed worked example demonstrating

how the central results of the paper may be used to compute free-time, fuel-constrained range sets using

orbital elements. An extended example is given in §4.4 in which orbit range is computed for semi-major

axis, eccentricity, and inclination. Finally, a chapter summary is given in in §4.5.

4.1 Approach Motivation

To properly motivate the theoretical contributions the classical primer vector problem in astrodynam-

ics [29] is first stated, then an attempt to transform it to a fuel-limited, minimum-fuel, free-time reachability

problem involving the HJB PDE is made. As mentioned in the Introduction, several past efforts have

addressed similar problems [79] or resticted versions of this problem[77, 78]. For central-body motion, min-

imizing fuel usage is equivalent to minimizing the characteristic velocity, ∆V . For a single trajectory (of
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which reachability sets are composed) the TPBVP may be written as a problem statement of the form

inf
u∈U

∆V = inf
u∈U

∥u(t)∥L1 = inf
u∈U ∫

tf

t0
∥u(τ)∥2dτ

s.t. ẋ = f(x,u) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṙ

v̇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v

−
µ

∥r∥32
r + u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U = {u(t) ∣ ∥u(t)∥2 ≤ um}

x(t0) = x0, x(tf) = xf

where r,v,u ∈ R3, the final time tf > t0 is the final time, um > 0 is the maximum deliverable acceleration,

and µ > 0 is a gravitational constant. The optimal control policy found using the Pontryagin Maximum

Principle is

u(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−um
pv(t)

∥pv(t)∥2
if ∥pv(t)∥2 > 1

0 if ∥pv(t)∥2 ≤ 1
(4.1)

with pv being the adjoint state associated with velocity v. To write the problem above using ∆V constraints

in a manner similar to the minimum-time reachability HJB PDE formulation, the dynamics must first be

written with ∆V as the independent parameter. The relationship between ∆V and time t is expressed in

the performance function above, generating

dx
d∆V

=
dx
dt

dt

d∆V
=

f(x,u)

∥u∥2

It is here that the motivation for this paper is encountered. The optimal control policy (4.1) specifically

states that in the time domain there may be large periods where the spacecraft drifts along a homogeneous

trajectory (u∗ = 0). In this case the state dynamics with respect to ∆V become undefined, causing the

optimal control Hamiltonian and the HJB PDE itself to become undefined. Intuitively this happens because

when the problem is integrated forward in the ∆V domain, dynamics occuring during homogeneous drift

periods are not captured, generating discontinuities in the state, Hamiltonian, and HJB PDE.

To circumvent this poorly defined mapping constants of motion for integrable systems that are affine

in control (ẋ = f(x, t) +Bu) are now briefly examined and used to motivate the organization of the Theory

section (§4.2). Given that there is an invertible mapping between the state-space x and constants of motion

k such that k = c(x, t) and x = c−1(k, t), and observing that for homogeneous trajectories (u = 0) the total
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time derivative of c(x, t) is

d

dt
c(x, t) =

∂c
∂x

ẋ +
∂c
∂t

≡ 0

=
∂c
∂x

f(x, t) +
∂c
∂t

≡ 0

If the control u is now allowed to be non-zero, then the total time derivative of k = c(x, t) may be written as

k̇ =
d

dt
c(x, t) =

∂c
∂x

ẋ +
∂c
∂t

= 0

=
∂c
∂x

f(x, t) +
∂c
∂x

Bu +
∂c
∂t

⇒ k̇ =
∂c
∂x

Bu

meaning that the total time derivative of the constants of motion k is linear with respect to the control u.

Changing the independent parameter from time t to ∆V now produces

dk
d∆V

=
dk
dt

dt

d∆V
=
∂c
∂x

Bû,

avoiding the singularity associated with the original problem when u∗ → 0, as the constants of motion by

definition do not change during homogeneous motion.

To fully address this motivating problem and approach, the following section derives the GIP HJB

PDE using a general independent parameter. Cases where the mapping function is poorly defined are

identified and discussed. It is then demonstrated that this motivating problem, as well as the proposed

solution to avoid the singularity, is an example of a Generalized Metric Range Set. At the end of the Theory

section the method outlined above to transform cases such as the motivating problem into solvable problems

is formally proposed. Combined, these developments facilitate reachability set computation using existing

methods for problems with general independent parameters.

4.2 Generalized Independent Parameter Theory

Theorem 2.1.1 in the Appendix demonstrates that Optimal Control Problem (OCP) performance

indices are metrics over the domain of admissible and reachable boundary values when the index Lagrangian

L(x,u, t) ≥ 0 along the entire trajectory. When solving problems such as the one introduced in §4.1 it is very

convenient if the new independent parameter is also a metric. Metrics have excellent intuitive meaning, as
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they are always positive or zero, symmetric, and satisfy the triangle inequality. In this section the GIP HJG

PDE is first derived using a general free parameter mapping function. A definition for Generalized Range

(GR) is given, and several illustrations are then discussed.

4.2.1 Mapping Function

To derive the GIP HJB PDE, a function l(x,u, t) is defined such that

s = S(x(⋅),u(⋅), t) = ∫
t

t0
l(x(τ),u(τ), τ)dτ + s0 (4.2)

where s is a new general independent parameter, x ∈ Rn is the state, and u ∈ Rm is the control input. The

notation x(⋅) and u(⋅) refers to the state and control along trajectories using either time (t) or the general

independent parameter (s) as the independent parameter. For now, it is required that S(x(⋅),u(⋅), t) ∈ R be

invertible with respect to t over the interval [t0, tf ]. Figure 4.1 depicts what such a function may look like

and emphasizes the mapping from time t to the independent parameter s. Assuming then that the inverse

tft0
s0

sf

t

s

t

l(x(t),u(t), t)

S(x(·),u(·), t)

Figure 4.1: Visualization of the fully invertible independent parameter mapping function s = S(x(⋅),u(⋅), t)

S−1 ≡ R exists, the following definitions are made

s0 = S(x(⋅),u(⋅), t0)

sf = S(x(⋅),u(⋅), tf)

t0 = S
−1(x(⋅),u(⋅), s0) = R(x(⋅),u(⋅), s0)

tf = S
−1(x(⋅),u(⋅), sf) = R(x(⋅),u(⋅), sf)
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It is said then that the function S and its inverse R are both one-to-one and onto between the intervals

[t0, tf ] and [s0, sf ]. Computing the total time derivative of s:

ds

dt
=
d

dt
S(x(⋅),u(⋅), t) = l(x(t),u(t), t)

Similarly, the total derivative of time with respect to the general independent parameter is

dt

ds
=
d

dt
R(x(⋅),u(⋅), s) =

1
l(x(s),u(s), s)

The state variable x may be written in terms of the new independent parameter s as x(t(s)) = x(R(x(⋅),x(⋅), s)).

The system dynamics may then be rewritten with respect to the new independent parameter s ∈ [s0, sf ]:

x′ =
dx
ds

=
dx
dt

dt

ds
=

f(x(t),u(t), t)

l(x(s),u(s), s)

Since x′ still contains references to t, these must be replaced using the function t = R(x(⋅),u(⋅), s) + t0:

x′ =
dx
ds

=
f(x(t),u(t), t)

l(x(s),u(s), s)
=

f̃(x,u, s)

l̃(x,u, s)

where the ⋅̃ notation indicates that a function ⋅ is written in terms of the new independent parameter s (for

example the state equations of motion f̃(⋅, ⋅, ⋅) are understood to be in terms of s, while f(⋅, ⋅, ⋅) are in terms

of t). The ⋅̃ notation is used through the remainder of the paper in the interest of brevity.

4.2.2 Generalized Independent Parameter Hamilton Jacobi PDE

Now that the dynamics have been entirely rewritten in terms of the independent parameter s, the rela-

tionship with the Hamilton Jacobi Bellman PDE may now be determined. Recall the Dynamic Programming

Equation (DPE)

V (x0, t0) = opt
u∈U

[∫

tf

t0
L(x,u, τ)dτ + V (xf , tf)] (4.3)

where the ‘opt’ operation may be either an infimum or supremum. The pair (x∗,u∗) denote the optimum

trajectory found using either the infimum or supremum on the DPE shown in (4.3). Under the assumption

that V (x, t) is sufficiently smooth, along an optimal trajectory it can be shown that

dV

dt
= −L(x∗,u∗, t)
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Thus, to change the independent parameter in the DPE (4.3), the rate of change of the Lagrangian must

first be determined:

dV

ds
=
dV

dt

dt

ds
= −
L(x∗(t),u∗(t), t)
l(x∗(s),u∗(s), s)

= −
L̃(x∗,u∗, s)

l̃(x∗,u∗, s)

Now, the DPE using the new independent parameter s is written as

Ṽ (x0, s0) = opt
u∈U

[∫

sf

s0
(
L̃(x,u, v)

l̃(x,u, v)
)dv + Ṽ (xf , sf)] (4.4)

Following a standard HJB PDE derivation [57], the initial boundary conditions are chosen as x0 = x and

s0 = s and the final boundary conditions xf and sf are chosen such that xf = x + δx and sf = s + δs. The

modifiend DPE (4.4) is then written as

Ṽ (x, s) = opt
u∈U

[∫

s+δs

s
(
L̃(x,u, v)

l̃(x,u, v)
)dv + Ṽ (x + δx, s + δs)]

The incremental state change δx from an incremental independent parameter change δs may be written as

δx =
dx
ds
δs +O(∥δs∥2

) =
f̃(x,u, s)

l̃(x,u, s)
δs +O(∥δs∥2

)

The Taylor series expansion of the value function at sf = s + δs becomes

Ṽ (x + δx, s + δs)

= Ṽ (x +
f̃(x,u, s)

l̃(x,u, s)
δs +O(∥δs∥2

), s + δs)

= Ṽ (x, s) +
∂Ṽ

∂x

T
f̃(x,u, s)

l̃(x,u, s)
δs +

∂Ṽ

∂s
δs +O(∥δs∥2

)

Similarly, the Lagrangian may be written as

∫

s+δs

s
(
L̃(x,u, v)

l̃(x,u, v)
)dv =

L̃(x,u, s)

l̃(x,u, s)
δs +O(∥δs∥2

)

Substituting these relationships into the modified DPE produces

Ṽ (x, s) = opt
u∈U

[
L̃(x,u, s)

l̃(x,u, s)
δs + Ṽ (x, s) +

∂Ṽ

∂x

T
f̃(x,u, s)

l̃(x,u, s)
δs +

∂Ṽ

∂s
δs +O(∥δs∥2

)]

Subtracting Ṽ (x, s) from both sides, ignoring terms of O(∥δs∥2) or higher, and dividing both sides by δs

generates the GIP HJB PDE:

∂Ṽ

∂s
+ opt

u∈U
[
L̃(x,u, s)

l̃(x,u, s)
+
∂Ṽ

∂x

T
f̃(x,u, s)

l̃(x,u, s)
] = 0 (4.5)
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It can be shown that the second term in (4.5) has many of the special properties of Hamiltonians in classical

mechanics [28]. Further, Pontryagin’s Maximum Principle requires that the gradient ∂V /∂x satisfies all of

the properties of an adjoint variable p in a Hamiltonian system [57]. The Optimal Control Hamiltonian

(OCH) may then be written as

H̃(x,p,u, s) = opt
u∈U

[
L̃(x,u, s)

l̃(x,u, s)
+ pT

f̃(x,u, s)

l̃(x,u, s)
] (4.6)

where the adjoint variable p = ∂Ṽ /∂x. Note that none of the steps make any second-order optimality

assumptions, so the ‘opt’ argument may be replaced with an optimization argument as desired (e. g. ‘min,’

‘max,’ ‘infimum’, ‘supremum’). To derive the equations of motion of the adjoint in the s-domain, an approach

similar to that in classical mechanics [29, 28, 68] is used. Variations in the trajectory performance index

P̃ = ∫

sf

s0

L̃(x,u, v)

l̃(x,u, v)
dv

are examined as a starting point. Recalling the definition of the Hamiltonian using the new independent

parameter (4.6), the performance index P̃ may be re-written as

P̃ = ∫

sf

s0
[H̃(x,p,u, v) − pTx′]dv

Taking the first variation of P̃ about optimal trajectories (and thereby assuming that ∂H̃/∂u = 0) generates

δP̃ = ∫

sf

s0
[
∂H̃

∂x
δx +

∂H̃

∂p
δp − pT δx′ − x′T δp]ds

Using integration by parts the second to last term in the integrand may be re-written:

∫

sf

s0
pT δx′dv = pT δx′∣

sf

s0
− ∫

sf

s0
p′T δxdv

Substituting this relation, observing that the problem is essentially a Two-Point Boundary Value Problem

(δx(s0) = δx(sf) = 0), and simplifying yields

δP̃ = ∫

sf

s0
[(
∂H̃

∂x
+ p′) δx + (

∂H̃

∂p
− x′) δp]dv

Requiring stationarity (δP̃ = 0) for arbitrary variations δx and δp necessitates that

x′ =
dx
ds

=
∂H̃

∂p
(4.7)
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and

p′ =
dp
ds

= −
∂H̃

∂x
(4.8)

Equations (4.7) and (4.8) precisely mirror the classical results for time-based trajectory optimization.

Remark 4.2.1. Initial Conditions on the GIP HJB PDE

The assumptions of the HJB PDE derivation involved supposing an initial condition V (x0, t0) or Ṽ (x0, s0)

in the modified Dynamic Programing Equation (4.4). By convention, the zero-level sets of V (x0, s0) are

used to define the boundary of the reachable set, as when V (x, s) = 0, it may equivalently be said that the

Performance-to-go V (x, s) is zero.

4.2.3 Mapping Function Invertibility

Thus far it has been required that the integration mapping parameter function s = S(x(⋅),u(⋅), t) be in-

vertible, and that t = R(x(⋅),u(⋅), s) is its inverse (S andR satisfy the identity relation t = R(x(⋅),u(⋅), S(x(⋅),u(⋅), t))

for the domain t ∈ [t0, tf ] and range s ∈ [s0, sf ]) [23]. Several pertinent cases for the value of l(x,u, t) are

now investigated with the aim of identifying invertibility requirements on the parameter mapping function

S(x(⋅),u(⋅), t). More cases exist, but are not exhaustively enumerated here.

(1) l(x(⋅),u(⋅), t) = ±∞ (but not = 0) over t ∈ [t0, tf ]. The slope l has become vertical, meaning that

an infinitesimal change in time t will cause a finite (or even infinite) change in the independent

parameter s. The function S is said to be left-invertible, and there exists a unique onto mapping R

from s ∈ [s0, sf ] to t ∈ [t0, tf ], but the reverse mapping is not one-to-one. Figure 4.2 illustrates this

case. Note that when this occurs, the GIP HJB PDE (4.5) reduces to ∂Ṽ /∂s = 0, implying that the

value function is constant and the reach set does not progress in such regions. Similarly, x′ → 0 and

p′ → 0, meaning that the dynamics cease to propagate while l(x,u, t) = ±∞.

