
A Successive Convexification Optimal Guidance

Implementation for the Pinpoint Landing of Space Vehicles

by

Pádraig S. Lysandrou

B.S. ECE, Cornell University, 2018

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Masters of Science

Department of Aerospace Engineering Sciences

2019

This thesis entitled:
A Successive Convexification Optimal Guidance Implementation for the Pinpoint Landing of

Space Vehicles
written by Pádraig S. Lysandrou

has been approved for the Department of Aerospace Engineering Sciences

Prof. Robert D. Braun

Dr. Jay McMahon

Dr. Hanspeter Schaub

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Lysandrou, Pádraig S. (M.S., Aerospace Engineering)

A Successive Convexification Optimal Guidance Implementation for the Pinpoint Landing of Space

Vehicles

Thesis directed by Prof. Robert D. Braun

Autonomous propulsive spacecraft have enabled the exploration of other planets, moons,

asteroids, and other celestial bodies. Recent advances in real-time optimal guidance algorithms

allow spacecraft to perform precision landing maneuvers enabling a new age of autonomous and

crewed missions. These algorithms compute trajectories that are locally optimal to a given objec-

tive and are able to account for key mission aspects and dynamic constraints. Therefore, these

methods can maximize the agility, and in this case, the divert capability of space vehicles subject

to environmental dispersions while they are maneuvering to their terminal destinations.

This thesis focuses on the implementation and development of a 6 degree-of-freedom (DoF)

free-final-time guidance algorithm that solves the powered descent guidance (PDG) problem sub-

ject to vehicular, environmental, and mission constraints. A solution to this problem utilizing

the successive convexification nonlinear Model Predictive Control (MPC) framework and modified

Rodrigues parameters (MRPs) as the attitude formalism is presented.

Dedication

In no particular order, to my loving family: Plato, Carolyn, Helena, Maria, and animals.

v

Acknowledgements

Foremost, I am thankful to Dr. Robert D. Braun for his support and advising through my

work at Colorado Boulder. I would like to thank Professor Jay McMahon and Professor Hanspeter

Schaub for serving on my committee and for their fulfilling coursework and advising. Additionally,

I would like to thank Dr. Mason Peck for his four years of support at Cornell, which serve as my

foundation in this field.

As an unordered set, I am grateful for the insightful technical discussions I have had with Shez

Virani, Daniel Aguilar-Marsillach, the EsDL research team, Sven Niederberger, Benjamin Chung,

Janis Maczijewski, Behçet Açikmeşe, Miki Szmuk, Skye Mceowen, Ian Garcia, Joe Barnard, and

many more. Similarly, I would like to thank my SpaceX colleagues for grounding me in reality

while letting me play with vehicles of the heavens. Go Falcon, Dragon, and Starlink!

Contents

Chapter

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Literature Review and Related Research . 6

1.4 Brief Introduction to Convex Optimization . 8

1.5 On Successive Convexification . 8

1.6 Statement of Scope . 9

2 The Powered Descent Guidance Problem 10

2.1 Problem Description . 10

2.2 Definitions and Notation . 10

2.3 Vehicle Dynamics . 11

2.3.1 Translational Dynamics . 11

2.3.2 Attitude Dynamics and Formalisms . 12

2.4 Boundary Conditions and State Constraints . 16

2.5 Continuous Time Problem . 18

3 Convex Formulation 20

3.1 Linearization . 20

3.2 Discretization Scheme . 22

vii

3.3 Successive Form, Trust Regions and Relaxations . 25

3.4 Convex Sub-Problem . 27

3.5 Algorithm . 27

4 Guidance Results 30

4.1 Discussion . 30

4.2 Planar Problem Solutions . 30

4.3 Non-Planar Problem Solutions . 33

5 Analysis 36

5.1 Computation Preface . 36

5.2 Temporal Node Count Variation . 37

5.3 Glideslope and Superterminal Constraints . 40

5.4 A Parameter Variation Study . 40

6 Conclusions 43

Bibliography 45

Appendix

A Additional Constraint Considerations 47

A.1 TVC Bandwidth Constraints . 47

A.2 Convexifying the Alignment Constraint . 48

Tables

Table

4.1 Parameters Used For Planar Problem . 31

4.2 Parameters Used for Non-Planar Problem . 35

5.1 Computation Time (seconds) . 37

Figures

Figure

1.1 Landing Trajectory Example . 2

4.1 Planar Guidance Problem: Vehicle Descends In-line with Target 31

4.2 Planar Guidance Problem: Control and Angular Rate During Landing 32

4.3 Planar Guidance Problem: Total Alignment Constraint Met 32

4.4 Non-Planar Guidance Problem: Controls and Angular rate of Landing Vehicle 33

4.5 Non-Planar Guidance Problem: Vehicle Approaches Offset from Target 34

4.6 Non-Planar Guidance Problem: Position and Velocity Histories 35

5.1 Planar Guidance Problem: Final-Time η versus Temporal Node Count K 38

5.2 Planar Guidance Problem: Terminal Vehicle Mass versus K Node Count 38

5.3 Planar Guidance Problem: Final-Time η Convergence for many K Node Count Runs 39

5.4 Planar Guidance Problem: Computation Time versus Temporal Node Count K . . . 39

5.5 Glideslope (GS) and Superterminal (ST) Constraint Solution Comparisons 41

5.6 Glideslope and Superterminal r v and Control Comparisons 41

5.7 Multiple Dispersed Guidance Solutions . 42

Chapter 1

Introduction

1.1 Background

Pin-point landing has been of significant interest for a variety of applications. These include

safely landing scientific payloads and humans on other planets, returning them back to Earth, and

reusable launch vehicles (RLVs). The ability to soft-land a rocket is fundamentally disruptive to

the launch industry and has already showed promise in reducing the cost of getting to space [11].

For planetary exploration, it will be a requirement to land near a site of scientific interest, base,

or refueling stations. It is apparent that having a robust and reliable powered descent guidance

routine will be a necessity for future space transport infrastructure.

Every pinpoint landing problem begins with an entry phase where the vehicle descends

through an atmosphere to a point where the landing regime begins. Many Mars entry, descent,

and landing schemes enter the atmosphere and decelerate via an ablative shield and supersonic

parachutes. The parachute is then cut away to allow powered descent to occur. With atmospheric

qualities being non-deterministic, the position in which the descent phase must begin is uncertain.

Therefore, landing algorithms which maximize the divert capability of the vehicle by minimizing

the fuel consumption of the final landing time are of interest. Powered descent guidance is the

generation of a fuel-optimal trajectory and/or input sequence that takes the vehicle from some ini-

tial state condition to a prescribed final state in a uniform gravitational field with standard vehicle

given thrust magnitude and direction constraints in finite time. Figure 1.1 shows an example of an

RLV in a return-to-launch-site maneuver (RTLS).

2

The convex optimization framework is exploited because it is amenable to real-time, on-

board implementation and has guaranteed convergence properties with deterministic criteria. The

convex programming algorithm to solve powered descent guidance presented herein has non-convex

controls constraints and will be posed as a finite-dimensional second-order cone program (SOCP).

SOCPs have low complexity and can be solved in polynomial time [8].

This thesis focuses on the implementation and development of a 6 degree-of-freedom (DoF)

guidance algorithm that solves the non-convex nonlinear powered descent guidance (PDG) problem.

A method called successive convexification or SCvx is employed. In this method, the algorithm is

initialized with a reference trajectory, then linearized and discretized as an SOCP problem. The

problem is then structured as an iterative solution process where the current problem is linearized

about the previous trajectory. This is done in such a way that the solution satisfies the original

nonlinear dynamics, non-convex constraints, and other state and control constraints.

1000

100

X distance (m)

200

00

Y distance (m)

300

Trajectory (m) over time

400

-50

500

Z
 d

is
ta

n
c
e
 (

m
)

-100-100

600

700

800

Figure 1.1: Landing Trajectory Example

3

1.2 Motivation

Autonomous optimal guidance strategies enable vehicle recovery from a wider range distur-

bances accrued from the entry and descent process. This allows the vehicle to optimally maximize

the divert and transport capability after dispersions, increasing the probability of safe landing and

mission success. The value of these strategies is apparent in the efforts and successes of current

commercial space companies which land and reuse their space launch vehicles. The work presented

herein has a number of desirable traits which make it amenable to implementation in this context.

To sufficiently motivate and further this discussion, let us discuss what factors are important in

the selection of a flight guidance algorithm.

1.2.1 Attributes of a Good Guidance Algorithm

Nominally, the guidance algorithm must be computationally tractable. These routines run

at slower rates than the control and could be computed at the beginning of each phase or run

continuously, correcting for large changes in the system or environment. This is one of the main

reasons guidance tends to be run “offline,” or not during flight, and stored in look up tables (LUTs).

This may also be called “implicit” guidance. These are simply stored solutions for the flight

computer to use a later time. Sophisticated guidance algorithms that have a full understanding of

the problem at hand tend to be quite intensive, therefore it can be beneficial to the engineer to

find fast and simple solution mechanisms.

A guidance algorithm must be tractable not only for speed, but also to reduce resource

congestion. Other processes, namely the navigation and control routines, also require compute

power and should not be throttled. Real-time operating systems have strict schedulers where each

task is guaranteed to run to completion in finite time. If a deadline is unable to be met, a priority

inversion system is put in place to pause one task and move on to another, for single-threaded

operations. Nominally, no algorithm should be so intensive such that it steals resources from other

required computational subsystems.

4

The guidance routine must be accurate to the vehicle, actuator, and environmental dynamics.

This will allow the vehicle to enact motions and controls that are consistent with reality. Often

the routine is not aware of larger perturbations and accrues significant errors. Even offline LUT

methods can fall short here as well, especially when a guidance phase starts with high uncertainty

in the initial condition. In this scenario, another outer control loop fixes and applies compensation

control effort to re-match the guidance solution; this is now not necessarily an “optimal” solution

in the same sense as the initially calculated one.

