
Faster than Real-Time GPGPU Radiation Pressure

Modeling Methods

by

P. W. Kenneally

B.Eng., Australian National University, 2010

B.A., Australian National University, 2010

M.S., University of Colorado, 2016

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Aerospace Engineering Sciences

2019

This thesis entitled:
Faster than Real-Time GPGPU Radiation Pressure Modeling Methods

written by P. W. Kenneally
has been approved for the Department of Aerospace Engineering Sciences

Prof. Hanspeter Schaub

Prof. Daniel Scheeres

Prof. Jay McMahon

Dr. Daniel Kubitschek

Prof. Moriba K. Jah

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Kenneally, P. W. (Ph.D., Aerospace Engineering Sciences)

Faster than Real-Time GPGPU Radiation Pressure Modeling Methods

Thesis directed by Prof. Hanspeter Schaub

Solar radiation pressure (SRP) is a significant contributing dynamic force on spacecraft in

all orbit regimes. Predicting, accommodating, and either leveraging or canceling its effect, is

paramount to effective orbit determination, maneuver and mission design. As a result space-

craft numerical simulation requires computational models which provide the facility to model SRP

with sufficient accuracy. However, typically the computationally intense nature of performing

high-fidelity SRP evaluations has limited such evaluations to being an offline computation which

generates lookup data. Precomputation limits the ability for a spacecraft dynamic simulation to

accommodate the myriad time varying changes which occur to the spacecraft state during a mission.

In the past decade the computer graphics industry has driven the development of highly

parallel graphics processing units (GPU) capable of performing many thousands of floating point

operations per second. General purpose GPU programming (GPGPU) has been leveraged par-

ticularly in Engineering and the Sciences where the high computational power of parallel GPU

hardware presents the opportunity for significant increases in the size and dimension of computa-

tional problems now manageable on personal computers.

This dissertation presents two modeling approaches which take advantage of the GPGPU

aspect of commodity GPU hardware. The first contribution is a modeling approach which utilizes

the vector graphics application programming interface (API) Open Graphics Library (OpenGL) and

the GPGPU computing API Open Computing Language to develop a high geometric fidelity SRP

modeling approach. The OpenGL-CL modeling approach computes SRP induced force and torque

across a detailed spacecraft mesh model. The method utilizes the OpenGL-OpenCL shared context

to facilitate modeling data between the two APIs. The OpenGL render pipeline is manipulated

to render the sun-frame projected surface of the spacecraft into OpenGL Texture data objects. A

iv

custom OpenCL parallel reduction kernel is developed which subsequently computes the SRP force

and torque across the spacecraft rendered into the OpenGL Textures. The method presents faster

than real time computation speeds while accommodating spacecraft meshes with many thousands

of vertices, arbitrary articulated components and detailed spacecraft material optical parameters.

The second contribution is a GPU based parallel ray tracing modeling approach which ex-

hibits faster than real time evaluation speeds. Techniques and algorithms from the computer

graphics discipline are used to develop and implement a method which computes SRP force and

torque across a detailed spacecraft triangulated mesh model. Efficient data structures such as

bounding volume hierarchy (BVH) acceleration support a minimization of computational burden

by reducing the ray-surface intersection search space. Accurate ray reflections are computed for

complex materials by applying a Quasi-Monte Carlo integration method and importance sampling.

Complex material bidirectional reflectance distribution functions (BRDF) are implemented with

as both, ideal mirror-like specular and Lambertian diffuse, and as microfacet BRDF models. Ar-

bitrary spacecraft articulation are accommodated at run time with no appreciable reduction in

computational speed.

Both SRP models utilize the latent computing power of the GPU which is exists in the large

majority of consumer grade personal computing systems. Further access to latent computing power

is enabled by the development of a software simulation communication middleware called Black

Lion (BL). The third contribution of this thesis is the description of a novel software architecture

and the design principles applied to the development of the BL software. Black Lion enables

the integration of multiple local or distributed heterogeneous applications never intended to run

in a cooperative settings. It is shown that BL enables access to more powerful latent personal

computing resources by creating a means to transparently facilitate distributed simulation across

multiple simulation nodes and computers.

Finally, this dissertation demonstrates the utility of both modeling methods by their applica-

tions in two case studies. Firstly, the high-fidelity SRP effects are computed for an ongoing asteroid

sample return mission. Agreement between the OpenGL-CL methods is demonstrated.Both SRP

v

modeling approaches make significant use of pre and post launch engineering data. The utility

of direct access to a model’s physical parameters is demonstrated in an analysis of contributors

to possible error between modeled and estimated SRP accelerations. Secondly, capability of fast

computational speed paired with high geometric resolution, of both OpenGL-CL and ray tracing

methods, is demonstrated. Each method is employed in the simulation and long-term propagation

of realistic multi-layer insulation (MLI) debris object mesh models and the effect of departing from

the typical flat-plate MLI model is investigated.

Dedication

To family. Mum, Dad, Mat, Gen, Gran and Karen.

vii

Acknowledgements

First I would like to thank my advisor Dr. Hanspeter Schaub for his guidance and support

throughout this degree. As a Masters student, Dr. Schaub provided me with the opportunity

to take up a Research Assistant (RA) position working on the EMM mission at the Laboratory

of Atmospheric and Space Physics (LASP). The RA position gave rise to the first thoughts that

continuing on to a PhD degree might be possible and achievable. Dr. Schaub is dedicated to the

success of his students and supports this by providing students with many opportunities to learn

and practice new skills both within and outside the academic context. Thank you to my committee

members Dr. Jay McMahon, Dr. Daniel Kubitschek, Dr. Daniel Scheeres and Dr. Moriba K. Jah

for their support of my work and generously giving their time and thought as members of my PhD

committee.

I would like to thank Cody Allard, Thibaud Teil and John Alcorn. As the initial EMM team

within the AVS Lab it was enjoyable to suffer and succeed with such capable and hard working

individuals.

The opportunity to work on the EMM project at LASP was invaluable experience. What

made it so was the time spent working under the leadership of Dan Kubitsheck and Scott Piggott.

Dan Kubitschek demonstrates a brand of leadership which makes each team member feel valued

and encouraged to produce their best work. Much of the technical work achieved in this dissertation

would not have been possible without Scott Piggott’s ability to provide guidance and insight to the

myriad technical considerations demanded of each software project.

Colleagues in the Autonomous Vehicle Systems Laboratory have each played important roles

viii

in shaping and supporting my time at the University of Colorado, and therefore the direction of

this thesis. Thank you to Lee Jasper, JoAnna Fulton, Stephen O’Keefe, Joseph Hughes and Trevor

Bennett. I would also like to thank friends here in Boulder and in Australia who have encouraged

and supported my pursuit of this degree.

Finally, I would like to express deep gratitude to my family. When I would waiver, they

supported me. When I had doubts, they offered reassurance. They have made me who I am.

Thank you Mum, Dad, Mat, Gen, Gran and Karen.

ix

Contents

Chapter

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 5

1.2.1 General Purpose GPU Programming . 7

1.2.2 Distributed Spacecraft Simulation . 9

1.3 Research Goals . 12

2 SRP Theory 14

3 OpenGL-OpenCL Solar Radiation Pressure 20

3.1 The OpenGL Render Pipeline . 21

3.2 Mesh Definition . 23

3.3 Custom OpenGL Render Pipeline . 25

3.4 OpenGL Algorithm Steps . 27

3.4.1 Recursive Bounding Box Computation . 28

3.4.2 Mesh Articulation . 28

3.4.3 Vertex and Fragment Shader Stages . 32

3.5 OpenCL Algorithm Steps . 35

3.6 Model Validation . 38

3.6.1 Impact Of Mesh Detail On Accuracy . 40

x

3.6.2 Model Articulation and Detailed Material Properties 43

3.7 Computational Performance . 47

3.8 Conclusions . 49

4 OpenCL Ray Tracing 51

4.1 GPGPU Parallel Algorithm Considerations . 52

4.2 Algorithm Steps Overview . 53

4.3 Radiation Pressure Particle Tracing Formulation . 55

4.4 Force and Torque Evaluation . 57

4.5 Intersection Testing . 58

4.5.1 Bounding Volume Intersection . 60

4.5.2 Triangle Facet Intersection . 60

4.6 Bidirectional Reflection Distribution Functions . 63

4.6.1 Ideal BRDF . 66

4.6.2 Mircofacet Model BRDF . 67

4.7 Evaluating Ray-Surface Interaction . 70

4.7.1 Sampling Ideal BRDF . 72

4.7.2 Sampling Microfacet BRDFs . 72

4.7.3 Computing The Total BRDF . 73

4.8 Model Validation . 74

4.9 Multiple Ray Reflections . 77

4.10 Model Articulation and Detailed Material Properties 85

4.11 BRDF Effect on Orbit Propagation . 86

4.12 Computational Performance . 89

4.13 Conclusions . 93

5 Black Lion Distributed Simulation 95

5.1 Distributed Spacecraft Simulation Architectures . 96

xi

5.2 Black Lion Architecture . 97

5.2.1 Data Transport and Data Translation Layers 99

5.2.2 Black Lion Simulation Topology . 102

5.2.3 Socket and Connection Definitions . 102

5.3 Communication Between Nodes . 105

5.4 Tick-Tock Synchronization . 107

5.5 Black Lion Simulation Case Study . 109

5.5.1 Basilisk Simulation Configuration . 109

5.5.2 Simulation Results . 112

5.6 Conclusions . 114

6 Case Studies 116

6.1 OSIRIS REx Case Study . 117

6.1.1 ORex Case Study: SRP Modeling . 118

6.1.2 ORex Case Study: Modeling Error and Bounding Analysis 122

6.1.3 ORex Case Study: Conclusions . 126

6.2 Multi-Layer Insulation Case Study . 127

6.2.1 MLI Case Study: Mesh Models . 129

6.2.2 MLI Case Study: Ray Traced Force Comparison 129

6.2.3 MLI Case Study: Orbit Propagation . 132

6.2.4 MLI Case Study: Conclusions . 140

7 Conclusions and Future Work 141

7.1 Conclusions . 141

7.2 Recommendations for Future Work . 143

xii

Bibliography 145

Appendix

A Simulation Architecture Basilisk 152

A.1 Software Stack and Build . 156

A.2 Modularity In Basilisk . 157

A.2.1 Components . 157

A.2.2 Message System . 159

A.2.3 Dynamics Manager . 162

A.3 Execution Control . 163

A.4 Data Logging . 166

A.5 Monte Carlo Capability . 166

A.6 Development Approach - Open Source . 167

A.7 Example of a Basilisk Simulation Configuration . 168

A.8 Conclusion . 174

xiii

Tables

Table

3.1 Spacecraft orbit parameters for sun-synchronous LEO orbit and GEO orbit. 44

3.2 Spacecraft sub-mesh material optical parameters. 44

4.1 SRP force for faceted evaluations. 77

4.2 Spacecraft orbit parameters for sun-synchronous LEO orbit and GEO orbit. 86

4.3 Spacecraft orbit parameters for sun-synchronous LEO orbit and GEO orbit. 88

5.1 Spacecraft sub-mesh material optical parameters. 113

5.2 Aqua spacecraft orbit parameters for polar LEO orbit 113

6.1 OSIRIS-REx material optical properties. 121

6.2 Computed SRP evaluations for sun-point Bŝ = [1, 0, 0]. 123

6.3 Representative portions of acceleration error (relative to Hifi RT 3 bounce) [km/s2]. 124

6.4 Computed SRP evaluations for sun-point Bŝ = (1, 0, 0). 124

xiv

Figures

Figure

1.1 Artist depiction of the MESSENGER spacecraft in orbit around Mercury.1 2

1.2 Artist depiction of the Hayabusa spacecraft approaching asteroid Itokawa.2 3

1.3 Ray traced scene of spheres with various material optical properties.3 4

1.4 Two iterations of spacecraft model fidelity for ICESat [73]. 6

1.5 Illustrative demonstration of the number of cores, memory proximity and stages. . . 8

2.1 Reflectance geometry . 16

2.2 Reflection geometry for idealized specular and diffuse [72]. 18

3.1 The OpenGL API used to generate an orthographic projection of a multiple mesh

models. 21

3.2 The default OpenGL pipeline. 22

3.3 Notional operations for each shader stage. 23

3.4 Aqua spacecraft .OBJ mesh model. 24

3.5 Overview of OpenGL render pipeline with required custom vertex shader and frag-

ment shader stages outputting to the Textures held in a Framebuffer object. 26

3.6 Sub-meshes of the Aqua spacecraft mesh. 29

3.7 Illustration of two coordinate frames with different origins and orientations. 31

xv

3.8 Loose sun frame AABB (dashed blue) and body frame AABB (solid green). Body

frame axes x̂, ŷ and ẑ are red, green and blue respectively and the sun heading ŝ as

black. 33

3.9 Notional parallel reduction by summing sequenced addressing. 37

3.10 Notional parallel reduction striding over all allocated addresses to continue summing

sequential blocks of memory in a the While() loop. 38

3.11 Error with respect to analytic cannonball evaluation for 1 m sphere mesh. 40

3.12 Mixed force validation. 40

3.13 OSIRIS REx spacecraft mesh models. 41

3.14 Force percentage difference between low fidelity models relative to the high-fidelity

model with baseline value 5.73361×10−5 [N]. 43

3.15 Torque percentage difference between low-fidelity models relative to the high-fidelity

model with baseline value 6.57817×10−5 [Nm]. 44

3.16 Force percentage difference between box and wing model relative to the hifidelity

model with baseline value 5.73361×10−5 [N]. 45

3.17 Torque percentage difference between box and wing model relative to the hifidelity

model with baseline value 6.57817×10−5 [Nm]. 45

3.18 Force percentage difference between HGA model relative to the high-fidelity model

with baseline value 5.73361×10−5 [N]. 46

3.19 Torque percentage difference between HGA model relative to the high-fidelity model

with baseline value 6.57817×10−5 [Nm]. 46

3.20 Body frame force components over two orbits. 47

3.21 Body frame torque components over two orbits. 48

3.22 Sequential rendered spacecraft in sun frame. 48

3.23 OpenGL-CL computation times for three different GPUs. 49

4.1 Increased GPU Work Group occupancy when tracing by ray rather than by pixel. . 52

xvi

4.2 Illustration of a set of five bounding boxes and a test ray. Intersections are recorded

for the boxes with the dash outlines. 54

4.3 Ray generation for the MRO mesh model with a B frame oriented bounding box

(dashed black) and an S frame bounding box (blue solid). 55

4.4 Illustration of a set of five bounding boxes and a test ray. Intersections are recorded

for the boxes with the dash outlines. 59

4.5 Two BVH traversal structures. The left structure demonstrates a simple recursive

BVH traversal. The right demonstrates the same BVH as shown on the left yet

organized as a depth first search array with precomputed node skip pointers. 60

4.6 Example result of the parallel plane bounding box intersection algorithm. For the

top left ray intersection, the algorithm returns t max as greater than or equal to

t min. For the bottom right ray miss, the algorithm returns t max as less than t min. 62

4.7 Illustrations of Two Common BRDF Geometry Descriptions. 65

4.8 Conceptual illustration of microfacet with shadowing-masking geometry. 67

4.9 Isotropic Beckmann and GGX microfacet NDFs as a function of the angle between

a ray direction and the the surface normal, θh, for roughness value α = 0.45. 70

4.10 Test cube spacecraft model. Black and cyan vectors indicate body-frame sun head-

ings evaluated. Red, green and blue vectors denote first, second and third body-frame

axes respectively. 75

4.11 Error of the ray-traced force components relative to the faceted force norm for a

specular material evaluation. 76

4.12 Error of the ray-traced force components relative to the faceted force norm for a

diffuse material evaluation. 76

4.13 Error of the ray-traced force components relative to the faceted force norm for a

mixed (diffuse and specular) material evaluation. 76

xvii

4.14 Test model with two surfaces which form a right angled face. The black vector

indicates body-frame sun heading evaluated. Red, green and blue vectors denote

first, second and third body-frame axes respectively. 78

4.15 Error of the ray-traced force components relative to the faceted force norm for mul-

tiple bounce evaluation. 79

4.16 Difference in force magnitude for resolving multiple bounces on hifidelity OSIRIS-REx. 80

4.17 Difference in torque magnitude for resolving multiple bounces on hifidelity OSIRIS-

REx. 80

4.18 Force percentage difference between resolving second and first bounce relative to

baseline value 5.62995×10−5 [N]. 81

4.19 Force percentage difference between resolving third and second bounce relative to

baseline value 5.62995×10−5 [N]. 81

4.20 Torque percentage difference between resolving second and first bounce relative to

baseline value 6.44875×10−5 [Nm]. 82

4.21 Torque percentage difference between resolving third and second bounce relative to

baseline value 6.44875×10−5 [Nm]. 82

4.22 High percentage difference attitude for force, between one and two bounces. The sun

heading latitude and longitude is (-90◦, 0◦) which is equivalent to Bŝ = [0.0, 0.0,−1.0]. 83

4.23 High percentage difference attitude for torque, between one and two bounces . The

sun heading latitude and longitude (-1.8◦, 40.7◦). 84

4.24 Resulting rendered image of the ray-traced CloudSat high resolution evaluation in

false color. 85

4.25 Percentage error in the direction of the resultant force between each successive ray

bounce relative to a high resolution evaluation. 86

4.26 Force on Aqua spacecraft mesh in polar LEO . 87

4.27 Torque on Aqua spacecraft mesh in polar LEO. 87

4.28 Magnitude of the SRP acceleration in sun-synchronous LEO over one orbital period. 88

xviii

4.29 Magnitude of the SRP acceleration at GEO over two orbital periods. 89

4.30 Radial, intrack and crosstrack differences w.r.t the position of the simulated Idealized

BRDF cube at LEO. The dashed line corresponds to the Beckmann and the solid

line the GGX. 90

4.31 Radial, intrack and crosstrack differences w.r.t the position of the simulated Idealized

BRDF cube at GEO. The dashed line corresponds to the Beckmann and the solid

line the GGX. 91

4.32 Execution times for ray resolutions from 0.01 mm to 0.0016 mm, for one bounce. . . 92

4.33 Execution times for ray resolutions from 0.01 mm to 0.0016 mm, for a maximum of

three bounces. 92

5.1 Virtualization of Spaceflight Components. 97

5.2 Communication Architecture: Central Controller, Delegate APIs and Router APIs. . 98

5.3 Relating the primary BL architectural layers to the OSI stack. 101

5.4 Socket Patterns between the Central Controller and Sample Nodes. 103

5.5 Socket Connections Types (Binding vs. Connecting) and Ports. 104

5.6 Node Actions between a “Tick-Tock”: Publish, Subscribe, Step Simulation. 106

5.7 Nodes’ Timely Nature: Synchronous, Asynchronous and Listener Behaviors. 108

5.8 Blacklion configured Baislisk simulation for an Earth orbiting scenario. 111

5.9 Aqua spacecraft .OBJ mesh model. 112

5.10 SRP Force on Aqua spacecraft mesh in polar LEO 114

5.11 SRP Torque on Aqua spacecraft mesh in polar LEO 115

6.1 Error of the ray-traced force components relative to the faceted force norm for mul-

tiple bounce evaluation 4. 118

6.2 OSIRIS-REx box and wing models. 119

6.3 OSIRIS-REx spacecraft model sub-meshes. 120

6.4 Difference in ray-tracing SRP accelerations [km/s2] with approximated 10-Plate model.121

xix

6.5 Difference in ray-tracing SRP accelerations [km/s2] with approximated 9-Plate HGA

model. 121

6.6 Error of the SH approximation relative to the generated ray-traced force vectors. . . 122

6.7 Change of acceleration magnitude for varied GBK diffuse and specular coefficients. . 125

6.8 Change of acceleration magnitude for varied SP diffuse and specular coefficients. . . 126

6.9 Hubble space telescope where the outer layers of the spacecraft are covered by MLI.5 127

6.10 Mars Reconnaissance Orbiter wrapped by MLI prior to launch.6 128

6.11 Mesh models for MLI sheet of equal surface area, 1.08 [m2]. 130

6.12 Body frame force components for the flat plate MLI mesh model. 131

6.13 Body frame force components for the wrinkled MLI mesh model. 131

6.14 Force magnitude difference of the wrinkled model relative to the flat plate model. . . 132

6.15 Rendered MLI mesh model for one and two where the difference between the rendered

images is shown. 132

6.16 Rendered MLI mesh model differences between successive bounces. 133

6.17 Ray tracing propagated angular rate evolution for MLI mesh model in GEO orbit. . 134

6.18 Ray tracing propagated attitude evolution for MLI mesh model in GEO orbit. 135

6.19 Ray tracing propagated Earth centered inertial frame force evolution for MLI mesh

model in GEO orbit. 136

6.20 Ray tracing propagated body-frame torque evolution for MLI mesh model in GEO

orbit. 137

6.21 OpenGL-CL propagated angular rate evolution for MLI mesh model in GEO orbit. . 137

6.22 OpenGL-CL propagated attitude evolution for MLI mesh model in GEO orbit. . . . 139

6.23 OpenGL-CL propagated Earth centered inertial frame force evolution for MLI mesh

model in GEO orbit. 139

6.24 OpenGL-CL propagated body-frame torque evolution for MLI mesh model in GEO

orbit. 139

xx

A.1 An example layout of a complete Basilisk simulation where each element of the

system has SWIG generated Python interfaces available in the Python environment. 158

A.2 Basilisk Task Group, Tasks and Module layout. 159

A.3 Basilisk messaging system memory layout and organization. 161

A.4 A notional messaging system publish and subscribe map for a message storage con-

tainer of a single Task Group. 163

A.5 Basilisk high level flow of control for simulation execution. 165

A.6 Concept diagram of simple multi body gravity orbiter Basilisk simulation configuration.169

A.7 Evolution of attitude error in each MRP component. 175

A.8 Evolution of computed reaction wheel torques (dashed) and the actual reaction wheel

torques. 175

A.9 Evolution of reaction wheel speeds. 175

Chapter 1

Introduction

1.1 Motivation

Effective orbit determination, maneuver and mission design and mission numerical simu-

lations require tools that enable accurate modeling of the spacecraft dynamical system. Of the

contributing effects to a spacecraft’s dynamics radiation pressure (RP) in its various forms plays

a significant role [91, 72, 94]. Radiation pressure contributions arise from solar, earth albedo,

planetary infra-red and spacecreaft thermal radiation sources. The contribution of each of these

RP sources is dependent on the specific operational regime of the spacecraft. For example, solar

radiation pressure (SRP) the momentum imparted to a body by impinging solar photons, becomes

a dominant non-conservative force above the Low Earth Orbit (LEO) region[91]. Similarly, the

impact of directed thermal radiation is shown to be a significant consideration in the determination

of orbit determination and tracking efforts for interplanetary spacecraft [72, 8].

Effective modeling of the SRP induced perturbation of a spacecraft enables mission design-

ers to consider SRP a valuable actuator rather than a disturbance. Such novel use of the SRP

force in maneuver and mission design is exemplified by the MErcury Surface, Space ENvironment,

GEochemistry and Ranging (MESSENGER) mission. The MESSENGER mission completed six

planetary gravity assists during its journey to a Mercury orbit. The MESSENGER mission de-

signers employed a solar sailing technique to perform each trajectory change maneuver (TCM)

and accurately target each planetary flyby. Typical methods for performing TCM’s use onboard

thrusters to impart the required ∆V . However, using SRP as the TCM actuator allowed the

2

Figure 1.1: Artist depiction of the MESSENGER spacecraft in orbit around Mercury.1

MESSENGER team to perform TCM’s with more accuracy and finer control due to the smaller

magnitude of the SRP induced force. Additionally, the MESSENGER team was able to reduce fuel

and related structural accommodations in the spacecraft design to reduce overall mission cost[67].

Additional opportunities exist in the design and simulation of atypical spacecraft maneuvers. For

example, large deployable structures, such as the IKAROS solar sail, would gain the ability to

iteratively evaluate with greater fidelity the time varying control actuation of the solar sail during

and after deployment [32].

Maneuvers which utilize SRP as an actuator are further demonstrated by the design of

the rescue maneuver for the Hayabusa spacecraft shown in Figure 1.2. Hayabusa, an astroid

return mission, lost attitude control about a single axis due to a failure of the spacecraft’s reaction

control system. Upon returning to a power positive state ground teams regained attitude control

via the electric propulsion system at the expense of valuable fuel reserves. As a result, a cruise

maneuver was designed which incorporated SRP to balance the torque induced by the swirling

electric thrusters, thus saving fuel for the return journey to Earth[55].

In both the MESSENGER and Hyabusa examples mission designers used a variety of online

and offline techniques to simulate and verify the beneficial effect of SRP on the spacecraft’s trajec-

1 NASA / JHU/APL, Artist depiction of the MESSENGER spacecraft in orbit around Mercury, Accessed Septem-
ber 1, 2017 from: http://commons.wikimedia.org/

3

Figure 1.2: Artist depiction of the Hayabusa spacecraft approaching asteroid Itokawa.2

tory and attitude. However, to perform this modeling and verification at high-fidelity, and with the

reduced uncertainty required by a flight mission consumes significant human resources. In the case

of MESSENGER, TCM maneuver planing began at minimum five weeks prior to the event [67].

Additionally, a-priori SRP models used in these analyses are typically not adjustable or tunable. If

modeling parameter inclusion and accuracy requirements change during the lifetime of the mission

a costly model revision or redevelopment process is required [6]. Recent research is exploring how

to create control formulations to exploit the SRP forces further to assist with attitude and orbital

considerations [59, 50]. In this context a faster than real-time SRP evaluation method presents

the potential to reduce costs to a mission, provide analyst with the ability to perform ’what-if’

simulations for iterative spacecraft, mission and designs, pre-launch and post-launch.

Ray tracing methods are considered to offer the greatest modeling fidelity and are performed

as an offline precomputation to provide input data to further modeling abstractions where they

can be computed in an online (faster than realtime) simulation [3]. Computing SRP with increased

fidelity in materials optical properties, spacecraft shape and spacecraft articulation is computa-

tionally expensive. The advent of high computational power Graphics Processing Unit (GPU)

hardware, particularly the presence of a GPU in almost all modern consumer grade computers,

presents an exciting opportunity to leverage the latent computing power they offer. The advent

2 JAXA, Artist depiction of the Hayabusa spacecraft approaching asteroid Itokawa, Accessed October 1, 2018
from: http://global.jaxa.jp/projects/sas/muses c/

4

Figure 1.3: Ray traced scene of spheres with various material optical properties.3

of the category of computer processors referred to as systems-on-chips (SoC) or systems-on-modules

(SoM) presents new opportunities to include computationally expensive algorithms as part of on-

board flight software. These kinds of processors are most commonly seen in consumer mobile

electronic devices. However, in recent years due to their low cost and useful computation power

they are increasingly used as the processors aboard many nano sat and small sat spacecraft. The

SoC devices often have as part of the chip a GPU, or parallel floating point arithmetic units which

have the potential to facilitate the fast onboard execution of the dynamic models providing input

to guidance and navigation systems.

To utilize this latent computing resource new algorithmic techniques are needed, which exploit

the highly parallel execution environment of GPU hardware. Similar latent computing power is

available in the form of remote computing or ‘cloud’ based computing resources. An example of a

remote compute resource is a computationally powerful network connected single desktop computer,

while an example of a cloud computing services is Amazon’s Elastic Compute Cloud (EC2) 4 .

Computation resources such as Amazon’s EC2 provide on demand and scalable parallel and cluster

computing resources, demonstrating cheap and ubiquitous latent computational resources available

for ’everyday’ analysis by an individual engineer[4]. Using these ubiquitous latent computational

3 NVIDIA, Ray tracing demonstration, Accessed April 10, 2019 from: https://devblogs.nvidia.com/my-first-ray-
tracing-demo/

4 http://aws.amazon.com/ec2

5

resources presents an opportunity to overcome the computationally expensive aspects of hifidelity

SRP modeling. Leveraging this latent computing power will offer SRP modeling approaches with

the potential for a wide range of new ‘everyday’ analysis applications.

1.2 Background

A survey of the current landscape of RP research reveals a variety of approaches. The nature

of the approaches can be characterized as analytic, semi-analytic or empirical. Whereas analytic

models rely only on pre-launch engineering information, empirical models are constructed post-

launch using flight data. Commonly, a semi-analytic model is used during a mission. These models

are comprised of both analytic and empirical components with tunable parameters. Prior to flight,

the tunable parameters are determined using an analytic model. Following launch, the parameters

are incorporated into a parameter estimation process which tunes the model to more closely match

flight data. Prominent examples of the three modeling approaches for SRP include the ROCK42

analytic model, the Bern semi-analytic model and the Jet Propulsion Lab (JPL) empirical model

[28, 84, 6].

Continuing with SRP, the most basic analytic model employed is referred to as the cannonball

model [56]. The cannonball model, given in Eq (1.1), is computed from the surface area upon which

radiation is incident A, solar flux Φ�, the spacecraft mass M , speed of light c, heliocentric distance

to the spacecraft r and the reflection, absorption and emission characteristics of the spacecraft

surface which are grouped together within the coefficient of reflection Cr.

a� = −Cr
AΦ�
Mc

(
1AU

r

)2

ŝ (1.1)

Increased accuracy in analytic models is often achieved by representing the spacecraft as an

approximation of various volumes or facets. A common approximation is to model the spacecraft

bus and solar panels as a box and panels respectively. Increasing the fidelity of such box and

wing models is often achieved by increasing the density on volumes and facets in an attempt to

6

(a) ICESat Micro Model (b) ICESat Micro Model

Figure 1.4: Two iterations of spacecraft model fidelity for ICESat [73].

approach the true shape of the spacecraft [57]. As shown in Figure 1.4, increasing spacecraft model

accuracy was employed to great effect by the Ice, Cloud, and land Elevation Satellite (ICESat)

mission. Additionally, the individual reflection, absorption and emission material characteristics are

kept distinct for each surface and set based on known spacecraft material properties[61]. However,

common among shape approximation methods is that they are augmented and become semi-analytic

models where much of the modeling uncertainty is delegated to a parameter estimation process and

the model is ‘tuned’ post-launch, to more accurately represent spacecraft tracking data.

Ray tracing approaches model, directly, the physics of light interaction with the spacecraft.

For three decades ray tracing approaches, such as that developed by Antreasian and Rosborough

in Reference [3], have been used to provide high geometric fidelity solar and thermal radiation

pressure modeling for spacecraft. Similar modeling approaches are used for planetary albedo and

Earth infrared radiation pressure (ERP). In these cases the same methods may be employed but

rather than the sun, a model of the Earth albedo or ERP becomes the irradiating source to the

spacecraft. Notably, Ziebart et al., developed an analytic modeling approach based on ray-tracing

techniques for the assessment of SRP force analysis of spacecraft in the GLONASS constellation[96].

Ziebart’s method precomputes the body forces over all 4π steradian attitude possibilities. Ziebart’s

approach is also capable of modeling self-shadowing and multiple ray reflection by ray-tracing a

spacecraft model that comprises a set of volume primitives (boxes, cylinders etc.). Subsequent

work extended this model to include albedo and ERP sources [95]. McMahon and Scheeres extend

7

Ziebart’s approach to a semi-analytic model by aggregating the resultant SRP forces into a set

of Fourier coefficients of a Fourier expansion[61]. The resulting Fourier expansion is available

for both online and offline evaluation within a numerical integration process. Evaluation of the

Fourier expansion in numerical simulation demonstrates successful prediction of the periodic and

secular effects of SRP. Additionally, the Fourier coefficients may replace spacecraft material optical

properties as parameters estimated during the orbit determination effort.

More recently, methods that make use of the parallel processing nature of GPUs have been

developed. Tanygin and Beatty employ modern GPU parallel processing techniques to provide a

significant reduction in time-to-solution of Ziebart’s “pixel array” method[88] by generating dense

lookup tables which are then queried via the GPU. With a similar goal, in Reference [51], the

author demonstrates the use of the OpenGL vector graphics application programming interface

(API) to dynamically evaluate the force of the incident solar radiation across a spacecraft structure

approximated by many thousands of facets.

Further modeling approaches and associated studies have demonstrated that representing

material optical properties, beyond basic mirror specular and lambertian diffuse, is a significant

consideration when seeking high-fidelity SRP force resolution. Wetter et. al. demonstrate that

accurate bidirectional reflection distribution functions (BRDF) representation is necessary in sim-

ulating the long duration propagation of spacecraft dynamics [94]. A material’s BRDF governs

the amount of impinging solar radiation absorbed and reflected and the directions in which the

radiation is reflected. A typical BRDF description used for SRP modeling is comprised of diffuse

lambertian and ideal, ‘mirror like’, specular reflection portions [40]. Absent in previous ray-tracing

approaches is the physical modeling of diffuse ray reflections and by extension the ability to model

arbitrary complex surface BDRFs.

1.2.1 General Purpose GPU Programming

The video game and animated video industries have driven the pursuit to create more vivid

and realistic artificial worlds. This pursuit has resulted in highly optimized vector graphics software

8

Figure 1.5: Illustrative demonstration of the number of cores, memory proximity and stages.

and GPU computer hardware capable of carrying out many thousands of floating point operations

in parallel [68]. Use of the GPU computing power has been extended beyond the graphics realm

to general-purpose processing (GPGPU) applications throughout the sciences.

As illustrated in Figure 1.2.1, current CPU hardware is characterized as a single instruction

multiple thread (SIMT) device. A SIMT device accommodates instruction parallelism by executing

multiple threads, potentially on multiple cores. Typically high data rates and bandwidth are facil-

itated by large cache mechanisms, high bandwidth and rapid adhoc memory access. This allows

for a CPU to interleave and anticipate the execution of varied instructions from various processes

and thus hide latency between processes. Conversely a GPU is characterized as a single instruction

multiple data (SIMD) device. As a result GPUs achieve extreme computational efficiency with

multicore designs that use both hardware multithreading and SIMD processing [27]. This device’s

architectural difference presents a key challenge of this thesis: to develop and implement algorithms

which achieve the high level of data parallelism and minimal code branching needed to maintain

the high throughput in the parallel execution environment of the GPU. These constraints require

significant redesign of existing algorithms and data management strategies. Key considerations for

redesign include efficient data packing, algorithm restructuring to reduce code branching, maxi-

mizing coherent memory reads and writes, and ensuring all executing GPU cores are doing so with

full instruction occupancy [34]. If these constraints are accommodated the GPU hardware presents

the option for significant reductions in time-to-solution for problems which would be considered

9

intractable in the real-time context.

The two GPU software APIs utilized in this work are Open Graphics Language (OpenGL) and

Open Computing Language (OpenCL) . The OpenGL API is a language independent application

programming interface (API) for rendering computer vector graphics [54]. OpenGL provides access

to highly optimized code paths developed specifically for processing on the GPU. Each hardware

vendor that produces a GPU device typically also releases accompanying software drivers for the

hardware device. As a result the built in OpenGL API functionality used in this method, such

as rasterization and fragmentation, exist across all OpenGL supporting GPUs and uses the highly

optimized code paths with minimal additional code development. Similarly, the OpenCL API is a

cross-platform standard for parallel programming across a range of processors including multi-core

CPU devices and GPU devices [66]. Both APIs provide tools to send, retrieve and process data on

an OpenGL and/or OpenCL compliant GPU/CPU.

1.2.2 Distributed Spacecraft Simulation

Software simulation is a necessary aspect of all aspects of space mission development. Vari-

ous tools exist to simulate different subsets of components of the space system. These components

include dynamics, kinematics and environment, ground system emulation and flight software emula-

tion. In general, simulators tend to be sophisticated software products that are developed in parallel

with the systems they are intended to test. This parallel development can impose constraints and

limit the scope of application of the simulation tool. Consequently, the development of a general and

flexible simulation software architecture presents opportunities for spacecraft simulation beyond a

single application executing on a single machine. Further, a distributed simulation architecture

allows for the integration of models which are developed to make use of the aforementioned latent

and easily accessible computing power.

The architectural characteristics of software simulation dramatically influences its function-

ality and, therefore, applicability. With some generalization, simulation architectures are charac-

terized by the degree to which system components are coupled. The coupling between simulation

10

components is manifested by the simulation structure, where the overall system may be either: in-

tegrated as a single system of required components; integrated as a modular system with optional

components; or developed as a group of cooperative yet stand-alone components.

An example of a system which has increased coupling between components is Advanced

Solutions Inc’s (ASI) Spacecraft Object Library in STK (SOLIS). SOLIS is a commercial plug-in to

the Analytical Graphics, Inc (AGI) Systems ToolKit (STKTM) mission analysis software. The plug-

in extends STK’s orbit and space environment dynamics with the On-board Dynamic Simulation

System (ODySSyTM). ODySSy is an onboard spacecraft simulator providing additional models

for rotational dynamics, sensors, actuators, power and thermal dynamics, and basic spacecraft

control and guidance algorithms [23]. Using both SOLIS and ODySSy from ASI provides end-to-

end spacecraft simulation functionality. However, it does so by requiring those tools specifically.

There are minimal options to substitute one component with another which was not intended to

operate with the SOLIS system.

A software suite which demonstrates increasing modularity in its architecture is the NASA Jet

Propulsion Laboratory’s Dshell system [9]. The Dshell system avoids tightly coupled components by

establishing interconnections and communicating data between components via “connector signals”.

Connector signals allow each component to provide data to other components without requiring

knowledge of the other components internals or availability [12]. The Dshell suite of components

has grown since its initial development. Now, using the wide range of components developed for the

Dshell system, engineers are able to support a wide variety of simulation configurations including

both robotic and spacecraft simulation, software and hardware-in-the-loop testing and mission

telemetry visualization [13].

The NASA Operational Simulator (NOS)5 is a simulation system which exemplifies the char-

acteristics of a loosely coupled system architecture. The NOS system is a generic software-only

simulation architecture and was developed by NASA’s Independent Verification and Validation

(IV&V) Independent Test Capability (ITC). The NOS system achieves its flexible architecture by

5 https://www.nasa.gov/centers/ivv/jstar/jstar_simulation.html

https://www.nasa.gov/centers/ivv/jstar/jstar_simulation.html

11

employing a message passing middleware application to connect various simulation components by

a virtualized MIL-STD-1553 or SpaceWire messaging bus[80]. This middleware approach allows

users to add or remove heterogeneous simulation components, unique to a particular spacecraft

mission, without needing to rewrite or recompile model or application code [71].

A distributed simulation architecture enables analysts to incorporate models which are oth-

erwise unable to run on a single machine. It is often the case that the personal computer on which

analysis is being conducted has insufficient computational power to run computationally expensive

models at the required speed or fidelity. Running such computationally expensive models is fur-

ther complicated by the time consuming and expensive technical undertaking to re-architect entire

simulation and analysis toolsets. Therefore, a means by which existing simulation toolsets can

execute simulations in a distributed arrangement where most of the computation remains on the

local machine while the computationally expensive module is executed on a remote more capable

computing resource. Such examples may include simulation of a spacecraft’s dynamics using a high

fidelity ray traced radiation pressure model or a high degree spherical harmonics gravity model.

On a single machine such a simulation would run much slower than realtime and Monte Carlo

case studies would take prohibitively long to execute. However, running these expensive models on

a computationally powerful remote GPU resource has the potential to reduce computation times

to faster than realtime thus opening up increased options for analysis using existing simulation

toolsets.

This dissertation presents the novel Blacklion (BL) simulation middleware architecture, which

is inherently capable of distributed operation (multiple machine) and agnostic to the end point ap-

plications/models which participate in the simulation. The BL architecture facilitates the integra-

tion and execution of multiple software processes across heterogeneous computing platforms. For

example, having a dedicated computer running a complex space environment model and another

computer integrating spacecraft dynamics, both of them exchanging data dynamically through BL.