(2) l(x(⋅),u(⋅), t) = 0 (but not = ±∞) over t ∈ [t0, tf ]. The slope of l is completely horizontal, requiring

a finite change in time t to induce an infinitesimal change in the independent parameter s. The

function S is said to be right-invertible, and there exists a unique onto mapping S from t ∈ [t0, tf ] to

s ∈ [s0, sf ], but the reverse mapping R is not one-to-one. Figure 4.3 illustrates this case. When this
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situation occurs the HJB PDE (4.5), the Hamiltonian (4.6), and the state/adjoint dynamics (4.7)

and (4.8) become undefined and the value function Ṽ (x, s) experiences a discontinuity, violating one

of the assumptions of the HJB PDE derivation. This is the case the motivating problem in §4.1

emphasizes.

(3) l(x(⋅),u(⋅), t) = ±∞ and l(x(⋅),u(⋅), t) = 0 over t ∈ [t0, tf ]. The function experiences discontinuities

on both the domain t ∈ [t0, tf ] and the range s ∈ [s0, sf ], and is neither left- nor right-invertible.

Figure 4.4 illustrates this case.

(4) −∞ < l(x(⋅),u(⋅), t) < ∞ over t ∈ [t0, tf ]. The S has both a positive and negative slope over its

domain t ∈ [t0, tf ]. The function S is right-invertible, as the mapping from t ∈ [t0, tf ] is onto, though

the reverse mapping is not onto. Figure 4.5 illustrates this case.

tft0
s0

sf

t
t1 = t2

s1

s2
l(x(t),u(t), t)s

t

S(x(·),u(·), t)

Figure 4.2: Case 1: l(x,u, t) = ±∞

tft0
s0

sf

t
t1 t2

s1 = s2

l(x(t),u(t), t)

S(x(·),u(·), t)

s

t

Figure 4.3: Case 2: l(x,u, t) = 0

These cases motivate the following remarks
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tft0
s0

sf

t
t1 = t2

s1

s2

t3

s3 = s4

t4

l(x(t),u(t), t)

S(x(·),u(·), t)

Figure 4.4: Case 3: l(x,u, t) = ±∞ and l(x,u, t) = 0

tft0
s0

sf

t

S(x(·),u(·), t)

l(x(t),u(t), t)

Figure 4.5: Case 4: −∞ < l(x,u, t) <∞

Remark 4.2.2. Parameter Mapping Function Integrand Constraints

For the mapping S(x(⋅),u(⋅), t) to be invertible, the parameter mapping function integrand l(x,u, t) must

satisfy either

0 < l(x(⋅),u(⋅), t) <∞, ∀t ∈ [t0, tf ] (4.9)

or

−∞ < l(x(⋅),u(⋅), t) < 0, ∀t ∈ [t0, tf ] (4.10)

Requiring either (4.9) or (4.10) ensures that the mapping s = S(x(⋅),u(⋅), t) is one-to-one and onto.

Remark 4.2.3. Ideal Integration Domain

If the independent parameter mapping function S is both left- and right-invertible, then both the GIP HJB

PDE (4.5) in s and the classical HJB PDE in t are suitable settings in which to solve optimal control problems.

If S is only right-invertible, then the traditional HJB PDE propagated in t may be a more convenient domain

for solving optimal control problems. If S is only left-invertible, then the GIP HJB PDE (4.5) in s may be
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the most convenient domain in which to solve optimal control problems. A change in coordinates and/or

control variables may significantly alter the invertibility of the independent parameter mapping function.

4.2.4 Generalized Range and Related Results

Having developed the GIP HJB PDE and examined several special cases for independent parameter

mapping functions, the main theoretical results are now presented and discussed.

Remark 4.2.4. Reachability with Integration Equality Constraints

Given a reachability problem with an integration constraint of the form

∫

tf

t0
c(x,u, τ)dτ + c0 − cf = 0

where tf > t0 is unspecified, the constraint integrand c(x,u, t) may be used as the parameter mapping integrand

l(x,u, t), and the corresponding value function Ṽ (x, s) computing using the GIP HJB PDE

∂Ṽ

∂s
+ opt

u∈U
[
L̃(x,u, s)

c̃(x,u, s)
+
∂Ṽ

∂x

T
f̃(x,u, s)

c̃(x,u, s)
] = 0

by integrating over the parameter constraints s ∈ [s0, sf ] = [c0, cf ].

Remark 4.2.4 briefly discusses the primary means by which free-time reachability problems with an

integral constraint may be approached using the GIP HJB PDE framework. The situation mentioned in

Remark 4.2.4 and associated illustrations is now elaborated upon. The definition of a Generalized Metric

Range Set (GMRS) is given and its implications and utility are discussed.

Definition 4.2.1. Generalized Metric Range Set

An optimal reachability set found using a Generalized Independent Parameter (possibly by propagating the

GIP HJB PDE) where the mapping function integrand is the performance index Lagrangian (l(x(t),u(t), t) =

L(x(t),u(t), t)), s0 = 0, and l(x(t),u(t), t) ≥ 0 at all points along all optimal trajectories is called a Gener-

alized Metric Range Set (GRS).

If a GIP is defined such that l̃(x(s),u(s), s) ≥ 0 and l̃(x(s),u(s), s) = L̃(x(s),u(s), s), the equivalent

performance function

P = sf = ∫
tf

t0
L(x(τ),u(τ), τ)dτ
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is a metric over the reachable state space and the independent parameter is equivalent to the metric ‘distance’

between the initial and final reachability sets. This scenario corresponds to both the nominal, fully invertible

independent parameter mapping case, as well as the right-invertible independent parameter mapping (case

2). The GIP HJB PDE (4.5) is reduced to

∂Ṽ

∂s
+ 1 + opt

u∈U
[
∂Ṽ

∂x

T
f̃(x,u, s)
L̃(x,u, s)

] = 0 (4.11)

Note that if the GIP Hamiltonian Lagrangian is chosen to be identically zero but the original mapping

function l(x,u, t) = L(x,u, t) is kept, then the 1 is eliminated and (4.11) appears exactly as a traditional

minimum-time optimal reachability formulation (which uses time as the independent parameter). However

in this instance it is with respect to the performance function metric P that the HJB PDE is integrated.

This situation is precisely the one found in the motivation problem introduced in §4.1. Note that whether

the Lagrangian is kept or not, the optimal control policy, state dynamics, adjoint dynamics, and the initial

condition remain the same, generating equivalent reachability sets. Importantly, this implies that when using

the GIP HJB PDE to solve a Generalized Metric Range Set problem, one may equivalently use

∂Ṽ

∂s
+ opt

u∈U
[
∂Ṽ

∂x

T
f̃(x,u, s)
L̃(x,u, s)

] = 0 (4.12)

rather than (4.11). A reachability problem satisfying Definition 4.2.1 is called a Generaliezd Metric Range Set

because it is an optimal reachability set using an arbitrary general independent parameter that also represents

a metric distance. Definition 4.2.1, while at first seeming arbitrary, has deep and intuitive interpretations.

Firstly, by choosing to scale the dynamics with respect to the new independent parameter metric, zero level

sets of Ṽ (x, P ), P ∈ [P0 Pf ] define sets in the state space x at fixed metric distances from the set Ṽ (x0, P0).

Such sets are intuitively the most fundamental definition of ‘range.’ Second, because the new independent

parameter s→ P is a metric, and the only requirement on P from Theorem 2.1.1 is that L(x,u, t) ≥ 0. This

makes a large variety of common performance indices both viable metrics and independent parameters for

Generalized Metric Range Set computation. Some common performance indices and applications are briefly

discussed.

Illustration 4.2.1. Minimum Time Reachability

For minimum time reachability, l(x(t),u(t), t) = L(x(t),u(t), t) = 1 ≥ 0. If s0 = t0 = 0, then P = tf . As
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noted, because L(x(t),u(t), t) = 1 ≥ 0, P = tf is also a metric. Thus, the minimum time reachability problem

is an example of a Generalized Metric Range Set. Under this schema ds ≡ dt. Substituting into (4.5) yields

∂V

∂t
+ opt

u∈U
[
∂V

∂x

T

f(x,u, t)] = 0

which is the traditional minimum time reachability HJB realization. This independent parameter mapping is

similar to that shown in Figure 4.1.

Illustration 4.2.2. Minimum Fuel Reachability

Minimum fuel reachability problem performance indices are often expressed as an L1 norm of the control

trajectory u(t). These performance indices have Lagrangians of the form ∥u(t)∥2. Choosing l(x(t),u(t), t) =

L(x(t),u(t), t) = ∥u(t)∥2 ≥ 0, satisfies Definition 4.2.1. It can therefore be said that such problems are also

examples of Generalized Metric Range Sets. The GIP HJB PDE for this system is

∂Ṽ

∂∆V
+ opt

u∈U
[
∂Ṽ

∂x

T
f̃(x,u,∆V )

∥u∥2
] = 0

This is precisely the situation encountered in the motivating problem in §4.1.

Illustration 4.2.3. Quadratic Cost Functional Reachability

If l(x(t),u(t), t) = L(x(t),u(t), t) = xT (t)Qx(t) + 2xT (t)Nu(t) + uT (t)Qu(t) ≥ 0, with Q ∈ Rn×n being

positive semi-definite and R ∈ Rm×m being positive definite, then given a fixed final quadratic cost the problem

may be computed as a Generalized Metric Range Set. Equation (4.5) then becomes

∂Ṽ

∂P
+ opt

u∈U
[
∂Ṽ

∂x

T
f̃(x,u, P )

xTQx + 2xTNu + uTQu
] = 0

Solving ∥u(t)∥L2 fuel cost analogs is a special case of this scenario.

Now that sufficient discussion and illustration has been given to the GIP HJB PDE and a definition for

Generalized Metric Range Sets has ben reviewed, a method by which a sublcass of problems with independent

parameter mapping functions shown in Case 2 (l(x(t),u(t), t) = 0) may be solved is introduced. Importantly

this approach applies to the motivating minimum fuel primer vector problem.

Lemma 4.2.1. Solving Optimal Reachability Problems with ∆V Mapping Functions Given an

optimal reachability problem with control appearing as an acceleration and an independent parameter mapping
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function integrand l(u(t)) = ∥u(t)∥2 over t ∈ [t0, tf ] where tf is unspecified, the optimal reachability problem

may instead by solved by writing the dynamics in terms of the n − 1 constants of motion k = c(x, t) ∈ Rn−1,

considering the original control acceleration u to be un-bounded, and using the nth time-varying integral of

motion K(x, t) ∈ R as an additional control parameter.

Proof: The time-dynamics of the n − 1 constants of motion may be written as

k̇ = g(k,K(k, t), t)u

The corresponding GIP HJB PDE (4.5) is:

∂Ṽ

∂∆V
+ opt
K,u∈U

⎡
⎢
⎢
⎢
⎢
⎣

∂Ṽ

∂k

T

g̃(k,K,∆V )
u

∥u∥2

⎤
⎥
⎥
⎥
⎥
⎦

= 0

The HJB PDE is well defined over s ∈ [s0, sf ], as when ∥u(t)∥2 = 0 the constants of motion k have absolutely

no dynamics (dk/dt = 0). Conversely, as the optimal trajectory is propagated in the s-domain the constants

of motion are never stationary (dk/ds ≠ 0). ◻

Lemma 4.2.1 provides a method by which the impulsive variant of the fuel-constrained, minimum

fuel, free time optimal reachability problem may be solved. It is important to note that because constants

of motion are required to use this approach, the system must be integrable. For systems that are affine

in control acceleration u(t) (such as Newtonian systems), minimum fuel problems require coasting arcs

(u(t) = 0), and if they are integrable Lemma 4.2.1 provides a means by which to compute their minimum

fuel reachability sets. Said differently, using Lemma 4.2.1, the motivating problem may still be posed in an

analytically tractable form. This solution approach benefits greatly from the fact that it also satisfies the

definition of a Generalized Metric Range Set (Definition 4.2.1). A detailed application of this Lemma 4.2.1

to on-orbit range may be found in [69] and two simpler worked examples are given in the next section.

4.3 Range Examples

Two straightforward analytical examples are given, followed by a more complex third example. The

first generates the aircraft range equation result using the GIP HJB PDE, while the second applies Lemma

4.2.1 to the linear 2nd-order oscillator. The final example also applies Lemma 4.2.1 to the orbit range problem

posed in §4.1.
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4.3.1 Example 4.1: Aircraft Range

The aircraft range equation developed by Louis Breguet is a classic formula that generates a nominal

aircraft range based on a specified final mass mf (dry mass) and initial mass m0 (wet mass) such that

m0 = mf + ∆m. The problem statement given below is unique as there is no control input to optimize.

Regardless, the GIP HJB PDE framework may still be applied to compute range sets.

find rmax = sup
u∈U

r

s.t. ṙ = f(r,m)

∆m = ∫

tf

t0
ṁ(τ)dτ

r(t0) = 0, m(t0) =m0

t0 and tf are unspecified, U ∈ {∅}

For steady-state level flight, the one-dimensional equation of motion ṙ = f(r,m) is

ṙ = f(r,m) =

√
2mg
ρCLS

(4.13)

where r is distance, m is the current mass at time t ∈ [t0, tf ], CL is the coefficient of lift, and S is the

nominal surface area of the lifting surface. To apply the GIP HJB PDE approach to computing the range of

an aircraft as a reachability problem, an independent parameter mapping is first found, then the resulting

GIP HJB PDE is simplified and solved. Aircraft are limited in the mass of fuel they carry, making mass an

ideal alternate integration variable. The mass integration mapping function is chosen to be

∆m =mf −m0 = ∫

tf

t0

dm

dτ
dτ

For most aircraft systems, ṁ may be modeled as proportional to the propulsion system thrust, ṁ = −kFt.

Substituting the steady-state thrust Ft = (CD/CL)mg generates ṁ = −k(CD/CL)mg. The independent

parameter mapping function then becomes

m(t) = ∫
t

t0
(−k

CD
CL

m(τ)g)dτ +m0

This function is a one-to-one and onto mapping from [t0, tf ] to [m0,mf ] as long as m > 0 ∀t ∈ [t0, tf ], making

the optimal trajectory in mass recoverable in terms of time (and back to mass as well). Further, note that
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while the sign of the mapping function integrand is negative, this is purely a result of the direction in which

mass flow is defined to occur; an opposite sign can be obtained by defining the mass flow rate differently

or by using negative time dynamics. The solution to this example may still be considered a Generalized

Metric Range Set as described in Definition 4.2.1. The equations of motion defined in (4.13) are scalar and

do not involve control. Thus without loss of generality L̃(x,u, s) = 0 and the range set is dependent only on

propagation of the system dynamics. The GIP HJB for the steady-state, constant altitude aircraft case is

written after some simplification as

∂Ṽ

∂m
+
∂Ṽ

∂r

⎛

⎝
−

1
kmg

¿
Á
ÁÀ2CLmg

ρC2
DS

⎞

⎠
= 0 (4.14)

The objective in solving this PDE is to compute Ṽ (r,m) over [m0,mf ]. The values of r where Ṽ (r,m) = 0

over [m0,mf ] are the ranges for those aircraft masses. Equation (4.14) may be solved by separation,

producing

Ṽ (r,m) = r −
2
k

¿
Á
ÁÀ 2

ρgS

CL
C2
D

(
√
m0 −

√
m) (4.15)

for r ∈ [0,∞) and m ∈ [m0,mf ]. Similarly, directly integrating (4.14) with respect to m over [m0,mf ] yields

the classical Breguet equation

rmax = r =
2
k

¿
Á
ÁÀ 2

ρgS

CL
C2
D

(
√
m0 −

√
mf)

with the boundary condition r0 = 0 and integration over m0 to mf . Using the HJB PDE with an alternate

independent parameter (mass rather than time) produces the same result as the more straightforward change

of integration variables in the original derivation by Breguet.