An online method, or one “explicitly” computed onboard the flight computer during opera-

tion, is a good solution for systems where the initial condition of that phase of flight may disperse

widely. If there is high confidence in the navigation solution at the beginning of the guidance

routine, but it errs from the nominal point, an online method is attractive. This algorithm can

calculate the new, optimal solution for the exact problem at hand. If a rocket is 20 meters from

the nominal position, a new state trajectory and input history can be computed on the spot and

fed to the control loop which start at that new perturbed condition. A LUT method would require

a neighboring optimal control solution to bring it back to the original proposed trajectory which

may not guarantee meeting the mission requirements and constraints.

Optimality is also an important consideration in the generation of trajectories and control

strategies. If a vehicle requires dynamic constraints or has stringent fuel requirements, a sense of

optimality with respect to these key metrics becomes important. For example, these metrics may

manifest in a guidance or control law that is accurate to the dynamics, minimizes fuel, or minimizes

the final time to the target. If a vehicle must land on the surface of a planet at a specific landing

site, a guidance routine which re-targets after significant dispersions and simultaneously minimizes

control usage becomes very attractive. Similarly if a vehicle needs to traverse to a nominal state in

minimum time and error, but maintain robustness to uncertainties, an optimization based approach

is attractive. A trajectory and input sequence that is tailored to these metrics, which are attributed

penalty functions and conjoined in the form of a cost function, is then required.

Time ambiguity is another important factor in a good guidance algorithm. Will this algorithm

5

create a control history which meets your objective with free or fixed-final-time? The former means

that the terminal time is free and is a solution of the algorithm itself: the vehicle will land on Mars

with this trajectory, these inputs, and at exactly 34.5235 seconds from now. The latter first asks

you what time you’d like to be there, then produces the required trajectory. The first tends to

have a larger sense of optimality than the latter, more restricted second problem, but may be lack

robustness close to the terminal state. You could imagine calculating the exact minimum time to

achieve a state, but under disturbances being a fraction late and crashing.

A good algorithm must also be inclusive of mission, vehicular, and environmental constraints.

Do the crew members enjoy 10g’s of acceleration and 45 degrees per second of rotation? Would

you like to stay above the ground and never use more fuel than you have? These are important

pieces of information to have when making a vital decision about the motion and plan of your space

vehicle.

Guarantees of convergence and aforementioned optimality are important for validation and

testing of the GN&C subsystem. What if the algorithm actually never converges in flight, or

the output is entirely suboptimal and performs poorly? Having these deterministic guarantees

mathematically proven becomes very important when it comes to flying critical hardware and

humans.

Fault detection, isolation, and recovery (FDIR) is another critical component. Can the state

machine of the vehicle or craft detect a fault and correctly recover? If a system behaves anomalously,

for some reason, there must be a robust way to detect this and communicate to other subsystems

what has happened. If a guidance routine does not converge, another trajectory or control strategy

must be chosen and used quickly before continued off-nominal performance.

The performance with respect to dispersions and sensitive parameters is also important. The

algorithm performance in the face of randomness must not degrade significantly. Additionally, the

routine should not be overly sensitive to any single parameter. If any algorithm is highly sensitive

to a single parameters, say a valve or hydraulic actuation speed variation, it could significantly limit

the operational dynamic range of that algorithm. These analyses should be performed rigorously

6

a priori before flight implementation.

1.3 Literature Review and Related Research

Optimal control and guidance strategies are generally split into two categories: indirect and

direct methods. Classical indirect methods are applications of calculus of variations and Pontrya-

gin’s Maximum Principle to derive the necessary conditions of optimality, such as adjoint equations

and transversality conditions. Although the optimality of the indirect method can be guaranteed,

solving the resulted two-point boundary value problem is a difficult task, and good initial guesses

of the adjoint variables can be difficult to find or compute.

The direct method does not require explicit derivation of first-order necessary conditions; in-

stead, the original optimal control problem is approximated with a parameter optimization problem

and solved using nonlinear programming (NLP) algorithms, such as sequential quadratic program-

ming (SQP) algorithms. Although large-scale problems can be handled due to the development of

NLP algorithms, the solution process is still time-consuming for complicated problems and depen-

dent upon good initial guesses. Convex optimization approaches are direct optimization methods,

however can be reliably solved in polynomial time [18].

Polynomial Guidance was famously used on the Apollo lunar lander, first landing men on

the moon in 1969. The Apollo guidance computer (AGC) had limited compute capability with the

algorithms requiring manual re-targeting and flight by the mission pilot. This algorithm was an

analytical solution to a boundary valued problem with a fixed time-to-go [12]. The final braking

law is represented by a quartic polynomial function which connect the initial and terminal states.

This result does not satisfy vehicle thrust constraints, and errors introduced by this law must be

compensated for by other calculations. Besides the boundary values, there are no state constraints

and no optimality with respect to fuel or time. Although compute power was so limited, all

lunar powered descent missions were successful thanks to the polynomial and astronaut guidance.

Modified versions of this law are still in the literature with an outer time-of-flight search mechanism

to effectively make it a free final time-to-go algorithm as well as adding in fuel optimality [10].

7

Powered Explicit Guidance or PEG is another prevalent guidance routine. This was devel-

oped to handle all phases of the Space Shuttle exoatmospheric powered flight and their cutoff

constraints [17]. This is a simplified vector form of a linear tangent steering law. It provides robust

guidance for situations which vary widely in thrust-to-weight ratios (TWRs). During the second

stage of Shuttle ascent, the TWRs range from 1 to 3 with altitude, velocity, flightpath angle, and

orbital plane cutoff constraints. The objective of this algorithm is to generate steering and throt-

tle commands such that the cutoff constraints are satisfied in a fuel-efficient manner. This linear

tangent scheme is based on an indirect calculus of variations solution to the minimum-fuel ascent

trajectory problem. The thrust attitude takes the form of λF = λv + λ̇(t − tλ) where λF is the

vector defining the thrust direction, λv is the unit vector in the direction of velocity-to-be-gained,

λ̇ is a vector normal to λv representing the rate of change of λF . The variable t is continuous time

where tλ is a chosen time such that the total velocity change due to thrust is along the vector λv.

To satisfy the required cutoff constraints, the algorithm takes the form of a predictor corrector

mechanism where λv is computed such that the terminal velocity constraints are satisfied.

A backwards recursive version of this steering law was developed for the powered descent

guidance problem as well. This law minimizes the control required for soft landing but does is not

guaranteed to meet all actuator constraints and is naive to the nonlinear dynamics.

Lossless Convexification is a method to produce a perfect convex second order cone program

(SOCP) sub-problem from an originally non-convex problem statement. It is used for convexifying

a non-convex constraint without loosing any precision. This method, championed by Blackmore,

Açikmeşe, and Ploen, is at the heart of the G-FOLD landing algorithm [7] [3] [1]. The Guidance

algorithm for Fuel Optimal Large Diverts, or G-FOLD, is a recent advancement in PDG solutions.

It very quickly calculates a 3DoF fuel optimal divert maneuver with free-final-time, inequality and

equality constraints on the states and inputs, and losslessly convexifying the lower thrust constraint.

Some of these constraints include a glideslope around the target and maximum velocity. The routine

solves a lossless convex SOCP problem iteratively with an outer time of flight search loop to find

the optimal final time. This was successfully demonstrated in a family of flight experiments on

8

Masten Space landing vehicles [2] [19].

Unfortunately, only a couple types of constraint can be convexified in this fashion, where the

remaining nonlinear dynamics are the primary sources of non-convexity. These must be included

into the problem statement with another process.

1.4 Brief Introduction to Convex Optimization

A convex optimization problem is one that takes the following form:

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m

where each of the functions f0, ..., fm : Rn → R are convex. This means they satisfy the generalized

inequality fi(αx+βy) ≤ αfi(x)+βfi(y) ∀x, y ∈ Rn where all α, β ∈ R with α+β = 1, ∀α, β ≥ 0.

Many optimization problems are just special cases of this problem, including the general least-

squares and linear programming problems. Because many problems can be considered a subset

of this framework, using convex optimization is much like using any other optimization tool. If

a problem can be identified or formulated as a convex problem, then one should be able to solve

it efficiently with available solvers. However, recognizing a convex function can be nontrivial and

there exist many tricks for transforming non-convex problems into convex ones. Significant insight

into these mathematical tricks for the formulation of convex problems is excellently documented in

the Boyd and Vandenberghe text [8].

1.5 On Successive Convexification

The successive convexification framework (SCvx) is able to quickly solve optimal control

problems with nonlinear dynamics and non-convex state and control constraints. It does this by

iteratively solving convex optimization sub-problems, obtained by linearizing non-convexities in

dynamics and constraints around the previous iteration solution. These sub-problems employ tech-

niques of virtual control (dynamic relaxation), virtual buffer zones, and trust regions to prevent

9

solution artificial infeasibility and artificial unboundedness. This linearization acts as an approxi-

mation, but the solution is driven to convergence within the user’s tolerances to solve exactly the

originally proposed non-convex optimal control problem with local optimality.

For general real-time autonomy tasks where safety and determinism are prioritized, it is often

much better to find a locally optimal solution quickly rather than a globally optimal solution slowly.

Generally speaking, nonlinear programming tends to be the method of choice for locally optimal

solutions. However, their convergence behaviour is dependent upon the initial guess provided to

the solver and do not offer bounds on computational effort required for convergence. These facts

are at odds with requirements for real-time embedded applications.

One then may turn to convex optimization methods which can be reliably solved in polynomial

time [18]. Sequential convex programming (SCP) offers a way to solve problems with more general

nonlinear dynamics and non-convex constraints. While SCP performs well empirically, no general

convergence results have been reported. SCvx differs from other SCP approaches in many ways,

including proofs for (weak and strong) global convergence and superlinear convergence rate [14].

1.6 Statement of Scope

This thesis describes the nonlinear equations of motion for a space vehicle, poses a guidance

problem, and then modifies it such that it is iteratively solvable. This is done by creating a linear

time varying version of the dynamics, discretizing it, and convexifying the problem constraints.

