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Two-Craft Coulomb Formation Study about Circular Orbits and Libration Points

Thesis directed by Associate Professor Hanspeter Schaub (Chair)

This dissertation investigates the dynamics and control of a two-craft Coulomb formation

in circular orbits and at libration points; it addresses relative equilibria, stability and optimal

reconfigurations of such formations.

The relative equilibria of a two-craft tether formation connected by line-of-sight elastic

forces moving in circular orbits and at libration points are investigated. In circular Earth

orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle

equilibria conditions are found. An example of modeling the tether force using Coulomb force

is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft

tether structure in circular Earth orbit and at collinear libration points are developed. Then

the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-

Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the

relative distance between the two satellites. The gravity gradient torques on the formation

due to the two planets help stabilize the formation. Similar analysis is performed for along-

track and orbit-normal relative equilibrium configurations. Where necessary, the craft use

a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration

points provide a general framework with circular Earth orbit dynamics forming a special case.

In the presence of differential solar drag perturbations, a Lyapunov feedback controller is

designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration

points.

The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb

formations in circular Earth orbits by applying nonlinear optimal control techniques. The ob-

jective of these reconfigurations is to maneuver the two-craft formation between two charged

iii



equilibria configurations. The reconfiguration of spacecraft is posed as an optimization prob-

lem using the calculus of variations approach. The optimality criteria are minimum time,

minimum acceleration of the separation distance, minimum Coulomb and electric propulsion

fuel usage, and minimum electrical power consumption. The continuous time problem is

discretized using a pseudospectral method, and the resulting finite dimensional problem is

solved using a sequential quadratic programming algorithm. The software package, DIDO,

implements this approach. This second part illustrates how pseudospectral methods signifi-

cantly simplify the solution-finding process.
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Chapter 1

INTRODUCTION

1.1 Motivation

Close proximity formation flying missions are envisioned as an attractive alternative to tra-

ditional large space structures so that the feasibility, accuracy and robustness of the mission

is increased. Such missions fly spacecrafts in formation with separation distances ranging

from 100’s of meters to multiple kilometers. In order to maintain a desired cluster configu-

ration, one of the most important technological hurdles is to develop an active fuel efficient

micropropulsion system for relative positional control.1 These requirements have led to a

new and emerging field of study on Coulomb propulsion. Coulomb forces as a fuel efficient

method for short-distance actuation in geostationary regions is discussed in Reference 3 in

1966. References 1 and 2 present a novel method of exploiting Coulomb forces for formation

flying control with separation distance on the order of dozens of meters. Here active charge

control is proposed to electrostatically inflate a large reflecting structure. The basic idea of

Coulomb propulsion of free-flying vehicles is to control the spacecraft formation shape and

size using the inter-spacecraft forces created by electrostatically charging the spacecraft to

different potentials; a four-craft formation is shown in Figure 1.1. This control is achieved

by varying the charge of the spacecraft by emitting either positive ions or negative electrons.

As a consequence, changes in inter-spacecraft Coulomb forces actuate the relative motion

control of the spacecraft as illustrated in Figure 1.2. For tight formation control of spacecraft

separation distances on the order of 100 meters or less, this propellant-less thrusting is an at-

tractive solution over conventional electric propulsion or chemical thrusting. For instance, at

small separation distances between spacecraft, electric propulsion can cause thruster plume

contamination of the neighbouring spacecraft. However, Coulomb propulsion is a highly
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Figure 1.1: Coulomb Formation Flying

efficient system with a renewable energy source and Isp values ranging up to 1013 seconds.

Furthermore, it has very little electrical power requirements (one Watt or less) and has a

very high bandwidth for relative motion control with charge transition times on the order

of milli-seconds.1 These advantages enable high precision formation flying with very little

fuel consumption, increase the lifetime of the mission, and thus, the probability of mission

success.

L

m2

m2
m1f12-f12
+-

Coulomb Force Fields

Charged Satellites

Figure 1.2: Two Charged Craft Coulomb Force Interaction

A Coulomb tether formation has several potential applications in space technologies, for

example, high accuracy wide-field-of-view optical interferometry missions with geostation-

ary orbits (GEO), spacecraft cluster control, rendezvous and docking maneuvers, as well as

deployment or retrieval of dedicated sensors using Coulomb forces. As illustrated in Fig-

ure 1.3, Separated Spacecraft Interferometry (SSI) consists of an interferometer instrument
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distributed over multiple spacecraft collecting the light from a distant object in order to

obtain information with very high angular resolution. Since the angular resolution of an

interferometer is inversely proportional to the separation of its apertures, angularly fine

objects can only be detected using SSI. For instance, using an SSI system, visible Earth

imaging from GEO with meter level surface resolution would be possible. Therefore, the

Coulomb concept is well suited to such wide-field-of-view planetary imaging with unprece-

dented resolution. Figure 1.4 illustrates the cluster Coulomb formation flying concept where

the Coulomb forces not only keep the satellites bounded, but also keep them from colliding

with each other. A potential application for a two-craft Coulomb formation is to deploy and

retrieve a small free-flying camera or probe from a large geostationary communication satel-

lite using Coulomb forces. This concept illustrated in Figure 1.5 allows the main satellite to

carry sophisticated instruments which might be affected by high charging.

Figure 1.3: Separated Spacecraft Interferometrya

A three-body gravitational system consists of a spacecraft formation near two large ce-

lestial objects who are rotating around their common center of mass. Due to the rotation of

the system, there are five equilibrium points as illustrated in Figure 1.6; these equilibrium

points are the libration points (L1-L5) of the three-body system. For the Earth-Moon system

the three collinear points L1-L3 are unstable, while the two equilateral triangle points L4-L5

aCourtesy NASA/JPL-Caltech, http://eis.jpl.nasa.gov/planetquest/gallery/tpfBrowseImages.cfm
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Figure 1.4: Cluster Coulomb Formation Flying5

Figure 1.5: Deployment or Retrieval of a Camera using the Coulomb forces5
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are stable. Virtual Coulomb structures at the libration points are useful for remote-sensing

missions to establish a long baseline imaging capability, or for ensuring better stationkeeping

configurations.

L1

L4

L3
L2

L5

Figure 1.6: Libration Points

In spite of the many advantages of Coulomb propulsion, there are a few drawbacks. The

formation dynamics is highly coupled and nonlinear; nonhomogeneous absolute spacecraft

charging at geostationary altitudes may cause arcing; dependence of the inter-spacecraft

Coulomb forces of the whole formation on each and every spacecraft’s position and charge;

and feasibility of Coulomb formation flying concept in less dense plasma environments at

geostationary orbit (GEO) altitudes or higher. Moreover, as the electrostatic forces are

internal to the formation, Coulomb forces cannot be used to reorient a full formation to a

new orientation. Because these Coulomb forces cannot be used to control the center of mass

of the formation and thus to change the total inertial formation angular momentum vector.

Therefore, to reorient a Coulomb formation, external forces such as thrusters or differential

gravity gradient torques must be used. Also, Coulomb formation flying requires a careful

balance between the inter-craft forces and the relative orbital dynamics. Furthermore, in

the presence of plasma, the Coulomb interaction between the craft is scaled by the Debye

length parameter. The Debye length parameter is a measure of how strongly the plasma



6

is shielding the electrostatic charge of a craft. For a fixed spacecraft separation distance, a

lower Debye length implies a stronger plasma shielding and a weaker Coulomb interaction

between charged crafts. Typically at Geostationary Orbits (GEO) the Debye length vary

between 80-1400 m, with a mean of about 180 m.7 Since the Debye length is small at

LEO the use of electrostatic forces is not favorable in this region. However, with reasonable

Debye lengths at GEO and interplanetary space environments,1 electrostatic forces can be

exploited in these regions for Coulomb spacecraft formations. While Coulomb propulsion is

nearly propellantless, the non-affine nature of the charge actuation and the strongly coupled

non-linear equations of motion result in a challenging and interesting control design problem.

1.2 Literature Review

In 1966, Cover et al3 introduced Coulomb actuation of a membrane surface at GEO, and

discussed the benefits of using Coulomb forces as a fuel efficient method for short-distance ac-

tuation. In 2002, in the context of formation flying, Parker and King presented the Coulomb

propulsion concept in References 1 and 2. Ever since their work on Coulomb propulsion,

there have been many interesting investigations on the dynamics and control problems of

Coulomb formation. Parker and King1,2 present analytic solutions for Hill-frame invariant

static Coulomb formations with symmetry assumptions. The analytic open-loop solutions

are for three and five craft formations, and the numerical solutions are for a six-craft for-

mation. The charges required to maintain the formation shape are held constant and the

spacecraft are placed at pre-defined locations in the rotating Hill frame. As a result, the

Coulomb forces perfectly cancel all relative motion of the charged spacecraft, causing the

static Coulomb formation to appear fixed as seen in the Hill frame. References 8–10 present

more systematic analytic solutions for two, three, and four spacecraft formations. Fur-

thermore, Berryman and Schaub8 numerically demonstrate that charged equilibria with as

many as 9 craft are possible in GEO orbits. The open-loop static Coulomb formations are

all dynamically unstable without a feedback control law to stabilize the motion. Using a

noncanonical Hamiltonian formulation of the Coulomb formation dynamics, Reference 11

formulates necessary conditions to achieve such static Coulomb formations with constant
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charges. These necessary conditions are derived for a virtual Coulomb structure where the

orbital motion is decoupled from the attitude motion and these Hamiltonian formulations

are equivalent to finding rigid body equilibrium conditions in orbit. Reference 12 applies

a similar noncanonical Hamiltonian approach to examine the relative equilibria of a rigid

satellite in a circular Keplerian orbit.

In the context of a restricted two-body problem, the existence of great-circle relative

equilibria for a satellite (spherically symmetric rigid body) implies that the center of the

circular orbit coincides with the center of the gravitational field.12,13 The dynamics of the

satellite’s center of mass is exactly that of the Keplerian point mass model. If the satellite

is assumed to be an arbitrary rigid body, and making a first order approximation of the

gravitational force acting on the rigid body assuming that the orbital motion is decoupled

from the attitude motion, the classical rigid-body attitude equilibrium study reveals that all

three rigid body principal axes must line up with the LVLH (Local vertical/local horizontal)

frame axes.14 However, Reference 13 uses the exact potential function expression and proves

the existence of nongreat-circle relative equilibria where the radius vector from the center of

the gravitational field to the center of mass of the satellite traces a cone rather than a disk.

Large variations in orientation from the classical regular motions are verified numerically for

a finite rigid body.13

Specifically, Reference 15 discusses the relative equilibria and relative stability of a sys-

tem of two spring-connected point masses moving in a central gravitational field. The paper

shows that nongreat-circle equilibria exist for this simple spring system, and, for long tethers

of approximately 3500 km at LEO, the attitude deflection from the vertical can reach tens of

degrees. Such differences in orientation between great-circle and nongreat-circle solutions are

particularly noticeable if the mass distribution of the formation is as asymmetric as possible.

The spring system possesses SO(3) symmetry and such symmetry in geometric mechanics

induces certain reduced dynamics which facilitates the computation of relative equilibria

conditions. To obtain the conditions for relative equilibria, the principle of symmetric criti-

cality is applied.15 In order to gain further insights on the effects of nongreat-circle relative

equilibria and mass asymmetry on a two spacecraft formation, the tether is modeled using
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a Coulomb force in this thesis. The Coulomb formation has SO(3) symmetry as well.

References 8–10 search for static Coulomb structure solutions using genetic algorithms.

Here the simple principle axes condition of rigid body equilibria are used to speed up the

genetic search algorithms. Thus, the open-loop equilibrium charges cause the virtual struc-

ture to assume a constant shape as seen by the rotating orbit frame. Some of these Coulomb

concepts can have very asymmetric mass distributions. For example, consider the case of a

small free-flying camera in the proximity of a large geostationary communication satellite.

Because earlier work has shown that asymmetric bodies facilitate nongreat-circle equilibria,

it is of interest how this impacts the 2-craft Coulomb virtual structure studies.

In the context of a restricted three-body problem, Reference 16 considers the equilibrium

configurations of a rigid tethered system near all five libration points and carries out the

stability analysis when it is near the translunar libration point. Reference 17 presents the

attitude dynamics and stability of a small rigid satellite in the vicinity of Lagrangian points.

The paper also investigates the attitude dynamics of a satellite while it is in Lyapunov

and halo orbits. Also, the NIAC report in Reference 1 analyzes the suitability of Coulomb

control for a static collinear five-vehicle formation at Earth-Sun Lagrange points where the

formation local dynamics ignore gravity. Furthermore, Reference 18 presents compatibility

results of using Coulomb satellites with electric propulsion and autonomous path planning

techniques at the libration points for formation keeping and reconfiguration of swarms of

satellites. In the interplanetary space at a distance of 1 AU from the Sun, the Debye length

is much smaller than that in a GEO environment (highest Debye length of approximately 40

m); therefore, this constrains the maximum possible formation length, but despite the low

value of the Debye length, multi-craft equilibrium formations are reported to exist at the

Earth-Sun L1 Lagrange point.18

Changing the position or orientation of a space structure using Coulomb propulsion is an

important application. Reference 19 develops a charge control law to reposition a charged

body using three charged drones. The control law neglects the orbital mechanics and consid-

ers only Coulomb attraction as the dominant force acting on a system. Reference 37 explores

bSO(3) rotation group concept is explained in Appendix A
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a different Coulomb force deployment technique in which a chief satellite repositions small

deputy spacecraft from an initial configuration near the chief to a specified shape outward

from the chief. References 18 and 20 propose a distributed navigation technique called Equi-

librium Shaping (ES) to drive a swarm of satellites to a desired configuration in space. This

method exploits a decentralized path-planning algorithm requiring a small amount of com-

munication between the satellites and gives each satellite the autonomous ability to decide a

position in the target formation. The method is demonstrated though numerical simulations

and suitable for very large swarms of spacecraft; however, each spacecraft pursues subopti-

mal maneuvers due to the highly decentralized scheme, and the control algorithm does not

have analytical stability guarantees.

Stabilization techniques of two-craft virtual Coulomb structure in equilibrium configu-

rations (radial, along-track, and orbit normal) are studied in Reference 5. About an orbit

radial direction, to stabilize the relative separation distance a charge feedback law is used

exploiting the differential gravitational attraction to stabilize the in-plane attitude. Along

the orbit-normal and the along-track directions, the charge feedback law and the differen-

tial gravitational accelerations are inadequate to stabilize the in-plane motion. Therefore,

for asymptotic in-plane stabilization, hybrid feedback control laws are used which combine

conventional thrusters and Coulomb forces. Furthermore, Reference 5 investigates the linear

dynamics and stability analysis of reconfiguration maneuvers for all three equilibrium config-

urations using linearized time-varying dynamical models. In such reconfiguration maneuvers

as shown in Figure 1.7(a), varying electrostatic Coulomb forces can increase or decrease

the relative distance between the two satellites. These Coulomb tether expansion and con-

traction rates affect the stability of the virtual structure within particular limits, and the

reconfigurations thus obtained are suboptimal. Moreover, such linearized models could not

be used in the nonlinear regime to perform reconfigurations such as a radial to along-track

reconfiguration shown in Figure 1.7(b). Therefore, optimal control techniques could provide

an alternative direction to determine optimized reconfiguration maneuvers for constrained

nonlinear systems.

Optimal control problems concerning deployment/retrieval of a tethered subsatellite using
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Figure 1.7: Two-Craft Reconfiguration Maneuvers

various performance metrics are considered in References 21, 22 and 23. However, such

solutions are not unique and depend on the performance index chosen to solve the optimal

control problem. Reference 23 provides a comprehensive study of the effect of different

performance indices on the optimal deployment and retrieval dynamics. For example, for

a rigid tether, minimizing the length acceleration or minimizing functions of the tension

acceleration appear to give good trajectories in terms of the maximum variations in the

states and accelerations. Furthermore, optimal design problems in space applications almost

always imply minimizing fuel use, which dictates the engineering feasibility of any mission.24

Also, Reference 24 discusses how to choose proper minimum-fuel cost functions for correct

problem formulation, and if a zero-cost (no fuel use needed) optimal trajectory is found,

then it is the globally optimal solution. Using the pseudo-spectral method, a successful

numerical implementation of an optimal control problem is demonstrated in Reference 25,

where minimum-time reorientation of an asymmetric rigid body is considered. Therefore,

prior work21–25 motivates to explore the problems of repositioning or reorientation of Coulomb

space structures using optimal control techniques.

Optimal control problems can rarely be solved analytically, and numerical methods are

needed in such cases to solve them.26 The first step is to discretize the problem, which is
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to define the system at discrete points which results in a finite number of variables because

the system variables are only defined at the discrete points. The number of variables for

the optimal control problem is then the number of variables in the system times the number

of discretization points. The numerical techniques to solve optimal control problems are

either indirect or direct methods.27,28,33 Indirect methods are based on the calculus of varia-

tions and the necessary conditions are derived from Pontryagin’s principles. Direct methods

discretize the optimal control problem and solve the resulting large-scale finite-dimensional

optimization problem. In recent years, developing direct algorithms using Legendre pseu-

dospectral methods has become a very active research field.30–32 Legendre pseudo-spectral

methods posses the property that the solution satisfies the necessary optimality conditions

and eliminates traditional difficulties in solving for the costates in the optimal control prob-

lem.32 Also, Pontryagin’s Minimum Principle verifies the extremality of these solutions.33

Recent references show several interesting applications that use pseudospectral (PS) methods.

Examples range from, spacecraft attitude control,25 low-thrust orbit transfers,34,35 tethered

satellite system control,36 and many more. Based on pseudo-spectral optimal control theory,

DIDO is a powerful computational tool that generates spectrally accurate solutions.33 More-

over, this tool can solve non-smooth problems that have state/control discontinuities where

these discontinuities can be seen in bang-bang controls. For instance, Reference 25 considers

a minimum-time reorientation of an asymmetric rigid body and demonstrates a successful

implementation of the pseudo-spectral method using DIDO.

1.3 Dissertation Objectives

The primary goals of the thesis are to study the relative equilibria of a two spacecraft line-of-

sight tether formation moving in circular orbits and at libration points, to stabilize a 2-craft

Coulomb formation at Earth-Moon libration points, and to determine optimal reconfigura-

tions of a two-craft Coulomb formation in circular Earth orbits. Figure 1.8 illustrates the

research overview with the solid lines indicating previous research work and the dashed lines

showing the work pertaining to this thesis.

The goals of this thesis are summarized below.



12

TWO-CRAFT COULOMB  TETHER STUDY

Circular
Orbits

Libration
Points

Relative 
Equilibria

Linear
Dynamics

and
Stability

Relative 
Equilibria

Dynamics
and

Stability

Non-great
circle

Equilibria

Optimal
Reconfigurations

Non-great
circle

Equilibria

- Min Time
- Min Acceleration
- Min Fuel
- Min Power

Collinear &
Triangular
- Radial
- Along Track
- Orbit Normal
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1.3.1 Two-Craft Tether Formation Relative Equilibria about Circular Orbits and Libration

Points

The relative equilibria of a two spacecraft tether formation connected by line-of-sight elastic

forces moving in the context of a restricted two-body system and a circularly restricted

three-body system are investigated. For a two-spacecraft formation moving in a central

gravitational field, a common assumption is that the center of the circular orbit is located

at the primary mass and the center of mass of the formation orbits around the primary in

a great-circle orbit. The relative equilibrium is called great-circle if the center of mass of

the formation moves on the plane with the center of the gravitational field residing on it;

otherwise, it is called a nongreat-circle orbit. Previous research shows that nongreat-circle

equilibria in low Earth orbits exhibit a deflection of about a degree from the great-circle

equilibria when spacecraft with unequal masses are separated by 350 km. This thesis studies

these equilibria (radial, along-track and orbit-normal in circular Earth orbit and Earth-Moon
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Libration points) for a range of inter-craft distances and semi-major axes of the formation

center of mass. Furthermore, the nongreat-circle equilibria conditions for a two-spacecraft

tether structure at the Lagrangian Libration points are developed. The relative equilibria

computations use exact gravitational and tether potentials. The solution analysis considers

the effect of mass asymmetry of the formation as well.

1.3.2 Dynamics and Stability Analysis of Two-Craft Coulomb Formation at Libration Points

The linearized radial, along-track and orbit-normal dynamics and stability of a 2-craft

Coulomb tether formation at Earth-Moon libration points are investigated. The assump-

tion for the linearized study is that the sunlit areas of the two-craft are equal such that the

differential solar radiation pressure on the formation is zero. The relative distance between

the two satellites of the Coulomb tether is controlled using electrostatic Coulomb forces.

The separation distance between the satellites is stabilized with a charge feedback law which

maintains the relative distance at a constant value. The electrostatic virtual tether between

the two craft is capable of both tensile and compressive forces. In the orbit radial direction,

the gravity gradient torques on the formation due to the two celestial objects is exploited

to stabilize the Coulomb tether formation. Controlling the separation distance stabilizes the

in-plane rotation angle; however, the out-of-plane rotational motion is not affected by the

spacecraft charge control law. Similarly, control laws are developed for stabilizing the for-

mation along the other two equilibrium configurations (along-track and orbit-normal). Since

the gravity gradient torques alone are not sufficient to stabilize the Coulomb tether length

and the formation attitude in these two equilibrium configurations, hybrid feedback control

laws which combine conventional thrusters and Coulomb forces are necessary. The new two-

craft dynamics at the libration points provide a general framework with circular Earth orbit

dynamics forming a special case. In the presence of differential solar drag perturbations, a

Lyapunov feedback controller stabilizes a radial equilibrium two-craft Coulomb formation at

collinear libration points.
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1.3.3 Optimal Reconfigurations of Two-Craft Coulomb Formation in Circular Orbits

Optimal reconfigurations of two-spacecraft Coulomb formations in circular Earth orbits are

determined by applying nonlinear optimal control techniques. The objective of these recon-

figurations is to maneuver the two-craft formation between two charged equilibria configura-

tions. The four optimality criteria considered are minimum reconfiguration time, minimum

acceleration of the separation distance, minimum electric propulsion fuel usage, and min-

imum electrical power consumption. Various optimal reconfigurations of 2-craft Coulomb

virtual tether formations are considered. In a radial relative equilibrium reconfiguration, the

Coulomb force alone is sufficient for controlling the in-plane motion and steering the satellites

from their initial to their final radial position. In this reconfiguration maneuver, the gravity

gradient torque stabilizes the in-plane motion. Other equilibrium-to-equilibrium reconfigu-

rations require hybrid controls. For instance, reconfigurations in along-track or orbit normal

equilibrium locations use Coulomb force to vary the separation distance and use inertial

micro-thrusters for transverse direction control. Radial to along-track and radial to orbit-

normal maneuvers are investigated as well. The goal is to determine optimal reconfigurations

maximizing the use of Coulomb propulsion while minimizing the electric propulsion usage.

The two-point boundary value problem optimization formulation is numerically solved via

pseudo-spectral methods. Pontryagin’s Minimum Principle verifies the open loop solutions’

optimality.

In this thesis, the following assumptions are made:

1. The inter-spacecraft force undergoes both tensile and compressive forces along the

line-of-sight direction between the two spacecraft.

2. The gravitational attraction between the two spacecraft masses is neglected.

3. For the three-body system, the spacecraft formation motion is in the primary bodies’

plane of motion.
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1.4 Dissertation Outline

This dissertation is organized as follows. Chapter 1 gives an outline of this thesis which

presents the research background and the dissertation objectives. The second chapter presents

the relative equilibria of a two spacecraft static tether structure using the exact gravitational

and tether potentials in the context of a restricted two-body system and a circularly re-

stricted three-body system. It also discusses the non-great circle effects in circular orbits

on any two-craft formation existing from low Earth orbits (LEO) to geostationary orbits

(GEO) as well as at collinear libration points. Chapter 3 presents the study of a two-craft

Coulomb virtual tether that aligns along the orbit-radial (nadir) direction at any of the five

libration points. It derives linear feedback laws for asymptotically stabilizing this formation

along the orbit radial axis for a particular shape. To overcome solar drag perturbations on

a two-craft Coulomb formation, a Lyapunov feedback controller is also designed for stabiliz-

ing a radial equilibrium formation at collinear libration points. Chapter 4 develops hybrid

feedback control laws for asymptotically stabilizing the formation in the along-track and

orbit-normal equilibrium configurations at any of the five libration points. Chapter 5 dis-

cusses optimal reconfigurations of a two spacecraft Coulomb formation. The derivation of

two-craft nonlinear equations of motion and optimal control problem formulations are pre-

sented. For the reconfiguration optimal control problem, three discretization schemes and

their solution methods are described as well. Four performance measures are used to study

optimal two-craft reconfigurations: minimum-time, minimum-acceleration, minimum-fuel,

and minimum-power. The goal is to maximize Coulomb propulsion usage for longitudinal

maneuvers utilizing minimum electric propulsion for transverse maneuvers. For determining

optimal reconfigurations of two-craft formations, pseudospectral methods are applied. The

open-loop numerical solutions of two-craft reconfigurations in GEO circular orbits are pre-

sented and verified with Pontryagin’s necessary conditions in this chapter. Finally, Chapter

6 provides a summary of the main contributions of this dissertation and indicates future

avenues of research.
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Chapter 2

TWO-CRAFT TETHER FORMATION RELATIVE
EQUILIBRIA ABOUT CIRCULAR ORBITS AND LIBRATION

POINTS

The objective of this chapter is to study the relative equilibria of a two spacecraft tether

formation connected by line-of-sight elastic forces moving in the context of a restricted two-

body system and a circularly restricted three-body system using the exact gravitational

and tether potentials. An example of modeling the tether force using Coulomb force is

discussed. The necessary conditions for a virtual Coulomb structure where the orbital motion

is decoupled from the attitude motion are discussed in Reference 11. References 8–10 search

for static Coulomb structure solutions using genetic algorithms. Here the simple principle

axes condition of rigid body equilibria are used to speed up the genetic search algorithms. In

this chapter, the validity of this assumption is investigated for Coulomb tether applications

taking non-great-circle equilibria conditions into account. The goal is to identify for what

formation dimension and altitudes these non-great circle effects become significant. The

system dynamics and the notion of SO(3) symmetry applied to an elastic tether formation

moving in a central gravitational field as well as for a restricted three-body system are

discussed. The principle of symmetric criticality is applied to determine the conditions

of relative equilibria of such static structures. For the restricted two-body system, the

reduced dynamics identifies the classical great-circle equilibria; radial, along-track and orbit-

normal equilibria. Also, the nongreat-circle effects in circular orbits for two-craft formations

existing from LEO to GEO are investigated. Furthermore, relative equilibria solutions for

a two-spacecraft formation are derived at the libration points. Finally, the nongreat-circle

equilibria effects of such formations are presented at collinear libration points.
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2.1 System Description and SO(3) Symmetry

In the following sections, fundamental concepts are introduced related to the dynamics of a

system of N spacecrafts moving in a central gravitational field (restricted two-body system)

and moving under the mutual gravitation of two bodies (restricted three-body system).

2.1.1 Restricted Two-body System

The spacecrafts shown in the Figure 2.1 are considered to be point masses moving in a

central gravitational field. With the static virtual tether structure the system of spacecrafts

behaves equivalently to a rigid body in orbit because the constant elastic inter-spacecraft

forces cancel perfectly the differential gravitational forces acting across the cluster. Let Ft

be the tether force acting between the two masses, and ri be the inertial position vector of

a single craft of mass mi. Then the center of mass position vector rc of this formation is

defined as

rc =
1

M

N∑
i=1

miri (2.1)

with M =
∑N

i=1mi being the total formation mass. Let O be the center of the inverse square

Z

Y

X

O

(m , q )11

r1

r2

( , q )2m2

-Fc

Fc

L

Inertial Frame

Figure 2.1: Two-Craft Coulomb Spacecraft Formation (Restricted Two-body System)
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field and the origin of the inertial frame, while the formation’s center of mass and center of

gravity are denoted by C and G, respectively. The inertial position vectors of C and G are

rc and rg and are related by

rg − rc = r (2.2)

where r is the constant vector between C and G.

From Newton’s laws of gravitation the following relation relating the formation center of

gravity and the individual inertial vectors is obtained as

rg

∥rg∥3 =
1

M

N∑
i=1

ri

∥ri∥3mi (2.3)

Using the two-body relative equations of motion with respect to G, the inertial second

derivative of the vector rg is

d2rg (t)

dt2
+

�rg (t)

∥rg (t)∥3 = 0 (2.4)

where � is the gravitational constant. Therefore, from Eqs. (2.2) and (2.4), the inertial

second derivatives of the vectors rc and rg are related by

d2rc (t)

dt2
+

�rg (t)

∥rg (t)∥3 = 0 (2.5)

Let m1 and m2 denote the mass of each craft with inertial position vectors r1 and r2, while

each craft is assumed to have electrostatic (Coulomb) charges q1 and q2. The kinetic energy

of the system is then given by

T (ṙ1, ṙ2) =
m1

2
∥ṙ1∥2 +

m2

2
∥ṙ2∥2 (2.6)

The potential energy of the system is

V (r1, r2) = Vg (r1, r2) + Vt (∥r1− r2∥) (2.7)
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where Vg (r1, r2) is the gravitational potential energy of both the point masses in orbit

defined as

Vg (r1, r2) = −�m1

∥r1∥
− �m2

∥r2∥
(2.8)

Vt (∥r1− r2∥) is the elastic tether potential energy and is a function of separation distance

∥r1− r2∥ between the two spacecraft. For example, if a Coulomb tether is assumed between

two spacecraft then Vt = Vc with the Coulomb potential energy Vc given by

Vc (∥r1− r2∥) = kc
q1q2

∥r1− r2∥
e
− ∥r1−r2∥

�d (2.9)

where kc = 8.99 × 109 Nm2/C2 is the Coulomb’s constant. The exponential term depends

on the Debye length parameter �d which controls the electrostatic field strength of plasma

shielding between the craft. At Geostationary Orbits (GEO) the Debye length vary between

80-1400 m, with a mean of about 180 m.7 The Coulomb spacecraft formations are typically

assumed to be orbiting on high Earth orbits. However, the tether spacecraft formations

studied in this chapter are assumed to be orbiting from low to high Earth orbits.