4.3.2 Example 4.2: Amplitude Range

In this example the maximum free-time, control-limited range (reachability) of the classic 2nd-order

undamped oscillator amplitude will be solved using the approach outlined in Lemma 4.2.1. A 2nd-order

linear oscillator ẍ = −ω2
nx + u may be written in terms of integrals of motion A and θ:

Ȧ = fA(A, θ, u) =
cos θ
ωn

u (4.16)

θ̇ = fθ(A, θ, u) = ωn −
sin θ
A

u (4.17)
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where A is the amplitude of the oscillation in position coordinates, θ is the angle between x and ẋ in the

phase space, ωn is the natural frequency, and u is an acceleration input. The ∆V constrained, free time,

maximum amplitude problem is written formally as

find Amax = sup
u∈U

A

s.t. Ȧ = fA(A, θ, u) =
cos θ
ωn

u

θ̇ = fθ(A, θ, u) = ωn −
sin θ
A

u

∆V = ∫

tf

t0
∣u(τ)∣dτ

A(t0) = A0, θ(t0) = θ0

t0 and tf are unspecified, U = {u ∣ u ∈ R}

Choosing the alternate integration metric to be ∆V requires the independent parameter mapping function

integrand l(A, θ, u, t) to be defined such that

∆V = Vf − V0 = ∫

tf

t0
∣u(τ)∣dτ

In this case, if the traditional coordinates x and ẋ are used the mapping function becomes problematic if

u(τ) = 0 (see Case 2 in §4.2). Because A is constant in the absence of control there is no discontinuity when

u(τ) = 0. The phase angle θ however is not constant in the absence of control. Fortunately θ appears in terms

of sin and cos operations in the dynamics for A and θ; If the input u(τ) is allowed to be unconstrained and

the total time is unconstrained θ may be treated as a control parameter. This range set may be considered

an example of a Generalized Metric Range Set, described in Definition 4.2.1. Thus, to compute the free-time,

∆V constrained range of the amplitude A, the goal is now to find the optimal policy for θ and u using the

GIP HJB PDE. For this example the GIP HJB PDE becomes

∂Ṽ

∂∆V
+ sup
θ∈[0,2π),u

[
∂Ṽ

∂A

fA(A, θ, u)

∣u∣
] = 0

The Hamiltonian is then written as

H = sup
θ∈[0,2π),u

[pA
cos θ
ωn

sgn(u)] (4.18)
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Upon inspection, the optimal control policy (θ∗, sgn(u∗)) is

(θ∗, sgn(u∗)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(0,1) or (π,−1) if pA ≥ 0

(π,1) or (0,−1) if pA < 0
(4.19)

The result in (4.19) is very intuitive. If pA ≥ 0, (θ∗, sgn(u∗)) will increase A (Ȧ > 0). Conversely, if pA < 0,

(θ∗, sgn(u∗)) will decrease A (Ȧ < 0). The dynamics of pA with respect to d∆V are

dpA
d∆V

= −
dH

dA
= −

d

dA
(pA

cos θ
ωn

sgn(u)) = 0

Since the objective is to maximize the range of A it is now assumed that pA > 0 (the minimum case can

be found by choosing pA < 0). Note that once pA is specified, because dA/d∆V = 0, pA is constant as ∆V

changes. The GIP HJB PDE with the optimal control input becomes

∂Ṽ

d∆V
+
∂Ṽ

dA

1
ωn

= 0

This PDE is separable and can be re-written as

dA = −
1
ωn
d∆V ⇒ ∫

A

A0

dA =
1
ωn
∫

∆V

0
d∆V

yielding the value function Ṽ (A,∆V ):

Ṽ (A,∆V ) = A −A0 −
1
ωn

∆V (4.20)

Recalling that reachability sets may be defined as level sets of Ṽ (A,∆V ) = 0 generates

Amax = A = A0 +
1
w

∆V

which is the maximum time-independent amplitude range given an integral constraint on the control effort

u (∆V ). To verify this solution partials of Ṽ (A,∆V ) are evaluated and compared with the GIP HJB PDE:

∂Ṽ

∂∆V
+
∂Ṽ

∂A

cos(0)
ωn

sgn(1) =
1
ωn

−
1
ωn

= 0

which satisfies the GIP HJB PDE.

4.3.3 Example 4.3: Motivating Problem for Planar, Co-aligned Orbits

Using a Variation of Parameters approach the time rate of change of arbitrary constants of motion

under non-homogeneous motion may be found. For this worked problem Gauss’ Variational Equations
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(GVEs) for the classical orbit elements are used [70, 65]. This example demonstrates how Lemma 4.2.1 may

be applied to GVEs to determine the semi-major axis and eccentricity range using ∆V as the independent

parameter. This is a subproblem of the motivating problem in §4.1. Orbit element range computation using

this coordinate pair is an excellent example because the results may be validated using classically derived

optimal co-aligned ellipse-to-ellipse impulsive transfers [71]. As previously mentioned, a similar, significantly

more complicated derivation of the orbit element range set for a, e, and i is the subject of a separate

paper [69]. Again, as the desired independent parameter is ∆V (a common mass-independent fuel metric in

spacecraft operations), the independent parameter mapping function is

∆V = Vf − V0 = ∫

tf

t0
∥u(τ)∥dτ

yielding l(x(t),u(t), t) = ∥u(t)∥. As discussed in Illustration 4.2.2, using this mapping function integrand

makes the solution to this problem a Generalized Metric Range Set. Gauss’ Variational Equations for

semi-major axis (a) and eccentricity (e) are written as [70, 65]

da

dt
=

2a
3
2 e sin f

µ
1
2 (1 − e2)

1
2
ur +

a
3
2 (1 + e cos f)
µ

1
2 (1 − e2)

1
2
uθ (4.21)

de

dt
=
a

1
2 (1 − e2)

1
2 sin f

µ
1
2

ur +
a

1
2 (1 − e2)

1
2

µ
1
2

[
e cos2 f + 2 cos f + e

1 + e cos f
]uθ (4.22)

where µ is the gravitational parameter of the central body in question, and f is the true anomaly. As with

the Amplitude Range example, the phasing argument f (true anomaly) is considered a control parameter.

The control acceleration is defined as u(t) = [ur, uθ]
T , where ur is the acceleration in the radial direction

and uθ is the control in the along-track direction. The geometry of the problem is shown in Figure 4.6.

Writing the state as xT = [a, e]T and the dynamics as ẋ = f(x, f)u, the GIP HJB PDE (4.5) becomes

∂Ṽ

∂s
+ sup
u∈U,f∈[0,2π)

[
∂Ṽ

∂x

T

f(x, f)
u

∥u∥2
] = 0

Noting that the control now appears as a unit vector, it is re-parameterized such that

u
∥u∥2

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sinβ

cosβ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= û(β)
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Figure 4.6: Planar orbit geometry

The optimal control Hamiltonian associated with the new GIP HJB PDE is

H = (
a

1
2

µ
1
2 (1 − e2)

1
2
) sup
β,f∈[0,2π)

[pa (2ae sin f sinβ + 2a(1 + e cos f) cosβ)

+pe ((1 − e2
) sin f sinβ +

1 − e2

1 + e cos f
(e cos2 f + 2 cos f + e) cosβ)]

(4.23)

Note that explicit instances of u have disappeared and are replaced with β. To find the optimal control

policy (f∗, β∗) the first-order necessary conditions ∂H/∂f = 0 and ∂H/∂β = 0 are examined and the common

factor is ignored. Collecting terms of sin f cosβ and cos f sinβ in ∂H/∂f produces

∂H

∂f
= (2paae + pe (1 − e2)) cos f sinβ

+

⎡
⎢
⎢
⎢
⎢
⎣

−2paae + pe
⎛

⎝
− (1 − e2) +

e (1 − e2) (ecos f2
+ 2 cos f + e)

(e cos f + 1)2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

sin f cosβ = 0

and collecting terms in sinβ and sin f cosβ for ∂H/∂β generates

∂H

∂β
= −

⎛

⎝
2pa (1 + e cos f) + pe

(1 − e2) (ecos f2
+ 2 cos f + e)

e cos f + 1
⎞

⎠
sinβ

+ (2paae + pe(1 − e2
)) sin f cosβ = 0

Unfortunately a frontal assault to solve for (f∗, b∗) does not yield extrema. Careful inspection of the first-

order necessary conditions, however, reveals the following candidate optimal control policies:

(f1, β1) = (0,0)

(f2, β2) = (π,0)

(f3, β3) = (0, π)

(f4, β4) = (π,π)
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Detailed examination of the Hamiltonian values and second-order necessary conditions using each of the

candidate control policies generates the following optimal control policy:

(f∗, β∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = 0, β = 0 if pa ≥ 0 and pa ≥
−ae
1−e2 pe

f = π,β = 0 if pa < 0 and pa ≤
−ae
1−e2 pe

f = 0, β = π if pa ≥ 0 and pa <
−ae
1−e2 pe

f = π,β = π if pa < 0 and pa >
−ae
1−e2 pe

f ∈ [0,2π), β ∈ [0,2π) if pa = 0, pe = 0

(4.24)

Each of the optimal control policies corresponds directly to a classically derived optimal orbit raising /

lowering maneuver [71], as shown in Table 4.1. To compute the value function using the GIP HJB PDE,

Table 4.1: Example 4.3 Optimal Control Policy Equivalence

(f∗, β∗) Classical Maneuver Description
(0,0) Raise Apoapsis Impulse at periapsis along the velocity vector
(π,0) Raise Periapsis Impulse at apoapsis along the velocity vector
(0, π) Lower Apoapsis Impulse at periapsis opposite the velocity vector
(π,π) Lower Periapsis Impulse at apoapsis opposite the velocity vector

the Level Set Toolbox [64] is used. The initial value function Ṽ (a, e,∆V0 = 0) = 0 is constructed such that

the initial level set is an ellipse centered at ac = 24,393 km and ec = 0.7253 with radii ra = 693 km and

re = 0.0068. The value function domain is discretized with 101 grid points in both the semi-major axis and

eccentricity directions. The value function is propagated using the GIP HJB PDE (4.5) in fixed ∆V steps

of 7.43 m/s, with the optimal control Hamiltonian (4.23) and optimal control policy (4.24). To verify that

the zero-level sets correctly compute the orbit element range set, the range contours are compared with

analytically available solutions from classical orbit mechanics [71]. The orbit element range sets found using

the GIP HJB PDE as well as the classical results are shown in Figures 4.7 and 4.8.

As Figures 4.7 and 4.8 demonstrate, computing the orbit element range set using the GIP HJB

PDE and the approach outlined in Lemma 4.2.1 agrees nicely with the classical results. There is a slight

discrepancy on the lower right-hand side because the initial level set is an ellipsoid, while the analytical case

requires the initial set to be a point in the state space.

It is important to understand that because the independent parameter is now fuel rather than time,
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Figure 4.7: Example 4.3 planar orbit element range using ∆V as an independent parameter. Contour lines
(and values) indicate a specific quantity of ∆V (m/s) is required to reach a particular semi-major axis /
eccentricity coordinate.

and there are no longer any direct references to time, the range plots shown are free-time. Using this

formulation, along any optimal trajectory using ∆V as the independent parameter, one can ‘pause’ the

trajectory at any arbitrary value of ∆V ∈ [∆V0,∆Vf ] and keep the object in a parking orbit for arbitrarily

large periods of time, then resume the optimal impulse profile. The overall approach using the GIP HJB

PDE along with the method outlined in Lemma 4.2.1 can be used with other orbit element sets (such as the

equinoctial orbit element set), or even the full orbit element set.
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Figure 4.8: Example 4.3 planar orbit element range using ∆V as an independent parameter. Same as plot
in Figure 4.7, but viewing only the a − e plane.
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4.4 Extended Example: Orbit Range

This section endeavors to demonstrate how ∆V -constrained range sets in orbit element space may

be computed using the General Independent Parameter (GIP) HJB PDE, optimal control policies, and

existing numerical reachability set tools. §4.4.1 discusses the chosen coordinates and equations of motion,

assumptions, the mapping from time- to ∆V -integration space, the optimal control policy derivation, and

the optimal state and adjoint equations of motion. In §4.4.2 three examples are given. The first verifies

the numerical results using classical ellipse-to-ellipse optimal trajectory maneuvers, the second demonstrates

relative control authority in various orbit-element regions, and the third example examines some of the

advantages of using implicitly defined surfaces to represent the surface of the range set.

4.4.1 Application of the General Independent Parameter Theory

To apply the framework outlined in Chapter 4 for the General Independent Parameter HJB PDE and

the results from Lemma 4.2.1, Gauss’ Variational Equations for the classical orbit elements with arbitrary

disturbance accelerations are now introduced. Several critical assumptions are then made before scaling the

dynamics into the ∆V integration space and determining the optimal control policy.

4.4.1.1 Equations of Motion

Gauss’ Variational Equations (GVEs) for the classical orbit elements œT = [a, e, i,Ω, ω, f] (visualized

in Figure 4.9) with arbitrary accelerations aT = [ar, aθ, ah]
T (expressed in a rotating Hill frame) may be

written as [70, 82, 65]

dœ
dt

= f(œ)a (4.25)

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the ascending node, ω is the

argument of periapsis, and f is the true anomaly. The problem is now reduced in scope by making the

following assumptions:

[A1] The user is unconcerned with the duration of an optimal maneuver from an initial orbit element set
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îe

îp
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Figure 4.9: Orbit geometry using classical orbit elements relative to the inertial cartesian frame N ∶ îx, îy, îz,
the orbit frame E ∶ îe, îp, îh, and the rotating Hill frame H ∶ îr, îθ, îh.

œ0 to a final orbit element set œf . The problem is considered a ‘free-time’ optimal control problem.

[A2] The general accelerations ar, aθ, and ah in the rotating Hill frame are the result of corresponding

control accelerations ur, uθ, and uh.

[A3] For the first part of this analysis dynamics in the ascending node Ω are ignored (but are discussed

in §4.4.1.6).

[A4] Similar to the ascending node Ω, the argument of periapsis (ω) dynamics are ignored for the first

portion of this analysis (but are discussed in §4.4.1.6).