Blacklion enables simulation use cases beyond that of the typical single application on a single

machine.

12

1.3 Research Goals

In summary, the overarching novel contribution of this dissertation is to use the ubiquitous

latent computational power available in consumer computing resources to enable the development,

implementation and computation of SRP models with greater fidelity and computational speed

than existing approaches. This work first aims to investigate how the unique parallel computing

capability the GPU and distributed remote computing resources can be leveraged to produce SRP

modeling approaches which provide computationally fast high geometric fidelity force resolution.

Two primary SRP modeling approaches shall be investigated. The first approach resolves the per-

facet SRP of a complex triangulated mesh model, while the second approach employs techniques

in ray tracing to further capture optical behavior such as spacecraft self-reflection.

The developed SRP modeling approaches extend previous approaches documented in the lit-

erature by accommodating more complex material reflectance models, arbitrary changes to space-

craft articulation and doing so at faster than real-time computational speeds. The developed

computational speed gives rise to the possibility for in the inclusion of high-fidelity SRP models

in spacecraft ground software simulation, long-term dynamics propagation and Monte Carlo sim-

ulation. This work makes greater use of existing engineering data in the SRP modeling processes

to reduce, where possible, uncertainty in the SRP force computation. Such pre-launch engineering

data includes spacecraft geometry, material optical properties, and possible spacecraft time varying

articulations.

Thirdly, this dissertation presents a modular implementation for each modeling method which

allows for direct integration and online faster than real-time simulation within the Basilisk astro-

dynamics framework6 . The pursuit of modularity culminates with the development and demon-

stration the Blacklion distributed simulation middleware which facilitates the execution of compu-

tationally demanding simulation models on arbitrary commodity computing resources.

This scope of this research is thus provided in the following list, grouped into two core research

6 http://hanspeterschaub.info/bskMain.html

http://hanspeterschaub.info/bskMain.html

13

goals. They are:

(1) General Purpose GPU Solar Radiation Pressure Modeling Methods

• Introduce computational modeling methods which leverage the highly parallel execu-

tion environment of the GPU.

• Extend the modeling methods to accommodate arbitrary spacecraft articulation and

complex material reflectance behaviors.

• Develop modular implementations of each SRP modeling method which facilitate in-

tegration into an astrodynamics simulator and demonstrates faster than realtime ex-

ecution.

(2) Distributed Spacecraft Simulation Architecture

• Introduce a modular distributed simulation architecture which allows for the execution

of simulation models in a mixed (local and/or remote) computing environment.

• Expand this architecture to demonstrate the execution of computationally intensive

simulation models on remote computing resources.

• Provide examples of the ability for the simulation architecture and each SRP modeling

method to provide improved resolution of the SRP force and torque upon a spacecraft

simulated dynamics.

Chapter 2

SRP Theory

This section will present the fundamental theory describing the momentum imparted to

a spacecraft by impinging solar photons. Two characterization of the resulting force are given.

The first is a general description of the force due to an arbitrary surface bidirectional reflectance

distribution function. The second characterization restates the commonly used expression which

uses the idealized BRDF comprised of mirror-like specular and Lambertian diffuse reflection.

To begin, the momentum of a photon is defined. From Planck’s law a photon with a frequency

ν will transport an amount of energy E as

E = hν (2.1)

where h is Planck’s constant. Additionally, noting the mass -energy equivalence of special relativity

yields the total energy of a moving body as

E2 = m2
0c

4 + p2c2 (2.2)

where m0 is the mass of the body when at rest, p the body’s momentum and c the speed of light.

Given that a photon has a zero mass at rest, its energy is given as the second term in Eq 2.2 and is

E = pc (2.3)

The momentum of a single photon can be computed by equating Planck’s law and its energy to

give

p =
hν

c
(2.4)

15

To compute the pressure exerted on a body by solar photons, first the momentum flux of

photons must be determined. The energy flux φ at the spacecraft distance from the Sun, |rBS | is

φ = φE

(
RE
|rSB|

)2

(2.5)

φE =
Ls

4πR2
E

(2.6)

and φE the energy flux at the Earth’s distance from the Sun. The pressure exerted is thus the

change in momentum over a surface area with a normal direction vector aligned with the direction

of the change in momentum.

P =
1

A

(
∆p

∆t

)
(2.7)

The final pressure can be simplified to

P =
W

c
(2.8)

It is assumed that the incident light-surface interactions are occurring in an optical linear

regime (an example of the non-linear regime are high-energy lasers). Under this linear regime it

has been shown experimentally that there is a proportional relationship dLo(ωo) ∝ dE(ωi). This

allows for the development of the bidirectional scattering distribution function given in Eq. (4.18),

where the proportionality relationship describes the observed radiance leaving a reflecting surface

in the direction ωo.

The geometry of the radiation pressure surface interaction is shown in Figure 2.1 where an

observer is looking at a a ray intersection point on a surface ωo is the unit vector in the direction of

the observer, n̂x is the unit normal to the surface, and ωi is the unit vector in the direction of the

incident radiation source. ĥx is a normalized vector in the direction of the angular bisector of wo

and wi, and is defined by ĥx = (ωo + ωi)/|ωo + ωi|. From radiance the irradiance at a particular

point x on a surface, defined as power per unit surface area, with units [W ·m−2] is given as

E(x) =
dφ(x)

dA(x)
(2.9)

16

.

Figure 2.1: Reflectance geometry

A majority of expressions used to compute the SRP induced force hide the following subtlety;

that irradiance of the space object due to radiation sources (e.g. albedo and solar), for each source

is from a single direction and assumed to be a collimated beam. Each directional source can be

handled individually and the aggregate of each source summed to obtain the total radiation force

on the space object. This work includes the modeling of complex material bidirectional reflectance

distribution functions which manifest the directional dependence of the irradiance. As a result the

equations for radiation pressure on a space object will be presented in a general form which uses

the definition of radiance rather than the immediate simplification to irradiance. The radiance is

given in Eq.(2.10)

L(x, ω) =
d2φ(x, ω)

dA⊥x (x)dσ(ω)
(2.10)

where the radiance is the flux arriving at dA⊥ω (x), a surface element positioned at x perpendicular

to the direction ω, contained within the solid angle element dσ(ω).

The perpendicular surface area element dA⊥ω (x) can be converted to its non-projected are

element by dA⊥ω (x) = |ω · n̂x|dAω(x) and the projection term |ω · n̂x| associated with the dσ(ω)

term to give the relationship of irradiance to radiance in Eq.(2.11).

E(ωi) = Li(ωi)dσ
⊥(ωi) (2.11)

It is assumed that the incident light-surface interactions are occurring in an optical linear

17

regime (an example of the non-linear regime are high-energy lasers). Under this linear regime it

has been shown experimentally that there is a proportional relationship dLo(ωo) ∝ dE(ωi). This

allows for the development of the bidirectional scattering distribution function given in Eq. (4.18),

where the proportionality relationship describes the observed radiance leaving a reflecting surface

in the direction wo.

fs(ωi → ωo) =
dLo(ωo)

dE(ωi)
=

dLo(ωo)

Li(ωi)dσ⊥(ωi)
(2.12)

The relationship between the outgoing radiance and the incoming radiance for a particular

optical surface is described at Eq.(4.19).

dLo(ωo) = dL(ωi)fs(ωi → ωo)dσ
⊥(ωi) (2.13)

Integrating Eq.(4.19) yields the total radiance, over the hemisphere, leaving a surface area

element. This relationship is often referred to as the scattering function [92].

Lo(ωo) =

∫
S2

L(ωi)fs(ωi → ωo)dσ
⊥(ωi) (2.14)

To compute the force due to radiation pressure the directions of the force components must

be defined. In general the radiation pressure force is composed of a force component in the direction

of the incident radiance, a component determined by the reflected radiance and a component by the

radiation of absorbed energy. The development of the force due to radiation pressure can then be

defined generally in terms of radiance Li(ωi) for the force elements due to the incident radiation dFi

and reflected radiation dFo. Absent in this force balance is the component of absorbed radiation

re-emitted dFe. While important for a complete energy balance this presentation assumes that this

component is accounted for in an appropriate thermal radiation model.

dFi =

∫
S2

Li(ωi)|ωi · n̂x|
c

ω̂idσx(ωi)dAx (2.15a)

dFo =

∫
S2

Li(ωi)|ωi · n̂x|
c

fs(ωi → ωo)dσx(ωo)dAx (2.15b)

18

dFa
<latexit sha1_base64="WYw9SrbP2gUcprUmT+hVNLKKFZQ=">AAACT3icZVBNSwMxEM3Wz9ZvPXoJFsFT2VVBj34hHivaVmhLmU1TDSabJZlVlqU/w6v+Jo/+Em9iWhfptgOBl/dmhjcvjKWw6PtfXmlufmFxablcWVldW9/Y3NpuWp0YxhtMS20eQrBciog3UKDkD7HhoELJW+Hz5UhvvXBjhY7uMY15V8FjJAaCATqq3bminVBl18Me9Darfs0fF50FQQ6qJK96b8urdfqaJYpHyCRY2w78GLsZGBRM8mGlk1geA3uGR952MALFbTcbex7Sfcf06UAb9yKkY3ZyIgNlbapC16kAn+y0NiL/tf1J8RVs6iadCBaNpqMtWtqiHRycdjMRxQnyiP25GSSSoqajlGhfGM5Qpg4AM8IdRNkTGGDosixYOW/eFS7NQlX8I4SJBJMOKy7hYDrPWdA8rAVHtcPb4+rZRZ71Mtkle+SABOSEnJEbUicNwogmb+SdfHif3rf3U8pbS14OdkihSuVf1Tmz2A==</latexit>

dFd
<latexit sha1_base64="ulQIPE1o6UCVNRNBybNePMviLTg=">AAACT3icZVBNSwMxEM3Wz9ZvPXoJFsFT2VVBj34hHivaVmhLmU1TDSabJZlVlqU/w6v+Jo/+Em9iWhfptgOBl/dmhjcvjKWw6PtfXmlufmFxablcWVldW9/Y3NpuWp0YxhtMS20eQrBciog3UKDkD7HhoELJW+Hz5UhvvXBjhY7uMY15V8FjJAaCATqq3bminVBl18Nev7dZ9Wv+uOgsCHJQJXnVe1terdPXLFE8QibB2nbgx9jNwKBgkg8rncTyGNgzPPK2gxEobrvZ2POQ7jumTwfauBchHbOTExkoa1MVuk4F+GSntRH5r+1Piq9gUzfpRLBoNB1t0dIW7eDgtJuJKE6QR+zPzSCRFDUdpUT7wnCGMnUAmBHuIMqewABDl2XBynnzrnBpFqriHyFMJJh0WHEJB9N5zoLmYS04qh3eHlfPLvKsl8ku2SMHJCAn5IzckDppEEY0eSPv5MP79L69n1LeWvJysEMKVSr/Atrcs9s=</latexit>

dFs
<latexit sha1_base64="23SDRrP1hEl+6fZbGcXa9reLR6s=">AAACT3icZVBNSwMxEM3Wz9ZvPXoJFsFT2VVBj34hHivaVmhLmU1TDSabJZlVlqU/w6v+Jo/+Em9iWhfptgOBl/dmhjcvjKWw6PtfXmlufmFxablcWVldW9/Y3NpuWp0YxhtMS20eQrBciog3UKDkD7HhoELJW+Hz5UhvvXBjhY7uMY15V8FjJAaCATqq3bminVBl18Oe7W1W/Zo/LjoLghxUSV713pZX6/Q1SxSPkEmwth34MXYzMCiY5MNKJ7E8BvYMj7ztYASK22429jyk+47p04E27kVIx+zkRAbK2lSFrlMBPtlpbUT+a/uT4ivY1E06ESwaTUdbtLRFOzg47WYiihPkEftzM0gkRU1HKdG+MJyhTB0AZoQ7iLInMMDQZVmwct68K1yahar4RwgTCSYdVlzCwXSes6B5WAuOaoe3x9WzizzrZbJL9sgBCcgJOSM3pE4ahBFN3sg7+fA+vW/vp5S3lrwc7JBClcq/9wuz6g==</latexit>

n̂x
<latexit sha1_base64="k8AJFPIdrWgYIlam5jvHstQWvxE=">AAACXXicZVDLTiMxEHRmeYZXWA4cuFhESJyiGUDaPWaXC0cQJCAxUdTjOMTCj5HdwzKy5mv2Ch/EiV/BCRFioCVL5aquVndluRQO4/ilEf1YWFxaXlltrq1vbG61tn/2nSks4z1mpLE3GTguheY9FCj5TW45qEzy6+z+dKpfP3DrhNFXWOZ8oOBOi7FggIEatnbTCaBPM+V1VQ19ivwR/WOArXbciWdFv4NkDtpkXufD7UYnHRlWKK6RSXDuNolzHHiwKJjkVTMtHM+B3cMdvw1Qg+Ju4GcXVPQgMCM6NjY8jXTGfnZ4UM6VKgudCnDivmpT8kM7+Cz+A1cGZxDBoTV0OsVIV18Hx78HXui8QK7Z+zbjQlI0dJoZHQnLGcoyAGBWhIMom4AFhiHZ2ip/+pe1S32m6n+ErJBgy6oZEk6+5vkd9I86yXHn6OKk3f07z3qF7JF9ckgS8ot0yRk5Jz3CSEX+kyfy3HiNFqP1aPO9NWrMPTukVtHuG6+ruKQ=</latexit>!̂i

<latexit sha1_base64="JmDNiPo/MCCaopkBS/jOHeq4SoE=">AAACWXicZVDLTsMwEHTCq5RXoUcuFhUSpyoBJDjyuHAsghYkUlUb120t7DiyN6AoyrdwhU9C/AzuQ4jASpbGM7ur2YlTKSwGwafnLy2vrK7V1usbm1vbO43dvZ7VmWG8y7TU5jEGy6VIeBcFSv6YGg4qlvwhfr6e6g8v3Fihk3vMU95XME7ESDBARw0azWgCWESxKiKt+BjKciAGjVbQDmZF/4NwAVpkUZ3BrteOhppliifIJFj7FAYp9gswKJjkZT3KLE+BPcOYPzmYgOK2X8zcl/TQMUM60sa9BOmM/T1RgLI2V7HrVIAT+1ebkj/a4W/xFWzuJp0IFo2m0y1a2qodHJ33C5GkGfKEzd2MMklR02ledCgMZyhzB4AZ4Q6ibAIGGLpUK1Yue3eVS4tYVf8IcSbB5GXdJRz+zfM/6B23w5P28e1p6+JqkXWN7JMDckRCckYuyA3pkC5hJCdv5J18eF++59f8+rzV9xYzTVIpv/kN5W22Uw==</latexit>

!̂o
<latexit sha1_base64="ZqsZw2FXPyy0l/s1MzA06l8SQV8=">AAACWXicZVDLTsMwEHTCq5RXoUcuFhUSpyoBJDjyuHAsghYkUlUb120t7DiyN6AoyrdwhU9C/AzuQ4jASpbGM7ur2YlTKSwGwafnLy2vrK7V1usbm1vbO43dvZ7VmWG8y7TU5jEGy6VIeBcFSv6YGg4qlvwhfr6e6g8v3Fihk3vMU95XME7ESDBARw0azWgCWESxKiKt+BjKcqAHjVbQDmZF/4NwAVpkUZ3BrteOhppliifIJFj7FAYp9gswKJjkZT3KLE+BPcOYPzmYgOK2X8zcl/TQMUM60sa9BOmM/T1RgLI2V7HrVIAT+1ebkj/a4W/xFWzuJp0IFo2m0y1a2qodHJ33C5GkGfKEzd2MMklR02ledCgMZyhzB4AZ4Q6ibAIGGLpUK1Yue3eVS4tYVf8IcSbB5GXdJRz+zfM/6B23w5P28e1p6+JqkXWN7JMDckRCckYuyA3pkC5hJCdv5J18eF++59f8+rzV9xYzTVIpv/kN8LO2WQ==</latexit>

!̂i
<latexit sha1_base64="JmDNiPo/MCCaopkBS/jOHeq4SoE=">AAACWXicZVDLTsMwEHTCq5RXoUcuFhUSpyoBJDjyuHAsghYkUlUb120t7DiyN6AoyrdwhU9C/AzuQ4jASpbGM7ur2YlTKSwGwafnLy2vrK7V1usbm1vbO43dvZ7VmWG8y7TU5jEGy6VIeBcFSv6YGg4qlvwhfr6e6g8v3Fihk3vMU95XME7ESDBARw0azWgCWESxKiKt+BjKciAGjVbQDmZF/4NwAVpkUZ3BrteOhppliifIJFj7FAYp9gswKJjkZT3KLE+BPcOYPzmYgOK2X8zcl/TQMUM60sa9BOmM/T1RgLI2V7HrVIAT+1ebkj/a4W/xFWzuJp0IFo2m0y1a2qodHJ33C5GkGfKEzd2MMklR02ledCgMZyhzB4AZ4Q6ibAIGGLpUK1Yue3eVS4tYVf8IcSbB5GXdJRz+zfM/6B23w5P28e1p6+JqkXWN7JMDckRCckYuyA3pkC5hJCdv5J18eF++59f8+rzV9xYzTVIpv/kN5W22Uw==</latexit>

!̂i
<latexit sha1_base64="JmDNiPo/MCCaopkBS/jOHeq4SoE=">AAACWXicZVDLTsMwEHTCq5RXoUcuFhUSpyoBJDjyuHAsghYkUlUb120t7DiyN6AoyrdwhU9C/AzuQ4jASpbGM7ur2YlTKSwGwafnLy2vrK7V1usbm1vbO43dvZ7VmWG8y7TU5jEGy6VIeBcFSv6YGg4qlvwhfr6e6g8v3Fihk3vMU95XME7ESDBARw0azWgCWESxKiKt+BjKciAGjVbQDmZF/4NwAVpkUZ3BrteOhppliifIJFj7FAYp9gswKJjkZT3KLE+BPcOYPzmYgOK2X8zcl/TQMUM60sa9BOmM/T1RgLI2V7HrVIAT+1ebkj/a4W/xFWzuJp0IFo2m0y1a2qodHJ33C5GkGfKEzd2MMklR02ledCgMZyhzB4AZ4Q6ibAIGGLpUK1Yue3eVS4tYVf8IcSbB5GXdJRz+zfM/6B23w5P28e1p6+JqkXWN7JMDckRCckYuyA3pkC5hJCdv5J18eF++59f8+rzV9xYzTVIpv/kN5W22Uw==</latexit>

n̂x
<latexit sha1_base64="k8AJFPIdrWgYIlam5jvHstQWvxE=">AAACXXicZVDLTiMxEHRmeYZXWA4cuFhESJyiGUDaPWaXC0cQJCAxUdTjOMTCj5HdwzKy5mv2Ch/EiV/BCRFioCVL5aquVndluRQO4/ilEf1YWFxaXlltrq1vbG61tn/2nSks4z1mpLE3GTguheY9FCj5TW45qEzy6+z+dKpfP3DrhNFXWOZ8oOBOi7FggIEatnbTCaBPM+V1VQ19ivwR/WOArXbciWdFv4NkDtpkXufD7UYnHRlWKK6RSXDuNolzHHiwKJjkVTMtHM+B3cMdvw1Qg+Ju4GcXVPQgMCM6NjY8jXTGfnZ4UM6VKgudCnDivmpT8kM7+Cz+A1cGZxDBoTV0OsVIV18Hx78HXui8QK7Z+zbjQlI0dJoZHQnLGcoyAGBWhIMom4AFhiHZ2ip/+pe1S32m6n+ErJBgy6oZEk6+5vkd9I86yXHn6OKk3f07z3qF7JF9ckgS8ot0yRk5Jz3CSEX+kyfy3HiNFqP1aPO9NWrMPTukVtHuG6+ruKQ=</latexit>

n̂x
<latexit sha1_base64="k8AJFPIdrWgYIlam5jvHstQWvxE=">AAACXXicZVDLTiMxEHRmeYZXWA4cuFhESJyiGUDaPWaXC0cQJCAxUdTjOMTCj5HdwzKy5mv2Ch/EiV/BCRFioCVL5aquVndluRQO4/ilEf1YWFxaXlltrq1vbG61tn/2nSks4z1mpLE3GTguheY9FCj5TW45qEzy6+z+dKpfP3DrhNFXWOZ8oOBOi7FggIEatnbTCaBPM+V1VQ19ivwR/WOArXbciWdFv4NkDtpkXufD7UYnHRlWKK6RSXDuNolzHHiwKJjkVTMtHM+B3cMdvw1Qg+Ju4GcXVPQgMCM6NjY8jXTGfnZ4UM6VKgudCnDivmpT8kM7+Cz+A1cGZxDBoTV0OsVIV18Hx78HXui8QK7Z+zbjQlI0dJoZHQnLGcoyAGBWhIMom4AFhiHZ2ip/+pe1S32m6n+ErJBgy6oZEk6+5vkd9I86yXHn6OKk3f07z3qF7JF9ckgS8ot0yRk5Jz3CSEX+kyfy3HiNFqP1aPO9NWrMPTukVtHuG6+ruKQ=</latexit>

✓
<latexit sha1_base64="zSveIw2/a5nA5Fm9hKGeUZWDQIk=">AAACSnicZVDLTsMwEHRKgVJeBY5cLKpKnKqkIMGRx4VjETQg0QhtXLc1OHFkb0BR1H/gCt/ED/Ab3BAX3IdQAytZGs/srmYnTKQw6LofTmmhvLi0XFmprq6tb2zWtrZ9o1LNeIcpqfRtCIZLEfMOCpT8NtEcolDym/DxfKzfPHFthIqvMUt4EMEgFn3BAC3ld3HIEe5rdbfpTor+B94M1Mms2vdbTrPbUyyNeIxMgjF3nptgkINGwSQfVbup4QmwRxjwOwtjiLgJ8ondEW1Ypkf7StsXI52w8xM5RMZkUWg7I8Ch+auNyV+tMS8+g8nspBXBoFZ0vEVJU7SD/eMgF3GSIo/Z1E0/lRQVHQdEe0JzhjKzAJgW9iDKhqCBoY2xYOXUvypcmodR8Y8QphJ0NqrahL2/ef4HfqvpHTRbl4f1k7NZ1hWyS/bIPvHIETkhF6RNOoSRB/JCXsmb8+58Ol/O97S15MxmdkihSuUfbtazLg==</latexit>

✓
<latexit sha1_base64="zSveIw2/a5nA5Fm9hKGeUZWDQIk=">AAACSnicZVDLTsMwEHRKgVJeBY5cLKpKnKqkIMGRx4VjETQg0QhtXLc1OHFkb0BR1H/gCt/ED/Ab3BAX3IdQAytZGs/srmYnTKQw6LofTmmhvLi0XFmprq6tb2zWtrZ9o1LNeIcpqfRtCIZLEfMOCpT8NtEcolDym/DxfKzfPHFthIqvMUt4EMEgFn3BAC3ld3HIEe5rdbfpTor+B94M1Mms2vdbTrPbUyyNeIxMgjF3nptgkINGwSQfVbup4QmwRxjwOwtjiLgJ8ondEW1Ypkf7StsXI52w8xM5RMZkUWg7I8Ch+auNyV+tMS8+g8nspBXBoFZ0vEVJU7SD/eMgF3GSIo/Z1E0/lRQVHQdEe0JzhjKzAJgW9iDKhqCBoY2xYOXUvypcmodR8Y8QphJ0NqrahL2/ef4HfqvpHTRbl4f1k7NZ1hWyS/bIPvHIETkhF6RNOoSRB/JCXsmb8+58Ol/O97S15MxmdkihSuUfbtazLg==</latexit> !̂o

<latexit sha1_base64="ZqsZw2FXPyy0l/s1MzA06l8SQV8=">AAACWXicZVDLTsMwEHTCq5RXoUcuFhUSpyoBJDjyuHAsghYkUlUb120t7DiyN6AoyrdwhU9C/AzuQ4jASpbGM7ur2YlTKSwGwafnLy2vrK7V1usbm1vbO43dvZ7VmWG8y7TU5jEGy6VIeBcFSv6YGg4qlvwhfr6e6g8v3Fihk3vMU95XME7ESDBARw0azWgCWESxKiKt+BjKcqAHjVbQDmZF/4NwAVpkUZ3BrteOhppliifIJFj7FAYp9gswKJjkZT3KLE+BPcOYPzmYgOK2X8zcl/TQMUM60sa9BOmM/T1RgLI2V7HrVIAT+1ebkj/a4W/xFWzuJp0IFo2m0y1a2qodHJ33C5GkGfKEzd2MMklR02ledCgMZyhzB4AZ4Q6ibAIGGLpUK1Yue3eVS4tYVf8IcSbB5GXdJRz+zfM/6B23w5P28e1p6+JqkXWN7JMDckRCckYuyA3pkC5hJCdv5J18eF++59f8+rzV9xYzTVIpv/kN8LO2WQ==</latexit>

Figure 2.2: Reflection geometry for idealized specular and diffuse [72].

Of particular importance is Eq. (2.15b) where the direction of the resultant force is described

by the distribution of scattered radiation over the hemisphere is described by the BSDF fs(ωi →

ωo). This work restricts scattering to the hemisphere normal in the direction of n̂x. As a result

the fs(ωi → ωo) notation is changed to fr(ωi → ωo) and describes the bidirectional reflectance

distribution function (BRDF).

Typical expressions for the radiation pressure assume a simplified BRDF comprised of a

purely mirror-like specular component and a diffuse component (often Lambertian). The action of

the idealized specular and diffuse reflection are shown in Figure 2. The incoming radiation is taken

irradiance from an unpolarized plane wave front. These equations are given as

dFa = P |ωi · n̂x|dAxω̂i (2.16a)

dFd = Bfγ(1− s)P |ωi · n̂x|dAxn̂x (2.16b)

dFs = −γsP |ωi · n̂x|dAxŝ (2.16c)

where γ is the portion of the incoming radiation reflected by the surface material, s the portion of

that which is reflected as specular reflection, Bf the diffuse reflection coefficient which is typically

taken as 2/3 for Lambertian diffuse reflection. The mirror-like reflection direction, ŝ, in Eq. (2.16)

is given by

ŝ = ω̂i − 2|ω̂i · n̂x|n̂x (2.17)

19

These equations will be used in various forms throughout this work and where appropriate addi-

tional formulations and arrangements will be detail at their point of use.

Chapter 3

OpenGL-OpenCL Solar Radiation Pressure

Modeling with high geometric fidelity, the SRP induced force and torque, on a spacecraft is

challenging due to the often computationally expensive modeling requirements. Of these computa-

tionally expensive modeling requirements, three in particular present the greatest challenge. These

requirements are to resolve arbitrary time varying articulated spacecraft shape models, spacecraft

self shadowing, and varied arbitrary material optical properties. Typically spacecraft geometries are

kept simple, ignoring important spacecraft detail which has a significant degradation of a model’s

ability to more closely evaluate the true SRP force and torque. Further, methods which do capture

changes in spacecraft articulations and self shadowing do so as part of an offline evaluation which

generate SRP force and torque lookup tables. Such offline evaluations are executed multiple times

to accommodate the myriad different spacecraft configurations.

The OpenGL-CL modeling method presented in this chapter is able to to capture the three

aforementioned modeling requirements as part of an implementation which has computational speed

suitable for online execution. The approach builds upon the author’s previous OpenGL faceted

based approaches[52] and extends the application of OpenCL to allow for more flexible arbitrary

computation. Additionally, the OpenGL-CL has many parallels to the work presented by Tanygin

and Beatty in Reference [88] and incorporates certain algorithmic decisions made by that work.

The goal of this section is to introduce the OpenGL and OpenCL APIs and the algorithmic steps

of the OpenGL-CL modeling method. To begin, the OpenGL API is introduced in the context of

the render pipeline. This is followed by a description of the important OpenGL-OpenCL shared

21

Figure 3.1: The OpenGL API used to generate an orthographic projection of a multiple mesh
models.

memory context functionality. An optimized OpenCL kernel is developed to perform a parallel

reductions across the rendered pixel space and thus the final force and torque vectors. Initial

validation is provided and is followed by more complex spacecraft simulations which demonstrate the

method’s capability to capture the difference between spacecraft mesh models, while comfortably

accommodating detailed meshes of many thousands of vertices.

3.1 The OpenGL Render Pipeline

The Open Graphics Library (OpenGL) is a language independent API for rendering com-

puter vector graphics [81]. The API provides tools to send, process and retrieve data on OpenGL

compliant GPUs. A rendered scene is generated by processing the vertices and primitives (triangle,

polygon) of a mesh model within the OpenGL pipeline. The OpenGL pipeline allows for various

stages to be programmable. A programmable stage is called a Shader Program or simply referred

to as a shader. Each shader is a mini-program which serves to process vertices and primitives in

a particular manner. Shaders are written using the OpenGL Shader Language (GLSL) and each

shader stage has a defined set of data types as inputs and outputs, which are passed along the

pipeline to subsequent shader stages. The default OpenGL render pipeline is shown in Figure. 3.2

identifying required and optional processing stages.

A shader stage operates on a single vertex, a set of vertices that define a shape primitive or a

22

Vertex Specification

Vertex Shader

Tessellation Shader

Geometry Shader

Vertex Post-Processing

Primitive Assembly

Rasterization

Fragment Shader

Per-Sample Operations

Custom stage implementation

Built in stage implementation

Required stage

Optional stage

Figure 3.2: The default OpenGL pipeline.

fragment (rasterized pixel). Each of the vertices or primitives, are processed in parallel where thou-

sands of shader instances are executed simultaneously for each stage in the pipeline. It is this highly

parallel per vertex/primitive operation (many thousands of evaluations occurring simultaneously)

for which GPU devices have been specifically designed.

A simplified representation of the default OpenGL render pipeline stages is shown in Fig-

ure. 3.3. A minimally valid OpenGL pipeline requires the implementation of the Vertex Shader

and Fragment Shader stages. The addition of further Shader stages allows the software developer

to create a custom render pipeline. The Vertex Shader processes the individual vertices of the

model having vertex data as both input and output. An optional Tessellation Shader stage oper-

ates on patches of vertex data which are subdivided into smaller primitives (e.g. a large triangle

into multiple smaller triangles). The optional Geometry Shader has as input a single primitive and

may output one or more primitive definitions. Finally, the Fragment Shader computes per pixel

operations following OpenGL’s internal depth testing and rasterization processes. The two shader

stages leveraged in this approach are the Vertex and Fragment Shader stages.

Vertex Shader (VS): processes the individual vertices of the model having vertex data as both

input and output. The VS is used to perform setup for later shader stages by performing coordinate

23

Figure 3.3: Notional operations for each shader stage.

frame transformations on vertex data by mapping vertices from the model body coordinate frame

to the world, view and projection coordinate frames. As shown in Figure. 3.2 the vertex shader is

a programmable and required stage in the pipeline.

Fragment Shader (FS): is executed after the pipeline has rasterized the projected scene. To

rasterize the scene, the vertices of each primitive are mapped from R3 to R2 projection space

samples. Each fragment/pixel can be manipulated within the FS and then written to one or many

Texture objects attached to a Framebuffer. The Texture object data format is one of either a single

or four (RGBA) 32-bit IEEE single precision floating point values per pixel. Typically an RGBA

value is output to a texture for each pixel. For a typical render it is the color texture which is

displayed to the screen.

3.2 Mesh Definition

Both modeling approaches presented in this work use a triangulated mesh model to approx-

imate the spacecraft shape with high geometric accuracy. A triangulated mesh model provides a

consistent input to the method and removes the need for code which handles a multitude of other

primitive types. The model data format chosen is the Wavefront Object (.OBJ) [11]. The file

format is user friendly due to its wide spread support by 3D modeling and animation tools, and it

is simple to debug because it is human readable within a text editor (when encoded as the ASCII

encoded file variant). Figures 3.4(a) and 3.4(b) show the .OBJ mesh model of the Aqua spacecraft

24

(a) Aqua spacecraft with materials. (b) Aqua spacecraft mesh.

Figure 3.4: Aqua spacecraft .OBJ mesh model.

with complete materials and only mesh structure, respectively.

The file format stores vertex positions, texture vertices and normal vectors in lists. Vertices

are defined as x, y, z and w where w is an optional scaling component and defaults to 1.0. Texture

coordinates are given in u, v and w coordinates, ranging between 0 and 1.0. Primitive normal

vectors may be provided as x, y, z coordinates. If normal definitions are not present in the file

the import code will generate consistent facet normal vectors using the counter clockwise ordered

list of vertices defining the facet. The .OBJ file format may be accompanied by multiple Material

Template Library (.MTL) files. The .MTL file defines common material properties associated with

model shading or rendering. For the works of this dissertation the .MTL file is overloaded and

a number of it’s variables are taken to have a slightly different meaning than typical. Two key

examples of this are the Kd and Ks parameters which indicate the RGB color mixture of the diffuse

and specular optical phenomena for a material. Here, these variables are used as the diffuse and

specular reflection coefficients commonly associated with faceted SRP computations. As such only

25

Listing 3.1: Wavefront .obj file format for a mesh model.

1 # Vertex coordinates

2 v1 0.123 0.234 0.345 1.0

3 v2 ...

4 # Texture coordinates

5 vt1 0.500 1 [0]

6 vt2 ...

7 # Face/vertex normal definitions

8 vn1 0.707 0.000 0.707

9 vn2 ...

10 # Face definitions

11 f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3

the R channel of the RGB values is used for Kd = ρ and Ks = γ. Overloading these variables allows

for rapid manipulation of the spacecraft mesh model’s material properties, through a 3D animation

tool such as Blender, easy export from this tool and, consequently, import at run-time.

3.3 Custom OpenGL Render Pipeline

The custom OpenGL pipeline developed here builds upon the original presentation where

Tanygin and Beatty employ the built in depth testing and rasterization stages of OpenGL to

equivalently determine the first ray-surface interaction of a ray tracing approach. Similar to the

earlier work this method implements custom VS and FS stages. An overview of this custom pipeline

is shown in Figure. 3.5. The VS stage transforms mesh vertices to the projection frame (which

shall be defined in Sec. 3.4) and outputs the normal, position and material parameters associated

with the processed vertex. The pipeline depth testing and rasterization will determine which vertex

values are sunlit, the outputs from the VS stage are provided as input for the corresponding pixel

of the FS stage.

The FS executes for each pixel in the specified view port. The FS stage receives data for

each corresponding pixel some of which will contain samples from the spacecraft mesh model

that are visible from the sun-heading direction. The FS outputs values to Textures attached to

26

Vertex Post-Processing

Primitive Assembly

Rasterization

Fragment Shader

Per-Sample Operations

Framebuffer Object

Positions

Normals

Materials

Vertex Specification
Parse CAD

model vertex
and materials

Vertex Shader Transform vertices and
normals to sun frame

Custom stage implementation

Built in stage implementation

Required stage

Optional stage

Figure 3.5: Overview of OpenGL render pipeline with required custom vertex shader and fragment
shader stages outputting to the Textures held in a Framebuffer object.

a Framebuffer object. A Framebuffer object (FBO) allows a developer to define a non-default

destination for render output. Results from the FS stage, shown in Figure 3.5, are written into

the FBO’s attached textures. Developers can manipulate the active FBO and the Texture storage

attached to the FBO. This allows a developer to perform multiple render passes on a particular

scene before performing a final compositing operation and displaying the Framebuffer on screen.

The FBO is a destination for specific data types generated during render. To store this data

Texture objects are attached to the FBO. Textures are defined as a single array of pixels with a

certain dimensionality (1D, 2D or 3D), and having a particular data format. A texture can be either

an array of single values or 4-component vectors. Each value component of a single or vector value is

specified as signed/unsigned integer, sign/unsigned normalized integer or 32-bit IEEE floating-point

[54]. The FBO and associated Texture data structures are a key enabling portion of the OpenGL

API which allows for the passing of OpenGL generated data to the subsequent OpenCL SRP

computation. Specifically, 2D Textures, into which the spacecraft mesh model vertices, normal

vectors and material optical proprieties are written are ultimately passed to the OpenCL SRP

computation.

27

Listing 3.2: Creating a FBO, a texture and attaching to the FBO as a render target.

1 gl::GenFramebuffers(1, &m_fbo);

2 gl::BindFramebuffer(gl::FRAMEBUFFER, m_fbo);

3 gl::GenTextures(1, &m_rparams.pixelPosMap);

4 gl::BindTexture(gl::TEXTURE_2D, m_rparams.pixelPosMap);

5 gl::TexImage2D(gl::TEXTURE_2D, 0, gl::RGBA, fboWidth, fboHeight, 0, gl::RGBA, gl::FLOAT, NULL);

6 gl::FramebufferTexture2D(gl::FRAMEBUFFER, gl::COLOR_ATTACHMENT1, gl::TEXTURE_2D,

m_rparams.pixelPosMap, 0);↪→

The type of Texture object attached is determined by the data type being stored. OpenGL

provides specific texture attachment points to which particular data products are written. For

example, pixel depth values (distance from projection plane to mesh) are written to a texture at

attachment point DEPTH ATTACHMENT, while vector based data is written to any one of a number of

COLOR ATTACHMENTi attachment points, where i is the index of the attachment point. An example

of this process is shown in Listing 3.2. In this listing the single output texture which will be used

to store the position vector, with respect to the spacecraft center of mass, of a sampled point on

the mesh model. This texture of position vectors is then used in the OpenCL computation of SRP

torque.

3.4 OpenGL Algorithm Steps

The OpenGL portion of the algorithm moves through four phases. The first phase is the

computation of the spacecraft mesh model projection into the sun frame, which shall produce

the Projection, View, and Sun transformation matrices. Mesh articulation operations follow to

configure the time varying kinematics of the spacecraft mesh as they vary during run-time. The

third stage is carried out in the VS where the frame transformations of the Projection, View and

Sun matrices are applied to each mesh vertex. Finally, the FS outputs to Textures the values to

be used by the OpenCL kernel.

28

3.4.1 Recursive Bounding Box Computation

An axis aligned bounding box (AABB) computation simply loops through all mesh vertices

and finds the furthest extents of each mesh vertex component, in each of the mesh body frame axes.

From these furthest extents the vertices defining the corners of the bounding box can be computed.

Such a computation is sufficient if the mesh vertices are not articulated and therefore computed

only once at initialization. In the case where a model is comprised of multiple sub-meshes, which

may be articulated, the naive AABB computation leads to repetitive computations and significantly

increased computation time. A recursive AABB bounding box algorithm is implemented to reduce

computation time. This algorithm relies on the constraint that while individual sub-meshes may

be articulated and therefore move within the model body frame, the vertices within each sub-mesh

are fixed. In other words, all sub-meshes in a model are rigid bodies. This constraint allows for

the computation of an AABB for each sub-mesh once at the start of a simulation. As shown in the

pseudo-code of Listing. 1, the AABB can now be computed recursively by computing the AABB of

the vertices vertices which define the corners of each sub-mesh’s AABB. This reduces the order of

magnitude for the number of vertices to evaluate from potentially 105 to 101 or, in the very worst

cases (models with greater than 10 sub-meshes) 102.

3.4.2 Mesh Articulation

The spacecraft mesh model defines the vertex vectors, normal vectors, indices and material

optical properties of the spacecraft. Typically a spacecraft is made up of a number sub-meshes, each

which defines separate components of the spacecraft. Segmenting a spacecraft model into multiple

sub-meshes is required for two purposes. The first purpose is that for a large majority of 3D mesh

model formats, only a single set of material optical properties can be assigned to a sub-mesh.

To accommodate the variety of spacecraft materials of which a spacecraft model is comprised, all

vertices that make up regions of the spacecraft with the same material properties, must be defined

together in a sub-mesh. The second reason for utilizing sub-meshes is to facilitate arbitrary run-

29

Figure 3.6: Sub-meshes of the Aqua spacecraft mesh.