In this chapter, the relative equilibria of a formation with two spacecraft subjected to

elastic tether forces is considered where there are no external forces acting on the system.

The relative equilibrium of the spacecraft formation is introduced by defining a uniformly

rotating frame located at the origin O which has a constant orbital angular velocity of �.

A formation moving in a circular orbit that is stationary relative to this uniformly rotating

frame exhibits symmetry with respect to the special orthogonal rotation group SO(3). The

SO(3) rotation group and other group theoretic concepts used in this chapter are briefly

explained in Appendix A.

As an example of an elastic tether, a Coulomb formation possesses SO(3) symmetry

because both the kinetic and potential energies are invariant under the SO(3) group actions.

This SO(3) symmetry reduces the dynamics of the spacecraft formation, and the equilibrium

of the reduced dynamics is the relative equilibrium of the formation. If the center of mass

of the formation moves on a great-circle orbit, then the relative equilibrium is called the
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great-circle relative equilibrium. This implies that rc ⋅ � = 0; if rc ⋅ � ∕= 0 it is called the

nongreat-circle relative equilibrium13 as shown in Figure 2.2.

î ?

Great-circle Equilibrium Non-great-circle Equilibrium

rc

rc

O

O

Figure 2.2: Great-circle and Non-great-circle Equilibria

Using the properties of the Lie algebra g∗ of SO(3), at relative equilibria there exist

two constant inertial vectors rco and rgo with respect to O such that rc (t) = e�̂trco and

rg (t) = e�̂trgo. Therefore at relative equilibrium Eq.(2.5) is reduced to

�̂�̂rco +
�rgo

∥rgo∥3 = 0 (2.10)

Taking an inner product of Eq. (2.10) with � gives rgo ⋅ � = 0. Consequently, at relative

equilibria, the center of gravity of a spacecraft formation moving in a central gravitational

field traces a great-circle.

2.1.2 Restricted Three-body System

In a three-body system, as shown in Figure 2.3, the spacecrafts are considered to be point

masses moving around the barycenter O under the mutual gravitation of two bodies M1

and M2. The relative equilibrium of the spacecraft formation is introduced by defining a

uniformly rotating frame located at the barycenter O which has a constant orbital angular

velocity of �. A formation moving in a circular orbit that is stationary relative to this

uniformly rotating frame exhibits symmetry with respect to SO(3). If m1 and m2 denote
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the mass of each craft with inertial position vectors R11, R12, R21 and R22 then using the

three-body relative equations of motion, the inertial second derivative of the vector rg is

M r̈g = −�1

(
m1

R3
11

R11 +
m2

R3
21

R21

)
− �2

(
m1

R3
12

R12 +
m2

R3
22

R22

)
(2.11)

where M is the total formation mass, and �1 and �2 are the gravitational parameters of the

two planets. The inertial position vectors R11, R12, R21 and R22 are expressed in rotating
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O
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L
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R22
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r2

d1 d2

eè
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M1 M2

Figure 2.3: Two-Craft Coulomb Spacecraft Formation (Restricted Three-body System)

coordinates (synodic frame at the barycenter O) such that the distances are invariant under

rotation. The synodic frame S : {êr, ê�, êℎ} is rotating around the axis Oz with the constant

angular velocity Ω defined as

Ω =

√
G (M1 +M2)

d3
(2.12)

where G is the gravity constant and d is the distance between the two planets. The primaries

are at rest in the synodic frame at positions M1(−d1, 0, 0) and M2(d2, 0, 0). Also, the kinetic

energy of the system is still given by Eq. 2.6 with rotating position vectors r1 and r2

of the craft. In the potential energy expression in Eq. 2.7, the elastic tether potential

energy remains the same, however, the gravitational potential energy Vg (r1, r2) of the system
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becomes

Vg (r1, r2) = −�1

(
m1

∥r1 − d1∥
+

m2

∥r2 − d1∥

)
− �2

(
m1

∥r1 − d2∥
+

m2

∥r2 − d2∥

)
(2.13)

Since the kinetic and potential energy are invariant under SO(3) actions, the elastic tether

formation moving around the barycenter has SO(3) symmetry. This symmetry helps in the

reduced dynamics by the SO(3) group action and the equilibrium of the reduced dynamics

is the relative equilibrium of the spacecraft formation in the three-body system. Therefore,

similar to the definitions for a two-body system, in a three-body system rc ⋅ � = 0 implies

that the center of mass of the formation moves on a great-circle orbit and hence the relative

equilibrium is called the great-circle relative equilibrium. And, if rc ⋅ � ∕= 0 it is called the

nongreat-circle relative equilibrium. Specifically, the elastic tether is modeled using Coulomb

forces and Coulomb tether formations are feasible at Earth-Sun or Earth-Moon Lagrange

points.1 However, in the interplanetary space at a distance of 1 AU from the Sun, the

Debye length is much smaller than that in a GEO environment (highest Debye length of

approximately 40 m); therefore, this constrains the maximum possible formation length but

despite the low value of the Debye length, multi-craft equilibrium formations are reported

to exist at the Earth-Sun L1 Lagrange point.18

2.2 Relative Equilibria of the Static Two-Craft Tether Formation

Since the static two-craft tether formation possesses SO(3) symmetry, the dynamics in the

original phase space of the system is reduced. The relative equilibria of the reduced dynamics

facilitates finding the equilibrium configurations. Given a simple mechanical system with

symmetry (Q, T, V,G), where Q is the configuration space with G-invariant Riemannian

metric K on Q, T is the G-invariant kinetic energy and V is the G-invariant potential

function, and G is the symmetry (Lie) group, then we have the following useful theorem

based on the principle of symmetric criticality.15

Theorem : For a simple dynamical system with symmetry (Q, T, V,G) and the metric

K (q) (vq,vq) = 2T (vq) with vq ∈ TQ (2.14)
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define the augmented potential V� : Q→ R,

V� (q) = V (q)− 1

2
K (q) (�Q (q) , �Q (q)) (2.15)

where �Q is the infinitesimal generator associated with �. Then, at relative equilibrium, qe

is a critical point of V� for some � ∈ g∗.

Therefore, for the two-craft tether formation the augmented potential function V� is

V� (r1, r2) = V (r1, r2)− m1

2
⟨�× r1, �× r1⟩ −

m2

2
⟨�× r2, �× r2⟩ (2.16)

where � ∈ R3 is an arbitrary constant vector. According to the principle of symmetric

criticality, the relative equilibria corresponding to some � is characterized by the critical

points of the augmented potential V�.

2.3 Relative Equilibria in the Restricted Two-body System

For the tether spacecraft formation with SO(3) symmetry, the relative equilibrium is one

in a uniformly rotating frame. If the vector � denotes the angular velocity of the uniformly

rotating frame, the augmented potential for the two spacecraft formation is,

V� (r1, r2) = −�m1

∥r1∥
− �m2

∥r2∥
+ Vt (∥r1− r2∥)

− m1

2
⟨�× r1, �× r1⟩ −

m2

2
⟨�× r2, �× r2⟩

(2.17)

Then the relative equilibria of the system are characterized by the critical points of the

augmented potential V�. The first variation of V� taken component wise with respect to

q = (r1, r2) is

DV� (r1, r2) ⋅ (�r1, �r2) = �m1
r1

∥r1∥3 ⋅ �r1 + �m2
r2

∥r2∥3 ⋅ �r2

+ V
′

t (∥r1− r2∥)
r1 − r2
∥r1− r2∥

⋅ (�r1 − �r2)

+m1

(
�̂�̂r1

)
⋅ �r1 +m2

(
�̂�̂r2

)
⋅ �r2

(2.18)
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If Vt = Vc, the Coulomb potential, then V
′
c denotes the derivative of Coulomb potential with

respect to ∥r1 − r2∥, which represents the Coulomb force acting between the two crafts.

From Eq. (2.9), V
′
c becomes

V
′

c (∥r1 − r2∥) = −kc
q1q2

∥r1− r2∥2 e
− ∥r1−r2∥

�d

[
1 +
∥r1 − r2∥

�d

]
(2.19)

Setting DV� (r1e, r2e) = 0 we arrive at the following conditions of relative equilibria:

�m1r1e
r3

1e

+m1�̂�̂r1e + V
′

t

r1e − r2e
∥r1e− r2e∥

= 0 (2.20a)

�m2r2e
r3

2e

+m2�̂�̂r2e − V
′

t

r1e − r2e
∥r1e− r2e∥

= 0 (2.20b)

where r1e = ∥r1e∥ and r2e = ∥r2e∥. These equations are valid for any elastic tether type

formations and are analogous to those developed in Reference 15 for a spring connected

system. Therefore, the mathematical development to solve for relative equilibria with line-

of-sight elastic forces acting between two spacecraft point masses is similar to that given in

Reference 15.

Now consider a rotation matrix [RN ] ∈ SO(3) that maps vectors from an inertial frame

N into a new reference frame R. If we denote the vectors R1, R2, ! in the reference

frame R, then the conditions of relative equilibria given in Eqs. 2.20 are invariant under the

transformationR1 = [RN ] r1e, R2 = [RN ] r2e and ! = [RN ] �. In order to solve for relative

equilibria, the new reference frame should be chosen such that the number of unknowns are

at minimum in the equilibrium equations. As illustrated in Figure 2.4, a reference frame is

chosen such that the x-axis is parallel to the line connecting the two crafts, with the z-axis

perpendicular to both the vectors r1e and r2e, and the y-axis completing the triad.

In the context of the new frame R, the position vectors are expressed as R1 = (x1, yc, 0)T ,

R2 = (x2, yc, 0)T , and ! = (!1, !2, !3)T . The equilibrium conditions (2.20a) and (2.20b)
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Figure 2.4: The Rotating Reference Frame (Restricted Two-body System)

expressed in scalar form are,

−
(
!2

2 + !2
3

)
x1 + !1!2yc + �

x1

R3
1

= − V
′
t

m1

(2.21)

!1!2x1 −
(
!2

1 + !2
3

)
yc + �

yc
R3

1

= 0 (2.22)

(!1x1 + !2yc)!3 = 0 (2.23)

−
(
!2

2 + !2
3

)
x2 + !1!2yc + �

x2

R3
2

=
V

′
t

m2

(2.24)

!1!2x2 −
(
!2

1 + !2
3

)
yc + �

yc
R3

2

= 0 (2.25)

(!1x2 + !2yc)!3 = 0 (2.26)

where R1 = ∥R1∥ and R2 = ∥R2∥. It is also assumed that x1 > x2 and L = x1 − x2 >

0. Further, define Rc = (xc, yc, 0)T where xc = (m1x1 +m2x2) / (m1 +m2). Then the

expressions for x1, x2 and yc are

x1 = xc +m2L/ (m1 +m2) (2.27a)

x2 = xc −m1L/ (m1 +m2) (2.27b)

yc =

[
R2
c −

L2

4

(
m1 −m2

m1 +m2

)2
]1/2

(2.27c)
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The relative equilibria of the two craft formation corresponds to solving the equations

(2.21-2.26) for a given set of values for �, m1, m2, L and Rc = ∥Rc∥. Reference 15 presents

great-circle and nongreat-circle equilibrium solutions in the context of a spring force acting

between two point masses. And these equilibrium results are applicable to any elastic force

type such as a Coulomb force acting between the craft. Therefore, such results are utilized

to investigate the relative equilibria of elastic tether formation for a range of spacecraft

separation distances and semi-major axes. The great-circle and nongreat-circle equilibrium

solutions are summarized here and Reference 15 provides the details of the derivations.

Case 1a. Setting !3 ∕= 0 in the equilibrium conditions and using yc ∕= 0 yields an

along-track equilibrium solution (Figure 2.5(a))

R1 =
(

1
2
L, yc, 0

)T
, R2 =

(
−1

2
L, yc, 0

)T
, ! = (0, 0, !3)T

yc = Rc, !
2
3 = �

R3 and V
′
t = 0.

Case 1b. Setting !3 ∕= 0 and yc = 0 gives a radial equilibrium solution (Figure 2.5(b))

R1 = (x1, 0, 0)T , R2 = (x2, 0, 0)T , ! = (0, 0, !3)T

!2
3 = �

(m1+m2)Rc

(
m1

x21
+ m2

x22

)
and V

′
t =

�m1m2(x31−x32)
(m1+m2)x21x

2
2Rc

> 0.

Case 1c. Similarly, !3 = 0, yc ∕= 0, and R1 = R2 yields orbit normal equilibrium (Figure

2.5(c))

R1 =
(

1
2
L, yc, 0

)T
, R2 =

(
−1

2
L, yc, 0

)T
, ! = (!1, 0, 0)T

m1 = m2, yc = Rc, !
2
1 = �

R3 , V
′
t = −�m1L

2R3 < 0

Case 2. Setting !3 = 0, yc ∕= 0, R1 ∕= R2 gives nongreat-circle equilibrium solution

(Figure 2.5(d)) As in Reference 15, manipulating Eqs. (2.21-2.26) yields the condition xc!1 +

yc!2 ∕= 0, or equivalently, Rc ⋅ ! ∕= 0. This analytically proves that for the given conditions

in Case 2 there is no great-circle equilibria. Additionally, Reference 15 shows that nongreat-

circle equilibria exist only if m1 ∕= m2. For instance, Coulomb formations allow very lumpy

distribution of masses and thus, these nongreat-circle equilibria conditions are of interest.

Therefore, the nongreat-circle equilibrium conditions are

R1 = (x1, yc, 0)T ,R2 = (x2, yc, 0)T ,! = (!1, !2, 0)T (2.28)
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Figure 2.5: Relative Equilibrium Solutions

and

f = fxf1 + fyf2 = 0 (2.29)

where

fx =
m1x1

R3
1

+
m2x2

R3
2

f1 =
x2

R3
1

− x1

R3
2

fy =

(
m1

R3
1

+
m2

R3
2

)
yc

f2 =

(
1

R3
1

− 1

R3
2

)
yc
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Therefore, f written in terms of m1, m2, R1, R2, xc, yc and L is

f =

(
x2
c + y2

c −
L2m1m2

(m1 +m2)2

)(
m1

R6
1

+
m2 −m1

R3
1R

3
2

− m2

R6
2

)
(2.30)

+
xcL

m1 +m2

(
(m2 −m1)

(
m1

R6
1

− m2

R6
2

)
− 4m1m2

R3
1R

3
2

)
= 0 (2.31)

The solutions of Eq. (2.30) provide the nongreat-circle equilibria. This formulation of the

nongreat-circle equilibria is independent of tether force between the spacecraft and is thus

useful for analyzing the equilibria for a range of spacecraft separation distances from LEO

to GEO heights. In order to simplify the solution methodology, Eq. (2.30) is expressed in

terms of one variable �, the angle between Rc and the x-axis of the rotating frame as shown

in Figure 2.5(d). Therefore, let xc = Rc cos(�) and yc = Rc sin(�). Plugging in these xc and

yc values into Eq. (2.30) yields a function of � for given values of �, m1, m2, L and Rc. Since

f(�) is a continuous function for a tether formation on [0, �], with (Rc >> L) and f(0) < 0,

f(�) > 0, there exists at least one solution for f(�) = 0. Furthermore, since df(�)
d�

> 0 on

[0, �], this solution is unique. The actual deflection angle, ', from the vertical is computed

from the angle between x-axis and !, while � − ' is the angle between ! and Rc. The

deflection angle ' and error � are shown in Figure 2.5(d) where the error � is defined to be

� − '− 90∘.

Reference 15 discusses the existence of nongreat-circle equilibria for long tethers. For

spacecraft that are separated by 350 km at LEO a deflection of about 1 degree from the

vertical to the orbital plane is observed. For instance, Table 2.1 shows the results of f(�) = 0

for LEO where Rc = 7000 km and L = 350 km. The error � ∕= 0 numerically proves the

existence of nongreat-circle equilibria for long tethers. To gain further insights, the effect

Table 2.1: Non-great-circle Relative Equilibria at LEO15

m1 (kg) m2 (kg) � (deg) ' (deg) � (deg)

100 9900 91.052659 1.052684 −0.000026048
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of nongreat-circle equilibria on a two-craft formation is studied as a function of spacecraft

separation distance L and mass distribution ratio � defined as

� =
m1

m1 +m2

(2.32)

The spacecraft separation distances range from 10 m to 1000 km and formation center of

mass distances from LEO to GEO heights. The contour plots shown in Figure 2.6 indicate

that increasing the semi-major axes Rc while holding L fixed leads to a decrease in deflection.

However, fixing Rc and allowing L to increase leads to an increase in deflections. As the

spacecraft formation becomes more asymmetric, the contour plots show that as spacecraft

separation distances L reach 1000 km, deflections of up to the order of 10 degrees are ob-

served. Therefore, large separation distances and mass asymmetry has an effect at LEO to

GEO heights; however, for tether formation separation distances on the order of hundreds

of meters, the deflection from normal is less than 10−6 degrees, and mass asymmetry also

showed negligible effect on the attitude deflection. Even for a case where there is a 1:10,000

mass ratio, the nongreat-circle equilibria deflection from low earth orbits to geostationary

orbits is less than 10−5 degrees. Evaluating Eq. (2.30) yields very small function values (on

the order of 10−12) and hence the solutions are limited to a lower bound of 10−6 degrees.

This numerically unresolved region is shown as ”noise” pattern in Figure 2.6. However, this

degree of accuracy is sufficient to ignore the effect of orbit-attitude coupling for short tether

formation separation distances. Specifically, for Coulomb formation separation distances on

the order of dozens of meters at GEO, thus ignoring orbit-attitude coupling, the use of nu-

merical search algorithms such as evolutionary search strategies is justified in the search for

static Coulomb structures.

2.4 Relative Equilibria in the Restricted Three-body System

In a restricted three-body system for the Coulomb spacecraft formation with SO(3) sym-

metry, the relative equilibrium is one in a uniformly rotating frame. If the vector � denotes

the angular velocity of the uniformly rotating frame located at barycenter O, the augmented
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potential for the two spacecraft formation is

V� (r1, r2) = −�1

(
m1

∥r1 − d1∥
+

m2

∥r2 − d1∥

)
− �2

(
m1

∥r1 − d2∥
+

m2

∥r2 − d2∥

)
+ Vt (∥r1− r2∥)−

m1

2
⟨�× r1, �× r1⟩ −

m2

2
⟨�× r2, �× r2⟩

(2.33)

In this case, the relative equilibria of the system are characterized by the critical points of

the augmented potential V�. The first variation of V� taken component wise with respect to
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q = (r1, r2) is

DV� (r1, r2) ⋅ (�r1, �r2) = �1m1
r1 − d1

∥r1 − d1∥3 ⋅ �r1 + �1m2
r2 − d1

∥r2 − d1∥3 ⋅ �r2

+ �2m1
r1 − d2

∥r1 − d2∥3 ⋅ �r1 + �2m2
r2 − d2

∥r2 − d2∥3 ⋅ �r2

+ V
′

t (∥r1− r2∥)
r1 − r2
∥r1− r2∥

⋅ (�r1 − �r2)

+m1

(
�̂�̂r1

)
⋅ �r1 +m2

(
�̂�̂r2

)
⋅ �r2

(2.34)

If Vt = Vc, the Coulomb potential, then V
′
c is given by Eq. (2.19). Setting DV� (r1e, r2e) = 0

leads to the following relative equilibria conditions:

�1m1
r1e − d1

∥r1e − d1∥3 + �2m1
r1e − d2

∥r1e − d2∥3 +m1�̂�̂r1e + V
′

t

r1e − r2e
∥r1e− r2e∥

= 0 (2.35a)

�1m2
r2e − d1

∥r2e − d1∥3 + �2m2
r2e − d2

∥r2e − d2∥3 +m2�̂�̂r2e − V
′

t

r1e − r2e
∥r1e− r2e∥

= 0 (2.35b)

The vectors R11, R12, R21 and R22 shown in Figure 2.3 are represented in terms of r1e, r2e,

d1, and d2 as

R11 = r1e − d1, R12 = r1e − d2

R21 = r2e − d1, R22 = r2e − d2

(2.36)

Therefore, Eqs. (2.35a) and (2.35b) become

�1m1
r1e − d1

R3
11

+ �2m1
r1e − d2

R3
12

+m1�̂�̂r1e + V
′

t

r1e − r2e
∥r1e− r2e∥

= 0 (2.37a)

�1m2
r2e − d1

R3
21

+ �2m2
r2e − d2

R3
22

+m2�̂�̂r2e − V
′

t

r1e − r2e
∥r1e− r2e∥

= 0 (2.37b)

where R11 = ∥R11∥, R12 = ∥R12∥, R21 = ∥R21∥ and R22 = ∥R22∥.

Now consider a rotation matrix [FS] ∈ SO(3) that maps vectors from a synodic frame

S into a new reference frame F . If we denote the vectors R1, R2, ! in the reference

frame S, then the conditions of relative equilibria given in Eqs. 2.37 are invariant under

the transformation R1 = [FS] r1e, R2 = [FS] r2e and ! = [FS] �. As illustrated in Figure
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Figure 2.7: The Rotating Reference Frame (Restricted Three-body System)

2.7, a reference frame is chosen such that the x-axis is parallel to the line connecting the

two crafts, the z-axis being perpendicular to both the vectors r1e and r2e, and the y-axis

completing the triad. Also, let  be the angle in the orbit plane between the two frames S

and F .

In the context of the new frame F , the position vectors are expressed as R1 = (x1, yc, 0)T ,

R2 = (x2, yc, 0)T , and ! = (!1, !2, !3)T . The vectors d1 and d2 in the F frame become

(−d1 cos ,−d1 sin , 0) and (d2 cos , d2 sin , 0). Now the equilibrium conditions (2.37a)

and (2.37b) expressed in scalar form are given below. It is also assumed that x1 > x2 and let

L = x1 − x2 > 0. Further, define Rc = (xc, yc, 0)T where xc = (m1x1 +m2x2) / (m1 +m2).

The expressions for x1, x2 and yc are given in Eqs. 2.27.
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−
(
!2

2 + !2
3

)
x1 + !1!2yc + �1

(
x1 + d1 cos 

R3
11

)
+ �2

(
x1 − d2 cos 

R3
12

)
= − V

′
t

m1

(2.38)

!1!2x1 −
(
!2

1 + !2
3

)
yc + �1

(
yc + d1 sin 

R3
11

)
+ �2

(
yc − d2 sin 

R3
12

)
= 0 (2.39)

(!1x1 + !2yc)!3 = 0 (2.40)

−
(
!2

2 + !2
3

)
x2 + !1!2yc + �1

(
x2 + d1 cos 

R3
21

)
+ �2

(
x2 − d2 cos 

R3
22

)
=
V

′
t

m2

(2.41)

!1!2x2 −
(
!2

1 + !2
3

)
yc + �1

(
yc + d1 sin 

R3
21

)
+ �2

(
yc − d2 sin 

R3
22

)
= 0 (2.42)

(!1x2 + !2yc)!3 = 0 (2.43)

Determining the relative equilibria of the two craft formation corresponds to solving the

equations (2.38-2.43) for a given set of values for �1, �2, m1, m2, L and Rc = ∥Rc∥. Since

there are more unknowns than the number of equations, certain constraints are needed in

order to find the relative equilibria. For libration point missions, the frame rotates at a

constant angular velocity Ω given in Eq. 2.12. Let us consider angular velocity constraints

!3 = Ω ∕= 0 (Case 1) and !3 = 0 (Case 2).

Case 1. As !3 ∕= 0 Eq. (2.40) implies (!1x1 + !2yc) = 0 and x1 ∕= 0 due to the adopted

frame which indicates that !1 = 0 and !2yc = 0. Using the conditions !3 ∕= 0 and !1 = 0 in

equations (2.39) and (2.42) and subtracting one from the other gives rise to

[
�1

(
1

R3
11

− 1

R3
21

)
(yc + d1 sin ) + �2

(
1

R3
12

− 1

R3
22

)
(yc − d2 sin )

]
= 0 (2.44)

From Eq. (2.44), two more conditions arise, yc + d1 sin  ∕= 0 and yc − d2 sin  ∕= 0, or

yc + d1 sin  = 0 and yc − d2 sin  = 0. Therefore, the conditions for relative equilibria are

further expressed as Case 1a and Case 1b.

Case 1a. !1 = 0, !3 ∕= 0, !2yc = 0, yc + d1 sin  ∕= 0 and yc − d2 sin  ∕= 0.

Here, yc + d1 sin  ∕= 0 implies that yc ∕= 0 and  ∕= 0. This forces !2 = 0 and Eq.

(2.44) yields R11 = R21 and R12 = R22. Applying these conditions to Eqs. (2.38) and (2.41)

and dividing by the other results in the conditions (m1x1 + m2x2) = 0 and  = 90 degrees.
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Therefore the along-track equilibrium solutions in the context of a restricted three-body

system (circular orbits) are

R1 =
(

1
2
L, yc, 0

)T
, R2 =

(
−1

2
L, yc, 0

)T
, ! = (0, 0,Ω)T

yc = Rc, and V
′
t = − m1m2L

(m1+m2)

((
�1
R3

11
+ �2

R3
12

)
− Ω2

)
Since Rc ⋅ ! = 0, this is a great-circle relative equilibrium. However, in the context of a

restricted three-body system, for any of the collinear libration points it can be shown that

Ω2 < �1
R3

11
+ �2

R3
12

, which implies that V
′
t < 0 (compressive elastic force). For any of the

triangular libration points it can be shown that Ω2 > �1
R3

11
+ �2

R3
12

, which implies that V
′
t > 0

(tensile elastic force). For example, Figure 2.8 shows the along-track equilibrium solutions

at a collinear (L2) and a triangular (L4) libration point. In particular, for a Coulomb tether,

Eq.(2.19) indicates that the two spacecraft masses must be charged with same polarity at

the collinear libration points and must be charged with opposite polarity at the triangular

libration points.

L1

L4

L3
L2

L5

m1

m2

m1

m2

?
M1

M2

Figure 2.8: Along-track Relative Equilibrium at Libration Points

Case 1b. !1 = 0, !3 = Ω ∕= 0, !2yc = 0, yc + d1 sin  = 0 and yc − d2 sin  = 0.
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Assuming that x1 > x2 > 0 for a tether formation and since !3 ∕= 0 and yc + d1 sin  =

0, yc − d2 sin  = 0 implies that yc = 0 and  = 0 for collinear libration points. However, for

Earth-Moon triangular libration points yc = 0 and  = 60.31 degrees, appropriate values of

R11, R12, R21 and R22 should satisfy Eq. (2.44). Therefore, for any libration point, from Eq.

(2.40) one can set !1 = 0 and !2 = 0. With these conditions, Eqs. (2.38) to (2.43) reduce to

(
−Ω2 +

�1

R3
11

+
�2

R3
12

)
x1 +

�1d1

R3
11

− �2d2

R3
12

= − V
′
t

m1

(2.45a)(
−Ω2 +

�1

R3
21

+
�2

R3
22

)
x2 +

�1d1

R3
21

− �2d2

R3
22

=
V

′
t

m2

(2.45b)

Solving these equations yields a radial relative equilibrium with the tether forces directed

along the radial axis. The equilibrium solution configuration is

R1 = (x1, 0, 0)T , R2 = (x2, 0, 0)T , ! = (0, 0,Ω)T

V
′
t = m1m2

m1+m2

(
Ω2L− �1

(
1
R3

11
− 1

R3
21

)
− �2

(
1
R3

12
− 1

R3
22

))
Since x1 > x2, from Eq. (2.36) it can be shown for a radial equilibrium that R11 > R21

and R12 > R22 for both the collinear and triangular libration points, indicating that V
′
t > 0.

Again, Rc ⋅ ! = 0 is a great-circle relative equilibrium as shown in Figure 2.9. This implies

that there is a tensile elastic force acting between the two masses along the radial direction

when the formation is at any of the libration points. Hence, for a Coulomb tether, V
′
t > 0

indicates that the two spacecraft masses must be charged with opposite polarity.

Case 2. !3 = 0. The relative equilibrium equations reduce to

−!2
2x1 + !1!2yc + �1

(
x1 + d1 cos 

R3
11

)
+ �2

(
x1 − d2 cos 

R3
12

)
= − V

′
t

m1

(2.46a)

!1!2x1 − !2
1yc + �1

(
yc + d1 sin 

R3
11

)
+ �2

(
yc − d2 sin 

R3
12

)
= 0 (2.46b)

−!2
2x2 + !1!2yc + �1

(
x2 + d1 cos 

R3
21

)
+ �2

(
x2 − d2 cos 

R3
22

)
=
V

′
t

m2

(2.46c)

!1!2x2 − !2
1yc + �1

(
yc + d1 sin 

R3
21

)
+ �2

(
yc − d2 sin 

R3
22

)
= 0 (2.46d)
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Figure 2.9: Radial Relative Equilibrium at Libration Points

Setting yc + d1 sin  = 0 and yc − d2 sin  = 0, the equilibrium conditions yield radial equi-

librium solutions as seen in Case 1b, but with !3 replaced by !2. Therefore, we consider

only the case where yc + d1 sin  ∕= 0 and yc − d2 sin  ∕= 0. Furthermore, it is assumed that

R11 = R21 and R12 = R22 (Case 2a) as well as R11 ∕= R21 and R12 ∕= R22 (Case 2b).