Starting from the classical GVE form [70, 82, 65], with algebraic manipulation the time dynamics for a, e,

and i are written in terms of only a, e, i, ω, and f , generating the following equations of motion:

da

dt
=

2a
3
2 e sin f

µ
1
2 (1 − e2)

1
2
ur +

a
3
2 (1 + e cos f)
µ

1
2 (1 − e2)

1
2
uθ (4.26)

de

dt
=
a

1
2 (1 − e2)

1
2 sin f

µ
1
2

ur +
a

1
2 (1 − e2)

1
2

µ
1
2

[
e cos2 f + 2 cos f + e

1 + e cos f
]uθ (4.27)

di

dt
=

a
1
2

µ
1
2 (1 − e2)

1
2
[
(1 − e2) cos (ω + f)

1 + e cos f
]uh (4.28)

Equations (4.26), (4.27), and (4.28) are the general equations of orbit element motion excluding dynamics

for Ω, ω, and f .
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4.4.1.2 Alternate Independent Parameter Mapping

To transform the integration variable in (4.26), (4.27), and (4.28) from time to ∆V , an independent

parameter mapping function is used. The general independent parameter mapping function [81] is written

as

s = S(x(⋅),u(⋅), t) = ∫
t

t0
l(x(τ),u(τ), τ)dτ + s0

where it is required that l(x,u, t) ≥ 0 along an optimal trajectory x∗(⋅),u∗(⋅), t ∈ [t0, tf ]. A standard metric

for orbital fuel usage is the characteristic velocity[83] s = ∆V , which may be written as

∆V = ∫

t

t0
∥u(τ)∥2dτ

with s0 = ∆V0 = 0 and u(t) is defined to be

uT = [ ur uθ uh ]

Choosing ∆V to be the alternate independent parameter suggests that

l(x,u, t) = ∥u(t)∥2 (4.29)

With this choice it is important to realize that if u(t) = 0 at any time t ∈ [t0, tf ], then there is no unique map

back from the ∆V independent parameter back to time, though a minimum time mapping may exist (there

happen to be infinite mappings back to time due to the singularity). Note that, as discussed in Lemma III.1

in Holzinger, et al.[81], when u(t) = 0, the dyamics of the semi-major axis, eccentricity, and inclination are

well defined and identically zero. It is now necessary to further limit the scope of this effort by making two

more assumptions:

[A5] The control inputs u are impulsive. Because of mapping ambiguities between time and ∆V , and

because under control accelerations the true anomaly f changes, it is expedient to consider impulsive

control inputs.

[A6] When integrating in the ∆V independent parameter space, it is very convenient use the true anomaly

f and the argument of periapsis ω as a control variables. This is perfectly sensible, as a spacecraft
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operator can use both f and ω (as it drifts due to J2 perturbations) as timing/phasing control

variables. The parameters f and ω are considered control parameters with f,ω ∈ [0,2π).

Combined, all of these assumptions allow the general time dynamics of the orbit elements (4.25) to be written

in the form

dœtr

dt
= ftr(œtr, f, ω)u

with the ⋅tr subscript indicating the truncated orbit element set

œT
tr = [ a e i ]

T

(4.30)

The control variables are the control acceleration u, true anomaly f , and argument of periapsis ω.

4.4.1.3 Hamilton Jacobi Bellman Formulation

To compute a range set the GIP HJB PDE must first be formulated in terms of the chosen state

coordinates and independent parameter. The general form of the GIP HJB PDE derived in §4.2.2 is

∂Ṽ

∂s
+ opt

u∈U
[
L̃(x,u, s)

l̃(x,u, s)
+
∂Ṽ

∂x

T
f̃(x,u, s)

l̃(x,u, s)
] = 0 (4.31)

where the ‘opt’ argument may be either ‘inf’ or ‘sup.’, U is the set of permissible controls, L̃ is the trajectory

cost, and l̃ is the mapping function integrand. For a general reachability problem, the optimization operation

is a supremum, and the Lagrangian L̃(x,u, s) = 0. With the choice of the independent parameter mapping

function slope in (4.29) and the truncated dynamics (4.30), the HJB PDE for this problem is

∂Ṽ

∂∆V
+ sup
u∈U,f,ω∈[0,2π)

[
∂Ṽ

∂œtr

T

ftr(œtr, f, ω)
u

∥u∥2
] = 0

Noting that the optimal control now appears as a unit vector, it is convenient to reparameterize û such that

û =
u

∥u∥2
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sinβ cosγ

cosβ cosγ

sinγ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= û(β, γ)

where β ∈ [0,2π) is the angle of the impulse from îθ in the r-θ orbit plane and γ ∈ [−π/2, π/2] is the angle û

forms with the orbit plane (both illustrated in Figure 4.10). The final form of the HJB PDE for computing
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range using a subset of the orbit elements œtr is then

∂Ṽ

∂∆V
+ sup
f,ω,β∈[0,2π),γ∈[−π2 ,

π
2 ]

[
∂Ṽ

∂œtr

T

ftr(œtr, f, ω)û(β, γ)] = 0

Note that the transformation from time to ∆V as the independent parameter and the re-parameterization of

the control unit vector û has eliminated any singularity associated with u(t) = 0; the dynamics with respect

to ∆V using the new control variables f , ω, β, and γ are well defined for all control variable parameters.

The dynamics in terms of the new independent parameter ∆V may be written in their final form as

îr
îθ

îh

β
γ

u

r

v ur
uθ

uh

Figure 4.10: Control acceleration u decomposition and parameterization in the rotating Hill frame

da

d∆V
= (

a
1
2

µ
1
2 (1 − e2)

1
2
)(2ae sin f sinβ cosγ + 2a(1 + e cos f) cosβ cosγ) (4.32)

de

d∆V
= (

a
1
2

µ
1
2 (1 − e2)

1
2
)
⎛

⎝
(1 − e2

) sin f sinβ cosγ +
1 − e2

1 + e cos f
(e cos2 f + 2 cos f + e) cosβ cosγ

⎞

⎠
(4.33)

di

d∆V
= (

a
1
2

µ
1
2 (1 − e2)

1
2
)(

(1 − e2) cos(ω + f)
1 + e cos f

sinγ) (4.34)

The transformation from the classical Gauss Variational Equations (GVEs) for orbit elements to (4.32),

(4.33), and (4.34) essentially examines the incremental change in semi-major axis, eccentricity, and inclination

as incremental amounts of ∆V are expended on the orbiting object. A brief examination of (4.32), (4.33),

and (4.34) (and recalling the orbit property identities used in its formulation) show us that it is valid for

all elliptical orbits, specifically for a > 0, e ∈ [0,1), and i ∈ R. Though out of scope for the present effort,

the approach thus far can also be applied to other non-singular orbit elements (such as equinoctial orbit

elements). The Optimal Control Hamiltonian is now

H = sup
f,ω,β∈[0,2π),γ∈[−π2 ,

π
2 ]

[pT ftr(œtr, f, ω)û(β, γ)]
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with the understanding that the adjoint state p is equivalent to the gradient of the value function Ṽ with

respect to the state space (p = ∂Ṽ /∂œtr). All of the terms pj(dœtr,j/d∆V ), j = 1,2,3, have a common factor

of a
1
2 /µ

1
2 (1 − e2)

1
2 , allowing the Hamiltonian to be written in expanded form as

H = (
a

1
2

µ
1
2 (1 − e2)

1
2
) sup
f,ω,β∈[0,2π),γ∈[−π2 ,

π
2 ]

[pa(2ae sin f sinβ cosγ + 2a(1 + e cos f) cosβ cosγ)

+pe
⎛

⎝
(1 − e2

) sin f sinβ cosγ +
1 − e2

1 + e cos f
(e cos2 f + 2 cos f + e) cosβ cosγ

⎞

⎠

+pi (
(1 − e2) cos(ω + f)

1 + e cos f
sinγ)]

(4.35)

The Hamiltonian in (4.35) is examined in the next subsection to determine the optimal control policy using

standard optimal control approaches [27, 29, 28].

4.4.1.4 Optimal Control Policy

To determine the optimal control policy (f∗, ω∗, β∗, γ∗) that minimizes the Optimal Control Hamil-

tonian, the first-order necessary conditions must be satisfied:

∂H

∂u
= [ ∂H

∂f
∂H
∂ω

∂H
∂β

∂H
∂γ

] = 04×1

Solving for (f,ω, β, γ) that satisfy the four equations generated by the first-order necessary condition will

yield the control laws that generate maxima, minima, and saddle points. The common factor outside of the

‘sup’ arguement may be ignored, as it contains none of the control variables. Each of the four equations

generated by the first-order necessary condition are now computed. For ∂H/∂f = 0:

∂H

∂f
= pa(2ae cos f sinβ − 2ae cosβ sin f)

−pe( cos f sinβ (e2
− 1) −

cosβ (e2 − 1) (2 sin f + 2e cos f sin f)
e cos f + 1

+
e cosβ sin f (e2 − 1) (ecos f2

+ 2 cos f + e)

(e cos f + 1)2
)

+pi( −
(1 − e2) sin(ω + f)

1 + e cos f
sinγ +

(1 − e2) cos(ω + f)
(1 + e cos f)2

sin f sinγ) = 0

For ∂H/∂ω = 0:

∂H

∂ω
= −pi (

(1 − e2) sin(ω + f)
1 + e cos f

sinγ) = 0
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For ∂H/∂β = 0:

∂H

∂β
= −pa(2a sinβ (e cos f + 1) cosγ − 2ae cosβ cosγ sin f)

−pe((e2
− 1) cosβ sin f cosγ −

(e2 − 1) (ecos f2
+ 2 cos f + e)

e cos f + 1
sinβ cosγ) = 0

and for ∂H/∂γ = 0:

∂H

∂γ
= −pa(2ae sin f sinβ sinγ + 2a(1 + e cos f) cosβ sinγ)

−pe((1 − e2
) sin f sinβ sinγ +

1 − e2

1 + e cos f
(e cos2 f + 2 cos f + e) cosβ sinγ)

+pi(
(1 − e2) cos(ω + f)

1 + e cos f
cosγ)

While at first these expressions appear quite complicated, after examination there are several common terms

in each partial derivative. Re-organizing and simplifying produces

∂H

∂f
= (2paae + pe (1 − e2)) cos f sinβ cosγ

+[ − 2paae + pe( − (1 − e2) +
e (1 − e2) (ecos f2

+ 2 cos f + e)

(e cos f + 1)2
)] sin f cosβ cosγ

+(pi
1 − e2

1 + e cos f
(sin(ω + f) + e sinω)) sinγ = 0

(4.36)

∂H

∂ω
= (−pi

(1 − e2)

1 + e cos f
) sin(ω + f) sinγ = 0 (4.37)

∂H

∂β
= −(2pa (1 + e cos f) + pe

(1 − e2) (ecos f2
+ 2 cos f + e)

e cos f + 1
) sinβ cosγ

+(2paae + pe(1 − e2
)) sin f cosβ cosγ = 0

(4.38)

∂H

∂γ
= ( − 2paae − pe(1 − e2

)) sin f sinβ sinγ

+( − 2paa(1 + e cos f) − pe
(1 − e2) (ecos f2

+ 2 cos f + e)
e cos f + 1

) cosβ sinγ

+( − pi
1 − e2

1 + e cos f
) cos(ω + f) cosγ = 0

(4.39)

To simplify this analysis, (4.36) - (4.39) are examined in a sinusoidal form by considering the more compli-

cated terms as coefficients:

∂H

∂f
= kf,1 cos f sinβ cosγ + kf,2 sin f cosβ cosγ + kf,3 (sin(ω + f) + e sinω) sinγ = 0

∂H

∂ω
= kω,1 sin(ω + f) sinγ = 0
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∂H

∂β
= kβ,1 sinβ cosγ + kβ,2 sin f cosβ cosγ = 0

∂H

∂γ
= kγ,1 sin f sinβ sinγ + kγ,2 cosβ sinγ + kγ,3 cos(ω + f) cosγ = 0

Note that the coefficients k⋅,⋅ depend only on a, e, i, pa, pe, pi, and f . By inspection the coefficients k⋅,⋅ are

typically non-zero except in transient cases (i.e. pa, pe, pi = 0) or degenerate cases (e = 1). Rather, examining

the factorization above it is clear that careful selection of optimal control values f∗, ω∗, β∗, γ∗ will satisfy the

first-order necessary condition of optimality. The sinusoidal solutions are enumerated below in Table 4.2.

Despite significant effort no extremal solutions besides those in Table 4.2 have been found. For some very

specific orbit regimes, critical points f∗, ω∗, β∗, γ∗ not represented in Table 4.2 have been found. However,

these numerically generated critical points do not satisfy the second order necessary conditions and are

saddle points in the Hamiltonian. Interestingly, there is no proof here that other extremal solutions do not

exist; a full exploration of the admissible critical points is an excellent topic for further work. Despite the

possible existence of additional extremal solutions, it remains that Table 4.2 enumerates all of the maneuvers

suggested by free-time, fuel-optimal transfers in astrodynamics literature.

Table 4.2: Candidate pre-reduction optimal control policies

Case f∗, ω∗, β∗, γ∗ Description
1’ 0, π

2
,0,0 Raise ap. w/o change in Ω

2’ 0, 3π
2
,0,0 Raise ap. w/o change in Ω

3’ π, π
2

0,0 Raise per. w/o change in Ω
4’ π, 3π

2
0,0 Raise per. w/o change in Ω

5’ 0, π
2
, π,0 Lower ap. w/o change in Ω

6’ 0, 3π
2
, π,0 Lower ap. w/o change in Ω

7’ π, π
2
, π,0 Lower per. w/o change in Ω

8’ π, 3π
2
, π,0 Lower per. w/o change in Ω

9’ 0,0,0,−π
2

Dec. i at per., per. at Ω
10’ 0,0,0, π

2
Inc. i at per., per. at Ω

11’ π,0,0,−π
2

Inc. i at ap., per. at Ω
12’ π,0,0, π

2
Dec. i at ap., per. at Ω

13’ 0, π,0,−π
2

Dec. i at per., ω opposite Ω
14’ 0, π,0, π

2
Inc. i at per., ω opposite Ω

15’ π,π,0,−π
2

Inc. i at ap., ω opposite Ω
16’ π,π,0, π

2
Dec. i at ap., ω opposite Ω

There are 16 candidate optimal control policies generated by the first-order necessary conditions and
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enumerated in Table 4.2. As mentioned, the ascending node dynamics[70, 82, ?]

dΩ
dt

=
a

1
2 (1 − e2)

1
2

µ
1
2 (1 + e cos f)

sin(ω + f)
sin i

sinγ

are identically zero for cases 1 through 8. Due to previous assumptions several options may be eliminated.

For cases 1-8, changes in Ω are ignorable [A3], and choosing ω = 0 has no impact on the magnitude of the

Hamiltonian. This allows ω = 0 rather than π/2 or 3π/2, collapsing the first 8 cases to 4 individual cases.

For cases 9-16, since the actual value of ω is ignorable so long as the necessary conditions are satisfied [A4],

the set of maneuvers that occur opposite the ascending node are eliminated, leaving cases 9-12. Further,

computing the Hamiltonians for cases 9-12, despite the fact that they all satisfy the second order neceesary

conditions of optimality (∂2H/∂(f,ω, β, γ)2 < 0) the inclination maneuvers that occur at periapsis generate

universally smaller Hamiltonian values than those at apoapsis, allowing cases 9 and 10 to be disregarded.

After eliminating these cases the minimal set of remaining optimal control policy candidates are shown in

Table 4.3.