30
Data: node is the node in the mesh model tree structure

1 if node is leaf then
2 node.bbox ← computeBBox(node.vertices);
3 node.bbox.transform(node.transformation);
4 return

5 end
// node is not a leaf so we loop through all child nodes and call the

function again

6 bBoxUnion(i, j);
7 for node in nodes(i) do
8 computeNodeBBox(node);

// For each node accumulate the child bounding boxes

9 tmpBoxVertices(8, 3) ← node.bbox.getBBoxQuadMeshVertices ();
10 bBoxUnion(i, j)i=end ← tmpBoxVertices(8, 3);

11 end
12 node.bbox ← computeBBox(bBoxUnion);
13 node.bbox.transform(node.transformation);
14 return

Algorithm 1: Recursive AABB algorithm.

time articulation of spacecraft components such as solar panel structures, antenna and instruments.

Sub-meshes provide a convenient data structure whereby the vertices, indices, normals and material

properties of a mesh are defined with an associated homogeneous transformation matrix. During

simulation this transformation matrix is updated at each time step according to the time varying

kinematics of the sub-mesh and the transformation is applied to the mesh thus performing the

articulation.

All mesh vertex and normal data is defined with respect to the model frame body coordinate

system B : {b̂1, b̂2, b̂3}. However, it is also convenient to allow the user to define sub-mesh

articulations with respect to a coordinate frame, C : {ĉ1, ĉ2, ĉ3}, with origin C and orientation

different to the B coordinate frame. Such a frame may define the position and orientation of a

solar panel with respect to its fixed hinge or gimbal point on the spacecraft bus.

As illustrated in Figure 3.7, the transformation requires the definition of the origin and

orientation of the sub-mesh articulation frame C with respect to the model frame B. Obtaining a

vertex in B frame components from one defined in C frame components is achieved via the following

31

OB
<latexit sha1_base64="lxzyQUql3CbuXd7GDM6SbLib/Es=">AAACVXicZVBNS8NAEN3Er1o/2urRy2IRPJVEBT3WevFmRfsBtpTJdquLm2zYnSgh5Jd41d8k/hjBTS1idGDh7Xszw5sXxFIY9LwPx11aXlldq6xXNza3tmv1xk7fqEQz3mNKKj0MwHApIt5DgZIPY80hDCQfBI8XhT544toIFd1iGvNxCPeRmAkGaKlJvXY1yUYh4AMDmXXyfFJvei1vXvQ/8BegSRbVnTSc1miqWBLyCJkEY+58L8ZxBhoFkzyvjhLDY2CPcM/vLIwg5GaczZ3n9MAyUzpT2r4I6Zz9PZFBaEwaBrazMGn+agX5ox38Fp/BpHbSimBQK1psUdKU7eDsbJyJKE6QR+zbzSyRFBUtsqJToTlDmVoATAt7EGUPoIGhTbRk5bx/U7o0C8LyHyFIJOg0r9qE/b95/gf9o5Z/3Dq6Pmm2O4usK2SP7JND4pNT0iaXpEt6hJGEvJBX8ua8O5/usrv63eo6i5ldUiq39gX44rVf</latexit>

OC
<latexit sha1_base64="dsY5H1EejOd6JP+uxoj53ZzsGZk=">AAACVXicZVBNS8NAEN3Er1o/2urRy2IRPJVEBT1We/FmRfsBtpTJdquLm2zYnSgh5Jd41d8k/hjBTS1idGDh7Xszw5sXxFIY9LwPx11aXlldq6xXNza3tmv1xk7fqEQz3mNKKj0MwHApIt5DgZIPY80hDCQfBI+dQh88cW2Eim4xjfk4hPtIzAQDtNSkXruaZKMQ8IGBzDp5Pqk3vZY3L/of+AvQJIvqThpOazRVLAl5hEyCMXe+F+M4A42CSZ5XR4nhMbBHuOd3FkYQcjPO5s5zemCZKZ0pbV+EdM7+nsggNCYNA9tZmDR/tYL80Q5+i89gUjtpRTCoFS22KGnKdnB2Ns5EFCfII/btZpZIiooWWdGp0JyhTC0ApoU9iLIH0MDQJlqyct6/KV2aBWH5jxAkEnSaV23C/t88/4P+Ucs/bh1dnzTbF4usK2SP7JND4pNT0iaXpEt6hJGEvJBX8ua8O5/usrv63eo6i5ldUiq39gX6xbVg</latexit>

b̂1<latexit sha1_base64="hN2ZVWCe2m9bOAlunmS4D0DIip0=">AAACUnicZVLLSgMxFM3Ud33r0k2wCK7KjAq69LFxqWgf0NZyk6Y2mEyG5I4yDPMfbvWb3PgrrkxrkY5eCJycc2849xCWKOkwDD+Dytz8wuLS8kp1dW19Y3Nre6fpTGq5aHCjjG0zcELJWDRQohLtxArQTIkWe7oa661nYZ008T1miehpeIzlUHJATz10R4B5l+mcFUU/6m/Vwno4KfofRFNQI9O66W8H9e7A8FSLGLkC5zpRmGAvB4uSK1FUu6kTCfAneBQdD2PQwvXyie2CHnhmQIfG+hMjnbCzEzlo5zLNfKcGHLm/2pj81Q5mxRdwmZ/0Iji0ho5fMcqV7eDwrJfLOElRxPzHzTBVFA0dB0UH0gqOKvMAuJV+IcpHYIGjj7Nk5aJ5V9o0Z7p8R2CpApsVVZ9w9DfP/6B5VI+O60e3J7Xzy2nWy2SP7JNDEpFTck6uyQ1pEE4seSVv5D34CL4q/pf8tFaC6cwuKVVl7Rt6JLS0</latexit>

b̂2<latexit sha1_base64="Dwq79bqqoXgu/N2E4uMystEXyI8=">AAACUnicZVLLSgMxFM3UV62vqks3wSK4KjNV0KWPjcuKtgq2lps0tcFkMiR3lGGY/3Cr3+TGX3FlWos4eiFwcs694dxDWKKkwzD8CCpz8wuLS9Xl2srq2vpGfXOr60xquehwo4y9ZeCEkrHooEQlbhMrQDMlbtjj+US/eRLWSRNfY5aIvoaHWI4kB/TUfW8MmPeYzllRDFqDeiNshtOi/0E0Aw0yq/ZgM2j2hoanWsTIFTh3F4UJ9nOwKLkSRa2XOpEAf4QHcedhDFq4fj61XdA9zwzpyFh/YqRT9vdEDtq5TDPfqQHH7q82IX+0vd/iM7jMT3oRHFpDJ68Y5cp2cHTcz2WcpChi/u1mlCqKhk6CokNpBUeVeQDcSr8Q5WOwwNHHWbJy2r0qbZozXb4jsFSBzYqaTzj6m+d/0G01o4Nm6/KwcXI2y7pKdsgu2ScROSIn5IK0SYdwYskLeSVvwXvwWfG/5Lu1EsxmtkmpKqtffAW0tQ==</latexit>

b̂3
<latexit sha1_base64="47EmwxeHfroTUW7fWO8DwxfNP44=">AAACUnicZVLLSgMxFM3Ud33r0k2wCK7KjAq69LFxqWgf0NZyk6Y2mEyG5I4yDPMfbvWb3PgrrkxrkY5eCJycc2849xCWKOkwDD+Dytz8wuLS8kp1dW19Y3Nre6fpTGq5aHCjjG0zcELJWDRQohLtxArQTIkWe7oa661nYZ008T1miehpeIzlUHJATz10R4B5l+mcFUX/uL9VC+vhpOh/EE1BjUzrpr8d1LsDw1MtYuQKnOtEYYK9HCxKrkRR7aZOJMCf4FF0PIxBC9fLJ7YLeuCZAR0a60+MdMLOTuSgncs0850acOT+amPyVzuYFV/AZX7Si+DQGjp+xShXtoPDs14u4yRFEfMfN8NUUTR0HBQdSCs4qswD4Fb6hSgfgQWOPs6SlYvmXWnTnOnyHYGlCmxWVH3C0d88/4PmUT06rh/dntTOL6dZL5M9sk8OSUROyTm5JjekQTix5JW8kffgI/iq+F/y01oJpjO7pFSVtW995rS2</latexit>

ĉ3
<latexit sha1_base64="jaFVs9BlIr1hb97MZ/y+fOt/LnI=">AAACUnicZVJNSwMxEM3W7/pV9eglWAqeyq4V9Fj14lHRVsHWMpumNphslmRWWZb9H171N3nxr3gyrYu47UDg5b2Z8OaRMJbCou9/eZWFxaXlldW16vrG5tZ2bWe3a3ViGO8wLbW5D8FyKSLeQYGS38eGgwolvwufLyb63Qs3VujoFtOY9xU8RWIkGKCjHntjwKwXqozl+aA1qNX9pj8tOg+CAtRJUVeDHa/ZG2qWKB4hk2DtQ+DH2M/AoGCS59VeYnkM7Bme+IODEShu+9nUdk4bjhnSkTbuREin7P+JDJS1qQpdpwIc21ltQv5pjf/iK9jUTToRLBpNJ69oact2cHTaz0QUJ8gj9utmlEiKmk6CokNhOEOZOgDMCLcQZWMwwNDFWbJy1r0pbZqFqnxHCBMJJs2rLuFgNs950D1qBq3m0fVxvX1eZL1K9skBOSQBOSFtckmuSIcwYsgbeScf3qf3XXG/5Le14hUze6RUlY0ff8u0tw==</latexit> ĉ2

<latexit sha1_base64="CvQWL/7ocfBwoxu5c03V3HIYjPw=">AAACUnicZVJNSwMxEM3Wr1q/Wj16CZaCp7JbBT1WvXisaKvQ1jKbpjaYbJZkVlmW/R9e9Td58a94Mq1FXB0IvLw3E948EsZSWPT9D6+0tLyyulZer2xsbm3vVGu7PasTw3iXaanNXQiWSxHxLgqU/C42HFQo+W34eDHTb5+4sUJHN5jGfKjgIRITwQAddT+YAmaDUGUsz0etUbXuN/150f8gWIA6WVRnVPOag7FmieIRMgnW9gM/xmEGBgWTPK8MEstjYI/wwPsORqC4HWZz2zltOGZMJ9q4EyGds78nMlDWpip0nQpwav9qM/JHa/wWn8GmbtKJYNFoOntFS1u0g5PTYSaiOEEesW83k0RS1HQWFB0LwxnK1AFgRriFKJuCAYYuzoKVs951YdMsVMU7QphIMGlecQkHf/P8D3qtZnDUbF0d19vni6zLZJ8ckEMSkBPSJpekQ7qEEUNeyCt58969z5L7Jd+tJW8xs0cKVdr8An3qtLY=</latexit>

ĉ1
<latexit sha1_base64="fLp63M2NyGJ31aChT4ADrA8zlI0=">AAACUnicZVLLSgMxFM3Ud31VXboJFsFVmVFBl1U3LhXtA9pa7qRpG0wmQ3JHGYb5D7f6TW78FVemtUinXgicnHNvOPeQMJbCou9/eaWl5ZXVtfWN8ubW9s5uZW+/aXViGG8wLbVph2C5FBFvoEDJ27HhoELJW+HzzURvvXBjhY4eMY15T8EoEkPBAB311B0DZt1QZSzP+0G/UvVr/rTofxDMQJXM6q6/59W6A80SxSNkEqztBH6MvQwMCiZ5Xu4mlsfAnmHEOw5GoLjtZVPbOT12zIAOtXEnQjpl5ycyUNamKnSdCnBsF7UJ+acdz4uvYFM36USwaDSdvKKlLdrB4WUvE1GcII/Yr5thIilqOgmKDoThDGXqADAj3EKUjcEAQxdnwcpV86GwaRaq4h0hTCSYNC+7hIPFPP+D5mktOKud3p9X69ezrNfJITkiJyQgF6RObskdaRBGDHkj7+TD+/S+S+6X/LaWvNnMASlUaesHfAm0tQ==</latexit>

pB/C
<latexit sha1_base64="dp7dS/L42LD3tSzyF0nWWR5JnpA=">AAACZnicZVDLSgMxFE3Hd31VRVy4CRbBVZ1RQZc+Ni4VbRVsKXfSVIPJZEjuKMMwW7/Grf6Lf+BnmGlL6dQLgZNz7r2ce8JYCou+/1PxZmbn5hcWl6rLK6tr67WNzZbViWG8ybTU5jEEy6WIeBMFSv4YGw4qlPwhfL0q9Ic3bqzQ0T2mMe8oeI5EXzBAR3VrtB2qLM67WVsBvjCQ2WV+OMZXed6t1f2GPyj6HwQjUCejuuluVBrtnmaJ4hEyCdY+BX6MnQwMCiZ5Xm0nlsfAXuGZPzkYgeK2kw1Oyem+Y3q0r417EdIBOzmRgbI2VaHrLEzaaa0gx9r+pPgONnWTTgSLRtNii5a2bAf7Z51MRHGCPGJDN/1EUtS0CI/2hOEMZeoAMCPcQZS9gAGGLuKSlYvWXenSLFTlP0KYSDBpXnUJB9N5/geto0Zw3Di6PamfX46yXiS7ZI8ckICcknNyTW5IkzDyQT7JF/mu/Hpr3ra3M2z1KqOZLVIqj/4B5mO77g==</latexit>

Cp
<latexit sha1_base64="wkpRWkLxYiv8on+zP8a4aAO5/nA=">AAACWHicZVDBTttAEJ2YUiCFNqTHXlZESD1FdkCixxQuHEFtAhJOo/FmA6vseq3dcVvL8q9whV+Cr2EdIoRhpJXevjczevOSTElHYfjQCtY+rH/c2Nxqf9re+fyls9sdO5NbLkbcKGMvE3RCyVSMSJISl5kVqBMlLpLFSa1f/BXWSZP+piITE43XqZxLjuSpaaf7J9ZINxxVeVLFiS6zatrphf1wWew9iFagB6s6m+62+vHM8FyLlLhC566iMKNJiZYkV6Jqx7kTGfIFXosrD1PUwk3KpfmK7XtmxubG+pcSW7KvJ0rUzhU68Z21U/dWq8kXbf+1+A9d4Se9iI6sYfUWo1zTDs1/TEqZZjmJlD+7meeKkWF1XGwmreCkCg+QW+kPYvwGLXLyoTas/Bz/alxaJrr5J0xyhbao2j7h6G2e78F40I8O+oPzw97weJX1JnyDPfgOERzBEE7hDEbA4T/cwh3ctx4DCDaCrefWoLWa+QqNCrpPyAi1yg==</latexit>

Figure 3.7: Illustration of two coordinate frames with different origins and orientations.

rotation and translation

Bp = BpB/C + [BC]Cp, (3.1)

where [BC] is the direction cosine matrix (DCM) defining the orthogonal transformation of a C

frame vector to the B frame [76]. This translation and rotation operation can be concisely expressed

as a 4×4 homogeneous transformation as

[BC] =

[BC] BpC/B

01×3 1

 . (3.2)

Assuming that all mesh vertices are initially defined in the body frame then the transforma-

tion described by Eq. (3.1) must be reversed. This is easily achieved by employing the inverse of

the homogeneous transformation given as

[BC]−1 =

[BC]T −[BC]T BpC/B

01×3 1

 (3.3)

This transform yields a vertex defined in the C frame as[76]

Cp = [BC]−1Bp (3.4)

Now that the vector Cp is suitably defined in the C frame it can be transformed by the homogeneous

transformation [RC] defining the articulation of the sub-mesh by

Rp = [RC]Cp (3.5)

32

The homogeneous transformation matrix obeys the same successive transformation property as the

direction cosine matrix as exmplified in the following transformation[76].

Np = [NA][AB]Bp = [NB]Bp (3.6)

A result of this successive transformation property is that sequential frame definitions and the

subsequent mappings from one mesh articulation frame to a sub-mesh articulation frame can be

carried out recursively. Such as demonstrated in the field of robotic manipulators, each mapping

builds upon the previous. This facilitates an intuitive input for sub-mesh articulations where a

parent sub-mesh holds references to further child sub-meshes and the sub-mesh transformation is

defined relative to its parent mesh, rather than the body or inertial coordinate frames.

3.4.3 Vertex and Fragment Shader Stages

To facilitate OpenGL’s depth testing and rasterization process, the model’s vertices are to

undergo three primary coordinate frame transformations;

(1) B frame to S frame, [SB]

(2) S frame to view frame V , [VS]

(3) V frame to projection frame P , [PV]

The sun frame S : {ŝ1, ŝ2, ŝ3} is constructed where the sun heading in body frame components Bŝ

is used as the first basis vector ŝ1. The remaining basis vectors, ŝ2 and ŝ3 are computed to provide

an orthogonal frame. A sun frame loose AABB where the origin S is coincident with the centroid

of the sun AABB

To facilitate the generation of the View and Projection coordinate frames a loose sun frame

AABB is computed. This bounding box is referred to as loose because it is computed as the

bounding box of the body frame bounding box vertices transformed into the sun frame. To compute

a tight sun frame bounding box requires that all sub-mesh vertices be transformed into the sun

frame and then the sun frame AABB computed from those sun frame vertices. Computing the

33

tight sun frame AABB would require operating on tens of thousands of vertices at each time steps;

computing the loose sun frame AABB may require a few hundred at most (8 vertices for each

sun-mesh bounding box).

The View frame is constructed with its origin at the centroid at the face of the sun frame

bounding box which lies between the sun and the model. The projection frame is constructed as

an orthographic projection of the mesh model into this same plane.

-3

-3

-2

-2

-5
-1

-1

0

1

0

0
2

1

3

4

2

5

3

4

x [m]

y [m]

z [m]

Figure 3.8: Loose sun frame AABB (dashed blue) and body frame AABB (solid green). Body
frame axes x̂, ŷ and ẑ are red, green and blue respectively and the sun heading ŝ as black.

Of the six sides of the loose sun frame bounding box, the centroid of the plane which has

its normal as −Bŝ is set as the vector Se commonly referred to as the ‘eye’ location. This is the

position of the notional camera. The center of the bounding box is set as Sc and referred to as the

camera ‘target’ vector. It is necessary to set the target vector at the center of the loose sun frame

AABB rather than the model body frame because this ensures the model’s extents are centered

and captured within the view. The ‘eye’ and ‘target’ definitions allow a set of unit vectors to be

34

defined as

f̂ =
e− c

|e− c|
(3.7a)

û = [0, 1, 0]T (3.7b)

ŝ = f̂ × û (3.7c)

These unit vectors are used as the basis for the View matrix which is constructed as

V =

ŝT 0

ûT 0

−f̂T 0

01×3 1

(3.8)

The output from the VS stage and therefore input to the FS stage requires that vertices

be mapped from the view frame to the Normalized Device Coordinates (NDC) frame. The NDC

space is defined as a cube with extents in all three axes of [-1, 1]. The orthographic projection

matrix performs the mapping from View frame coordinates to NDC. The projection matrix P is

constructed as

P =

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n

0 0 0 1

(3.9)

where l is the left, r the right, b the lower extent, t the top extents, n the near plane of the volume

and f the far plane of the volume.

The transformations are applied to each model vertex within the vertex shader. The body

frame vertex is transformed to its sub-mesh articulation fame as

Rp = [BR]−1Bp. (3.10)

The vertex is transformed from the original articulation frame R′ to its updated articulated frame

R′ as

R′
p = [R′R]Rp, (3.11)

35

and then transformed back to the body frame

Bp = [BR′]R′
p. (3.12)

The vertex shader then transforms the body frame vertex to NDC by

Pp = [PV][VS][SB]Bp. (3.13)

It is the vertex mapped to the NDC frame, which OpenGL will process for depth testing and

then rasterization and ultimately use to determine which vertex values are sunlit and subsequently

passed through to the FS stage.

As a final computation, the alpha component of each the RGBA value of the Texture contain-

ing the normal vectors, is written as the norm of the normal vector. The OpenGL glClearColorparameter

controls the color used to reset the values in each pixel of color buffers when cleared between ren-

dering frames. Here, the glClearColor parameter is set to an RGBA vector of (0.0, 0.0, 0.0, 0.0).

Thus, if a pixel is unoccupied by the spacecraft mesh, the norm will be zero (due to the black color

buffer value) and if occupied greater than zero. Setting the alpha component provides the OpenCL

stage with a flag to avoid unnecessary computation given the following condition: if the value of

the normal vector’s fourth component is greater than zero, continue to compute SRP force and

torque, otherwise return a zero vector for force and torque.

3.5 OpenCL Algorithm Steps

The OpenCL algorithm is contained within a single kernel program. This kernel program

performs both the force and torque computation and a parallel reduction summation of each pixel

contribution. The kernel program aims to reduce GPU memory read and write collisions, reduce

code branching and remove unnecessary instruction overhead by unrolling loops. For each pixel

the force computed as

F�k
= −P (|r�|)Ak cos(θk)

{
(1− ρsk)ŝ +

[
2

3
ρdk + 2ρsk cos(θk)

]
n̂k

}
(3.14)

36

where for each pixel k the coefficients of diffuse reflection ρdk , specular reflection ρsk are contained

in one 2D Texture object, the surface normal n̂k contained in a different 2D Texture object. The

torque is computed as

L�k
= rP/C × F�k

(3.15)

where the position vector rP/C , the point P of action of the force relative to the spacecraft center

of mass at point C is contained in a third 2D Texture object.

At its simplest a parallel reduction algorithm aims to sum all the elements from a set by

recruiting multiple threads or processors to each iteratively sum two elements until the final sum is

obtained. A naive implementation may sum all elements in a binary tree operation sequence. While

parallel, such an implementation does not account for the particular mechanisms by which GPUs

provide parallel computation. These particulars included memory access patterns, instruction

overhead and kernel launch time.

To reduce memory access collisions, sequential address striding is used to load the values to

be summed from shared memory. Sequential addressing loads values from separate memory banks

on the GPU thus avoiding contention from multiple threads attempting to load values from the

same memory bank at the same time. An example of this sequential addressing procedure is shown

in Figure. 3.9. In this example there are two OpenCL Work Groups (WG) which each contain two

Work Items (WI). While terminology and low level chip design changes from GPU to GPU and

vendor to vendor, conceptually a WG is a processor and a WI is a thread within that processor.

Each WG is accessing a contiguous block of memory and each WI is sequentially addressing values

to sum, thus avoiding access collisions.

To reduce kernel execution overhead each WI computes the force and torque and sums these

values for two pixels. Rather than iterating the kernel to continue the reduction, the kernel then

‘strides’ each WG’s starting index to a point in the pixel array where further pixels are yet to

be processed. This striding continues until the strided index exceeds the number of pixels to be

processed. The stride size is computed as 2 ×WGs ×WIs and this striding is demonstrated in

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 6 12 14

Work Group 1
Work Group 2

2 x Work Items

Figure 3.9: Notional parallel reduction by summing sequenced addressing.

Figure. 3.10. In this notional striding example once WG1’s two WIs have finished processing their

four values, the addressing index strides over all other WGs and continues to sum a new batch of

four values. The While() loop is shown in an abbreviated version in Listing 3.3.

Listing 3.3: Abbreviated excerpt of the while loop in the OpenCL parallel reduction kernel.

1 unsigned int i = group_id * group_stride + local_id;

2 while(i < texture_size)

3 {

4 // compute x, y coords for lookup in square image map (texture)

5 int y = i / tex_width;

6 int x = i % tex_width;

7 float4 nHat_B = read_imagef(normalsMap, coords);

8 if (nHat_B[3] > 0) {

9 // Perform positon and material read_imagef and

10 // compute force and torque for pixel

11 }

12 // If the mesh size is smaller than the group_size then we have to stop

13 // trying to compute the second facet in the parallel reduction because there

14 // will be no more facets in the mesh.

15 unsigned int secondPixelIdx = i + group_size;

16 if (secondPixelIdx < textureSize) {

17 float4 nHat_B_1 = read_imagef(normalsMap, coords_1);

18 if (nHat_B_1[3] > 0) {

19 // Perform positon and material read_imagef and

20 // compute force and torque for pixel

21 }

22 }

23 i += local_stride;

24 }

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 6 12 14

group stride
(2 x #WG x #WI)

20 22

24 28

Figure 3.10: Notional parallel reduction striding over all allocated addresses to continue summing
sequential blocks of memory in a the While() loop.

Additionally, time overhead is incurred by loop instructions. To avoid unnecessary instruction

overhead, at the completion of the While() loop, the final parallel summations within a single

Work Group are computed with unrolled loops. The purpose of the loop unroll optimization is

to expose concurrency to the OpenCL compiler. Loop unrolling allows the OpenCL compiler to

take advantage of the SIMD architecture by optimizing memory loads and scheduling of instructions

given the fixed width of the unrolled loop iterations [5]. An abbreviated portion of the unrolled loops

is shown in Listing. 3.4. The number of unrolled loops is controlled at kernel compile time by the the

kernel macro GROUP SIZE. At kernel compile time (application runtime) the MAX WORK GROUP SIZE

parameter is queried from the compute platform on which the code is executing. The queried value

is used to set GROUP SIZE and thus only expose the number of unrolled loop iterations which match

the hardware’s maximum Work Group size.

At the end of the first kernel execution the number of computed force and torque vectors is

equal to the number of WGs × WIs. A second simple parallel reduction kernel is launched for all

marshaled WIs to return the final resultant force and torque vectors.

3.6 Model Validation

In order to validate the approach two comparisons are performed. The first validation is to

demonstrate that the force and torque on a spherical spacecraft model matches that computed by

39

Listing 3.4: Abbreviated excerpt of the unrolled loops in the OpenCL parallel reduction kernel.

1 #if (GROUP_SIZE >= 512)

2 if (local_id < 256) {

3 ACCUM_LOCAL_F4(shared_force, local_id, local_id + 256);

4 ACCUM_LOCAL_F4(shared_torque, local_id, local_id + 256);

5 }

6 #endif

7 .

8 // unrolled loops for GROUP_SIZEs 256, 128, 64, 32, 16, 8 and 4 omitted here.

9 .

10 #if (GROUP_SIZE >= 2)

11 if (local_id < 1) {

12 ACCUM_LOCAL_F4(shared_force, local_id, local_id + 1);

13 ACCUM_LOCAL_F4(shared_torque, local_id, local_id + 1);

14 }

15 #endif

16

17 if (get_local_id(0) == 0)

18 {

19 float4 v_force = LOAD_LOCAL_F4(shared_force, 0);

20 float4 v_torque = LOAD_LOCAL_F4(shared_torque, 0);

21 STORE_GLOBAL_F4(output_force, group_id, v_force);

22 STORE_GLOBAL_F4(output_torque, group_id, v_torque);

23 }

the analytic cannonball model. The spacecraft model used in the computation is a sphere of radius

1 meter made up of 5120 triangular facets. Evaluated at a distance of 1 AU the analytic cannonball

model computes a force of F� = [-1.42559×10−5, 0.0, 0.0]. The percent error for increasing pixel

resolutions of the mesh model force evaluation with respect to the analytic cannonball evaluation is

shown in Figure 3.11. It can be seen that the error decreases rapidly as the resolution increases to

64×64 pixels. For resolutions of beyond 190×190 pixels the error remains less than 0.01% for the ŷ

and ẑ force components. The x̂ component maintains an offset in error of approximately 0.1% for

all pixel resolutions. This is due to the fact that the the projected area of the mesh model is not

precisely that of a circle, whereas for the analytic cannonball model the projected areas is exactly

A = πr2. This offset demonstrates the importance of a sufficiently accurate mesh model spacecraft

representation. Increasing the sphere mesh to 20480 faces results in a lower offset of 0.034% and

40

for further for a 81920 facet sphere of 0.0076%. For the symmetric cannonball model the torque is

expected as zero. Given the mesh models are not exact spheres, there is a small torque computed.

This torque is of the order of 10−10 for the 5120 sphere, decreasing to 10−12 for the 20480 sphere,

and 10−14 for the 81920 sphere.

10 23 37 50 64 77 91 105 118 132 145 159 172 186 200
Resolution [Pixel]

0.2
0.1

0
0.1
0.2
0.3

%
 E

rr
or

x
y
z

Figure 3.11: Error with respect to analytic cannonball evaluation for 1 m sphere mesh.

A second validation is carried out with a cube mesh with material coefficients of reflection

for diffuse and specular properties of ρd = 0.6 and ρs = 0.2 respectively. The sun heading in the

body frame is ŝ = [0.7071, 0.7071, 0]. The resulting percentage force error with respect to a faceted

evaluation of the same model is shown in Figure. 3.12. The error decreases with increased resolution

where the error remains below 0.1% for resolutions above 1400×1400 pixels.

100 239 378 517 656 795 934 1074 1213 1352 1491 1630 1769 1908 2048
Resolution [Pixel]

0.5

0

0.5

%
 E

rr
or

x
y
z

Figure 3.12: Mixed force validation.

3.6.1 Impact Of Mesh Detail On Accuracy

To demonstrate the method’s ability to capture increased force resolution three model vari-

ants of the OSIRIS-REx spacecraft are evaluated over an evenly spaced sampling of spacecraft sun

41

-5-4
0

-2

0

x [m]

2

z
[m

]

4

-2 0

y [m]

2 54 6

(a) Box and wings.

-5
0

-2

0

x [m]

2

z
[m

]

4

6

-2 0

y [m]

2 54 6

(b) High gain antenna, thruster ring and sample return
module.

-5
0

-2

0

x [m]

2

z
[m

]

4

6

-2 0

y [m]

2 54 6

(c) Hifidelity model.

Figure 3.13: OSIRIS REx spacecraft mesh models.

headings Bŝ over the 4π steradian sphere of possibilities. The three spacecraft models are shown in

Figure 3.13. Each model represents an increase in the detail of the modeled spacecraft. The first

model in Figure 3.13(a) is a simple box and wing model with a single large face oriented in the

x̂ body frame direction in order to approximate the sun-pointing projected area of the spacecraft.

The second spacecraft model in Figure 3.13(b) incorporates larger spacecraft components includ-

ing the high gain antenna (HGA), thruster ring and sample return module. The final model in

Figure 3.13(c) is the high fidelity spacecraft model exported from a CAD software package.

Evaluations of the high-fidelity model are treated as the baseline model evaluation. Force and

42

torque values, for all three models, are computed for all sampled sun headings. Material optical

properties remain the same for each model to allow the comparison to better exemplify the effect

on force resolution of increased mesh modeling fidelity. The materials are Germanium Kapton MLI

(ρd=0.102 and ρs=0.408) and general solar panels (ρd=0.022 and ρs=0.088).

The percentage difference of each mesh evaluation relative to the high-fidelity mesh model

evaluation is computed. To convey an intuitive sense of change in force and torque between evalu-

ations of the different mesh models, the magnitude of the percentage difference is computed with

respect to a baseline value as computed in Eq. (4.47). The baseline value is computed as the

average of the magnitude of either the force or the torque computed over all sun headings of the

high-fidelity OSIRIS-REx mesh. The percentage difference is thus computed as given in Eq. (4.48).

This approach is used for plotting both the force and torque differences.

Fbase =
1

N

N∑
n=1

|Fn| (3.16)

∆F =
Fmodel − Fhifi

Fbase
× 100 (3.17)

The force percentage differences of both low fidelity models relative to the high-fidelity model

are shown in Figure 3.14. It is evident that the box and wing model over predicts the resultant

force for sun headings in the +x̂ and −x̂ direction while significantly under predicting the force for

headings in the +ŷ and −ŷ. The torque percentage difference of both low fidelity models relative

to the high-fidelity model are shown in Figure 3.15. It is clear that the absence of the HGA from

the box and wing model results in an under prediction of torque for a large region of sun heading

mid latitude and longitudes.

The force and torque percentage difference for the box and wing model relative to the high-

fidelity model, in each of the body frame components, are shown in Figure 3.16 and Figure 3.17,

respectively. The approximation of the box and wing model is most evident in the x̂ force component

of Figure 3.16(a). In the region spanned by latitude range−40 deg to +40 deg and longitude−50 deg

to +50 deg the box and wing model over predicts the force due to the absence of the high gain

antenna. Additionally, at sun headings of longitude −90 deg and +90 deg the absence of the thruster

43

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Force box and wing model relative high-
fidelity model

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

32.20
29.23
26.25
23.28
20.30
17.33
14.35
11.38
8.40
5.43
2.45

0.52
3.50
6.47
9.45

%
 D

ifference

(b) Force HGA model relative high-fidelity model

Figure 3.14: Force percentage difference between low fidelity models relative to the high-fidelity
model with baseline value 5.73361×10−5 [N].

ring, sample return module and depth due to the HGA, result in over and under predictions of

greater than 20%.

The force and torque percentage difference for the HGA model relative to the high-fidelity

model, in each of the body frame components, are shown in Figure 3.18 and Figure 3.19, respectively.

By comparison to the percentage error of the box and wing model shown Figure 3.16, the HGA

model shows less error across mid-latitudes. The presence of the HGA, thruster ring and sample

return module results in a clear improvement of torque resolution with a maximum over and under

prediction of approximately 15%. However, the model does show a slight increase in difference

when the sun heading predominates in the +ẑ and −ẑ body frame component.

3.6.2 Model Articulation and Detailed Material Properties

To demonstrate the articulation capability of this modeling method the Aqua spacecraft,

shown in Figure 3.4(b), is simulated in Basilisk. The OpenGL-CL method is implemented as a

Basilisk Dynamic Effector module which allows it to be integrated into the general propagation

of a spacecraft rigid body hub. The simulation orbit is a 1000 km altitude polar orbit and the

Keplerian orbital elements are listed in Table 4.3. The spacecraft’s solar panel is controlled to

articulate in a manner which causes the panel normal vector to track the inertial heading [1, 0, 0].

The spacecraft is assigned three reaction wheel control devices which serve to control the spacecraft

44

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Torque box and wing model relative high-
fidelity model

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

103.2
93.5
83.8
74.2
64.5
54.8
45.1
35.4
25.7
16.0
6.4

3.3
13.0
22.7
32.4

%
 D

ifference

(b) Torque box and wing model relative high-fidelity model

Figure 3.15: Torque percentage difference between low-fidelity models relative to the high-fidelity
model with baseline value 6.57817×10−5 [Nm].

attitude to the computed reference attitude. The spacecraft maintains a nadir pointing attitude

for it’s instrument deck and the computed reference attitude is given by the orbital Hill frame.

For reference, Appendix A contains a detailed technical description of the Basilisk framework and

the development of a Basilisk Dynamic Effector module. The spacecraft is assigned material

Table 3.1: Spacecraft orbit parameters for sun-synchronous LEO orbit and GEO orbit.

a km 7378
e 0

i, deg 90
M0, deg 90
Ω, deg 0
ω, deg 0

parameters for each sub-mesh defined and shown previously in Figure 3.6. The material optical

properties are given in Table 3.2. The material parameters are chosen loosely to provide variation

amongst materials rather than to serve as an exact reference for the optical properties of each

material.

Table 3.2: Spacecraft sub-mesh material optical parameters.

Material Specular (ρs) Diffuse (ρd)

Gold MLI 0.184 0.736
Silver MLI 0.66 0.16

Germanium MLI 0.3 0.3
Solar array rear 0.1 0.3
Solar array front 0.023 0.092
Solar array boom 0.3 0.3

45

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75
La

t [
de

g]

(a) Force x̂ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

20.63
17.68
14.73
11.79
8.84
5.89
2.95

0.00
2.95
5.89
8.84
11.79
14.73
17.68
20.63

%
 D

ifference

(b) Force ŷ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

20.63
17.68
14.73
11.79
8.84
5.89
2.95

0.00
2.95
5.89
8.84
11.79
14.73
17.68
20.63

%
 D

ifference

(c) Force ẑ % difference

Figure 3.16: Force percentage difference between box and wing model relative to the hifidelity
model with baseline value 5.73361×10−5 [N].

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Torque x̂ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

103.2
88.5
73.7
59.0
44.2
29.5
14.7

0.0
14.7
29.5
44.2
59.0
73.7
88.5
103.2

%
 D

ifference

(b) Torque ŷ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

103.2
88.5
73.7
59.0
44.2
29.5
14.7

0.0
14.7
29.5
44.2
59.0
73.7
88.5
103.2

%
 D

ifference

(c) Torque ẑ % difference

Figure 3.17: Torque percentage difference between box and wing model relative to the hifidelity
model with baseline value 6.57817×10−5 [Nm].

46

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75
La

t [
de

g]

(a) Force x̂ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

20.63
17.68
14.73
11.79
8.84
5.89
2.95

0.00
2.95
5.89
8.84
11.79
14.73
17.68
20.63

%
 D

ifference

(b) Force ŷ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

20.63
17.68
14.73
11.79
8.84
5.89
2.95

0.00
2.95
5.89
8.84
11.79
14.73
17.68
20.63

%
 D

ifference

(c) Force ẑ % difference

Figure 3.18: Force percentage difference between HGA model relative to the high-fidelity model
with baseline value 5.73361×10−5 [N].

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Torque x̂ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

103.2
88.5
73.7
59.0
44.2
29.5
14.7

0.0
14.7
29.5
44.2
59.0
73.7
88.5
103.2

%
 D

ifference

(b) Torque ŷ % difference

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

103.2
88.5
73.7
59.0
44.2
29.5
14.7

0.0
14.7
29.5
44.2
59.0
73.7
88.5
103.2

%
 D

ifference

(c) Torque ẑ % difference

Figure 3.19: Torque percentage difference between HGA model relative to the high-fidelity model
with baseline value 6.57817×10−5 [Nm].

47

The body frame force over two orbits is shown in Figure 4.26. The body torque over two

orbits is shown in Figure. 4.27. The eclipse period is visible in both plots where the force and

torque return zero.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [orbits]

4.00 × 10 4

2.00 × 10 4

0.00 × 100

2.00 × 10 4

Fo
rc

e
B

 [N
]

F1
F2
F3

Figure 3.20: Body frame force components over two orbits.

The rendered output at three time steps is shown in Figure 3.22. The viewing orientation

is looking in the −Bŝ direction in the sun frame bounding box. It is evident that the spacecraft’s

solar panel normal vector is directed along the sun heading in each frame while the spacecraft bus

rotates to control to the attitude reference orbit Hill frame.

3.7 Computational Performance

To demonstrate the computational performance of this method a series of evaluations of

the Aqua spacecraft model are carried out for increasing resolutions. Three different GPUs are

used to exemplify three particular qualities. The first implementation consideration is the use of

the OpenGL-OpenCL shared memory context. This feature, used to transparently share content

data between the two APIs, offers signifiant performance benifits on GPU hardware which share a

common direct random access memory (DRAM) space with the CPU[37]. The Intel HD Graphics

630 is employed to demonstrate the performance of an integrated GPU. The Advanced Micro

Devices (AMD) Radeon Pro 560 is chosen to demonstrate the performance of a commodity low-

to-mid range performance discrete GPU. The NVIDIA GTX 1070 is chosen to represent the high

performance discrete GPU.

48

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [orbits]

2.00 × 10 3

0.00 × 100

2.00 × 10 3
To

rq
ue

 B
 [N

m
]

LpntB, 1
LpntB, 2
LpntB, 3

Figure 3.21: Body frame torque components over two orbits.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 3.22: Sequential rendered spacecraft in sun frame.

The computation time for resolutions from 10×10 pixels to 2048×2048 pixels are shown in

Figure. 3.23. While the Intel HD Graphics 630 integrated GPU possesses less compute capability

than the other GPUs, it is able to outperform the other GPUs up to resolutions of 1029×1029

pixels. The performance of the Intel integrated GPU is due to the DRAM shared with the CPU.