Case 2a. !3 = 0, R11 = R21, R12 = R22, yc + d1 sin  ∕= 0 and yc − d2 sin  ∕= 0.

Using yc + d1 sin  ∕= 0 and yc − d2 sin  ∕= 0 yields R11 = R21 and R12 = R22, giving the

condition x1 = −x2. Eqs. (2.46b) and (2.46d) imply that !1 ∕= 0; additionally, set !1 = Ω

and !2 = 0. Then, using x1 = −x2 and !2 = 0 in Eqs. (2.46a) and (2.46c) yields m1 = m2

as the only possible condition. As a result, the equilibrium solutions obtained are

R1 =
(

1
2
L, yc, 0

)T
, R2 =

(
−1

2
L, yc, 0

)T
, ! = (Ω, 0, 0)T

m1 = m2, yc = Rc, V
′
t = − m1m2L

(m1+m2)

(
�1
R3

11
+ �2

R3
12

)
< 0

These orbit normal equilibrium solutions are applicable for both triangular and collinear

libration points. Specifically, for triangular libration points R11 = R21 = R12 = R22 holds

true. Since Rc ⋅ ! = 0, once again this is a great-circle relative equilibrium. Since V
′
t < 0,
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there is a compressive elastic force acting between the two masses perpendicular to the

orbital plane and the two masses are equal and equidistant from the barycenter. Figure 2.10

specifically, illustrates this for a collinear (L2) and a triangular (L4) libration point. For a

Coulomb formation, since V
′
c < 0, the two spacecraft masses must be charged with the same

polarity.
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L3
L2

m1

m2

m1

m2
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M1 M2

eh eè

er

Figure 2.10: Orbit Normal Relative Equilibrium at Libration Points

Case 2b. !3 = 0, R11 ∕= R21, R12 ∕= R22, yc + d1 sin  ∕= 0 and yc − d2 sin  ∕= 0.

Assuming that the F frame is aligned with the orbit normal configuration gives  = 90

degrees. Solving Eqs. (2.46b) and (2.46d) yields

− (x1 − x2)!1!2 = yc

((
�1

R3
11

+
�2

R3
12

)
−
(
�1

R3
21

+
�2

R3
22

))
+ �1d1

(
1

R3
11

− 1

R3
21

)
+ �2d2

(
1

R3
22

− 1

R3
12

)
∕= 0

(2.47)

which implies that !1 ∕= 0 and !2 ∕= 0. Combining Eqs. (2.46a) and (2.46c)

(m1 +m2) (!2xc − !1yc)!2 = m1x1

(
�1

R3
11

+
�2

R3
12

)
+m2x2

(
�1

R3
21

+
�2

R3
22

)
∕= 0 (2.48)

Eq. (2.48) implies that (!2xc − !1yc) ∕= 0. Multiplying Eq. (2.46b) by m1 and (2.46d) by
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m2 and adding the resulting equations gives

− (m1 +m2) (!2xc − !1yc)!1 =

(
m1

(
�1

R3
11

+
�2

R3
12

)
+m2

(
�1

R3
21

+
�2

R3
22

))
yc

+m1

(
�1d1

R3
11

− �2d2

R3
12

)
+m2

(
�1d1

R3
21

− �2d2

R3
22

)
∕= 0

(2.49)

Defining fx and fy to be

fx = �1

(
m1x1

R3
11

+
m2x2

R3
21

)
+ �2

(
m1x1

R3
12

+
m2x2

R3
22

)
∕= 0 (2.50)

fy =

(
�1

(
m1

R3
11

+
m2

R3
21

)
+ �2

(
m1

R3
12

+
m2

R3
22

))
yc

+m1

(
�1d1

R3
11

− �2d2

R3
12

)
+m2

(
�1d1

R3
21

− �2d2

R3
22

)
∕= 0

(2.51)

The ratio of Eqs. (2.48) and (2.49) becomes

!2

!1

= −fx
fy

(2.52)

Eliminating !1 and !2 from Eqs. (2.47), (2.48) and (2.49) yields

f = fxf1 + fyf2 = 0 (2.53)

where

f1 = x2

(
�1

R3
11

+
�2

R3
12

)
− x1

(
�1

R3
21

+
�2

R3
22

)
+

(
x2

(
�1d1

R3
11

− �2d2

R3
12

)
+ x1

(
�2d2

R3
22

− �1d1

R3
21

))
1

yc

and

f2 =

((
�1

R3
11

+
�2

R3
12

)
−
(
�1

R3
21

+
�2

R3
22

))
yc

+

(
�1d1

R3
11

− �2d2

R3
12

)
+

(
�2d2

R3
22

− �1d1

R3
21

)



39

.

The solutions of Eq. (2.53) give the nongreat-circle equilibria and it can be shown that

such nongreat-circle equilibria exist only if m1 ∕= m2. The nongreat-circle equilibria for-

mulation is independent of the tether force between the spacecraft and is thus useful for

analyzing the equilibria for a range of spacecraft separation distances with the formation at

the libration points. Similar to the solution procedure followed for a two-body system, Eq.

(2.53) is expressed in terms of one variable �, the angle between Rc and the x-axis of the

rotating frame.

At the Earth-Moon collinear libration points, the effect of nongreat-circle equilibria on

a two-craft formation is studied as a function of spacecraft separation distance L and mass

distribution ratio � defined in Eq. (2.32). The spacecraft separation distances range from 10

m to 5000 km with the formation center of mass distances fixed at the libration points L1,

L2 and L3. Figure 2.11 shows the numerical solutions for a range of spacecraft separation

distances. For spacecraft separated by more than 5000 km at L1 and L2, a deflection of

about 1 degree from the vertical to the orbital plane is observed. For such large separation

distances, a deflection of about 10 degrees is observed at L3. This is due to L3 being close to

Earth compared to that of L1 and L2. On the other hand, for short separation distances the

deflection becomes negligible. For instance, Coulomb formations are feasible at the libration

points with the spacecraft separation distances ranging from 10m to 30m due to the reduced

range of the Debye length. As shown in Figure 2.11(a), for Coulomb formation distances at

L1, L2 and L3, the deflection from normal is less than 10−6 degrees. From Figure 2.11(b),

mass asymmetry of the two craft also yielded negligible effect on the attitude deflection

at such short separation distances. Consequently, at libration points, although the orbit-

attitude coupling effects dominate for large spacecraft separation distances on the order of

thousands of kilometers such effects can be ignored for short separation distances such as in

Coulomb formations.
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Figure 2.11: Deflection for an Asymmetric Mass Distribution at Libration Points [deg]

2.5 Summary

In this chapter, the relative equilibria of a two-craft formation moving in a two-body system

and a three-body system are discussed. A general framework of two-craft connected by an

elastic tether force is studied in this chapter with an emphasis on a virtual Coulomb tether

as a special case. The orbit-attitude coupling effects should be considered for large space-

craft separation distances; for LEO, greater than tens of kilometers, for GEO, hundreds of

kilometers, and at libration points, tens of thousands of kilometers. Such coupling effects

can be ignored for shorter spacecraft separation distances. For example, previous Coulomb

formation flying work used the simple principle axes condition. The negligible nongreat-

circle effects shown in this chapter for smaller inter-craft separation distances validates this

assumption for Coulomb tether applications. Consequently, for a charged two-craft forma-

tion, the principal axis condition is very good for genetic algorithms which seek approximate

equilibrium answers. However, for full non-linear solutions, these effects can be taken into

consideration. Moreover, this chapter presents the relative equilibria of a two-craft formation

at all five libration points and also numerically shows that nongreat-circle effects exist at the

Earth-Moon collinear libration points. Interestingly, in the restricted three-body system, a

tether force is required for the along-track equilibrium, however, no tether force is necessary

in the restricted two-body system. Furthermore, the results obtained in this chapter could

be used to investigate the linearized dynamics and stability of a 2-craft Coulomb tether
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formation at libration points.



42

Chapter 3

ORBIT RADIAL DYNAMIC ANALYSIS OF A TWO-CRAFT
COULOMB FORMATION AT LIBRATION POINTS

In this chapter, the linearized orbit-radial dynamics and stability analysis of a 2-craft

virtual Coulomb structure at Earth-Moon libration points are investigated. Reference 45

presents three relative equilibria of the charged 2-craft problem at libration points (orbit-

radial, along-track and orbit-normal). Figure 3.1 shows the orbit-radial equilibrium at Earth-

Moon libration points.

L1

L4

L3
L2

L5

m1m2

m1

m2

?

M1 M2

Figure 3.1: Radial Relative Equilibrium at Libration Points

The goal of this chapter is to study the orbit radial dynamics and stability conditions at

the libration points and to investigate the presence of any cross-coupling effects that may

not exist for circular orbits at GEO. The relative distance between the two satellites of the

Coulomb tether is controlled using electrostatic Coulomb forces. In order to stabilize the

formation shape at the libration points, a similar active charge feedback law, introduced in

Reference 5 for the study of the linear dynamics of orbit radial 2-craft formations at GEO,
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is applied at the libration point scenario. First the nonlinear and linearized equations of

motion are investigated. Of interest is how these compare to the earlier circular GEO orbit

results, and if these can be generalized into a single mathematical framework. To stabilize

the separation distance, a partial-state charge feedback control law (separation distance and

separation rate only) is studied, followed by a linear stability analysis of coupled attitude

and separation distance dynamics. Furthermore, an alternate linear, full-state feedback

control law (in-plane attitude, separation distance, and their rates) is investigated for a

radial equilibrium two-craft Coulomb tether formation at a collinear libration point. The

linearized analytical results are then compared to nonlinear numerical simulations to validate

the control performance results. In the presence of differential solar drag perturbations,

a Lyapunov feedback controller is designed for stabilizing a radial equilibrium two-craft

Coulomb formation at collinear libration points.

3.1 Linear Dynamics and Stability Analysis - Collinear Libration Points

3.1.1 Charged Relative Equations of Motion

The linearized equations of motion for a two spacecraft Coulomb formation at a collinear

Earth-Moon libration point are briefly derived in this section. The characteristics of the

frames involved in the analysis and the notation used are summarized.

Let M1 and M2 be the dominant masses of the two gravitational primaries, Earth and

Moon. As shown in Figure 3.2, if O is the center of mass of both primaries, any non-rotating

frame with origin at O is considered as an inertial frame. The circular relative motion of

primaries occurs in a plane with angular rotation axis. The synodic frame S : {êr, ê�, êℎ} is

rotating around the O − z axis with the constant angular velocity Ω defined as

Ω =

√
G (M1 +M2)

d3
(3.1)

Here G is the gravity constant and d is the distance between the two primaries. The

primaries are at rest in the synodic frame at positions M1(−d1, 0, 0) and M2(d2, 0, 0). If

r0 = [rx0 , ry0 , rz0 ]
T is the position vector in the synodic frame S of a collinear libration point
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with respect to the barycenter O, then the two distance vectors of a collinear libration point

from the two primaries in the plane are

SR1 =

⎡⎢⎢⎢⎣
rx0 + d1

0

0

⎤⎥⎥⎥⎦ and SR2 =

⎡⎢⎢⎢⎣
rx0 − d2

0

0

⎤⎥⎥⎥⎦ (3.2)
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Figure 3.2: Stationary Libration points

In order to describe the relative motion of the satellite with respect to the formation

center of mass, a rotating Hill orbit frame O : {ôr, ô�, ôℎ} whose origin coincides with L2

libration point is chosen as shown in Figure 4.2. The formation center of mass is assumed to

be at the origin of this rotating Cartesian coordinate system and the relative position vector

of the ith satellite is defined as �i = (xi, yi, zi)
T ; where the xi component is in the ôr direction

(orbit radial), the yi component is in the ô� direction of orbital velocity (along-track), and

the component zi is in the ôℎ direction (orbit normal). Since the orbit frame origin coincides
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with the formation center of mass, the center of mass condition is defined as

m1�1 +m2�2 = 0 (3.3)

where mi is the satellite mass. Also, for a collinear libration point, the orbit frame and

the synodic frames coincide so that the position vectors R1 and R2 are equivalent in both

frames.
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Figure 3.3: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the
Orbit Frame at L2

If the two-craft formation is treated as a rigid body and aligned in the radial direction,

then, for this orbit nadir aligned formation, consider a body-fixed coordinate frame ℬ :

{b̂1, b̂2, b̂3} where b̂1 is aligned with the relative position vector �1 of mass m1. Therefore,

in this configuration, the O and ℬ frame orientation vectors are exactly aligned and �1 in a

body-fixed frame is given by

�1 =
m2

m1 +m2

Lb̂1 + 0b̂2 + 0b̂3 (3.4)

where L is the distance between the satellites 1 and 2. Let the 3-2-1 Euler angles ( , �, �)

be the pitch, roll and yaw angles which represent the relative attitude between the ℬ and O

frames. From the point-mass assumption of the two-craft, the yaw rotation about b̂1 (angle

�) can be ignored. Then the direction cosine matrix [BO( , �)] that relates the O frame to
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ℬ frame is given by

[BO] =

⎡⎢⎢⎢⎣
cos � cos cos � sin − sin �

− sin cos 0

sin � cos sin � sin cos �

⎤⎥⎥⎥⎦ (3.5)

Consequently, the position vector of mass m1 in the O frame is written as

O�1 =

⎛⎜⎜⎜⎝
x1

y1

z1

⎞⎟⎟⎟⎠ = [BO]T

⎛⎜⎜⎜⎝
m2

m1+m2
L

0

0

⎞⎟⎟⎟⎠ =
m2L

m1 +m2

⎡⎢⎢⎢⎣
cos � cos 

cos � sin 

− sin �

⎤⎥⎥⎥⎦ (3.6)

Using Eq. (3.3), the position vector of mass m2 in the O frame becomes

O�2 =

⎛⎜⎜⎜⎝
x2

y2

z2

⎞⎟⎟⎟⎠ =
m1L

m1 +m2

⎡⎢⎢⎢⎣
− cos � cos 

− cos � sin 

sin �

⎤⎥⎥⎥⎦ (3.7)

Furthermore, using the transport theorem,14 the inertial velocity of mass mi expressed in

the O frame components becomes

Ovi =

⎛⎜⎜⎜⎝
ẋi − Ωyi

ẏi + Ω (xi + rc)

żi

⎞⎟⎟⎟⎠ (3.8)

The center of mass position vector rc is assumed to have a constant orbital rate of Ω. The

kinetic energy of the system is given by

T =
1

2
m1 v1 ⋅ v1 +

1

2
m2 v2 ⋅ v2 (3.9)
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Using Eqs. (3.6) - (3.8), Eq. (3.9) is rewritten as

T =
1

2

m1m2

m1 +m2

[
L̇2 + L2(�̇2 + ( ̇ + Ω)2 cos2 �)

]
+

1

2
(m1 +m2) Ω2r2

c (3.10)

The gravitational potential energy of the two-craft formation due to the two planets is

Vg = −GM1

(
m1

∣R1 + �1∣
+

m2

∣R1 + �2∣

)
−GM2

(
m1

∣R2 + �1∣
+

m2

∣R2 + �2∣

)
(3.11)

Substituting �1 = GM1, �2 = GM2, �1 = m2

m1+m2
Lt1, and �2 = m1

m1+m2
Lt2, the expression

for 1
∣R1+�1∣ expanded in a Taylor series about the equilibrium point, and retaining up to the

second order terms of L
R1

, becomes

1

∣R1 + �1∣
=

1

R1

{
1− m2

m1 +m2

(
L

R1

)
u1 ⋅ t1 +

(
m2

m1 +m2

)(
L

R1

)2

(3 (u1 ⋅ t1)2 − 1)

}
(3.12)

where

t1 = cos � cos ôr + cos � sin ô� − sin � ôℎ (3.13)

t2 = − cos � cos ôr − cos � sin ô� + sin � ôℎ (3.14)

and u1, u2 are the unit vectors in the direction of R1 and R2.

After carrying out similar approximations for the other terms in Eq. (3.11), Vg finally

becomes

Vg = − �1

R1

{
(m1 +m2) +

1

2

m1m2

(m1 +m2)

(
L

R1

)2

(3 (u1 ⋅ t1)2 − 1)

}

− �2

R2

{
(m1 +m2) +

1

2

m1m2

(m1 +m2)

(
L

R2

)2

(3 (u2 ⋅ t2)2 − 1)

} (3.15)
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and the Coulomb potential for the two-craft formation is1

Vc = kc
q1q2

L
e−L/�d (3.16)

where qi is the satellite charge and the parameter kc = 8.99 × 109 Nm2/C2 is Coulomb’s

constant. The exponential term in the Coulomb potential depends on the Debye length

parameter �d which controls the electrostatic field strength of plasma shielding between the

craft. At Geostationary Orbits (GEO) the Debye length varies between 80-1400 m, with

a mean of about 180 m.7 In the interplanetary space at Earth-moon libration points, the

Debye length varies between 10-40 m.1,48 Note that the simple point charge electrostatic field

formulation in Eq. (3.16) assumes that the vehicle potential is small compared to the local

plasma temperature. As discussed in Reference 42, this charge shielding formulation forms

a conservative lower bound on the actual electrostatic force created between two charged

bodies. For example, assuming an actual Debye length of 4 meters causes and 1 meter

diameter spheres at 30 kV yields effective Debye lengths �̂d which are 3 times larger. As a

result, because we are considering kilo-Volt levels of potential, the effective Debye lengths in

deep space still yield charged relative motion dynamics that are primarily influenced through

classical electrostatics.

The non-linear equations of motion are deduced from the Lagrangian ℒ = T − (Vg + Vc)

of the system in the following form

d

dt

∂ℒ
∂q̇i
− ∂ℒ
∂qi

= Qi (3.17)

qi = (�,  , L) (i = 1 . . . 3)

where Qi is the generalized force in the qith degree of freedom excluding gravitational effects.

For the circularly restricted three-body system, using Eqs. (3.10), (3.15) and (3.16) in

Eq. (3.17), the nonlinear equations governing the roll angle � out of the orbital plane, the
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pitch angle  in the orbital plane, and the separation distance L become

�̈ + 2�̇
L̇

L
+ cos � sin �(( ̇ + Ω)2 + 3Ω2� cos2  ) = 0 (3.18a)

 ̈ − ( ̇ + Ω)(2�̇ tan � − 2
L̇

L
) + 3Ω2� sin cos = 0 (3.18b)

L̈− L(�̇2 + ( ̇ + Ω)2 cos2 � − Ω2�(1− 3 cos2 � cos2  )) +
kc
m1

Q
1

L2

m1 +m2

m2

= 0 (3.18c)

where Q = q1q2, � = M2

M1+M2
, 1− � = M1

M1+M2
and

� =
1− �
∣ rx0
d

+ �∣3
+

�

∣ rx0
d
− 1 + �∣3

> 0 (3.19)

is a positive constant that depends on the collinear Lagrangian point chosen. The equations

of motion Eq. (3.18) are coupled non-linear ordinary differential equations that define the

motion of a two-craft Coulomb formation at any of the three collinear Lagrangian points.

If the two-craft formation is aligned in the radial direction, the formation remains stat-

ically fixed relative to the rotating orbiting frame O provided the non-linear equations

Eq. (3.18) satisfy the following radial equilibrium conditions

� = �̇ = �̈ =  =  ̇ =  ̈ = L̇ = L̈ = 0 and L = Lref (3.20)

Eq. (3.18c) provides the nominal product of charges Qref = q1q2 needed to achieve this static

Coulomb formation as

Qref = − (2� + 1) Ω2L
3

kc

m1m2

m1 +m2

(3.21)

Thus, the satellites appear frozen with respect to the rotating frame when the charge prod-

uct Qref satisfies Eq. (3.21). Since the charge product term is negative it implies that the

spacecraft charges will have opposite charge signs and also, an infinite number of charge

pairs can satisfy Qref = q1q2. Although unequal charges are possible between the two crafts,

in this study, the charge magnitudes are set equal.

The linearized version of the nonlinear equations Eq. (3.18) are obtained by applying a
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Taylor series expansion about the equilibrium states given in Eq. (3.20). Both the roll and

pitch equations of motion are linearized about small roll and pitch angles respectively. The

separation distance equations of motion are linearized about small variations in �L as well

as about small variations in the product charge term �Q as follows

L = Lref + �L (3.22a)

Q = Qref + �Q (3.22b)

where mission requirements determine the reference separation length Lref, and Qref is

determined through the constraint Eq. (3.21) for a particular choice of Lref. Performing the

necessary linearizations yields

�̈ + (1 + 3�)Ω2� = 0 (3.23a)

 ̈ +
2Ω

Lref

�L̇+ 3�Ω2 = 0 (3.23b)

�L̈− 2ΩLref ̇ − 3(2� + 1)Ω2�L−
( kc
m1

1

L2
ref

m1 +m2

m2

)
�Q = 0 (3.23c)

Thus, Eqs. (3.23a) and (3.23b) are the linearized attitude dynamics of the Coulomb tether

body frame ℬ and Eq. (3.23c) is the linearized separation distance differential equation about

the static nadir reference configuration at a collinear libration point.

Interestingly, for ”� = 1”, the equations turn out to be the same equations that were found

in Reference 5 for orbit radial 2-craft formation at GEO. Thus, the linearized equations of

motion for small motions about orbit radial equilibria in Eqs. (3.23) form a general framework

that covers both circular GEO and collinear libration point departure motion. By changing

the constant � either motion is described. Furthermore, in Eq. (3.23c) the stiffness term on �L

is the only difference in the separation distance differential equation from Reference 5. Thus,

the equations of motion are slightly different at a collinear libration point, but no significant

changes in the stability behavior are expected. And, note that Eq. (3.23c) provides the

necessary relationship between the change in relative separation of the satellites �L and the

additional charge product �Q required.
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It is inferred from these equations that the out-of-plane motion �(t) is uncoupled from

the in-plane motion ( (t) and �L(t)) and is analogous to that of simple oscillatory motion

because of the gravity gradient torques due to the two planets. Also, in this linearized

analysis, the decoupling of the roll motion �(t) from  (t), �L(t) and �Q(t) prevents the

control of roll motion using Coulomb charge. Moreover, in a special case where the satellites

are at rest with no Coulomb force between them (Q = �Q(t) =  ̇ = 0), Eq. (3.23c) simplifies

to that of an unstable oscillator. Therefore, without any active Coulomb force, the two-craft

formation cannot stay at the specified locations. Furthermore, �L(t) is coupled to the body

frame pitch rate  ̇(t) and the pitch motion  (t) is coupled with the �L(t)) motion which

may make it possible to control the charge for asymptotic stabilization. This coupling effect

is analytically proven in the next section using the controllability properties.

3.1.2 Feedback Control Development

Under the influence of external disturbances such as solar radiation pressure, the two-craft

formation deviates from the desired radial equilibrium configuration. Because the deviations

from the desired equilibrium configuration are small, linear control design techniques are

used to stabilize the in-plane motion without exceeding the charge requirements. In this

section, two control laws are designed and compared which are used to control the in-plane

motion. First, the in-plane motion is controlled with Coulomb forces using a partial-state

charge feedback control defining the small charge product variation with a proportional-

derivative feedback control of small separation distances. The Coulomb force acts along the

relative position vector due to the charges of each craft and thus, these Coulomb charges can

be used to control the spacecraft separation distance. Second, using state space methods,

a full-state feedback control is designed to control the combined attitude and separation

distance. Full-state feedback control could be used for tighter mission requirements.
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3.1.2.1 Charge Feedback Control

A proportional-derivative feedback control of �L is designed by defining5

�Q =
m1m2L

2
ref

(m1 +m2) kc
(−C1�L− C2�L̇) (3.24)

Substituting this expression for �Q in Eq. (3.23c), the closed-loop separation distance dy-

namics become

�L̈+ (C1 − 3(2� + 1)Ω2)�L+ C2�L̇− (2ΩLref) ̇ = 0 (3.25)

Since the �L differential equation does not involve a �L̇ damping term, the derivative feedback

is essential for asymptotic convergence. This charge feedback control law is implemented by

determining the charges q1 and q2. Since Q = q1q2, using Eq. (3.22b), the spacecraft charges

must satisfy

q1q2 = Qref + �Q (3.26)

where Qref value is evaluated from Eq. (3.21) while �Q value is given by the charge feedback

law expression in Eq. (3.24). Due to the above constraint yielding an infinite number of

solutions, the following implementation is used where equal charges in magnitude across the

craft are chosen.

q1 =
√
∣Qref + �Q∣ (3.27)

q2 = −q1 (3.28)

Because �Q ≪ Qref and Qref < 0, note that here Qref + �Q < 0 which implies that q1 > 0

and q2 < 0.

In order to prevent numerical difficulties due to a small value of Ω, the linearized attitude

dynamics Eqs. (3.23a) - (3.23b) and the closed loop separation distance dynamics given in
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Eq. (3.25) are made independent of Ω by the following transformation

d� = Ωdt (3.29a)

(∗)′
=

d(∗)
d�

=
1

Ω

d(∗)
dt

(3.29b)

Thus, the orbit rate (Ω) independent linearized equations of motion for a two-craft Coulomb

tether formation at any collinear libration point are given by

�
′′

+ (1 + 3�) � = 0 (3.30a)

 
′′

+
2

Lref

�L
′
+ 3� = 0 (3.30b)

�L
′′

+ C̃2�L
′ − (2Lref) 

′
+ (C̃1 − 3(2� + 1))�L = 0 (3.30c)

where C̃2 = C2

Ω
and C̃1 = C1

Ω2 are non-dimensionalized feedback gains. Routh-Hurwitz

stability criteria are used to fine tune these gain values that satisfy the stability requirements.

The characteristic equation for the coupled �L and  equation is

�4 + C̃2�
3 + (C̃1 + 1− 3�)�2 + 3�C̃2�+ 3�(C̃1 − 6� − 3) = 0 (3.31)

Roots of Eq. (3.31) should have negative real parts for asymptotic stability. For all roots to

have negative real parts, a Routh table construction allows one to determine the following

necessary constraints on the gains C̃1 and C̃2

C̃1 > 6� + 3 (3.32a)

C̃2 >
√
n− 3(2� + 1) (3.32b)

To fix the gain values that satisfy the stability criteria in Eq. (3.32), near ideal damping

conditions are assumed. Let the scaling factors n and � be positive and real such that the
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gains are rewritten as

C̃1 = n > 6� + 3 (3.33a)

C̃2 = �
√
n− 3(2� + 1) (3.33b)

The natural frequency of the  equation is
√

3� and is independent of the choice of C̃1 and

C̃2, and the natural frequency for the �L equation is
√
n− 3(2� + 1). For the  

′
coupling

term in the �L equation to serve as a defacto damping term, a value of n = 9� + 3 will

match these frequencies. Also, critical damping for the �L equation without the  
′

term is

ensured for � = 2. Therefore, with the inclusion of the  
′

term for effective damping, one

expects the value of n and � to be in the vicinity of n = 9� + 3 and � = 2. At L2 where

� = 3.190432478, the root locus plots for the coupled equations where the parameters are

varied, n = 26 ensures good rates of convergence for all the modes and � = 2.22 satisfies

effective damping for the modes. The optimal root locus plot is shown in Figure 3.4.
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Figure 3.4: Root-Locus Plot of the Linearized Differential Equations at L2 for gain � = 2.22

3.1.2.2 Application of LQR Design

In order to investigate the stability and control using the state feedback controller, a two-

craft Coulomb tether formation at a collinear libration point must be represented in the
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following state space form

ẋ = Ax+Bu (3.34)

y = Cx (3.35)

where the state x is

x =
[
�, �̇,  ,  ̇, �L, ˙�L

]T
(3.36)

Using the Coulomb control as an actuator mechanism, the A and B matrices can be rep-

resented from Eqs. (3.23a) - (3.23c). As previously seen, the out-of-plane �(t) motion is

decoupled from the in-plane motion ( (t) and �L(t)), which can be formally examined by

checking the controllability of the system.49 Since the rank of the controllability matrix is 4

and the number of state variables is 6, the tether formation is not completely controllable

with charge only. When the out-of-plane �(t) motion is not considered, then, with the re-

duced state space of four state variables x =
[
 ,  ̇, �L, ˙�L

]T
, the rank of the controllability

matrix is 4. Therefore, subsequent analysis uses the following reduced A and B matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

−3� 0 0 − 2
Lref

0 0 0 1

0 2Lref 3(2� + 1) 0

⎤⎥⎥⎥⎥⎥⎥⎦ (3.37)

B =
[
0 0 0 kc

m1

1
L2
ref

m1+m2

m2

]T
(3.38)

If only the length and length rate state variables are available from the measurements

of an optical sensor, then the remaining two state variables (pitch and pitch rate) must be

estimated from the output measurements. Therefore, the C matrix in the output equation
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becomes

C =

⎡⎣0 0 1 0

0 0 0 1

⎤⎦ (3.39)

However, the C matrix should satisfy the observability condition.49 Because the rank of

the observability matrix is 4, the values of the  and  ̇ states can be estimated from the

measured outputs �L and ˙�L. Hence, the in-plane linear model of a two-craft Coulomb tether

formation at a collinear libration point is both controllable and observable.

Assuming that the information about all four state variables is available either through

direct measurement or by estimation, the following feedback control is used to control the

system with the feedback gain matrix, K, computed using either the pole placement method

or the linear quadratic regulator (LQR) method.

u = −Kx (3.40)

Here the LQR methodology is applied to determine the optimal control, u, such that the

gain vector K minimizes the performance index

J =

∫ ∞
0

(xTWQx+ uTWRu)dT (3.41)

where WQ and WR are the weighting matrices that are used as design parameters. One can

establish a faster response for in-plane control by selecting appropriate weighting matrices

for which the settling time is less than one orbit.