Table 4.3: Candidate post-reduction optimal control policies

Case f∗, ω∗, β∗, γ∗ Description
1 0,0,0,0 Raise apoapsis
2 π,0,0,0 Raise periapsis
3 0,0, π,0 Lower apoapsis
4 π,0, π,0 Lower periapsis
5 π,0,0,−π

2
Increase i at apoapsis

6 π,0,0, π
2

Decrease i at apoapsis

If ascending node or argument of periapsis had been retained as state variables with corresponding

adjoints, then neither [A3] nor [A4] apply and additional optimal control policies would be generated. The

critical points must now be examined to determine which solutions are maxima, minima, and saddle points

of the Hamiltonian H given the states a, e, i, and the adjoint states pa, pe, and pi. Because there are six

discrete optimal control policies, the values of the Hamiltonian at the critical points (f∗i , ω
∗
i , β

∗
i , γ

∗
i ) must

each be computed and compared to one another, determining over which regions of adjoint space each are

optimal. In continuous control policies the second derivative of the Hamiltonian with respect to the control

parameters would be examined, but since there are discrete control candidates they must be examined

individually. The values of the Hamiltonian at each critical point are evaluated and denoted by Hi, where i
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denotes the optimal control policy case in Table 4.3:

H1 = 2 (e + 1) (apa + (1 − e)pe)

H2 = 2 (e − 1) (−apa + (1 + e)pe)

H3 = −2 (e + 1) (apa + (1 − e)pe)

H4 = −2 (e − 1) (−apa + (1 + e)pe)

H5 = pi(1 + e)

H6 = −pi(1 + e)

As a matter of analytical convenience the adjoint is now parameterized as

p =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pa

pe

pi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∥p∥2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p̂a

p̂e

p̂i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∥p∥2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ cosφ

sin θ cosφ

sinφ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where θ and φ are used to parameterize the direction of the adjoint (in a manner very similar to the control

unit vector parameterization in terms of β and γ). The reverse mapping from p̂a, p̂e, and p̂i to θ and φ may

be written as

tan θ =
p̂e
p̂a

and

tanφ =
p̂i

√
p̂2
a + p̂

2
e

Because the adjoint appears linearly in the Hamiltonian, the optimal control policy (f∗, ω∗, β∗, γ∗) may be

found by viewing Hi as a function of the adjoint variable direction parameterized by θ and φ. By inspection

Hi are sinusoids with respect to θ and φ, and have precisely one minima and one maxima. The values of p̂a,

p̂e, and p̂i for which Hi vanish, are minimized, and maximized are shown in Table 4.4. Upon examination,

starting at θ = 0 and increasing to θ = 2π while keeping φ = 0, the maximum Hamiltonian transitions from

H1 →H4 →H3 →H2 →H1. The points at which they are equal in terms of pa and pe (note that pi does not

impact these boundaries) are

H1 =H4 →
pe
pa

= +∞→ pa = 0, pe > 0
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Table 4.4: Values of p̂a, p̂e, and p̂i, for which Hi vanishes, is minimized, or is maximized

Hi = 0 Minimum Maximum
H1

p̂e
p̂a

= ±a
∓(1−e)

p̂e
p̂a

=
−(1−e)
−a

p̂e
p̂a

=
(1−e)
a

H2
p̂e
p̂a

= ±a
±(1+e)

p̂e
p̂a

=
(1+e)
−a

p̂e
p̂a

=
−(1+e)
a

H3
p̂e
p̂a

= ±a
∓(1−e)

p̂e
p̂a

=
(1−e)
a

p̂e
p̂a

=
−(1−e)
−a

H4
p̂e
p̂a

= ±a
±(1+e)

p̂e
p̂a

=
−(1+e)
a

p̂e
p̂a

=
(1+e)
−a

H5 p̂i = 0 p̂i = −1 p̂i = 1
H6 p̂i = 0 p̂i = 1 p̂i = −1

H4 =H3 →
pe
pa

=
ae

−(1 − e2)

H3 =H2 →
pe
pa

= −∞→ pa = 0, pe < 0

H2 =H1 →
pe
pa

=
−ae

(1 − e2)

Similarly, when φ = π/2 or φ = −π/2 the Hamiltonians H5 and H6 respectively are also maxima. Because

the switching boundaries between H1 through H4 do not depend on φ, the boundaries where each of these

regions switches to H5 or H6 must be found.

H1 =H5 → tanφ = 2 (a cos θ + (1 − e) sin θ)

H2 =H5 → tanφ = −2
1 − e
1 + e

(−a cos θ + (1 + e) sin θ)

H3 =H5 → tanφ = −2 (a cos θ + (1 − e) sin θ)

H4 =H5 → tanφ = 2
1 − e
1 + e

(−a cos θ + (1 + e) sin θ)

For H6 the analogous equations are

H1 =H6 → tanφ = −2 (a cos θ + (1 − e) sin θ)

H2 =H6 → tanφ = 2
1 − e
1 + e

(−a cos θ + (1 + e) sin θ)

H3 =H6 → tanφ = 2 (a cos θ + (1 − e) sin θ)

H4 =H6 → tanφ = −2
1 − e
1 + e

(−a cos θ + (1 + e) sin θ)

Examining the Hessians for eac Hi verifies that the second-order necessary condition is met. Using the

switching lines found above and observing that tanφ = pi/
√
p2
a + p

2
e, cos θ = pa, and sin θ = pe, the final

optimal control policy is shown in (4.40).
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(f∗, ω∗, β∗, γ∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(0,0,0,0) if pa ≥ 0, pa ≥
−ae
1−e2

pe,

and − 2(apa + (1 − e)pe)(p
2
a + p

2
e)

1
2 ≤ pi ≤ 2(apa + (1 − e)pe)(p

2
a + p

2
e)

1
2

(π,0,0,0) if pa < 0, pa ≤
−ae
1−e2

pe

and 2 1−e
1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2 ≤ pi ≤ −2

1−e
1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2

(0,0, π,0) if pa ≥ 0, pa <
−ae
1−e2

pe

and 2(apa + (1 − e)pe)(p
2
a + p

2
e)

1
2 ≤ pi ≤ −2(apa + (1 − e)pe)(p

2
a + p

2
e)

1
2

(π,0, π,0) if pa < 0, pa >
−ae
1−e2

pe

and − 2 1−e
1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2 ≤ pi ≤ 2 1−e

1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2

(π,0,0,−π
2
) if pi > 2(apa + (1 − e)pe)(p

2
a + p

2
e)

1
2 , pi > −2

1−e
1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2

pi > −2(apa + (1 − e)pe)(p
2
a + p

2
e)

1
2 , and pi > 2 1−e

1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2

(π,0,0, π
2
) if pi > −2(apa + (1 − e)pe)(p

2
a + p

2
e)

1
2 , pi > 2 1−e

1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2

pi > 2(apa + (1 − e)pe)(p
2
a + p

2
e)

1
2 , and pi > −2

1−e
1+e
(−apa + (1 + e)pe) (p

2
a + p

2
e)

1
2

(4.40)

A visualization of the optimal control policy regions for a reference orbit (a = 24,393 km, e = 0.7253,

and i = 0 deg) is shown in Figure 4.11. In practice it is computationally easier to simply compute H1

through H6, find largest value, and choose the corresponding control policy. A cursory examination of the

computational burden involved in computing (4.40) indicates that simply computing Hi may in fact be the

fastest option computationally.

The optimal control policy derived using the alternate independent parameter framework agrees with

classical orbit dynamics nicely. In the case that (f∗, ω∗, β∗, γ∗) = (0,0,0,0), the adjoints are ‘pointed’ in

the direction of larger semi-major axis and eccentricity, which a periapsis burn along the velocity vector will

accomplish. Conversely, if (f∗, ω∗, β∗, γ∗) = (π,0, π,0), the adjoints are ‘pointed’ in the direction of positive

eccentricity and slightly negative semi-major axis, which corresponds directly to an apoapsis maneuver that

lowers periapsis (thus increasing eccentricity while decreasing semi-major axis). Similar arguments may

be made for (f∗, ω∗, β∗, γ∗) = (0,0, π,0) and (f∗, ω∗, β∗, γ∗∗) = (π,0,0,0). The maneuvers to increase

((f∗, ω∗, β∗, γ∗) = (π,0,0,−π/2)) and decrease ((f∗, ω∗, β∗, γ∗) = (π,0,0, π/2)) inclination are also classical

orbital maneuvers; the maneuver to change inclination should occur at the largest radius in the orbit, which

corresponds to apoapsis (f∗ = π).

Examining Table 4.3 it is clear that all maneuvers to modify only semi-major axis, eccentricity or
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Figure 4.11: Regions of optimal control policy as a function of (θ, φ) for a reference orbit (a = 24,393 km, e
= 0.7253). In this case ‘dth’ = tan−1 (−ae/(1 − e2)) + π/2

inclination are present, and that with these optimal control policies as ‘basis maneuvers’, any fuel-optimal

co-aligned ellipse-to-ellipse or escape maneuver with inclination change may be reconstructed. Further, in

the presence of a central body with a non-zero J2 term, assumptions [A3] and [A4] suggest the use of

intermediate ‘parking orbits’ while ascending node and argument of periapsis phasing occurs. Thus, with

the basis maneuvers contained in Table 4.3 and parking orbits, any free-time, fuel optimal arbitrary orbit to

orbit transfer may be found using the results generated here. As a final note, for any of the optimal control

policies outlined in (4.40), produce dω/d∆V → 0. This can be seen by examining the argument of periapsis

dynamics with respect to ∆V given by

dω

d∆V
=

1
he

(−p cos f sinβ cosγ + (p + r) sin f cosβ sinγ) −
r sin(ω + f) cos i sinγ

h sin i

and substituting the optimal control policies. Figure 4.12 visualizes the optimal basis maneuvers as nodes

in a graph, defined here as the Optimal Maneuver Graph (OMG). Using this representation it is easy to

identify classical optimal maneuvers as paths starting and ending at the nodes in the OMG. The Hohman

transfer, the bi-elliptic transfer, and bi-elliptic transfer with plane change maneuvers are illustrated.
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H3 H2 H1 H4 
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Figure 4.12: Optimal basis maneuvers visualized as nodes on a connected graph. Classical maneuver com-
binations are emphasized.

Examining this visualization, it is straightforward to understand that given a two-point boundary

value problem and sufficient ∆V , finding the optimal initial adjoint will generate an optimal trajectory in

∆V -space that will exactly correspond to the classical maneuver combinations shown in Figure 4.12. It

is also insightful to note that the graph in Figure 4.12 is not fully connected. Specifically, there are no

connections between H1 and H3, H2 and H4, or H5 and H6. This matches intuition perfectly, as one would

for example expect that after raising apoapsis it is sub-optimal to then immediately lower the orbit apoapsis.

Directionality of the edges on the OMG in Figure 4.12 is not clear and is beyond the scope of this

effort. The authors feel a detailed analysis of the OMG, particularly the directionality of the edges given

certain orbit regimes (a, e, and i), can provide deep insight into optimal combinations of maneuvers in

general.

4.4.1.5 State and Adjoint Dynamics With Respect to The Alternate Independent Param-

eter

Now that an optimal control policy that generates (f∗, ω∗, β∗, γ∗) has been determined, the equations

of motion for the state and adjoint variables a, e, i, pa, pe, and pi with respect to ∆V for specific optimal

trajectories must now be determined. The equations of motion may be simplified by observing that for
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f = 0, π and β = 0, π, sin f∗ = sinβ∗ = 0 for all optimal control policies (f∗, ω∗, β∗, γ∗), producing

da

d∆V
=

a
1
2

µ
1
2 (1 − e2)

1
2
[a(1 + e cos f∗)] cosβ∗ cosγ∗ (4.41)

de

d∆V
=

a
1
2

µ
1
2 (1 − e2)

1
2

[
2(1 − e2)(e + cos f∗)

1 + e cos f∗
] cosβ∗ cosγ∗

(4.42)

di

d∆V
=

a
1
2

µ
1
2 (1 − e2)

1
2
[
(1 − e2) cos(ω∗ + f∗)

1 + e cos f∗
] sinγ∗ (4.43)

Along optimal trajectories, the necessary condition for optimality on the adjoint variables is that dp/d∆V =

−∂H/∂x. Observing that for f = 0, π and β = 0, π, sin f∗ = sinβ∗ = 0, cos2 f∗ = 1, and cos3 f∗ = cos f∗, and

carrying out significant simplifications generates

dpa
d∆V

=
a

1
2

µ
1
2 (1 − e2)

1
2

⎡
⎢
⎢
⎢
⎢
⎣

− 3(1 + e cos f∗) cosβ∗ cosγ∗pa

−
(1 − e2)(e + cos f∗)
a(1 + e cos f∗)

cosβ∗ cosγ∗pe

−
1 − e2

a(e + cos f∗)
cos(ω∗ + f∗) cos f∗ sinγ∗pi

⎤
⎥
⎥
⎥
⎥
⎦

(4.44)

dpe
d∆V

=
a

1
2

µ
1
2 (1 − e2)

1
2

⎡
⎢
⎢
⎢
⎢
⎣

−
2a (e + cos f∗)

(1 − e2)
cosβ∗ cosγ∗pa

+
2e(e + cos f∗)
(1 + e cos f∗)

cosβ∗ cosγ∗pe

+
1 + e cos f∗

cos f∗(e + cos f∗)2
cos(ω∗ + f∗) sinγ∗pi

⎤
⎥
⎥
⎥
⎥
⎦

(4.45)

dpi
d∆V

= 0 (4.46)

Taken together, (4.44), (4.45), and (4.46) define the dynamics of the adjoint variables pa, pe, and pi in the

∆V integration space along free-time, ∆V -optimal trajectories.

4.4.1.6 Applicability to Orbit Range with J2 Perturbations

The the analysis thus far derived the required equations to compute optimal orbit range sets in a,

e, and i using the classical GVE equations of motion. If J2 perturbations are also considered, the time

dynamics of the mean semi-major axis ā, mean eccentricity ē, and mean inclination ī have the same form
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as the un-perturbed orbit elements a, e, and i, while in general (with the exception of particular critical

regions) the mean ascending node Ω̄ and mean argument of periapsis ω̄ drift at different rates over time.

This property, that (ā, ē, ī) still behave as constants of motion while the orientation coordinates Ω̄ and ω̄

drift over time, can be exploited to realize significant ∆V savings in the general Two-Point Boundary Value

Problem (TPBVP). Using these properties, trajectories in regions where J2-induced drift rates in Ω̄ and

ω̄ are non-zero (and different from one another) can place themselves in intermediate orbits and allow J2

perturbations to perturb them until a desired instantaneous value of Ω and ω is reached. Because in [A1] it

is assumed that the user is unconcerned with the total time of the orbit transfer, this effectively allows the

user to transfer from any initial instantaneous orbit element set œ0 to any final instantaneous orbit element

set œf incurring only the ∆V cost associated with transitioning from (a0, e0, i0) to (af , ef , if). Thus, the

orbit element range set computation method developed in this paper provides the general minimum-fuel,

free-time optimal transfer set from an initial orbit to any final orbit under J2 perturbations.

4.4.1.7 Initial Conditions and Set Propagation

The boundary condition for the HJB PDE is typically given as an initial or final value function

Ṽ (x, s). For the orbit range problem the range set is propagated forward, so an initial boundary condition

Ṽ (œ̄tr,∆V0) = 0 is required for the problem to be well posed. The range set defined by Ṽ (œ̄tr,f ,∆Vf) = 0 as a

function of ∆V may be computed using several methods. Two methods briefly introduced in the introduction

and discussed here are a) trajectory-based and b) level-set based. Trajectory methods take an initial state,

compute the initial adjoint state using p0 = ∂Ṽ0/∂x0, and propagate the optimal trajectory according to

(4.41), (4.42), (4.43), (4.44), (4.45), and (4.46). Level-set methods use PDE integration routines similar to

those in computational fluid dynamics to propagate the initial condition according to the dynamics of the

problem [60, 61, 62, 63]. Software to propagate the HJB PDE has been graciously made available online [64]

and is used to compute range sets in this paper. Some of the intermediate computations to compute range

set solutions using the Level Set Toolbox are given in Appendix B.2.
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4.4.2 Simulation and Results

To demonstrate the analytical results in the previous sections and demonstrate the utility of the

approach four examples are given. The first example validates the computed range set by comparing it to

the analytical results for co-aligned, ellipse-to-ellipse transfers with inclination changes. The second example

demonstrates some of the flexiblity of the approach by choosing Ṽ0 such that there are several initial,

unconnected regions where an object may exist. The third example demonstrates the benefits of being able

to choose arbitrary initial conditions Ṽ0 for computing final range sets.