Once this is done, a reference trajectory is generated as a linearization path for SCvx to

solve the problem with initially. This is then performed iteratively with the trajectory and input

history from the previous run as the linearization path for the next optimization. This is done until

convergence is achieved, determined via user given tolerances. The derivation, performance, and

analysis of this algorithm are shown herein.

Chapter 2

The Powered Descent Guidance Problem

2.1 Problem Description

The goal of the presented algorithm is to generate optimal translational and attitude tra-

jectory profiles that are dynamically feasible and amenable. This means that the modeled vehicle

should abide by all state boundary conditions, actuator constraints, and the proposed dynamics.

This problem will first be defined as a continuous-time non-convex dynamical problem and then

converted to a disciplined convex program. The dynamic, control, initial, and terminal constraints

that must be met throughout the problem will also be discussed and derived.

In order to maximize the divert capability of the vehicle, an objective of minimizing the final

time of the solution is proposed. Although not proven here, this can be considered a proxy to the

minimum-fuel consumption problem, as the non-convex constraint of minimum-thrust and single-

ignition requires that the engine be on for the duration of the landing phase. In this scenario, the

fuel-consumption cost is strictly increasing monotonic, and the sooner the terminal conditions can

be met, the fewer the total cost. A similar free-ignition-time modification can be made to further

decrease this cost and optimize the ignition time [21].

2.2 Definitions and Notation

The FN : {ON , n̂1, n̂2, n̂3} frame defines an inertially fixed Up-East-North reference frame

where the origin ON located at the landing site. This can easily be changed to the local-vertical

local-horizontal (LVLH) or other useful frame definition. The FB : {OB, b̂1, b̂2, b̂3} frame is a body

11

fixed frame where the x-axis is aligned vertically with the vehicle, or aligned with the thrust vector

at zero thrust vector control (TVC) deflection angle. The Y-axis points out of the side of the

cylindrical vehicle and the Z-axis completes the right handed triad.

Here forward, it should also be assumed that the vectorial derivative, shown by ṙ, is an inertial

time derivative. Derivatives in frames other than the inertial frame will be indicated otherwise as

X dr
dt . Any vector shown as X r is in the X frame, and similarly anything without this left superscript

is frameless. Therefore the vector ωB/N is the frameless angular velocity vector of the body frame

with respect to the inertial frame. The notation R, R+, and R++ is used to denote the set of real

values, non-negative real values, and positive real values respectively.

2.3 Vehicle Dynamics

2.3.1 Translational Dynamics

Given that most powered descent maneuvers are done within kilometers of a site, and at

speeds much less than orbital velocities, a simplified gravitational acceleration assumption with a

non-rotation planet is used. Similarly, aerodynamic forces are assumed to be negligible, represen-

tative of a Mars landing scenario. However, as shown in a later section, any nonlinear dynamics

can be incorporated, as they will be represented as a linear time-varying (LTV) system which is

successively convexified to solve the nonlinear problem exactly to a locally optimum solution.

The algorithm as presented has the vehicle actuated by a single gimbaled thruster at the

bottom of the vehicle. It should be stated that the algorithm can readily accommodate other

actuator geometries and configurations. This engine has feasible thrust magnitude and efficiency, as

well as standard gimbal range for agile landing or vertical-takeoff-vertical-landing (VTVL) vehicles.

To be inclusive of actuator dynamics, it is assumed that the engine has maximum and minimum

thrust bounds. Most rocket engines have a minimum throttle percentage, below which the engine

does not perform well or in a stable manner. During the powered descent routine, once ignition

occurs, the engine is not turned off or re-ignited until commanded at the terminal state. This

12

minimum thrust constraint is a source of non-convexity.

It is critical to capture the mass depletion dynamics, proportional to the magnitude of the

thrust generated by the engine. For simplicity, the inertia matrix and the position of the center-

of-mass is assumed to be constant throughout the trajectory although these modifications can also

be included in the dynamic formulation. The constant αṁ, a function of the specific impulse, is

used as the mass depletion parameter. This is the inverse of the mass flow rate, which is the total

flow rate of the propellants to the engine. Additionally, a constant specific impulse throughout the

throttleable region is assumed, which may not always be true. Normally, an engine operating at

a lower thrust than nominal may may be less efficient and have a lower specific impulse. These

effects are small enough to be ignored in this problem statement. Therefore,

αṁ =
1

Ispg0
(2.1)

ṁ(t) = −αṁ
∥∥Fthrust(t)

∥∥
2

(2.2)

With the assumptions made, the translational dynamics and forces acting on the vehicle in the

inertial frame can be derived. They are as follows:

ṙ(t) = v(t) (2.3)

v̇(t) =
Fthrust(t)

m(t)
+ g (2.4)

where g is the static, spherical planetary gravitation vector. As stated previously, any extra

nonlinear terms can be added to this formulation and they will be solved exactly. This may become

useful in the hypersonic entry, supersonic retropropulsive, or any perturbing regimes. Moving

forward, the translational dynamics are assumed to be in the inertial frame and all rotational

dynamics to be in the body fixed frame.

2.3.2 Attitude Dynamics and Formalisms

In this formulation, the vehicle is treated as a rigid body, although solutions with non-rigid

structures could be readily supported. From Euler’s principal rotation theorem, any coordinate

13

reference frame can be brought from an arbitrary initial condition to an arbitrary final orientation

by a single rigid rotation through a principle angle φ about a principal axis ê. This axis is fixed

in both the initial and final orientation. Therefore ê = [C]ê, where [C] ∈ SO(3) is a rotation

mapping in R3×3 taking a vector from the initial orientation to the final, shows that ê is an

unit eigenvector of the [C] transform whose eigenvalue is +1. This rotation mapping matrix, a

direction cosine matrix (DCM), has nine parameters and can be cumbersome although exact. For

ease of manipulation, it is preferred to use mappings with fewer parameters. The right-handed

SO(3) group DCM has a determinant +1 with inverse/transpose both being the inverse mapping:

[BN]T = [NB] = [N ← B]. Similarly, they can be multiplied to encode compound rotations, say,

from sensor frame to body frame to inertial.

Quaternions The attitude formalism initially used in [23] are Euler parameters, or quater-

nions. They to denote the attitude of the vehicle between the FB and FN frames, qB/N (t) on the

unit sphere. This produces the DCM [BN]. This presentation uses the angle-axis form of the

quaternion, noted here:

qB/N ,

 cos(φ2)

ê sin(φ2)

 =


q0

q1

q2

q3

 (2.5)

Note that the Euclidean norm ||qB/N ||2 = 1 must be constrained to the unit sphere at all times.

Lie group methods of integration are normally employed to ensure that the unit norm constraint

is satisfied [5]. It soon becomes apparent that there can become a hemispherical ambiguity in the

quaternion parameter as φ grows larger than π. However, this is resolved as the sign of the q0

parameter can be checked to switch from long to short rotation quaternions. Similarly, quaternion

symmetries are such that q and −q produce the same rotation mapping [20]. As it will become

14

useful later, the quaternion-to-DCM mapping is:

CB/N = [BN] =


1− 2(q2

2 + q2
3) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) 1− 2(q2
1 + q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q2
1 + q2

2)

 (2.6)

In attitude dynamics ωB/N (t) ∈ R3 is used to denote the angular velocity vector of the vehicle

rigid body frame with respect to the inertial frame. This should recognized as the nominal output

of your gyroscope, the body frame angular rate. The × operator in
[
r×
]

is used to denote the skew

symmetric matrix form of the vector r. The inertia tensor instantiated in the FB frame, about the

body center of mass, is written as B[Ic] ∈ R3×3. The body frame inertia matrix is the solution to

the B[Ic] =
∫
B −[r×][r×]dm where r are the vectors to each infinitesimal mass element from the

center of mass. This matrix must be symmetric positive semi-definite and abide by the triangle

inequality.

Quaternions are non-unique and non-singular with their kinematic differential equation being

elegant and bilinear 2.7. These can be attractive for problems where the dynamics are linearized.

q̇B/N =
1

2
Bw(BωB/N)qB/N =

1

2
Bq(qB/N) BωB/N (2.7)

where the Bw and Bq matrices are defined as

Bw(ωB/N) =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 Bq(ωB/N) =


−q1 −q2 −q3

q0 −q3 −q2

q3 q0 −q1

−q2 q1 q0

 (2.8)

Modified Rodrigues Parameters Another minimal attitude formalism are the Modified

Rodrigues Parameters (MRPs). MRPs are a popular mechanism which forms a three parameter

set without a norm constraint. They are derived from quaternions, as shown in 2.9

σi =
qi

1 + q0
i = 1, 2, 3 (2.9)

σB/N = [σ1 σ2 σ3]T = tan
φ

4
ê (2.10)

15

taking an argument of qB/N . The reverse mapping is simply q0 = 1−σ2

1+σ2 and q1:3 = 2σ1:3
1+σ2 where σ2

here forward will represent the norm squared of the MRP. With MRPs, small angle approximations

can be made for a wider range of displacements. It is clear that there exists a singularity at ±2π.

However, handling this singularity, in a computational sense, is very simple. A switch can be

performed to the MRP shadow set when the angular displacement is φ ≥ π and define the shadow

set as σS = −σ
σ2 = tan φ−2π

4 ê. Simply:

Algorithm 1 MRP Switching

1: procedure MRP switch(σk)
2: if ‖σk‖ > 1 then
3: σk = −σk/σ2

k

4: end if
5: end procedure

However, if the scenario is constrained to never encounter a full rotation, this structure is

not required. In optimization routines where large angular displacements must be made, it could

be possible to encode switches as a state triggered constraint (STC) [21]. It should be recognized

that the MRP-to-DCM mapping will be required:

CB/N = [BN] = I3 +
8[σ×]2 − 4(1− σ2)[σ×]

(1 + σ2)2
(2.11)

taking an argument of σB/N and where I3 is the identity matrix. The kinematic differential equation

is 2.12

σ̇ =
1

4
[(1− σ2)I3 + 2[σ×] + 2σσT] BωB/N =

1

4
Bσ(σ) BωB/N (2.12)

as a function of the body frame vehicle angular rate.