3.1.3 Numerical Simulation

The performance and stability of a 25m Coulomb virtual tether formation is illustrated in

the following numerical simulation. Table 3.1 lists the simulation parameters and the values

used. The parameters n and � are selected based on root locus plot analysis where the gains

C̃1 and C̃2 computed from Eq. (3.33) satisfy the stability criteria in Eq. (3.32) and also lead

to effective damping. The two-craft Coulomb tether performance at the collinear libration



57

point L2 is simulated by integrating the linearized equations of motion in Eq. (3.30) and

then compared with the results obtained from integrating the non-linear equations of motion

in Eq. (3.18). During this simulation, the Debye length is assumed to be zero in order to

investigate the effects of linearization on the relative motion.

Table 3.1: Input Parameters Used in the Simulation for L2

Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m

kc 8.99× 109 Nm2

C2

Qref −0.006816 �C2

Ω 2.661699× 10−6 rad/sec
�L(0) 0.5 m
 (0) 0.1 rad
�(0) 0.1 rad
n 26
� 2.22
� 3.190432478

Figure 3.5(a) shows the Coulomb tether motion with the proportional-derivative charge

feedback law in Eq. (3.24). Both the pitch motion  and the separation distance deviation

�L converged to zero. Therefore, stabilizing the separation distance to zero also stabilized

the in-plane rotation angle after about 1.3 orbits; and the uncoupled roll motion � is a

stable sinusoidal motion as expected. Furthermore, Figure 3.5(a) shows that the non-linear

simulation shown as dashed lines closely follows the linearized simulation. Whereas, the �L

states asymptotically converge to zero in the linearized simulation, they reach steady state

oscillations in the non-linear simulation. This notable difference is observed in the two-body

system as well.5 Using the same reference charge product Qref computed from Eq. (3.24)

for both simulations resulted in this inconsistent behaviour. This charge yields a static

formation in the linearized formulation; however, in the non-linear formulation, this charge

will not yield a static formation. This is due to the charge feedback control not operating

about a steady state charge in the non-linear problem. Although the �L and  errors converge
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Figure 3.5: Simulation Results from Integrating the Linearized and Nonlinear Equations of
Motion at L2

to zero in the non-linear simulation, the discrepancies in charge computation between the

linear and non-linear simulations cause the orbital dynamics to perturb the system.5 This

makes the states grow again, resulting in these steady state oscillations. Therefore, for the

non-linear problem, a control strategy could be implemented wherein the Qref value could be

numerically recomputed. Despite this deviation, the non-linear and linear simulation results

compare very well, thus validating the performance prediction of the linearized analysis.

Figure 3.5(b) shows the spacecraft control charge q1 usage for both the linear and non-

linear simulation formulations. The charge results for both converge to the static equilibrium

reference value q1r. For orbit-radial equilibrium, the control charge q1 is the negative of q2.

Since the control charges are on the order of micro-Coulombs, they can easily be implemented
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in practice using charge emission devices.

A numerical simulation using an optimal regulator results in a settling time of less than

one orbit, a maximum overshoot of less than ±2.5 m in separation distance and ±.1 rad in

pitch angle variation. A faster response for in-plane control than that of a charge feedback

control law can be obtained by selecting appropriate WQ and WR weighting matrices. The

following WQ and WR matrices allow the settling time to be less than one orbit

WQ =

⎡⎢⎢⎢⎢⎢⎢⎣
75 0 0 0

0 0.0001 0 0

0 0 0.1 0

0 0 0 0.000001

⎤⎥⎥⎥⎥⎥⎥⎦ and WR = 10000 (3.42)

Figure 3.6 shows the state response of the system for the LQR method. The results indicate

that with the acceptable limits for separation distance and attitude variations, the settling

time is around one orbit. However, the maximum overshoot increases the charge requirements

as compared to using the charge feedback law in Eq.(3.24). For subsequent analysis, we use
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Figure 3.6: LQR Time Histories of Length Variations �L, pitch angle  and roll angle �

the charge control law because of the minimal number of control variables used in it.



60

3.2 Linear Dynamics and Stability Analysis - Triangular Libration Points

3.2.1 Charged Relative Equations of Motion

This section derives the equations of motion of a two-craft Coulomb tether whose center of

mass is at the triangular equilibrium point L4 as shown in Figure 3.7 and nominally aligned in

the orbit-radial direction of the orbit frame. This derivation closely resembles the derivation

of the equations of motion for a two-craft Coulomb tether at any collinear libration point

given in section 3.1 The two distance vectors R1 and R2 of L4 in the synodic frame from

the two primaries in the plane are given by

SR1 =

⎡⎢⎢⎢⎣
rx0 + d1

ry0

0

⎤⎥⎥⎥⎦ and SR2 =

⎡⎢⎢⎢⎣
rx0 − d2

ry0

0

⎤⎥⎥⎥⎦ (3.43)

The expressions for the kinetic energy in Eq. (3.10) and Coulomb potential in Eq. (3.16)

remain the same. However, the gravitational potential in Eq. (3.15) involves adding the

two position vectors Ri + �i , where Ri is in the synodic frame S and �i is in the orbiting

frame O. Therefore, the vectors Ri are expressed in its orbiting frame components using the

transformation ORi = [OS]SRi with the transformation matrix [OS] given by

[OS] =

⎡⎢⎢⎢⎣
cos� sin� 0

− sin� cos� 0

0 0 1

⎤⎥⎥⎥⎦ (3.44)

where � is the angle between the synodic frame at the barycenter O and the orbiting frame

at L4 as shown in Figure 3.7. For Earth-moon system, the value of � is 60.31 degrees.16

Using the Lagrangian formulation in Eq. (3.17), the nonlinear equations governing the

roll angle � out of the orbital plane, the pitch angle  in the orbital plane, and the separation
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Figure 3.7: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the
Orbit Frame at L4

distance L thus obtained are

�̈ +
2L̇

L
�̇ + cos � sin �(( ̇ + Ω)2

+
3Ω2

4
((1− �)(A� cos +B� sin )2 + �(C� cos +D� sin )2)) = 0 (3.45a)

 ̈ − 2�̇ tan �( ̇ + Ω) +
2L̇

L
( ̇ + Ω)− 3

4
Ω2((1− �)(A�B� cos 2 +

B2
� − A2

�

2
sin 2 )

+ �(C�D� cos 2 +
D2
� − C2

�

2
sin 2 )) = 0 (3.45b)

L̈− L(�̇2 + ( ̇ + Ω)2 cos2 � − Ω2)

+
3

4
LΩ2 cos2 �((1− �)(A� cos +B� sin )2 + �(C� cos +D� sin )2)

− kc
m1 +m2

m1m2

q1q2e
−L/�d

(
L+ �d
L2�d

)
= 0 (3.45c)
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where

A� = cos� +
√

3 sin� (3.46a)

B� = − sin� +
√

3 cos� (3.46b)

C� = − cos� +
√

3 sin� (3.46c)

D� = sin� +
√

3 cos� (3.46d)

The linearized version of the nonlinear equations in Eq. (3.45) comes from expanding in a

Taylor series about the equilibrium states given in Eq. (3.20). Both the roll and pitch equa-

tions of motion are linearized about small roll and pitch angles respectively. The separation

distance equations of motion are linearized about small variations in �L as well as small

variations in the product charge term �Q defined as in Eq. (3.22). Mission requirements

determine the reference separation length Lref, and, Qref is determined from the following

constraint on a particular choice of Lref

Qref = −3

4
�EQRE1Ω2L

3
ref

kc

m1m2

m1 +m2

(3.47)

where

�EQRE1 = 1 + 2 sin2 � +
√

3 sin 2� (1− 2�) (3.48)

Performing the necessary linearizations yields

�̈ + (1 +
3

4
�EQRE1)Ω2� = 0 (3.49a)

 ̈ +
2Ω

Lref

�L̇− 3

2
�EQRE3Ω2  = 0 (3.49b)

�L̈− 2ΩLref ̇ −
9

4
�EQRE1Ω2�L− 3

2
Lref �EQRE2Ω2  − (

kc
m1

1

L2
ref

m1 +m2

m2

)�Q = 0 (3.49c)
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with

�EQRE2 =
√

3 cos 2� (1− 2�) + sin 2� (3.50)

�EQRE3 =
√

3 sin 2� (2� − 1) + cos 2� (3.51)

Thus, Eqs. (3.49a) and (3.49b) represent the linearized attitude dynamics of the Coulomb

tether body frame ℬ and Eq. (3.49c) represents the linearized separation distance differential

equation about the static nadir reference configuration at a triangular libration point. As op-

posed to the collinear solution, the  term here is a new component; however, due to the quite

small value of �EQRE2 = −2.0405× 10−4 at L4, its effect is negligible on the separation dis-

tance differential equation. Furthermore, since �EQRE1 = 3.963662 and �EQRE3 = −1.963662

, the dynamics at L4 become very similar to those found in Reference 5 for an orbit radial

2-craft formation at GEO. Hence, the stability behaviour should be approximately the same

as that observed in Reference 5.

3.2.2 Charge Feedback Control

Using the proportional-derivative feedback control of �L from Eq.(3.24), the orbit rate Ω

independent linearized equations of motion for a two-craft Coulomb tether formation at the

triangular libration point L4 are given by

�
′′

+ (1 +
3

4
�EQRE1)� = 0 (3.52a)

 
′′

+
2

Lref

�L
′ − 3

2
�EQRE3  = 0 (3.52b)

�L
′′

+ C̃2 �L
′ − (2Lref) 

′ − (
3

2
Lref �EQRE2 ) − (

9

4
�EQRE1 − C̃1)�L = 0 (3.52c)

where C̃2 = C2

Ω
and C̃1 = C1

Ω2 are non-dimensionalized feedback gains. Routh-Hurwitz stabil-

ity criteria can be used to fine tune these gain values that satisfy the stability requirements.
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The characteristic equation for the coupled �L and  equation is

�4 + C̃2�
3 + (C̃1 + 4− 3

2
�EQRE3 −

9

4
�EQRE1)�2 + (3�EQRE2 −

3

2
�EQRE3C̃2)�

+
3

2
�EQRE3(

9

4
�EQRE1 − C̃1) = 0

(3.53)

Roots of this equation should have negative real parts for asymptotic stability. A Routh

table allows one to determine the following necessary constraints on the gains C̃1 and C̃2

that ensures all roots have negative real parts

C̃1 >
9

4
�EQRE1 (3.54a)

C̃2 > 0 (3.54b)

To fix the gain values that satisfy the stability criteria in Eq. (3.54), near ideal damping

conditions are assumed. Let the scaling factors n and � be positive and real, allowing the

gains to be rewritten as

C̃1 = n >
9

4
�EQRE1 (3.55a)

C̃2 = �

√
n− 9

4
�EQRE1 (3.55b)

Following the same line of reasoning discussed for collinear libration points earlier and

studying the root locus plots for the coupled equations where the n and � parameters are

varied, n = 11.71 ensures good rates of convergence for all the modes and � = 2.22 provides

effective damping for the modes. The optimal root locus plot is shown in Figure 3.8.

3.2.3 Numerical Simulation

Except for the parameters listed in Table 3.2, the remaining simulation parameter values

used are shown in Table 3.1. The parameter n = 11.71 for L4 is obtained from the root locus

plot analysis. The gains C̃1 and C̃2 computed from Eq. (3.55) satisfy the stability criteria in

Eq. (3.54) and also yield effective damping. Integrating the linearized equations of motion in

Eq. (3.52) simulates the two-craft Coulomb tether performance at L4. This is then compared



65

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

Student Version of MATLAB

Figure 3.8: Root-Locus Plot of the Linearized Differential Equations at L4 for gain � = 2.22

Table 3.2: Input Parameters Used in the Simulation for L4

Parameter Value Units

Qref −0.002745 �C2

n 11.71
� 2.22

�EQRE1 3.963662
�EQRE2 −2.0405× 10−4

�EQRE3 −1.963662

with the results obtained from integrating the non-linear equations of motion in Eq. (3.45).

Figure 3.9(a) illustrates the Coulomb tether motion with the proportional-derivative charge

feedback law. Both the yaw motion  and the separation distance deviation �L converge

to zero. Therefore, stabilizing the separation distance to zero also stabilized the in-plane

rotation angle after about 1 orbit; and the uncoupled roll motion � is a stable sinusoid as

expected. Furthermore, Figure 3.9(a) shows that the non-linear simulation plotted as dashed

lines closely follows the linearized simulation; whereas the �L states asymptotically converge

to zero in the linearized simulation, they reach steady state oscillations in the non-linear

simulation. The reasons for this notable difference are already explained in numerical simu-

lation part of section 3.1 Despite this difference, the non-linear and linear simulation results

compare very well, thus justifying the linearization assumptions used. Figure 3.9(b) shows
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Figure 3.9: Simulation Results from Integrating the Linearized and Nonlinear Equations of
Motion at L4

the spacecraft control charge q1 usage for both linear and non-linear simulation formulations.

The charge results for both converge to the static equilibrium reference value q1r. The control

charges required for L4 are less than those of L2, which are on the order of micro-Coulombs

and can easily be implemented in practice using charge emission devices.

3.3 Differential Solar Perturbation

Differential solar drag is the largest disturbance acting on a tether formation at GEO and

at libration points (Sun-Earth or Earth-Moon).7,48 For example, on a typical micro-craft in

Earth orbit the maximum solar torque magnitude of about 10−5 Nm is essentially constant
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with orbit altitude.51 The gravity gradient torque is inversely proportional to the orbit

radius cubed, but in low orbits has a maximum magnitude on the order of solar torque, and

above an altitude of about 20,000 kilometers it becomes relatively insignificant (less than

1%).51 Therefore, at libration point distances, in the presence of a differential solar drag

on the formation, the gravity gradient torques may no longer be sufficient to stabilize the

in-plane motion of a 2-craft virtual Coulomb structure in the radial equilibrium position.

Moreover, in the presence of differential solar drag on a two craft Coulomb formation in

circular orbits, Reference 5 shows that the states are bounded with the charge feedback

law. These limitations motivate to study the nonlinear dynamics and stability analysis of an

orbit-radial two-craft Coulomb formation about circular orbits and at Earth-Moon libration

points.

References 54 and 55 use a Lyapunov approach for tether deployment and retrieval in

circular orbits. In their study, tether mass and flexibility, solar radiation pressure as well as

aerodynamic effects are neglected. The Lyapunov feedback control method use a Lyapunov

function based on a first integral of motion of the dynamical system. The control laws are

simple and utilize tether tension control as well as out-of-plane thrusting. In this section,

a similar approach is taken to stabilize the formation shape and size in circular orbits and

at the libration points in the presence of differential solar radiation pressure affects. The

goal is to design a generic Lyapunov feedback controller that can withstand differential solar

perturbation effects and to asymptotically stabilize an orbit radial 2-craft Coulomb struc-

ture about circular orbits and collinear libration points. The environmental torques due

to gravity gradient forces and solar radiation pressure affects at GEO and at Earth-Moon

libration points are discussed. Of interest is to study if the gravity gradient forces on a radial

equilibrium two-craft Coulomb tether formation are sufficient to withstand the differential

solar drag affects. Numerical results show the gravity gradient and differential solar drag

force magnitudes on the formation. Finally, a generic controller is designed that can with-

stand differential solar perturbation effects in orbit radial configuration about circular orbits

and at Earth-Moon collinear libration points. Numerical simulations validate the Lyapunov

controller performance.
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3.3.1 Environmental Torques - GEO and Libration Points

This section discusses environmental torques due to gravity gradient and solar radiation

pressure effects on a two-craft formation. The gravity gradient torque expressions and solar

radiation pressure models at GEO and at Earth-Moon libration points are presented. To

study whether the gravity gradient forces on a radial equilibrium two-craft Coulomb tether

formation are sufficient to withstand the solar drag affects, the magnitudes of gravity gradient

forces at GEO heights and libration point distances are compared against the differential solar

drag forces on the formation. Numerical results show the gravity gradient and differential

solar drag force magnitudes on the formation at GEO and at Earth-Moon libration points.

3.3.1.1 Gravity Gradient Torques

The gravity gradient torque expression at GEO is obtained from14

ℬLG =

⎡⎢⎢⎢⎣
LG1

LG2

LG3

⎤⎥⎥⎥⎦ =
3GMe

r5
c

⎡⎢⎢⎢⎣
rc2rc3(I33 − I22)

rc1rc3(I11 − I33)

rc1rc2(I22 − I11)

⎤⎥⎥⎥⎦ (3.56)

where rc1, rc2 and rc3 are the ℬ frame components of a two-craft formation center of mass

position vector rc in GEO. G is the gravity constant and Me is the mass of the planet Earth.

The body frame inertia matrix of a two-craft formation in radial equilibrium is5

ℬ[I] =

⎡⎢⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎥⎦ (3.57)

where I = m1m2

m1+m2
L2 and m1, m2 are the masses of the two spacecraft.

Using Eq. (3.56), the gravity gradient torque of a radial equilibrium two-craft Coulomb
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tether formation at GEO becomes

ℬLG = 3Ω2

⎡⎢⎢⎢⎣
0

−Icos � sin � cos2  

−Icos � cos sin 

⎤⎥⎥⎥⎦ (3.58)

where Ω2 = �
r3c

with � = GMe.

Similarly, the gravity gradient torque expression at libration points is

ℬLG =

⎡⎢⎢⎢⎣
LG1

LG2

LG3

⎤⎥⎥⎥⎦ =
3GM1

r5
c

⎡⎢⎢⎢⎣
rc2rc3(I33 − I22)

rc1rc3(I11 − I33)

rc1rc2(I22 − I11)

⎤⎥⎥⎥⎦+
3GM2

r′c
5

⎡⎢⎢⎢⎣
r
′
c2r

′
c3(I33 − I22)

r
′
c1r

′
c3(I11 − I33)

r
′
c1r

′
c2(I22 − I11)

⎤⎥⎥⎥⎦ (3.59)

where rc1, rc2, rc3 and r
′
c1, r

′
c2 and r

′
c3 are the ℬ frame components of a two-craft formation

center of mass position vectors rc and r
′
c at a collinear libration point from the two primaries

in the plane.

Using Eq. (3.59), the gravity gradient torque of a radial equilibrium two-craft Coulomb

tether formation at a collinear libration point becomes

ℬLG = 3(Ω2
1 + Ω2

2)

⎡⎢⎢⎢⎣
0

−Icos � sin � cos2  

−Icos � cos sin 

⎤⎥⎥⎥⎦ (3.60)

where Ω2
1 = �1

r3c
and Ω2

1 = �2

r′c
3 with �1 = GM1 and �2 = GM2.

3.3.1.2 Solar Radiation Pressure (SRP)

At GEO, the inertial acceleration vector aSRP in m/s2 due to the effects of solar radiation

pressure (SRP) is given as5,50

aSRP = −CrAF
mc

r

∥r∥3 (3.61)
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where aSRP is the inertial position vector from the sun to the orbiting planet in AU, m is

the mass of the spacecraft in kg, and A is the cross-sectional area of the spacecraft that is

facing the sun in m2. The constant F = 1372.5398 Watts/m2 is the solar radiation flux, c =

299792458 m/s is the speed of light, and Cr = 1.3 is the radiation pressure coefficient. To

m1

m2

i

k

°23 ’27

Sun

Figure 3.10: Sun’s Position and the Orientation of the Cylindrical Craft

compare the results at GEO from Reference 5, as shown in Figure 3.10, the craft are modeled

as cylinders of radius 0.5 m, height of 1 m and mass of 150 kg. For craft 1, the cylindrical

surface with a square cross-sectional area of 1 m2 is constantly facing the sun, whereas for

craft 2, it is the top of the cylinder with circular cross-sectional of 0.25� m2 that is facing

the sun.

In the Earth-Moon system, the solar radiation pressure model is much different from

that of the GEO environment. In the vicinity of the collinear libration points, the sun

lines are treated as parallel lines. In order to describe the relative motion of the satellite

with respect to the formation center of mass, a rotating Hill orbit frame O : {ôr, ô�, ôℎ}

whose origin coincides with the L2 libration point is chosen as shown in Figure 3.11. This

rotating coordinate system orbits the Earth-Moon barycenterO with constant orbital angular

velocity Ω. In addition, the Earth-Moon system orbits the Sun with an angular velocity of

ΩB. Consequently, the incident Sun line rotates in the orbit frame with a net angular velocity

of !s = Ω− ΩB. A notable difference in the Earth-Moon system is that the direction of the
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incident sun line s will vary continuously with respect to the O frame as

s = [cos(!st),− sin(!st), 0] (3.62)

oè or

Sun

Moon

Earth

aSRP

Incident Sun line

WB

W

ãL2

O

s

Figure 3.11: Solar Radiation Pressure in the Vicinity of L2

The solar torque on each craft depends on the orientation of the craft-normal relative to

the orbit frame. The orientation of each craft with respect to the orbit frame is defined in

terms of a cone angle � and a clock angle , as shown in Figure 3.12.50,52 For this study, the

cone and clock angles (�, ) for each craft are fixed.

Therefore, the components of aSRP for a craft in the Earth-Moon orbit frame are given

by50,52

aSRPre = aSRPmax cos2  cos(!st− ) (3.63a)

aSRPat = −aSRPmax cos2  sin(!st− ) sin � (3.63b)

aSRPon = aSRPmax cos2  sin(!st− ) cos � (3.63c)

where aSRPmax = ∣aSRP∣, aSRPre is the component in orbit radial direction, aSRPat is in the

direction of orbital velocity (along-track), and the component aSRPon is in the orbit normal
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Figure 3.12: Cone and Clock Angles of the Craft-normal relative to the Orbit Frame

direction. Eqs. (3.63) show that the SRP acceleration in the Earth-Moon system is periodic

and time varying.

3.3.1.3 Numerical Simulation

The solar drag and gravity gradient force magnitudes for nominal conditions are illustrated

in the following numerical simulation. The simulation parameters and the values used are

listed in Table 3.1.

Figure 3.13(a) shows the time histories of gravity gradient forces and differential solar

drag on a two-craft formation in the GEO environment. For the nominal separation distance,

the gravity gradient force is computed from the torque expression in Eq. (3.56) and the

differential solar drag force is computed using Eq. (3.61). For craft 1, a square cross-sectional

area of 1 m2 is constantly facing the sun, and, for craft 2, the circular cross-sectional of area

of 0.25� m2 is facing the sun. It clearly shows that the gravity gradient forces are sufficient to

withstand the solar drag in the GEO environment. The results in Figure 3.13(b) are obtained

by fixing the craft 1 cross-sectional area and varying the craft 2 cross-sectional area from 1

m2 to 2 m2. These results indicate that even after increasing the solar drag, the combination

of the maximum gravity gradient force and the reference Coulomb force magnitude obtained



73

from Eq. (3.21) are sufficient to stabilize the formation.
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Figure 3.13: Radial Equilibrium Simulation Results at GEO for Nominal Initial Conditions

Figure 3.14(a) shows the time histories of gravity gradient forces and differential solar

drag for a two-craft formation at the Earth-Moon L2 libration point environment. It clearly

shows that the gravity gradient forces are very weak, and thus cannot withstand the solar

drag at L2. The results in Figure 3.14(b) also indicate that the maximum gravity gradient

force magnitude and the reference Coulomb force magnitude on each craft are not sufficient

for stabilizing the formation. Therefore, unless equal sunlit surface areas of the two-craft are

assumed such that the differential solar drag is zero, the charged feedback control law used

in Reference 46 will not be able to stabilize the two-craft formation at the libration points.

Consequently, for unequal sunlit surface areas of the two-craft a full state feedback control is

required that uses larger Coulomb forces in the longitudinal direction and electric propulsion

thrusters for transverse control.

3.3.2 Lyapunov Feedback Control

A generic controller is designed in this section that can withstand differential solar perturba-

tion for orbit radial configuration about circular orbits and at Earth-Moon collinear libration

points. Numerical simulations are shown to validate the controller performance.
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Figure 3.14: Radial Equilibrium Simulation Results at Earth-Moon L2 for Nominal Initial
Conditions

3.3.2.1 Feedback Control Development

Lyapunov’s second method is used to develop a feedback control law for stabilizing a radial

equilibrium two-craft Coulomb tether formation in the presence of time varying solar radia-

tion pressure disturbances. Because the kinetic energy in Eqs. (3.8) and (3.9) is not just a

quadratic function of the velocities, the Hamiltonian takes the form53

ℋ̂ = T2 − T0 + Vg (3.64)

where

T2 =
1

2
m1(ẋ2

1 + ẏ2
1 + ż2

1) +
1

2
m2(ẋ2

2 + ẏ2
2 + ż2

2) (3.65a)

T0 =
Ω2

2
[m1(y2

1 + (x1 + rc)
2) +m2(y2

2 + (x2 + rc)
2)] (3.65b)

and Vg is given by the Eq. (3.11).

Since the Lagrangian does not contain time explicitly, it follows that the Hamiltonian

is constant. Therefore, the two-craft Coulomb tether formation possesses a Jacobi integral

in place of the energy integral as a constant of motion. The nondimensional ℋ̂ in body
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coordinates is written as

ℋ̂ =
1

2
(l

′2
+ l2( 

′2
cos2 � + 3� cos2 � sin2  + �

′2
+ (1 + 3�) sin2 � − (1 + 2�)) (3.66)

where � is a positive constant that depends on the collinear Lagrangian point chosen. For

”� = 1”, the equation turns out to be the same equation that was found in Reference 54 for

circular Earth orbits. References 54 and 55 use the Hamiltonian as a Lyapunov function for

stability analysis. Before the Hamiltonian is used as a Lyapunov function at libration points,

its positive definiteness must be ascertained. Based on the constant of motion in Eq. (3.66),

a Lyapunov function Vlyp is defined as

Vlyp =
1

2
(l

′2
+ K̃1(l − lf )2 + (K̃2 + l2)( 

′2
cos2 � + 3� cos2 � sin2  

+ �
′2

+ (1 + 3�) sin2 �))

(3.67)

where lf > 0 is the desired final value of l, K̃1 is a positive constant and K̃2 can either be

positive or zero. Vlyp is clearly positive definite, and Vlyp = 0 at the local radial equilibrium

conditions in Eq. (3.20). Assuming fdl, fd and fd� to be the non-dimensional differential

solar perturbations, the time derivative of Vlyp is

V
′

lyp = l
′
((1 + 2�)l − ul − fdl + K̃1(l − lf ))− 2

K̃2

l
( 

′
(1 +  

′
)cos2 � + �

′2
)

+ �
′
(K̃2 + l2)(

u�
l

+
fd�
l

) +  
′
(K̃2 + l2)(

u 
l

+
fd 
l

)

(3.68)

where ul, u and u� are the non-dimensional control variables. The control variable ul is

associated with Coulomb propulsion acting in the longitudinal direction, and u and u� act

in the transverse directions. Moreover, u and u� could utilize electric propulsion for inertial

thrusting along these directions.
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The following control laws for ul, u and u� can be selected

ul = (1 + 2�)l + K̃1(l − lf )− 2
K̃2

l
( 

′
(1 +  

′
)cos2 � + �

′2
) + K̃3l

′ − fdl (3.69a)

u = −K̃5l 
′ − fd (3.69b)

u� = −K̃4l�
′ − fd� (3.69c)

where K̃3, K̃4 and K̃5 are positive constants.

Using these control laws, Eq. (3.68) leads to

V
′

lyp = −K̃3l
′2 − (K̃2 + l2)(K̃4�

′2
+ K̃5 

′2
) (3.70)

Proper choice of the gains guarantees the stability of the closed-loop system.

Substituting the control laws from Eq. (3.69) into the dynamics (Eqs. 3.17, 3.18), the

closed-loop system of equations thus obtained are

�
′′

+ 2
l
′

l
�
′
+ cos � sin �((1 +  

′
)2 + 3� cos2  ) + K̃4�

′
= 0 (3.71a)

 
′′
cos2 � + 2 cos �(

l
′

l
cos � − �′

sin �)(1 +  
′
) + 3�cos2 � cos sin + K̃5  

′
= 0 (3.71b)

l
′′ − l(�′2

+ (1 +  
′
)2 cos2 � − �(1− 3 cos2 � cos2  )) + (1 + 2�)l + K̃1(l − lf )

− 2K̃2

l
( 

′
(1 +  

′
)cos2 � + �

′2
) + K̃3l

′
= 0 (3.71c)

These closed-loop system of equations can be used for three dimensional control of a 2-craft

virtual Coulomb structure about circular orbits and at Earth-Moon libration points. Fur-

thermore, they can be used either for station-keeping or for 2-craft expansion and contraction

reconfigurations.

3.3.2.2 Numerical Simulation

Based on Lyapunov feedback control design, the performance and stability of a 25m Coulomb

virtual tether formation at the Earth-Moon L2 is illustrated in the following numerical sim-

ulation. The same spacecraft parameters and nominal separation distance are used as in
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Table 3.1. Figure 3.15(a) shows the Coulomb tether motion with the Lyapunov feedback law

in Eq. (3.69) for gain settings K̃1 = 2, K̃2 = 0, K̃3 = 4, K̃4 = 2 and K̃5 = 2. The in-plane

pitch motion  , out-of-plane motion �, and the separation distance deviation �L converged to

zero. The attitude motion converged in less than 0.5 orbits, whereas, the separation distance

converged in about 1.3 orbits.