4.4.2.1 Example 4.4: Range Set Verification

The initial condition for the range set verification example is defined by the ellipsoid expressed as

Ṽ (œtr,0,0) =
(a − a0)

2

r2
a,0

+
(e − e0)

2

r2
e,0

+
(i − i0)

2

r2
i,0

− 1 = 0

where a0 = 24,393 km, e0 = 0.7253, i0 = 0 deg, ra,0 = 1,250 km, re,0 = 0.02440, and ri,0 = 3.0488 deg. This

orbit is known as a Geostationary Transfer Orbit (GTO), and is employed as an intermediate trajectory in

a Hohman transfer from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO). The independent

parameter ∆V is integrated over the domain ∆V ∈ [0,1000] m/s. To validate the computed range set at

the final ∆Vf = 1000 m/s, existing analytical ∆V requirements for co-aligned ellipse-to-ellipse transfers with

inclination changes are generated and their level sets at ∆Vf = 1000 m/s are computed (see Appendix B.1

for details). The two sets are shown superimposed in isometric, semi-major axis vs. eccentricity, semi-major

axis vs. inclination, and eccentricity vs. inclination views in Figure 4.13.

The plots shown in Figure 4.13 demonstrate that the numerically propagated range set matches quite

nicely with the analytically predicted range set. There are three types of discrepancies that can be observed.

The first is due to the fact that the initial range set in the numerically propagated range set is not a single

point but rather an ellipsoid of finite size. The second discrepancy is seen at larger semi-major axes ( > 40,000

km) and eccentricities (> 0.9), and is likely due to a combination of numerical propagation step size and grid

sizing. The final discrepancy compounds with the second discrepancy in that the dynamics are singular as

e → 1, exacerbating the numerical issues already discussed. At lower eccentricities and semi-major axes the
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range is less sensitive to these effects and the discrepancies are much less pronounced.

Figure 4.13 illustrates several properties of optimal maneuvers in orbital regimes. Specifically, the

range set expands ‘fastest’ (and forms corners) when propagating along lines of constant apoapsis or periapsis

(raising/lower apoapsis/periapsis). Also, one can see that to maximally change inclination, it is sometimes

desirable to also increase apoapsis first, then execute an inclination maneuver.

4.4.2.2 Example 4.5: Initial Sets in LEO, GTO, and GEO

This example demonstrates the relative impact of incremental quantities of ∆V have in different orbit

regimes as well as how the initial condition may be chosen to simultaneously propagate multiple unconnected

initial range sets. The initial range sets are chosen to be ellipsoids described in Table 4.5.

Table 4.5: Example 4.4 initial range sets

Parameter LEO GTO GEO
a0 (km) 6,700 24,393 42,086
e0 () 0 0.7253 0
i0 (deg) 31 31 0
ra,0 (km) 1,250 1,250 1,250
re,0 () 0.0244 0.0244 0.0244
ri,0 (deg) 3.0488 3.0488 3.0488

Each range set was propagated over a ∆V interval of [0,1000] m/s. The resulting range sets are shown

in Figure 4.14. The various subplots in Figure 4.14 show all three range sets (which are all zero-level sets of

the same solution Ṽ (œ̄tr,∆Vf = 1000 m/s) = 0) in isometric and planar views to aid in visualization. The

effective utility of incremental amounts of ∆V starting at the three initial range sets is aptly demonstrated.

As the dynamics of an inverse r2 force model would suggest, orbits with low semi-major axes and eccentricities

must expend larger amounts of ∆V to change their orbit elements than orbits with larger semi-major axes

or eccentricities. Qualitatively, the LEO initial orbit achieves the least amount of range for 1000 m/s of ∆V ,

followed by the GEO initial orbit, with the best range obtained with an initial GTO range set.
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4.4.2.3 Example 4.6: Arbitrary Initial Range Sets

To demonstrate the advantages of using zero-level sets to implicitly define initial sets, a non-convex,

non-smooth initial range set is constructed using separating hyperplanes as an initial range set and its

corresponding final range set (with ∆V = 500 m/s) is computed. Figure 4.15 depicts the initial range

set and Figure 4.16 shows the final range set. Because zero-level sets of the value function Ṽ (œ̄tr,∆V )

implicitly define the surface of the range set, the union of initially separate range regions as they expand is

directly handled. As a general note, the initial condition Ṽ (œ̄tr,0,∆V = 0) = 0 may be any arbitrary function

(allowing arbitrary initial range sets), though heuristically best numerical results are found when Ṽ is at

least C0.

4.4.2.4 Discussion of Results

The results presented in Examples 4.4 through 4.6 demonstrate the verification of the analytical

results, relative control authorities for different starting orbits, and the ability to define arbitrary initial

range sets. There are three overarching topics that bear additional discussion: analytical results, numerical

issues, and geometric interpretations.

An excellent analytical result of the application of optimal controls to the time-independent range set

computation problem is the generation of the standard classical maneuvers (outlined in Table 4.3) by applying

the first- and second-order necessary conditions of optimality. In other words, the classical maneuvers were

found using optimal control theory, and were not assumed based on prior knowledge of optimal maneuvers

in Keplerian dynamics (such as the Hohman transfer). Also stemming from the analytical treatment of the

problem using optimal controls is that the computed range set and optimal control policy has optimality

guarantees. This is contrasted with combinatorial testing of maneuver sequences and sizes in ad-hoc or

heuristic settings. Further, the basis maneuvers generated under this framework are also theoretically capable

of reproducing more general classical orbit maneuvers such as the bi-elliptic orbit transfer and the bi-elliptic

inclination change transfer. Lastly, though the classical orbit elements (and implicitly, the mean classical

orbit elements) were used in this effort, it is clear that any set of constants of motion may be used as the

coordinates in which to compute range.
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Because the analytic solution of the range set given an initial condition is not known, the use of

numerical methods[64] introduce several additional issues that must be considered. The first is grid sizing.

In the numerical propagation the state space of interest is discretized into a grid. To be well posed numerically,

the initial set must be at least one grid cell length in each dimension. Unfortunately because this problem

suffers from the curse of dimensionality it is generally not possible to compute range sets for grids using

arbitrarily small grid cell dimensions. This imposes lower limits on how small the initial range set may

be, which operationally is usually much larger than the estimate covariance ellipsoid associated with the

object in question. This can artificially increase the computed range set and must be accounted for given a

particular application. Grid sizing also limits the resolution to which the range set may be computed. Care

must be taken to use appropriately small grid sizings in regions of interest or sensitivity if high fidelity range

set boundary computation is paramount.

The propagation of the range set is an initial value problem and is subject to many of the same

problems that traditional differential equation initial valued problems suffer from. Most importantly this

includes compounded integration error (as seen in Example 4.4). Coordinate singularities are also a numerical

issue that is tightly coupled with integration step size. Example 4.4 illustrates that as the range set boundary

approaches unit eccentricity the propagated range set disagrees with the analytical range set. The orbit

element equations of motion become singular as e→ 1, and taking inappropriately large step sizes in such a

region will generate poor results.

In terms of geometric interpretations of the range sets, it is useful to note that the required amount

of ∆V to change inclination does not depend on the current inclination. This means that all else kept equal,

an inclination range computed at the equator is the same as the inclination range computed in a polar orbit

given a constant ∆V . This conveniently allows a computed range set to be translated along the inclination

axis to a new starting inclination without the need to recompute the range set.

Also highlighted in the results (particularly Example 4.5) is the varying levels of control authority

that are afforded to objects starting in different initial orbits. LEO objects are significantly hampered when

compared to GTO or GEO objects given a constant ∆V . The geometric confirmation of this fact afforded

by examining range sets is quite intuitive.
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Once computed for various initial orbits and multiple quantities of ∆V , the orbit element range sets

provide an excellent tool for strategic, tactical, or mission planning. Regions of orbital space that afford

particularly large ranges are easily found and may be superimposed with space object catalogs to quickly

(and geometrically) identify and examine possible spacecraft / object interactions. Similarly entire groups

of spacecraft with varying initial orbits and quantities of ∆V may have their range sets computed and be

superimposed into the same visualization, allowing for strategic interpretations analogous to those currently

done with aircraft. Lastly, since the range sets are integrated with respect to ∆V , the range sets for varying

levels of ∆V are easily computed to support sensitivity studies.



142

Figure 4.13: Example 4.4: Numerically propagated (green) and analytic (red) range sets for an initial GTO
orbit with ∆V ∈ [0,1000] m/s
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Figure 4.14: Example 4.5: Numerically propagated range sets for an initial LEO orbit (bottom left in a-e
plane), GTO orbit (top middle in a-e plane), and GEO orbit (bottom right in a-e plane) with ∆V ∈ [0,1000]
m/s
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Figure 4.15: Example 4.6: Initial range set for the non-convex, non-smooth initial range set with ∆V ∈

[0,500] m/s
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Figure 4.16: Example 4.6: Numerically propagated range sets for the non-convex, non-smooth initial range
set with ∆V ∈ [0,500] m/s
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4.5 Chapter Summary

Fuel-optimal control for systems affine in control, specifically spacecraft, is used to motivate a rigorous

examination of how optimal reachability sets using alternate independent parameters may be generated and

how specific singular mappings may be circumvented. The mapping function between time and an arbitrary

independent parameter is defined and the transformation of the time-dynamics into the dynamics with

respect to a new independent parameter is given. Starting with the Dynamic Programming Equation the

necessary conditions of optimality along optimal trajectories are combined with the independent parameter

mapping function definition to derive the General Independent Parameter Hamilton Jacobi Bellman PDE.

Necessary conditions for left, right, and full intervtibility of the independent parameter mapping function

are reviewed and a discussion of convenient independent parameters is given. The dynamics of the adjoint

state using the new integration parameter is shown to mirror those of the time-based adjoint dynamics. A

definition for Generalized Metric Range Sets is given and several illustrations are introduced and discussed.

A method is introduced by which the mapping singularity in the primer vector problem may be circumvented

using constants of integration and impulsive assumptions. The classical Breugot aircraft range equation and

the 2nd-order oscillator amplitude range equation are developed as simple analytical examples of the modified

Hamilton Jacobi Bellman PDE reachability applications. A more complex numerical example is given in

which the orbit element range for co-planar, co-aligned orbits is derived, propagated, and validated against

known classical results.

For the extended orbit range example, orbit element dynamics under arbitrary control accelerations

and J2 perturbations are used as basis coordinates for orbital range set computation. The range set com-

putation is chosen to be time independent, allowing for the ascending node, argument of periapsis, and

true anomaly to be viewed as ignorable coordinates or as control parameters. Control accelerations are

also assumed to be impulsive, which is consistent with traditional optimal ∆V trajectory maneuvers. The

independent parameter is chosen to be ∆V and the dynamics are transformed from time to ∆V space. The

Hamilton Jacobi Bellman PDE using ∆V as an independent parameter is used as the basis for propagat-

ing the optimal time-independent range sets as a function of ∆V . The first- and second-order necessary
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conditions of optimality are applied and the resulting optimal control policy as a function of the states and

adjoints is found. The optimal control policy analytically reproduces the same basis maneuvers used in clas-

sical astrodynamics. Existing numerical toolboxes are used to propagate initial range sets allowing for the

computation of final range sets as a function of ∆V . Numerically propagated results are validated against

classical results for the co-aligned ellipse-to-ellipse transfer with inclination change case. Examples are given

that demonstrate relative control authority of different initial orbits, and the ability to specify arbitrary

initial range sets. Optimality guarantees of the solution and numerical issues related to the propagation are

discussed. Utility in the strategic, tactical, and mission planning sense is shown to be similar to aircraft

analogs.



Chapter 5

Conclusions and Future Work

SSA is a critical and persistent need for entities depending on access to space. Object attribute

determination, an important facet of successful SSA, is supported by a number of activities that can benefit

greatly from careful application of optimal control approaches. As claimed in the thesis statement in §1.1,

activities that can benefit from optimal control methods are object and track correlation, maneuver detection,

fuel usage estimation, operator priority inference, efficient intecept set computation, range set theory, and

orbit range set generation. The relationships between each of the activites cited in the thesis statement and

SSA-related ojbect attributes is given in Table 1.1 in §1.2.4. The summarization of past research in Table

1.3 demonstrates the interest in such object attribute determination activities as well as identifying where

the contributions of this dissertation fit relative to existing results.

Fundamental to optimal control based object correlation is the concept of optimal control problem

distance metrics, defined and discussed in Chapter 2. Along with control distance metrics, the Uncertain Two

Point Boundary Value Problem (UTPBVP) and Measurement Residual Boundary Value Problem (MRBVP)

approaches directly support object and track correlation, maneuver detection, fuel usage estimation, and

operator priority inference. Control distance distributions combined with stochastic dominance provide a

sensible method to rank candidate object correlations using a first-principles approach. Detecting maneuvers

by examining the relative sizes of the deterministic and uncertain components of the control distance allows

both the estimation of minimum detectible maneuver size, as well as a probability that the deterministic

control distance is explained by the inherent system uncertainty. Because the control distance metric is

naturally expressed in terms of ∆V , fuel usage estimation is automatically supported. Lastly, by determining
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whether an object is maneuvering in a fuel optimal manner, it is possible to infer additional operator

priorities.

For correlation, maneuver detection, and object characterization, future efforts include demonstrating

utility with non-Gaussian boundary condition distributions, estimating control authority and distributions,

and investigating true ∆V distance metrics for adaptation into this framework, decreasing the conservatism

of the current approach. These improvements naturally improve both fuel usage estimation and operator

priority inference efforts.

Efficient computation of minimum time position reachability sets, equivalent to intercept sets in some

cases, is addressed in Chapter 3. In particular, for an n dimensional state space, the transversality conditions

are leveraged to provide a set of 3n/2 + 1 equations that may be used to compute the maximum possible

reachable distance in a subspace of Rn. Also, using trajectory methods, exact subspaces of reachability sets,

for example intercept sets, may be computed. Though the methods discussed in Chpater 3 are applied to

minimum time reachability sets, because they leverage the transversality conditions they may be applied to

reachability sets using other performance functions.

Specific directions for future work may include trajectory density / sparsity attenuation, improved

extrema computation methods, residual reduction for long-duration reachability computation, symplectic

integration benefits, computational studies / comparisons, and applied reachability theory to specific dy-

namical systems of interest. Generalizations such as adding further initial, trajectory, or final constraints,

leveraging existing work on generating functions, or methods to reduce reach-tube computation requirements

may be pursued. Lastly, the methods developed in this chapter may be applied to reachability sets using

alternate parameters and/or reachability sets using alternate independent parameters.

Chapter 4 derived the general independent parameter reachability framework, explored some of its

properties, and examined an extensive example in which the full orbit range problem for semi-major axis,

eccentricity, and inclination was solved. This effort motivated the another application of optimal control

distance metrics, defining the Generalized Metric Range Set, of which nearly all existing reachability sets

are instances (e.g. minimum time reachability, Breugot aircraft range equation, orbit range). The successful

treatment of range set theory and a detailed derivation of orbit range optimal control policies and resulting
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sets in Chapter 4 directly supports the SSA activities outlined in Table 1.3.