Differentiating the angular momentum vector of system, and making the rigid body assump-

tion, an equation of motion emerges:

Ḣ = Lc = [Ic]ω̇ + [ω×][Ic]ω (2.13)

where the torque acting on the vehicle is written as Lc(t) ∈ R3 in the body frame. Rearranged, the

16

canonical Euler rotational equations of motion appears:

ω̇ = [Ic]
−1(Lc − [ω×][Ic]ω) (2.14)

While the moment of inertia matrix would normally be determined from the design of the vehicle,

a cylinder rotating about it’s center with a homogeneous mass distribution is assumed for this

presentation. The following expression is used for the inertia matrix:

[Ic] =


1
2mr

2 0 0

0 1
12

(
3r2 + h2

)
0

0 0 1
12

(
3r2 + h2

)
 (2.15)

2.4 Boundary Conditions and State Constraints

The boundary conditions for the proposed guidance routine are simple. The state vector

initial and desired terminal condition of the vehicle must both be hard boundary constraints. The

initial boundary constraint is set at the initialization of the routine. Therefore, they are:

m(0) = m0,
N r(0) = r0,

Nv(0) = v0, σB/N (0) = σ0,
BωB/N (0) = ω0 (2.16)

Similarly, the terminal state boundary constraint is the following:

N r(0) = 0, Nv(0) = 0, σB/N (0) = 0, BωB/N (0) = 0 (2.17)

leaving the final mass unconstrained and assuming the landing site to be the origin. An upright

attitude is also assumed, given that the vehicle has landing hardware. Of course these can be

modified to fit arbitrary landing requirements. The problem proposed in [22] does not constrain

the initial attitude of the vehicle, but it is constrained in this formulation. There is good reason

to leave this unconstrained, as the optimization would have less variables to include and would

therefore reduce computation time. Additionally, it may not be a bad assumption as the attitude

control bandwidth is normall larger than the translational control bandwidth.

Now, let us look at the state constraints that must be met. The vehicle propulsion system is

limited in fuel which manifests itself as this inequality constraint:

mdry −m(t) ≤ 0 (2.18)

17

Let us apply a glide-slope constraint such that the vehicle approaches the landing point from above,

limiting large lateral diverts in the terminal phase. A convex constraint is formed using the angle

γgs. This becomes a simple geometrical argument that tan γgs ≤
rUp

‖[rEast rNorth]‖ . This is formed

with the following:

tan γgs||[n̂2 n̂3]T r(t)||2 − n̂T1 r(t) ≤ 0 (2.19)

This creates an upward facing cone about the landing point that the vehicle must not lie outside of.

This type of convex constraint can also be useful in avoiding rocky terrain and enforcing a landing

from directly above a target, minimizing lateral movement close to the ground. Additionally, one

could implement super-terminal velocity constraints which constrain the lateral movement to zero

as the vehicle approaches the landing position.

It is also helpful to restrict the attitude of the vehicle such that it does not tilt over a prescribed

angular displacement. This could be to maintain visibility for terrain relative navigation sensors or

to give human passengers visibility over the terrain or landing surface. Therefore the angle between

the inertial frame “up” unit vector and the bore-sight body vector of the vehicle can be constrained.

The constraint derivation begins with b̂1 · n̂1 ≥ cosψmax:[NB]

B
1

0

0



T N

1

0

0

 ≥ cosψmax (2.20)

this selects the (1, 1) element of the MRP-to-DCM matrix in equation 2.11. Therefore the constraint

becomes:

1− 8(σ2
2 + σ2

3)

(1 + σ2)2
≥ cosψmax (2.21)

This quaternion version of this same constraint is 1−2(q2
2 +q2

3) ≥ cos(ψmax). The quaternion unity

identity must be used in this derivation. The quaternion definition is convex, but the MRP version is

not. However, this issue can be circumnavigated by using the direct MRP identity σB/N = tan φ
4 ê.

Therefore, the entire MRP can be constrained such that the vehicle does not exceed ψmax radians

18

in total angular displacement from the zero angle. The zero MRP is defined as the upward unit

vector in the target inertial frame.

∥∥∥σB/N (t)
∥∥∥

2
≤ tan

(
ψmax

4

)
(2.22)

Nominally the vehicle should not have large angular rates throughout the descent and landing.

This can simply be constrained as well.

∥∥∥ωB/N (t)
∥∥∥

2
≤ ωmax (2.23)

Finally the commanded thrust magnitude must be constrained. As stated before, engines have

a minimum and maximum thrust region [Tmin, Tmax] ∈ R++ in which they operate. Additionally,

recall the single-ignition assumption. Finally, the engine thrust vector control system has a dynamic

range with limited angular deflection δTVCmax .

0 < Fmin ≤
∥∥Fthrust(t)∥∥2

≤ Fmax (2.24)

cos(δTVCmax)
∥∥Fthrust(t)∥∥2

≤ b̂T1 Fthrust(t) (2.25)

It is clear that the upper thrust bound is convex. However, the lower bound creates a non-convex

constraint [3]. Other formulations show this can be losslessly convexified, but in the problem

implemented herein, the nonconvexity will be handled via linearization in the discretization step

discussed in a later section.

2.5 Continuous Time Problem

Putting this all together, let us pose the continuous time optimization problem. In this form,

it is non-convex and requires conditioning to work into the convex programming framework. As

stated, the objective is to minimize the time-of-flight required to get to the terminal conditions

subject to the aforementioned constraints, dynamics, and boundary conditions. The state vector,

thrust commands, gimbal angles, and final time are optimization variables and are considered the

solution to this problem. This is posed in Problem one: 2.5.

19

Problem 1: Continuous Time Non-Convex Free-Final-Time

Cost Function:

min
x, Fth

tf

Boundary Conditions:

m(0) = m0,
N r(0) = r0,

Nv(0) = v0, σB/N (0) = σ0,
BωB/N (0) = ω0

N rT = 0, NvT = 0, σB/NT = 0, BωB/NT = 0

Dynamics:

ṁ(t) = −αṁ
∥∥Fth(t)

∥∥
2

N ṙ(t) = v(t)

N v̇(t) =
[NB(σ)] BFth(t)

m(t)
+ Ng

σ̇B/N =
1

4

[
(1− σ2)I3 + 2[σ×] + 2σσT

]
BωB/N

Bω̇B/N = [Ic]
−1
(

[r×COM] BFth(t)− [ω×][Ic]ω
)

State and Control Constraints:

mdry −m(t) ≤ 0

||[n̂2 n̂3]T r(t)||2 tan γgs − n̂T1 r(t) ≤ 0∥∥∥σB/N (t)
∥∥∥

2
≤ tan

(
ψmax

4

)
∥∥∥ωB/N (t)

∥∥∥
2
≤ ωmax

0 < Fmin ≤
∥∥Fth(t)

∥∥
2
≤ Fmax

cos(δmax)
∥∥Fth(t)

∥∥
2
≤ b̂T1 Fth(t)

Chapter 3

Convex Formulation

Now the convex form of Problem 1 shall be derived. The non-convex continuous free-final-

time problem is converted into a convex fixed-final-time problem. This will be a second order

cone sub-problem. This sub-problem is solved repeatedly to convergence or “successively.” This

successive process turns each subproblem into a larger free-final-time algorithm.

3.1 Linearization

Let us define the state vector x(t) ∈ R14×1 and our control vector u(t) ∈ R3×1:

x(t) ,
[
m(t) N rT (t) NvT (t) σTB/N (t) BωTB/N (t)

]T
(3.1)

u(t) , BFth(t) (3.2)

Therefore the nonlinear dynamics can be expressed in the following form:

d

dt
x(t) = f(x(t),u(t)) =

[
ṁ(t) N ṙT (t) N v̇T (t) σ̇TB/N (t) Bω̇TB/N (t)

]T
(3.3)

In order to formulate our guidance problem with a free-final-time objective, time dilation is

introduced. Let us evaluate our dynamics on a normalized trajectory time variable τ ∈ [0, 1]. No

matter the resolution of the optimization, the terminal value will end at τ = 1. A differentiation

based on this variable is then used to scale the time back and forth, leaving the unscaled final time

as an optimization variable. Applying the chain rule of differentiation:

f(x(t),u(t)) =
d

dt
x(t) =

dτ

dt

d

dτ
x(t) =

1

η

d

dτ
x(t) (3.4)

21

Let us now translate between the two by using the dilation coefficient η which is define as

η ,

(
dτ

dt

)−1

(3.5)

This η will become a variable in the convex subproblem that acts as the non-dimensionalized

final time. It is a scaling factor that translates between real work differential time and the normal-

ized version used for our algorithm. The nonlinear dynamics, taking advantage of this normalized

time, are then written as:

x′(τ) ,
d

dτ
x(τ) = ηf(x(τ),u(τ)) = g(x(τ),u(τ), η) (3.6)

Taking a first-order Taylor series approximation of the nonlinear dynamics proposed in prob-

lem one (2.5), a linear time-varying system of equations is written to use in our algorithm shown in

3.7. These dynamics will be instantiated at reference values (x̂, û, η̂) at each time, together being

referred to as the linearization path.

x′(τ) = g(x̂(τ), û(τ), η̂) +
∂g

∂x

∣∣∣∣
x̂,û,η̂

(x− x̂) +
∂g

∂u

∣∣∣∣
x̂,û,η̂

(u− û) +
∂g

∂η

∣∣∣∣
x̂,û,η̂

(η − η̂) (3.7a)

= η̂f(x̂(τ), û(τ)) + η̂
∂f

∂x

∣∣∣∣
x̂,û

(x− x̂) + η̂
∂f

∂u

∣∣∣∣
x̂,û

(u− û) + f(x̂(τ), û(τ))(η − η̂) (3.7b)

= ηf(x̂(τ), û(τ)) + η̂
∂f

∂x

∣∣∣∣
x̂,û

(x− x̂) + η̂
∂f

∂u

∣∣∣∣
x̂,û

(u− û) (3.7c)

= Σ(τ)η +A(τ)(x− x̂) +B(τ)(u− û) (3.7d)

= Σ(τ)η +A(τ)x +B(τ)u + z(τ) (3.7e)

This expression is simplified by breaking the Taylor expansion intro matrix subcomponents.