Figure 3.15(b) illustrates the spacecraft control charge q1 usage for the non-linear sim-

ulation. Because the solar drag perturbations on the two-craft formation exhibit cyclic be-

haviour as shown in Figure 3.15(c), the charge results depicted in Figure 3.15(b) also exhibit

the cyclic nature and do not converge to the static equilibrium reference value q1r. Fur-

thermore, the micro-Coulomb charge requirements are easily realizable in practice. Figure

3.15(d) illustrates the Coulomb force utilization for longitudinal control and inertial thrusters

usage for in-plane and out-of-plane control. Therefore, Coulomb control and transverse con-

trol (micro-thrusters) forces are on the order of micro-Newtons. Transverse control can be

implemented either using Colloid or PPT micro-thrusters.

3.4 Summary

The feasibility of a two-craft Coulomb tether concept is studied at libration points for orbit-

radial equilibrium. The new two-craft dynamics at the libration points is provided as a

general framework in which circular Earth orbit dynamics form a special case. The general

equations of motion for collinear libration points has a � parameter which varies for each

collinear libration point. Interestingly, setting ”� = 1” yields the same equations of motion

for orbit-radial equilibrium in Earth circular orbits. For the triangular libration points,

there is an additional  term in equations of motion; however, the coefficient of this  term

is very small. Although the orbit-radial dynamics at libration points are slightly different

than those found in Reference 5 for an orbit radial 2-craft formation at GEO, the stability

conditions are similar. At libration points, the out-of-plane motion is marginally stable and

decoupled from the in-plane motion. The in-plane motion is stabilized using only separation

distance measurements (computing rates). A linearized charge feedback law stabilizes the

separation distance using Coulomb force and exploits the gravity gradient torque due to the
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Figure 3.15: Radial Equilibrium Nonlinear Control Simulation Results at L2

two primaries for stabilizing the in-plane attitude motion. Also, a full-state feedback linear

quadratic regulator meets variable mission requirements (i.e stabilizing the formation within

a given time). Numerical simulations at L2 and L4 with the charge feedback law show that

the formation stabilized faster at L4 (within 1 orbit) than at L2 (1.3 orbits). This is perhaps

due to the unstable nature of the collinear libration point causing a slow stabilization of the

formation. Also, due to the large distances from the Earth-Moon barycenter to the libration

points and due to the smaller rotation rate of the barycenter, the micro-Coulomb charge

requirements at the libration points is at least an order of magnitude smaller compared to

that of a two-body system in Reference 5.

However, the charge feedback law assumes that the two-craft areas exposed to sunlight

are equal such that the differential solar radiation pressure is zero. If the two craft sunlit

areas are not equal, the assumption is that the two craft are oriented independently to keep
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the differential SRP to zero. Consequently, when the differential solar drag on the two-craft

formation is not zero and in the presence of time varying SRP disturbances, a Lyapunov

feedback control method is presented for feedback stabilization of a radial equilibrium two-

craft Coulomb tether formation about circular orbits and at libration points. The method

uses a Lyapunov function based on a first integral of motion of the two-craft Coulomb

formation. The controller designed using this method works very well and the control law

utilizes a three-dimensional control (separation distance, in-plane and out-of-plane motion).

The Lyapunov feedback control law obtained has a � parameter which varies for each collinear

libration point. Interestingly, setting ”� = 1” yields a control law for orbit-radial equilibrium

in Earth circular orbits. Therefore, the Lyapunov control law at the libration points is

provided as a generic control law in which circular Earth orbit control forms a special case.

At the Earth-Moon L2 simulations, it is recommended that the control gains be chosen such

that the pitch and roll angles do not exceed 90 degrees. This will ensure that undesirable

equilibrium points are not reached. Depending on the desired final separation distance

between the craft, the gains for the Coulomb propulsion control law should be appropriately

adjusted.
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Chapter 4

HYBRID CONTROL OF ALONG-TRACK AND ORBIT
NORMAL TWO-CRAFT COULOMB FORMATION AT

LIBRATION POINTS

The previous chapter investigates the linearized orbit radial dynamics and stability analy-

sis of a 2-craft virtual Coulomb structure at Earth-Moon libration points. A charge feedback

law is used to stabilize a charged spacecraft cluster to a specific shape and orientation. Such

an active charge feedback control is developed utilizing the differential gravity field effect due

to Earth-Moon on a Coulomb tethered two-spacecraft system. The stability characteristics

of such a formation are similar to that of an orbital rigid body motion moving in the presence

of two celestial objects. With this control, the spacecraft separation distance is maintained

at a fixed value, while the coupled gravity gradient torques on the formation due to the two

celestial objects are exploited to stabilize the tether attitude about the orbit radial direction.

For the Coulomb tether regulation problem in the previous chapter, the charge feedback law

assumes that the two-craft sunlit areas are equal such that the differential solar radiation

pressure is zero. With this assumption, the feedback control law guarantees asymptotic sta-

bility for separation distance and in-plane angle. This asymptotic stability is achieved by

exploiting the charged relative motion of the spacecraft and varying the 2-craft separation

distance. Controlling the separation distance stabilizes the in-plane rotation angle; however,

the spacecraft charge control law does not affect the out-of-plane rotational motion. Also,

the new two-craft dynamics at the libration points provide a general framework in which

circular Earth orbit dynamics form a special case. If the two-craft sunlit areas are not equal,

and in the presence of time varying SRP disturbances, a Lyapunov feedback control method

is presented for stabilizing a radial equilibrium two-craft Coulomb formation at L2.

Apart from the orbit-radial equilibrium, Reference 45 presents two other relative equilib-

ria of the charged 2-craft problem at libration points. These equilibria are in the along-track
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direction and in the orbit normal direction as shown in Figure 4.1. Interestingly, in the

restricted three-body system, a tether force is required for the along-track equilibrium, how-

ever, no force is necessary in the restricted two-body system. Therefore, at libration points,

nonzero tension is required between the two crafts in the along-track direction to main-

tain the static unperturbed formation. On the other hand, repulsive forces are required for

maintaining the cluster along the orbit normal direction at libration points.
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Figure 4.1: Along-track and Orbit Normal Relative Equilibria at Libration Points

This chapter studies the stability of a two-craft formation about along-track and orbit

normal relative equilibrium configurations at Earth-Moon libration points. The assumption

is that the two craft sunlit areas are equal such that the differential solar radiation pressure on

the formation is zero. Along the orbit radial direction, while the charged two-craft formation

could stabilize the cluster using only Coulomb forces, this chapter studies a hybrid feedback
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control strategy in which both conventional inertial thrusters and Coulomb forces are used.

The methodology is similar to that introduced in Reference 5 for circular Earth GEO orbits.

The goal is to use the electric propulsion thrusters as little as possible while maximizing the

Coulomb force usage. The control strategy is designed such that the thruster is never directed

at the 2nd craft such that the thruster exhaust plume impingement issues on the neighboring

craft are avoided. The formation is studied at libration points where the Debye lengths are

reasonable enough to consider Coulomb spacecraft missions. Numerical simulations using a

charge feedback law are presented at both a collinear and a triangular libration point. If

the two-craft sunlit areas are not equal, the assumption is that the two craft are oriented

independently to keep the differential SRP to zero.

4.1 Linear Dynamics and Stability Analysis - Collinear Libration Points

4.1.1 Charged Relative Equations of Motion

4.1.1.1 Along-Track Configuration

This section derives the equations of motion of a 2-craft Coulomb tether that is nominally

aligned with the along-track direction ô� of a rotating Hill orbit frame O : {ôr, ô�, ôℎ} whose

origin coincides with L2 libration point as shown in Figure 4.2. This derivation closely follows

the derivation of the equations of motion for craft aligned along the orbit radial direction,

which is given in detail in Reference 46.

Figure 4.3 illustrates a static two-craft formation in the orbit velocity direction with a

separation distance of Lref.

The non-linear equations of motion are deduced from the Lagrangian ℒ = T − (Vg + Vc)

of the system in the following form

d

dt

∂ℒ
∂q̇i
− ∂ℒ
∂qi

= Qi (4.1)

qi = (�,  , L) (i = 1 . . . 3)

where Qi is the generalized force in the qith degree of freedom excluding gravitational effects.

For the circularly restricted three-body system, the nonlinear equations governing the yaw
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angle � out of the orbital plane, the pitch angle  in the orbital plane, and the separation

distance L become

�̈+ 2�̇
L̇

L
+ cos� sin�(( ̇ + Ω)2 + 3Ω2� sin2  ) = 0 (4.2a)

 ̈ − 2( ̇ + Ω)(�̇ tan�− L̇

L
)− 3Ω2� sin cos = 0 (4.2b)

L̈− L(�̇2 + ( ̇ + Ω)2 cos2 �+ Ω2�(3 cos2 � cos2  − 1)) +
kc
m1

Q
1

L2

m1 +m2

m2

= 0 (4.2c)
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where Q = q1q2, � = M2

M1+M2
, 1− � = M1

M1+M2
and

� =
1− �
∣ rx0
d

+ �∣3
+

�

∣ rx0
d
− 1 + �∣3

> 0 (4.3)

is a positive constant that depends on the collinear Lagrangian point chosen. The equations

of motion in Eq. (4.2) are coupled non-linear ordinary differential equations that define the

motion of a two-craft Coulomb formation in along-track direction at any of the three collinear

Lagrangian points.

If the two-craft formation is aligned in the along-track direction, the formation remains

statically fixed relative to the rotating orbiting frame O provided the non-linear equations

Eq. (4.2) satisfy the following along-track equilibrium conditions

� = �̇ = �̈ =  =  ̇ =  ̈ = L̇ = L̈ = 0 and L = Lref (4.4)

Eq. (4.2c) provides the nominal product of charges Qref = q1q2 needed to achieve this static

Coulomb formation as

Qref = (� − 1) Ω2L
3

kc

m1m2

m1 +m2

(4.5)

Thus, the satellites appear frozen with respect to the rotating frame when the charge product

Qref satisfies Eq. (4.5). Since the charge product term is positive it implies that the spacecraft

charges will have same charge signs and also, an infinite number of charge pairs can satisfy

Qref = q1q2. In this study, the charge magnitudes are set equal.

The linearized version of the nonlinear equations Eq. (4.2) are obtained by applying a

Taylor series expansion about the equilibrium states given in Eq. (4.4). Both the yaw and

pitch equations of motion are linearized about small yaw and pitch angles respectively. The

separation distance equations of motion are linearized about small variations in �L as well
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as about small variations in the product charge term �Q as follows

L = Lref + �L (4.6a)

Q = Qref + �Q (4.6b)

where mission requirements determine the reference separation length Lref, and Qref is

determined through the constraint Eq. (4.5) for a particular choice of Lref. Performing the

necessary linearizations yields

�̈+ Ω2� = 0 (4.7a)

 ̈ +
2Ω

Lref

�L̇− 3Ω2� = 0 (4.7b)

�L̈− 2ΩLref ̇ − 3Ω2(1− �)�L−
( kc
m1

1

L2
ref

m1 +m2

m2

)
�Q = 0 (4.7c)

Thus, Eqs. (4.7a) and (4.7b) are the linearized attitude dynamics of the Coulomb tether

body frame ℬ and Eq. (4.7c) is the linearized separation distance differential equation about

the along-track reference configuration at a collinear libration point. It is inferred from these

equations that the out-of-plane motion �(t) is uncoupled from the in-plane motion ( (t) and

�L(t)) and is analogous to that of a marginally stable linear oscillator because of the gravity

gradient torques due to the two planets.

4.1.1.2 Orbit Normal Configuration

The derivation of the equations of motion for a two-craft Coulomb tether along orbit nor-

mal direction follow the same steps as those of the along-track equilibrium. The nonlinear

equations governing the yaw angle � and the roll angle � out of the orbital plane and the
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separation distance L become

�̈+ 2
L̇

L
(�̇− Ω sin �)− 1

4
((Ω2 cos 2� + Ω2 − 2�̇2 − 6Ω2� sin2 �) sin 2�

+ 4Ω�̇ cos � cos 2�+ 4Ω�̇ cos �) = 0 (4.8a)

�̈ + 2
L̇

L
(�̇ + Ω cos � tan�)− 1

2
Ω2 sin 2� + Ω�̇ cos � sec2 �− 3

2
Ω2� sin 2�

− 2�̇�̇ tan�+ Ω�̇ cos � cos 2� sec2 � = 0 (4.8b)

L̈− L

4
(3Ω2 + 2�̇2 + 4�̇2 − 2Ω2 cos 2� cos2 �− (Ω2 − 2�̇2) cos 2�− 8Ω�̇ sin �

+ 4Ω�̇ cos � sin 2�− 4Ω2�(1− 3 cos2 � sin2 �)) +
kc
m1

Q
1

L2

m1 +m2

m2

= 0 (4.8c)

where Q = q1q2 and � is a positive constant as defined in Eq. (4.3) that depends on the

collinear Lagrangian point chosen. The equations of motion in Eq. (4.8) are coupled non-

linear ordinary differential equations that define the motion of a two-craft Coulomb formation

along orbit normal direction at any of the three collinear Lagrangian points.

If the two-craft formation is aligned in orbit normal direction, the formation remains

statically fixed relative to the rotating orbiting frame O provided the non-linear equations

Eq. (4.8) satisfy the following orbit normal equilibrium conditions

� = �̇ = �̈ = � = �̇ = �̈ = L̇ = L̈ = 0 and L = Lref (4.9)

Eq. (4.8c) provides the nominal product of charges Qref = q1q2 needed to achieve this static

Coulomb formation as

Qref = �Ω2L
3

kc

m1m2

m1 +m2

(4.10)

Thus, the satellites appear frozen with respect to the rotating frame when the charge prod-

uct Qref satisfies Eq. (4.10). Since the charge product term is positive it implies that the

spacecraft charges will have same charge signs and also, an infinite number of charge pairs

can satisfy Qref = q1q2. In this study, the charge magnitudes are set equal.

Mission requirements determine the reference separation length Lref, and Qref is deter-
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mined through the constraint Eq. (4.10) for a particular choice of Lref. Performing the

necessary linearizations yields

�̈− Ω2�− 2Ω�̇ = 0 (4.11a)

�̈ − (1 + 3�)Ω2� + 2Ω�̇ = 0 (4.11b)

�L̈+ 3�Ω2�L−
( kc
m1

1

L2
ref

m1 +m2

m2

)
�Q = 0 (4.11c)

Thus, Eqs. (4.11a) and (4.11b) are the linearized attitude dynamics of the Coulomb tether

body frame ℬ and Eq. (4.11c) is the linearized separation distance differential equation about

the orbit normal reference configuration at a collinear libration point. Note both the out-of-

plane angles �(t) and �(t) are coupled, while the charged separation distance error dynamics

is uncoupled in this linearized formulation. Also, one can observe from Eq. (4.11c) that

the separation distance error (�L(t)) is already marginally stable even without any feedback

control through the charge product error term (�Q(t)).

Interestingly, for along-track and orbit normal reference configurations, for ”� = 1”, the

Eqs. (4.7) and (4.11) turn out to be the same equations that were found in Reference 5 at

GEO. Thus, the linearized equations of motion for small motions about along-track equilibria

in Eqs. (4.7) and about orbit normal equilibria in Eqs. (4.11) form a general framework that

covers both circular GEO and collinear libration point departure motion. By changing the

constant � either motion is described. Furthermore, in Eq. (4.7c) the stiffness term on �L is

the only difference in the separation distance differential equation from Reference 5. Thus,

the equations of motion are slightly different at a collinear libration point, but no significant

changes in the stability behavior are expected. And, note that Eq. (4.7c) for along-track

and Eq. (4.11c) for orbit normal reference configurations provide the necessary relationship

between the change in relative separation of the satellites �L and the additional charge

product �Q required.



88

4.1.2 Hybrid Feedback Control Development

Under the influence of external disturbances, the two-craft formation deviates from the

desired equilibrium configuration. Because the deviations from the desired equilibrium con-

figuration are small, linear control design techniques are used to stabilize the motion without

exceeding the charge requirements.

4.1.2.1 Along-Track Configuration

In this section, the stability of the linearized along-track equations of motion given by

Eq. (4.7) is investigated and a hybrid feedback control law that stabilizes the system is

developed. It is clear from Eq. (4.7) that the out-of-plane angle � is decoupled from the in-

plane angle  and separation distance error �L. On the other hand, Eqs. (4.7b) and (4.7c) are

the coupled in-plane angle  and separation distance error �L equations of motion. There-

fore the in-plane motion can be controlled with Coulomb forces using a partial-state charge

feedback control defining the small charge product variation with a proportional-derivative

feedback control of small separation distances. The Coulomb force acts along the relative

position vector due to the charges of each craft and thus, these Coulomb charges can be used

to control the spacecraft separation distance. A proportional-derivative feedback control of

�L is designed by defining5

�Q =
m1m2L

2
ref

(m1 +m2) kc
(−C1�L− C2�L̇) (4.12)

Substituting this expression for �Q in Eq. (4.7c), the closed-loop separation distance dy-

namics become

�L̈+ (C1 − 3(1− �)Ω2)�L+ C2�L̇− (2ΩLref) ̇ = 0 (4.13)

Since the �L differential equation does not involve a �L̇ damping term, the derivative

feedback is essential for asymptotic convergence. A procedure similar to that used in Refer-

ence 5 at GEO, the Routh-Hurwitz stability criterion is used to select the gains C1 and C2

to asymptotically stabilize both �L and  . And, there are no real values for gain C1 and
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C2 that will stabilize the coupled system with only the Coulomb forces.5 In addition to the

Coulomb forces, some thrust forces are required acting on both satellites along the b̂1 axis

that stabilize the in-plane angle  . As shown in the Figure 4.4 these thrust forces can be

modeled as equal and opposite forces with magnitude F1. The thrust force magnitude is the
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Figure 4.4: Thrust Force Directions for Along-track Configuration

second control variable with in-plane angle  feedback and it is defined as5

F1 =
m1m2

m1 +m2

Lref(K1 ) (4.14)

where K1 is the in-plane angle feedback gain. These forces introduce a net torque in the  

equation and the modified coupled equations of motion are written as

 ̈ +
2Ω

Lref

�L̇− (3�Ω2 −K1) = 0 (4.15a)

�L̈+ (C1 − 3(1− �)Ω2)�L+ C2�L̇− (2ΩLref) ̇ = 0 (4.15b)
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The charge feedback control law is implemented by determining the charges q1 and q2.

Since Q = q1q2, using Eq. (4.6b), the spacecraft charges must satisfy

q1q2 = Qref + �Q (4.16)

where Qref value is evaluated from Eq. (4.5) while �Q value is given by the charge feedback

law expression in Eq. (4.12). Due to the above constraint yielding an infinite number of

solutions, the following implementation is used where equal charges in magnitude across the

craft are chosen.

q1 =
√
∣Qref + �Q∣ (4.17)

q2 = q1 (4.18)

Because �Q ≪ Qref and Qref > 0, note that here Qref + �Q > 0 which implies that q1 > 0

and q2 > 0.

In order to prevent numerical difficulties due to a small value of Ω, the linearized attitude

dynamics Eqs. (4.7a) - (4.7b) and the closed loop separation distance dynamics given in

Eq. (4.13) are made independent of Ω by the following transformation

d� = Ωdt (4.19a)

(∗)′
=

d(∗)
d�

=
1

Ω

d(∗)
dt

(4.19b)

Thus, the orbit rate (Ω) independent linearized equations of motion for a two-craft Coulomb

tether formation at any collinear libration point are given by

�
′′

+ � = 0 (4.20a)

 
′′

+
2

Lref

�L
′ − (3� − K̃1) = 0 (4.20b)

�L
′′

+ C̃2�L
′ − 2Lref 

′
+ (C̃1 − 3(1− �))�L = 0 (4.20c)
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where C̃2 = C2

Ω
, C̃1 = C1

Ω2 and K̃1 = K1

Ω2 are non-dimensionalized feedback gains. Routh-

Hurwitz stability criteria are used to fine tune these gain values that satisfy the stability

requirements. The characteristic equation for the coupled �L and  equation is

�4 + C̃2�
3 + (1 + C̃1 + K̃1)�2 + C̃2(K̃1 − 3�)�+ C̃1K̃1 − 3K̃1

+ 9� − 3C̃1� + 3K̃1� − 9�2 = 0 (4.21)

Roots of Eq. (4.21) should have negative real parts for asymptotic stability. For all roots to

have negative real parts, a Routh table construction allows one to determine the following

necessary constraints on the gains C̃1, C̃2 and K̃1

C̃1 > 3(1− �) (4.22a)

C̃2 > 0 (4.22b)

K̃1 > 3� (4.22c)

To fix the gain values that satisfy the stability criteria in Eq. (4.22), near ideal damping

conditions are assumed. Let the scaling factors n1, n2 and � be positive and real such that

the gains are rewritten as

C̃1 = n1 > 3(1− �) (4.23a)

C̃2 = �
√
n1 (4.23b)

K̃1 = n2 > 3� (4.23c)

The natural frequency of the  equation is
√
n2 − 3� and is independent of the choice of

C̃1 and C̃2, and the natural frequency for the �L equation is
√
n1 − 3(1− �). For the  

′

coupling term in the �L equation to serve as a defacto damping term, n1 and n2 are chosen

in such a way that these frequencies match. The value of n2 is chosen as 6� and for this

fixed n2 value, the root locus for the coupled �L and  equations is studied for a range of �

values in the vicinity of � = 2, with n1 varying from 0.1 to 20. The root locus plot analysis

yield the optimal scaling factors to be � = 2.3 and n1 = 2.96.
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The out-of-plane angle � can be asymptotically stabilized by using an equal and opposite

thrust force on both the satellites along the b̂3 axis. The thrust force magnitude F3 is the

third control variable with �̇ feedback and it is defined as5

F3 =
m1m2

m1 +m2

Lref(K2�̇) (4.24)

where K2 is the out-of-plane angle feedback gain. These forces introduce a net torque in the

� equation and the modified equation of motion is written as

�
′′

+ K̃2�
′
+ � = 0 (4.25)

where K̃2 = K2

Ω
and K̃2 = 2 yields critical damping.

Figure 4.4 illustrates the thrusters in action along the b̂1 and b̂3 axes for the along-track

configuration.5 For the satellite 1, the thrusting force F1 acts along the positive b̂1 direction

and the force F3 is acting along the negative F3 direction. For the satellite 2, the direction

of these forces are in reverse. To avoid any potential plume exhaust impingement issues, all

thruster forces are directed in orthogonal directions to the cluster line of sight vector (b̂3).

4.1.2.2 Orbit Normal Configuration

In the orbit normal configuration, the equation of motion of the separation distance error

�L is decoupled from the angles. Instead, equations of motion of the two out-of-plane angles

� and � are coupled. Consequently, the separation distance can only be stabilized using the

linearized Coulomb forces and some thrust force is needed to stabilize the angles. In order to

control the natural frequency as well as to make �L equation of motion asymptotically stable,

a separation distance error and error rate (�L,�L̇) feedback through the control variable �Q

is sufficient. The feedback control law is defined as5

�Q =
m1m2L

2
ref

(m1 +m2) kc
(−C1�L− C2�L̇) (4.26)

where C1 > −3�Ω2 and C2 > 0 are the position and velocity feedback gain, respectively.
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The closed loop separation distance error equation is expressed as

�L̈+ (C1 + 3�Ω2)�L+ C2�L̇ = 0 (4.27)

The separation distance equation is critically damped by fixing C2 > 2
√

3�Ω2 + C1.

Thrust forces on both the satellites can be used to stabilize the coupled out-of-plane

angles.5 The thrusting force F1 is acting along the positive b̂1 direction and the force F2 is

acting along the positive b̂2 direction for the satellite 1. The direction of these forces are in

reverse for the satellite 2. Note all thruster forces are directed in orthogonal directions to the

cluster line of sight vector (b̂3) and thereby avoid any potential plume exhaust impingement

issues. The feedback control laws for the thrust force magnitudes are defined as5

F1 =
m1m2

m1 +m2

Lref(K2�) (4.28)

F2 =
m1m2

m1 +m2

Lref(K1�+K3�̇) (4.29)

where K1 and K3 are the � angle and angle rate gains, and K2 is the � angle gain. These

forces introduce torque into the angular equations of motion. Therefore the nondimensional

closed loop equations are

�
′′ − 2�

′
+ (K̃1 − 1)�+ K̃3�

′
= 0 (4.30a)

�
′′

+ (K̃2 − (1 + 3�))� + 2�
′
= 0 (4.30b)

�L
′′

+ (C̃1 + 3�)�L+ C̃2�L
′
= 0 (4.30c)

The characteristic equation of the coupled equations of motion given in Eqs. (4.30a) and

(4.30b) is

�4 + K̃3�
3 + (2 + K̃1 + K̃2 − 3�)�2 + (−K̃3 + K̃2K̃3 − 3K̃3�)�

+ 1− K̃1 − K̃2 + K̃1K̃2 + 3� − 3K̃1� = 0 (4.31)

where C̃2 = C2

Ω
, C̃1 = C1

Ω2 , K̃1 = K1

Ω2 , K̃2 = K1

Ω2 and K̃3 = K1

Ω
are non-dimensionalized feedback
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gains. The Routh-Hurwitz criterion establishes the following constraints on the gains

K̃1 > 1 (4.32a)

K̃2 > 1 + 3� (4.32b)

K̃3 > 0 (4.32c)

To fix the gain values that satisfy the stability criteria in Eq. (4.32), near ideal damping

conditions are assumed. Let the scaling factors n and � be positive and real such that the

gains K̃1 and K̃3 are rewritten as

K̃1 = n > 1 (4.33a)

K̃3 = �
√
n− 1 (4.33b)

In the equation of motion for �, ignoring the �̇ term guarantees critical damping. Fixing

values of K̃2 > 1 + 3�, the root locus is analyzed for the coupled � and � equations for a

range of � values in the vicinity of �= 2 with n varying from 1.1 to 10. For K̃2 = 2 + 3�,

root locus analysis yields the optimal scaling factors to be �= 2.5 and n = 2.7.

4.1.3 Numerical Simulation

The performance and stability of a 25 m along-track and orbit normal Coulomb formation is

illustrated in the following numerical simulations at Earth-Moon L2 libration point. The hy-

brid feedback control strategy is illustrated and the Coulomb tether performance is simulated

for both the linear and non-linear formulations.

4.1.3.1 Along-Track Configuration

Table 4.1 lists the simulation parameters and the values used for the along-track Coulomb

tether configuration with a separation distance of 25 meter. The parameters n1 and � are

selected based on root locus plot analysis where the gains C̃1, C̃2 and K̃1 computed from
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Eq. (4.23) satisfy the stability criteria in Eq. (4.22) and that lead to effective damping.

The two-craft Coulomb tether performance at the collinear libration point L2 is simulated

by integrating the linearized equations of motion in Eqs. (4.20b), (4.20c) and (4.25) and

then compared with the results obtained from integrating the non-linear equations of motion

in Eq. (4.2). During this simulation, the Debye length is assumed to be zero in order to

investigate the effects of linearization on the relative motion.

Table 4.1: Input Parameters Used in Along-track Simulation for L2

Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m

kc 8.99× 109 Nm2

C2

Qref 0.002023 �C2

Ω 2.661699× 10−6 rad/sec
�L(0) 0.5 m
 (0) 0.1 rad
�(0) 0.1 rad
n1 2.96
� 2.3
� 3.190432478

C̃1 2.96

C̃2 3.95706

K̃1 6�

K̃2 2

Figure 4.5(a) shows the Coulomb tether motion with the charge feedback law augmented

with the thrust forces generated using conventional thrusters. The pitch motion  , yaw mo-

tion � and the separation distance deviation �L converged to zero justifying the linearization

assumptions. Also, stabilizing the separation distance to zero also stabilized the in-plane

rotation angle after about 1.1 orbits. Figure 4.5(b) shows the spacecraft control charge q1

usage for both the linear and non-linear simulation formulations. The charge results for both

converge to the static equilibrium reference value q1r. Unlike zero charge required for along-

track equilibrium configuration at GEO, non-zero charge is required at L2. For along-track
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equilibrium, the control charges q1 and q2 are both positive. Since the control charges are

less than that of micro-Coulombs, they can easily be implemented in practice using charge

emission devices. Figure 4.5(c) shows the thrusting force that is required to stabilize the

angles which is less than micro-Newtons. To avoid plume impingement issues, the thrusting

always takes place in the b̃1 and b̃3 directions perpendicular to the craft orientation which

is along the b̃2 axis. Furthermore, Figure 4.5 show that the non-linear simulations shown as

dashed lines closely follow the linearized simulations shown as continuous lines.

4.1.3.2 Orbit Normal Configuration

Table 4.2 lists the simulation parameters and the values used for the orbit normal Coulomb

tether configuration with a separation distance of 25 meter. The same spacecraft parameters

and nominal separation distance are used as in Table 4.1. Table 4.2 lists the reference

charge, n and � parameters, and the gains. The parameters n and � are selected based

on root locus plot analysis. The gains C̃1, C̃2, K̃1, K̃2 and K̃3 computed from Eq. (4.33)

satisfy the stability criteria in Eq. (4.32) and also lead to effective damping. The two-craft

Coulomb tether performance at the collinear libration point L2 is simulated by integrating

the linearized equations of motion in Eq. (4.30) and then compared with the results obtained

from integrating the non-linear equations of motion in Eq. (4.8). In this simulation, in order

to investigate the effects of linearization on the relative motion the Debye length is assumed

to be zero.