For future work, other instances of Generalized Metric Range Sets will be identified and solved in

the new framework. Also, methods to convert currently intractable problems (such as those suffering from

infinite mapping function slopes) to tractable problems will be pursued. Also, development of a mission

planning tool emphasizing ease-of-use and range set visualization is planned. Further analytical efforts

will investigate the constrained time, constrained fuel range problem that often encountered in operational

settings, and quantification / characterization of error sources related to the numerical scheme used.



Bibliography

[1] L. James, “On Keeping the Space Environment Safe for Civil and Commercial Users,” Statement of
Lieutenant General Larry James, Commander, Joint Functional Component Command for Space, Before
the Subcommittee on Space and Aeronautics, House Committee on Science and Technology, April 28,
2009.

[2] C. M. Cox, E. J. Degraaf, R. J. Wood, T. H. Crocker, “Intelligent Data Fusion for Improved Space
Situational Awareness,” AIAA Space 2005 Conference, September 2005.

[3] G. E. Payton, “Military Space Programs in Review of the Defense Authorization Request for Fiscal Year
2011 and Future Years Defense Program,” Statement of Mr. Gary E. Payton, Deputy Under Secretary
of the Air Force for Space Programs, Presentation to the House Armed Services Committee, Strategic
Forces Subcommittee, United States House of Representatives, April 21, 2010, pg. 11.

[4] Joint Publication 3-14, Space Operations, 6 January 2009, p II-7, §15.

[5] J. Shoemaker, “Space Situational Awareness and Mission Protection,” DARPATech 2005, August 9-11
2005.

[6] N. B. Shah, M. G. Richards, D. A. Broniatowski, J. R. Laracy, P. N. Springmann, D. E. Hastings, “Sys-
tem of Systems Architecture: The Case of Space Situational Awareness,” AIAA Space 2007 Conference,
September, 2007.

[7] S. Kullback, “Information Theory and Statistics,” John Wiley & Sons, Inc., New York, 1959.

[8] T. Kailath, “The Divergence and Bhattacharyya Distance Measures in Signal Selection,” IEEE Trans-
actions on Communication Technology, Vol. Com-15, No. 1., February 1967.

[9] Air Force Instruction 14-124, Predictive Batlespace Awareness (PBA), 25 November, 2008.

[10] D. Oltrogge, S. Alfana, R. Gist, “Satellite Mission Operations Improvements Through Covariance Based
Methods,” AIAA 2002-1814, SatMax 2002: Satellite Performance Workshop, 22-24 April 2002, Laurel,
MD.

[11] T. S. Kelso, “Analysis of the Iridium 33-Cosmos 2251 Collision,” Advanced Maui Optical and Space
Surveillance Technologies Conference, September, 2009.

[12] K. Hill, K. T. Alfriend, C. Sabol, “Covariance-based Uncorrelated Track Association,” AIAA/AAS
Astrodynamics Specialist Conference and Exhibit 18 - 21 August 2008, Honolulu, Hawaii, AIAA 2008-
7211.

[13] A. B. Poore, “Multidimensional Asignment Formulation of Data Association Problems Arising from
Multitarget and Multisensor Tracking,” Computational Optimization and Applications, 3, pp. 27-57,
Kluwer Academic Publishers, Netherlands, 1994.



152

[14] P. Willet, Y. Ruan, R. Streit, “Making the Probabilistic Multi-Hypothesis Tracker the Tracker of
Choice,” 1999 IEEE Aerospace Conference, Page(s):387 - 399 vol.4, 1999.

[15] J. D. Wolfe, J. L. Speyer, “Target Association Using Detection Methods,” Journal of Guidance, Control,
and Dynamics, Vol. 25, No. 6, NovemberDecember, 2002.

[16] Y. Ruan, P. Willet, “Multiple Model PMHT and its Application to the Second Benchmark Radar
Tracking Problem,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 4, October,
2004

[17] B. D. Tapley, B. E. Schutz, G. H. Born, “Statistical Orbit Determination,” Elsevier Academic Press,
Inc, Amsterdam, 2004.

[18] Z. J. Folcik, “Orbit determination using modern filters/smoothers and continuous thrust modeling,”
Thesis (S.M.), Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.

[19] R. P. Patera, “Space Event Detection Method,” Journal of Spacecraft and Rockets, Vol. 45, No. 3,
MayJune 2008, pp. 554-559.

[20] B. S. Aaron, “Geosynchronous satellite maneuver detection and orbit recovery using ground based
optical tracking,” Thesis (S.M.), Massachusetts Institute of Technology, Dept. of Aeronautics and As-
tronautics, 2006.

[21] R. I. Abbot, T. P. Wallace, “Decision Support in Space Situational Awareness,” Lincoln Laboratory
Journal, Vol. 16, No. 2, 2007. pp. 297-335.

[22] H. Chen, G. Chen, D. Shen, E. P. Blasch, and K. Pham, “Orbital Evasive Target Tracking and Sensor
Management,” Dynamics of Information Systems, Chapter 12, pp. 233-255.

[23] A. W. Naylor, G. R. Sell, “Linear Operator Theory in Engineering and Science,” Applied Mathematical
Sciences 40, Springer-Verlag, New York, NY, 2000.

[24] M. J. Holzinger and D. J. Scheeres, “Reachability Results for Nonlinear Systems with Ellipsoidal Initial
Sets,” IEEE Transactions on Aerospace and Electronic Systems, In Press.

[25] J. Marec, “Optimal Space Trajectories,” Studies in Astronautics 1, Elsevier Scientific Publishing Com-
pany, Amsterdam, 1979.

[26] E. D. Gustafson, D. J. Scheeres, “Optimal Timing of Control-Law Updates for Unstable Systems with
Continuous Control,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 3, MayJune, 2009.

[27] D. F. Lawden, “Optimal Trajectories for Space Navigation,” Butterworths Mathematical Texts, But-
terworths, London, 1963.

[28] R. F. Stengel, “Optimal Control and Estimation,” Dover Publications, Mineola, 1994.

[29] D. F. Lawden, “Analytical Methods of Optimization,” Dover Publications Inc., Mineola, NY, 2003.

[30] H. Yan, F. Fahroo, I. M. Ross, “Real-Time Computation of Neighboring Optimal Control Laws,” AIAA
Conference on Guidance, Navigation, and Control, 2002.

[31] A. M. Mathai, S. B. Provost, “Quadratic Forms in Random Variables: Theory and Applications,”
Marcel Dekker, Inc., New York, NY, 1992.

[32] A. Meucci, “Risk and Asset Allocation,” 3rd Printing, Springer-Verlag, New York, NY, 2007.

[33] T. S. Kelso, “Two Years of International Cooperation on Conjunction Mitigation,” 8th US/Russian
Space Surveillance Workshop, April, 2010.

[34] P. Varaiya, “Reach set computation using optimal control,” Proceedings of the KIT Workshop on
Verification of Hybrid Systems, pages 377-383, Grenoble, France, 1998.



153

[35] A. B. Kurzhanski, P. Varaiya, “Dynamic Optimization for Reachability Problems”, Journal of Opti-
mization Theory and Applications, Vol. 108, No. 2, pp 227-251, February 2001.

[36] J. Lygeros, “On the Relation of Reachability to Minimum Cost Optimal Control,” IEEE Conference on
Decision and Control, Las Vegas, December 2002.

[37] J. Lygeros, “On Reachability and Minimum Cost Optimal Control,” Automatica 40, 2004.

[38] A. B. Kurzhanski, I. M. Mitchell, P. Varaiya, “Optimization Techniques for State-Constraineed Control
and Obstacle Problems,” Communicated by G. Leitmann, 2006.

[39] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A Time-Dependent Hamilton-Jacobi Formulation of
Reachable Sets for Continuous Dynamic Games,” IEEE Transactions on Automatic Control, Vol. 50,
No. 7, July 2005

[40] J. Ding, J. Sprinkle, S. S. Sastry, and C. J. Tomlin, “Reachability Calculations for Automated Aerial
Refueling,” IEEE Conference on Decision and Control, Cancun, 2008.

[41] J. Lygeros, C. J. Tomlin, S. S. Sastry, “Controllers for reachability specifications for hybrid systems,”
Automatica 35 (1999) 349-370.

[42] I. Mitchell, A. M. Bayen, and C. J. Tomlin, “Validating a Hamilton-Jacobi Approximation to Hybrid
System Reachable Sets,” HSCC 2001, LNCS 2034, pp 418-432, 2001.

[43] C. J. Tomlin, J. Lygeros, S. S. Sastry, “A Game Theoretic Approach to Controller Design for Hybrid
Systems,” Proceedings of the IEEE, Vol 88, No. 7, July 2000.

[44] Lafferriere, G.; Pappas, G. J., and Yovine, S., “A new Class of decidable Hybrid Systems,” Hybrid
Systems: Computation and Control, Springer, 1999, 137-151

[45] Schmidt, C.; Oechsle, F., and Branz, W., “Research on trajectory planning in emergency situations with
multiple objects,” Proc. of the IEEE Intelligent Transportation Systems Conference, 2006, 988-992.

[46] Prajna, S. and Jadbabaie, “A. Safety Verification of Hybrid Systems Using Barrier Certificates,” Hybrid
Systems: Computation and Control, Springer, 2004, 477-492.

[47] Kloetzer, M., and Belta, C., “Reachability Analysis of Multi-affine Systems,” Hybrid Systems: Compu-
tation and Control, Springer, 2006, 348-362

[48] I. Hwang, D. M. Stipanovic, and C. J. Tomlin, “Applications of Polytopic Approximations of Reachable
Sets to Linear Dynamic Games and a Class of Nonlinear Systems,” Proceedings of the American Control
Conference, Denver, Colorado, 2003.

[49] Girard, A.; Guernic, C. L., and Maler, O., “Efficient Computation of Reachable Sets of Linear Time-
Invariant Systems with Inputs,” Hybrid Systems: Computation and Control, Springer, 2006, 257-271

[50] Girard, A., and Guernic, C. L., “Efficient Reachability Analysis for Linear Systems using Support
Functions,” Proc. of the 17th IFAC World Congress, 2008, 8966-8971.

[51] Althoff, M.; Stursberg, O., and Buss, M., “Reachability Analysis of Nonlinear Systems with Uncertain
Parameters using Conservative Linearization,” Proc. of the 47th IEEE Conference on Decision and
Control, 2008, 4042-4048

[52] A. B. Kurzhanski, P. Varaiya, “Ellipsoidal Techniques for Reachability Analysis,” Hybrid Systems:
Computation and Control, Springer, 2000, 202-214.

[53] A. B. Kurzhanski and P. Varaiya, “On reachability under uncertainty,” SIAM Journal on Control and
Optimization, 41(1):181-216, 2002.



154

[54] A. N. Daryin, A. B. Kurzhanski and I. V. Vostrikov, “Reachability Approaches and Ellipsoidal Tech-
niques for Closed-Loop Control of Oscillating Systems under Uncertainty,” IEEE Conference on Decision
and Control, 2006.

[55] “Applied Optimal Estimation,” Edited by A. Gelb, The M.I.T. Press, Cambridge, 1974.

[56] N. Shishido, C. J. Tomlin, “Ellipsoidal Approximations of Reachabile Sets for Linear Games,” IEEE
Conference on Decision and Control, Syndey, December 2000.

[57] W. H. Fleming, H. M. Soner, “Controlled Markov Processes and Viscosity Solutions, 2nd Ed.” New
York, Springer, 2006

[58] D. F. Lawden, “Analytical Methods of Optimization,” Mineola, NY, Dover Publications, 2003.

[59] H. J. Sussmann, “Geometry and Optimal Control,” Mathematical Control Theory, Springer-Verlag,
1998, 140-198.

[60] M. G. Crandall, L. C. Evans, and P. L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi
equations,” Transactions of the American Mathematical Society, Vol. 282, No. 2, April 1984.

[61] S. Osher, J. Sethian, “Fronts propagating with curvature-dependent speed:Algorithms based on
Hamilton-Jacobi formulations,” Journal of Computational Physics, 79, 12-49, 1988.

[62] J. A. Sethian, “Level set methods: Evolving interfaces in geometry, fluid mechanics, computer vision,
and materials science.” New York: Cambridge University Press, 1996.

[63] A. M. Bayen, C. J. Tomlin, “A construction procedure using characteristics for viscosity solutions of
the Hamilton-Jacobi equation,” IEEE Conference on Decision and Control, Orlando, 2001.

[64] I. M. Mitchell, “A Toolbox of Level Set Methods,” UBC Department of Computer Science Technical
Report TR-2007-11, June 2007.

[65] H. Schaub, J. L. Junkins, “Analytical Mechanics of Space Systems,” Reston, VA, AIAA Educational
Series, 2003.

[66] C. L. Navasca, A. J. Krener, “Solution of Hamilton Jacobi Bellman Equations,” IEEE Conference on
Decision and Control, Sydney, 2000.

[67] C. Navasca, A. J. Krener, “Patchy Solutions of Hamilton Jacobi Bellman Partial Differential Equations,”
In A. Chiuso, A. Ferrante and S. Pinzoni, eds, “Modeling, Estimation and Control, Lecture Notes in
Control and Information Sciences,” 364, pp. 251-270, 2007.

[68] D. T. Greenwood, “Classical Dynamics,” Dover Publications Inc., Mineola, 1977.

[69] M. J. Holzinger, D. J. Scheeres, R. S. Erwin, “On-Orbit Range Computation Using Gauss’ Variational
Equations for Mean Orbit Elements with J2 Perturbations,” 21st AAS/AIAA Space Flight Mechanics
Meeting, New Orleans, Louisiana, February 2011.

[70] R. H. Battin, “An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition,”
AIAA Educational Series, AIAA Inc., Reston, VA, 1999.

[71] W. T. Thomson, “Introduction to Space Dynamics,” Dover Publications Inc., Mineola, NY, 1986.

[72] G. J. J. Ruijgrok, “Elements of Airplane Performance,” Delft University Press, 1990.

[73] Y. Luo, G. Tang, Y. Lei, H. Li, “Optimization of Multiple-Impulse, Multiple-Revolution Rendezvous
Phasing Maneuvers,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, July August 2007.

[74] N. X. Vinh, P. Lu, R. M. Howe, and E. G. Gilbert, “Optimal Interception with Time Constraint,”
Journal of Optimization Theory and Applications, Vol. 66, No. 3, September 1990.



155

[75] N. X. Vinh, E. G. Gilbert, R. M. Howe, R. Sheu, and P. Lu, “Reachable Domain for Interception at
Hyperbolic Speeds,” Acta Astronautica, Vol. 35, No. 1, pp. 1-8, 1995.

[76] J. P. Marec, “Optimal transfers between close elliptical orbits,” NASA T. T. F. 554, 1969.

[77] J. V. Breakwell and W. Heine, “Minimum-impulse time-free transfer between neighboring non-coplanar
elliptical orbits with major axes perpendicular to the line of nodes,” AAS/AIAA Astrodynamics Spe-
cialist Conference, 1968.

[78] D. Xue, J. Li, H. Baoyin, F. Jiang, “Reachable Domain for Spacecraft with a Single Impulse,” Journal
of Guidance, Control, and Dynamics, Vol. 33, No. 3, May June 2010.