A(τ) , η̂
∂f

∂x

∣∣∣∣
x̂,û

(3.8)

B(τ) , η̂
∂f

∂u

∣∣∣∣
x̂,û

(3.9)

Σ(τ) , f(x̂(τ), û(τ)) (3.10)

z(τ) , −A(τ)x̂−B(τ)û (3.11)

22

3.1.1 Convexifying the Minimum Thrust Constraint

Let us now tackle the last source of non-convexity: the non-zero lower bound on actuator

thrust. Let us define an R3 → R mapping function: g(u(τ)) = Fmin−
∥∥u(τ)

∥∥
2
≤ 0. Taking the first

order Taylor series linear approximation, the following convexified constraint formulation becomes:

g(u(τ)) = Fmin −
∥∥û(τ)

∥∥− û(τ)T∥∥û(τ)
∥∥(u(τ)− û(τ)) ≤ 0 (3.12)

= Fmin −
û(τ)T∥∥û(τ)

∥∥u(τ) ≤ 0 (3.13)

= Fmin − Ξ(τ)u(τ) ≤ 0 (3.14)

this leads us to the linear, convexified constraint Fmin ≤ Ξ(τ)u(τ) requiring the linearization path

value û(τ). This means that each iteration of the algorithm will use the input sequence path from

the previous iteration to satisfy this constraint.

3.2 Discretization Scheme

The final step to fitting the dynamics, state, and control constraints to an optimization form

is to cast the problem as a finite dimensional discretization. This finite dimensional problem is

chosen to occur over K ∈ Z evenly separated points with respect to the normalized trajectory time

τ . The index set is defined as K ∈ ZK and K− ∈ ZK−1 for the state and input histories as the

following:

K , {0, 1, · · · ,K − 1}

K− , {0, 1, · · · ,K − 2}

Given that the trajectory time is normalized on the interval τ ∈ [0, 1], the discrete time step at

point k is defined as such:

τk ,
k

K − 1
, ∀k ∈ K (3.15)

23

For the sake of implementation, a first-order-hold linear scaling is applied to the controls for each

time step. Over the interval τ ∈ [τk, τk+1], the u(τ) is expressed in terms of the uk and uk+1:

u(τ) , αk(τ)uk + β(τ)uk+1 (3.16)

The input is spread linearly, on a first order relationship, from the index position k to the next

known control value at k + 1 in the control history. This also allows us to consider controller

interpolation scheme a priori if used in a feed forward regime. The successive convexification

algorithm was tested with a number of discretization methods on state and input, where first order

hold (FOH) and Legendre-Gauss-Radau (LGR) collocation methods were found to be the most

amenable [13]. These two provided the fastest computation times with good performance. The

previously defined constants follow the following form:

dτ =
1

K − 1
(3.17)

αk(τ) =
dτ − τ
dτ

(3.18)

βk(τ) =
τ

dτ
(3.19)

The state transition matrix (STM) of the dynamics Φ(τk+1, τk) is used to translate the process

from a state at time k to future state at k + 1. This matrix assumes no input is being imparted,

but a convolution can be used to describe the time varying input. The STM follows the dynamics:

d

dτ
Φ(τ, τk) = A(τ)Φ(τ, τk), ∀k ∈ K (3.20)

Additionally, the STM has the semigroup, inverse, and identity properties which become useful in

the derivation:

Φ(t, s) = Φ(t, γ)Φ(γ, s) (3.21)

Φ(t, s)−1 = Φ(s, t) (3.22)

Φ(s, s) = In×n (3.23)

for arbitrary timing parameters t, γ, s. Let us take advantage of this property during the discretiza-

tion steps to minimize some computation. A general homogeneous solution for a system defined by

24

ẋ using the STM is the following:

given that x(τ) = Φ(τ, τk)x(τk) (3.24)

d

dτ
x(τ) = Φ̇(τ, τk)x(τk) = A(τ)x(τ) (3.25)

= A(τ)Φ(τ, τk)x(τk) (3.26)

Integration leads to the following fact:

x(ξ) = x(τk) +

∫ ξ

τk

A(ξ)Φ(ξ, τk)x(τk)dξ (3.27)

=

(
In×n +

∫ ξ

τk

A(ξ)Φ(ξ, τk)dξ

)
x(τk) (3.28)

Therefore the arbitrary state transition mapping from time τk to ξ can be represented as the

following:

Φ(ξ, τk) = In×n +

∫ ξ

τk

A(ξ)Φ(τ, τk)dξ, ∀ξ ∈ [τk, τk+1] (3.29)

Recall our continuous LTV system dynamics expression x′(τ) = A(τ)x+B(τ)u+z(τ)+Σ(τ)η.

Employing our control FOH, let us form this as the following discrete time system:

xk+1 = Fkxk +G−k uk +G+
k uk+1 + z̄k + Σ̄kη (3.30)

Converting the continuous time dynamics to discrete time dynamics, a series of convolution inte-

grals is performed to define the impact of the transformations over each discrete time step. The

continuous linear time invariant discretization form is usually written as G =
∫ dt

0 eAτdτB, but given

25

the LTV dynamics and our FOH control assumption, this is reformulated as:

Fk , Φ(τk+1, τk) (3.31a)

G−k ,
∫ τk+1

τk

Φ(τk+1, ξ)αk(ξ)B(ξ)dξ (3.31b)

, Fk

∫ τk+1

τk

Φ−1(ξ, τk)αk(ξ)B(ξ)dξ (3.31c)

G+
k , Fk

∫ τk+1

τk

Φ−1(ξ, τk)βk(ξ)B(ξ)dξ (3.31d)

Σ̄k , Fk

∫ τk+1

τk

Φ−1(ξ, τk)Σ(ξ)dξ (3.31e)

z̄k , Fk

∫ τk+1

τk

Φ−1(ξ, τk)z(ξ)dξ (3.31f)

It should be noted that the number of temporal nodes K chosen for this calculation, where

K ∈ ZK , does not affect the accuracy of the solution. While the solution is accurate to the problem

statement, it may be suboptimal by a small amount to the same problem evaluated at a higher

node count K. This is visited in the analysis section later in this report; it is shown that, for a

typical landing problem, the difference in key objectives is inconsequential. More simply put, an

optimization solution where K = 10 will still accurately land the vehicle within all the constraints

defined, but may do so in more time and with larger cost than the same problem solved at K = 25.

However, the former is computed faster and often produces a total cost marginally higher than the

better resolution problem. Note that these are effectively two different problems despite having

similar objective and constraint formulation.

3.3 Successive Form, Trust Regions and Relaxations

In order to solve a non-convex problem, a sequence of related convex subproblems must

be iteratively solved. However, before a concluding framework can be reached, trust regions and

dynamic relaxations must be considered. In order to make sure that this successive framework

stays bounded and feasible through this convergence process, the divergence of state and inputs

must be bounded from one iteration to another. Unbounded problems can arise from constraints

that admit an unbounded cost. To mitigate this issue, the cost function is augmented with soft

26

trust regions about the previous iterate’s information. Let us define these deviations at iteration i

as such:

δxik , xik − xi−1
k (3.32)

δuik , uik − ui−1
k , ∀k ∈ K (3.33)

δηi , ηi − ηi−1 (3.34)

Let us then fabricate the following constraints with ∆̄i ∈ RK and ∆i
η ∈ R

δxik · δxik + δuik · δuik ≤ ∆̄i
k (3.35)

δηi · δηi ≤ ∆i
η (3.36)

Now wi∆
∥∥∆̄i

∥∥ + w∆η ||∆i
η|| is appended to the cost function to minimize input, state, and

final time deviations and keeping their deviation bounded via constraint, where wi∆ and w∆η are

weighting scalars depending on the preferences of the scenario. Because the norm is bounded, these

are considered soft constraints.

Given that the trust regions are centered about previous points (xi−1
k ,ui−1

k , ηi−1), the Jaco-

bian must be evaluated about the nonlinear trajectory beginning at xi−1
k . Then the FOH input

vector u(τ) is used. Doing this ∀k ∈ K defines the aforementioned linearization path (x̂, û, η̂).

Dynamic relaxation variable can now be added to discount artificial infeasibility. This is en-

countered during the convergence process when the linearization becomes infeasible. For example,

if the dynamics are linearized about unrealistic conditions, the problem becomes dynamically incon-

sistent and will not produce solution. The control is modified such that subproblem solutions are

guaranteed to have non-empty feasible sets. This is encountered during the first couple iterations

of a successive convexification due to poor initial trajectory or time-of-flight estimation. To get rid

of this issue, dynamic relaxation is employed, where a slack variable is added to the dynamics in

order to “make room” for the iteration to proceed. This can also be thought of as a virtual control

or dynamic padding. However, one can guess that this will inevitably be something to minimize in

the cost function in order to make sure that our final trajectories are as dynamically consistent as

27

possible. Therefore, let us now write our dynamics as follows:

xik+1 = F ikx
i
k +G−,ik uik +G+,i

k uik+1 + z̄ik + Σ̄i
kη
i + νik (3.37)

The right super script i indicates the iterate of the algorithm, where the subscript k means the

ordered parameter entrance in our array shaped by K.

As ν will be in the augmented cost function, the following virtual control history vector

∈ RK−1 will be referred to:

νi =
[
νi0
T · · · νiK−2

T
]T

(3.38)

The cost function is augmented again with wv
∥∥νi∥∥

1
so that the magnitude of the entire

history of ν is penalized. As the iteration continues, this value is minimized, making the solution

more dynamically feasible and true to the linear system. Additionally, the magnitude of this norm

is indicative of a final solution in the successive iteration process.