This shared memory space facilitates zero-copy memory objects and sharing of pointers to data

objects. While the discrete GPUs incur a data transfer latency, the integrated GPU does not need

to copy and move data across device data buses. Only when the computational load passes a

particular volume is the data transfer latency masked by computational latency. For resolutions

1029×1029 pixels and above the increased computational capability of the Radeon Pro 560 and

NVIDIA GTX 1070 becomes clear. The greater computational capability of the NVIDIA GTX

1070 is evident as there is no appreciable increase in computation time for all resolutions tested.

49

Whereas for the Radeon Pro 560 the computation time steadily increases with increased resolution.

10 155 301 446 592 737 883
1029

1174
1320

1465
1611

1756
1902

2048

Pixel Resolution

10

20

30

40

C
om

pu
te

 T
im

e
[m

s] Radeon Pro 560
Intel HD Graphics 630
Nvidia GTX 1070

Figure 3.23: OpenGL-CL computation times for three different GPUs.

3.8 Conclusions

This chapter provides a detailed description of the OpenGL-CL SRP modeling approach. The

approach provides a solution to resolving, in an online simulation context, arbitrary time varying

articulated spacecraft shape models, spacecraft self shadowing, and varied arbitrary material optical

properties. Arbitrary spacecraft mesh complexity and articulation are accommodated. The method

quickly captures the difference between spacecraft mesh models and comfortably accommodates

detailed meshes of many thousands of vertices.

Using the OpenGL-OpenCL shared context allows this modeling approach to easily be applied

to other force and mesh modeling. For example, at orbit altitudes where the atmosphere is well

modeled as free molecular flow, the same methodology as developed for SRP can be employed to

model drag with only a few lines of change to the entire code base.

To achieve high computational performance, efficient algorithms are developed for both the

CPU and GPU bound processes. For the CPU bound processes, algorithms for efficient bounding

box computation and recursive mesh transformation are presented. Further, a general parallel re-

duction algorithm is described in which the computation of SRP is tightly integrated to seek best

utilization of GPU computing resources through the OpenCL API. These enhancements provide

a method for computing high geometric fidelity SRP in a computationally performant and config-

50

urable manner. The OpenGL-CL approach provides significant modeling capability and enables

previously computationally prohibitive analysis on modest personal computing hardware.

Chapter 4

OpenCL Ray Tracing

The Faceted SRP Method using OpenGL/OpenCL is able to resolve the force and torque

due to the primary irradiation of the spacecraft mesh and account for spacecraft self-shadowing.

However, the method does not capture important self-reflections. Further, the resolving of the

force for the first bounce for a wide range of more complex physically correct material bidirectional

reflectance distribution functions (BRDF) representations is difficult without sampling rays or

computing reflectance integrals. A proven method for accounting for the definicienies in capturing

secondary reflections is to employ a ray tracing methodology [96]. Consequently, the ray-tracing

approach presented is able to capture self-reflection behavior, model complex BRDFs and account

for arbitrary spacecraft articulations and attitudes.

Typically, ray-tracing algorithms operate as a CPU based serial execution process. Addition-

ally, serial CPU implementations are rarely capable of reaching computational throughput required

for real-time or faster image generation rates. Achieving faster than real-time render speeds is

enabled by a number of hardware and algorithmic developments. Early parallel ray-tracing ap-

proaches leverage dedicated parallel computers to achieve a parallel implementation [77, 70]. Algo-

rithmic techniques which have introduced improved performance include functional decomposition

techniques such as bounding volume hierarchy search structures [77], object space subdivision to

compute the result of each region on a separate processor [16], and screen subdivision to faciliate

dynamic loading of scene object meshes to be rendered[70]. Each of these three areas of devel-

opment coupled with the advent of GPGPU computing enables the faster than real-time parallel

52
Work Group 1 Work Group 2

(a) SIMD by ray

Work Group 1 Work Group 2

(b) SIMD by pixel

Figure 4.1: Increased GPU Work Group occupancy when tracing by ray rather than by pixel.

ray-tracing presented.

This chapter is presented in two primary sections. The first section proceeds by outlining the

key algorithmic steps of GPGPU parallel ray-tracing and the algorithmic design decisions made for

the presented implementation. Next, the importance sampling methodology employed to evaluate

the ideal specular-lambertian and complex microfacet BRDFs is detailed. The second half of this

chapter presents validation and verification of the modeling approach at first with simple cannonball

and cube meshes and then later on the more complex OSIRIS-REx and Aqua spacecraft meshes.

4.1 GPGPU Parallel Algorithm Considerations

Typically, ray tracing has been executed as a serial algorithm where a single or set of ray re-

flections are computed using a recursive algorithm which does so at slower than real-time execution

speeds. The parallel GPU computing environment provides the computing power and parallelism

required to produce a faster than real-time ray tracing implementation. However, the GPU envi-

ronment requires two key changes to the serial ray-tracing algorithm. The first change is required

because recursive function execution is not available in GPU execution environments. As a result

the recursive computation of ray reflections must be replaced by iterative function execution. Fig-

ure. 4.1 shows a notional arrangement of two fully marshaled OpenCL GPU work groups iteratively

ray tracing. The second change is that rather than making the algorithm parallel by pixel as the

serial implementation may suggest, the algorithm should be parallel by ray. This second change is

necessitated by the SIMD architecture. The SIMD architecture is most efficient when code ensures

that each compute unit on the GPU is actively working. In the case that the algorithm is parallel

53

by pixels, as the scene is traced the rays from certain pixels will terminate sooner than others.

This leaves compute units inactive resulting in poor utilization of the computing resources GPU.

Rather, as shown in Figure 4.1, by producing an algorithm which is parallel by rays cast, after each

iteration terminated rays may be discarded and the reflected rays repacked for a second iteration

to ensure all compute units marshaled are active.

4.2 Algorithm Steps Overview

An overview of the ray-tracing methodology is shown in Figure 4.2. As described in Sec-

tion. 3.2 an articulated spacecraft mesh is taken as input to the algorithm. The ray tracing al-

gorithm employs three key sub-algorithms to minimize the otherwise high computational load of

naive ray-tracing. First, the ray-triangle intersection search space is reduced by generating an ac-

celeration data structure called a bounding volume hierarchy (BVH). This data structure reduces

the search space by spatially grouping triangular facets and allowing the intersection testing to

initially test facet groups rather than each individual facet in the model. Additionally, two al-

gorithms particularly suited to GPU implementation due to the minimal code branching and few

memory accesses are implemented. The first algorithm is the bounding box intersection testing

algorithm using clipping planes originally presented by Kay and Kajiya [49]. The second is the

memory efficient and computational fast Möller-Trumbore ray and triangle-ray intersection testing

algorithm[64]. At each time update, a new wave of ray vectors is generated. The spacecraft-to-sun

unit direction vector ŝB is computed and used as the first axis in an orthogonal Sun S frame. The

direction cosine matrix [SB] which defines the rotation from the body frame B to the S frame is

constructed and used to generate an S frame axis-aligned bounding box of the mesh model [76].

As shown in Figure 4.3(a), the side of the bounding box nearest the sun is used as a finite plane

from which the origins of all ray vectors is defined. The wave of rays are computed in parallel using

a dedicated OpenCL ray generation kernel.

The ray plane is divided into unit areas determined by the resolution unit chosen by the

user. For example, a 2 m x 1 m plane can be divided into areas of 1 mm x 1 mm giving a plane

54

GPU OpenCL execution

CPU execution

Prepare CAD Model

Compute Ray Plane

Ray Generation

BVH Traversal

Intersection Testing

SRP Computation

Return Force and
Torque

Ray
Terminated?

Yes

Generate BVH

CPU initialization execution

Figure 4.2: Illustration of a set of five bounding boxes and a test ray. Intersections are recorded
for the boxes with the dash outlines.

of 2000 x 1000 squares, producing 2 000 000 rays, where each ray has an area of 1 mm2. Figures

4.3(a) and 4.3(b) provide an example of the Mars Reconnaissance Orbiter mesh model surrounded

by an S frame bounding box (blue solid) and a B frame oriented bounding box (dashed black),

respectively. The red, green and blue vectors are the respective frame axes and the black vectors

indicate rays originating from the blue ray-plane. The origin for a ray is taken as the corresponding

center of a unit area and the direction for all rays is taken as −ŝB. The ray intersection testing

must occur in the same coordinate frame in which the spacecraft vertices are defined. As a result,

the ray vectors are mapped from sun-frame S to the body-frame B using the [BS] rotation matrix.

The discretization of the incident radiation wave front into individual rays has the potential to

introduce errors into the computation. Ziebart shows in a study of this discretization error that for

representative test geometries, the error, for a maximum ray cross section of 10 mm2, is 2% and

decreases to less than 1% for ray cross sections of less than 5 mm [96].

Each compute unit on the GPU launches an instance of the OpenCL kernel program. Each

kernel instance accesses the ray wave front data in the GPU global memory space copying a specific

ray and the BVH traversal array to local memory in the compute unit. For each ray, the BVH

is traversed to test for bounding volume intersections. A positive result for a bounding volume

intersection yields a ray-surface intersection with a specific mesh facet.

The ray-surface interaction is computed with the facet’s particular material BRDF as the

55

-2
-2

-1

-2

0

1
z

[m
]

0

x [m]

2

0

y [m]

3

22
4

(a) S frame generated rays.

-3

-2

-1

2

0

4

1

z
[m

]

2

20

3

y [m] x [m]

4

0
-2 -2

-4

(b) S frame rays mapped to the B frame.

Figure 4.3: Ray generation for the MRO mesh model with a B frame oriented bounding box (dashed
black) and an S frame bounding box (blue solid).

primary input. The BRDF evaluation produces an outgoing ray direction from which the force and

torque contribution of that single ray-surface interaction is computed. The ray termination condi-

tion is evaluated and a new ray vector origin and direction of travel generated for a continued ray

path. The parallel ray-tracing algorithm iterates through BVH traversal, intersection testing and

SRP computation until all rays have exited the scene or reached the nominated termination condi-

tion. The total force and torque contribution of all ray-surface interactions is summed and returned

to the CPU bound process where the values can be integrated into the dynamics propagation of a

numerical simulation.

4.3 Radiation Pressure Particle Tracing Formulation

In this section a formalism is introduced which describes the process of generating and evalu-

ating a set of weighted sample rays. This formalism initially introduced by Veech in Refernece[92],

rigorously describes the ray tracing algorithm employed in this work. Veech presents a general

description of how an estimate of some quantity can be computed with respect to some measure,

by generating a set of weighted sample rays. Here, the quantity will be the solar radiation pressure

force due to radiance incident on the spacecraft. Two key assumptions will simplify the result-

ing description. The first assumption is that ray samples are taken uniformly from a plane wave,

56

discretized into smaller areas, of collimated radiation. A unit of the discretized area is referred

to as a ‘pixel’ and the pixel’s ray resolution represents the length of one side of the pixel area.

The second assumption is that the mechanism controlling ray continuation is the maximum num-

ber of ray-surface interactions rather than a probabilistic measure such as the Russian Roulette

approach[92].

This path tracing algorithm produces an unbiased estimate of the integral of force over the

spacecraft mesh surface. In the case of radiation pressure the sample weight αi is the radiation

throughput of each sample ray. The unbiased estimate is constructed by generating a set of weighted

sample rays

(αi, ri), (4.1)

where ri is a ray and αi the corresponding weight/throughput. The goal is to produce samples that

give an unbiased representation of the equilibrium force F over the spacecraft that holds for any

importance function We. This estimator is given in Eq. 4.2 where N is the number of rays. Again

the first assumption dictates that all samples are given equal importance, therefore We is trivially

set as 1.

E

[
1

N

N∑
n=i

αiWe(ri)

]
= 〈We, F 〉 (4.2)

To begin the particle tracing process, an initial ray is defined as r0 = (x0, ω0) where x0 is an origin

vertex and ω0 a direction. Each sample ray has a corresponding weight α and each ray has an initial

state of (α0, r0). For radiation transport the initial weighting is the incident radiance throughput

α0 =
L(r0)

p0(r0)
(4.3)

where p0(r0) is the probability density from which r0 is sampled. Here, the first assumption, of

uniformly distributed rays, simplifies the throughput to simply

α0 = L(r0) (4.4)

Given the current state of a ray (αi, ri), if i < k, with k being the maximum number of ray-

surface interactions, the ray is continued. If an intersection occurs, xi+1 is the intersection point of

57

the ray ri = (xi, ωi). A random scattering direction ωi+1 is chosen from the BRDF, fr(xi+1, ωi+1 →

−ωi), according to a probability density function approximating the BRDF pi+1(wi+1). Employing

importance sampling, the next ray throughput (weight) is computed as

αi+1 = αi
fr(xi+1, ωi+1 → −ωi)|ω̂i+1 · n̂(xi+1)|

pi+1(ωi+1)
(4.5)

From the recursive relationship in Eq.(4.5), the ray continuation step is repeated until the maximum

number of ray-surface interactions is reached and results in a set of sample rays with weights given

as

αi = L(x0, ω0)
i−1∏
j=0

fr(xj+1, ωj+1 → −ωj)|ω̂j+1 · n̂(xj+1)|
pj+1(ωj+1)

(4.6)

The process computes a set of sample rays r0, ...rk, each with with weight αi.

4.4 Force and Torque Evaluation

Where an intersection is found, the force on the spacecraft due to the incident throughput of

the ray is evaluated in the spacecraft body frame as

Fi = αiωi + αi
fr(xi+1, ωi+1 → −ωi)|ωi+1 · n̂(xi+1)|

pi+1(ωi+1)
(4.7)

The flux of all ray-surface interactions of a ray originating from a pixel is given as

Fk =
K∑
i=1

AFi (4.8)

where K is the maximum number of permitted ray-surface interactions and A is the cross sectional

area of the pixel.

The total force is computed by summing the flux components for each pixel and finally

multiplying the flux by the solar irradiance and scaling by the spacecraft distance to the sun as

shown in Eq. (4.9).

F =
ΦAU2

cr2

N∑
k=1

Fk (4.9)

Here N denotes the total number of pixels, Φ is the radiation flux (solar radiation flux at 1 AU for

SRP), AU is one astronomical unit, c the speed of light and r the sun-spacecraft distance. Following

58

the force computation, the torque Lk contribution of a single intersection is given as

Li = xi+1 × Fi (4.10)

4.5 Intersection Testing

A Bounding Volume Heirachy data structure is used to reduce the intersection testing search

space and therefore reduce computational load. A range of acceleration data structures are pre-

sented in ray and path tracing literature, each offering advantages and disadvantages. These ad-

vantages and disadavantages are dependent on the characteristics of the scene to be rendered [83].

The characteristic of primary importance to this application is the articulation of any sub-meshes

within the model. In the case of a naive BVH implementation where the BVH is a monolithic data

structure, were a sub-mesh to undergo some transformation, then the BVH structure would need

to be rebuilt entirely. This is a computationally wasteful process. As such, this method employs a

BVH structure which is composed of two levels. The bounding volumes of each sub-mesh occupy the

lower level while the upper level groups all of the outer most bounding volumes in the lower level.

If a sub-mesh is to be transformed then that homogeneous transformation matrix is stored with

the sub-mesh’s bounding volume and inversely applied to each ray being tested for intersections.

While this two-level BVH provides computationally efficient handling of articulated sub-meshes,

it prohibits recursive application of sub-mesh transformations. Whereas mesh transforms for the

OpenGL-CL method were developed and implemented to operate on each other recursively the

two level BVH requires that transformations be defined relative to the spacecraft mesh body frame

only.

To build the bounding volume hierarchy a bounding volume is computed for each triangular

facet in the spacecraft mesh model. In this implementation the bounding volume is computed as a

bounding box aligned to the spacecraft model body frame. To begin, the list of bounding volumes

is sorted along the first spacecraft body-frame axis. The sorted list is then divided in half and a new

bounding volume is computed around each half of the list. This process is carried out recursively

59
A

B

C

F

ED

Figure 4.4: Illustration of a set of five bounding boxes and a test ray. Intersections are recorded
for the boxes with the dash outlines.

while, at each new split, sequentially selecting the sort axis as the next axis in the body-frame

triad. This results in a bounding volume hierarchy that groups successive bounding volumes as

containing facets spatially near to each other.

An efficient method of traversing the bounding volume hierarchy is a key aspect in the

development of real-time SRP ray-tracing[83]. This implementation uses as the BVH traversal

method a depth first search array as described by Smits in Reference [83]. An example BVH

hierarchy comprising six nodes is shown in Figure 4.5; first as a recursive depth first search tree

and second as a depth first search array with precomputed skip pointers. In the recursive tree

structure, if bounding volume node A is intersected, the search recursively descends to test for an

intersection against node B. If no intersection is found at node B the recursion meets a termination

condition and the search moves back up the tree and proceeds down the next search branch to test

node C. For the array traversal structure, if bounding volume A is intersected, the next node to try

is the next node in the array which is node B. If the bounding volume at node B is not intersected,

the next node is found by following the precomputed skip pointer to the next sibling in the array,

which for node B is node C. The array traversal algorithm is shown as pseudo code in Listing 2.

The depth first array search structure avoids the function call overhead inherent in a recursive

search tree traversal and takes advantage of the fact that the next node in the search tree can

be precomputed and stored with the left most sibling as a skip pointer to the next node. An

60

A

B C

D E F

A

B

D

E

F

C

Figure 4.5: Two BVH traversal structures. The left structure demonstrates a simple recursive BVH
traversal. The right demonstrates the same BVH as shown on the left yet organized as a depth
first search array with precomputed node skip pointers.

additional benefit to the array BVH traversal structure is that the structure results in greater

memory coherency for large meshes and therefore more efficient contiguous memory accesses on

the GPU given its sequential nature [83].

4.5.1 Bounding Volume Intersection

Bounding volume intersection uses the algorithm originally presented by Kay and Kajiya [49].

The algorithm models the bounding box as 3 sets of parallel planes. The algorithm employs each

set of parallel planes as clipping planes. As demonstrated in Figure 4.6, once the ray is clipped by

each set of planes, any remaining portion of ray inside the bounding volume indicates an intersec-

tion. The algorithm is particularly suited to implementation in the GPU environment because it

does not require code branching (the execution of divergent code paths based on conditional code

statements). This parallel plane algorithm employs the non-branching min() and max() functions

and results in an intersection test with no code branching or division operations.

4.5.2 Triangle Facet Intersection

To compute a ray to triangle intersection, the Möller-Trumbore algorithm is used. This

algorithm is a fast and memory-efficient ray to triangle intersection algorithm making it ideal for

use in the memory constrained GPU computation environment. The basis of the algorithm is the

knowledge that the point of intersection of a line through a triangle in barycentric coordinates

61
Data: idx is the index of the current node in the BVH depth first sorted traversal array

1 while idx is in range do
2 node = fetch next node at idx;
3 if intersectBbox then
4 if node is leaf then
5 intersectTriangle;
6 else
7 idx = idx + 1 (move to first child node);
8 continue;

9 end

10 end
11 idx = skip pointer at node (follow skip pointer to next node)

12 end

Algorithm 2: Algorithm to traverse the depth first sorted BVH array using skip pointers.

(u, v) must lie within coordinate bounds which are easily testable as boolean values. The bounds

defined by the barycentric coordinate system require u ≥ 0, v ≥ 0 and u+ v ≤ 1 [64].

To begin, a point, T (u, v), on a triangle described by vertices V0,V1 and V2 and mapped to

barycentric coordinates is described as given in Eq. (4.11).

T (u, v) = (1− u− v)V0 + uV1 + vV2 (4.11)

The ray equation is given in Eq. (4.12) where O is the ray origin, t the distance from the ray origin

to the intersection point and D the ray direction.

R(t) = O + tD (4.12)

It is then evident that for a ray to intersect the barycentric description of the triangle, the ray

equation must be equal to a point on the triangle, R(t) = T (u, v), and results in the expression at

Eq. (4.13).

O + tD = (1− u− v)V0 + uV1 + vV2 (4.13)

Rearranging the equation into a matrix form yields Eq. (4.14) where it is evident that the terms

V1 − V0 and V2 − V0 are the edges of the triangle and are substituted for E1 = V1 − V0 and

E2 = V2 − V0. Additionally, the substitution T = O − V0 can be made and is interpreted as a

62

t_min

t_max

t_min

t_max

Figure 4.6: Example result of the parallel plane bounding box intersection algorithm. For the top
left ray intersection, the algorithm returns t max as greater than or equal to t min. For the bottom
right ray miss, the algorithm returns t max as less than t min.

translation of the ray origin to the barycentric coordinate frame origin.

[−D,V1 − V0,V2 − V0]

t

u

v

 = O − V0 (4.14)

Using Cramer’s rule, a solution can be found for u, v and t as shown in Eq. (4.15). The solution

for u, v and t will provide the values with which to test against the barycentric coordinate bounds

conditions.
t

u

v

 =
1

| −D,E1,E2|

|T ,E1,E2|

| −D,T ,E2|

| −D,E1,T |

 (4.15)

A final solution is computed with slightly more efficiency by recognizing that each determinant of

the form |A,B,C| = −(A×B) ·C, is shown in Eq. (4.16). This is further simplified by computing

63
Input : The ray data structure containing an origin, direction and inverse direction vectors

and the bounding box extents.
Output: True for intersection, False otherwise

1 tx1 ← (box.min.x - r.o.x)*r.dirinv.x;
2 tx2 ← (box.max.x - r.o.x)*r.dirinv.x;
3 t min ← Min (tx1, tx2);
4 t max ← Max (tx1, tx2);

5 ty1 ← (box.min.y - r.o.y)*r.dirinv.y;
6 ty2 ← (box.max.y - r.o.y)*r.dirinv.y;
7 t min ← Max (t min, Min (ty1, ty2));
8 t max ← Min (t max, Max (ty1, ty2));

9 return t max ≥ t min;

Algorithm 3: Example of fast bounding box intersection computation for a box in a plane.

the cross products P = (D×E2) and Q = (T ×E1) once and then substituting, yielding Eq. (4.17).
t

u

v

 =
1

(D ×E2) ·E1

(T ×E1) ·E2

(D ×E2) · T

(T ×E1) ·D

 (4.16)

=
1

P ·E1

(Q ·E2)

(P · T)

(Q ·D)

 (4.17)

As shown in Listing 4 the mapped ray and triangle can be tested against the barycentric

coordinate frame’s bounds. These tests occur at lines 10 and 15 in Listing 4. An additional test is

performed early in the execution at line 5 to determine if the facet is facing the ray (facet normal

vector opposite in direction to the ray unit direction vector). If the facet is not facing the ray, the

algorithm returns early as no intersection is possible.

4.6 Bidirectional Reflection Distribution Functions

The resultant force vector due to an impinging light ray is coupled to the nature of the ray’s

interaction with the spacecraft surface materials. The total spatial distribution of a reflected light

ray is described by the reflecting material’s BRDF. The BRDF is defined as the ratio of reflected

64

Data: o is the origin of the ray
Data: d̂ is the direction of the ray
Data: v1, v2, v3 triangle vertices
Result: Return triangle intersection

1 e1 = v2 − v1;
2 e2 = v3 − v1;

3 p = d̂× e2;
4 det = e1 · p;
5 if det < eps then
6 return false;
7 end
8 t = o− v1;
9 u = (t · p)det−1;

10 if u < 0 or u > 1 then
11 return false;
12 end
13 q = t× e1 ;

14 v = (d̂ · q)det−1;
15 if v < 0 or u+ v > 1 then
16 return false;
17 end
18 t = (e2 · q)det−1;

Algorithm 4: Möller-Trumbore algorithm used for fast and memory efficient triangle intersection
testing.

65

(a) BRDF is parameterized by the intuitive
(θi, φi) and (θo, φo)

(b) BRDF is parameterized as function of
the half angle (θh, φh) and a difference angle
(θd, φd)

Figure 4.7: Illustrations of Two Common BRDF Geometry Descriptions.

radiance dLr to the incident radiance dEi [65].

The geometry of the reflection interaction is shown in Figure 4.7 where x is the ray intersection

point on a surface and ωo is the direction of the outgoing ray, n̂x is the unit normal to the surface at

x, and ωi is the direction of the incident radiation. The normalized vector, ĥx is in the direction of

the angular bisector of ωo and ωi, and is defined by ĥx = (ωo+ωi)/|ωo+ωi|. In this dissertation a

particular notation convention from the field of computer graphics is used for the various directional

quantities denoted by ω. For instances where the quantity is solely directional the quantity is

denoted as ω. Where it is meaningful to be used as a vector the quantity is written as ω and is

assumed to be a unit vector.

It is assumed that the incident light-surface interactions are occurring in the optical linear

regime. Under this linear regime it has been shown experimentally that there is a proportional

relationship between exitant radiance and irradiance, dLo(ωo) ∝ dE(ωi). This allows for the

development of the bidirectional reflectance distribution function, fr(ωi → ωo), given in Eq. (4.18),

where the proportionality relationship describes the observed radiance leaving a reflecting surface

in the direction ωo and the projected solid angle defined as dσ⊥(ω) = |ω · n̂|dσ(ω).

fr(ωi → ωo) =
dLo(ωo)

dE(ωi)
=

dLo(ωo)

Li(ωi)dσ⊥(ωi)
(4.18)

The relationship between the outgoing radiance and the incoming radiance for a particular optical

66

surface is described as

dLo(ωo) = dL(ωi)fr(ωi → ωo)dσ
⊥(ωi) (4.19)

Integrating Eq. (4.19) yields the total radiance, over the hemisphere, leaving a surface area element

as [92]

Lo(ωo) =

∫
S2

L(ωi)fr(ωi → ωo)dσ
⊥(ωi). (4.20)

This work employs physically plausible BRDFs. A physically plausible BRDF adheres to the

symmetry expression given at Eq. (4.21) and energy conservation condition given by Eq. (4.22).

fr(ωi → ωo) = fr(ωo → ωi) for all ωi, ωo (4.21)∫
S2o
fr(ωi → ωo)dσ

⊥(ωo) ≤ 1 for all ωi ∈ S2
i (4.22)

For a large majority of materials a BRDF can be described as the combination of a specular

component and a diffuse component. Whereas specular reflection is due to surface reflection, diffuse

reflection is due to subsurface scattering and surface microgeometry. While subsurface scattering

contributes to the generation of diffuse reflections this work does not model internal material

refraction nor transmission between transparent layers. As a result the contribution of subsurface

scattering is represented by adding a diffuse term to the specular term giving the complete BRDF

description

fr(ωi → ωo) = ρRd + sRs (4.23)

where ρ and s are the proportions of the surface behaving as a diffuse and a specular respectively

and ρ+ s = 1.

4.6.1 Ideal BRDF

A commonly used first order BRDF is the combination of diffuse lambertian and ideal specular

mirror-like reflection. This BRDF expression is given in Eq. (4.24), where F0 is the Fresnel reflection

coefficient, ρ the diffuse scaling constant of the material and ω̂o outgoing mirror reflected direction

given by ω̂o = 2(ω̂i · n̂)n̂− ω̂i.

67

macrosurface
microsurface

n̂
<latexit sha1_base64="Rc5m+K+LhC8KrcTeEbK2h2NLFqo=">AAACUHicZVBNTxsxEJ0NtITQlq8jF6sRUk/RblUJjkAvHFNBAhIboVnHIRb+WNmzoNVq/wbX8pu48U+4USeEioWRLD+/N2O9eVmupKc4foxaS8ufPq+0VztrX75+W9/Y3Bp6WzguBtwq684z9EJJIwYkSYnz3AnUmRJn2fXvmX52I5yX1pxSmYuRxisjJ5IjBSpNp0hVmunK1PXlRjfuxfNiH0GyAF1YVP9yM+qlY8sLLQxxhd5fJHFOowodSa5E3UkLL3Lk13glLgI0qIUfVXPTNdsNzJhNrAvHEJuzbycq1N6XOgudGmnq32sz8r+2+1a8RV+GySCiJ2fZ7BerfNMOTfZHlTR5QcLwFzeTQjGybBYTG0snOKkyAOROhoUYn6JDTiHMhpXD4Ulj0yrTzTdhVih0Zd0JCSfv8/wIhj97ScB/fnUPjhZZt2EHvsMPSGAPDuAY+jAADjncwV+4jx6ip+i5Fb20vt6wDY1qdf4BTn61Fw==</latexit><latexit sha1_base64="Rc5m+K+LhC8KrcTeEbK2h2NLFqo=">AAACUHicZVBNTxsxEJ0NtITQlq8jF6sRUk/RblUJjkAvHFNBAhIboVnHIRb+WNmzoNVq/wbX8pu48U+4USeEioWRLD+/N2O9eVmupKc4foxaS8ufPq+0VztrX75+W9/Y3Bp6WzguBtwq684z9EJJIwYkSYnz3AnUmRJn2fXvmX52I5yX1pxSmYuRxisjJ5IjBSpNp0hVmunK1PXlRjfuxfNiH0GyAF1YVP9yM+qlY8sLLQxxhd5fJHFOowodSa5E3UkLL3Lk13glLgI0qIUfVXPTNdsNzJhNrAvHEJuzbycq1N6XOgudGmnq32sz8r+2+1a8RV+GySCiJ2fZ7BerfNMOTfZHlTR5QcLwFzeTQjGybBYTG0snOKkyAOROhoUYn6JDTiHMhpXD4Ulj0yrTzTdhVih0Zd0JCSfv8/wIhj97ScB/fnUPjhZZt2EHvsMPSGAPDuAY+jAADjncwV+4jx6ip+i5Fb20vt6wDY1qdf4BTn61Fw==</latexit><latexit sha1_base64="Rc5m+K+LhC8KrcTeEbK2h2NLFqo=">AAACUHicZVBNTxsxEJ0NtITQlq8jF6sRUk/RblUJjkAvHFNBAhIboVnHIRb+WNmzoNVq/wbX8pu48U+4USeEioWRLD+/N2O9eVmupKc4foxaS8ufPq+0VztrX75+W9/Y3Bp6WzguBtwq684z9EJJIwYkSYnz3AnUmRJn2fXvmX52I5yX1pxSmYuRxisjJ5IjBSpNp0hVmunK1PXlRjfuxfNiH0GyAF1YVP9yM+qlY8sLLQxxhd5fJHFOowodSa5E3UkLL3Lk13glLgI0qIUfVXPTNdsNzJhNrAvHEJuzbycq1N6XOgudGmnq32sz8r+2+1a8RV+GySCiJ2fZ7BerfNMOTfZHlTR5QcLwFzeTQjGybBYTG0snOKkyAOROhoUYn6JDTiHMhpXD4Ulj0yrTzTdhVih0Zd0JCSfv8/wIhj97ScB/fnUPjhZZt2EHvsMPSGAPDuAY+jAADjncwV+4jx6ip+i5Fb20vt6wDY1qdf4BTn61Fw==</latexit><latexit sha1_base64="Rc5m+K+LhC8KrcTeEbK2h2NLFqo=">AAACUHicZVBNTxsxEJ0NtITQlq8jF6sRUk/RblUJjkAvHFNBAhIboVnHIRb+WNmzoNVq/wbX8pu48U+4USeEioWRLD+/N2O9eVmupKc4foxaS8ufPq+0VztrX75+W9/Y3Bp6WzguBtwq684z9EJJIwYkSYnz3AnUmRJn2fXvmX52I5yX1pxSmYuRxisjJ5IjBSpNp0hVmunK1PXlRjfuxfNiH0GyAF1YVP9yM+qlY8sLLQxxhd5fJHFOowodSa5E3UkLL3Lk13glLgI0qIUfVXPTNdsNzJhNrAvHEJuzbycq1N6XOgudGmnq32sz8r+2+1a8RV+GySCiJ2fZ7BerfNMOTfZHlTR5QcLwFzeTQjGybBYTG0snOKkyAOROhoUYn6JDTiHMhpXD4Ulj0yrTzTdhVih0Zd0JCSfv8/wIhj97ScB/fnUPjhZZt2EHvsMPSGAPDuAY+jAADjncwV+4jx6ip+i5Fb20vt6wDY1qdf4BTn61Fw==</latexit>

m̂
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ŵo
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ŵi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4.8: Conceptual illustration of microfacet with shadowing-masking geometry.

fr(wi → ωo) = d
(ρ
π

)
+ s

[
F0δ(ω̂i − ω̂o)

cos θi

]
(4.24)

4.6.2 Mircofacet Model BRDF

The microfacet model is an approach to describe the specular term of a BRDF by modelling

the material surface as a collection of optically flat statistically distributed facets. The facets

are assumed to be at a scale too small for shading considerations and significantly larger than

the wavelength of the incident radiation [69]. Figure 4.8 presents a conceptual explanation of the

microfacet geometries. Three points have the same macrosurface normal n̂ and microsurface normal

m̂. The green reflection pairs are visible in both the ŵo and ŵi directions, while the red is blocked

(in ŵi in this case) [93]. Given these assumptions of the surface microgeometry, the distribution of

the facets and the resulting specular BRDF term is given in Eq. (4.25).

Rs =
D(ωh)G(ωo, ωi)F (ωo)

4(n̂ · ω̂o)(n̂ · ω̂i)
(4.25)

In Eq. (4.25) the function D(ωh) is the microgeometry normal distribution function (NDF)

which describes the distribution of the macro surface area, as microfacets, which are oriented with

respect to the incoming radiation direction, such that the incoming radiation could reflect in a

given direction on the hemisphere. The geometry function, G(ωo, ωi), governs the fraction of area

of facets which are not shadowed by other facets. The function F (ωo) is the Fresnel reflection factor

of the active microfacet areas and controls how much of the radiation is reflected from the facets

68

given the radiation angle of incidence. Finally, the denominator 4(n̂ · ŵo)(n̂ · ŵi) is a correction

factor, which resolves quantities being mapped between the local microgeometry coordinate space

and that of the macrosurface coordinate space.

The Fresnel equations are the solution to Maxwell’s equations at smooth surfaces and describe

a material’s reflectance for two polarization states of the incident illumination. The reflectance de-

pends on the materials index of refraction and the angle between the incident radiation and the

surface normal vector. Assuming a radiation source of mixed polarization, the rational approxi-

mation as developed by Schlick is used to compute the Fresnel factor with a significant reduction

in computational complexity [79]. The Schlick approximation is given in Eq. 4.26, where the angle

considered (ωi · ĥ) is the angle between the incoming radiation source and the microfacet normal.

F (ωi · ĥ) = f0 + (1− f0)(1− (ωi · ĥ))5 (4.26)

Selection of the terms D(ωh) and G(ωo, ωi) determine the resulting specular distribution of

reflected radiation. The NDF function D(ωh) controls the size, brightness, and overall shape of

the BRDF’s specular highlight[69]. Many different NDFs have been presented in the computer

graphics literature. Often the NDF function is Gaussian-like and includes a parameter which

describes the “roughness” or variance of microfacet normals [21]. The geometry function G(ωo, ωi)

is a probability that surface points, with a given microgeometry normal n̂, will be visible from both

the light direction ŵi and the view direction ŵo.

This work implements two microfacet BRDF formulations. A microfact BRDF is defined by

the combination of a particular NDF and masking/shadowing function (G(ωo, ωi)). The specific

NDFs emplyed are the Beckmann distribution and Trowbridge-Reitz (GGX) distributions. The

distributions are anisotropic and the size of the specular lobe in each distribution is controlled by

the roughness parameters αx and αy and the distribution NDF for each model.

The first microfacet BRDF uses the NDF by Beckmann and Spizzichino and is shown in

Eq. 4.27, where θh is the angle ωi · ĥ [7].

D(ωh) =
e− tan2(θh)/α2

πα2 cos4(θh)
(4.27)

69

The shadowing function used with the Beckmann distribution is one originally developed by Smith

[82] and given as

G(ωo, ωi) =
1

1 + Λ(ωo)

1

1 + Λ(ωi)
(4.28)

where Λ() is given by

Λ(ω) =
1

2

(
erf(a)− 1 +

e−a
2

a
√
π

)
(4.29)

For the Smith masking function to be an exact solution for the stochastic microfacet surface an

assumption is made that microfacet normal vectors and microfacet masking/shadowing are statis-

tically indpendent [41]. Additionally, rather than evaluate the computationally expensive erf(x)

and ex functions in Eq. 4.29, Walter et al. present the rational polynomial approximation shown

in Eq. 4.30 where a = 1/(α + | tan−1(ωi · ĥ)|). This approximation evaluates to a relative error of

less than 0.35% [93].

Λ(ω) =
3.535a+ 2.181a2)

(1.f + 2.276f ∗ a+ 2.577f ∗ a2
(4.30)

The GGX distribution, originally introduced by Walter et al. [93] and later generalized to a

anisotropic distribution by Heitz [41] is given in Eq. 4.31.

D(ωh) =
1

παxαy cos4(θh)
(
1 + tan2(θh)(cos2 φh/α2

x + sin2 φh/α2
y)
)2 (4.31)

The masking function used with the GGX distribution function deviates from the Smith developed

function in Eq. 4.28. Whereas the Smith masking fucntion assumes that visible microfacets are

uncorrelated. However, for many surfaces the probability of a microfacet being visible from both

the incoming and outgoing directions is greater the closer together the microfacets. as such the

masking function used for the GGX distribution is

G(ωo, ωi) =
1

1 + Λ(ωo) + Λ(ωi)
(4.32)

where Λ(ω) is

Λ(ω) =
−1 +

√
1 + α2 tan2(θ)

2
(4.33)

70

- /2 /4 0 /4 /2
0

0.4

0.8

1.2

1.6

GGX
Beckmann

✓h
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(wh)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4.9: Isotropic Beckmann and GGX microfacet NDFs as a function of the angle between a
ray direction and the the surface normal, θh, for roughness value α = 0.45.

As a demonstration of the difference between the two NDFs, Figure 4.9 shows the magnitude

of the differential area of the distribution of lit microfacets for grazing angles −π/2 to π/2. Fig-

ure. 4.9 is generated with a roughness value α =0.45. The value α =0.45 is chosen to be instructive

as it will be used in the following section’s orbit propagation results. The α parameter controls the

spread of the lobe of the specular reflection. The GGX distribution has greater magnitude at the

extremities and falls off to zero more slowly, than the Beckmann, for directions far from the surface

normal.

4.7 Evaluating Ray-Surface Interaction

Evaluating the force and reflected ray direction requires computing the integral given by

in Eq. 4.20. This integral contains the potentially complex analytic expression for the BRDF

fr(ωi → ωo). Often these BRDF functions have no developed analytic solution or simply contain

discontinuities (such as the delta function describing mirror specular reflection) which make such

general solutions unattainable. As a result numerical methods are used for evaluating these complex

integrals. Numerical quadrature is a common computational method for computing an integral,

however, its computational load increases as the dimensionality of the integral increases[REF]. For

the BRDFs used in this dissertation the integral dimension is at three and possibly five (ωo, ωi, ĥ)

71

for anisotropic materials. To overcome this dimensionality constraint a quasi-Monte Carlo method

is used to generate an estimate of the scattering integral. The basic Monte Carlo estimator is shown

in Eq. 4.34, where N is the number of samples taken and Xi a sample point at which to evaluate

the integral which is chosen from the probability density function (pdf) p.