[79] P. Kats, “Reachable sets and singular arcs for minimum fuel problems based on norm-invariant systems,”
IEEE Transactions on Automatic Control, Vol. 17, No. 4, pp. 557-559, August 1972.

[80] R. R. Bate, D. D. Mueller, J. E. White, “Fundamentals of Astrodynamics,” Dover Publications Inc.,
Mineola, NY, 1971.

[81] [Submitted] M. J. Holzinger, D. J. Scheeres, J. Hauser, “Optimal Free-Time Reachability Sets Using
Alternate Integration Parameters,” American Control Conference, San Francisco, June 2011.

[82] V. A. Chobotov, “Orbital Mechanics, 2nd Ed.” AIAA Education Series, AIAA Inc., Reston, VA, 2002.

[83] I. M. Ross, “Space Trajectory Optimization and L1-Optimal Control Problems,” in P. Gurfil (ed.),
Modern Astrodynamics, pp. 155-188, Elsevier, Amsterdam, 2006.



Appendix A

Control Distance Appendices



157

A.1 Statistical Properties of Quadratic Forms with Gaussian Vectors

This section parallels a similar derivation in Mathai[31] with notation modified to apply to the problem

presented in this paper. Starting with a random variable P with the quadratic form

P = l +mTV +VTNV (A.1)

where V ∈ N(0,PV ), l ∈ R, m ∈ Rr, and N ∈ S+,r×r. The first task is to factor (A.1) into the form

P = pmin +XTNX. To accomplish this, first define

X = µX +V

giving X ∈ N(µx,PV ). Substituting into (A.1),

P = l +mT
(X − µX) + (X − µX)

T N (X − µX)

= l +mTX −mTµX +XTNX − 2µTXNX + µTXNµX

= (l −mTµX + µTXNµX)

+ (mT
− 2µTXN)X +XTNX

Now µX must be chosen such that m − 2NµX = 0, yielding

µX =
1
2
N†m

The random variable P then reduces to

P = (l −mTµX + µTXNµX) +XTNX

= (l −
1
2
mTN†m +

1
4
mTN†NN†m) +XTNX

= (l −
1
4
mTN†m) +XTNX

Defining

pmin = l −
1
4
mTN†m,

the random variable P is now of the form P = pmin +XTNX. Now, with a random vector X ∈ N(µx,PV ),

we are faced with determining the distribution of

Q = P − pmin = XTNX
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The first step is to transform this problem to a unitary normal distribution. Define

Y = P− 1
2

V X

where P
1
2
V is the matrix square root of PV (more generally, any decomposition of PV such that PV = BBT

is sufficient). The new random vector Y has an expected value of

E [Y] = E [P− 1
2

V X] = P− 1
2

V E [X] = P− 1
2

V µX

The covariance is

E [YYT
] = E [P− 1

2
V XXTP− 1

2
V ]

= P− 1
2

V E [XXT
]P− 1

2
V = P− 1

2
V PV P− 1

2
V = I

Next, a second random vector Z is defined as

Z = Y −P− 1
2

V µX

The random vector Z has a mean of

E [Z] = E [Y −P− 1
2

V µX] = 0

and a covariance of

E [ZZT ] = E [(Y −P− 1
2

V µX)(Y −P− 1
2

V µX)
T

] = I

Such a random vector Z ∈ N(0, I) is said to be a Standard Gaussian Random Variable. The random variable

P − pmin may now be rewritten as

P − pmin =
1
2
XTNX

=
1
2
YTP− 1

2
V NP− 1

2
V Y

=
1
2
(Z +P− 1

2
V µX)

T

P− 1
2

V NP− 1
2

V (Z +P− 1
2

V µX)

Now, choose an orthonormal transformation matrix T that diagonalizes P− 1
2

V NP− 1
2

V , so

TP− 1
2

V NP− 1
2

V TT
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ λl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Note that for orthonormal transformations, T−1
= TT . With this transformation, we now define a random

vector U such that

U = TTZ

The mean of U is

E [U] = E [TTZ] = TTE [Z] = 0

and the covariance is

E [UUT
] = E [TTZZTT] = TT IT = I

Again, U is a Standard Gaussian Random Vector. The random variable P − pmin becomes

P − pmin

=
1
2
(U +TTP− 1

2
V µX)

T

TTP− 1
2

V NP− 1
2

V T

(U +TTP− 1
2

V µX)

=
1
2
(U +TTP− 1

2
V µX)

T

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ λl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(U +TTP− 1
2

V µX)

If the definition

b = TTP− 1
2

V µX =
1
2
TTP− 1

2
V N†m

is made, then we arrive at the simplified form

P − pmin =
1
2
(U + b)

T

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ λl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(U + b)

which can also be re-written as

P − pmin =
1
2

r

∑
i=1

λi (Ui + bi) (A.2)

where r is the size of V. There are several special cases in which the distribution of P − pmin is analytic (for

example, when all λi are 0 or 1 the distribution is a chi-squared distribution), however for the application
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in this paper this is not generally the case. Thus, an approximation of the distribution must be found.

Several expansions which approximate (A.2) are known[31] (power series, Laguerre series, hyper-geometric

functions, and zonal polynomals). Of particular interest is Pearson’s Approximation which matches the first

three moments of the true distribution and models the random variable as a non-central χ2 variable. The

approximation is

P ≈
θ3

θ2
χ2
v −

θ2
2

θ3
+ θ1 + pmin (A.3)

where

θs =
2n

∑
j=1

λsj(1 + sb
2
j), s = 1,2,3

and the degree of freedom v is

v =
θ3

2

θ2
3

A.2 Derivation of The Control Distance Distribution Mean and Variance

This appendix derives analytical first and second moments of the random variable introduced in

Appendix A. The random variable P is written as

P = l +mTV +VTNV

where V ∈ N(0,PV ), l ∈ R, m ∈ Rr, and N ∈ S+,r×r. The first moment is

µP = E [P ] = E [l +mTV +VTNV] = l +E [VTNV]

Examining the last term using index notation,

E [VTNV] = E [ViNijVj]

= NijE [VjVi]

= NijPji

= Tr [NPV ]

Generating

µP = l +Tr [NPV ] (A.4)



161

The second moment of P is defined as

σ2
P = E [P 2

−E [P ]
2
]

After simplification, this may be written as

σ2
P = E [2(mTV)(VTNV) + (mTV)

2
+ (VTNV)

2
−Tr [NPV ]

2
]

Examining each term individually:

E [2(mTV)(VTNV)] = 2E [(miVi)(VjNjkVk)]

= 2E [(miVi)(NjkVkVj)]

= 2miNjkE [VkVjVi]

= 0

E [(mTV)
2] = E [miVimjVj]

= E [miViVjmj]

=miE [ViVj]mj

=miPijmj

= mTPV m

E [(VTNV)
2] = E [ViNijVjVkNklVl]

= NijNklE [ViVjVkVl]

= NijNkl (PijPkl + PikPjl + PilPkj)

= NijNklPijPkl +NijNklPikPjl +NijNklPilPkj

= NijPjiNklPlk +NijPjlNlkPki +NijPjkNklPli

= Tr [NPV ]
2
+Tr [NPV NPV ] +Tr [NPV NPV ]

Note that in the last term both N and PV are symmetric. The second moment in the performance index is

finally written as

σ2
P = mTPV m + 2Tr [NPV NPV ] (A.5)
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Equations (A.4) and (A.5) exactly capture the first and second moments of the random variable P , as

described in Appendix A.



Appendix B

Orbit Range Appendices
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B.1 Analytical Ellipse-to-Ellipse ∆V Calculations

These derivations closely parallel a similar derivation in traditional literature[71, 80]. Given an initial

semi-major axis, eccentricity, and inclination (a1, e1, i1), our goal is to compute the minimum ∆V transfer

to (a2, e2, i2). First the planar portion of the transfer is considered, then the optimal inclination change is

examined.

There are two cases in the planar transfer to consider: A) Initial impulse at periapsis and final impulse

at new apoapsis, and B) Initial impulse at apoapsis and final impulse at new periapsis. Case A is associated

with ’raising’ orbits, and Case B is associated with ’lowering’ orbits. The following identities are used:

ra = a(1 + e)

rp = a(1 − e)

ra
rp

=
1 + e
1 − e

va =

√
µ

ra
(1 − e) =

√
µ

a

1 − e
1 + e

vp =

√
µ

rp
(1 + e) =

√
µ

a

1 + e
1 − e

For case A the periapsis of orbit 1 is the same as the periapsis of the transfer orbit, and the apoapsis of the

transfer orbit is the same as orbit 2 (rp1 = rpt and rat = ra2). The transfer orbit semi-major axis is defined

as

at =
1
2
(ra2 + rp1)

and

ra2

rp1
=
rat
rpt

=
1 + et
1 − et

The initial ∆V1A may be written as

∆V1A = vpt − vp1 =

√
2µ

rp1 + ra2

ra2

rp1
−

√
µ

rp1
(1 + e1)

which may be written as

∆V1A =

√
µ

rp1
(

√
2ra2

rp1 + ra2

−
√

1 + e1)
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Similarly, the second impulse ∆V2A at apoapsis may be written as

∆V2A = va2 − vat =

√
µ

ra2

(1 − e2) −

√
2µ

rp1 + ra2

rp1
ra2

Simplifying produces

∆V2A =

√
µ

ra2

(
√

1 − e2 −

√
2rp1

rp1 + ra2

)

The total ∆VA for Case A is then written as

∆VA = ∣∆V1A∣ + ∣∆V2A∣ (B.1)

Examining Case B the apoapsis of orbit 1 is also the apoapsis of the transfer orbit, and the periapsis of orbit

2 is the periapsis of the transfer orbit (ra1 = rat and rpt = rp2). The transfer orbit characteristics at and et

are defined as

at =
1
2
(ra1 + rp2)

and

ra1

rp2
=
rat
rpt

=
1 + et
1 − et

The first impulse occurs at the apoapsis of orbit 1 and may be written as

∆V1B = va1 − vat =

√
µ

ra1

(1 − e1) −

√
2µ

rp2 + ra1

rp2
ra1

This reduces to

∆V1B =

√
µ

ra1

(
√

1 − e1 −

√
2rp2

rp2 + ra1

)

The second impulse ∆V2B at periapsis is written as

∆V2B = vpt − vp2 =

√
2µ

rp2 + ra1

ra1

rp2
−

√
µ

rp2
(1 + e2)

Which is further reduced to

∆V2B =

√
µ

rp2
(

√
2ra1

rp2 + ra1

−
√

1 + e2)

The total ∆VB for Case B is then

∆VB = ∣∆V1B ∣ + ∣∆V2B ∣ (B.2)
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Lastly, to effect a plane change maneuver it must be determined whether it is optimal to maneuver at the

apoapsis of the initial orbit or the apoapsis of the final orbit. If the maneuver at the first orbit apoapsis is

optimal (if ra,1 ≥ ra,2) then the optimal ∆Vi due to inclination change will be

∆Vi =
RRRRRRRRRRR

2 sin(
i2 − i1

2
)

√
µ

a1

1 − e1

1 + e1

RRRRRRRRRRR

(B.3)

Alternatily, if it is optimal to change inclination and the final orbit apoapsis (if ra,1 < ra,2), the optimal ∆Vi

due to inclination change is

∆Vi =
RRRRRRRRRRR

2 sin(
i2 − i1

2
)

√
µ

a2

1 − e2

1 + e2

RRRRRRRRRRR

(B.4)

The total ∆V cost is the combined cost of either Case A or B in addition to the cost of the optimal ∆Vi.

Combined, Case A and Case B with the optimal inclination change maneuver may be used to verify transfers

from initial orbits defined by (a1, e1, i1) to final orbits defined by (a2, e2, i2).

B.2 Hamilton Jacobi Bellman PDE Viscosity Solution and Level Set Toolbox

To leverage existing software [64] that propagates initial valued range/reachability sets using the HJB

PDE and apply them to the orbit range problem, the following intermediate results and software inputs are

shown. See [64] for further theoretical references regarding the purpose behind these calculations. In the

numerical scheme, the Hamiltonian H is approximated by

Ĥ =H(x,
p+ + p−

2
) − ᾱ(x) [

p+ − p−

2
]

The second term numerically compensates for regions where the adjoint p is not continuous. The adjoint

derivative approximation is given as

αj(x) = max
p∈P

∣
∂H

∂pj
∣

for all j = 1, . . . , n. Recall from (4.35) that the optimal Hamiltonian with the optimal control policy

(f∗, ω∗, β∗, γ∗) applied to this problem is written as

H = (
a

1
2

µ
1
2 (1 − e2)

1
2
)[pa (2a(1 + e cos f) cosβ cosγ)

+pe (
1 − e2

1 + e cos f
(e cos2 f + 2 cos f + e) cosβ cosγ)

+pi (
(1 − e2) cos(ω + f)

1 + e cos f
sinγ)]
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Computing αa(x) using H generates

αa(œ̄tr) =

max
p∈P

∣(
a

1
2

µ
1
2 (1 − e2)

1
2
) [2a(1 + e cos f∗)] cosβ∗ cosγ∗∣

= max
p∈P

(
a

1
2

µ
1
2 (1 − e2)

1
2
) [2a(1 + e cos f∗)] ∣cosβ∗ cosγ∗∣

= max
p∈P

(
a

1
2

µ
1
2 (1 − e2)

1
2
) [2a(1 + e cos f∗)]

Taking P to be the unit sphere, by inspection αa(œ̄tr) is maximized with respect to the adjoints when

(f∗, ω∗, β∗, γ∗) = (0,0,0,0). Then αa(œ̄tr) becomes

αa(œ̄tr)) = (
a

1
2

µ
1
2 (1 − e2)

1
2
)2a(1 + e) (B.5)

For αe(œ̄tr):

αe(œ̄tr) =

max
p∈P

∣ (
a

1
2

µ
1
2 (1 − e2)

1
2
)

(
2(1 − e2)(e + cos f∗)

1 + e cos f∗
) cosβ∗ cosγ∗∣

By inspection αe(œ̄tr) is maximized when (f∗, ω∗, β∗, γ∗) = (0,0,0,0), so αe(œ̄tr) reduces to

αe(œ̄tr) = (
a

1
2

µ
1
2 (1 − e2)

1
2
)2(1 − e2

) (B.6)

For αi(œ̄tr):

αi(œ̄tr) =

max
p∈P

∣(
a

1
2

µ
1
2 (1 − e2)

1
2
)
(1 − e2) cos(ω∗ + f∗)

1 + e cos f∗
sinγ∗∣

= max
p∈P

(
a

1
2

µ
1
2 (1 − e2)

1
2
) ∣

(1 − e2) cos(ω∗ + f∗)
1 + e cos f∗

sinγ∗∣

Determining that γ∗ should be ±π/2:

αi(œ̄tr) =

max
p∈P

(
a

1
2

µ
1
2 (1 − e2)

1
2
)

1 − e2

1 + e cos f∗
∣cos(ω∗ + f∗)∣

choosing f∗ = π and ω∗ = 0 maximizes αi(œ̄tr), yielding

αi(œ̄tr) = (
a

1
2

µ
1
2 (1 − e2)

1
2
)(1 + e) (B.7)
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Taken together, (B.5), (B.6), and (B.7) are the optimal αj , j = 1,2,3 for this problem.