3.4 Convex Sub-Problem

Now that the proposed problem has been linearized and convexified, the components can be

assembled as the full free-final-time problem as shown in problem 3.5 where the following objective

function is used:

min
ηi,uik

ηi + wi∆||∆̄i||2 + w∆η ||∆i
η||1 + wv||ν̄i||1 (3.39)

3.5 Algorithm

The goal is for the successive convexification algorithm 2 to continue iterating until ∆tol and

νtol are met. These are compared to by the magnitude of each vector and are checked at the end

of each iteration of the routine. Additionally, to ensure boundedness on the trust regions and to

prevent an admitted unbounded cost, the cost weighting of the trust regions is increased after each

iteration.

28

Algorithm 2 Successive Convexification

1: procedure PDG SCvx(xref , uref , ηref)
2: An initial reference trajectory must be generated, as a linearization path for the first iterate

of SCVx. In this prototype case, a simple routine which linearly spans many states from initial
to terminal condition is performed, although it is recommended to use a more sophisticated
approach. The following is used in this demonstration:

3: for k ∈ (1 : K) do
4: a1 = (K − k)/K;
5: a2 = k/K;
6: mk = (a1 ∗m0 + a2 ∗mK)
7: rk = (a1 ∗ r0 + a2 ∗ rK)
8: vk = (a1 ∗ v0 + a2 ∗ vK)
9: σk = [0 0 0]T

10: ωk = [0 0 0]T

11: x[:, k] = [mk rk vk σk ωk]
T

12: u[:, k] = −g ∗mk

13: end for
14: while ||∆|| ≥ ∆tol && ||ν|| ≥ νtol && i ≤ imax do
15: Compute Āi−1

k , B̄i−1
k , C̄i−1

k , Σ̄i−1
k , z̄i−1

k from xi−1
k ,ui−1

k , ηi−1

16: Solve Problem 2 using xi−1
k ,ui−1

k , ηi−1, Āi−1
k , B̄i−1

k , C̄i−1
k , Σ̄i−1

k , z̄i−1
k

17: Store the newly found xik,u
i
k, η

i as linearization path for the next iterate.
18: wi+1

∆ = 1.7 ∗ wi∆
19: if i > iν && ||ν|| > νinfeasible then
20: Break out of this guidance loop, as the problem is likely infeasible as proposed.
21: Initialize fault recovery procedure.
22: end if
23: i+ +;
24: end while
25: return x,u
26: end procedure

29

Problem 2: Discretized Convex Fixed-Final-Time Sub-Problem (ith iteration)

Cost Function:

min
ηi,uik

ηi + wi∆||∆̄i||2 + w∆η ||∆i
η||1 + wv||ν̄i||1

Boundary Conditions:

m0 = m0,
N r0 = r0,

Nv0 = v0, σB/N 0
= σ0,

BωB/N 0
= ω0

N rK−1 = 0, NvK−1 = 0, σB/NK−1
= 0, BωB/NK−1

= 0

Dynamics:

xik+1 = F ikx
i
k +G−,ik uik +G+,i

k uik+1 + z̄ik + Σ̄i
kη
i + νik

State and Control Constraints:

mdry −mk ≤ 0

||[n̂2 n̂3]T rk||2 tan γgs − n̂T1 rk ≤ 0∥∥∥σB/N k∥∥∥2
≤ tan

(
ψmax

4

)
||ωB/N k ||2 ≤ ωmax

Control Constraints:

Fmin ≤ Ξiku
i
k

||uik||2 ≤ Fmax

cos(δmax)||uik||2 ≤ b̂T1 uik

Trust Regions:

||δxik
T
δxik + δuik

T
δuik||2 ≤ ∆̄i

k

||δηi||2 ≤ ∆i
η

Chapter 4

Guidance Results

4.1 Discussion

The successive convexification routine is a very valuable tool in that it can quickly find

dynamically feasible trajectories for a wide set of vehicle constraints and parameters. It could be

used as an offline tool, or a receding horizon feed-forward guidance strategy where the temporal

resolution increases as the terminal state constraint gets closer. It should be stated that trajectory

computation employs non-dimensionalized factors for numerical stability. Tables like 4.1 have been

included for each of the problem statements given where all real-world values can be calculated

using factors UL, UT and UM .

4.2 Planar Problem Solutions

Let us first study a case where the vehicle has a velocity in-plane with the terminal condition,

allowing one dimension of motion to be neglected. This is the nominal scenario where a vehicle is

coming in for landing and has pre-conditioned its state to do so. This is apparent in the landing of

first stages, where the out-of-plane motion is canceled as much as possible and an in-plane maneuver

is performed to adjust the vehicle to meet the landing pad. Figure 4.1 shows the SCvx guidance

solution to a problem with a set of initial conditions in-plane with the landing point; the vehicle

has a position of 600 meters North and 500 meters east with eastward velocity of -120m/s. The

incoming velocity is higher than nominal, and so the optimal control solution is to maximize the

divert capability such that the lateral velocity is arrested while the attitude is upright at the final

31

time.

Table 4.1: Parameters Used For Planar Problem

Param Units Value
Ng UL/U

2
T −0.108n̂1

αṁ - 0.0738
mwet UM 1
mdry UM 0.277
N r0 UL (0.76, 0.64, 0)
N v0 UL/UT (0,−0.48, 0)
σB/N 0

- (0, 0, 0.32)
ωB/N 0

rad/UT (0, 0, 0)

Param Units Value
γgs deg 45
δmax deg 10
Fmax UF 0.164
Fmin UF 0.024
ψmax deg 85
ωmax deg/UT 43.84
UM kg 408.233
UL m 781.02
UT s 3.132

-100 0 100 200 300 400 500

X distance (m)

0

100

200

300

400

500

600

Z
 d

is
ta

n
c
e
 (

m
)

Trajectory (m) over Time

Figure 4.1: Planar Guidance Problem: Vehicle Descends In-line with Target

The control solution in figure 4.2 shows how maximum thrust is used for nearly the entire

duration where lateral thrust is used for attitude control while simultaneously lowering altitude

control. The commanded TVC deflection angles stay within our proposed constraints. Our thrust

magnitude and angular rate constraints are also met throughout the duration of the flight. For a

fast pitch-over maneuvers like this, it is hard to find a trajectory where the vehicle angular rate

maintains within reasonable boundaries; this scenario is restricted to below 14 deg/s. All initial

32

0 5 10 15 20 25

Time (s)

0

5

10

T
V

C
 A

n
g
le

 (
d
e
g
) TVC Total Angle (deg) vs Time

TVC

constraint

0 5 10 15 20 25

Time (s)

0

2000

4000

6000

F
o
rc

e
 (

N
)

Thrust Magnitude (N) vs Time

Thrust

constraint

0 5 10 15 20 25

Time (s)

-20

0

20

B
/N

 (
d
eg

/s
)

B/N
 (deg/s) vs Time

B/N

constraint

Figure 4.2: Planar Guidance Problem: Control and Angular Rate During Landing

0 5 10 15 20 25

Time seconds

0

20

40

60

80

100

A
li

g
n
m

en
t

an
g
le

 (

d
eg

)

Alignment angle (deg) over Time

constraint

Figure 4.3: Planar Guidance Problem: Total Alignment Constraint Met

33

conditions and constraints are shown in 4.1.

The vehicle following the planar path in figure 4.1 reached it’s terminal state after 22.4 seconds

and with a final mass of 373.62kg with a starting mass of 408.23kg only using 11.7% of it’s fuel.

Additionally, the total alignment MRP constraint is shown to meet the requirement throughout

the flight 4.3.

4.3 Non-Planar Problem Solutions

Now let us look at a non-planar problem where the initial condition of the vehicle is off-

nominal and must make an out-of-plane maneuver to land on the target. The parameters and

initial conditions are found in table 4.2. Figure 4.5 shows a vehicle coming towards the landing

pad with an offset lateral position of 100m and with a velocity not pointed directly in-line with

the target. All vehicle constraints are met. The vehicle uses maximum thrust almost the entire

duration of the flight. The optimization provides a thrust-vectored solution which precisely arrests

the attitude motion while meeting the translational requirements simultaneously. The simple MRP

alignment constraint is met and shown in figure 4.4.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

5

10

T
V

C
 A

n
g
le

 (
d
e
g
) TVC Total Angle (deg) vs Time

TVC

constraint

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

5000

F
o
rc

e
 (

N
)

Thrust Magnitude (N) vs Time

Thrust

constraint

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-20

0

20

B
/N

 (
d
e
g
/s

)

B/N
 (deg/s) vs Time

B/N

constraint

0 2 4 6 8 10 12 14 16 18 20

Time seconds

0

50

100

A
li

g
n
m

en
t

an
g
le

 (

d
eg

)

Alignment angle (deg) over Time

constraint

Figure 4.4: Non-Planar Guidance Problem: Controls and Angular rate of Landing Vehicle

34

500

4000

Trajectory (m) over time

50

100

400

150

200

300

250

300

Z
 d

is
ta

n
c
e
 (

m
)

X distance (m)

350

400

300

450

500

200

Y distance (m)

200
100100

00

Figure 4.5: Non-Planar Guidance Problem: Vehicle Approaches Offset from Target

The vehicle following the non-planar path in figure 4.1 reached its terminal state after 19.95

seconds and with a final mass of 376.784kg with a starting mass of 408.23kg only using 10.6% of

its fuel. Additionally, figure 4.6 shows that the terminal position and velocity constraints are met,

and the vehicle reaches the landing pad with a safe terminal velocity.