Table 4.2: Input Parameters Used in Orbit Normal Simulation for L2

Parameter Value Units

Qref 0.002946 �C2

n 2.7
� 2.5

C̃1 0

C̃2 2
√

3�

K̃1 2.7

K̃2 2 + 3�

K̃3 3.2596
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Figure 4.6(a) shows the Coulomb tether motion with the charge feedback law augmented

with the thrust forces generated using conventional thrusters. The roll motion �, yaw motion

� and the separation distance deviation �L asymptotically go to zero. Also, the separation

distance error is critically damped and the motion stabilized after about 1.4 orbits. Figure

4.6(b) shows the spacecraft control charge q1 usage for both the linear and non-linear simu-

lation formulations. The charge results for both converge to the static equilibrium reference

value q1r. For orbit normal equilibrium, the control charges q1 and q2 are both positive. Since

the control charges are less than that of micro-Coulombs, they can easily be implemented in

practice using charge emission devices. Figure 4.6(c) gives the thrusting force that is required

to stabilize the angles which is less than micro-Newton level. To avoid plume impingement

issues, thrust force F1 acts in the b̃1 direction and thrust force F2 acts in the b̃2 direction

both perpendicular to the craft orientation which is along the b̃3 axis. Furthermore, Figure

4.6 show that the non-linear simulations closely match the linearized simulations justifying

the linearization assumptions.

4.2 Linear Dynamics and Stability Analysis - Triangular Libration Points

4.2.1 Charged Relative Equations of Motion

4.2.1.1 Along-Track Configuration

This section derives the equations of motion of a two-craft Coulomb tether whose center of

mass is at the triangular equilibrium point L4 as shown in Figure 4.7 and nominally aligned in

the along-track direction of the orbit frame. This derivation closely resembles the derivation

of the equations of motion for a two-craft Coulomb tether at any collinear libration point

given in section 4.1 The two distance vectors R1 and R2 of L4 in the synodic frame from

the two primaries in the plane are given by

SR1 =

⎡⎢⎢⎢⎣
rx0 + d1

ry0

0

⎤⎥⎥⎥⎦ and SR2 =

⎡⎢⎢⎢⎣
rx0 − d2

ry0

0

⎤⎥⎥⎥⎦ (4.34)
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where � is the angle between the synodic frame at the barycenter O and the orbiting frame

at L4 as shown in Figure 3.7. For Earth-moon system, the value of � is 60.31 degrees.16

Assuming the following definitions for the circularly restricted three-body system

A� = cos� +
√

3 sin� (4.35a)

B� = sin�−
√

3 cos� (4.35b)

C� = cos�−
√

3 sin� (4.35c)

D� = sin� +
√

3 cos� (4.35d)

and from the Lagrangian formulation the nonlinear equations governing the yaw angle � out
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of the orbital plane, the pitch angle  in the orbital plane, and the separation distance L

become

�̈+
2L̇

L
�̇+ cos� sin�(( ̇ + Ω)2

+
3

4
Ω2((1− �)(A� sin +B� cos )2 + �(C� sin +D� cos )2)) = 0 (4.36a)

 ̈ − 2( ̇ + Ω)(�̇ tan�− L̇

L
)− 3

4
Ω2((1− �)(A� sin +B� cos )(A� sin −B� cos )

+ �(C� sin +D� cos )(C� cos −D� sin ) = 0 (4.36b)

L̈− L(�̇2 + ( ̇ + Ω)2 cos2 �− Ω2

+
3

4
cos2 �((1− �)(A� sin +B� cos )2 + �(C� sin +D� cos )2)

+
kc
m1

Q
1

L2

m1 +m2

m2

= 0 (4.36c)

The linearized version of the nonlinear equations in Eq. (4.36) comes from expanding in a

Taylor series about the equilibrium states given in Eq. (4.9). Both the roll and pitch equations

of motion are linearized about small roll and pitch angles respectively. The separation

distance equations of motion are linearized about small variations in �L as well as small

variations in the product charge term �Q defined as in Eq. (4.6).

Mission requirements determine the reference separation length Lref, and, Qref is deter-

mined from the following constraint on a particular choice of Lref

Qref = −3

4
�EQAT1Ω2L

3
ref

kc

m1m2

m1 +m2

(4.37)

where

�EQAT1 = 1 + 2 cos2 � +
√

3 sin 2� (2� − 1) (4.38)
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Performing the necessary linearizations yields

�̈+ (1 +
3

4
�EQAT1)Ω2� = 0 (4.39a)

 ̈ +
2Ω

Lref

�L̇− 3

2
�EQAT3Ω2  = 0 (4.39b)

�L̈− 2ΩLref ̇ −
9

4
�EQAT1Ω2�L− 3

2
�EQAT2Ω2Lref  − (

kc
m1

1

L2
ref

m1 +m2

m2

)�Q = 0 (4.39c)

with

�EQAT2 =
√

3 cos 2� (2� − 1)− sin 2� (4.40)

�EQAT3 =
√

3 sin 2� (1− 2�) (4.41)

Thus, Eqs. (4.39a) and (4.39b) represent the linearized attitude dynamics of the Coulomb

tether body frame ℬ and Eq. (4.39c) represents the linearized separation distance differential

equation about the static along-track reference configuration at a triangular libration point.

As opposed to the collinear solution, the  and �L terms here are the new components;

however, due to the quite small values of �EQAT1 = 0.03633 and �EQAT2 = 2.04056× 10−4 at

L4, its effect is negligible on the separation distance differential equation. Furthermore, since

�EQAT3 = 1.45432, the dynamics at L4 become similar to those found in Reference 5 for along-

track 2-craft formation at GEO. Hence, the stability behaviour should be approximately the

same as that observed in Reference 5.

4.2.1.2 Orbit Normal Configuration

This section derives the equations of motion of a two-craft Coulomb tether whose center

of mass is at the triangular equilibrium point L4 as shown in Figure 3.7 and nominally

aligned in the orbit-normal direction of the orbit frame. This derivation closely resembles

the derivation of the equations of motion for a two-craft Coulomb tether at any collinear

libration point given in section 4.1. The synodic frame setup is already explained in section

4.1. Using the Lagrangian formulation, The nonlinear equations governing the yaw angle �
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and the roll angle � out of the orbital plane, and the separation distance L become

�̈+
2L̇

L
(�̇− Ω sin �)− Ω�̇ cos � − 1

4
((Ω2 cos 2� + Ω2 − 2�̇2) sin 2�+ 4Ω�̇ cos � cos 2�)

− 3Ω2

4
((1− �)(A� cos� sin � +B� sin�)(−A� sin� sin � +B� cos�)

+ �(C� cos� sin � +D� sin�)(−C� sin� sin � +D� cos�)) = 0 (4.42a)

�̈ + 2
L̇

L
(�̇ + Ω cos � tan�)− 1

2
Ω2 sin 2� + Ω�̇ cos � sec2 �

− 2�̇�̇ tan�+ Ω�̇ cos � cos 2� sec2 �

− 3

4
Ω2((1− �)((A2

� sin � + A�B� tan�) + �(C2
� sin � + C�D� tan�)) = 0 (4.42b)

L̈− L

4
(3Ω2 + 2�̇2 + 4�̇2 − 2Ω2 cos 2� cos2 �− (Ω2 − 2�̇2) cos 2�

− 8Ω�̇ sin � + 4Ω�̇ cos � sin 2�) + Ω2L

− 3

4
Ω2L((1− �)(A� cos� sin � +B� sin�)2 + �(C� cos� sin � +D� sin�)2)

+
kc
m1

Q
1

L2

m1 +m2

m2

= 0 (4.42c)

where

A� = cos� +
√

3 sin� (4.43a)

B� = sin�−
√

3 cos� (4.43b)

C� = − cos� +
√

3 sin� (4.43c)

D� = −(sin� +
√

3 cos�) (4.43d)

The linearized version of the nonlinear equations in Eq. (4.42) comes from expanding in a

Taylor series about the equilibrium states given in Eq. (4.9). Both the yaw and roll equations

of motion are linearized about small yaw and roll angles respectively. The separation distance

equations of motion are linearized about small variations in �L as well as small variations in

the product charge term �Q defined as in Eq. (4.6).

Mission requirements determine the reference separation length Lref, and, Qref is deter-
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mined from the following constraint on a particular choice of Lref

Qref = Ω2L
3
ref

kc

m1m2

m1 +m2

(4.44)

where

�EQON1 = 1 + 2 cos2 � +
√

3 sin 2� (2� − 1) (4.45)

Performing the necessary linearizations yields

�̈− (1 +
3

4
�EQON1)Ω2�− 3

4
�EQON2Ω2� − 2Ω�̇ = 0 (4.46a)

�̈ − (1 +
3

4
�EQON3)Ω2� − 3

4
�EQON2Ω2�+ 2Ω�̇ = 0 (4.46b)

�L̈+ 3Ω2�L− (
kc
m1

1

L2
ref

m1 +m2

m2

)�Q = 0 (4.46c)

with

�EQON2 =
√

3 cos 2� (2� − 1)− sin 2� (4.47)

�EQON3 = 1 + 2 sin2 � +
√

3 sin 2� (1− 2�) (4.48)

Thus, Eqs. (4.46a) and (4.46b) represent the linearized attitude dynamics of the Coulomb

tether body frame ℬ and Eq. (4.46c) represents the linearized separation distance differential

equation about the static orbit-normal reference configuration at a triangular libration point.

As opposed to the collinear solution, the � term in Eq. (4.46a) and the  term in Eq. (4.46b)

are the new components; however, due to the quite small value of �EQRE2 = 2.04055× 10−4

at L4, its effect is negligible on the coupled attitude differential equations. The separation

distance differential equation is exactly the same to that found in Reference 5 for orbit-normal

2-craft formation at GEO. Furthermore, since �EQRE1 = 0.03633 and �EQRE3 = 3.9636 , the

dynamics at L4 become very similar to those found in Reference 5. Hence, the stability

behaviour should be approximately the same as that observed in Reference 5.
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4.2.2 Hybrid Feedback Control Development

4.2.2.1 Along-Track Configuration

Using the out-of-plane angle �̇ feedback from Eq.(4.14) for � differential equation, in-plane

angle  feedback from Eq.(4.22) for  equation, and proportional-derivative feedback control

of �L from Eq.(4.12), the orbit rate Ω independent linearized equations of motion for a two-

craft Coulomb tether formation at the triangular libration point L4 are given by

�
′′

+ K̃2�
′
+ (1 +

3

4
�EQAT1)� = 0 (4.49a)

 
′′

+
2

Lref

�L
′ − (

3

2
�EQAT3 − K̃1) = 0 (4.49b)

�L
′′

+ C̃2�L
′ − 2Lref 

′
+ (C̃1 −

9

4
�EQAT1)�L− 3

2
�EQAT2Lref  = 0 (4.49c)

where C̃1 = C1

Ω2 , C̃2 = C2

Ω
, K̃1 = K1

Ω2 and K̃2 = K2

Ω
are non-dimensionalized feedback gains.

Routh-Hurwitz stability criteria can be used to fine tune these gain values that satisfy the

stability requirements. The characteristic equation for the coupled �L and  equation is

�4 + C̃2�
3 + (4 + C̃1 −

9

4
�EQAT1 −

3

2
�EQAT3)�2 + (C̃2K̃1 + 3�EQAT2 −

3

2
C̃2�EQAT3)

+ (C̃1K̃1 −
9

4
K̃1�EQAT1 −

3

2
C̃1�EQAT3 +

27

8
�EQAT1�EQAT3) = 0 (4.50)

Roots of this equation should have negative real parts for asymptotic stability. A Routh

table allows one to determine the following necessary constraints on the gains C̃1, C̃2 and

K̃1 that ensures all roots have negative real parts

C̃1 >
9

4
�EQAT1 (4.51a)

C̃2 >
3

4
�EQAT2 (4.51b)

K̃1 >
3

2
�EQAT3 (4.51c)

To fix the gain values that satisfy the stability criteria in Eq. (4.51), near ideal damping

conditions are assumed. Let the scaling factors n1, n2 and � be positive and real such that
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the gains are rewritten as

C̃1 = n1 >
9

4
�EQAT1 (4.52a)

C̃2 = �
√
n1 (4.52b)

K̃1 = n2 >
3

2
�EQAT3 (4.52c)

The natural frequency of the  equation is
√
n2 − 3

2
�EQAT3 and the natural frequency for

the �L equation is
√
n1 − 9

4
�EQAT1. For the  

′
coupling term in the �L equation to serve as

a defacto damping term, n1 and n2 are chosen in such a way that these frequencies match.

The value of n2 is chosen as 4�EQAT3 and for this fixed n2 value, the root locus for the

coupled �L and  equations is studied for a range of � values in the vicinity of � = 2, with

n1 varying from 0.1 to 5. The root locus plot analysis yield the scaling factors to be � = 2.0

and n1 = 2.2. The out-of-plane angle � can be asymptotically stabilized by using an equal

and opposite thrust force F3 on both the satellites along the b̂3 axis. The out-of-plane angle

feedback gain K̃2 = 2 yields critical damping.

4.2.2.2 Orbit Normal Configuration

For orbit normal configuration at the triangular libration point, the same line of reason-

ing discussed for collinear libration points is followed here. Using the out-of-plane angle

and angle rate �, �̇ feedback from Eq.(4.29) for � differential equation, out-of-plane angle �

feedback from Eq.(4.28) for � equation, and proportional-derivative feedback control of �L

from Eq.(4.26), the orbit rate Ω independent linearized equations of motion for a two-craft

Coulomb tether formation at the triangular libration point L4 are given by

�
′′ − 2�

′
+ (K̃1 − 1− 3

4
�EQON1)�− 3

4
�EQON2� + K̃3�

′
= 0 (4.53a)

�
′′

+ (K̃2 − 1− 3

4
�EQON3)� − 3

4
�EQON2�+ 2�

′
= 0 (4.53b)

�L
′′

+ (C̃1 + 3)�L+ C̃2�L
′
= 0 (4.53c)
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where C̃1 = C1

Ω2 , C̃2 = C2

Ω
, K̃1 = K1

Ω2 , K̃2 = K2

Ω2 and K̃3 = K3

Ω
are non-dimensionalized feedback

gains. Routh-Hurwitz stability criteria can be used to fine tune these gain values that satisfy

the stability requirements. The characteristic equation for the coupled � and � equations is

�4 + K̃3�
3 + (2 + K̃1 + K̃2 −

3

4
(�EQON1 + �EQON3))�2

+ K̃3(K̃2 − 1− 3

4
�EQON3)�+ 1− K̃1 − K̃2 + K̃1K̃2 +

3

4
�EQON1 −

3

4
�EQON1

− 9

16
�2
EQON2 +

3

4
�EQON3 −

3

4
K̃1�EQON3 +

9

16
�EQON1�EQON3 = 0 (4.54)

Roots of this equation should have negative real parts for asymptotic stability. A Routh

table allows one to determine the following necessary constraints on the gains

K̃1 >
3

4
�EQON1 − 3 (4.55a)

K̃2 > 1 +
3

4
�EQON3 −

9

64
�2
EQON2 (4.55b)

K̃3 > 0 (4.55c)

To fix the gain values that satisfy the stability criteria in Eq. (4.55), near ideal damping

conditions are assumed. Let the scaling factors n and � be positive and real such that the

gains K̃1 and K̃3 are rewritten as

K̃1 = n >
3

4
�EQON1 − 3 (4.56a)

K̃3 = �
√
n− 1 (4.56b)

In the equation of motion for �, ignoring the �̇ term guarantees critical damping. Fixing

values of K̃2 > 1 + 3
4
�EQON3 − 9

64
�2
EQON2, the root locus is analyzed for the coupled � and �

equations for a range of � values in the vicinity of �= 2 with n varying from 1.1 to 10. For

K̃2 = 2 + 3
4
�EQON3 − 9

64
�2
EQON2, root locus analysis yields the optimal scaling factors to be

�= 2.5 and n = 2.7.
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Table 4.3: Input Parameters Used in Along-track Simulation for L4

Parameter Value Units

Qref −2.51682× 10−5 �C2

n1 2.2
� 2.0

�EQAT1 0.036337
�EQAT2 2.04056× 10−4

�EQAT3 1.45432

C̃1 2.2

C̃2 2.91083

K̃1 5.81728

K̃2 2

4.2.3 Numerical Simulation

4.2.3.1 Along-Track Configuration

The along-track Coulomb tether with a separation distance of 25 meter is simulated at L4.

The same spacecraft parameters and nominal separation distance are used as in Table 4.1.

Table 4.3 lists the reference charge, parameters, and the gains. The parameters n1 and �

are selected based on root locus plot analysis. The gains C̃1, C̃2 and K̃1 computed from

Eq. (4.52) satisfy the stability criteria in Eq. (4.51) and lead to effective damping. The

two-craft Coulomb tether performance at the triangular libration point L4 is simulated by

integrating the linearized equations of motion in Eqs. (4.49) and then compared with the

results obtained from integrating the non-linear equations of motion in Eq. (4.36). During

this simulation, the Debye length is assumed to be zero in order to investigate the effects

of linearization on the relative motion. Figure 4.8(a) shows the Coulomb tether motion

with the charge feedback law augmented with the thrust forces generated using conventional

thrusters. The pitch motion  , yaw motion � and the separation distance deviation �L

converged to zero. Also, stabilizing the separation distance to zero also stabilized the in-

plane rotation angle after about 1.4 orbits. Figure 4.8(b) shows the spacecraft control charge

q1 usage for both the linear and non-linear simulation formulations. The charge results for
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both converge to the static equilibrium reference value q1r. Unlike zero charge required for

along-track equilibrium configuration at GEO, non-zero charge is required at L4. However,

the non-zero reference charge (-2.51682×10−5�C2) is very small compared to that of at L2

(0.002946 �C2). For along-track equilibrium at L4, the control charge q1 is the negative

of q2. Since the control charges are less than that of micro-Coulombs, they can easily be

implemented in practice using charge emission devices. Figure 4.8(c) gives the micro-Newton

level thrusting force that is required to stabilize the angles. To avoid plume impingement

issues, the thrusting always takes place in the b̃1 and b̃3 directions perpendicular to the

craft orientation which is along the b̃2 axis. Furthermore, Figure 4.8 show that the non-

linear simulations shown as dashed lines closely follow the linearized simulation shown as

continuous lines.

4.2.3.2 Orbit Normal Configuration

The orbit normal Coulomb tether with a separation distance of 25 meter is simulated at

L4. The same spacecraft parameters and nominal separation distance are used as in Table

4.2. Table 4.4 lists the reference charge, parameters, and the gains. The parameters n and

� are selected based on root locus plot analysis. The gains C̃1, C̃2 and K̃1 computed from

Eq. (4.56) satisfy the stability criteria in Eq. (4.55) and lead to effective damping. The

two-craft Coulomb tether performance at the triangular libration point L4 is simulated by

integrating the linearized equations of motion in Eqs. (4.53) and then compared with the

results obtained from integrating the non-linear equations of motion in Eq. (4.42). During

this simulation, the Debye length is assumed to be zero.

Figure 4.9(a) shows the tether motion, charge on a single craft and thrust forces, respec-

tively. Similar to the results at L2, the Coulomb tether motion at L4 uses the charge feedback

law augmented with the thrust forces. The roll motion �, yaw motion � and the separation

distance deviation �L asymptotically go to zero and the motion is stabilized after about 1.3

orbits. Figure 4.9(b) shows that the charge results for both both the linear and non-linear

simulation formulations converge to the static equilibrium reference value q1r. For orbit

normal equilibrium at L4, the control charges q1 and q2 are both positive. To avoid plume
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Table 4.4: Input Parameters Used in Orbit Normal Simulation for L4

Parameter Value Units

Qref 9.23505× 10−4 �C2

n 2.7
� 2.5

�EQON1 0.036337
�EQON2 2.04056× 10−4

�EQON3 3.96366

C̃1 0

C̃2 3.4641

K̃1 2.7

K̃2 4.97274

K̃3 3.25960

impingement issues, thrust force F1 acts in the b̃1 direction and thrust force F2 acts in the b̃2

direction both perpendicular to the craft orientation which is along the b̃3 axis. Furthermore,

Figure 4.9 show that the non-linear simulations depicted as dashed lines closely follow the

linearized simulations depicted as continuous lines justifying the linearization assumptions.

4.3 Summary

The feasibility of a two-craft Coulomb formation concept is studied at libration points for

along-track and orbit normal equilibria. The assumption is that the sunlit areas of the two-

craft are equal such that the differential solar radiation pressure on the formation is zero.

The new two-craft dynamics at the libration points provide a general framework in which

circular Earth orbit dynamics form a special case. The general equations of motion for

collinear libration points have a � parameter which varies for each collinear libration point.

Interestingly, setting ”� = 1” yields the same equations of motion for along-track and orbit

normal equilibrium configurations in circular Earth orbits.5 Though there are additional

terms in the equations of motion for along-track and orbit normal equilibrium configurations

at the triangular libration points, the effect of these additional terms on the dynamics is

small. Therefore, the dynamics and the stability conditions are similar to those found in
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Reference 5 for along-track and orbit normal equilibrium 2-craft formation at GEO. Both

virtual Coulomb tether configurations are stabilized with a hybrid control of Coulomb forces

and conventional thrusters that stabilize the separation distance and orientation respectively.

The control charges needed are very small, on an order much less than micro-Coulombs and

thus, realizable in practice. The thrusting forces required are less than micro-Newtons in

magnitude and are applied in orthogonal directions. Numerical simulations illustrating the

linearized performance predictions are compared against nonlinear system responses.
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Chapter 5

OPTIMAL RECONFIGURATIONS OF TWO-CRAFT
COULOMB FORMATION IN CIRCULAR ORBITS

The second part of the thesis investigates optimal reconfigurations of a two-craft Coulomb

formation in circular Earth orbits by applying nonlinear optimal control techniques. The ob-

jective of these reconfigurations is to maneuver the two-craft formation between two charged

equilibria configurations. The four optimality criteria considered are minimum reconfigura-

tion time, minimum acceleration of the separation distance, minimum Coulomb and electric

propulsion fuel usage, and minimum electrical power consumption. The goal is to determine

optimal reconfigurations maximizing the use of Coulomb propulsion while minimizing the

electric propulsion usage.

In this chapter, the basic optimal control problem for the general nonlinear system is

discussed with state-control constraints such that a performance measure is minimized.27,28,33

The application of the Pontryagin’s Minimum Principle yields the necessary conditions for

optimal control. Then, for a two spacecraft Coulomb formation in circular Earth orbits, the

nondimensionalized nonlinear equations of motion are derived. The optimal control problem

formulations for a two-craft formation are discussed with the choices of the cost function,

control variables and constraints, and, for the problem formulations at hand, the Pontryagin’s

necessary conditions are presented. Three solution methods for discretizing the optimal

control problem are explored: the indirect multiple shooting method,26 the direct penalty

function method,29 and the pseudospectral method.30 To solve the optimal control problems

in this chapter, the pseudospectral method is eventually chosen over multiple shooting and

direct penalty function methods.

Numerical simulations consider different optimal reconfigurations of a two-craft Coulomb

virtual tether formation in circular GEO orbits: radial, along-track and orbit normal space-

craft separation distance expansion and contraction maneuvers, radial to along-track and
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radial to orbit-normal maneuvers, and a family of radial to along-track maneuvers. The

reconfiguration between equilibra is considered by varying the desired separation distance.

In a radial relative equilibrium configuration, only the Coulomb force is required for con-

trolling the in-plane motion and for steering the satellites from their initial to their final

radial position. In this reconfiguration maneuver, the gravity gradient torque stabilizes the

in-plane motion. For along-track and orbit normal equilibrium locations, the reconfiguration

maneuver requires hybrid controls. Here the Coulomb force is varied to control the sep-

aration distance and inertial micro-thrusters are activated for transverse control. In-plane

radial to along-track maneuvers and out-of-plane radial to orbit-normal maneuvers with con-

stant separation distance at the initial and final positions are investigated. Additionally, a

family of radial to along-track maneuvers with fixed separation distance in the radial direc-

tion but varying final separation distance in the along-track equilibrium are investigated as

well. Pseudo-spectral methods are used to numerically solve the two-point boundary value

problem. Pontryagin’s Minimum Principle verifies the open loop solutions’ optimality.

5.1 The Optimal Control Problem

The general family of optimal control problems considered in this thesis can be stated as

follows:33 determine the state-control function pair, x(t),u(t) over [t0, tf ] that minimize the

cost functional,

J [x(t),u(t)] = E(x(tf ), tf ) +

∫ tf

t0

F (x(t),u(t))dt (5.1)

subject to

equations of motion f(x(t),u(t))− ẋ(t) = 0 (5.2)

boundary constraints r(x(t0),x(tf )) = 0 (5.3)

path constraints h(x(t),u(t)) ≤ 0 (5.4)

where the functions E and F are called the endpoint cost and running cost respectively. The

calculus of variations method can be used in solving the optimal control problem (OCP)

subject to the conditions imposed at the initial and final time. Using this method, the cost
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functional takes a second form in terms of the adjoint variables. So, to conveniently formu-

late the problem and solve it as a two point boundary problem a control (or Pontryagin’s)

Hamiltonian is defined as

ℋ(x(t),u(t),�(t)) = F (x(t),u(t)) + �T (t)f(x(t),u(t)) (5.5)

where �(t) are the adjoint variables. The vanishing of the gradient of the Hamiltonian

ℋ provides the Pontryagin’s necessary conditions for optimal control. According to the

minimum principle, at each instant of time, t ∈ [t∗0, t
∗
f ], select an optimal control value, u∗,

which globally minimizes the Hamiltonian function with ℋ considered as a function of u

only. Therefore, u∗ must satisfy the Hamiltonian minimization condition (HMC),

(HMC)

⎧⎨⎩
Minimize

u
ℋ(x(t),u(t),�(t))

subject to hL ≤ h(x(t),u(t)) ≤ hU

uL ≤ u(t) ≤ uU

(5.6)

which generates a control function, (x(t),�(t)) 7−→ u∗(t), which is a candidate for minimizing

the cost. Also, the control space is state dependent as well. Considering the bounded

state-control constraints a constrained calculus of variations problem can be reformulated

as an unconstrained one by applying the Karush−Kuhn−Tucker (KKT) conditions to the

HMC problem. The KKT conditions for a nonlinear programming problem provide the

gradient normality condition and the complementarity conditions. The KKT conditions can

be obtained by forming the Lagrangian of the Hamiltonian, ℋ̄,

ℋ̄(x(t),u(t),�(t)) = ℋ(x(t),u(t),�(t)) + �Tℎh(x(t),u(t)) + �Txx(t) + �Tuu(t) (5.7)

where �ℎ(t), �x(t) and �u(t) are the KKT (Lagrange) multipliers associated with the path

constraints, state-variable and control-variable box constraints respectively. The vanishing

of the gradient of the Lagrangian of the Hamiltonian, ∂ℋ̄
∂u

, provides the gradient normality
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condition. And the complementarity conditions are given by

�ℎ,i

⎧⎨⎩
≤ 0 if ℎi(x(t),u(t)) = ℎLi

≥ 0 if ℎi(x(t),u(t)) = ℎUi

= 0 if ℎLi < ℎi(x,u) < ℎUi

(5.8)

�x,i

⎧⎨⎩
≤ 0 if xi = xLi

≥ 0 if xi = xUi

= 0 if xLi < xi < xUi

(5.9)

�u,i

⎧⎨⎩
≤ 0 if ui = uLi

≥ 0 if ui = uUi

= 0 if uLi < ui < uUi

(5.10)

The complementarity conditions associated in minimizing the control Hamiltonian provide

the switching structure.

Collecting all the necessary conditions for the optimal control problem yields the state,

adjoint, transversality and HMC conditions for all t ∈ [t∗0, t
∗
f ] given below. Therefore, an

optimal solution must satisfy the below necessary conditions. Furthermore, since the cost

and the dynamics do not explicitly depend on time then at an optimal solution where the

cost functional is at a minimum leads to ∂ℋ
∂t

= 0. This condition along with the transversality

condition in Eq. (5.11c) gives the Hamiltonian function value at the optimal state-control
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function pair which can be later used to check the optimality of the numerical results.

ẋ∗(t) =
∂ℋ
∂�

(x∗(t),u∗(t),�∗(t)) (5.11a)

�̇∗(t) = −∂ℋ
∂x

(x∗(t),u∗(t),�∗(t)) (5.11b)[
∂E

∂x
(x∗(tf ), tf )− �∗(tf )

]T
�xf +

[
ℋ(x∗(tf ),u

∗(tf ),�
∗(tf )) +

∂E

∂t
(x∗(tf ), tf )

]
�tf = 0

(5.11c)

∂ℋ̄(x∗(t),u∗(t),�∗(t),�∗(t))

∂u
= 0 (5.11d)

5.2 Two-Craft Nonlinear Equations of Motion

The equations of motion for a two spacecraft Coulomb formation with hybrid thrusting (both

electrostatic and inertial thrusting) are briefly derived in this section. The notation is similar

to that used in Reference 5. In order to describe the relative motion of the satellite with

respect to the formation center of mass a rotating Hill orbit frame O : {ôr, ô�, ôℎ} as shown

in Figure 5.1 is chosen.5

m1

L

z1y1x1
ø

b2

b3

or

è

b1

oh

oè

f

m2

Me

rc

circular motion
of center of mass

Figure 5.1: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the
Orbit Frame
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The formation center of mass is assumed to be the origin of this rotating Cartesian

coordinate system and the relative position vector of the ith satellite is defined as �i =

(xi, yi, zi)
T ; where the xi component is in the ôr direction (orbit radial), the yi is component

in the ô� direction of orbital velocity (along-track), and the component zi is in the ôℎ

direction (orbit normal). The orbit frame origin coincides with the formation center of mass,

and the center of mass position vector rc is assumed to have a constant orbital rate of

Ω =
√
GMe/r3

c , where G is the gravity constant and Me is the Earth’s mass.