〈
FN
〉

=
1

N

N−1∑
i=0

f(Xi)

p(Xi)
(4.34)

Monte Carlo importance sampling is used to evaluate the integral in Eq. (4.20). In the

context of graphics rendering, Monte Carlo ray tracing casts many rays from a single pixel to

estimate the radiance received at that pixel. The number of rays cast for a single pixel is given

by the quantity N in Eq. (4.2). With a sufficiently large value for N a good estimate of the

scattering equation can be attained and, in turn, its effect on the resultant SRP force direction and

magnitude determined. However, this typically requires casting many rays per pixel in multiple

ray waves. Each ray wave incurs the communication and data overhead of launching the various

OpenCL ray generation and tracing kernels. This communication overhead is a significant source of

latency in GPGPU programming. To overcome this latency and thus maintain faster-than-realtime

evaluations, it is assumed that features of the spacecraft mesh model surface area are much larger

(multiple cm2) than the ray cross sectional area (mm2) and that each feature on the spacecraft

mesh model possess a common BRDF. As a result, rather than casting N = 100 waves of rays at a

particular ray resolution e.g. 1 cm2, a single densely packed wave of rays at ray resolution 1 mm2

is cast. This densely packed wave of 1 mm2 rays is equal to the 100 waves of 1 cm2 rays.

At each ray-surface interaction the ray throughput αi, its directional force Fi and reflected

direction ωo, must be computed. Due to the importance sampling approach, the throughput of

the ray continuation is a function of the BRDF and probability density function from which the

outgoing ray direction ωo is sampled. This importance sampling is accommodated in Eq. (4.35).

αi = L(x0, ω0)

i−1∏
j=0

fr(xj+1, ωj+1 → −ωj)|ω̂j+1 · n̂(xj+1)|
pj+1(ωj+1)

. (4.35)

Therefore, the process of generating outgoing ray direction ωo and computing the weighting of the

ray according to the BRDFs PDF, is implemented in a manner that is specific for each BRDF type.

72

4.7.1 Sampling Ideal BRDF

Computing ωj+1 and pj+1(ωj+1) for a specular reflection is trivially the reflected direction

computed by

ω̂oj+1 = 2(ω̂i · n̂)n̂− ω̂i (4.36)

The PDF is evaluated as

pj+1(ωoj+1) = 1 (4.37)

The reflected ray direction for a lambertian diffuse interaction is computed by uniformly sampling

the hemisphere above the intersection point. The vector components of ωoj+1 for a diffuse ray are

given by Eq. (4.38) where ε1 and ε2 are random samples chosen from a uniform distribution [69].

x = cos(2πε2)
√

1− ε21 (4.38a)

y = sin(2πε2)
√

1− ε21 (4.38b)

z = ε1 (4.38c)

The probability of selecting this direction is given by Eq. (4.39), where θo corresponds to the angle

marked in Figure 4.7.

pj+1(ωoj+1) =
cos(θo)

π
(4.39)

4.7.2 Sampling Microfacet BRDFs

Given that microfacet BRDFs model the surface as a distribution of micro specular facets one

must choose a micro facet normal direction vector and compute the reflected ray about that normal

according to Eq. 4.36. The probability of this outgoing ray is equal to the probability of selecting

the particular micro facet normal vector. To reduce the variance of the Monte Carlo estimator it

is wise to choose samples from a PDF which is as close to the actual BRDF integral function as

possible. Of course, if one could choose a pdf which is exactly proportional to the integral then this

would obviate the need to perform Monte Carlo integration in the first place. Therefore, a common

technique in image rendering is to select micro facet normal vector samples directly from the NDF

73

in the BRDF. The NDF primarily controls the shape of a microfacet BRDF and therefore leads to

a significant reduction in estimate variance[43]. However, at small grazing angles the microfacets

visible from a given outgoing direction is very different from the overall distribution. Therefore,

as shown by Heitz in Reference [42], microfacet normal vector samples will be drawn from the

distribution of visible normals as given by

Dω(ωh) =
D(ωh)G(ω, ωh)max(0,ω · ωh)

cos(θ)
(4.40)

Because the normal vector sampled from Dω(ωh) is defined with respect to the half angle vector h,

the PDF Dω(ωh) is transformed to a sample in the outgoing ray direction Dω(ωo).

pj+1(ωoj+1) = Dω(ωo) =
Dω(ωh)

4(ωo · ωh)
(4.41)

4.7.3 Computing The Total BRDF

When computing the outgoing ray direction a single ray direction is chosen. However, the

multiple contributing models to the BRDF (eg. specular and diffuse) when sampled result in

different reflection behaviors. Therefore, the BRDF component, from which the outgoing ray

direction is computed, is selected in a probabilistic manner. Either the diffuse or specular BRDF

is chosen with a probability proportional to the BRDF’s contribution to the final weighted BRDF

as shown in Eq. 4.23. The sub-mesh material is defined as a weighted combination of the diffuse

and specular BRDFs. At run time the two contributing BRDFs are read in from the mesh model

file and allocated to either the 1st BRDF slot or the 2nd BRDF slot. The previously presented

general combined weighted BRDF expression is shown again at Eq. 4.42

fr(ωi → ωo) = ρRd + sRs (4.42)

The weighting for this material’s BRDF combination is computed as

weight =
ρi1st

ρi1st + ρi2nd
(4.43)

74
1 sample = uniformSample();
2 if sample < weight then
3 idx = mat.firstBrdfIdx;
4 brdf = scene.materials [idx];

5 else
6 idx = mat.secondBrdfIdx;
7 brdf = scene.materials [idx];

8 end
Algorithm 5: Selecting material BRDF.

where the ρi1st and ρi2nd variables correspond to either the ρ or s from Eq. 4.42 according to the

order (1st or 2nd) in which the BRDFs are loaded. Finally, a uniformly distributed sample in the

range [0, 1] is used to toggle the choice between BRDFs as shown in Algorithm. 5.

4.8 Model Validation

Model validation is performed by computing the percentage error of the force vector for both

a surface evaluated with the ray-tracing approach relative to a surface evaluated with the faceted

approach. The magnitude percentage relative error is computed as

|Fray − Ffacet|
|Ffacet|

(4.44)

and similarly for each force vector component. Additionally, to demonstrate the ray-tracing

method’s ability to capture the diffusely reflected rays, the relative error is computed for a com-

pletely specular surface, completely diffuse surface and a mixed specular and diffuse surface. For the

completely specular and completely diffuse surface the cube mesh shown in Figure 4.10 is evaluated

at the sun heading ŝB = (1.0, 0.0, 0.0). To demonstrate the dependence of force direction and mag-

nitude on the ray resolution, the mixed case evaluation is conducted with ŝB = (0.7071, 0.7071, 0.0).

The spacecraft model is a simple cube of side length one meter shown in Figure 4.10. Material char-

acteristics are controlled by the coefficients for absorption ρa, diffuse ρd and specular ρs reflections.

The percentage error of the force direction vector components for a specular cube mesh model

is shown in Figure 4.11. The error in the x̂B component is consistently 2.6×10−6 %. This small

75

-1
-1
-1

-0.5

0

0

0.5

1

0

1.5

1
1 2

z [m]

y [m] x [m]

Figure 4.10: Test cube spacecraft model. Black and cyan vectors indicate body-frame sun headings
evaluated. Red, green and blue vectors denote first, second and third body-frame axes respectively.

relative error is attributed to floating point precision errors in the representation of the model’s

facet normal vectors. These small errors manifest the same reflection geometry for each evaluation

at different ray resolutions and therefore a small consistent force direction error. The percentage

force error ŷB and ẑB directions are of order 10−14 and less.

For a lambertian diffuse cube mesh evaluation the error of ray-traced force components rela-

tive to the faceted force norm are shown in Figure 4.12. It is again evident that as the ray resolution

decreases the relative error to the faceted model also decreases to less than half a percent. As the

ray resolution decreases, the number of rays being cast to approximate the integral of the diffuse

BRDF increases. For ray resolutions less than approximately 5 mm the error remains below one

percent. The increased number of rays produces an improved estimate to the integral. This simple

test demonstrates that this ray-tracing method is accurately capturing the diffuse ray reflections

and their impact on the resultant force. The error of the ray-traced force components relative

to the faceted force norm for a mixed (diffuse and specular) material evaluation are shown in Fig-

ure 4.13. The error relative to the faceted evaluation decreases with increased ray density and

remains below one percent for ray resolutions approximately less than 3 mm. It is evident that for

mixed material case a smaller small ray size is required to achieve a less than one percent error.

76

%
 E

rr
or

Ray Resolution [mm]

Figure 4.11: Error of the ray-traced force components relative to the faceted force norm for a
specular material evaluation.

%
 E

rr
or

Ray Resolution [mm]

Figure 4.12: Error of the ray-traced force components relative to the faceted force norm for a diffuse
material evaluation.

%
 E

rr
or

Ray Resolution [mm]

Figure 4.13: Error of the ray-traced force components relative to the faceted force norm for a mixed
(diffuse and specular) material evaluation.

77
Table 4.1: SRP force for faceted evaluations.

Method (ρa, ρd, ρs) Force [N] × 10−5

Diffuse (0.2, 0.8, 0.0) -2.783188, 0, 0
Specular (0.2, 0.0, 0.8) -3.267220, 0, 0

Mix (0.2, 0.4, 0.4) -2.157385, -2.157385, 0

For the mixed material the ray resolution required is 3 mm, whereas in the solely diffuse case a ray

resolution of 5 mm is sufficient. This is due to the number of rays being probabilisticaly selected

as either diffuse or specular reflection. For example, given a 1 mm ray size, 100 rays will intersect

an are of 1 cm2. If the contributions of of diffuse and specular phenomena are equal then it is

likely that 50 rays will reflect as specular and 50 as diffuse. This reduces by half the number of

diffuse rays approximating the diffuse scattering function. A smaller ray size therefore increases

the number of rays intersecting the 1 cm2 area and provides an improved estimate of the scattering

integral of Eq. (4.20).

4.9 Multiple Ray Reflections

To prove multiple reflections are being effectively captured, the model and sun-spacecraft

heading, shown in Figure 4.14 are evaluated. This model demonstrates the change in resultant

direction of the force due to multiple surface ray bounces. A manual computation of the faceted

method is carried out to compute the force direction for the two bounces which will occur for the

incoming radiation. The model material is completely specular with ρs = 0.8. The resulting faceted

force is Ffacet = (0.0,−4.25016, 0.0)× 10−5 [N]. Computing the ray-traced evaluation with multiple

bounces yields the percent error in force relative to the faceted method shown in Figure 4.15. For

all ray resolution the force components are near or less than one percent error. In particular the

magnitude of the x̂B and ẑB components are on the order of 10−15 and below.

To investigate the importance of resolving multiple ray continuations an evaluation of the

high-fidelity OSIRIS-REx spacecraft model is carried out for a uniform distribution of spacecraft

sun-headings Bŝ in the 4π str attitude space. The ray resolution is 2.5 mm and the solar intensity

is taken as at distance from the sun 1 AU. To more conveniently convey an intuitive sense of the

78

-2

-2

-1

0

-2

1

0

2

0
2 2

z [m]

y [m] x [m]

Figure 4.14: Test model with two surfaces which form a right angled face. The black vector
indicates body-frame sun heading evaluated. Red, green and blue vectors denote first, second and
third body-frame axes respectively.

magnitude of the percentage difference is computed with respect to a baseline value as shown in

Eq. (4.47). The baseline value is computed using the force and torque computed from a single

ray bounce. In both plots the percentage difference is computed according to Eq. (4.46), where i

indicates the number of bounces used to compute the force F .

Fbase =
1

N

N∑
n=1

|Fn| (4.45)

Fi+1, i =
|Fi+1| − |Fi|

Fbase
× 100 (4.46)

The force magnitude percentage difference between the first and second ray bounce is shown in

Figure 4.16(a), and the difference between second and third shown in Figure 4.16(b). It is evident

that the majority of the force difference from scattered radiation is captured in tracing rays beyond

the first intersection. Figure 4.16(a) demonstrates that if one is concerned only with a sun point

attitude, which is equivalent to latitude and longitude of approximately (0◦, 0◦), then the resultant

error for only computing the first surface interaction is a small over prediction of approximately

2%. However, for most other attitudes computing only the first intersection produces an under

prediction of the force of at least 3% up to almost 8%.

The torque magnitude difference between the first and second bounce is shown in Fig-

79

%
 E

rr
or

Ray Resolution [mm]

Figure 4.15: Error of the ray-traced force components relative to the faceted force norm for multiple
bounce evaluation.

ure 4.17(a), and the difference between second and third shown in Figure 4.17(b). The same

relative difference measure as used in Eq. (4.46) is used here, yet for torque values rather than

force. Figure 4.17(a) shows that computing torque for only one bounce results in torque magnitude

under prediction of approximately 10% for almost all sun-headings. As with the force magnitude

results computing at least two bounces results in a significant reduction in torque magnitude error.

The force percentage difference, in each of the body-frame components, between the first

and second bounce, is shown in the figure set 4.18. Similarly, the difference between resolving the

second and third bounce is shown in Figure. 4.19. The percentage difference is thus computed as

given in Eq. (4.48), where ∆F(i+1, i)k
is the percentage difference between bounce iterations i and

i+ 1 for force vector component k. This approach is used for both plotting of the force and torque.

Fbase =
1

N

N∑
n=1

|Fn| (4.47)

∆F(i+1, i)k
=
F(i+1)k

− Fik

Fbase
× 100 (4.48)

The force percentage difference between resolving the first and second bounce is shown for each

component in the body-frame, in Figure 4.20. The difference between the second and third bounce

is shown in Figure 4.21. For the OSIRIS-REx spacecraft mesh, inspection reveals that in general

resolving only the first bounce results in an under prediction of force in the x̂ and ŷ body frame

components and an over prediction in the ẑ component. The torque percentage difference between

resolving the first and second bounce, for each torque component in the body-frame, is shown in

80

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Force intersection 2 - 1

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

5.37
4.17
2.98
1.79
0.60

0.60
1.79
2.98
4.17
5.37

%
 D

ifference

(b) Force intersection 3 - 2

Figure 4.16: Difference in force magnitude for resolving multiple bounces on hifidelity OSIRIS-REx.

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Torque intersection 2 - 1

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

5.87
4.57
3.26
1.96
0.65

0.65
1.96
3.26
4.57
5.87

%
 D

ifference

(b) Torque intersection 3 - 2

Figure 4.17: Difference in torque magnitude for resolving multiple bounces on hifidelity OSIRIS-
REx.

Figure 4.20 . The difference between resolving the second and third bounce is shown in Figure 4.21.

Individual assessment of the torque body-frame components reveals that for a large portion of sun-

headings the torque difference between one and two bounces remains below 10%. The significance

of the impact of such differences is tied to the spacecraft’s planned guidance and navigation concept

of operations (CONOPS). The degree to which the nominal CONOPS for the spacecraft operates

in any of these high torque error attitudes will determine whether one will choose to model one,

two or more bounces. However, given the computational speed of this method, the computational

penalty for computing two bounces is negligible.

The speed and easy configuration of the parallel ray-tracing method enables quick visual

analysis of spacecraft attitudes of interests. To demonstrate the visual analysis, the over prediction

shown in the one ray bounce relative to two ray bounces for the ŷ component percent difference

shown in Figure 4.18(b), is assessed in Figure 4.22. Each figure shows the rendered model in

81

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75
La

t [
de

g]

(a) Force x % difference intersection 2 - 1

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

5.66
4.40
3.14
1.89
0.63

0.63
1.89
3.14
4.40
5.66

%
 D

ifference

(b) Force y % difference intersection 2 - 1

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

5.66
4.40
3.14
1.89
0.63

0.63
1.89
3.14
4.40
5.66

%
 D

ifference

(c) Force z % difference intersection 2 - 1

Figure 4.18: Force percentage difference between resolving second and first bounce relative to
baseline value 5.62995×10−5 [N].

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Force x % difference intersection 3 - 2

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

5.66
4.40
3.14
1.89
0.63

0.63
1.89
3.14
4.40
5.66

%
 D

ifference

(b) Force y % difference intersection 3 - 2

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

5.66
4.40
3.14
1.89
0.63

0.63
1.89
3.14
4.40
5.66

%
 D

ifference

(c) Force z % difference intersection 3 - 2

Figure 4.19: Force percentage difference between resolving third and second bounce relative to
baseline value 5.62995×10−5 [N].

82

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75
La

t [
de

g]

(a) Torque x % difference intersection 2 - 1

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

7.49
5.82
4.16
2.50
0.83

0.83
2.50
4.16
5.82
7.49

%
 D

ifference

(b) Torque y % difference intersection 2 - 1

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

7.49
5.82
4.16
2.50
0.83

0.83
2.50
4.16
5.82
7.49

%
 D

ifference

(c) Torque z % difference intersection 2 - 1

Figure 4.20: Torque percentage difference between resolving second and first bounce relative to
baseline value 6.44875×10−5 [Nm].

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Torque x % difference intersection 3 - 2

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

7.49
5.82
4.16
2.50
0.83

0.83
2.50
4.16
5.82
7.49

%
 D

ifference

(b) Torque y % difference intersection 3 - 2

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

7.49
5.82
4.16
2.50
0.83

0.83
2.50
4.16
5.82
7.49

%
 D

ifference

(c) Torque z % difference intersection 3 - 2

Figure 4.21: Torque percentage difference between resolving third and second bounce relative to
baseline value 6.44875×10−5 [Nm].

83

(a) One bounce. (b) Two bounces. (c) Image difference.

Figure 4.22: High percentage difference attitude for force, between one and two bounces. The sun
heading latitude and longitude is (-90◦, 0◦) which is equivalent to Bŝ = [0.0, 0.0,−1.0].

the sun frame where Bŝ points out of the page. The image’s false RGB color is generated by

mapping the x̂, ŷ and ẑ force components to the R, G and B channels, respectively. Inspection

of Figure 4.22(a) shows the spacecraft rendered with one bounce while Figure 4.22(b) shows the

spacecraft rendered after two bounces. To highlight the difference in force resolution between

Figure 4.22(a) and Figure 4.22(b), the difference of the pixels in these two figures is computed and

presented in Figure 4.22(c). It is evident that the large angled surfaces of the thruster ring and

the thermal vents redirect a significant portion of force at this attitude. Additionally, the large

percentage error in the ŷ component is directly visible in the green coloring of the image where the

green channel corresponds to the ŷ force component. A similar demonstration carried out for a high

torque percentage difference sun heading. The sun heading latitude and longitude (-1.8◦, 40.7◦).

Again, each figure shows the rendered model in the sun frame where Bŝ points out of the page.

The image’s false RGB color is generated by mapping the x̂, ŷ and ẑ torque components to the R,

G and B channels, respectively. Inspection of Figure 4.23(a) shows the spacecraft rendered with

one bounce while Figure 4.23(b) shows the spacecraft rendered after two bounces. The difference

84

(a) One bounce. (b) Two bounces. (c) Image difference.

Figure 4.23: High percentage difference attitude for torque, between one and two bounces . The
sun heading latitude and longitude (-1.8◦, 40.7◦).

between the first and second bounce is presented in Figure 4.23(c). It is evident that the high gain

antenna and spacecraft instrument deck redirect a significant portion of incident radiation.

To demonstrate the importance of resolving multiple ray continuations an evaluation of the

CloudSat spacecraft is computed for up to six ray continuations [85]. A high precision ‘truth’

ray-tracing evaluation is generated as a baseline value for comparison. This evaluation uses a ray

resolution of two millimeters, a ray termination condition of maximum six ray continuations and

100 waves of rays resulting in the casting of over 350 million primary rays. A debug image of the

ray-traced spacecraft is shown in Figure 4.24. The same evaluation is performed for a single wave of

two millimeter rays at successively more ray continuations from one to six. The resulting percentage

error relative to the high resolution evaluation for each of the force vector components is shown in

Figure. 4.25. For the evaluated spacecraft attitude significant error exists when only accounting

85

Figure 4.24: Resulting rendered image of the ray-traced CloudSat high resolution evaluation in
false color.

for the primary ray intersection. Accounting for spacecraft self-reflection significantly reduces the

error in the SRP evaluation with the error remaining at or under 1% for ray continuations of two

or more. This result again validates previous work where it is seen that three ray continuations are

sufficient to reduce the relative force to acceptable levels [53]. Generally, the number of spacecraft

ray self-reflections will vary because it is dependent on the spacecraft material optical properties and

the sun-spacecraft heading. However, given that a majority of spacecraft resemble an architypcal

box and wing structure, this demonstration is instructive showing that for particular spacecraft

attitudes there is significant error in the SRP evaluation when spacecraft self-reflections are not

modeled.

4.10 Model Articulation and Detailed Material Properties

The ray-tracing SRP model is integrated into the Basilisk astrodynamics simulation software

as a Dynamic Effector module as detailed in Appendix A. To demonstrate the capturing of mesh

articulation during simulation the Aqua spacecraft mesh is simulated in an Earth orbit with Basilisk.

Without again describing the Aqua spacecraft simulation presented in Section 3.6.2, the simulation

86

%
 E

rr
or

Ray Continuations

Figure 4.25: Percentage error in the direction of the resultant force between each successive ray
bounce relative to a high resolution evaluation.

orbital parameters are provided in Table 4.2 as a reminder.

Table 4.2: Spacecraft orbit parameters for sun-synchronous LEO orbit and GEO orbit.

a km 7378
e 0

i, deg 90
M0, deg 90
Ω, deg 0
ω, deg 0

The evolution of the SRP force and SRP torque are shown in Figure 4.26 and Figure 4.27,

respectively. The eclipse periods are visible where the body frame force components are zero.

4.11 BRDF Effect on Orbit Propagation

Accommodation of complex BRDFs is an advancement of the OpenCL ray tracing method

when compared to other SRP modeling approaches. Many SRP models assume ideal specular and

diffuse reflection models. However, the total reflection behavior of spacecraft materials can deviate

significantly from this ideal. To demonstrate the effect of employing complex BRDFs in the SRP

evaluation, the orbit of a cube of side length one meter and mass 1 kg is propagated under the

influence of SRP. Two simulations scenarios are developed where the first simulation is a 1000 km

altitude sun-synchronous LEO orbit and the second a geosynchronous equatorial orbit (GEO). The

simulation orbit parameters are listed in Table 4.3.

For each of the LEO and GEO scenarios, three simulations are executed, where the cube

object is assigned a different BRDF model. The three BRDFs are the idealized model given

87

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time [orbits]

4.00 × 10 4

2.00 × 10 4

0.00 × 100

2.00 × 10 4

4.00 × 10 4

Fo
rc

e
B

 [N
]

F1
F2
F3

Figure 4.26: Force on Aqua spacecraft mesh in polar LEO

in Eq. (4.24), the Beckmann microfacet model and the GGX microfacet model. Each model is

constructed using the same weights for the diffuse and specular contributions with ρ = s = 0.5.

For the two microfacet BRDFs their roughness parameter (parameter controlling the spread of the

specular lobe) is set as α = 0.45. The cube in each scenario is given a slow initial body rate to

demonstrate the variation in force due to changing incident angle as previously demonstrated by

Figure 4.9. The initial rate for the LEO scenario is wB/N = [0.06, 0, 0] deg/s and for the GEO

scenario wB/N = [0.006, 0, 0] deg/s.

The magnitude of the acceleration due to SRP for each BRDF model in the LEO and GEO

scenarios is shown in Figures 4.28 and 4.29, respectively. In both orbital scenarios the cube body

rate can be seen in the variation of the SRP acceleration. The simulation in which the BRDF

is set as the Beckmann microfacet consistently has the greatest magnitude. This agrees with the

distribution shown in Figure 4.9 where the Beckmann distribution models a greater area of specular

microfacets ‘seeing’ the sun than that of the GGX distribution. Similarly, for incident light angles

of greater than approximately π/4 the magnitude of Beckmann distribution drops sharply and

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time [orbits]

3.00 × 10 3

2.00 × 10 3

1.00 × 10 3

0.00 × 100

1.00 × 10 3

2.00 × 10 3

3.00 × 10 3

To
rq

ue
 B

 [N
m

]

LpntB, 1
LpntB, 2
LpntB, 3

Figure 4.27: Torque on Aqua spacecraft mesh in polar LEO.

88
Table 4.3: Spacecraft orbit parameters for sun-synchronous LEO orbit and GEO orbit.

LEO GEO

A km 7378 42164
e 0 0

i, deg 98 0
M0, deg 90 90
Ω, deg 0 0
ω, deg 0 0

is almost equal to the GGX distribution magnitude. This is evidenced by the sharp decrease in

acceleration in the Beckmann simulation as the cube rotates to briefly orient a cube edge towards

the sun bringing the incident light angle on the sides of the cube near 45 deg.

The difference in position, with respect to the simulated orbit of the cube with the idealized

BRDF, is plotted for the Beckmann and GGX models. The position differences are given in the

radial R, intrack S and cross track W , [RSW] relative position frame. The relative positions for

the LEO simulation are displayed in Figure 4.30 and for the GEO simulation in Figure 4.31. The

differences in acceleration magnitude of the Beckmann BRDF and GGX BRDF are easily seen in all

plots due to the growth in differences in each axis. In the LEO scenario, after a single orbit, radial

position differences of a meter are demonstrated. In the GEO scenario radial differences of over a

kilometer are shown after less than two orbits. These differences in relative position demonstrate

and reinforce the importance of modeling a spacecraft’s various BRDFs with appropriate BRDF

models.

0.0 0.2 0.4 0.6 0.8 1.0
Time [orbits]

0.5

1.0

1.5

Ac
ce

le
ra

tio
n

M
ag

ni
tu

de
 [k

m
/s

2]

1e 8

Ideal
GGX
Beckmann

Figure 4.28: Magnitude of the SRP acceleration in sun-synchronous LEO over one orbital period.

89

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [orbits]

0.8

1.0

1.2

1.4

1.6

Ac
ce

le
ra

tio
n

M
ag

ni
tu

de
 [k

m
/s

2]

1e 8

Ideal
GGX
Beckmann

Figure 4.29: Magnitude of the SRP acceleration at GEO over two orbital periods.

4.12 Computational Performance

An analysis is performed to characterize the execution time of the OpenCl ray tracing ap-

proach. The execution time is computed as the time point when ray generation begins to the time

point when the CPU-bound process receives the final force value. The computation times for ray

resolutions from 1.5 mm to 10 mm, with a maximum of three ray continuations are recorded for an

evaluation of the CloudSat model. The computation is executed on three consumer grade GPUs.

The first GPU is the AMD Radeon Pro 560 4096 Mb, the second GPU is the integrated Intel HD

Graphics 630 1536 Mb and the third is the NVIDIA GTX 1070 8 Gb. The computation times

for all hardware options are shown in Figure 4.32 for one ray bounce and Figure 4.33 for three

ray bounces. The evaluation using the most capable GPU (NVIDIA) shows execution durations

for both one and three bounce case almost unchanged. For ray resolutions of 5mm and above

computation times remain below 10 ms. of less than 30 ms for ray resolutions greater than 6 mm

(323,000 initial rays). The number of rays to be computed is dependent on the ray resolution, the

size of the spacecraft and therefore the area of the sun ray plane to be discretized. Additionally, the

number of rays that a GPU can accommodate is also dependent on the GPU’s maximum memory

buffer allocation.

It is instructive to compare the computational performance results of the OpenGL-CL method,

presented in Section 3.7, with the performance of the GPU ray-tracing approach. A comparison for

both the integrated Intel GPU and discrete AMD GPU show that the OpenGL-CL method is not

90

0.0 0.2 0.4 0.6 0.8 1.0
Time [orbits]

2

1

0

1
Ra

di
al

 P
os

iti
on

 D
iff

er
en

ce
 [k

m
]

1e 9

(a) Radial position difference from Ideal BRDF.

0.0 0.2 0.4 0.6 0.8 1.0
Time [orbits]

1.0

0.5

0.0

0.5

1.0

In
tra

ck
 P

os
iti

on
 D

iff
er

en
ce

 [k
m

]

1e 2

(b) Intrack position difference from Ideal BRDF.

0.0 0.2 0.4 0.6 0.8 1.0
Time [orbits]

1.0

0.5

0.0

0.5

1.0

Cr
os

st
ra

ck
 P

os
iti

on
 D

iff
er

en
ce

 [k
m

]

1e 8

(c) Crosstrack position difference from Ideal BRDF.

Figure 4.30: Radial, intrack and crosstrack differences w.r.t the position of the simulated Idealized
BRDF cube at LEO. The dashed line corresponds to the Beckmann and the solid line the GGX.

91

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [orbits]

3

2

1

0

1

2
Ra

di
al

 P
os

iti
on

 D
iff

er
en

ce
 [k

m
]

1e 7

(a) Radial position difference from Ideal BRDF.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [orbits]

1.5

1.0

0.5

0.0

0.5

1.0

In
tra

ck
 P

os
iti

on
 D

iff
er

en
ce

 [k
m

]

(b) Intrack position difference from Ideal BRDF.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [orbits]

1

0

1

2

Cr
os

st
ra

ck
 P

os
iti

on
 D

iff
er

en
ce

 [k
m

]

1e 6

(c) Crosstrack position difference from Ideal BRDF.

Figure 4.31: Radial, intrack and crosstrack differences w.r.t the position of the simulated Idealized
BRDF cube at GEO. The dashed line corresponds to the Beckmann and the solid line the GGX.

92

1.6000
2.5333

3.4667
4.4000

5.3333
6.2667

7.2000
8.1333

9.0667
10.0000

Ray Resolution [mm]

101

102

C
om

pu
te

 T
im

e
[m

s]

Intel HD Graphics 630
AMD Radeon Pro 560
NVIDIA GTX 1070

Figure 4.32: Execution times for ray resolutions from 0.01 mm to 0.0016 mm, for one bounce.

computationally bound but rather CPU to GPU communication bound. Moreover the integrated

GPU shows much faster total computation times due to its DRAM. However, for the ray tracing

approach the integrated GPU and the discrete AMD GPU trace the same performance curve for ray

resolutions of less than 6 mm. This demonstrates that the ray-tracing approach is computationally

bound rather than communication bound. The time savings introduced by the reduced CPU-GPU

latency of the integrated GPU are matched by the increased computational load. Therefore it is

clear that the reduced communication overhead of the integrated GPU is matched for by increased

computational power of the discrete AMD GPU, resulting in the consistently close computation

times.

At the time of this analysis the GPU hardware used is considered to be modest by a compu-

tational performance standard. Graphic processing units are commonly available that will signifi-

cantly outperform the three GPUs used. Given these execution times and the combination of more

capable GPU hardware it is simple to see that further reductions in time to solution are cheaply

available by consumer grade GPUs.

1.6000
2.5333

3.4667
4.4000

5.3333
6.2667

7.2000
8.1333

9.0667
10.0000

Ray Resolution [mm]

101

102

103

C
om

pu
te

 T
im

e
[m

s]

Intel HD Graphics 630
AMD Radeon Pro 560
NVIDIA GTX 1070

Figure 4.33: Execution times for ray resolutions from 0.01 mm to 0.0016 mm, for a maximum of
three bounces.

93

4.13 Conclusions

This OpenCL ray tracing method demonstrates how SRP forces and torques can be re-

solved for complex spacecraft structures more accurately and at faster-than-real-time computa-

tional speeds. The presented approach leverages significant advances in ray tracing tehcniques

and algorithms from the computer graphics discipline. However, this approach is not burdened by

the requirement for visual accuracy which is levied upon those in computer graphics. As a result

the OpenCl method is able to select appropriate shortcuts to extract further computational time

savings.

The GPU imposes constraints on execution order and memory access. The OpenCL GPU-

focused ray-tracing methodology accommodates these constraints by converting the serial recursive

tracing algorithm to a parallel iterative algorithm. Further, the implementation appropriately uses

GPU resources by seeking to maximizes Work Group utilization by relating ray continuation to ray

paths rather than a pixel in the ray plane.

Previous ray tracing SRP modeling techniques only approximated diffuse ray reflections. Im-

portance sampling, a technique from the computer graphics discipline, provides efficient numerical

evaluation of the scattering equation for complex spacecraft surface material BRDFs. The impor-

tance sampling technique is critical to enabling this ray-tracing implementation to maintain faster

than realtime computation speeds. Capturing the effect of both diffuse and spectacularly reflected

rays is validated by comparison to the same evaluation computed with the faceted SRP evaluation

technique. Additionally, it is shown that with increasing ray density the resultant force vector

converges towards a ‘truth’ evaluation.

Multiple ray continuations are validated for both simple cube mesh models and the complex

OSIRIS-REx and CloudSat mesh models. The importance of capturing spacecraft radiation self-

reflections is demonstrated by the evaluation of the OSIRIS-REx model throughout its full sphere

of attitude possibilities. For a range of typical spacecraft geometries, it is shown that computing

up to three ray-surface interactions significantly reduces the force and torque error present when

94

not computing spacecraft self-reflections.

Chapter 5

Black Lion Distributed Simulation

The second major contribution presented in this dissertation is the design and implementation

of the simulation communication middleware called Black Lion (BL). The BL architecture facili-

tates the integration and execution of multiple software processes across heterogeneous computing

platforms. Black Lion enables simulation use cases beyond that of the typical single application

on a single machine. For example, having a dedicated computer running a complex space environ-

ment model and another computer integrating spacecraft dynamics, both of them exchanging data

dynamically through BL.

Black Lion is a communication architecture designed to enable a distributed software-simulation

(SW-sim) of a spacecraft system. The BL middleware was originally motivated by a need for a

SW-sim to support flat-sat testing for an ongoing interplanetary mission in which the Laboratory

for Atmospheric and Space Physics (LASP) and the Autonomous Vehicle Systems (AVS) labora-

tory at the University of Colorado Boulder are collaborating. The goal of a SW-sim is to provide a

comprehensive simulation test-bed that is purely software-based and therefore quickly deployable

and scalable to a large number of users and concurrent spacecraft test activities.

This chapter describes the software architecture which enables the novel BL distributed

simulation software. A discussion of the design consideration for spacecraft distributed simulation

architectures is given. The key development, of separating the data and transport layers is defined

and it’s impact on the run-time operations described. Finally, an example distributed simulation,

using the ray tracing model, is presented.

96

5.1 Distributed Spacecraft Simulation Architectures

The BL architecture facilitates the integration of multiple software processes across hetero-

geneous computing platforms, thus enabling simulation use cases beyond a single machine and

tightly integrated sets of models. For example BL allows for a multi machine simulation config-

uration where a dedicated computer runs a complex space environment model, another computer

integrates the spacecraft dynamics, while both of machines exchange data dynamically through

BL. Further, in the context of a mission, the BL architecture can be applied to bridge the gap

between multiple legacy software components that were never designed to work together. The pri-

mary demonstrated use of BL in this work is as a distributed simulation middleware enabling the

evaluation of computationally expensive models on latent available commodity compute resources

(e.g. a separate machine with significant GPU resource). Specifically, it is shown how the BL

system facilitates the execution of a high-fidelity SRP ray-tracing evaluation on a remote computer

resource while the primary dynamics simulation is executed on another computer resource.

Considering a hardware flat-sat testing scenario, there are multiple mission components in-

teracting with each other: the ground system (GS), the flight computer (FC) and its flight software

(FSW) algorithms, as well as spacecraft models to simulate the dynamics, kinematics and space en-

vironment (DKE). Software simulation testing uses virtual models or emulators in place of physical

assets. Figure 5.1 depicts the idea behind the virtualization of the GS, the FC and the spacecraft’s

DKE. As illustrated, the GS emulator ingests the same mission scripts as the real ground sys-

tem and contains the same command/telemetry databases, while the FC emulator runs the actual

mission FSW.

A spacecraft flat-sat SW-sim configuration provides the capability to initialize and run the

operational command and telemetry databases, as well as the unmodified FSW executable. In-

dependent software models are used for the GS and the FC. While for other required hardware

components like sensors, actuators and avionics high-fidelity DKE models are integrated in order

to test the flight software system in realistic closed-loop simulations.

97

Figure 5.1: Virtualization of Spaceflight Components.

The virtual models used in a SW-sim are usually pre-existent resources for the particular

mission being assessed. These virtual components, referred to as ‘nodes’ from this point onward,

are stand-alone heterogeneous applications. The applications are heterogeneous due to the fact

that they are written in different programming languages, maintain different internal data repre-

sentations and potentially have a variety of execution run-loop strategies (execution speeds, fixed

time, multi-threaded etc.). Therefore, a common communication layer is required to synchronize

and facilitate the exchange of data between the multiple nodes.

The BL communication architecture is designed to connect all the nodes of a distributed

simulation while being as transparent as possible to the internals of these nodes, such that differ-

ent mission users can plug-and-play virtual models. Examples of further BL applications include

the integration of large clusters of spacecraft, complex simulation components running on super-

computers or cloud servers, as well as distributed simulation of both spacecraft sensor and actuation

systems.

5.2 Black Lion Architecture

The purpose of BL is to achieve the described communication goals while being completely

transparent to the internals of each node. Recall that the nodes in the example SW-sim are

stand-alone applications that are initially unaware of any other nodes. The heterogeneity between

the multiple components drives the need for a dedicated communication middleware. The term

communication, involves multiple goals:

(1) Transport of binary data between nodes.

98

(2) Serialization of binary data because each node must know how to convert the received

bytes into structures that can then be managed internally.

(3) Synchronization of nodes to keep all the nodes in lock-step during simulation execution.

(4) Dynamicity in the connections map to allow a more flexible simulation environment that

is minimally dependent on static components (the less strictly required (static) components

in a network the greater the flexibility and resistance to faulting) [44].

A communication layer that is transparent and abstracted from the nodes allows simulation

users to plug-and-play their models of choice, while having the flexibility to add and remove com-

ponents at will. With this purpose in mind, the BL architecture is notionally depicted in Figure 5.2

showing the central controller and three nodes. The BL system’s implementation is comprised of

a single central controller and two APIs that are attached to each node. Each of the components

depicted in Figure. 5.2 will be described in subsequent sections of this chapter.

Central Controller: Message
Broker

Network: Static
Language: Python

Node 1
Network: Dynamic

Language: C++

Router API

Delegate API

Node 3
Network: Dynamic
Language: Python

Router API

Delegate API

Node 2
Network: Dynamic

Language: C#

Router API

Delegate API

ZeroMQ

Google Protobuffers

TCP, IPC or inproc transport

Figure 5.2: Communication Architecture: Central Controller, Delegate APIs and Router APIs.

In Figure 5.2 the coloration of BL components indicates the integration of two third-party

software libraries: ZeroMQ1 : ZeroMQ is a high-performance asynchronous messaging library. The

1 http://zeromq.org

http://zeromq.org

99

library facilitates fast, reliable and protocol independent inter-process messaging for distributed

or concurrent applications. ZeroMQ provides message queuing, however, it aims for decentralized

intelligence, where application components incorporating ZeroMQ are inherently aware of any net-

work intermediation. Here, intermediation means those networking components between nodes

such as proxies, queues, forwarders or brokers, depending on the context [44]. The ZeroMQ library

is available in a wide range of programming languages, which can perfectly interact with each other.

ZeroMQ provides a range of communication topology abstractions. These abstractions define

endpoints and connection points within a network and are referred to as sockets. While referred to

and utilized with similar processes of connect, bind, send and receive, the underlying communication

protocol is transparent to the layers above and can be one of inter-thread communication, Inter-

process communication (IPC), Transmission Control Protocol (TCP), Transparent Inter Process

Communication (TIPC) or Pragmatic General Multicast over IP (PGM).

Google Protobuffer2 : Protocol buffers are a language-neutral, platform-neutral extensible

mechanism for serializing structured data. It is important to clarify that, while ZeroMQ is used

for all transport of binary data through BL, Google Protobuffers are not used for un/serialization

of binary data in all simulation nodes. For instance, Protobuffers prove extremely useful for un/se-

rializing binary data that is shared between the BSK Modules. In contrast, for FSW or the GS

models, the protobuffer libraries are not used because it does not replicate how these components

operate in flight-like configuration.

5.2.1 Data Transport and Data Translation Layers

A key aspect of the BL architecture is to employ a separation of the data transport layer

from the data translation layer. This technique can be formalized by referring to the Open Systems

Interconnection (OSI) model. The OSI model is a conceptual model, developed by ‘International

Organization of Standardization’ (ISO) [89]. The model characterizes and standardizes the com-

munication functions of a computing system without reference to the system’s internal structure

2 https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/

100

and technology. The seven layers in the model are shown in Figure 5.3. Each layer characterize

the specific functions to support the layers above and the services offered to the layers below [20].