35

Table 4.2: Parameters Used for Non-Planar Problem

Param Units Value
Ng UL/U

2
T n̂1

αṁ - 0.0738
mwet UM 1
mdry UM 0.277
N r0 UL (0.65, 0.65, 0.39)
N v0 UL/UT (0,−0.4, 0)
σB/N 0

- (0, 0, 0.32)
ωB/N 0

rad/UT (0, 0, 0)

Param Units Value
γgs deg 5
δmax deg 10
Fmax UF 0.166
Fmin UF 0.025
ψmax deg 85
ωmax deg/UT 43.84
UM kg 408.233
UL m 768.114
UT s 3.132

0 5 10 15 20

Time (s)

0

200

400

600

P
o

s
it
io

n
 (

m
)

Position (m)

x-Position

y-Position

z-Position

0 5 10 15 20

Time (s)

-100

-80

-60

-40

-20

0

V
el

o
ci

ty
 (

m
/s

)

Velocity (m/s)

x-velocity

y-velocity

z-velocity

Figure 4.6: Non-Planar Guidance Problem: Position and Velocity Histories

Chapter 5

Analysis

5.1 Computation Preface

For the following analyses, the algorithm was run on a 2018 Dell XPS 15 laptop with an

Intel quad-core i7-7700HQ CPU clocked at 2.8GHz with 16GB of ram. The implementation was

in Python utilizing CVXpy configured to use the ECOS solver by EmboTech [9]. ECOS is an

Mehrotra predictor corrector interior-point method (IPM) solver for second-order cone programs

(SOCP) designed specifically for embedded applications.

It should be understood that this Python implementation of this is not optimized to run

quickly on embedded platforms and should not be held as a benchmark. These algorithms are

amenable for online implementation and should be written in C/C++, ideally with customized

solvers that can take advantage of the problem structure. One can reach excellent cycle speeds for

these algorithms as evidence by [21]. The performance and computational information presented

in this section was performed with the baseline problem outlined in Table 4.1.

Additionally, it should be understood that all runs listed were initialized with a dynamically

infeasible and linearly-spanned trajectory as discussed earlier. These are suboptimal with respect

to performance and will required larger numbers of iterations compared to a good guess. One

could easily improve this with an LQR run or another dynamically-motivated trajectory generation

algorithm. This would significantly decrease computation time for the SCvx algorithm.

37

5.2 Temporal Node Count Variation

Although the runtimes published herein are much larger than and not representative of a

real-time implementation, it is important to study timing behaviour. Table 5.1 shows the planar

problem shown in 4.1 being solved numerous times for the temporal node count quantity K for

cases of K = [10, 15, 20, 30, 40, 50]. For trajectories with 10 state and control temporal nodes,

the computer took an average of 1.771 seconds to compute. Figure 5.1 shows how the final time

solution changes on the order of 100ms from a K=10 solution to a K=50 solution. Additionally, the

final time difference between K=20 and K=50 is less than 100ms and shows that the latter is not

necessarily better for the extra computation cost. Similarly, in Figure 5.2, where the key metric

of remaining final mass is displayed with respect to K, it is shown that increasing the temporal

resolution does not necessarily save much more fuel. The difference between a quick calculation

and a more intensive one is on the order of hundreds of grams. The difference between costs is

effectively inconsequential in this scenario.

Table 5.1: Computation Time (seconds)

K Min Max Mean Stdev

10 0.875 1.771 1.3023 0.29
15 1.331 2.713 2.2504 0.365
20 2.289 2.986 2.618 0.230
30 3.38 4.708 4.1419 0.363
40 4.587 5.499 4.9056 0.257
50 6.814 8.637 7.7515 0.688

Figure 5.4 shows the results of Table 5.1 in a graphical form for multiple runs. For the

same landing problem, it is shown that the convergence rate in Figure 5.3 of each of the resolution

problems is effectively the same. For our K=10 case, a converged solution was extracted after

the 13th successive iteration. For an online system, it makes sense to run a lower resolution

optimization with a receding horizon approach. The algorithm is run as fast as the processor

allows, and the input and state history is calculated iteratively. Each of the runs would use the

previous solution as an initial trajectory, cutting down computation costs. This allows the effective

38

10 15 20 25 30 35 40 45 50

Temporal Resolution K

20.45

20.5

20.55

20.6

20.65

20.7

20.75

P
ro

b
le

m
 F

in
al

-T
im

e
 S

ec
o
n
d
s

Problem Final-Time vs Temporal Resolution K

Figure 5.1: Planar Guidance Problem: Final-Time η versus Temporal Node Count K

10 15 20 25 30 35 40 45 50

Temporal Resolution K

376.3

376.4

376.5

376.6

376.7

376.8

F
in

al
 M

as
s

(k
g
)

Final Mass vs Temporal Resolution

Figure 5.2: Planar Guidance Problem: Terminal Vehicle Mass versus K Node Count

39

0 2 4 6 8 10 12 14

SCvx Iterations k

8

10

12

14

16

18

20

22

F
in

a
l

ti
m

e
 s

o
lu

ti
o
n

Final Time over SCvx Iterations

K=10

K=15

K=20

K=30

K=40

K=50

Figure 5.3: Planar Guidance Problem: Final-Time η Convergence for many K Node Count Runs

10 15 20 25 30 35 40 45 50

Temporal Resolution K

1

2

3

4

5

6

7

8

9

S
o

lv
e

T
im

e
S

ec
o

n
d

s

Solve Time vs Temporal Resolution K

Figure 5.4: Planar Guidance Problem: Computation Time versus Temporal Node Count K

40

resolution to increase as the vehicle comes closer to the terminal state constraints.

5.3 Glideslope and Superterminal Constraints

If the vehicle must land from above and with minimal lateral motion, a full glideslope con-

straint at every trajectory point is not necessary. One could simply implement a few superterminal,

or above-terminal, constraints where the east and north velocities are zero and the “up” velocity is

free. This saves computation effort and allows more states to be held free through out the optimiza-

tion. Essentially, this means that the last couple states in the optimization have hard-constraints on

their lateral velocities. Figure 5.5 shows two vehicle trajectories and thrust quiver control histories

starting from 400m up, 600m east, and at -10m/s up. The first is a vehicle on glideslope trajectory

(GS) and the second is on a trajectory determined by the superterminal (ST) problem. The GS

problem solved on average 12% slower than the ST problem.

Figure 5.5 shows both solutions meeting the glideslope constraint although only the GT

trajectory included that constraint. The more interesting information are the control and velocity

outputs in figure 5.6. The ST vehicle hits zero lateral velocity earlier than the GS solution and uses

the same amount of propellant (only 200g more). The last three east and north velocities of the

ST trajectory were less than 10−10m/s and the vehicle landed on the target from directly above.

5.4 A Parameter Variation Study

To show the versatility of this algorithm, it was run under a number of initial conditions

after atmospheric dispersion to show pin-point landing. The nominal initial position is 800m up

and 0m in the lateral directions. A zero-mean Gaussian distribution with 200m standard deviation

σ is added to the position initial condition. The nominal initial velocity is [−80 − 10 − 10]m/s

and a zero mean Gaussian random vector with standard deviation 5m/s was added to this. Figure

5.7 shows the ability of the algorithm to recover after such large initial dispersions. The rest of the

trajectory after the initial condition is assumed to have perfect state knowledge.

41

600
500

400

X distance (m)

300

Trajectory (m) over time

200
1000

50

Y distance (m)

100

0

150

200

0

250

Z
 d

is
ta

n
c
e
 (

m
)

300

350

400

GS

ST

(a) 3D Trajectories

0 100 200 300 400 500 600

X distance (m)

0

100

200

300

400

500

600

Z
 d

is
ta

n
c
e
 (

m
)

Trajectory (m) over Time

(b) Planar Trajectories Overlaid

Figure 5.5: Glideslope (GS) and Superterminal (ST) Constraint Solution Comparisons

0 2 4 6 8 10 12 14 16

Time (s)

0

100

200

300

400

500

600

P
o

s
it
io

n
 (

m
)

Position (m)

(GS)x-pos

(GS)y-pos

(GS)z-pos

(ST)x-pos

(ST)y-pos

(ST)z-pos

0 2 4 6 8 10 12 14 16

Time (s)

-80

-60

-40

-20

0

V
el

o
ci

ty
 (

m
/s

)

Velocity (m/s)

(GS)x-vel

(GS)y-vel

(GS)z-vel

(ST)x-vel

(ST)y-vel

(ST)z-vel

(a) r v

0 2 4 6 8 10 12 14 16

Time (s)

0

5

10

T
V

C
 A

n
g

le
 (

d
e

g
) TVC Total Angle (deg) vs Time

(GS)
TVC

(ST)
TVC

constraint

0 2 4 6 8 10 12 14 16

Time (s)

0

5000

F
o

rc
e

 (
N

)

Thrust Magnitude (N) vs Time

(GS)Thrust

(ST)Thrust

constraint

0 2 4 6 8 10 12 14 16

Time (s)

-20

0

20

B
/N

 (
d

e
g

/s
)

B/N
 (deg/s) vs Time

(GT)
B/N

(ST)
B/N

constraint

0 2 4 6 8 10 12 14 16

Time seconds

0

50

100

A
li

g
n

m
en

t
an

g
le

 (

d
eg

)

Alignment angle (deg) over Time

(GS)

(ST)

constraint

(b) Control Histories

Figure 5.6: Glideslope and Superterminal r v and Control Comparisons

42

0

200

100

-200
100

200

-100

Y distance (m)

300

X distance (m)

00

400

-100100

500

Trajectory (m) over time

Z
 d

is
ta

n
c
e
 (

m
)

200 -200

600

700

800

900

1000

(a) East Facing

0

-200

100

-200 -100

200

X distance (m)

-100 0

300

Y distance (m)

0 100

400

100

Trajectory (m) over time

500

200

Z
 d

is
ta

n
c
e
 (

m
)

200

600

700

800

900

1000

(b) North Facing

Figure 5.7: Multiple Dispersed Guidance Solutions

Chapter 6

Conclusions

Convex Optimization based guidance and MPC algorithms are highly versatile and amenable

to real-time implementation for the landing of space vehicles. The successive convexification im-

plemented herein could be used as a trajectory generator, sequential guidance routine, guidance

and feed-forward routine, or simply as an offline validation and mission design tool. Its ability to

quickly generate dynamically feasible trajectories is impressive.