Assume that the two-craft formation is treated as a rigid body and aligned in the radial

direction. For this orbit nadir aligned formation, consider a body fixed coordinate frame

ℬ : {b̂1, b̂2, b̂3} where b̂1 is aligned with the relative position vector �1 of mass m1. In this

configuration, the O and ℬ frame orientation vectors are exactly aligned. Furthermore, the

relative attitude between the ℬ and O frames is represented using the 3-2-1 Euler angle

notation ( − pitch, � − roll, �− yaw).

Using the direction cosine matrix expression given in Reference 5 to relate the O frame

to ℬ frame, the position vectors of mass m1 and m2 in the O frame are expressed as

O�1 =

⎛⎜⎜⎜⎝
x1

y1

z1

⎞⎟⎟⎟⎠ =
m2L

m1 +m2

⎡⎢⎢⎢⎣
cos � cos 

cos � sin 

− sin �

⎤⎥⎥⎥⎦ (5.12a)

O�2 =

⎛⎜⎜⎜⎝
x2

y2

z2

⎞⎟⎟⎟⎠ =
m1L

m1 +m2

⎡⎢⎢⎢⎣
− cos � cos 

− cos � sin 

sin �

⎤⎥⎥⎥⎦ (5.12b)

Furthermore, using the transport theorem,14 the inertial velocity of mass mi expressed

in the O frame components becomes

Ovi =

⎛⎜⎜⎜⎝
ẋi − Ωyi

ẏi + Ω (xi + rc)

żi

⎞⎟⎟⎟⎠ (5.13)
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Using Eqs. (5.12) and (5.13), the kinetic energy of the system is given by

T =
1

2

m1m2

m1 +m2

[
L̇2 + L2(�̇2 + ( ̇ + Ω)2 cos2 �)

]
+

1

2
(m1 +m2) Ω2r2

c (5.14)

The gravitational potential energy retaining up to the second order terms is given by

Vg = − �
rc

(m1 +m2) +
1

2

�

r3
c

m1m2

m1 +m2

L2(1− 3 cos2 � cos2  ) (5.15)

and the associated Coulomb potential for the two-craft formation is1

Vc = kc
q1q2

L
exp(−L/�d) (5.16)

where qi is the satellite charge and the parameter kc = 8.99 × 109 Nm2/C2 is Coulomb’s

constant. The exponential term in the expression depends on the Debye length parameter

�d which controls the lower bound on the electrostatic field strength of plasma shielding

between the craft. At Geostationary Orbits (GEO) the Debye length vary between 80-1400

m, with a mean of about 180 m.7 The Coulomb spacecraft formation studied in this chapter

is assumed to be orbiting on high Earth orbits.

The nonlinear equations of motion are deduced from the Lagrangian ℒ = T − (Vg + Vc)

of the system in the following form

d

dt

∂ℒ
∂q̇i
− ∂ℒ
∂qi

= Qi (5.17)

qi = (L,  , �) (i = 1 . . . 3)

where Qi is the generalized force in the qith-degree of freedom excluding gravitational effects.

For the circular orbit case, the nonlinear equations governing the separation distance L, the
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pitch angle  in the orbital plane, and roll angle � out-of-the orbital plane are

L̈− L(�̇2 + (Ω +  ̇)2 cos2 � − Ω2(1− 3 cos2 � cos2  )) =
QL
m

(5.18a)

 ̈ cos2 � − 2�̇ sin � cos �(Ω +  ̇) + 2
L̇

L
cos2 �(Ω +  ̇) + 3Ω2 cos2 � cos sin =

Q 
mL2

(5.18b)

�̈ + 2
L̇

L
�̇ + cos � sin �((Ω +  ̇)2 + 3Ω2 cos2  ) =

Q�
mL2

(5.18c)

where m = m1m2

m1+m2
, and QL, Q , Q� are the generalized forces associated with L,  and

�, respectively. For a two spacecraft Coulomb formation, with Fcf being the Coulomb force

acting between the two crafts, QL = −Fcf, and is expressed as

Fcf = −kc
q1q2

L2
exp(−L/�d)

(
1 +

L

�d

)
(5.19)

And Q = F L and Q� = F�L where F and F� are the electric propulsion (EP) thrusting

forces that introduce net formation torques in the  and � directions. Note that to avoid

any potential plume exhaust impingement issues both the EP thruster forces are directed in

orthogonal directions to the formation line of sight vector.

Further, to prevent numerical difficulties with very small numbers, Eqs. (5.18a) - (5.18c)

are rescaled by defining the following nondimensional variables:

� = Ωt, l =
L

Lref

, ul =
Fcf

mΩ2Lref

, u =
F 

mΩ2Lref

, u� =
F�

mΩ2Lref

(5.20)

where Lref is the reference tether length. Therefore the radial equilibrium non-dimensional

equations of motion become

l
′′ − l(�′2

+ (1 +  
′
)2 cos2 � − (1− 3 cos2 � cos2  )) = −ul (5.21a)

 
′′
cos2 � + 2 cos �(

l
′

l
cos � − �′

sin �)(1 +  
′
) + 3cos2 � cos sin =

u 
l

(5.21b)

�
′′

+ 2
l
′

l
�
′
+ cos � sin �((1 +  

′
)2 + 3 cos2  ) =

u�
l

(5.21c)
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where the prime denotes the derivative with respect to non-dimensional time. And ul, u 

and u� are the non-dimensional control variables. The control variable ul is associated with

Coulomb propulsion, and u and u� are related to electric propulsion. The equations of

motion are coupled nonlinear ordinary differential equations.

Similarly, assuming that the two-craft formation is aligned in the along-track and orbit

normal directions, the equations of motion in the respective directions are obtained. There-

fore the along-track equilibrium nondimensional equations of motion are

l
′′ − l(�′2

+ (1 +  
′
)2 cos2 �− (1− 3 cos2 � sin2  )) = −ul (5.22a)

 
′′
cos2 �+ 2 cos�(

l
′

l
cos�− �′

sin�)(1 +  
′
)− 3 cos2 � cos sin =

u 
l

(5.22b)

�
′′

+ 2
l
′

l
�

′
+ cos� sin�((1 +  

′
)2 + 3 sin2  ) =

u�
l

(5.22c)

and the orbit normal nondimensional equations of motion are

l
′′ − l

4
(3 + 2�

′2
+ 4�

′2 − 2 cos 2� cos2 �− (1− 2�
′2

) cos 2�− 8�
′
sin �

+ 4 �
′
cos � sin 2�− 4(1− 3 cos2 � sin2 �)) = −ul (5.23a)

�
′′
cos2 � + 2cos�(

l
′

l
cos � − �′

sin �)(1 +  
′
) + 3cos2 � cos sin =

u 
l

(5.23b)

�
′′

+ 2
l
′

l
�
′
+ cos � sin �((1 +  

′
)2 + 3 cos2  ) =

u�
l

(5.23c)

Further, if the two-craft formation is treated as a rigid body and is aligned in one of the three

equilibrium configurations (radial, along-track or orbitnormal directions), the ideal product

of charges needed to achieve such static Coulomb formations are obtained from Eqs. (5.21)

as

(q1q2)radial = −3Ω2L
3

kc
m

(
�d

L+ �d

)
exp(L/�d) (5.24a)

(q1q2)along-track = 0 (5.24b)

(q1q2)orbitnormal = Ω2L
3

kc
m

(
�d

L+ �d

)
exp(L/�d) (5.24c)
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Reference 5 obtained Eqs. (5.24) using the linearized dynamical models. Because the above

constraints yield an infinite number of charge solutions, equal charges in magnitude across

the craft are chosen. For instance, for a radial equilibrium configuration assuming equal

charges in magnitude and using Eqs. (5.19) and (5.24a) yields

q1 =
√
∣(q1q2)radial∣ (5.25)

q2 = −q1 (5.26)

5.3 Reconfiguration Maneuvers

The formulation of any optimal control problem involves equations describing the dynamics

of the system, the cost to be minimized, and any constraints which must be met to consider

a solution valid. This section discusses the optimal control problem formulation for optimal

two-craft formation reconfigurations, the four performance criteria used (minimum time,

minimum acceleration, minimum propulsion fuel, and minimum power consumption), and

the Pontryagin’s necessary conditions that any candidate optimal solution must satisfy.

5.3.1 Problem Statement

An optimum reconfiguration maneuver drives the two craft formation from its initial position

given by x(�0) = x0 at nondimensional initial time �0 to its final position given by x(�f ) = xf

at final time �f , while minimizing a cost function, subject to dynamical constraints. The

state vector x is defined as

x = ( ,  
′
, l, l

′
, �, �

′
)T (5.27)

The four cost functions are defined below, and the dynamical constraints are presented in

Eqs. (5.21). If u max and u�max are the maximum thrust forces due to electric propulsion and

ulmax is the maximum thrust force due to Coulomb propulsion, then the control constraints
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are given by

−u max ≤ u ≤ u max (5.28a)

−ulmax ≤ ul ≤ ulmax (5.28b)

−u�max ≤ u� ≤ u�max (5.28c)

If the unconstrained control appears non-linearly in either the state dynamics or the perfor-

mance criterion (final time can be either fixed or free), the resulting optimal control solution

results in continuous control. However, if the constrained control appears linearly, then the

resulting optimal control solution results in bang-bang type controller.27,28

5.3.2 Measures of Optimality

Four measures of optimality are defined here that minimize a performance criterion (cost

function) subject to dynamical constraints. The optimality criteria are minimum time, min-

imum acceleration of the separation distance between the two craft, minimum Coulomb and

electric propulsion fuel consumption (modeled as the L1-norm of the control acceleration)

and minimum power consumption.

∙ Minimum Time

Minimum time cost function belong to an important class of solutions for reconfig-

uration maneuvers. They set the lower bound on achievable time and the optimal

control to obtain minimum-time response is maximum effort throughout the interval

of operation.28 The cost function to minimize is

J =

∫ �f

�0

d� (5.29)

Generally time-optimal control solutions are of a bang-bang type.

∙ Minimum Length Acceleration

For a 2-craft virtual Coulomb structure, it is desirable to keep the deployment/retrieval
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dynamics as smooth as possible for reconfigurations, so that the Coriolis forces balance

the gravity gradient forces. Hence, minimizing the length acceleration is convenient

performance measure to study. The cost function for a 2-craft Coulomb structure is

J =

∫ �f

�o

(l
′′
)2d� (5.30)

which minimizes the total length acceleration, l
′′
, appearing as a quadratic function.

∙ Minimum Propulsion Fuel

This optimization criterion seeks to minimize the Coulomb and electric propulsion

thrust magnitudes; the Coulomb thrust acts in the longitudinal direction and the

electric propulsion thrusts are orthogonal to the formation line of sight vector in the

 and � directions of the rotating body frame. A thrust magnitude is directly related

to the propulsion mass and the control acceleration. The minimum fuel cost function

is expressed as

J =

∫ �f

�0

(Wcp ∣ul∣+Wep ∣u ∣+Wep ∣u�∣)d� (5.31)

where Wcp and Wep are the weights associated with Coulomb propulsion and elec-

tric propulsion satisfying the condition Wcp +Wep = 1. Since the cost associated with

Coulomb propulsion is negligible compared to the electric propulsion (Isp values of 108–

1013 seconds versus 103–104 seconds), the weight associated with Coulomb propulsion

is set to Wcp = 0, and accordingly Wep = 1. However, for a radial equilibrium-to-

equilibrium expansion or contraction reconfiguration there is no electric propulsion

usage as such maneuvers require no inertial thrusting. Hence the minimum propulsion

fuel cost function is not modeled for the radial-to-radial equilibrium reconfiguration

cases. For other equilibrium-to-equilibrium reconfiguration maneuvers, the cost func-

tion becomes the fuel usage of the EP propulsion system:

J =

∫ �f

�0

(∣u ∣+ ∣u�∣)d� (5.32)

The cost function used here is the L1 norm of the control instead of the quadratic
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cost function (L2 norm squared), because L1 measures fuel use and is thus the correct

cost function for minimum fuel control. A quadratic cost-optimal controller takes more

fuel.24 Furthermore, quadratic cost controllers are continuous controllers which create

new system engineering problems such as inducing undesirable effects on precision

pointing payloads.24 Therefore, the choice for the cost function formulation is the l1

based L1 norm (∥u(�)∥L1 =
∫
∥u(�)∥l1 d� =

∫
(∣u1(�)∣+ . . .+ ∣un(�)∣)d�).

Furthermore, the derivative of the l1 based L1 norm is discontinuous at zero, but the

introduction of more control variables resolves this issue.38 For example, in the  

direction, the control vector is represented with two positive variables, a positive and

negative measure of the control acceleration directed along the orthogonal directions

to the formation line of sight vector. Both positive components have a lower bound of

zero and an upper bound u max. As a consequence, the augmented control variables’

derivatives are continuous and make the problem a smooth, nonlinear programming

problem to solve. Also, only the negative or positive part of the control in one direction

is nonzero at any given point in time.

∙ Minimum Propulsion Power The objective of this performance measure is to minimize

total electric power required to engage the Coulomb and electric propulsion methods.

The cost function is

J =

∫ �f

�0

(P 2
cp + P 2

ep)d� (5.33)

Assuming that the radii of the two-craft are the same, the Coulomb propulsion power

Pcp required to maintain the spacecraft at some steady-state potential Vsc is1

Pcp = ∣VscIe∣ (5.34)
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where the spacecraft potential Vsc and the current emitted Ie are given by

Vsc =

√∣∣∣∣−kculmΩ2exp(L/�d)
L2

r2
sc

( �d
L+ �d

)∣∣∣∣ (5.35)

Ie = 4�r2
scJp (5.36)

where rsc is the spacecraft radius in m, and Jp is the plasma current density in A/m2.

In the presence of the photoelectric effect, Jp as a function of the spacecraft potential

is1

Jp =

⎧⎨⎩Je0 exp(−e∣Vsc∣
kTe

)− Ji0 (1 + e∣Vsc∣
kTi

)− Jpe0 for Vsc < 0

Je0 (1 + eVsc
kTe

)− Ji0 exp(−eVsc
kTi

)− Jpe0 exp(−eVsc
kTpe

)(1 + eVsc
kTpe

) for Vsc > 0

(5.37)

with the electron, ion and photoelectron saturation currents given by Je0 = ene

√
kTe

2�me
,

Ji0 = −eni

√
kTi

2�mi
and Jpe0. The various plasma constants in Eq. (5.37) are the

electron charge e in C, ion(electron) density ni(e) in m−3, Boltzmann constant k in

J/K, ion(electron) temperature Ti(e) in K, Tpe is temperature of photoelectrons in K

and the ion(electron) density mi(e) in kg. The experimental values of these plasma

parameters during average GEO environment conditions are given in Reference 1.

The electric propulsion (EP) power Pep is dependent on the control acceleration mag-

nitude (∣u ∣+ ∣u�∣), thruster efficiency �, and specific impulse Isp. Thus, Pep is modeled

as41

Pep = mΩ2Lref
(∣u ∣+ ∣u�∣)ve

2�
(5.38)

where ve = gIsp is the engine exhaust velocity. Xenon is assumed to be the propellant

utilized for the EP system and the thruster efficiency � is determined by the relation

� =
bv2

e

v2
e + d2

(5.39)

where b = 0.81 and d = 13.5km/s are propellant-dependant coefficients derived from

theoretical and experimental data.41 For EP systems using xenon, the typical specific
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impulse limits are 1000s ≤ Isp ≤ 7000s.41 Isp is assumed to be constant over the

entire maneuver which implies a fixed engine operating with no throttling. For this

optimization criteria, the Coulomb and electric propulsion power levels are assumed to

be of the same order (between 1 to 10 Watts).

5.3.3 Pontryagin’s Necessary Conditions

Since the cost functions and the dynamical constraints do not explicitly depend on time,

a necessary condition at an optimal solution where the cost functional is at a minimum

is ∂ℋ
∂t

= 0. This condition along with the transversality condition in Eq. (5.11c) provides

the Hamiltonian function value at the optimal state-control function pair. At an optimal

state-control function pair, for minimum time cost function the Hamiltonian function value

is -1, and for minimum acceleration, minimum fuel, and minimum power cost functions the

Hamiltonian function value is 0. These constant Hamiltonian function values for different

performance criteria are later used to check the optimality of the numerical results.

5.4 Solving the Optimal Control Problem

Optimal control problems can rarely be solved analytically, and numerical methods are

needed in such cases to solve them.26 The first step is to discretize the problem, which

is to define the system at discrete points which results in a finite number of variables be-

cause the system variables are only defined at the discrete points. The number of variables

for the optimal control problem is then the number of variables in the system times the num-

ber of discretization points. The consequence of discretizing the optimal control problems

explored here are nonlinearly unconstrained and constrained optimization problems. The

unstable dynamics of the two-craft Coulomb formation require a more accurate representa-

tion of the maneuver to solve the problem. There are many ways to discretize the optimal

control problem. The choice of a discretization method may lead to different sizes of discrete

problem with different theoretical and numerical properties. Solution techniques to the OCP

can be broadly classified as either indirect or direct methods. This section discusses three

methods explored for discretizing the optimal control problem presented in this thesis: indi-
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rect multiple shooting method, direct penalty function method and pseudospectral method.

To combine the pros and cons of both direct and indirect approaches, the pseudospectral

method was eventually chosen over multiple shooting and direct penalty function methods.

5.4.1 Indirect Method

Indirect methods based on the calculus of variation utilizes the first-order necessary con-

ditions for optimality given by the Pontryagin’s minimum principle (PMP). The aim is to

find an approximate solution to these necessary conditions by solving a two-point boundary

value problem. Indirect methods are based on finding the state, costate and control variables

that solve these boundary value problems. Out of wide variety of techniques available to

solve BVP, perhaps multiple-shooting method is the most accurate and reliable technique

for solving BVP involving differential equations. However, the convergence characteristics

heavily depend on a good initial guess for both the state and costate equations. Further,

the switching structure of the constraints has to be known a priori. Direct and indirect vari-

ants of shooting, multiple shooting, transcription/collocation methods are available and for

a detailed review of these solution techniques refer to Betts.26 Further, for implementation

details on indirect methods refer Reference 29.

This section presents the multiple shooting technique explored to solve an unconstrained

optimal control problem in this thesis.29 If x(t) ∈ ℝn represents the state vector and �(t) ∈

ℝn denotes the costate variables then find the control u(t) ∈ ℝm that minimizes the cost

functional given in Eq. (5.1). From Eq. (5.11), the first order necessary conditions for the

extremum for an unconstrained optimal control problem become

ẋ =
∂ℋ
∂�

(5.40a)

�̇ = −∂ℋ
∂x

(5.40b)

∂ℋ
∂u

= 0 (5.40c)

∂E

∂x
(x(tf ))− �(tf ) = 0 (5.40d)

x0 = x(t0),xf = x(tf ) (5.40e)
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Assuming that you can express the control variables in terms of the state and co-state

variables the two point boundary value problem becomes

ẏ = p(y) (5.41a)

r(y(t0),y(tf )) = 0 (5.41b)

where y = [x,�]T , p(y) = [∂ℋ
∂�
,−∂ℋ

∂x
]T and r(y(t0),y(tf )) are the boundary conditions ob-

tained from Eqs. (5.40d)-(5.40e). To apply the multiple shooting technique to the boundary-

value problem in Eq. (5.41), the time span [0, tf ] is divided into M intervals such that

0 = t0 < t1 < . . . < tM = tf . In each interval, let y(t; syi ) denote the solution to the

initial-value problem

ẏ = p(t,y), t ∈ (ti, ti+1) (5.42a)

y(ti) = syi , i = 0, 1, . . . ,M − 1 (5.42b)

where syi represents the solution to the boundary-value problem in Eq. (5.41) at the nodes

ti, i = 0, 1, 2, . . . ,M . An additional requirement is that the solution at each node be contin-

uous, i.e.,

y(ti+1; syi )− s
y
i+1 = 0, i = 0, 1, 2, . . . ,M − 1 (5.43)

where y(ti+1; syi ) is the solution to the ordinary differential equation Eq. (5.42a) at time

t = ti+1 using the initial condition y(ti) = syi . Further, the boundary conditions are satisfied

such that

r(sy0, s
y
M) = 0 (5.44)

The conditions (5.43) and (5.44) provide 2n(M + 1) non-linear equations in 2n(M + 1)

unknowns which can be solved in an iterative manner using Newton’s method. The multiple

shooting algorithm is summarized as follows:
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Given M, t0, t1, . . . , tM−1, s
0, and a small number � > 0,

1. Compute F (s0), where

F (s) =

⎡⎢⎢⎢⎢⎢⎢⎣
y(t1; sy0)− sy1

...

y(tM ; syM−1)− syM
r(sy0, s

y
M)

⎤⎥⎥⎥⎥⎥⎥⎦ = 0; s =

⎡⎢⎢⎢⎣
sy0
...

syM

⎤⎥⎥⎥⎦ (5.45)

2. If ∥F (s0)∥ ≤ �, s0 is the desired solution.

3. Compute Δs = −J−1(s0)F (s0)

If ∥Δs∥ ≤ �, s0 is the desired solution. Here J(s) is the Jacobian matrix of the form

J(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C0

0 A1 C1

...
. . . . . .

0 AM−1 CM−1

B0 0 BM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.46)

with (5.47)

Ai =

[
∂y

∂syi

]
;Ci = −I, i = 0, 1, . . . ,M − 1 (5.48)

B0 =

[
∂r

∂sy0

]
;BM =

[
∂r

∂syM

]
(5.49)

4. Find an �∗ > 0 such that F (s0 + �∗Δs) < F (s0).

5. Set s0 = s0 + �∗Δs.

Set F (s0) = F (s0 + �∗Δs)

Go to step 2.
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5.4.2 Direct Method

Direct methods directly solve for the unknown control variables; direct methods transform

the continuous OCP into a discrete nonlinear programming (NLP) which is solved either

by the penalty function method or augmented Lagrangian function method. In the direct

method, the state and control variables are parameterized using piecewise polynomial approx-

imations between the node points. A result of such approximations for the cost functional,

state dynamics equations, state-control constraints and boundary conditions transforms the

dynamic optimization problem to a unconstrained static optimization problem. To improve

the solution accuracy, higher-order polynomial approximations can be used; however, using

more sophisticated discretization techniques significantly increase numerical difficulties.

The major advantage of the direct method is that approximate optimal solutions are

achieved with a poor initial guess; however, the disadvantage is that the resulting static

optimization problem has a large number of unknown variables, and may be plagued with

multiple minima as a result of the discretization process. Thus, computing the actual global

minimum may be difficult, and as a result direct methods tend to give inaccurate solu-

tions. Though it is simpler and easier computationally to discretize the OCP using direct

algorithms, the method is not as accurate as indirect methods. Furthermore, many direct

methods do not provide the costate information. The direct algorithm29 explored for dis-

cretizing the optimal control problem presented in this thesis is given here.

If x(t) ∈ ℝn represents the state vector and �(t) ∈ ℝn denotes the costate variables then

find the control u(t) ∈ ℝm that minimizes the cost functional given in Eq. (5.1) subject

to the constraints in Eq. (5.2) and the specified initial conditions x0 = x(t0). Using the

Hamiltonian definition in Eq. (5.5), the dynamic constraints in Eq. (5.2) can be adjoined to

the cost functional in Eq. (5.1) via the Lagrange multipliers to get

J [x(t),u(t)] = E(x(tf ), tf ) +

∫ tf

t0

(ℋ− �T ẋ)dt (5.50)

From an initial guess, u0(t), an improved control input u1(t) is to be found, that will decrease

the value of the cost functional. Let u1(t) = u0(t) + hu(t), where hu(t) represents an



133

increment to the initial guess. Also let x1(t) = x0(t) + hx(t), be the state trajectory that

corresponds to the control input u1(t). Choosing �̇ = −∂ℋ
∂x

and �(tf ) = ∂E
∂x

(x(tf )), and

neglecting higher order terms the change in the cost functional becomes

ΔJ [x(t),u(t)] = �J =

∫ tf

t0

∂ℋ
∂u
hu(t)dt (5.51)

A numerical approximation to the integral can be obtained by using the trapezoidal rule.

Therefore, to consider the control input at discrete points, divide the time span t ∈ [t0, tf ] into

N − 1 equally spaced intervals such that Δt = tf/(N − 1), ti = iΔt, i = 0, 1, . . . , N − 1, t0 =

0, tN−1 = tf . Treating u(ti) as a set of n unknown parameters, the point-wise approximation

for the control input becomes

�J =
N−1∑
i=0

∂J

∂u(ti)
hu(ti) (5.52)

Then the gradient of the cost functional with respect to the control input becomes

∂J

∂u(ti)
=

⎧⎨⎩
∂ℋ

∂u(ti)
Δt for i = 1, 2, . . . , N − 2

1
2

∂ℋ
∂u(ti)

Δt for i = 0, and, i = N − 1

(5.53)

As a result of these approximations, the unconstrained static optimization problem becomes:

Find u(t0),u(t1), . . . ,u(tN−1) that minimizes the cost function

J(u(t0),u(t1), . . . ,u(tN−1)) (5.54)

And this problem can be solved using Quasi-Newton method.

Defining ũ, ΔJ and h̃u as

ũ = [u(t0)T ,u(t1)T , . . . ,u(tN−1)T ]T (5.55)

ΔJ = [(
∂J

∂u(t0)
)T , (

∂J

∂u(t1)
)T , . . . , (

∂J

∂u(tN−1)
)T ]T (5.56)

h̃u = [hu(t0),hu(t1), . . . ,hu(tN−1)]T (5.57)
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the direct algorithm that uses the Quasi-Newton method is summarized as follows.

Given N, tf , ũ
0, K0

mu = I, and a small number � > 0,

1. Compute the gradient ∇J(ũ0) using Eq. (5.53).

2. If ∥∇J(ũ0)∥ ≤ �, ũ is the desired solution.

3. Compute h̃u = −K0
mu∇J(ũ0).

4. If
∥∥∥h̃u∥∥∥ ≤ �, stop, as no further improvement is possible.

5. Find an �∗ > 0 such that J(ũ0 + �∗h̃u) < J(ũ0).

6. Compute  = ∇J(ũ0 + �∗h̃u)−∇J(ũ0).

d = ũ0 + �∗h̃u − ũ0 = �∗h̃u.

K0
mu = K0

mu +
(

1 + TK0
mu

dT

)
ddT

dT
−
(
dTK0

mu+K0
mud

T

dT

)
.

7. Set ũ0 = ũ0 + �∗h̃u.

Set ∇J(ũ0) = ∇J(ũ0 + �∗h̃u).

Go to step 2.

For instance, an educated guess is used for u0(t) on first iteration to find the state x(ti)

forward in time t = 0 to t = tf . Then, use u(t0) and x(ti) from previous step to find the

Lagrange multiplier �(ti) backward in time t = tf to t = 0. Finally, using u(t0), x(ti), and

�(ti) from previous steps the Quasi-Newton method summarized above is implemented to

adjust the control history. Both the function and gradient evaluations require higher order

polynomial approximations to improve the accuracy of the numerical solution.

5.4.3 Pseudospectral Method

Over the last decade, due to major enhancements in approximation theory and optimization

techniques, functionally smooth nonlinear optimal control problems where the functions

involved in the problem formulation are differentiable can be solved with relative ease.34,35,38
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This approach of solving optimal control problems is encapsulated as the Covector Mapping

Principle (CMP), and Figure 5.2 effectively depicts the CMP.30 Problem B represents a given

trajectory optimization problem. Application of Pontryagin’s Minimum Principle (PMP)

yields a ”two-point” boundary value problem. Call this Problem B�. Problem B� is twice the

dimension of Problem B as a result of the costates, whose dimension is exactly equal to that of

the states. Since Problem B� is typically unsolvable in closed-form, ”approximate” solutions

to it are sought by ”approximation methods”. Problem B�N represents the approximate

solution to the problem where N denotes the number of discrete points used, for example, the

number of points used in the Runge-Kutta method. Well-known discretization methods (such

as a class of Runge-Kutta methods) fail for optimal control problems because dualization

and discretization are non-commutative operations indicated by the commutation gap shown

in Figure 5.2.39,40

Figure 5.2: The Covector Mapping Principle30

The bottom of Figure 5.2 represents the discretization of Problem B to Problem BN

using the classical direct methods. If convergence can be proved, then passing to the limit,

N → ∞, solves the original continuous problem in the limit. A convergence theorem en-

sures that solutions are obtained to an arbitrary precision. But for the simplest problems,



136

convergence can be shown to be generally invalid in the context of the Minimum Princi-

ple. When Problem B is a modern optimal control problem, Problem BN is a non-linear

programming problem. Hence BN� refers to the set of necessary conditions obtained by

applying the Karush-Kuhn-Tucker (KKT) theorem. Furthermore, Problems B�N and BN�

do not necessarily generate the same solution. This means dualization and discretization

are not commutative operations. However, it is proved that a covector mapping theorem for

the Legendre pseudospectral method provides an order-preserving map between the duals.