The four lowest layers focus on passing traffic through a network to an end system. The top three

layers act as translation layers by interfacing data input and output from the lower four layers.

Black Lion groups the operations of the top three OSI layers into a set of functionality which is

defined by the Router API. The Router API performs the functions characterized by layers one

to three of the OSI model by packaging, addressing and routing data that each simulation node

ingests and publishes. Its purpose is to route data in and out of the internals of a simulation node.

For instance, when routing out, the Router API gathers the node internal data, translates the

data into a standardized BL system format, and then passes the data to the node’s Delegate API.

The Router API is implemented as a generic class with node-specific callbacks. The node-specific

callbacks allow simulation developers to write the minimal custom code required to package and

route the node specific data structures, ready to be sent to other nodes throughout a simulation.

The Delegate API groups the operations of the lower four layers of the OSI model to manage

each node’s communication connections with the central controller. The Delegate API utilizes the

ZeroMQ library to provide a ‘neutral’ transport. This means that ZeroMQ transports data without

regard to the underlying data structure. ZeroMQ transports data between nodes as messages.

The ZeroMQ defined message data structure (msg t) takes any node data as a byte stream as a

variable length payload and transmits this data through the BL system. The Delegate API is

implemented once for each desired programming language and then compiled or executed with the

node application. The Delegate class is currently implemented for Python nodes, C++ nodes and

C# nodes.

Both Figures 5.2 and 5.3 intentionally use the same coloration to show the separation of data

translation and data transport. The ZeroMQ library is used to support data transport while Google

ProtoBuffers are used to support data translation. The separation of translation and transport is

the key development which leads to the inherent flexibility of BL’s multi-process and multi-machine

capability.

101

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

ZeroMQ / Deletage API

Router API

Figure 5.3: Relating the primary BL architectural layers to the OSI stack.

102

5.2.2 Black Lion Simulation Topology

A network topology in which there are fewer static pieces is more robust and flexible [44].

It is more robust because the networked system does not explicitly rely on particular nodes being

operational to initialize and run. Further, if a data dependency is not satisfied from one node

to another then it is expected that the node suffering from insufficient input accommodates this

faulted state and continues to operate accordingly. Not only does this design choice support the

development of a robust flexible system, it also more accurately mimics the simulated reality. An

example of this mimicked reality is a spacecraft not receiving an updated schedule due to missing a

ground station communication pass. The spacecraft therefore waits in a sun-point mode until the

next communication pass opportunity. Similarly, consider a simulation configured with a Ground

Station node that simulates the transmission of spacecraft activity schedules to the spacecraft.

In a distributed simulation, if the Ground Station node faults and ends execution, the simulated

spacecraft flight software shall take the same action as it would on orbit and switch the spacecraft

to a sun-point mode and wait until a schedule or commands are received.

To achieve this flexible network topology the BL system instantiates the BL central controller

as the only static piece in the network (i.e. it has a static IP address and is required for a simulation

to execute). Notionally, depicted in Figure 5.2, the central controller acts as a ‘Broker’ which

synchronizes the execution of nodes and brokers exchange of data between nodes.

5.2.3 Socket and Connection Definitions

In order to understand how the central controller operates as a broker, it is necessary to

first explain the ZeroMQ socket and connection types used in Black Lion’s implementation. Two

types of ZeroMQ socket patterns are used to transport data: the request-reply pattern and the

publish-subscribe pattern. The publish-subscribe pattern is applied in two different configurations.

Request (REQ) - Reply (REP): the central controller has a REQ socket for each node instan-

tiated in the simulation. The REQ socket is used to make requests of each simulation node.

103

Central ControllerDelegate

BACKEND PUB

FRONTEND SUB

REQ REP

PUB

SUB

Delegate

REP

PUB

SUB

REQ

Figure 5.4: Socket Patterns between the Central Controller and Sample Nodes.

In turn, each node has a REP socket that receives and parses the request, performs the

commanded task, and replies back to the central controller indicating accomplishment.

Publish (PUB) - Subscribe (FRONTEND SUB): Every node has a PUB socket through

which it shares its own internal data by publishing. In turn, the central controller has

a SUB-frontend with a SUB socket that subscribes to the publications from all nodes.

Publish (BACKEND PUB) - Subscribe (SUB): Additionally, the central controller has a

PUB-backend. The messages received at the SUB-frontend are routed through the con-

troller to the PUB-backend socket, which then re-publishes the data. In turn, each node

has a SUB socket that subscribes to the messages of interest coming from the controller’s

PUB-backend publisher socket.

The relationship between sockets just described is exemplified in Figure 5.4. The figure depicts the

central controller in the middle and two sample nodes highlighted in magenta and blue. As shown

in Figure 5.4, the sockets are encapsulated by the Delegate API.

Now that the socket types are defined, the connections of these sockets to a given IP address

and port is discussed. All the socket connections in the system fall into either one of these categories:

static connection (i.e. binding type in ZeroMQ terms) or dynamic type (i.e. connecting type in

ZeroMQ terms). The static connections are all associated to sockets in the central controller, while

the dynamic connections are associated to the sockets in each of the nodes’ Delegate API.

Central Controller: it is the only static component in the network due to the frontend-backend

104

ServerClient

bind
backend_port

bind
frontend_port

connect
cmd_port_1

connect
frontend_port

connect
backend_port

Client

connect
cmd_port_2

connect
frontend_port

connect
backend_port

bind
cmd_port_1

bind
cmd_port_2

Figure 5.5: Socket Connections Types (Binding vs. Connecting) and Ports.

(broker) approach. The controller acts as a server in the sense that it binds to a static

IP address for the duration of a simulation instance. Binding to an address creates a fixed

point in the network to which nodes connect. With the same address, it uses a total of

(2+N) ports, where N is the number of nodes instantiated: One port for the SUB-frontend,

one port for the PUB-backend, and a command port for each of the node-request sockets.

Nodes’ Delegate API: through the Delegate API attached to each one of the nodes, the nodes

become dynamic such that they can join and leave without ongoing operation of the rest

of the simulation system. This dynamic nature is reflected in the fact that nodes connect

only to an address and port, rather than bind. As nodes connect to the controller, ZeroMQ

creates a message queues for each node connected to the bound sockets.

Through the described strategy, the central controller is always required and the nodes are

optional independent entities that do not intrinsically rely on each other. The use of ZeroMQ also

allows all the connections to be protocol independent (TCP, IPC, inproc, etc.). The idea of socket

binding (static nature) versus socket connecting (dynamic nature) is illustrated in the topology

showcased in Figure 5.5. The figure also reflects the fact that there is only one static IP address in

the entire BL system and within this address multiple ports are associated with that IP address.

As before, the figure displays the central controller router in the middle and two sample nodes

(clients) highlighted in magenta and blue colors.

105

5.3 Communication Between Nodes

Requests and commands from the controller are handled by the Delegate API built in to each

node. These requests are not spacecraft or simulation commands, but rather they are communi-

cation and synchronization commands exclusive to the BL middleware. The BL controller issues

five different requests, some of which come in the form of multi-part messages. Figure 5.6 shows

the complete BL runtime, for a controller and two nodes, as a Unified Model Language (UML) Se-

quence diagram [10]. This diagram shows synchronous commands as arrows with complete arrow

heads, asynchronous commands as half arrow heads. The vertical blocks represent an executing

process while the dotted line for each process (controller, node 1 and node n) indicates the lifetime

of the process.

To begin BL simulation initialization, an “Initialize” request is issued to each node. The

“Initialize” request is a multi-part message comprised of the “Initialize” signal, the controller’s

frontend address and port and the controller’s backend address and port. The actions taken by

the requested node are: self initialization, connect its pub-socket to the controller’s frontend and

connect its sub-socket to the controller’s backend.

The “pollSubscribedMessages” request, is then sent, which instructs each node to report

all the message names to which the node wishes to subscribe. Next, the “pollPublishedMes-

sages” request is sent which is a multi-part message containing the ”Match” signal and a list of

all the message names for which the other nodes have asked. As a response each node returns a

reduced list with only the message names for which the node shall publish. With initialization now

complete, the main network run-loop begins. Each loop begins with a “Tick” request, which is

used at every time-step of a simulation to synchronize the start of each node’s message exchanging.

This request contains the time duration of the next time-step (i.e. ∆t). Once the requested node

has accomplished all the tasks that must happen after a “Tick”, it sends back a “Tock” reply.

Eventually, there is the “Finish” request, which is a signal for the node to close the sockets,

clean up and shut down.

106

Controller Node 1 Node n

pollSubscribedMessages

launch node

pollSubscribedMessages

pollPublishedMessages

pollPublishedMessages

launch node

tick

tick

publish

publish

subscribe

subscribe

tock

tock

prepare upcoming time step

serialize/unserialize data transport

update node/step time

initialize components

finish
finishfinish

Figure 5.6: Node Actions between a “Tick-Tock”: Publish, Subscribe, Step Simulation.

107

5.4 Tick-Tock Synchronization

Three actions occur in sequence inside each node between the parsing of a “Tick”-request

and the sending of a “Tock”-reply: publish, subscribe and step simulation forward. Note

that these three actions are node internal calls triggered by the “Tick” request. Figure 5.6 depicts

the sequence of interactions and actions happening between the central controller and two sample

nodes.

Parse Tick Request: Each node is alerted to prepare for a new simulation single execution step.

Publish: In the publish internal call, the node’s Router collects the application internal data and

makes it available to the node’s Delegate for publication to the controller’s frontend.

Subscribe: In the subscribe internal call, the node’s Delegate receives external data coming from

the controller’s backend and passes the data to the node’s Router. The Router is responsible

for writing these messages down into the internals of the node application.

Step Simulation: In general terms, the step simulation internal call implies executing the node’s

application during ∆t in order to generate new data, where ∆t is a message part of the

“Tick” request sent by the controller. However, there are nuances in the precise meaning

of step simulation for nodes that are synchronous (i.e. run in cycles, like FSW or the

spacecraft’s DKE simulation) and for nodes that are asynchronous (i.e. are event-based,

like the GS).

Because each node is an independent process that runs at a different speed, the “Tick-Tock”

signal ensures that all of them are kept in lock-step. In the previously introduced example SW-sim

the four nodes integrated into a cooperative BL simulation are: the FC emulator, the spacecraft

DKE simulation, the GS emulator and the visualization GUI. Figure 5.7 depicts the synchronous

nature of the FC and DKE simulation nodes, the asynchronous nature of the GS emulator, and the

listener nature of the visualization node.

Both the FC node and the SC simulation node are synchronous in nature as they run in

108

TICK TICK

SBC Emulator + FSW
synch (real time, RT)

Router API

Delegate API

Central Controller

Spacecraft Models
synch (faster-than RT)

Router API

Delegate API

GS Emulator asynch

Router API

Delegate API

Visualization
listener

Router API

Delegate APITOCK TOCK

TOCK TOCK

TICK TICK

TlmCmd

Figure 5.7: Nodes’ Timely Nature: Synchronous, Asynchronous and Listener Behaviors.

cycles or at predefined rates. Because the FSW executable is running inside a FC emulator using

a real-time operating system, the speed of the FSW execution is real time. In contrast, the DKE

simulation runs faster than real time but contains the notion of a time step, as is required for

numerical integration. For the synchronous nodes, the step simulation call implies running as

many cycles as there are within ∆t before exchanging data again with the rest of the system. If

one node finishes simulating ∆t earlier, it sends the “Tock” reply indicating its completion and

awaits a new “Tick” request from the controller. Because the controller will not proceed until it

has received all the “Tock” signals from all the nodes, the SW-sim speed is naturally driven by the

slowest component.

In contrast, the GS node is asynchronous: the sending of spacecraft commands and the

receiving of telemetry are discrete-time events. The GS also receives a “Tick” command because

the exchange of data (i.e. the publishing and subscribing) must still happen in parallel among

all the nodes. The asynchronous nature of a node like the GS demands a special treatment of

the Delegate and Router APIs: the communication through the APIs must execute in a different

thread from which the main application is running. The Visualization node is another case on its

109

own: it can be simply regarded as a “listener” governed by the DKE simulation. Therefore, it only

subscribes to the DKE simulation messages and, within the step simulation call, it displays the

spacecraft time evolution according to the received set of telemetry messages.

5.5 Black Lion Simulation Case Study

The BL system facilitates the distribution of a simulation across multiple compute resources.

A BL simulation can be comprised of multiple nodes executing on a single machine or multiple

nodes executing across a range of compute resources. Compute resources may be a single computer

with multiple high performance GPUs or remote GPU or CPU hardware administered as ‘cloud’

based compute service.

This section presents a Basilisk simulation of an Earth orbiting spacecraft carried out as a

BL orchestrated simulation. The BL configuration includes two nodes which are executed on two

separate computers. The first computer is a consumer grade laptop while the second computer

has installed a higher performance GPU (NVIDIA GTX 1070). This GPU hardware on the second

computer will be used to support the ray traced SRP force and torque evaluation of the spacecraft

mesh. The simulation configuration is described and the closed loop result of the spacecraft’s

simulated dynamic response is presented.

5.5.1 Basilisk Simulation Configuration

As shown in Figure 5.8, two Basilisk simulation nodes are configured. The first simulation

node, node1, is a Basilisk simulation which is comprised of ten modules. Each module can be

categorized as either a dynamics, environment or flight software module. The SpacecraftPlus

module models the spacecraft rigid body hub (bus) and through the DynamicsManager facilitates

the propagtion of dynamic contributions from the ReactionWheels state effector module and the

Gravity dynamics effector module. The Sun and Earth are the two gravity bodies configured within

the Gravity module. The SPICE module is inlcuded to provide ephemeris information and it is

configured to output the states for the Sun and Earth bodies. The simulation SPICE coordinate

110

system is configured to have an Earth centered zero base (reference frame zero point). The Eclipse

module is included to provide eclipse information based on the spacecraft’s position. The Eclipse

module computes a shadowing scaling factor based on apparent disc sizes of the Sun and eclipsing

body for transition through umbra and penumbra[38]. The SimpleNav module is employed to

generate actual navigation system data. It provides the ability to configure and generate realistic

navigation transnational and rotational states. The module, applies provides specified navigation

errors to the spacecraft true state so that the functionality of the guidance and control subsystem

can be verified as acceptable in the presence of navigation errors. For this simulation the navigation

states are not perturbed. A set of four FSW modules provide the cascading of algorithms required

to produce the guidance and control subsystem. The modules are configured in a cascaded manner

where the output messages from one module are the input messages to the next module. The first

FSW module is the HillPoint module. The HillPoint module compute the spacecraft reference

attitude as the current orbital Hill reference frame [75]. Next, is the AttitudeError module

which computes the spacecraft attitude error from the reference attitude. The AttitudeError

module takes as input the perturbed states generated by the SimpleNav module and the reference

attitude from the HillPoint module. Subsequently, the MRPControl module ingests the attitude

error message output by the AttitudeError moudel and computes required control torques. The

module implements a MRP feedback algorithm as detailed in Example 8.16 of Reference[76]. This

nonlinear attitude tracking control includes an integral measure of the attitude error. Further,

the algorithm seeks to avoid quadratic angular rate terms thus reducing the likelihood of control

saturation during a detumbling phase. Finally, the RWMotorTorque module maps the computed

control torque onto the wheel spin axes of a set of reaction wheels and generates torque commands

for each reaction wheel.

The second simulation, node2, is simply the Basilisk OpenCL ray tracing SRP module. The

module transparently receives all required input data via the BL system. To compute the SRP

force and torque the module requires information regarding the spacecraft state, the eclipse scale

factor and the Sun’s ephemeris data. For this particular simulation configuration the BL system

111

Machine 2

SRP

Node 2

2 Hz

Ray Traced OpenCl

Machine 1

DKE/FSW

Spacecraft Bus

SPICE (sun, earth)

Node 1

Reaction Wheels

Gravity (sun, earth)

Eclipse

Simple Navigation

AttGuidance

AttErrorCompute

MRPControl

RW Motor Torque

2 Hz

Blacklion - Controller

Front SUB Back PUB

spacecraft state msg

SRP force and torque msg

sun ephemeris msg

eclipse factor msg

Figure 5.8: Blacklion configured Baislisk simulation for an Earth orbiting scenario.

112

(a) Aqua spacecraft with materi-
als.

(b) Aqua spacecraft mesh.

Figure 5.9: Aqua spacecraft .OBJ mesh model.

transports the four messages shown in Figure 5.8. The fourth message, published by the ray traced

OpenCL module in node2, is contains the computed SRP force and torque vectors.

The simulated spacecraft is the Aqua spacecraft mesh shown in Figure 5.9. The mesh material

properties are given in Table 5.1. The simulation orbital parameters are shown in Table 5.2.

5.5.2 Simulation Results

The force vector in body frame components is shown in Figure 5.10. The eclipse periods are

evident where all force and torque are components zero. To confirm the BL simulation’s closed loop

response is correct one can compare the BL simulation force and torque with that in Section 4.10.

Comparing Figure 5.10 with Figure 4.26 for force and Figure 5.11 with Figure 4.27 for torque

demonstrates that the BL simulation across multiple machines produces the same result as the

same simulation run on only a single machine.

The benefit of the BL middleware is evident when comparing the the simulation duration

when executed with BL configuration and without. On a single machine the simulation duration

approximately 15 minutes. The single machine simulation uses the laptop’s onboard discrete GPU

(AMD Radeon Pro 560 4096 Mb). The ray tracing SRP model evaluates the large Aqua mesh at

a ray resolution of 5 mm for two ray bounces. The simulation time step is 5 seconds. A single

113
Table 5.1: Spacecraft sub-mesh material optical parameters.

Material Specular (ρs) Diffuse (ρd)

Gold MLI 0.184 0.736
Silver MLI 0.66 0.16

Germanium MLI 0.3 0.3
Solar array rear 0.1 0.3
Solar array front 0.023 0.092
Solar array boom 0.3 0.3

time step SRP evaluation of the Aqua spacecraft mesh can take upto 150 ms. The BL simulation

performs notably better with a simulation duration of approximately 4 minutes. The more capable

GPU computes a single SRP time step within 30 ms. The round trip network communication

latency of the BL system is on average 0.3 ms on a local Ethernet network. It is clear that the

benefit of utilizing latent GPU computing power on an idle laboratory computer vastly outweighs

any time penalty incurred by network data transport latency.

This case study demonstrates how BL enables multiple machine simulation without significant

changes to the applications running. The time evolution of SRP force and torque from the closed

loop BL simulation demonstrates agreement with the same simulation run on a single machine

without BL. As a result the BL software facilitates significant reductions in time to solution by

allowing one to easily segment a Basilisk simulation into two Basilisk simulation scenarios. This

separation of simulation nodes can be applied generally whether the nodes are basilisk simulations

or the heterogeneous applications of a SW-sim.

Table 5.2: Aqua spacecraft orbit parameters for polar LEO orbit

a 7378 [km]
e 0
i 90 [deg]
M0 90 [deg]
Ω 0 [deg]
ω 0 [deg]

114

Fo
rc

e
[N

]

Time [min]

0.0004

0.0002

0.0000

-0.0002

-0.0004

0 10050 150 200

F3

F1
F2

Figure 5.10: SRP Force on Aqua spacecraft mesh in polar LEO

5.6 Conclusions

Black Lion’s distributed nature makes it suitable to a wide range of simulation configura-

tions. Black Lion is currently supporting flat-sat testing in a purely software environment for an

ongoing interplanetary mission. Yet its inherently distributed architecture facilitates application

to spacecraft numerical simulation where particularly computationally intensive simulation models

can be run on more capable compute resources.

The key architectural design decision is the separation of the data translation from the data

transport layers. This separation enables the development of two generic APIs, the Router API

and the Delegate API. Each API abstracts the operations required for a node to participate in a

BL simulation. Additionally, by providing two separate APIs for multiple programming languages

(currently C, C++ and Python) the amount of work required to retrofit an application such that

it may participate as a BL node is significantly reduced.

115

To
rq

ue
 [N

m
]

0.003
0.002

-0.002
-0.003

0.001

-0.001
0.000

Time [min]

0 10050 150 200

Figure 5.11: SRP Torque on Aqua spacecraft mesh in polar LEO

Chapter 6

Case Studies

Each of the developed SRP modeling approaches enables new analysis opportunities through

online faster than real time simulation. With minimal configuration the ray tracing model makes

use of existing pre-launch engineering data such as detailed spacecraft shape models, spacecraft

articulation and complex BRDF material properties. Direct manipulation of actual spacecraft

physical parameters provides engineers with greater insight when seeking to investigate differences

between a computed force model, state estimation and tracking data. Further, the fast evaluation

capability of both methods offers new opportunities for long term orbit propagation of objects

comprised of a realistic shape model and material optical properties.

This section presents two case studies, each of which demonstrates an enabling quality of the

developed SRP modeling approaches. The first case study shows how both the ray tracing and

OpenGL-CL SRP models are integrated as complimentary force models for the ongoing Origins

Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) asteroid

sample retrieval mission. Both modeling approaches are used to provide high-fidelity SRP force

modeling data as input to the spacecraft Orbit Determination (OD) campaigns.

The second case study demonstrates the ray tracing model’s ability to capture arbitrary mesh

detail therefore improving force and torque resolution. This case study investigates the efficacy of

modeling a high area-to-mass (HAMR) multi-layer insulation (MLI) object as a flat plate or as

a sheet with realistic wrinkles and folds. It is shown, through a Basilisk simulation, that with

improved mesh resolution the propagation of an uncontrolled HAMR object can be carried out

117

in sufficiently short compute time and provide increased insight to the evolution of the object’s

dynamics.

6.1 OSIRIS REx Case Study

The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-

REx) is an asteroid sample return mission to asteroid 1999-RQ36 (Bennu) [33]. Once at the asteroid

Bennu the mission’s primary goals are to:

• Return and analyze an asteroid sample

• Provide ground truth or direct observations for telescopic data of the entire asteroid pop-

ulation

• Map the chemistry and mineralogy of a primitive carbon rich asteroid

• Measure the effect of the Yarkovsky effect on asteroid’s orbit

• Document the regolith at the sampling site at scales down to the sub-centimeter

The spacecraft arrived at asteroid Bennu on December 3rd 2018 completing the asteroid Approach

Phase. During the following Preliminary Survey phase, initial estimates of Bennu’s gravitational

constant µ = Gm were made. These estimates are necessary input parameters which guide the

Flight Dynamics (FD) team in their navigation about the body. On December 31st 2018 the

OSIRIS-REx spacecraft went into orbit about Bennu. Once entering orbit the spacecraft began

taking direct optical navigation measurements which now allow the FD team to conduct Bennu-

centric navigation [35].

The KinetiX1 OD team have sought to develop force models grounded in physics rather than

fitting models to empirical flight data. To this end, the OSIRIS-REx dynamical models undergo

a continuous integration process where each model is revised and improved in order to navigate

the spacecraft more accurately and obtain Bennu physical parameter estimates with increasing

1 KinetiX, Inc., Space Navigation and Flight Dynamics (SNAFD), Simi Valley CA, 93065.

118

Figure 6.1: Error of the ray-traced force components relative to the faceted force norm for multiple
bounce evaluation 3.

levels of confidence. Now in orbit about the asteroid Bennu, the dominant forces on the OSIRIS-

REx spacecraft are SRP and thermal re-radiation/antenna pressure. Figure 6.1 illustrates the

magnitudes of the various forces impacting the OSIRIS-REx trajectory during the Orbital-A Phase.

The largest force after the Bennu GM (CBP) is the Solar Radiation Pressure (SRP), followed by

the thermal re-radiation and antenna pressure combined (FIL). Other forces such as the obliquity

(OBL), Bennu albedo (ALB), and Sun 3rd body effects (SUP) are orders of magnitude smaller. This

case study presents a contribution to the SRP force modeling improvements in the OSIRIS-REx

OD effort. Both the OpenGL-CL and ray tracing SRP modeling approaches are used to compute

the SRP force and torque on the OSIRIS-REx spacecraft.

6.1.1 ORex Case Study: SRP Modeling

The need to model the SRP induced accelerations for the OSIRIS-REx OD process has evolved

as the mission has progressed. A variety of SRP models have been developed by the KinetiX team

with each model being applied at different points during the mission. This is consistent with

KinetiX’s approach of continuous integration and improvement of OD force models. Initially, a

10-plate faceted model was developed which included averaged specular and diffuse coefficients

3 Reproduced with the permission of KinetiX, Inc.

119

(a) Box and wing (b) Box and HGA

Figure 6.2: OSIRIS-REx box and wing models.

for each plate. The diffuse and specular material coefficients for the 10-plates approximating the

bus and panels are computed by weighting all the spacecraft’s components specular and diffuse

contributions by the area as seen along each of the six body frame axis directions. The weighted

specular and diffuse values are applied to each plate as the optical properties for SRP evaluation.

The second SRP model was developed as a response to an increase in observed stochastic

accelerations. The increased accelerations are particularly significant during Earth-point mode

attitudes (HGA directed toward Earth). While the 10-plate model is sufficient for Sun-point atti-

tudes where the HGA is directed towards the Sun, at Earth-point attitudes the HGA’s true conic

shape significantly deviates from the flat plate approximation. Consequently, an updated model

was developed which includes nine plates and a truncated spherical cone to approximate the HGA.

Examples of the approximations made by these two models are demonstrated by the models shown

in Figure 6.2.

To further develop the SRP modeling and evaluate the utility of the various box and wing

models the OpenGL-CL and ray tracing methods have been applied to a high fidelity CAD generated

mesh model of the OSIRIS-REx spacecraft. The mesh model used for the SRP evaluation is shown

in Figure 6.3. The model is made up of two sub-meshes to accommodate the articulation of the

120

(a) Bus mesh (b) Solar panels mesh

Figure 6.3: OSIRIS-REx spacecraft model sub-meshes.

solar panels and uniquely set the optical material properties for each mesh. The spacecraft material

optical properties are listed in Table 6.1. The Lockheed Martin thermal subsytem design team has

indicated that almost the entirety of the spacecraft bus is covered with Germanium Black Kapton

(GBK) Multi Layered Insulation (MLI) [15]. The solar panels are triple junction Gallium-Arsenide

by SolAero [86].

Using the ray tracing approach, a table of SRP forces normalized to a solar flux at 1 AU is

generated for 6000 sun headings over the 4π steradian attitude possibilities. The model is evaluated

assuming ideal lambertian and specular reflection, incorporating the optical properties as given in

Table 6.1. Rays are evaluated up to the second surface intersection. The difference of the 10-plate

model and nine-plate HGA models with respect to the ray tracing approach are shown in Figure 6.4

and Figure 6.5, respectively. In both plots the spacecraft Sun-point attitude, where the +Bx̂ body

vector (equivalently the HGA bore sight) is directed toward the Sun, corresponds to a sun heading

longitude and latitude of (0◦, 0◦). Given this reference attitude, it is evident that the difference

between the 10-plate model and the ray tracing model is reduced in all vector components of the

acceleration by the introduction of the 9-plate HGA model.

121
Table 6.1: OSIRIS-REx material optical properties.

Material α γ ρd ρs

MLI with GBK 0.49 0.51 0.102 0.408
Solar Panels (SP) Front 0.885 0.116 0.092 0.023
Solar Panels (SP) Rear 0.95 0.05 0.05 0.0

To utilize the ray tracing generated force vectors in the OD process, the table of force vector is

approximated using a 10×10 spherical harmonics (SH) model. The difference between the 10×10 SH

and the original SRP force values are shown in Figure 6.6. Again, in Figure 6.6, the spacecraft Sun-

point attitude corresponds to a sun heading longitude and latitude of (0◦, 0◦). The approximation

error of the SH model at this attitude is less than 2×10−13 km/s2. While the Sun-point attitude

is significant as it is the attitude which the spacecraft primarily holds, it is clear from Figure 6.6

that for a large majority of attitudes the error between the SH and the ray traced data remains on

the order of 10−13 or less.

Figure 6.4: Difference in ray-tracing SRP accelerations [km/s2] with approximated 10-Plate model.

Figure 6.5: Difference in ray-tracing SRP accelerations [km/s2] with approximated 9-Plate HGA
model.

122

Figure 6.6: Error of the SH approximation relative to the generated ray-traced force vectors.

6.1.2 ORex Case Study: Modeling Error and Bounding Analysis

Following the initial OSIRIS-REx SRP model development there remained an error between

the SRP acceleration estimated by the KinetiX OD team and the accelerations computed by all

SRP models. A goal of the ray tracing and OpenGL-CL methods is to make appropriate use of

existing pre-launch engineering data directly within the model. This is a particularly useful aspect

of both approaches where direct access is available to meaningful spacecraft physical parameters

such as surface material properties, spacecraft shape model and articulation. Direct access to these

parameters allows for physically meaningful analysis to be performed and related back to flight

telemetry and tracking data.

In order to assess possible contributions to the observed difference between the SRP force

model and the estimated accelerations, four aspects of the spacecraft configuration are examined.

The four possible sources of modeling error include attitude determination error, mesh model

accuracy error, error in solar panel orientation telemetry, and material properties. The Sun-point

attitude is used as a baseline attitude upon which to compare estimated accelerations with the

model computed accelerations. The Sun-point accelerations for the various modeling efforts are

shown in Table 6.2. These values correspond to the spacecraft at a distance of 0.90018 AU. The

material optical properties for each model evaluation are those quoted in Table 6.1. The solar

panels are oriented at 45◦ as measured from the ẑ body axis. The KinetiX OD effort has found

that a scale increase of 7.5% is required in order for the OD included SRP model to fit the estimated

accelerations. This equates to an increase in acceleration of approximately 4.5×10−12 [km/s2] above

123
Table 6.2: Computed SRP evaluations for sun-point Bŝ = [1, 0, 0].

Model Acceleration [km/s2]

KinetiX Box And Wing [-5.93729×10−11, -3.50682×10−17, 2.82388×10−12]
Hifi RT 1 bounce [-5.70989×10−11, 9.41156×10−14, 3.18398×10−12]
Hifi OpenGL-CL [-5.71870×10−11, 9.88224×10−15, 3.18490×10−12]

Hifi RT two bounce [-5.66393×10−11, 4.41768×10−14, 3.01813×10−12]
Hifi RT three bounce [-5.64594×10−11, 4.43321×10−14, 2.75911×10−12]

the Hifi RT two bounce acceleration level shown in Table 6.2.

Initial ray traced modeling yields an acceleration at Sun-point for the two bounce of a =[-

5.63602 ×10−11, 3.92259×10−14, 2.75019×10−12] (and similarly for the three bounce). This initial

evaluation used only the GBK material for the bus mesh and SP Front for both the front and

back of the solar panels. It is noticed that, compared to the single bounce evaluation, the two

and three bounce evaluations demonstrate a smaller acceleration magnitude in the dominant x̂

component (compare -5.71×10−11 [km/s2] to -5.63×10−11 [km/s2]). It is evident that a portion of

the radiation reflected by the HGA is intersecting the rear face of the solar panels. As such the

solar panel sub-mesh was assigned a second set of material optical properties, SP Back as given in

Table 6.1. The inclusion of a unique solar panel back material results in a small increase in the

acceleration x̂ component to -5.66×10−11 [km/s2].

For the bounding case analysis to follow, the three bounce ray traced evaluation will be used

as the baseline modeling approach. The approximate error magnitudes of the three bounce ray trace

acceleration relative to the estimated acceleration is given in Table 6.3. While the observed error

is being attributed to SRP modeling, it is expected that a portion of this error is due to aliasing

in the estimation process and is thus attributable to the spacecraft thermal model. The thermal

model is a constant dynamic model within the estimation process. Given that no parameters of the

thermal model are being estimated, it is unclear what portion of the modeling error is attributable

to the thermal model. If it is assumed that the attributable portions of this error are commensurate

with the order of magnitude of accelerations due to the SRP and thermal models, then the thermal

model acceleration is approximately 15% of the total error and also given in Table 6.3.

124
Table 6.3: Representative portions of acceleration error (relative to Hifi RT 3 bounce) [km/s2].

Model x̂ ŷ ẑ

SRP -3.83×10−12 2.81×10−15 1.92×10−13

Thermal -0.68×10−12 0.49×10−15 0.34×10−13

Considering attitude determination error, it is possible that the spacecraft does not hold

exactly the commanded Sun-point attitude and therefore does not maintain exactly a sun heading

of Bŝ = (1, 0, 0). It is this exact sun heading at which the ray traced model is evaluated. To estab-

lish a bounds on the possible error contribution the accelerations are computed for four spacecraft

attitudes which correspond to a 0.45◦ offset from the sun-point heading in the +ŷ, −ŷ, +ẑ and

−ẑ. The spacecraft attitudes represented as Modified Rodriguez Parameters (MRP) and the accel-

erations are shown in Table 6.1.2. It is evident that excursions from the exact Sun-point heading in

the +ŷ direction result in an increase in the acceleration magnitude for the x̂ component. However,

the ẑ acceleration component moves further from the estimated value. From this it can be assumed

that attitude errors are not the dominant source of this modeling error.

The second possible source of modeling error is solar panel orientation misalignment. It is

assumed that the solar panels are oriented at exactly 45◦ with respect to the ẑ body frame axis.

The area of each solar panel is 4.930 [m2] giving a combined area of 9.860 [m2] and a sun heading

projected area of 6.93 [m2]. Considering the occasion where the solar panel angle is in error such

that the solar panel sun projected area would increase, at 44◦ the sun heading projected area is

7.048 [m2]. This yields an increased sun project area of 0.118 [m2] and an increase in acceleration of

[-5.732179×10−11, 4.878957×10−14, 3.094433×10−12] which corresponds to an approximately 23%

reduction of the observed acceleration error.

Table 6.4: Computed SRP evaluations for sun-point Bŝ = (1, 0, 0).

Offset Direction (attitude σ) Acceleration [km/s2]

+ŷ (0.0, -0.002, 0.0) [-5.67644×0−11, 4.69400×10−14, 3.19395×10−12]
−ŷ (0.0, 0.002, 0.0) [-5.61663×10−11, 4.55766×10−14, 2.32282×10−12]
−ẑ (0.0, 0.0, -0.002) [-5.65510×10−11, -3.44146×10−13, 2.75717×10−12]
+ẑ (0.0, 0.0, 0.002) [-5.65060×10−11, 4.28389×10−13, 2.75756×10−12]

125

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500

Specular Coefficient s

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
iff

us
e

C
oe

ff
ic

ie
nt

d

2.078

1.625

1.173

0.720

0.268

0.185

0.637

1.090

1.542

1.995

 Acceleration [km
/s 2]

1e 12

Figure 6.7: Change of acceleration magnitude for varied GBK diffuse and specular coefficients.

A further source of possible modeling error is in the allocation of material optical properties

or a change in those properties while on orbit. The material optical properties used correspond

to the beginning of life (BOL) values. Consequently, it is expected that the SRP acceleration

resulting from the BOL optical properties will result in the largest sun pointing acceleration, only

to decrease as the surface optical properties degrade over the mission duration. The diffuse and

specular material optical properties are varied about their nominal values and the difference of the

acceleration magnitude and a baseline acceleration magnitude is computed as ∆ai = |ai| − abase,

where abase = 5.73×10−11 [km/s2]. While material degradation has been deemed an unlikely source

of modeling error the effect of mismodeling material optical properties is shown in Figure 6.7 for

the spacecraft bus GBK material and in Figure 6.8 for the solar panels. As expected an increase

in specularity for both materials results in an increase in acceleration. The potential acceleration

increase for the GBK is approximately an order of magnitude greater than that for the solar panels.

The fourth and most rudimentary possible error source is an error in the spacecraft mesh

model. The spacecraft mesh may be missing small yet important details, in particular mesh details

which result in variations to the sun directed projected area. Further, increases in spacecraft bus

126

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Specular Coefficient s

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
iff

us
e

C
oe

ff
ic

ie
nt

d

4.083

3.101

2.118

1.136

0.153

0.829

1.812

2.795

3.777

4.760

 Acceleration [km
/s 2]

1e 13

Figure 6.8: Change of acceleration magnitude for varied SP diffuse and specular coefficients.

projected area may compound with favorable errors in the GBK specular reflectance coefficient.

To demonstrate the requisite acceleration increase required, a simple scale factor of 1.06 is ap-

plied to the mesh model. This results in an increased acceleration [-6.37199×10−11 5.29214×10−14

3.40106×10−12] which accounts for 100% of the observed error.

6.1.3 ORex Case Study: Conclusions

Determination of the sources of error in the modeled and estimated radiation pressure forces

is an ongoing effort. A conservative allocation of the errors gives a 85% / 15% split between the

SRP and thermal radiation sources. The unknown error in the thermal model parameters makes it

difficult at this stage to provide further determination of what aliasing is occurring in the estimation

process.

When focusing solely on SRP modeling, significant portions of the error can be accounted

for an increase in sun projected areas. This increase may be compounded by an increase in both

reflectivity and importantly, the specular coefficient value of the GBK bus materials. While the

majority of the spacecraft material optical properties are made up of SP and GBK the ray tracing

model makes it easy to add more fidelity to material properties across the mesh. Increasing the

127

Figure 6.9: Hubble space telescope where the outer layers of the spacecraft are covered by MLI.4

allocation of unique material properties will help characterize and reduce uncertainty regarding the

contribution of material properties to the error.

Finally, as a book-keeping exercise the spacecraft mesh model should be compared with

detailed technical drawings and CAD models. Additionally, solar panel orientations should be

confirmed based on spacecraft telemetry and pre-launch verification of the solar panel actuator’s

accuracy.

6.2 Multi-Layer Insulation Case Study

Multi-layer insulation (MLI) is a common passive thermal control material used on many

satellites. As indicated by its name, multiple layers of thermally reflective and insulating material

is layered to create a thermal radiation barrier. This barrier aims to reflect external solar and

planetary radiation while also maintaining the internal temperature of a spacecraft within specified

operational temperature range [48]. Layer thicknesses range from 0.25 mm to 1 mm with the outer

layers often being thicker. The thin nature of these materials leads to mean area-to-mass ratios of

between 6 m2/kg to 110 m2/kg [31]. As demonstrated by MLI samples returned from the Hubble

Space Telescope, MLI degrades in the harsh space environment, layers peel, become brittle and in

some cases become dislodged from the satellite [25]. These detached MLI sheets are categorized

4 NASA, About the Hubble Space Telescope, Accessed April 11, 2019 from:
https://www.nasa.gov/mission pages/hubble/story/index.html

128

Figure 6.10: Mars Reconnaissance Orbiter wrapped by MLI prior to launch.5

as high area-to-mass ratio (HAMR) objects and pose a significant challenge to the identification,

tracking, and cataloging of the various objects in debris population at the Geostationary orbit

(GEO) regime. Significant efforts have been made to estimate and characterize the contribution

of radiation forces to the orbital and attitude motion of the space object. Two primary directions

of enquiry exist for determining space debris object’s state given observations. The first direction

seeks to extract the object’s dyamical state through observation and estimation/filtering. Such

approaches rely on light curve analysis and a subsequent dynamics estimation process [62, 17, 46].

The second and complimentary approach seeks to model the object’s dynamics long term dynamics

and determine bounds on the possible evolved dynamics states. Further, Monte Carlo simulation

approaches can provide bounding predictions on long term orbit propagation. These approaches

benefit from utilizing radiation pressure models which accurately resolve the objects shape, material

properties and changes in illumination. Efforts to capture the wrinkles in these objects using various

5 NASA, Mars Reconnaissance Orbiter fully assembled prior to launch , Accessed April 12, 2019 from
http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=26685

129

methods requiring computation are demonstrated in References [30] and [14].