In the future, it may be interesting to apply a TVC bandwidth constraint to the system as

well as state triggered constraints (STCs) for mission specific actions like initial ignition timing

as shown in [24]. The hypersonic reentry problem has hybrid-discrete dynamic switching events

where the vehicle changes properties. For example, during entry, a capsule may shed its protective

ablative shield and dawn a parachute for a deceleration phase. It may be interesting to explore

trajectory optimization and discrete event timing using successive convexification and state trig-

gered constraints. The MRP switching mechanism can easily be encoded with STCs and may

yield interesting model predictive attitude slewing algorithms. Additionally, it could be valuable

to tackle the ascent vehicle objective with active aerodynamic disturbances and safety constraints.

The problem can be split up into a couple smaller in-plane and out-of-plane problems, making the

full solutions easier and perhaps more computationally tractable.

It would be valuable to write this routine in C/C++ for small embedded single board com-

puters (SBCs). These SBCs could be dedicated path planning computers for small landing testbeds,

robotic platforms, and other GN&C validation hardware.

44

Although the majority of this thesis is implementation and adaptation, I hope it serves as an

example of the versatility and usefulness of the SCvx routine and its capabilities. It is evident that

intelligent online optimization routines, like the one demonstrated in this thesis, will be invaluable

in shaping the future of autonomous robotics, spacecraft, and real-time decision making.

Bibliography

[1] B Acikmese, J Casoliva, JM Carson, and L Blackmore. G-fold: A real-time implementable
fuel optimal large divert guidance algorithm for planetary pinpoint landing. In Concepts and
Approaches for Mars Exploration, volume 1679, 2012.

[2] Behcet Acikmese, M Aung, Jordi Casoliva, Swati Mohan, Andrew Johnson, Daniel Scharf,
David Masten, Joel Scotkin, Aron Wolf, and Martin W Regehr. Flight testing of trajectories
computed by g-fold: Fuel optimal large divert guidance algorithm for planetary landing. In
AAS/AIAA spaceflight mechanics meeting, 2013.

[3] Behçet Açıkmeşe and Lars Blackmore. Lossless convexification of a class of optimal control
problems with non-convex control constraints. Automatica, 47(2):341–347, 2011.

[4] Behçet Açikmeşe and Scott R Ploen. Convex programming approach to powered descent
guidance for mars landing. Journal of Guidance, Control, and Dynamics, 30(5):1353–1366,
2007.

[5] Michael S Andrle and John L Crassidis. Geometric integration of quaternions. Journal of
Guidance, Control, and Dynamics, 36(6):1762–1767, 2013.

[6] Lars Blackmore. Autonomous precision landing of space rockets. Winter Bridge on Frontiers
of Engineerin, 4(46):15–29, 2016.

[7] Lars Blackmore, Behçet Açikmeşe, and Daniel P Scharf. Minimum-landing-error powered-
descent guidance for mars landing using convex optimization. Journal of guidance, control,
and dynamics, 33(4):1161–1171, 2010.

[8] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[9] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded
systems. In 2013 European Control Conference (ECC), pages 3071–3076. IEEE, 2013.

[10] Christopher D’Souza and Christopher D’Souza. An optimal guidance law for planetary landing.
In Guidance, Navigation, and Control Conference, page 3709, 1997.

[11] Harry Jones. The recent large reduction in space launch cost. 48th International Conference
on Environmental Systems, 2018.

[12] Allan R Klumpp. Apollo lunar descent guidance. Automatica, 10(2):133–146, 1974.

46

[13] Danylo Malyuta, Taylor Reynolds P., Michael Szmuk, Mehran Mesbahi, and Behçet Açikmeşe.
Discretization performance and accuracy analysis for the powered descent guidance problem.
2019.

[14] Yuanqi Mao, Michael Szmuk, and Behçet Açıkmeşe. Successive convexification of non-convex
optimal control problems and its convergence properties. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 3636–3641. IEEE, 2016.

[15] Yuanqi Mao, Michael Szmuk, Xiangru Xu, and Behçet Açikmeşe. Successive convexification:
A superlinearly convergent algorithm for non-convex optimal control problems. arXiv preprint
arXiv:1804.06539, 2018.

[16] F Landis Markley and John L Crassidis. Fundamentals of Spacecraft Attitude Determination
and Control, volume 33. Springer, 2014.

[17] RL McHenry, AD Long, BF Cockrell, JR Thibodeau III, and TJ Brand. Space shuttle ascent
guidance, navigation, and control. Journal of the Astronautical Sciences, 27:1–38, 1979.

[18] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming, volume 13. Siam, 1994.

[19] Daniel P Scharf, Martin W Regehr, Geoffery M Vaughan, Joel Benito, Homayoon Ansari,
MiMi Aung, Andrew Johnson, Jordi Casoliva, Swati Mohan, Daniel Dueri, et al. Adapt
demonstrations of onboard large-divert guidance with a vtvl rocket. In 2014 IEEE Aerospace
Conference, pages 1–18. IEEE, 2014.

[20] Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Systems. American
Institute of Aeronautics and Astronautics, Inc, Reston, Virginia, fourth edition, 2018.

[21] Michael Szmuk. Successive Convexification & High Performance Feedback Control for Agile
Flight. PhD thesis, 2019.

[22] Michael Szmuk and Behçet Açikmeşe. Successive convexification for 6-dof mars rocket powered
landing with free-final-time. In 2018 AIAA Guidance, Navigation, and Control Conference,
page 0617, 2018.

[23] Michael Szmuk, Utku Eren, and Behçet Açikmeşe. Successive convexification for mars 6-dof
powered descent landing guidance. In AIAA Guidance, Navigation, and Control Conference,
page 1500, 2017.

[24] Michael Szmuk, Taylor P Reynolds, and Behçet Açikmeşe. Successive convexification for
real-time 6-dof powered descent guidance with state-triggered constraints. arXiv preprint
arXiv:1811.10803, 2018.

[25] Aron A Wolf, Jeff Tooley, Scott Ploen, Mark Ivanov, Behçet Açikmeşe, and Konstantin Gro-
mov. Performance trades for mars pinpoint landing. In 2006 IEEE Aerospace Conference,
pages 16–pp. IEEE, 2006.

Appendix A

Additional Constraint Considerations

A.1 TVC Bandwidth Constraints

It may also be important to restrict the thrust vector control deflection velocities to main-

tain pragmatic control commands. This effectively limits the commandable bandwidth to the

actuator. Therefore we can construct a numerical differentiation between control steps as such:

|δTVCk+1
− δTVCk | ≤ δ̇TVCmaxdt where of course b̂T1 Fth = ‖Fth‖2 cos δTVC. The value δ̇TVCmax is

just a constant determined by the guidance engineer a priori. We can use the dimensionality of our

desired solution and a time-dilation final time coefficient to maintain scaling of the differentiation

for the general free-final-time solution.

As proposed, we have that |δTVCt+dt − δTVCt | ≤ δ̇TVCmaxdt. The discrete time equivalent is

|δTVCk+1
− δTVCk | ≤ δ′TVCmax

dτ . We know that the dilated system works as dt = ηdτ and of course

that dτ = 1
K . It can then simply be encoded as the following constraint:

||δTVCk+1
− δTVCk ||2 ≤

η

K
δ̇TVCmax (A.1)

||∆δ|| ≤
η

K
δ̇TVCmax (A.2)∥∥∥∥∥∥cos−1

(
uTk uk+1

ukuk+1

)∥∥∥∥∥∥ ≤ η

K
δ̇TVCmax (A.3)

Given that we know the domain of the angle differences is constrained to a positive semidefinite

arena of operation in the bodt frame, we can perform a small angle approximation where uTk uk+1 ≤

ukuk+1
η
K δ̇TVCmax . This is not apparently convex, but there may be simpler approaches to this

48

constraint which avoid adding an extra order term to the input dynamics. Of course, that may

very well be the best way of implementing a first order constraint on TVC deflection.

A.2 Convexifying the Alignment Constraint

Additionally, the convexity of the constraint proposed in 2.21 is not immediately clear. After

analysis, it is shown to be non-convex. Performing the first order Taylor linear approximation, we

have the convexified form of this constraint:

16 σ̂2 (σ̂2 − σ2)
(
σ̂2 + 1− 2(σ̂2

2 + σ̂2
3)
)(

σ̂2 + 1
)3 −

32 σ̂1 (σ̂1 − σ1)
(
σ̂2

2 + σ̂2
3

)(
σ̂2 + 1

)3 − 8(σ̂2
2 + σ̂2

3)(
σ̂2 + 1

)2
+

16 σ̂3 (σ̂3 − σ3)
(
σ̂2 + 1− 2(σ̂2

2 + σ̂2
3)
)(

σ̂2 + 1
)3 + 1 ≥ cosψmax

Ψ(σ, σ̂) + 1 ≥ cosψmax

This constraint is not used in lieu of the simple MRP magnitude constraint.

	Introduction
	Background
	Motivation
	Attributes of a Good Guidance Algorithm

	Literature Review and Related Research
	Brief Introduction to Convex Optimization
	On Successive Convexification
	Statement of Scope

	The Powered Descent Guidance Problem
	Problem Description
	Definitions and Notation
	Vehicle Dynamics
	Translational Dynamics
	Attitude Dynamics and Formalisms

	Boundary Conditions and State Constraints
	Continuous Time Problem

	Convex Formulation
	Linearization
	Convexifying the Minimum Thrust Constraint

	Discretization Scheme
	Successive Form, Trust Regions and Relaxations
	Convex Sub-Problem
	Algorithm

	Guidance Results
	Discussion
	Planar Problem Solutions
	Non-Planar Problem Solutions

	Analysis
	Computation Preface
	Temporal Node Count Variation
	Glideslope and Superterminal Constraints
	A Parameter Variation Study

	Conclusions
	 Bibliography
	Additional Constraint Considerations
	TVC Bandwidth Constraints
	Convexifying the Alignment Constraint