Typically ray tracing has been too computationally intensive to include in an online simu-

lation and propagation of HAMR object dynamics. However, the OpenCL ray tracing approach

presents an opportunity to compute the SRP force and torque on a HAMR object of arbitrary and

complex shape. This case study presents a demonstration of how the ray tracing approach to SRP

computation, integrated as a Basilisk module, can provide analysts with the ability to propagate

uncontrolled space objects with increased shape modeling fidelity.

6.2.1 MLI Case Study: Mesh Models

A sheet of MLI is modeled as a flat plate as shown in Figure 6.11(a) and with increased

geometric fidelity as a wrinkled sheet shown in Figure 6.11(b). The surface area of each mesh

model is 1.08 [m2]. The surface optical properties for each mesh are configured as though the sheet

has peeled off a spacecraft bus and one side of the sheet is the a reflective coated (metal deposition)

layer while the other side is a weakly reflective diffuse uncoated face. The optical properties for

coated MLI material are ρs =0.60, ρd=0.26 and ρa=0.14 and ρs =0.00, ρd=0.10 and ρa=0.90 for

the uncoated material [31].

Each model has a constant thickness of 10 mm as an MLI lay-up contains small air gaps

between each sheet. The edge facets of the mesh are assigned the uncoated material optical prop-

erties. The reasoning for assigning the edge facets the uncoated optical properties lies with the

assumption that the edge of the MLI sheet is a mixture of exposed coated and uncoated layers with

little space between. Any rays which intersect such a region are likely to undergo many surface

reflections between the layers and be absorbed within the materials.

6.2.2 MLI Case Study: Ray Traced Force Comparison

The SRP induced force is evaluated for 1000 equally spaced sun headings over the 4π [str]

attitude sphere. The evaluation is carried out for each mesh model at 1 AU distance from the sun.

The force magnitude for each of the x̂, ŷ and ẑ components is shown in Figure 6.12 for the flat

130

-0.5

-0.5 0

-0.5

x [m]

0

y [m]

0.5

0

z
[m

]

0.5
1

0.5

(a) Flat plate MLI

-0.5

0-0.5

x [m]

-0.5

0 0.5

y [m]

0

z
[m

]

0.5 1

0.5

(b) Wrinkled MLI.

Figure 6.11: Mesh models for MLI sheet of equal surface area, 1.08 [m2].

plate model and in Figure 6.13 for the wrinkled model. The flat geometry of both plates is visible

where the force magnitude is near zero sun heading latitudes of 0◦. Further, the lower x̂, ŷ force

magnitude and increased ẑ force magnitude show the effect of the more specular coated front side.

Conversely, the lower hemisphere demonstrates the more diffuse and absorptive uncoated back side.

The idealized flat plate model shows a larger ẑ component magnitude than the magnitude of

the ẑ component for the wrinkled MLI. Similarly, correlations exist in the decreased lateral force

magnitudes for the flat plate. The percentage difference between the force magnitudes of the two

models, computed as,

∆F% =

(
|Fwrinkle| − |Fflat|

|Fflat|

)
× 100 (6.1)

and is shown for all attitudes in Figure 6.14. As expected the force magnitude of the wrinkled

object is less than the flat plate object for the majority of attitudes with the differences ranging

from -5.0% to at most -13.23%. In this figure the maximum error has been capped at 50% so that

discernible relief is maintained within the plot. The percentage error can be as large as 427% for

sun-headings in the x̂-ŷ plane. For these attitudes the flat plate cross section becomes extremely

small compared to the wrinkle plate cross section. The difference between the multiple bounces for

131

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Force x component flat plate model

150 100 50 0 50 100 150

Long [deg]

50

0

50

La
t [

de
g]

8.70 × 10 6
6.76 × 10 6
4.83 × 10 6
2.90 × 10 6
9.66 × 10 7

9.66 × 10 7
2.90 × 10 6
4.83 × 10 6
6.76 × 10 6
8.70 × 10 6

Force [N
]

(b) Force y component flat plate model

150 100 50 0 50 100 150

Long [deg]

50

0

50

La
t [

de
g]

8.70 × 10 6
6.76 × 10 6
4.83 × 10 6
2.90 × 10 6
9.66 × 10 7

9.66 × 10 7
2.90 × 10 6
4.83 × 10 6
6.76 × 10 6
8.70 × 10 6

Force [N
]

(c) Force z component flat plate model

Figure 6.12: Body frame force components for the flat plate MLI mesh model.

150 100 50 0 50 100 150

Long [deg]

75

50

25

0

25

50

75

La
t [

de
g]

(a) Force x component wrinkled model

150 100 50 0 50 100 150

Long [deg]

50

0

50

La
t [

de
g]

8.70 × 10 6
6.76 × 10 6
4.83 × 10 6
2.90 × 10 6
9.66 × 10 7

9.66 × 10 7
2.90 × 10 6
4.83 × 10 6
6.76 × 10 6
8.70 × 10 6

Force [N
]

(b) Force y component wrinkled model

150 100 50 0 50 100 150

Long [deg]

50

0

50

La
t [

de
g]

8.70 × 10 6
6.76 × 10 6
4.83 × 10 6
2.90 × 10 6
9.66 × 10 7

9.66 × 10 7
2.90 × 10 6
4.83 × 10 6
6.76 × 10 6
8.70 × 10 6

Force [N
]

(c) Force z component wrinkled model

Figure 6.13: Body frame force components for the wrinkled MLI mesh model.

132

150 100 50 0 50 100 150

Long [deg]

50

0

50

La
t [

de
g]

13.23
6.20

0.82
7.85
14.87
21.90
28.92
35.95
42.97
50.00 %

 Force D
ifference

Figure 6.14: Force magnitude difference of the wrinkled model relative to the flat plate model.

(a) One bounce (b) Two bounces (c) Three bounces

Figure 6.15: Rendered MLI mesh model for one and two where the difference between the rendered
images is shown.

a sun heading perpendicular to coated side of the wrinkled mesh (colinear with the ẑ direction) is

visualized in the rendered output of Figure 6.15. The difference between each bounce is visualized

in Figure 6.16. It is evident that resolving the second ray bounces make a visible contribution to

the force resolution, while resolving the third bounce shows a barely visible change.

6.2.3 MLI Case Study: Orbit Propagation

A GEO orbit simulation, developed in Basilisk, is used to simulate the evolution of the

dynamics of each MLI mesh model over a single orbit. The orbital simulation is kept simple

to emphasize the difference in evolution of the dynamics due to SRP on each mesh model. Of

133

(a) Difference between bounce one
and two.

(b) Difference between bounce two
and three.

Figure 6.16: Rendered MLI mesh model differences between successive bounces.

particular interest is the ability of the ray tracing method to resolve the attitude dependent self

shadowing and multiple reflection of the wrinkled MLI model as compared to the typically used

flat plate model. The simulation’s initial orbital parameters are rGEO = 42164 [km], e = 0, i = 0,

Ω = 0, ω = 0 and ν = 90◦. The initial attitude is given as the Modified Rodriquez Parameters

set σBN = [−0.44, 0.22,−0.44], which corresponds to a predominantly ẑ axes sun pointing attitude

where the coated (highly reflective) side of the model is initially sun facing. The MLI object is

given zero initial body angular rate.

The angular rate evolution of each model is shown in Figure 6.17 where both models develop

a slow ‘wobble’ about the x̂ and ŷ axes with the ẑ axis remaining roughly sun pointing. It is evident

that both models demonstrate. The wrinkled plate model develops a spin about the sun pointing ẑ

axis and it is notable that the spin rate continues to increase through to the end of the simulated four

orbits. As shown in Figure 6.18 the attitude evolution between the two models differs in a manner

commensurate to the angular rates. The flat plate maintains a consistent attitude earlier and then

begins a slowly increasing wobble about the sun facing axis. The attitude variations of the wrinkled

model exhibit a higher frequency wobble, compared to the flat plate model. Finally, the inertial

frame force and body frame torque are shown in Figure 6.19 and Figure 6.20, respectively. The

variability in the resulting force and torque due to the wrinkled model’s surface variation is visible.

When compared to the force and torque of the flat plate model, it is clear that the variability of

134

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

0.2

0.1

0.0

0.1

0.2
An

gu
la

r
R

at
es

 [d
eg

/s
]

BN, 0

BN, 1

BN, 2

(a) Angular rate evolution flat plate.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

0

2

4

6

8

An
gu

la
r

R
at

es
 [d

eg
/s

]

BN, 0

BN, 1

BN, 2

(b) Angular rate evolution wrinkled.

Figure 6.17: Ray tracing propagated angular rate evolution for MLI mesh model in GEO orbit.

the wrinkled model contributes to faster generation of body angular rates and significant attitude

change over time.

The comparison between the simulated flat plate model and the wrinkled model shows that

capturing the effects of shape variation on SRP force and torque is important to simulating accurate

evolution of the HAMR object’s dynamics. The OpenGL-CL method is also capable of capturing

the effect of shape variation (for the single radiation bounce) on SRP force and torque. The

OpenGL-CL method is used to simulate the wrinkled model for the same four GEO orbits. This

simulation allows one to develop a sense of whether simply capturing the equivalent first bounce

with the OpenGL-CL method, is sufficient to yield similar dynamics evolution as that demonstrated

by the multi-bounce ray tracing method. The OpenGL-CL resolution is 200 × 200 pixels which

results in a resolution of the sun projected plane of 400 000 pixels. As shown in Figure 6.18 the

135

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

1.0

0.5

0.0

0.5

1.0

M
R

Ps

BN, 0

BN, 1

BN, 2

(a) Attitude evolution flat plate.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

1.0

0.5

0.0

0.5

1.0

M
R

Ps

BN, 0

BN, 1

BN, 2

(b) Attitude evolution wrinkled.

Figure 6.18: Ray tracing propagated attitude evolution for MLI mesh model in GEO orbit.

136

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

0.8

0.6

0.4

0.2

0.0

0.2

Fo
rc

e N
 [N

]

1e 5

FN, 0
FN, 1
FN, 2

(a) Earth centered inertial frame force flat plate.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

0.8

0.6

0.4

0.2

0.0

0.2

Fo
rc

e N
 [N

]

1e 5

FN, 0
FN, 1
FN, 2

(b) Earth centered inertial frame force wrinkled.

Figure 6.19: Ray tracing propagated Earth centered inertial frame force evolution for MLI mesh
model in GEO orbit.

137

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

To
rq

ue
 [N

m
]

1e 8

LB, 0
LB, 1
LB, 2

(a) Torque body frame flat plate.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

3

2

1

0

1

2

3

To
rq

ue
 [N

m
]

1e 8

LB, 0
LB, 1
LB, 2

(b) Torque body frame wrinkled.

Figure 6.20: Ray tracing propagated body-frame torque evolution for MLI mesh model in GEO
orbit.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

1

0

1

2

3

4

5

An
gu

la
r

R
at

es
 [d

eg
/s

]

BN, 0

BN, 1

BN, 2

Figure 6.21: OpenGL-CL propagated angular rate evolution for MLI mesh model in GEO orbit.

138

attitude evolution between the two models differs in a manner commensurate to the angular rates.

The flat plate maintains a consistent attitude earlier and then begins a slow spin about the sun

facing axis. The wrinkled modeled attitude variations are an order of magnitude larger than the

flat plate. Finally, the force and torque are shown in Figure 6.19 and Figure 6.20, respectively. The

variability in the resulting force and torque due to the wrinkled models surface variation is visible.

When compared to the force and torque of the flat plate model, it is clear that the variability of

the wrinkled model contributes to faster generation of body angular rates and significant attitude

change over time.

The ray tracing method applied in these simulations presents an online simulation capabil-

ity currently not available using consumer grade computing resource. While high performance

real-time computing systems are available and provide some of these rendering capabilities, these

systems require specialized hardware configured specifically for the purpose of distributed comput-

ing. While computational speeds and ray tracing implementations vary greatly, a computational

load commensurate to that of the OpenCL ray tracing approach would yield an approximate slow

down by a factor of 100 compared to modest GPU hardware.

Efficient computational approaches which provide a great deal of insight into the long term

propagation of uncontrolled objects can be achieved analytically via averaging theory techniques[74].

While highly effective, these approaches require precomputation assumptions about the spacecraft

geometry and articulation state [63]. In contrast the OpenGL-CL and ray tracing models can be

integrated with articulated mesh models that account for both the variation of shape and time

varying material properties. Further, in the case of controlled object simulation the presented

methods are also able to resolve the shadowing and reflection impacts from other objects in the

case of close proximity operations and formation flying.

While the ray tracing method is used to demonstrate the dynamical effects of capturing a

more realistic MLI shape model, the OpenGL-CL method presents an even greater opportunity

to run Monte Carlo simulation of these orbit propagations because of its 10×-100× reduction in

computation time compared to the ray tracing method (for similar resolutions on the first bounce).

139

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

1.0

0.5

0.0

0.5

1.0
M

R
Ps

BN, 0

BN, 1

BN, 2

Figure 6.22: OpenGL-CL propagated attitude evolution for MLI mesh model in GEO orbit.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

0.8

0.6

0.4

0.2

0.0

0.2

Fo
rc

e N
 [N

]

1e 5

FN, 0
FN, 1
FN, 2

Figure 6.23: OpenGL-CL propagated Earth centered inertial frame force evolution for MLI mesh
model in GEO orbit.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [orbits]

4

3

2

1

0

1

2

3

To
rq

ue
 [N

m
]

1e 8

LB, 0
LB, 1
LB, 2

Figure 6.24: OpenGL-CL propagated body-frame torque evolution for MLI mesh model in GEO
orbit.

140

For certain geometries only the ray tracing method captures the significant change in force direction

due to a secondary bounce. For other geometries, such as that demonstrated here, only a very small

portion of the force and torque is due to secondary reflection and thus the SRP dynamics can be

resolved with high geometric fidelity by the OpenGL-CL method.

6.2.4 MLI Case Study: Conclusions

Capturing the realistic shape and it’s coupling to the dynamics is important to propagation.

The typical approach of using flat plate approximation for computing the SRP force and torque of

an MLI HAMR object yields significant under and over prediction of the actual force and torque.

The RT and OpenGL-CL methods both capture a MLI HAMR objects realistic shape variations.

The random wrinkles which develop in an MLI blanket and the shape of the MLI sheet after

becoming dislodged from its original object results in additional complexity and uncertainty on the

propagation of the object’s dynamics. This case study demonstrates that resolving a more realistic

shape for a HAMR object can be a useful contributor to greater insight in long term propagation

prediction.

Both the ray tracing and OpenGL-CL modeling methods carry out the propagation of a

complex mesh model at computational speeds which make faster than real time online simulation

and Monte Carlo simulation possible. Further, these simulation capabilities can be achieved easily

on consumer grade computer hardware obviating the need to develop purpose built hardware. Each

model is able to resolve model self shadowing, varying and complex material properties, spacecraft

articulation and complex spacecraft mesh models. For mesh models where multiple reflections are

unlikely the OpenGL-CL methods provide further reduction in time to solution and makes tractable

Monte Carlo simulation of orbit prorogation.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Modern consumer grade computers possess significant and often under utilized computing

resources. Modeling astrodynamic phenomena with high fidelity regularly demands increased com-

puting power and novel approaches to each model’s algorithmic design and software based imple-

mentation. In particular, modeling solar radiation pressure (SRP) with high fidelity, must account

for the computationally expensive processing of detailed spacecraft models, complex material opti-

cal behaviors and time varying changes in the spacecraft’s articulation and general dynamic state.

High-fidelity SRP modeling methods contained in the literature demand that the models be pre-

computed with all spacecraft state changes known prior to model evaluation. These pre-computed

models output data as a lookup table which is subsequently used in any online simulation analysis

tool.

This dissertation presents two novel solar radiation pressure (SRP) models which leverage the

ubiquitous latent computational power available in consumer computing resources. The modeling

approaches presented resolve SRP at significantly faster than real-time computational speeds while

maintaining the capability to resolve the myriad inputs to the spacecraft’s dynamic and structural

state. This is achieved by both leveraging the computationally powerful graphics processing unit

(GPU) hardware and developing computationally efficient algorithms.

The OpenGL-CL method makes use of the highly optimized OpenGL API vector graphics

render pipeline. Doing so enables the method to model the equivalent of the first ray surface

142

intersection of a ray tracing approach. It inherently captures spacecraft self shadowing, varied

material properties and spacecraft articulation. The recursive loose bounding box algorithm sig-

nificantly reduces the number of operations required to compute the sun heading oriented view

frame. An efficient parallel reduction algorithm is developed using the OpenCL API. The parallel

reduction reduces OpenCL kernel launch overhead by having each Work Item sum multiple values

and interleaves the SRP computation with the reduction operation.

Modeling SRP via a ray tracing approach has long been considered to offer the highest

resolution of the SRP force and torque on a spacecraft. However, such approaches have come an

large computational costs and therefore a slow time to solution. This dissertation details a faster

than real-time SRP ray tracing model which employs the highly parallel environment of the GPU.

The evolution of ray tracing techniques in the graphics rendering community has supplied a suite

of efficient algorithms that are used with great effect in the SRP context. Techniques such as ray

intersection search space reduction using bounding volume hierarchies, fast ray triangle intersection

and importance sampling complex BRDFs all facilitate fast SRP evaluation. Furthermore, unlike

graphics rendering, SRP evaluation is not concerned with the accuracy of visual representation, but

the accuracy in force and torque resolution. This allows for assumptions such as non-transmissive

materials to be introduced into the SRP evaluation which reduces computational complexity.

This dissertation presents a modular implementation for each modeling method which allows

for direct integration and online faster than real-time simulation within an astrodynamics simula-

tion software. The pursuit of modularity culminates with the development and demonstration the

Blacklion distributed simulation middleware. The application of the Blacklion software architec-

ture is novel in that it facilitates the execution of computationally demanding models on remote

commodity computing resources. The Blacklion architecture integrates heterogeneous models into

a distributed simulation and transparently manages data exchange and the advancement of time.

In an analysis situation determining which modeling approach to use is a decision which rests

upon a few points of compromise. The first consideration is in regards to the impact of multiple

spacecraft self reflections. Certain spacecraft geometries, coupled with particular sun headings,

143

may result in greater error between ray tracing and faceted approaches. If it is determined that the

spacecraft CONOPS will not spend any appreciable time at these high error attitudes then analysts

may choose to use the OpenGL-CL. This is demonstrated by the simulation and propagation of the

complex wrinkled MLI mesh model. Under the assumption of a rigid model, such a mesh experiences

little self reflection. Secondly, while both methods are capable of after than real-time evaluation,

it is a benefit to choose the ray tracing method where there is access to higher performance GPU

devices. Using the ray tracing model, it is shown that resolving, at least the secondary ray bounce,

accounts for a significant portion of modeling error which otherwise would remain when using SRP

models that ignore spacecraft self reflection. Further, the Blacklion architecture enables access to

high performance GPUs via distributed simulation.

This work makes greater use of existing engineering data in the SRP modeling processes to

reduce, where possible, uncertainty in the SRP force computation. Such pre-launch engineering

data includes spacecraft geometry, material optical properties, and possible spacecraft time varying

articulations. The computational speed of the models presented gives rise to the possibility of in-

cluding high-fidelity SRP models in spacecraft ground software simulation and long-term dynamics

propagation. Because the methods do not rely on an precomputed lookup tables, arbitrary time

varying qualities of the spacecraft state (materials, articulations) can be accounted for in Monte

Carlo simulation configurations.

7.2 Recommendations for Future Work

A particularly clear extension to this work exists in the area of thermal radiation modeling.

Spacecraft thermal radiation induced force and torque operate via mechanisms similar to SRP.

With some accommodation for thermal energy accumulation at the spacecraft surface, a faster

than real-time thermal radiation model may be implemented by employing the same ray tracing

architecture described in this dissertation. Similarly, the OpenGL-CL method could be modified

to account for thermal accumulation and the resultant thermal radiation force.

While not a focus of this dissertation, both modeling approaches presenting interesting op-

144

portunities to include high-fidelity SRP evaluation in long-term dynamics simulation. Given the

fast computation times of the SRP modeling methods an increased scope of spacecraft dynamics

analysis can be conducted without the need for specialized and hard to access high performance

computing resources.

Both modeling approaches can be extended to accommodate additional radiation sources as

input. Sources such as planetary albedo, Earth infrared radiation and source of energy radiated

from high power antenna. Beyond radiation sources, each modeling method may be extended

to compute spacecraft drag forces and torques above altitudes where the particle mean free path

distance is large enough to model the intersection of atmospheric particles in the same manner as

reflecting photons.

Bibliography

[1] Advanced Solutions. Stk solis: Commercial plug-in to the analytical graphics, inc (agi) systems
toolkit (stk). http://www.go-asi.com/solutions/stk-solis/, Oct 2018. Accessed 1 Oct 2018.

[2] Cody Allard, Manuel Diaz Ramos, Hanspeter Schaub, Patrick Kenneally, and Scott Piggott.
Modular Software Architecture for Fully Coupled Spacecraft Simulations. Journal of Aerospace
Information Systems, pages 1–14, oct 2018.

[3] Peter G. Antreasian and G W Rosborough. Prediction of radiant energy forces on the topex/-
poseidon spacecraft. Journal of Spacecraft and Rockets, 29(1):81–90, 2019/04/26 1992.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view
of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[5] Ravishekhar Banger and Koushik Bhattacharyya. OpenCL Programming by Example. Packt
Publishing, 2013.

[6] Y E. Bar-Sever. New and improved solar radiation models for gps satellites based on flight
data final report. Technical report, Jet Propulsion Laboratory, 1997.

[7] P. Beckmann and A. Spizzichino. The Scattering of Electromagnetic Waves from Rough
Surfaces. Artech House radar library. Artech House, 1987.

[8] O. Bertolami, F. Francisco, P. J S Gil, and J. Páramos. Estimating radiative momentum
transfer through a thermal analysis of the pioneer anomaly. Space Science Reviews, 151(1-
3):75–91, 2010.

[9] J J Biesiadecki, D A Henriques, and A Jain. A reusable, real-time spacecraft dynamics simu-
lator. Digital Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE, 2:8.2–8–8.2–14
vol.2, 1997.

[10] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The unified modeling language user
guide. J. Database Manag., 10:51–52, 1999.

[11] Paul Bourke. Data formats: Object files (.obj), http://paulbourke.net/dataformats/obj/.

[12] A. Jain C. Lim. Dshell++: A component based, reusable space system simulation framework.
In Proceedings - 2009 3rd IEEE International Conference on Space Mission Challenges for
Information Technology, SMC-IT 2009, pages 229–236, Pasadena, CA, July 19 - 23 2009.
IEEE.

146

[13] Jonathan Cameron, Abhinandan Jain, Burkhart Dan, Erik Bailey, J Balaram, Eugene Bon-
figlio, Havard Grip, Mark Ivanov, and Evgeniy Sklyanskiy. Dsends: Multi-mission flight dy-
namics simulator for nasa missions. Aiaa Space 2016, (September):1–18, 2016.

[14] Sittiporn Channumsin, Matteo Ceriotti, and Gianmarco Radice. A deformation model of
flexible, hamr objects for accurate propagation under perturbations and the self-shadowing
effects. Advances in Space Research, 61:1066–1096, 02 2018.

[15] Michael K. Choi. Thermal assessment of sunlight impinging on osiris-rex ocams polycam, otes,
and imu-sunshade mli blankets in flight. In Proc. SPIE 10401, Astronomical Optics: Design,
Manufacture, and Test of Space and Ground Systems, volume 10401. SPIE, September 2017.

[16] John G. Cleary, Brian M. Wyvill, Graham M. Birtwistle, and Reddy Vatti. Multiprocessor
ray tracing. Computer Graphics Forum, 5(1):3–12, 1986.

[17] Ryan D. Coder, Marcus J. Holzinger, and Moriba K. Jah. Space-object active control mode
inference using light curve inversion. Journal of Guidance, Control, and Dynamics, 41(1):88–
100, 2019/04/22 2017.

[18] M. Cols-Margenet, H. Schaub, and S. Piggott. Modular attitude guidance: Generating ro-
tational reference motions for distinct mission profiles. Journal of Aerospace Information
Systems, 15(6):335–352, 2018.

[19] Mar Cols Margenet, Hanspeter Schaub, and Scott Piggott. Modular platform for hardware-in-
the-loop testing of autonomous flight algorithms. In International Symposium on Space Flight
Dynamics, Matsuyama-Ehime, Japan, June 3–9 2017.

[20] Douglas E. Comer. Internetworking with TCP/IP. Addison-Wesley Professional, 6th edition,
2013.

[21] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer graphics. In
Proceedings of the 8th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’81, pages 307–316, New York, NY, USA, 1981. ACM.

[22] CS Systèmes d’Information. Orekit: An accurate and efficient core layer for space flight
dynamics applications. https://www.orekit.org, 2018. Accessed 15 Oct 2018.

[23] J. Cuseo. Stk/solis and stk/odyssy flight software: Supporting the entire spacecraft lifecy-
cle. In Workshops on Spacecraft Flight Software. Johns Hopkins University Applied Physics
Laboratory, Laurel, MD, October 2011.

[24] DARTS Shell (Dshell). Jet propulsion lab darts lab. https://dartslab.jpl.nasa.gov, 2018.
Accessed 1 Oct 2018.

[25] Joyce Dever, Kim K. deGroh, Jacqueline Townsend, and L Len Wang. Mechanical properties
degradation of teflon(trademark) fep returned from the hubble space telescope. Technical
report, National Aeronautics and Space Administration, 02 1998.

[26] Donald J. Dichmann, Cassandra M. Alberding, and Wayne H. Yu. Stationkeeping monte carlo
simulation for the james webb space telescope. In 24th International Symposium on Space
Flight Dynamics, volume 1, pages 1–21, 2014.

147

[27] Kayvon Fatahalian and Mike Houston. A closer look at gpus. Commun. ACM, 51(10):50–57,
October 2008.

[28] Henry F. Fliegel and Thomas E. Gallini. Solar force modeling of block IIR Global Positioning
System satellites. Journal of Spacecraft and Rockets, 33(6):863–866, 1996.

[29] FreeFlyer. a.i. solutions. https://ai-solutions.com/freeflyer/, 2018. Accessed 21 Oct 2018.

[30] Carolin Frueh and Moriba Jah. Coupled orbit-attitude motion of high area-to-mass ratio
(hamr) objects including self-shadowing. Acta Astronautica, 95:227–241, 02 2014.

[31] Carolin Früh, Thomas M Kelecy, and Moriba K Jah. Coupled orbit-attitude dynamics of high
area-to-mass ratio (hamr) objects: influence of solar radiation pressure, earth’s shadow and
the visibility in light curves. Celestial Mechanics and Dynamical Astronomy, 117(4):385–404,
2013.

[32] Ryu Funase, Yoji Shirasawa, Yuya Mimasu, Osamu Mori, Yuichi Tsuda, Takanao Saiki, and
Jun’ichiro Kawaguchi. On-orbit verification of fuel-free attitude control system for spinning
solar sail utilizing solar radiation pressure. Advances in Space Research, 48(11):1740 – 1746,
2011. Solar Sailing: Concepts, Technology And Missions.

[33] J. Gal-Edd and A. Cheuvront. The osiris-rex asteroid sample return mission operations design.
In 2015 IEEE Aerospace Conference, pages 1–9, March 2015.

[34] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana Schaa. Heterogeneous
Computing with OpenCL: Revised OpenCL 1.2 Edition. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2 edition, 2013.

[35] Jeroen L. Geeraert, Jason M. Leonard, Patrick W. Kenneally, Christian W. May, Pe-
ter G. Antreasian, and Michael C. Moreau. Osiris-rex navigation small force models. In
Astrodynamics Specialist Conference. AIAA, 2019.

[36] General Mission Analysis Tool. Nasa goddard space flight center.
https://software.nasa.gov/software/GSC-17177-1, 2018. Accessed 27 Oct 2018.

[37] P. Gera, H. Kim, H. Kim, S. Hong, V. George, and C. C. Luk. Performance characterisation
and simulation of intel’s integrated gpu architecture. In 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 139–148, April 2018.

[38] EKA Gill and O Montenbruck. Satellite orbits: Models, methods and applications. Springer,
2013.

[39] Goddard Space Flight Center. 42: A comprehensive general-purpose simulation of attitude and
trajectory dynamics and control of multiple spacecraft composed of multiple rigid or flexible
bodies. https://software.nasa.gov/software/GSC-16720-1, Oct 2018. Accessed 2018-10-1.

[40] D. Guarnera, G.C. Guarnera, Abhijeet Ghosh, Cornelia Denk, and Mashhuda Glencross.
BRDF Representation and Acquisition. Computer Graphics Forum, 35(2):625–650, may 2016.

[41] Eric Heitz. Understanding the masking-shadowing function in microfacet-based brdfs. Journal
of Computer Graphics Techniques (JCGT), 3(2):48–107, June 2014.

148

[42] Eric Heitz. A Simpler and Exact Sampling Routine for the GGX Distribution of Visible
Normals. Research Report Unity Technologies, page 4, 2017.

[43] Eric Heitz and Eugene D’Eon. Importance sampling microfacet-based bsdfs using the distri-
bution of visible normals. Computer Graphics Forum, 33(4):103–112, July 2014.

[44] Pieter Hintjens. ZeroMQ Messaging for Many Applications. O’Reilly Media, 2013.

[45] ISC License. Open source initiative. https://opensource.org/faq, 2018. Accessed 15 Oct 2018.

[46] M. Jah and R. Madler. Satellite Characterization: Angles and Light Curve Data Fusion for
Spacecraft State and Parameter Estimation. In Advanced Maui Optical and Space Surveillance
Technologies Conference, page E49, 2007.

[47] A. Jain and G. Rodriguez. Recursive flexible multibody system dynamics using spatial oper-
ators. Journal of Guidance, Control, and Dynamics, 15(6):1453–1466, Nov 1992.

[48] Robert Karam. Satellite Thermal Control for Systems Engineers. American Institute of Aero-
nautics and Astronautics, 2019/04/22 1998.

[49] T L Kay and J T Kajiya. Ray Tracing Complex Scenes. Computer Graphics (SIGGRAPH ’86
Proceedings), 20(4):169–278, 1986.

[50] Patrick W. Kenneally. High geometric fidelity solar radiation pressure modeling via graphics
processing unit. Master’s thesis, University of Colorado, Boulder, 2016.

[51] Patrick W. Kenneally and Hanspeter Schaub. High geometric fidelity modeling of solar radi-
ation pressure using graphics processing unit. In AAS/AIAA Spaceflight Mechanics Meeting,
Napa Valley, California, Feb. 14–18 2016. Paper No. AAS-16-500.

[52] Patrick W. Kenneally and Hanspeter Schaub. Modeling solar radiation pressure with self-
shadowing using graphics processing unit. In AAS Guidance, Navigation and Control
Conference, Breckenridge, CO, Feb. 2–8 2017. Paper AAS 17-127.

[53] Patrick W. Kenneally and Hanspeter Schaub. Fast spacecraft solar radiation pressure mod-
eling by ray-tracing on graphic processing unit. In AAS Guidance and Control Conference,
Breckenridge, CO, Feb. 1–7 2018. Paper AAS 18-096.

[54] Khronos Group. OpenGL Documentation, 10 2015.

[55] H. Kuninaka and J. Kawaguchi. Lessons learned from round trip of hayabusa asteroid explorer
in deep space. In 2011 Aerospace Conference, pages 1–8, March 2011.

[56] David M. Lucchesi. Reassessment of the error modelling of non-gravitational perturbations on
LAGEOS II and their impact in the Lense–Thirring derivation—Part II. Planetary and Space
Science, 50(10-11):1067–1100, 2002.

[57] J A Marshall, S B Luthcke, P G Antreasian, and G W Rosborough. Modeling Radiation Forces
Acting on TOPEX/Poseidon for Precision Orbit Determination. Technical report, 1992.

[58] Marshall Space Flight Center. Marshall solar activity future estimation.
https://sail.msfc.nasa.gov, 2018. Accessed 1 Oct 2018.

149

[59] Yaroslav Mashtakov, Stepan Tkachev, and Mikhail Ovchinnikov. Use of external torques for
desaturation of reaction wheels. Journal of Guidance, Control, and Dynamics, 41(8):1663–
1674, 2018.

[60] MATLAB/Simulink. Mathworks. https://www.mathworks.com/products/matlab.html, 2018.
Accessed 23 Oct 2018.

[61] Jay W. McMahon and Daniel J. Scheeres. New solar radiation pressure force model for navi-
gation. Journal of Guidance, Control, and Dynamics, 2010.

[62] Jay W. McMahon and Daniel J. Scheeres. Improving space object catalog maintenance through
advances in solar radiation pressure modeling. Journal of Guidance, Control, and Dynamics,
38(8):1366–1381, 2019/04/22 2015.

[63] Jay W. McMahon and Daniel J. Scheeres. Improving space object catalog maintenance through
advances in solar radiation pressure modeling. Journal of Guidance, Control, and Dynamics,
38(8):1366–1381, 2019/04/24 2015.

[64] Tomas Moller and Ben Trumbore. Fast , Minimum Storage Ray / Triangle Intersection. Journal
of Graphics Tools, 2(1):21–28, 1997.

[65] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometrical
considerations and nomenclature for reflectance. Technical report, Final Report National
Bureau of Standards, Washington, DC. Inst. for Basic Standards, 1977.

[66] OpenCL Working Group Khronos. The OpenCL Specification Version: 2.2, 06 edition, March
2016.

[67] Daniel J. O’Shaughnessy, James V. McAdams, Peter D Bedini, Andrew B Calloway, Kenneth E
Williams, and Brian R Page. Messenger’s use of solar sailing for cost and risk reduction. Acta
Astronautica, 93:483–489, January 2014.

[68] J.D. D Owens, M. Houston, D. Luebke, S. Green, J.E. E Stone, and J.C. C Phillips. GPU
Computing. Proceedings of the IEEE, 96(5), 2008.

[69] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation, Third Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
third edition edition, 2017.

[70] Tomas Plachetka. Perfect load balancing for demand-driven parallel ray tracing. In Euro-Par,
2002.

[71] Proceedings of the AIAA/USU Conference on Small Satellites. NASA Operational Simulator
for Small Satellites (NOS3): Tools for Software-based Validation and Verification of Small
Satellites, 2016.

[72] Benny Rievers. High precision modelling of thermal perturbations with application to Pioneer
10 and Rosetta. PhD thesis, University of Bremen, 2012.

[73] Hyung-Jin Rim, Charles Webb, Sungpil Yoon, and Bob Schutz. Radiation Pressure Modeling
for ICESat Precision Orbit Determination. AIAA/AAS Astrodynamics Specialist Conference
and Exhibit, (August):1–7, 2006.

150

[74] Aaron J. Rosengren and Daniel J. Scheeres. Long-term dynamics of high area-to-mass ratio
objects in high-Earth orbit. Advances in Space Research, 52(8):1545–1560, 2013.

[75] Hanspeter Schaub. 14th US National Congress of Theoretical and Applied Mechanics, 23 - 28
June 2002. Modelling and Simulation in Materials Science and Engineering, 9(4), jul 2001.

[76] Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Systems. AIAA
Education Series, Reston, VA, 3rd edition, 2014.

[77] Issac D. Scherson and Elisha Caspary. Multiprocessing for ray tracing: a hierarchical self-
balancing approach. The Visual Computer, 4(4):188–196, Jul 1988.

[78] Conrad Schiff and Edwin Dove. Monte carlo simulations of the formation flying dynamics for
the magnetospheric multiscale (mms) mission. Journal of Aerospace Engineering, Sciences and
Applications, 4(4):66–78, 2012.

[79] Christophe Schlick. An inexpensive brdf model for physically-based rendering. Computer
Graphics Forum, 13:233–246, 1994.

[80] Brandon T. Bailey Scott A. Zemerick, Justin R. Morris. Nasa operational simulator (nos) for v
and v of complex systems. In Modeling and Simulation for Defense Systems and Applications
VIII, volume 8752, 2013.

[81] Dave Shreiner, Graham Sellers, John Kessenich, and Bill Licea-Kane. OpenGL Programming
Guide: The Official Guide To Learning OpenGL, Version 4.3. Addison-Wesley, Upper Saddle
River, NJ, 2013.

[82] B. Smith. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas
and Propagation, 15(5):668–671, Sep. 1967.

[83] Brian Smits. Efficiency Issues for Ray Tracing. Journal of Graphics Tools, 3(2):1–14, 1999.

[84] T. A. Springer, G. Beutler, and M. Rothacher. A new solar radiation pressure model for gps
satellites. GPS Solutions, 2(3):50–62, 1999.

[85] Graeme L. Stephens, Deborah G. Vane, Ronald J. Boain, Gerald G. Mace, Kenneth Sassen,
Zhien Wang, Anthony J. Illingworth, Ewan J. O’connor, William B. Rossow, Stephen L.
Durden, Steven D. Miller, Richard T. Austin, Angela Benedetti, and Cristian Mitrescu. The
cloudsat mission and the a-train. Bulletin of the American Meteorological Society, 83(12):1771–
1790, dec 2002.

[86] Rao Surampudi, Julian Blosiu, Paul Stella, John Elliott, Julie Castillo, Thomas Yi, John
Lynos, Mike Piszczor, Jeremiah McNatt, Chuck Taylor, Ed Gaddy, Simon Liu, Ed Plichta,
Christopher Iannello, Patricia M. Beauchamp, and James A. Cutts. Solar power technologies
for future planetary science missions (JPL D-101316). Technical Report December, Strategic
Missions and Advanced Concepts Office Solar System Exploration Directorate Jet Propulsion
Laboratory, 2017.

[87] Systems Tool Kit. Analytic graphics inc. https://www.agi.com/products/engineering-tools,
2018. Accessed 20 Oct 2018.

151

[88] Sergei Tanygin and Gregory M Beatty. Gpu-accelerated computation of drag and srp forces and
torques with graphical encoding of. In Conference: 26th AAS/AIAA Space Flight Mechanics
MeetingAt: Napa, CA, number February, pages 1–20, 2016.

[89] ISO/IEC JTC 1 Information technology. Iso/iec 7498-1:1994 information technology – open
systems interconnection – basic reference model: The basic model. Technical report, Interna-
tional Organization for Standardization, 1994.

[90] Trick Simulation Environment. Nasa johnson space center.
https://github.com/nasa/trick/wiki/FAQ, 2018. Accessed 20 Oct 2018.

[91] David Vallado. Fundamentals of astrodynamics and applications. Springer, New York, 2007.

[92] Eric Veach. Robust monte carlo methods for light transport simulation. Dissertation at the
Department of Computer Science of Stanford University, 134(December):759–764, 1997.

[93] Bruce Walter, Sr Marschner, Hongsong Li, and Ke Torrance. Microfacet models for refraction
through rough surfaces. Eurographics, pages 195–206, 2007.

[94] Charles J. Wetterer, Richard Linares, John L. Crassidis, Thomas M. Kelecy, Marek K. Ziebart,
Moriba K. Jah, and Paul J. Cefola. Refining Space Object Radiation Pressure Modeling with
Bidirectional Reflectance Distribution Functions. Journal of Guidance, Control, and Dynamics,
37(1):185–196, 2014.

[95] M Ziebart, S Adhya, a Sibthorpe, S Edwards, and P Cross. Combined radiation pressure and
thermal modelling of complex satellites: Algorithms and on-orbit tests. Advances in Space
Research, 36(3):424–430, 2005.

[96] Marek Ziebart. High Precision Analytical Solar Radiation Pressure Modelling for GNSS Spacecraft.
PhD thesis, University of East London, 2001.

Appendix A

Simulation Architecture Basilisk

Spacecraft simulation software tools are an indispensable part of modern spacecraft design

processes. The continual increase in complexity of spacecraft mission and maneuver design, dy-

namical and kinematic design verification, and post-launch telemetry analysis all heavily rely on

software simulation tools. These simulation tools provide engineers with the ability to increase the

quality of design and testing by reducing cost and duration of development. For example, proposed

changes to a mission’s configuration, parameter tuning or in-flight anomalies may be explored via

Monte Carlo simulation [78, 26]. Additionally, hardware-in-the-loop (HWIL) testing allows for ver-

ification and validation of the spacecraft hardware and software systems in a controlled laboratory

environment. Hardware-in-the-loop testing can expose technical faults and system integration prob-

lems saving considerable project financial and personnel resources before launch to space. While

there are both commercial and open source tools available that solve some of these challenges, there

hasn’t been an open astrodynamics software tool to address all.

Astrodynamics simulation tools can be broadly categorized into three groups; Commercial

off the shelf (COTS), Government off the shelf (GOTS) and general open source. A number of

tools have their origin in the GOTS category and subsequently moved to the open source category.

Popular tools to either simulate full missions, orbits, attitude motion, flight algorithm, or that

perform hardware- and software-in-the-loop capabilities include

• MATLAB/Simulink [60] combination to simulate algorithms and auto-code to flight C-code

• Analytic Graphics Inc (AGI) Systems Tool Kit (STK) [87] to model orbital simulations

153

and mission scenarios

• a.i. FreeFlyer [29] to simulate spacecraft dynamics

• NASA General Mission Analysis Tool (GMAT) [36] to perform orbital trajectory optimiza-

tions

• NASA Trick [90] to simulate complex spacecraft physics

• OreKit [22] to simulate spacecraft using a Java library using open tools

• Jet Propulsion Laboratory’s Dynamics Algorithms for Real-Time Simulation (DARTS)/Dshell

[24] software to simulate complex spacecraft behaviors and and control solution using prop-

prietry software

• NASA 42 [39] to simulate spacecraft with open source software

Each tool is developed with a specific subset of space asset simulation purposes in mind. For

example the OreKit, GMAT and STK tools were initially developed with a focus on high fidelity

orbit dynamics, orbit estimation, orbit propagation and trajectory design. As a result these tools

include a range of different propagators, complex multi body gravity models, drag, solar radiation

pressure and orbit determination tools. For example the Orekit tool includes six optional methods to

model atmospheric density ranging from simple exponential models to empirical predictive models

such as the Marshall Solar Activity Future Estimation [58].

When assessing software packages in the context of their ability to simulate full spacecraft

dynamics it is important to identify how the dynamics are computed and how this impacts the

modularity of the implementation. For example, tools such as OreKit and STK have increased

their ability to accommodate spacecraft attitude. STK can be paired with the SOLIS plugin, a

commercial plugin to STK which models spacecraft translational and attitude dynamics. And while

the SOLIS plugin enhances STK’s spacecraft dynamics, it does not model disturbances which may

alter the spacecraft’s center of mass[1]. Similarly, OreKit models the spacecraft as a rigid body,

154

and the dynamics are primarily focused on defining perturbations as uncoupled external forces and

torques.

Two tools which do provide increased modularity, coupled dynamics and the ability to cus-

tomize the spacecraft dynamics are JPL’s DARTS environment and NASA’s ”42” software package

[12, 39]. The DARTS tool uses spatial operator algebra for the development of multi-body dy-

namics to generate a spacecraft system mass matrix in a form that is efficiently solved recursively

[47]. Similarly, the simulation package “42” allows for spacecraft composed of multiple rigid or

flexible bodies using a tree topology to formulate the dynamics. Both of these formulations allow

developers to add arbitrary models to the simulation without significant change to the code base.

It seem an unreasonable requirement to expect a tool, which simulates the high complexity

of a spacecraft system, to accommodate all possible missions configurations and spacecraft sub-

tleties as out-of-the-box modeling functionality. On this basis, it is reasoned that extensibility of a

simulation tool via means of scripting and custom code development is needed to allow engineers

to adapt the tool to the particular specification and requirements of their mission. All of the tools

listed include some basic level of scriptability while others enable significantly more customization.

For example AGI’s STK offers their Connect and Object Model APIs which facilitate the addition

of custom simulation models (except for coupled spacecraft dynamics). In contrast JPL’s DARTS

tool allows a user to compile and add a custom model to any part of the simulation framework.

This may include a model of the flexible dynamics of a large solar panel boom or the addition of a

simulated ground station.

While it is not surprising that none of the COTS tools use a version of an open source license,

it is interesting to note that COTS tools are typically not cross platform in so far as they support

installation on only one or two of the primary operating systems; macOS, Windows, and Linux. A

notable exception to this is the MATLAB suite. This limits the reach of the tool to research labs

that are already using a particular operating system.

Finally, a large feature which is not available by default in most tools is HWIL and Software-

in-the-loop (SWIL) functionality. Of the tools listed, MATLAB/Simulink and the DARTS/Dshell

155

tools support HWIL and SWIL functionality without significant modification. Hardware-in-the-

loop and SWIL functionality allows engineers to use of the same set of tools and flight algorithms

through multiple phases of the mission and in multiple engineering teams across an organization.

Basilisk1 is a novel astrodynamics framework that simulates complex spacecraft systems in

the space environment. While many simulation tools possess overlapping features with Basilisk,

none others possess the combined characteristics of Basilisk. The Basilisk framework is a highly

modular, Python user-friendly, open-source simulation framework that provides accurate (fidelity is

configurable) coupled vehicle position and attitude dynamics, along with optional structural flexing,

imbalanced momentum exchange device, and fuel slosh dynamics, with at least a 365 times speedup

(one mission year in one compute time day). Furthermore, Basilisk is equally well employed during

early mission design phases as it is later on during detailed design phases and further in post-launch

telemetry analysis and spacecraft command sequence validation. The software has also been used

in distributed hardware-in-the-loop simulations [19]. Basilisk is available online as open source

software.2

This appendix describes the Basilisk framework and the underlying message passing interface

that enables a very modular approach to open spacecraft simulation development. In Section A.1

the Basilisk framework’s software stack is introduced. Section A.2 gives a detailed account of the

aforementioned novel Basilisk system architecture, which allows for the rapid development of a

simulation for of a wide variety of complex spacecraft systems. The key architectural components

discussed are the Basilisk message system which facilitates data passing between models and the

Basilisk spacecraft dynamics implementation. Section A.3 outlines the simulation execution flow of

control and how the fundamental components of Modules, Tasks, and Task Groups work together to

provide the user with flexible control over simulation design, integration rates and message passing.

Sections A.4 and A.5 provide an overview of the Basilisk multi-processing Monte Carlo tools and

the ability to log, process, and analyze large (multi-gigabyte) data sets. In the final section of this

1 https://hanspeterschaub.info/bskMain.html
2 https://bitbucket.org/avslab/basilisk

https://hanspeterschaub.info/bskMain.html
https://bitbucket.org/avslab/basilisk

156

paper an example Basilisk simulation configuration will be presented to illustrate how Basilisk’s

modular design allows the end-user engineer to build a detailed simulation scenario from simple

Basilisk building blocks.

A.1 Software Stack and Build

The core Basilisk architectural components and physics simulation modules are written in

C++ to allow for object-oriented development and fast execution speed. However, Basilisk Modules

can also be developed using Python, for easy and rapid prototyping, and C to allow flight software

modules to be easily ported directly to flight targets. Future developments will include modules

developed in Fortran to accommodate legacy space environment models.

Whereas Basilisk Modules are developed in a number of programming languages, Basilisk

users interact and script simulation scenarios using the Python programming language. Python

bindings are available for all Modules and supporting simulation utilities and core functionality as

indicated in Fig. A.1. The Python bindings are auto-generated at compile time using the Software

Interface Generator (SWIG) tool. A typical Module is defined by a header file (.h) a source

file (.c/cpp) and most importantly a SWIG interface file (.i). The SWIG interface file contains

compiler directives, which at compile time are parsed and determine the class interface in the

target language (Python). At compile time three build products are produced for each Module’s

compilation. These three build products are a Module library (.so or .dll), a Python interface to

the underlying library (.py), and a Python-to-source language translation file (.cxx). The Python

interface mirrors the underlying C++ class variables and functions. The Python bindings allow

users to employ the Module’s functionality within the Python environment through the typical

package import mechanism as demonstrated below in Listing. A.1.

Generating a separate SWIG wrapped library object (.so or .dll) for each Module obviates

any compile time dependencies between one Module and another. This modularity relieves the user

of needing any software compilation knowledge and provides the ability to rapidly reconfigure their

simulation scenario during runtime at the Python language level of the technology stack. This crit-

157

Listing A.1: Selective Python imports of Basilisk Modules.

1 from Basilisk.simulation import reactionWheelStateEffector, rwVoltageInterface, simple_nav,

spacecraftPlus↪→

ical feature allows a spacecraft simulation to be modified later on by selectively replacing Modules

and connecting them with the input and output message passing of the existing Modules. Each

Module has its own unit and integrated tests. As a result of this decoupling Module replacement

is achieved without requiring the re-validation of other simulation.

A.2 Modularity In Basilisk

The types of missions that Basilisk can be used to simulate lay on a spectrum with Earth

orbiting cubesats at one end and interplanetary probes and spacecraft constellations at the other.

The hallmark of the Basilisk framework is its highly modular system architecture. Modular design

has been the guiding principle throughout Basilisk’s development. The result is that Basilisk im-

plements only two core system components, the Basilisk message system and Basilisk simulation

controller. Basilisk’s modular design is achieved by three key design choices. The first is the com-

plete decoupling of model and run loop dependence. The second design choice is to use a messaging

system approach to manage Module input and output data and inter-Module data requirements.

Finally, a Dynamics Manager is implemented to manage the fully-coupled nature of a spacecraft

rigid body dynamics in a computationally efficient manner [2].

A.2.1 Components

Spacecraft onboard computers typically employ a real-time operating system (RTOS) which

executes algorithms at both a fixed rate and within a fixed allocation of time. Similarly, a dynamic

simulation employs either a fixed or variable time step integration of the equations of motion

(EOM). Both of these time rate driven processes motivate the conceptualization of the core Basilisk

158

Python Interface (SWIG)

Message
Storage

Sensor Read

Task Group: FSW

CSS Decode

MIRU Decode

Star Tacker Acquire

Attitude Nav 2 Hz

1 Hz

Att UKF

Nav Aggregate

Dynamics

Reaction Wheels

Flexible Panels

Task Group: DKE

Task 3

Solar Radiation

Sensors

100 Hz

10Hz
Coarse Sun Sensors

Message
Storage

Python Environment - Simulation Scenario Scripts

Figure A.1: An example layout of a complete Basilisk simulation where each element of the system
has SWIG generated Python interfaces available in the Python environment.

components introduced in this section. The result is a unique flexibility and configurability of a

Basilisk simulation scenario’s timing and flexible integration rates.

A Basilisk simulation is built up from Modules, Tasks and Task Groups. These fundamental

abstractions are depicted in their relationship to each other in Fig. A.2. A Basilisk Module is stand-

alone code which typically implements a specific model (e.g. an actuator, sensor, and dynamics

model) or self-contained logic (e.g. translating a control torque to a reaction wheel command

voltage). Modules receive input data as messages by subscribing to desired messages available from

the Messaging System. Similarly, a Module publishes output data as messages to the Messaging

System.

Tasks are groupings of Modules. Each Task has an individually set integration rate. The Task

integration rate directs the update rate of all Modules assigned to that Task. As a result a simulation

may group modules with different integration rates according to desired fidelity. Furthermore, the

configured update/integration rate of each Task can be adjusted during a simulation to capture

increased resolution for a particular phase of the simulation. For example a user may increase the

integration rate for the Task containing a set of spacecraft dynamics Modules, such as flexing solar

panels and thrusters, in order to capture the high-frequency flexing dynamics and thruster firings

during Mars Orbit Insertion (MOI). Otherwise the integration time step may be kept to a longer

159

Task 1

module 1

module 2

Task Group 1

Task n

module n

Task 1

Task Group n

Task n

module 1

module 2

module n

Figure A.2: Basilisk Task Group, Tasks and Module layout.

duration during the less dynamically active mission phases such as interplanetary cruise.

The execution of a Task and therefore the Modules within that Task is controlled by either

enabling or disabling the Task. A Task’s enabled status can be toggled any time during a simulation.

This feature is particularly useful for enabling or disabling FSW specific Modules contained within

a Task related to the simulated spacecraft’s FSW mode e.g. Safe Mode, Sun Pointing.

Task Groups are the highest level grouping of Basilisk components. Task Groups act as a

container for Tasks and provide a mechanism for resolving message dependencies between Modules

as discussed in greater detail in Section. A.2.2. Task Groups can be considered silos of Tasks and

the messages published and subscribed by Modules within the Task Group.

A.2.2 Message System

The Basilisk messaging system facilitates the input and output of data between simulation

Modules. The messaging system decouples the data flow between Modules and Task Groups and

removes explicit inter-Module dependency resulting in no run-time Module dependencies.

A Basilisk Module reads input messages and writes output messages to the Basilisk messaging

system. The message system acts as a message broker for a Basilisk simulation. The messaging

system employs a publisher-subscriber message passing nomenclature. A single Module may read

and write any number of messages. A Module that writes output data, registers the ‘publication’

160

of that message by creating a new message entry within the message system. Similarly, a Module

that requires data output by another Module subscribes to the message published by the other

Module. The messaging system then maintains the messages read and written by all Modules and

the network of publishing and subscribing Modules.

A message is defined by a unique message name, a message ID and a payload data structure

(typically a C/C++ struct). The messaging system maintains meta-data for each message in a

message header. The message header meta-data includes a list of allowed message publishers,

subscribers, buffer memory locations and read and write statistics.

The messaging system implements the message storage as directly managed memory. As

shown in Fig. A.3(a) a region of memory is allocated and managed as a message storage container.

The messaging system manages multiple storage containers, one for each Task Group. The size of

the allocated memory for each storage container is determined by the combined size of the number

of created messages, their associated headers and the number of message buffers allocated for each

message. It is important to note, that all messages are at least double buffered in the messaging

system. Ring buffer logic is used for message entries that are registered with more than two

buffers. Multiple buffers per message entry helps to protect data integrity during message writes

and facilitates the, albeit rare, use case in which two Modules must write a single message or when

Basilisk operates in a multi-process/threaded configuration. However, as shown in Fig. A.3(a), a

Module can declare to increase the number of buffers for a specific message.

A message is created in the message system when a Module invokes the function call, shown

in Listing A.2, on the SystemMessaging singleton instance. This function call takes a unique

message name, the maximum size in bytes of the message payload struct, the number of buffers

into which an entry of the message may be written, the type of message payload struct and the

unique identifier of the Module creating the new message. As demonstrated by Fig. A.3(b), the

memory allocated in the Task Group’s message storage container is increased and existing message

entries are moved within the allocated memory to accommodate the new message ‘msg n + 1’. A

Module ‘creates’ a message in the message system by passing a message payload type and a unique

161

msg n

buffer 1

Msg Storage 1

msg 1

buffer n

msg header

(a) Message system memory lay-
out

Msg Storage 1

msg 1

msg n

msg n + 1

(b) Message system memory lay-
out upon new message creation

Figure A.3: Basilisk messaging system memory layout and organization.

name and receives in return a unique message identifier generated by the message system.

At simulation initialization a three stage process resolves the message subscription and pub-

lication pairs. Simulation initialization and the associated resolving of message pub-sub pairs is

discussed in greater detail in Section. A.3. However, the functionality of a Task Group Interface (a

unidirectional message ‘bridge’ from one Task Group to a second Task Group) is described here.

Each Task Group has a single associated message storage container. This one-to-one design seeks

to accommodate simulation configurations where the dynamic and environment Modules remain

wholly separate from the flight software Modules. This separation, while being useful to organize

related Modules within a simulation, becomes significantly useful when operating Basilisk as a

distributed simulation across multiple compute resources. For example in a SWIL configuration

the dynamics and environment Module’s execute on a desktop computer while the FSW Modules

execute on a separate flight target processor or processor emulator. However, there are further

less stereotypical instances in which a simulation developer would like for messages in one Task

Group to be available to Modules in a second Task Group. As a result, to facilitate the exchange

of messages between Task Groups, Task Group Interfaces are available to make this connection. A

Task Group Interface is a unidirectional message exchange from one Task Group to a second Task

162

Listing A.2: Register a new message with the messaging system.

1 uint64_t msgId SystemMessaging::CreateNewMessage(

2 std::string messageName,

3 uint64_t maxSize,

4 uint64_t numMessageBuffers,

5 std::string messageStruct,

6 int64_t moduleID)

Group. This allows for Modules in a first Task Group to publish messages to a second Task Group

and, as implied, Modules in the second Task Group to subscribe to messages published in the first

Task Group.

A.2.3 Dynamics Manager

The third and final piece of Basilisk’s modular design is the implementation of the Dynamics

Manager. The spacecraft dynamics are modeled as fully coupled multi-body dynamics with the

generalized EOMs being applicable to a wide range of spacecraft configurations. The implemen-

tation, as detailed in Reference [2], uses a back-substitution method to modularize the EOMs and

leverages the resulting structure of the modularized equations to allow the arbitrary addition of

both coupled and uncoupled forces and torques to a central spacecraft hub.

A Module which impacts the translational or rotational dynamics is called an Effector. Effec-

tors are classified as either a State Effector or a Dynamic Effector. State Effectors are those Modules

which have dynamic states to be integrated and therefore contribute to the coupled dynamics of

the spacecraft. Examples of State Effectors are reaction wheels, flexible solar arrays, variable speed

control moment gyroscopes (VSCMGs) and fuel slosh. In contrast, Dynamic Effectors are Modules

which implement dynamics phenomena that result in external forces or torques being applied to

the spacecraft. Examples of Dynamic Effectors include gravity, thrusters, solar radiation pressure

(SRP) and drag.

For a Module to operate as either a State or Dynamic Effector, the implemented Module

163

msg 1

msg 2

Module 1

Module 2

module 3

module 4

msg 4

msg 3

Msg System

msg n

msg 1

pub sub

module 6

Module 7

Figure A.4: A notional messaging system publish and subscribe map for a message storage container
of a single Task Group.

class must inherit from the StateEffector or DynamicEffector parent classes. The developer of a

dynamics Module is responsible for implementing only the dynamics of the Effector model. For

a State Effector a developer must provide a custom implementation of the three functions shown

in Listing A.3. Listing A.4 shows the single method for the non-coupled Dynamic Effector that a

developer must override.

The Dynamics Manager transparently organizes and aggregates the various dynamic contri-

bution of each Effector Module in a simulation. It ensures all dynamic states are updated and

propagated. The user may select from various numerical integration schemes to propagate the

spacecraft dynamics. Moreover, the interface between the Dynamics Manager and the integrator

has been generalized to allow other developers to implement their own desired numerical integration

scheme.

A.3 Execution Control

A Basilisk simulation steps through a number of distinct initialization, integration, and shut

down phases. The high level flow of control for a Basilisk simulation is shown in Figure. A.5. Basilisk

Modules, Tasks, Task Groups, and their associated message storage and linkages are initialized by

a three stage process. Each Basilisk Module inherits from the SysModel class. As shown in

Listing. A.5, the SysModel abstract class defines an interface of four functions, which a Module

164

Listing A.3: StateEffector required methods.

1 // Provide contributions to the spacecrafts mass and inertia properties.

2 virtual void updateEffectorMassProps(double integTime);

3 // Provide coupled contributions to the back-substitution matrices.

4 virtual void computeStateContribution(double integTime);

5 // Compute the Module’s own state derivatives.

6 virtual void computeDerivatives(double integTime, Eigen::Vector3d rDDot_BN_N, Eigen::Vector3d

omegaDot_BN_B, Eigen::Vector3d sigma_BN);↪→

must implement. These functions are called on each Module as part of the overall simulation flow

of control process.

The three stages of simulation initialization are self-initialization, cross-initialization and

reset. During self-initialization each Module’s selfInit() function is called allowing a Module

to register the messages it intends to publish with the messaging system. Next, each Module’s

crossInit() function is called allowing a Module to subscribe to messages that were made avail-

able as published messages in the previous self initialization stage. As the last major step before

beginning the run-loop, Reset() is called for each module. The Reset() function provides each

module an opportunity to setup to a ‘clean’ known initial state.

The simulation flow of control is governed by three loop iterations. The outermost loop

iterates through each of the instantiated Task Groups according to each Task Group’s assigned

priority level. Within each Task Group, each Task is looped through. Subsequently within each

Task, all Modules within a task are iterated through according to their priority within the Task.

For each Module in a Task the Module’s updateState() function is called. The logic contained

Listing A.4: DynamicEffector required method.

1 // Compute the body or inertial frame force and/or torque due to the Effector.

2 virtual void computeForceTorque(double integTime);

165

update next task
call time

update next task
group call time

log msgs
and variables

start

end after sim time

self/cross init

task groups

tasks

modules

updateState/intergrate

Figure A.5: Basilisk high level flow of control for simulation execution.

in the updateState() function is custom to each Module. However, a typical sequence of many

updateState() implementations is to read subscribed input message, perform a computation de-

fined by the Module and then write published output messages for use by other Modules. Of

particular importance is the special SpacecraftDynamics Module which implements the aforemen-

tioned Dynamics Manager. The updateState() of the SpacecraftDynamics Module is responsible

for triggering the dynamics integration process and in doing so determines the integration rate of

the spacecraft dynamics.

Following the iteration through each of the Task Group and Task loops, the next call time

for a Task and Task Group are set. This is required because each Task within a Task Group may

have a different update rate and Tasks may be enabled or disabled at various times during the

simulation. As a result, the next call time for a Task and Task Group and therefore the modules

can change from one loop to the next loop and updating the next call time allows the simulation

to skip forward to the next expected update time according to the combined Task update rates.

166

Listing A.5: SysModel abstract class interface definition.

1 virtual void SelfInit();

2 virtual void CrossInit();

3 virtual void UpdateState(uint64_t currentSimNanos);

4 virtual void Reset(uint64_t currentSimNanos);

A.4 Data Logging

Data output by Modules through messages or internal Module variables (which have a de-

clared public scope in their C++ class definition) may be logged. Data to be logged is determined

prior to a simulation run where a user may specify complete messages, a single variable within a

message or internal simulation variables to be logged and the logging rate desired. The highest

logging frequency is driven by the highest frequency at which the Task, containing the Module

producing the data, is executed. No interpolation is done for data logged at a frequency higher

than the frequency at which data samples are produced. As shown in Fig. A.5, the simulation

Data Logger reads the requested messages and variables at the end of each loop through all Task

Groups. At the conclusion of the simulation the user may retrieve the data with each message and

variable made available as a time stamped series. This returned data format may be directly used

in post processing scripts developed in Python using tools like Numpy, Matplotlib and PANDAS.

A.5 Monte Carlo Capability

A key benefit of Basilisk’s Python interface is the ability to take any simulation script and with

minimal code changes configure that script as a Monte Carlo (MC) simulation. A Basilisk Monte

Carlo simulation can be executed in a serial or parallel multi-processing fashion. When executing

in parallel the MC simulation can be executed on multiple local CPU cores or in a parallel remote

execution environment. Additionally, the MC functionality includes run-time generated variable

dispersions, logging and saving of each MC iteration’s simulation dispersed initial conditions and

167

resulting simulation data. The logged simulation data is made available in the portable Dataframes

data structure from the PANDAS Python module.

Variable dispersions are built upon base Python implementations of scalar, vector, and ten-

sor variable type dispersion classes. Currently Basilisk maintains uniform and normal dispersion

for Cartesian variables, Euler angles, and Modified Rodrigues Parameter (MRP) descriptions[76].

However, each of these individual base dispersion can be inherited by a user’s custom dispersion

implementation allowing users to generate dispersions for variables with different physical bounds,

variances and specific statistical distributions.

The initial conditions, including the dispersed variables and random number seeds are saved

in a JSON file format for each MC run. This allows a user to rerun and examine closer, one or

more, particular runs of interest from a MC simulation, with bit-for-bit repeatability.

Multi-process capability is a key benefit of the MC tools. The MC controller uses the Python

Multiprocessing module to spawn and manage as many Python Basilisk simulation processes as

the user or host machine allows. For example a computer with a 4 core CPU, each physical core

with two virtual cores, will be used by the MC controller as a machine with 8 processors. The

controller will launch 8 simulations at once and continue to provide simulations to the worker pool

of processes until all simulation work is complete. Each simulation execution is handled individually

with data logging, initial conditions and failures all logged for later analysis. Post processing of

MC data makes use of the convenient PANDAS statistical and data manipulation functions. While

single simulation plotting is done with the more traditional Matplolib package, plotting of large

multi-gigabyte data sets is achieved using the DataShaders plugin to the Bokeh plotting library.

This module employs a rasterized plotting approach to display plots after a few seconds of execution

time and is capable of of plotting extremely large data sets.

A.6 Development Approach - Open Source

The initial motivation for the development of Basilisk was to support the design and devel-

opment of the attitude determination and control system for an interplanetary spacecraft. The

168

intention was to use Basilisk as an early mission Phase A/B design and analysis tool, a flight algo-

rithm verification and validation tool during latter Phase C, and finally as the space environment

and dynamics simulator for HWIL and SWIL testing during Phase D. Basilisk has been utilized in

all these mission phases. Basilisk’s increasing utility has prompted the original development team

at the Laboratory for Atmospheric and Space Physics (LASP) and the AVS Lab to make the project

available as an open source project. Basilisk uses an Internet System Consortium (ISC) License

which is a permissive software license simply requiring attribution and relinquishing the creator of

liability [45]. It is anticipated that such a permissive license will help to encourage experimentation

and contribution back to the main Basilisk project.

The Basilisk framework does not contain any export controlled components. Rather, all the

included simulation and astrodynamics control algorithms are from open published literature. If a

user needs to create modules that contain company proprietary tools or export controlled solutions,

then the user would create these modules outside the regular Basilisk framework and import them

separately in the Python simulation script. This allows Basilisk to model several common dynamical

systems such as reaction wheels dynamics in a very general fashion, but no reaction wheel specific

communication interfaces are included as these are vendor or mission specific. To use Basilisk for

mission development and analysis purposes, this modularity allows for a clean separation of general

purpose modules as well as user custom-developed modules.

Basilisk has undergone an internal verification and validation effort within LASP and the

AVS Lab. As an open source project, Basilisk will benefit from the strong ongoing engagement

from a wide community of users. The community shall provide further validation, bug fixes and

functionality additions. In the short time that Basilisk has been openly available a number of fixes

and functionality additions have been made by the user community.

A.7 Example of a Basilisk Simulation Configuration

Constructing a Basilisk simulation scenario requires the creation of Task Groups, assigning

Tasks to these Task Groups, and the instantiation of Modules within each Task. The following

169

Dyn to FSW

Dynamics

Spacecraft Bus

Earth Gravity

Task Group: DKE

Attitude Nav

Task Group: FSW

Inertial 3D Point

Attitude Error

MRP Control

Sensors

100 Hz

10Hz

2 Hz

Navigation Sensor

RW Motor Torque

FSW to Dyn

RWA

Figure A.6: Concept diagram of simple multi body gravity orbiter Basilisk simulation configuration.

example demonstrates the key Basilisk function calls which configures a simple Earth orbiting

spacecraft whose attitude control system must align to a chosen inertial attitude. The simulation

uses two Task Groups. The first Task Group contains all dynamics, kinematics and environment

(DKE) Modules. The second Task Group contains all flight software algorithm Modules. This

example simulation configuration closely exemplifies a Basilisk orbital simulation developed for SRP

analysis in Chapters. 4 and 3. The arrangement of Task Groups, Tasks and associated Modules

is presented in Fig. A.6. The Modules within the DKE Task Group are separated into two Tasks.

In the first Tasks the Modules included are spacecraft hub, reaction wheels (fully coupled to the

hub) and the Earth gravity field. In the second Task a Module called SimpleNav is included. It

receives the spacecraft states through the output message of the spacecraft module. The SimpleNav

Module perturbs the truth state of the spacecraft using a gauss-markov error model. For simple

simulations, such as this example, the SimpleNav Module is used in place of the more complex

nominal spacecraft navigation system output. There is a single Task in the FSW Task Group

and it contains all the Modules required to implement a MRP inertial pointing controller using

reaction wheels [76]. The FSW determines the attitude error by reading the navigation sensor

output message, while the reaction wheel motor torque module outputs a message that drives the

resulting reaction wheel assembly (RWA) dynamics.

Task Groups and Tasks are created and linked for the DKE and FSW Task Groups. This

170

is done by creating a Task Group, also referred to as a Process, and then adding a Task to this

Task Group as shown in Listing. A.6. The Dynamics Task integration rate is set to 0.1 seconds

and the Sensors Task rate set to 0.5 seconds. In Basilisk, the base time scale is nanoseconds

and so the sec2nanos() conversion utility is used for convenience. Recall that Task Groups are

message containers. Messages within a Task Group may only be published and subscribed to by

Modules within that Task Group. To facilitate message passing between Task Groups, a Task

Group interface must be created for each of the desired message flow directions. In this simulation,

it is desired that certain messages generated in the DKE Task Group are available to the Modules

in FSW and vice-versa. As shown in Figure. A.6, two Task Group interfaces are created to facilitate

this transparent message exchange between the two Task Groups.

With the core Basilisk structures instantiated, the next step is to populate the simulation

with various Basilisk Modules. As shown in Listing. A.7, the DKE Modules are instantiated and

assigned to their respective Tasks. The SpacecraftPlus() Module instantiates the rigid body hub

to which other StateEffectors and DynamicEffectors can be associated.

The FSW Modules are created and populated in the FSW Task Group as shown in List-

ing. A.8. While Modules can be development in either Python, C++ or C, the FSW modules

employed in this simulation are developed in C. Developing these modules in C allows analysts to

run the same code and algorithm in simulation, SWIL and eventually HWIL. The FSW Modules

included are:

• Inertial3dPoint - compute the spacecraft reference attitude.

• AttitudeError - determine the spacecraft attitude error from the reference attitude.

• MRPControl - compute required control torques according to MRP based feedback control

law.

• RWMotorTorque - map the attitude control torque onto a set of reaction wheel torque

commands.

171

Listing A.6: Simulation, Task Group, Tasks, and Task Group message sharing interface instantia-
tion.

1 # Instantiate simulation container

2 scSim = SimulationBaseClass.SimBaseClass()

3

4 # Create Task Groups (Processes)

5 dynProcess = scSim.CreateNewProcess("dynProcess")

6 fswProcess = scSim.CreateNewProcess("fswProcess")

7

8 # Create and add Tasks to each Task Group

9 dynProcess.addTask(scSim.CreateNewTask("dynTask", sec2nanos(0.01)))

10 dynProcess.addTask(scSim.CreateNewTask("sensorTask", sec2nanos(0.1)))

11 fswProcess.addTask(scSim.CreateNewTask("fswTask", sec2nanos(0.5)))

12

13 # Create interfaces and define message sharing directionality

14 intDynToFsw = sim_model.SysInterface()

15 intFswToDyn = sim_model.SysInterface()

16 intDynToFsw.addNewInterface("dynProcess", "fswProcess")

17 intFswToDyn.addNewInterface("fswProcess", "dynProcess")

18

19 # Add interfaces to Task Groups

20 dynProcess.addInterfaceRef(intDynToFsw)

21 fswProcess.addInterfaceRef(intFswToDyn)

Listing A.7: Instantiate DKE Modules and assign to respective Tasks.

1 # Create spacecraft hub effector

2 scObject = spacecraftPlus.SpacecraftPlus()

3 scSim.AddModelToTask("dynTask", scObject, None, 1)

4 # Create earth gravity body DynamicEffector

5 gravBodies = gravFactory.createBodies([’earth’])

6 scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector(gravFactory.gravBodies.values())

7 # Create reaction wheel StateEffectors

8 RW1 = rwFactory.create(’Honeywell_HR16’, [1, 0, 0], maxMomentum=50., Omega=100.)

9 RW2 = rwFactory.create(’Honeywell_HR16’, [0, 1, 0], maxMomentum=50., Omega=200.)

10 RW3 = rwFactory.create(’Honeywell_HR16’, [0, 0, 1], maxMomentum=50., Omega=300.)

11 # Add reaction wheel StateEffectors to spacecraft object and Task

12 rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector()

13 rwFactory.addToSpacecraft("ReactionWheels", rwStateEffector, scObject)

14 scSim.AddModelToTask("dynTask", rwStateEffector, None, 2)\

172

The novel utility of Basilisk’s modularity is demonstrated by the arrangement these FSW algorithm

Modules. Each of these FSW Modules computes a specific kinematic or control related quantity.

As such each Module can be used as a building-block to compose complex FSW behaviors. In

this simulation scenario four Modules are used to create an inertial pointing control scheme. The

output data generated and the input data required by these Modules is facilitated by published and

subscribed messages. Greater detail of the application and theory enabled by this building-block

approach is contained in Reference [18].

To begin the simulation three function calls are made. The first initializes the Task Groups,

Tasks and Modules by calling the SelfInit(), CrossInit() and ResetInit() functions. Follow-

ing this, the simulation stop time is set and then the simulation is launched.

External changes to the simulation configuration can be made conditionally triggered by

Events or more simply after a set duration of execution as demonstrated in Listing. A.10. This

is useful to simulate specific spacecraft sequence instruction sets and FSW mode changes. Events

are available and can be configured to trigger a custom user provided function. This user provided

function allows an analyst to trigger and change any variable/state in the simulation that is available

through the Python interface of each Basilisk Module.

Plots are created from the simulation generated data using numpy, Matplotlib and PAN-

DAS packages. For the presented simulation the evolution of the spacecraft attitude is shown in

Figure. A.7. It is evident that the spacecraft controls to the reference attitude with convergence

achieved after eight minutes. Figure. A.8 shows the computed control torques and the resulting

actuated reaction wheel control torques. In this simulation each reaction wheel’s maximum avail-

able torque has been set as 0.2 [Nm]. As shown, reaction wheels 2 and 3 saturate their actuated

torque early in the simulation. Finally, the resulting reaction wheel control speeds are shown in

Figure. A.9.

173

Listing A.8: Instantiate FSW Modules and assign to respective Task.

1 # Setup the attitude determination Module.

2 inertial3DConfig = inertial3D.inertial3DConfig()

3 inertial3DWrap = scSim.setModelDataWrap(inertial3DConfig)

4 scSim.AddModelToTask("fswTask", inertial3DWrap, inertial3DConfig)

5

6 # Setup the attitude tracking error evaluation Module.

7 attErrorConfig = attTrackingError.attTrackingErrorConfig()

8 attErrorWrap = scSim.setModelDataWrap(attErrorConfig)

9 scSim.AddModelToTask("fswTask", attErrorWrap, attErrorConfig)

10

11 # Setup the MRP Feedback control Module.

12 mrpControlConfig = MRP_Feedback.MRP_FeedbackConfig()

13 mrpControlWrap = scSim.setModelDataWrap(mrpControlConfig)

14 scSim.AddModelToTask("fswTask", mrpControlWrap, mrpControlConfig)

15

16 # Setup the control torque to RW torque translation Module.

17 rwMotorTorqueConfig = rwMotorTorque.rwMotorTorqueConfig()

18 rwMotorTorqueWrap = scSim.setModelDataWrap(rwMotorTorqueConfig)

19 scSim.AddModelToTask("fswTask", rwMotorTorqueWrap, rwMotorTorqueConfig)

Listing A.9: Launching a simulation.

1 scSim.InitializeSimulation()

2 scSim.ConfigureStopTime(simulationTime)

3 scSim.ExecuteSimulation()

174

Listing A.10: Spacecraft mode changes made after the simulation executes for a specified duration.

1 scSim.ConfigureStopTime(sec2nanos(20))

2 scSim.ExecuteSimulation()

3 # Command the FSW to go into safe mode and advance to ~ periapsis

4 scSim.modeRequest = ’safeMode’

5 scSim.ConfigureStopTime(sec2nanos(60))

6 scSim.ExecuteSimulation()

7 # Command the FSW to go into Nav only mode

8 scSim.ConfigureStopTime(sec2nanos(60 * 11 * 1 + 30)))

9 scSim.modeRequest = ’navOnly’

10 scSim.ExecuteSimulation()

A.8 Conclusion

The Basilisk astrodynamics framework provides a new open source alternative for fully cou-

pled spacecraft dynamics mission simulation with integrated flight algorithm emulation. Among

the suite of other available simulation tools, Basilisk provides an enabling mix of usability, exten-

sibility and computational speed. Basilisk is able to achieve this usability by providing a Python

user interface for each Basilisk component. The Python interface enables users to leverage the

depth of the Python math and data analysis package ecosystems. Basilisk’s modular architecture

of Modules, Tasks, Task Groups, and the Messaging system supports this usability by enabling

users to configure simulation scenarios from the very simple early feasibility analysis to complex

mission verification and validation.

175

Figure A.7: Evolution of attitude error in each MRP component.

Figure A.8: Evolution of computed reaction wheel torques (dashed) and the actual reaction wheel
torques.

Figure A.9: Evolution of reaction wheel speeds.

	Introduction
	Motivation
	Background
	General Purpose GPU Programming
	Distributed Spacecraft Simulation

	Research Goals

	SRP Theory
	OpenGL-OpenCL Solar Radiation Pressure
	The OpenGL Render Pipeline
	Mesh Definition
	Custom OpenGL Render Pipeline
	OpenGL Algorithm Steps
	Recursive Bounding Box Computation
	Mesh Articulation
	Vertex and Fragment Shader Stages

	OpenCL Algorithm Steps
	Model Validation
	Impact Of Mesh Detail On Accuracy
	Model Articulation and Detailed Material Properties

	Computational Performance
	Conclusions

	OpenCL Ray Tracing
	GPGPU Parallel Algorithm Considerations
	Algorithm Steps Overview
	Radiation Pressure Particle Tracing Formulation
	Force and Torque Evaluation
	Intersection Testing
	Bounding Volume Intersection
	Triangle Facet Intersection

	Bidirectional Reflection Distribution Functions
	Ideal BRDF
	Mircofacet Model BRDF

	Evaluating Ray-Surface Interaction
	Sampling Ideal BRDF
	Sampling Microfacet BRDFs
	Computing The Total BRDF

	Model Validation
	Multiple Ray Reflections
	Model Articulation and Detailed Material Properties
	BRDF Effect on Orbit Propagation
	Computational Performance
	Conclusions

	Black Lion Distributed Simulation
	Distributed Spacecraft Simulation Architectures
	Black Lion Architecture
	Data Transport and Data Translation Layers
	Black Lion Simulation Topology
	Socket and Connection Definitions

	Communication Between Nodes
	Tick-Tock Synchronization
	Black Lion Simulation Case Study
	Basilisk Simulation Configuration
	Simulation Results

	Conclusions

	Case Studies
	OSIRIS REx Case Study
	ORex Case Study: SRP Modeling
	ORex Case Study: Modeling Error and Bounding Analysis
	ORex Case Study: Conclusions

	Multi-Layer Insulation Case Study
	MLI Case Study: Mesh Models
	MLI Case Study: Ray Traced Force Comparison
	MLI Case Study: Orbit Propagation
	MLI Case Study: Conclusions

	Conclusions and Future Work
	Conclusions
	Recommendations for Future Work

	 Bibliography
	Simulation Architecture Basilisk
	Software Stack and Build
	Modularity In Basilisk
	Components
	Message System
	Dynamics Manager

	Execution Control
	Data Logging
	Monte Carlo Capability
	Development Approach - Open Source
	Example of a Basilisk Simulation Configuration
	Conclusion