In addition, the Legendre pseudospectral method proves to be convergent with remarkably

small grids.30,39,40

Consequently, the solutions can be obtained readily by implementing the CMP where the

mapping between the states and costates is preserved.30 The extremality of the computed

solutions can be thoroughly verified by examining the necessary conditions. It is important

to emphasize that such verifications can be performed without having to solve the two-point

boundary value problem. For approximating the unknown functions over multiple nodes, the

CMP utilizes the Legendre pseudospectral method (LPM), which in turn uses Lagrange inter-

polating polynomials to approximate the states and controls. For optimal node placement in

time, a specific set of points are chosen for the interpolating nodes where the discrete variables

are defined. As an example, the LGL (Legendre-Gauss-Lobatto) pseudospectral method uses

nodes that correspond to the extrema of N th order Legendre polynomials. Therefore, with

fewer terms of a series in the approximation, spectral methods for approximating functions

have exponential convergence property. Furthermore, it has been shown that the Legendre

pseudospectral method (albeit a direct method) has the property that the solution satisfies

the necessary optimality conditions and solves the OCP without using a good estimate of

an optimal solution as a guess.30,33 Also, this eliminates traditional difficulties in solving for

the costates in the OCP.39

In the Legendre PS methods, the states and controls are approximated using Nth order

Lagrange polynomials which interpolate the functions at optimally chosen nodes. The node

points are optimally chosen by the Legendre-Gauss-Lobatto (LGL) quadrature. The LGL

node points are the extrema of the Nth order Legendre polynomials which give the least in-
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terpolation error in the L2 sense. The LGL nodes are chosen over other quadrature nodes(like

Chebyshev nodes) as they are more versatile and can also be used in the discretization of

integrals by Gaussian quadrature. More precisely, the LGL node points tl, l = 0, . . . , N ,

spaced on the interval [−1, 1] are defined as

t0 = −1, tN = 1

and for 1 ≤ l ≤ N − 1, tl are the zeros of L̇N(t), the derivative of the Legendre polynomial

LN(t). The roots of the Legendre polynomials are distinct, lie in the interval [−1, 1], have a

symmetry with respect to the origin. The Legendre polynomials are orthogonal polynomials

with properties:

1. For each N , LN(t) is a polynomial of degree N .

2.
∫ 1

−1
LM(t)LN(t)dt = �MN

2
2n+1

where LM(t) and LN(t) are the polynomials and �MN is

the Kronecker delta, which is 0 when M ∕= N and 1 when M = N .

The discretization process begins by approximating the continuous state and control variables

using the Lagrange interpolating polynomials, �l(t), of order N as:

x(t) ≈ xN(t) =
N∑
l=0

xl�l(t) (5.58)

u(t) ≈ uN(t) =
N∑
l=0

ul�l(t) (5.59)

where �l(t) is related to the Legendre polynomials through

�l(t) =
1

N(N + 1)LN(tl)

(t2 − 1)L̇N(t)

t− tl
(5.60)

It can be verified that

�l(tk) = �lk =

⎧⎨⎩1 if l = k

0 if l ∕= k

(5.61)
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Hence, it follows that xl = xN(tl),ul = uN(tl). The derivative terms are approximated from

Eq. (5.58) by differentiating the approximation

ẋ(t) ≈ ẋN(t) =
N∑
t=0

xl�̇l(t) (5.62)

and then evaluating the expression at the LGL nodes. This process gives rise to the (N +

1)× (N + 1) differentiation matrix D1 with entries D1,kl = �̇l(tk) or

D1 := [D1,kl] :=

⎧⎨⎩

LN (tk)
LN (tl)

⋅ 1
tk−tl

if k ∕= l

−N(N+1)
4

if k = l = 0

N(N+1)
4

if k = l = N

0 otherwise

(5.63)

which operates over each component of the discretization, X = (x0;x1; ...;xN), to generate a

discrete derivative Ẋ = D1∗X = (ẋ0; ẋ1; ...; ẋN). The dynamical constraints are discretized

by imposing these constraints at the LGL nodes. Thus, the functions are replaced by vector

of their values at the nodes, and the derivative operators are replaced by differentiation

matrices. Further, the derivatives of the functions at these nodes are obtained by applying

the differentiation matrices on the functions at the same nodes. Therefore, discretization of

the Eq. (5.62) can be written as

ẋ(�i) ≈ ẋN(�i) =
N∑
j=0

D1,ijxj ∈
�f − �0

2
F (xi, �i) i = 0, 1, ..., N (5.64)

where �i are the shifted LGL nodes and the factor
�f−�0

2
comes from an affine transformation

of the time domain given as

t ∈ [t0, tN ]→ [−1, 1] : � =
(�f − �0) + (�f + �0)

2
(5.65)
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Similarly, the state-space constraint

ẋ(�) = f(x(�),u(�), �) (5.66)

is approximated by

ẋN(tk) =
N∑
t=0

xl�̇l(tk) =
N∑
t=0

Dklxl =
�f − �0

2
f(xk,uk, �k) (5.67)

Discretizing the generalized cost function in Eq. (5.1), the Gauss-Lobatto integration rule

yields

JN [X,U , �0, �f ] =
�f − �0

2

N∑
k=0

F

(
xk,

N∑
j=0

D1,kjxj,uk, �k

)
wk + E(x0,xN , �0, �f ) (5.68)

where wk are the LGL weights given by

wk :=
2

N(N + 1)

1

[LN(tk)]2
k = 0, 1, ..., N. (5.69)

The formulation is now been transformed to a nonlinear programming problem (NLP). The

NLP problem obtained through pseudospectral methods preserves the structure of the orig-

inal optimal control problem which is of significant consequence to the dualization of the

problem and convergence of the discretization.39,40 Also Reference 40 proves that smoother

the optimal solution is, the faster the convergence of the pseudospectral solution.

The optimal control problems in this thesis are solved by the Legendre pseudo-spectral

method.30,31,33 Each optimal control problem in this thesis is solved using the commercial

software package DIDO. The covector mapping theorem for the pseudo-spectral method is

implemented in this powerful computational tool. DIDO discretizes an optimization problem

by using the Legendre pseudo-spectral method and solves it using NLP solver SNOPT, a

sequential quadratic programming solver.33 DIDO generates spectrally accurate solutions

whose extremality can be verified using Pontryagin’s Minimum Principle. Moreover, this

tool can solve non-smooth problems that have state/control discontinuities where these dis-
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continuities can be seen in bang-bang controls.

5.5 Numerical Simulation

This section presents numerical simulations illustrating different optimal reconfigurations of

a 2-craft Coulomb virtual tether formation in circular GEO orbits: radial, along-track and

orbit normal spacecraft separation distance expansion and contraction maneuvers, radial

to along-track and radial to orbit-normal maneuvers with constant separation distance at

the initial and final positions, and a family of radial to along-track maneuvers. For each

reconfiguration maneuver, four different performance criteria are considered for which op-

timal control solutions, associated state trajectories, and spacecraft charge time histories

are presented. Eqs. (5.21) provide the equations of motion (state constraints) for these re-

configuration maneuvers. Table 5.1 provides the simulation parameters and their values.

For each equilibrium-to-equilibrium reconfiguration, for bang-bang controls (minimum-time,

minimum-fuel), the Coulomb propulsion thruster limit is fixed at a maximum equilibrium

value of the maneuver. Therefore, the Coulomb thruster limit could vary depending on

the maneuver under consideration, and from Eqs. (5.19) and (5.24), this limit is computed

directly from the maximum equilibrium charge that can be produced. For example, for a

radial-to-radial expansion, where the radial spacecraft separation distance is expanded from

25m to 35m, the charges vary from 1.45�C at 25m to 2.41�C at 35m which correspond to

Coulomb forces of 29.91�N and 41.87�N respectively. Consequently, for this expansion, the

Coulomb thruster limit is fixed at 41.87�N. For a similar expansion from 75m to 100m,

the charges vary from 7.75�C to 12.21�C with Coulomb forces of 89.72�N and 119.62�N,

and hence the limit is fixed at 119.62�N. For electric propulsion, a Colloid micro-thruster is

used with a fixed limit of 30�N. Both the Coulomb and electric propulsion thruster limits

can clearly go higher but such choices yield controls dominated by the respective thrusters.

Furthermore, the perturbation forces due to the J2 gravitational attraction and the solar

radiation pressure at GEO are not considered in this simulation.
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Table 5.1: Simulation Parameters Used for Reconfiguration Maneuvers

Parameter Value Units

m1 150 kg
m2 150 kg
Linitial 25 m
u max 30 �N
u�max 30 �N
Isp(EP) 2000 sec

kc 8.99× 109 Nm2

C2

Ω 7.2915× 10−5 rad/sec

5.5.1 Radial Spacecraft Separation Distance Expansion and Contraction Maneuvers

This example illustrates how to optimally reconfigure a 2-craft Coulomb virtual tether for-

mation to move the craft apart or closer using the Coulomb force and exploiting the gravity

gradient to stabilize the formation. Numerical simulations are performed for two sets of

maneuvers, expanding the radial Coulomb formation from an initial 25m to a final 35m and

contracting the formation from a separation distance of 25m to 15m. The initial and final

attitude values as well as the initial and final rates are set to zero through

 i =  f = �i = �f =  ̇i =  ̇f = �̇i = �̇f = L̇i = L̇f = 0 (5.70)

For minimum-time, minimum-acceleration and minimum-power performance criteria, for an

expansion maneuver in which the inter-craft distance increases from 25m to 35m, Figure

5.3 show the candidate in-plane trajectories, state histories, control solutions and Figure 5.4

shows the spacecraft charge time histories. The solutions are obtained for a choice of 100

nodes. Since the variations in the out-of-plane rotation angles (not shown) are negligible

(on the order of 10−13 rad), only the in-plane trajectories are shown in Figure 5.3(a). The

state histories in Figure 5.3(b) show that the boundary conditions are satisfied with viable

variations of the in-plane rotation angles and the separation distances. The candidate con-

trol solutions in Figure 5.3(c) for minimum-time criteria display bang-bang characteristics,

whereas, the minimum-acceleration and minimum-power criterion yields a continuous control
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solution. An end of a maneuver is denoted by a square box for the respective performance

criterion. The charge on craft 2 will be equal and opposite to that of craft 1. Figure 5.4

shows the spacecraft charge time histories for one of the crafts. Since the magnitude of the

control charges is on the order of micro-Coulombs, charge emission devices can be used in

practice for implementation.

To verify that the control solution for each performance measure indeed drives the system

from its known initial to the desired end state, the initial conditions and control solutions

are used as input to the ode45 Matlab subroutine and the results are propagated. The prop-

agated results (not shown) closely matched the pseudospectral approximations of the states,

confirming the feasibility and convergence of the original solutions. Given the feasibility of

the optimized solutions, the necessary conditions for optimality are examined. As previously

stated, one such test is the approximate constancy of the Hamiltonian, whose theoretical

constant value depends on the performance criterion. For the three performance measures,

Table 5.2 shows that this necessary condition is indeed met. Table 5.2 also shows the opti-

mal time required to complete the maneuver, maximum separation distance acceleration, and

mean (root-mean-square - RMS) Coulomb propulsion thrust and power required. With the

minimum-time criterion, the expansion is finished in 0.6584 orbits. Also, as an improvement

over such a radial-expansion reconfiguration result of 1.8 days in Reference 5, which uses lin-

earized time-varying dynamical models, the time taken using optimal control techniques is

0.65 days. Furthermore, optimal control techniques use variable separation distance rates as

opposed to the constant rates used in Reference 5. The mean CP thrust and power required

for the minimum-time criterion are high, and are low for the minimum-power maneuver.

For the minimum-power and minimum-acceleration criteria, the maximum Coulomb thrust

needed at the end of the maneuver is greater than the radial equilibrium value of 41.8682�N

at 35m. This discrepancy is necessary to overcome the formation’s rotational dynamics, and

at the end of the maneuver, the controls should explicitly drop down to the equilibrium

value. Moreover, the maximum power requirements on the order of 10 Watts can be met by

the Coulomb propulsion devices.

Figure 5.5 shows the state trajectories, state time histories, control solutions and Figure
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(c) Coulomb Propulsion (CP) Control Solutions

Figure 5.3: Simulation Results for Expanding the Radial Spacecraft Separation Distance
from 25m to 35m. ( — Min Time, – – Min Acceleration, – ⋅ – ⋅ Min Power)
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Figure 5.4: Spacecraft Charge Time Histories for Expanding the Radial Spacecraft Separa-
tion Distance from 25m to 35m. ( — Min Time, – – Min Acceleration, – ⋅ – ⋅ Min Power)

Table 5.2: Results for Expanding the Radial Spacecraft Separation Distance from 25m to
35m.

Cost Time tf Max L
′′

CP Thrust CP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

�N W

Min Time 0.6584 5.0053× 10−7 39.9401 10.1978 −1.0079
Min Acceleration 0.7958 0.1342× 10−7 38.4081 9.8661 −0.1983
Min Power 0.6934 3.7761× 10−7 38.3876 9.7835 0.0002
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5.6 shows the spacecraft charge time histories for a contraction maneuver in which the inter-

craft distance decreases from 25m to 15m. The optimal solutions are symmetric to those of

the expansion maneuver solutions. From the results of Table 5.3, the contraction maneuver

for the minimum-time criterion finished in 0.7106 orbits. Also, as an improvement over

such radial-contraction reconfiguration results from Reference 5 which take 1.8 days, the

time taken using optimal control techniques is 0.71 days. However, the contraction took

1.27 days to complete for the minimum-acceleration cost function. Similar to the expansion

maneuver, the mean CP thrust and power required are highest for minimum-time criterion

and are lowest for the minimum-power criterion. For the minimum-time and minimum-power

criteria, the maximum Coulomb thrust at the beginning of the maneuver is greater than the

radial equilibrium value of 29.9059�N at 25m. This extra thrust is required at the beginning

of the contraction to overcome the angular momentum which causes the in-plane motion to

destabilize. At the end of the maneuver at 15m, the controls should explicitly drop down

to the equilibrium value of 17.9435�N. Since the separation distances in the contraction

maneuver are less than those of the expansion maneuver, the maximum power requirements

are about 4 Watts.

Table 5.3: Results for Contracting the Radial Spacecraft Separation Distance from 25m to
15m.

Cost Time tf Max L
′′

CP Thrust CP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

�N W

Min Time 0.7106 3.4690× 10−7 27.8732 3.8127 −0.9951
Min Acceleration 1.2732 0.4384× 10−7 26.7043 3.8335 −0.0959
Min Power 0.7625 2.2591× 10−7 26.2355 3.5994 0.0001

5.5.2 Along-track Spacecraft Separation Distance Expansion and Contraction Maneuvers

This example illustrates how to optimally reconfigure a 2-craft Coulomb virtual tether for-

mation to move the craft apart or closer in along-track equilibrium configuration. This re-

configuration maneuver requires hybrid control of Coulomb forces and conventional thrusters
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(c) Coulomb Propulsion (CP) Control Solutions

Figure 5.5: Simulation Results for Contracting the Radial Spacecraft Separation Distance
from 25m to 15m. ( — Min Time, – – Min Acceleration, – ⋅ – ⋅ Min Power)



147

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

C
ha

rg
e 

q1
 [µC

]

Time [orbits]

Student Version of MATLAB

Figure 5.6: Spacecraft Charge Time Histories for Contracting the Radial Spacecraft Sep-
aration Distance from 25m to 15m. ( — Min Time, – – Min Acceleration, – ⋅ – ⋅ Min
Power)

that stabilize the separation distance and orientation respectively. Numerical simulations are

performed for two sets of maneuvers, expanding the along-track Coulomb formation from an

initial 25m to a final 35m and contracting the formation from a separation distance of 25m

to 15m. The initial and final attitude values as well as the initial and final rates are set to

zero through

 i =  f = �i = �f =  ̇i =  ̇f = �̇i = �̇f = L̇i = L̇f = 0 (5.71)

For minimum-time, minimum-acceleration, minimum-fuel and minimum-power performance

criteria, for an expansion maneuver in which the inter-craft distance increases from 25m to

35m, Figures 5.7 and 5.8 show the candidate in-plane trajectories, state histories, control

solutions and the spacecraft charge time histories. The solutions are obtained for a choice of

25 nodes. Since the variations in the out-of-plane rotation angles (not shown) are negligible

(on the order of 10−13 rad), only the in-plane trajectories are shown in Figure 5.7(a). The

state histories in Figure 5.7(b) show that the boundary conditions are satisfied with viable

variations of the in-plane rotation angles and the separation distances. The candidate control

solutions in Figure 5.7(c) for minimum-time and minimum-fuel criteria display bang-bang

characteristics, whereas, the minimum-power and minimum-acceleration criteria yields a
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continuous control solution. An end of a maneuver is denoted by a square box for the

respective performance criterion. At the end of the maneuver, the controls should explicitly

drop down to the equilibrium value. The charge on both craft will be zero at the end of the

maneuver. Figure 5.8 shows the spacecraft charge time histories for one of the crafts. Since

the magnitude of the control charges is on the order of micro-Coulombs, charge emission

devices can be used in practice for implementation.

The propagated results (not shown) closely matched the pseudospectral approximations

of the states, confirming the feasibility and convergence of the original solutions. Given the

feasibility of the optimized solutions, the necessary conditions for optimality are examined.

For the four performance measures, Table 5.4 shows that the approximate constancy of the

Hamiltonian necessary condition is met. Table 5.4 also shows the optimal time required to

complete the maneuver, maximum separation distance acceleration, and the RMS Coulomb

and propulsion power required. With the minimum-time criterion, the expansion is fin-

ished in 0.1074 orbits. The mean Coulomb propulsion (CP) and electric propulsion (EP)

power required for the minimum-time criterion are high, and are low for the minimum-power

maneuver.

Table 5.4: Results for Expanding the Along-track Spacecraft Separation Distance from 25m
to 35m.

Cost Time tf Max L
′′

CP Power EP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

W W

Min Time 0.1074 5.4894× 10−7 5.9631 0.5145 −0.9995
Min Acceleration 0.7958 1.2642× 10−8 0.7150 0.1327 −0.0046
Min Fuel 0.3239 5.594× 10−7 6.1763 0 0
Min Power 0.3386 7.0323× 10−8 0.1118 0.1075 0

Figures 5.9 and 5.10 shows the state trajectories, state time histories, control solutions

and the spacecraft charge time histories for a contraction maneuver in which the inter-craft

distance decreases from 25m to 15m. From the results of Table 5.5, the contraction maneuver

for the minimum-time criterion finished in 0.1074 orbits. The contraction took 0.79 days to

complete for the minimum-acceleration cost function. Similar to the expansion maneuver,
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(c) Electric Propulsion (EP) and Coulomb Propulsion (CP) Controls

Figure 5.7: Simulation Results for Expanding the Along-track Spacecraft Separation Dis-
tance from 25m to 35m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min
Power)
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Figure 5.8: Spacecraft Charge Time Histories for Expanding the Along-track Spacecraft
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the mean Coulomb propulsion (CP) and electric propulsion (EP) power required for the

minimum-time criterion are high, and are low for the minimum-power maneuver. With

minimum-fuel cost function, it is observed that the contraction maneuver uses Coulomb

propulsion with no electric propulsion thrust required.

Table 5.5: Results for Contracting the Along-track Spacecraft Separation Distance from 25m
to 15m.

Cost Time tf Max L
′′

CP Power EP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

W W

Min Time 0.1074 5.5694× 10−7 3.0493 0.5127 −0.9997
Min Acceleration 0.7958 1.2484× 10−8 0.4341 0.1065 −0.0092
Min Fuel 0.3175 5.4186× 10−7 3.6399 0 0
Min Power 0.2763 1.0401× 10−7 0.2139 0.1581 −0.0001

5.5.3 Orbit-normal Spacecraft Separation Distance Expansion and Contraction Maneuvers

This example illustrates how to optimally reconfigure a 2-craft Coulomb virtual tether for-

mation to move the craft apart or closer in orbit-normal equilibrium configuration. Similar
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(c) Electric Propulsion (EP) and Coulomb Propulsion (CP) Controls

Figure 5.9: Simulation Results for Contracting the Along-track Spacecraft Separation Dis-
tance from 25m to 15m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min
Power)
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Figure 5.10: Spacecraft Charge Time Histories for Contracting the Along-track Spacecraft
Separation Distance from 25m to 15m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel,
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to the along-track maneuver, this reconfiguration requires hybrid control of Coulomb forces

and conventional thrusters that stabilize the separation distance and orientation. Numerical

simulations are performed for two sets of maneuvers, expanding the orbit-normal Coulomb

formation from an initial 25m to a final 35m and contracting the formation from a separation

distance of 25m to 15m. The initial and final attitude values as well as the initial and final

rates are set to zero through

�i = �f = �i = �f = �̇i = �̇f = �̇i = �̇f = L̇i = L̇f = 0 (5.72)

Figures 5.11 and 5.12 show the candidate solutions for an expansion maneuver in which

the inter-craft distance increases from 25m to 35m. The solutions are obtained for a choice

of 36 nodes. Figure 5.11(a) show the three-dimensional trajectories. The minimum-fuel

trajectory indicates that the maneuver uses Coulomb propulsion with no electric propulsion

thrust. The state histories in Figure 5.11(b) show that the boundary conditions are satisfied

with viable variations of the rotation angles and the separation distances. The control

solutions in Figure 5.11(c) for minimum-time and minimum-fuel criteria display bang-bang

characteristics, whereas, the minimum-power and minimum-acceleration criteria yields a

continuous control solution. The charge on craft 2 will be equal to that of craft 1. Figure
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5.12 shows the spacecraft charge time histories for one of the crafts.

For the four performance measures, Table 5.6 shows that the approximate constancy

of the Hamiltonian necessary condition is met. Table 5.6 also shows the optimal time re-

quired to complete the maneuver, maximum separation distance acceleration, and the RMS

Coulomb and propulsion power required. With the minimum-time criterion, the expansion

is finished in 0.1903 orbits. With minimum-fuel cost function, it is observed that the expan-

sion maneuver uses Coulomb propulsion with no electric propulsion thrust required. The

remaining analysis is similar to that of along-track configuration.

Table 5.6: Results for Expanding the Orbit-normal Spacecraft Separation Distance from 25m
to 35m.

Cost Time tf Max L
′′

CP Power EP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

W W

Min Time 0.1903 1.6535× 10−7 2.2345 1.0097 −0.9997
Min Acceleration 0.7958 1.2863× 10−8 1.2052 0.2573 −0.0046
Min Fuel 0.2721 5.0072× 10−8 4.7126 0 0
Min Power 0.2347 9.0036× 10−8 1.0247 0.4057 0.0001

Figures 5.13 and 5.14 show the candidate solutions for a contraction maneuver in which

the inter-craft distance decreases from 25m to 15m. From the results of Table 5.7, the

contraction maneuver for the minimum-time criterion finished in 0.1888 orbits and for the

minimum-acceleration criterion it took the maximum of 0.7958 orbits. Similar to the ex-

pansion maneuver, the mean Coulomb propulsion (CP) and electric propulsion (EP) power

required for the minimum-time criterion are high, and are low for the minimum-power ma-

neuver. With minimum-fuel cost function, it is observed that the contraction maneuver uses

Coulomb propulsion with no electric propulsion thrust required. The remaining analysis is

similar to that of the expansion maneuver.
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(c) Electric Propulsion (EP) and Coulomb Propulsion (CP) Controls

Figure 5.11: Simulation Results for Expanding the Orbit-normal Spacecraft Separation Dis-
tance from 25m to 35m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min
Power)
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Figure 5.12: Spacecraft Charge Time Histories for Expanding the Orbit-normal Spacecraft
Separation Distance from 25m to 35m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel,
– ⋅ – ⋅ Min Power)

Table 5.7: Results for Contracting the Orbit-normal Spacecraft Separation Distance from
25m to 15m.

Cost Time tf Max L
′′

CP Power EP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

W W

Min Time 0.1888 1.8416× 10−7 0.9585 0.8938 −1.0446
Min Acceleration 0.7958 1.272× 10−8 0.5536 0.2497 −0.0089
Min Fuel 0.2823 5.1993× 10−8 0.6742 0 0
Min Power 0.2574 6.5698× 10−8 0.5928 0.1034 0

5.5.4 Radial to Along-track Maneuver

The next example illustrates an optimal radial to along-track maneuver with the following

boundary conditions

Li = Lf = 25 m,  i = 0 rad,  f = −�/2 rad (5.73a)

�i = �f =  ̇i =  ̇f = �̇i = �̇f = L̇i = L̇f = 0 (5.73b)

To utilize the rotational formation dynamics, the final in-plane attitude angle  f is set

to −�/2 rad. Figures 5.15 and 5.16 show the simulation results for a radial to along-track
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(c) Electric Propulsion (EP) and Coulomb Propulsion (CP) Controls

Figure 5.13: Simulation Results for Contracting the Orbit-normal Spacecraft Separation
Distance from 25m to 15m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min
Power)
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Figure 5.14: Spacecraft Charge Time Histories for Contracting the Orbit-normal Spacecraft
Separation Distance from 25m to 15m. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel,
– ⋅ – ⋅ Min Power)

reconfiguration with a fixed separation distance of 25m at the initial and final equilibrium

positions. The results for all four cost functions are obtained for a choice of 75 nodes. Figure

5.15(a) illustrates the in-plane trajectories for this maneuver. It is interesting to note that

the minimum-fuel trajectory differs significantly from the others. The in-plane state histories

in Figure 5.15(b) indicate that the boundary conditions are met. Figure 5.15(c) shows that

the minimum-fuel maneuver uses maximum Coulomb thrusting, thus minimizing the EP

thrusting usage. The charge histories in Figure 5.16 not only show the easily controllable

charge magnitudes but also show the charge sign switching during the reconfiguration.

The propagated results (not shown) using ode45 closely matched the pseudospectral

approximation of the states, thus verifying the feasibility and convergence of the solution.

Moreover, as shown in Table 5.8, the constancy of the Hamiltonian value is satisfied for each

performance measure. The final time required to complete the maneuver is a minimum of

0.22 days for the minimum-time criterion and is a maximum of 0.54 days for the minimum-

acceleration criterion. The RMS power consumption shown in Table 5.8 indicates that more

Coulomb propulsion is used over electric propulsion. For the maneuver, a maximum of

about 4 Watts for Coulomb thrusting and a maximum of about 0.5 Watt for EP thrusting

are utilized, easily meeting the power requirements of charge emission devices and Colloid

thrusters. At the end of the maneuver at 25m at the along-track equilibrium position,
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the minimum-time, minimum-fuel and minimum-power Coulomb controls should explicitly

drop down to the equilibrium value of 0�N. The minimum-acceleration continuous Coulomb

control dropped down to the equilibrium value at the final time.

Table 5.8: Results of a Radial to Along-track Maneuver with 25m Separation Distance at
the Initial and Final Positions.

Cost Time tf Max L
′′

CP Power EP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

W W

Min Time 0.2259 5.8934× 10−7 3.2953 0.5225 −0.9996
Min Acceleration 0.5440 6.0722× 10−9 2.1579 0.2246 0
Min Fuel 0.4419 2.5784× 10−7 1.5135 0.3772 0.0448
Min Power 0.3970 3.9874× 10−7 1.5770 0.2121 0.0005

Figure 5.17 shows the trajectories and controls for the same radial to along-track reconfig-

uration, but with the boundary conditions not utilizing the rotational formation dynamics.

This implies that the final in-plane attitude angle  f is set to �/2 rad. The solutions are

shown for all four cost functions and the in-plane trajectories are not very different to those

of the solutions obtained utilizing the rotational formation dynamics. However, the control

effort required for minimum-time exhibits sharp fluctuations which remained irrespective of

the number of nodes chosen. Also, the reconfiguration times are longer compared to that

of the reconfigurations with the boundary conditions utilizing the rotational formation dy-

namics. Furthermore, the numerical simulation times between the two boundary conditions

varied greatly, which are presented in detail in the next section.

5.5.5 Family of Radial to Along-track Maneuvers

In this example, a family of optimal maneuvers from radial to along-track equilibrium po-

sitions are illustrated. Figure 5.18 displays the Coulomb and electric propulsion controls

(RMS) as a function of varying separation distances for each of the four cost functions. Each

maneuver is performed with a fixed separation distance of 25m at the initial radial position,

and varying final separation distances. Furthermore, the boundary conditions take advantage
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(c) Electric Propulsion (EP) and Coulomb Propulsion (CP) Controls

Figure 5.15: Simulation Results of a Radial to Along-track Maneuver with 25m Separation
Distance at the Initial and Final Positions. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min
Fuel, – ⋅ – ⋅ Min Power)
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Figure 5.16: Spacecraft Charge Time Histories of a Radial to Along-track Maneuver with 25m
Separation Distance at the Initial and Final Positions. (— Min Time, – – Min Acceleration,
⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min Power)
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(b) Electric Propulsion (EP) and Coulomb
Propulsion (CP) Controls

Figure 5.17: Simulation Results of a Radial to Along-track Maneuver with 25m Separation
Distance at the Initial and Final Positions with Boundary Conditions Not utilizing the
Rotational Dynamics. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min Power)
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of the rotational formation dynamics of the two-craft system. The minimum-time perfor-

mance measure consistently utilized more Coulomb and electric propulsion compared to the

other measures. Whereas, for the minimum-power cost function, the Coulomb thrust used for

two-craft separation distances between 90m and 125m is negligible (on the order of 10−5�N),

and the EP thrust observed over the same distances is significantly higher. Another observa-

tion from Figures 5.18(a) and 5.18(b) is that minimum electric propulsion thrust is required

for minimum-fuel cost function. The maneuver is able to use more Coulomb propulsion due

to the exploitation of the rotational formation dynamics.
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(b) CP Controls

Figure 5.18: In-plane Control Solutions for Family of Maneuvers from Radial to Along-
track Equilibrium Position with Initial Separation Distance of 25m. (— Min Time, – – Min
Acceleration, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min Power)

Figure 5.19 show results for two sets of maneuvers for the minimum-time performance

measure. One set of maneuvers is generated with the boundary conditions taking advan-

tage of the rotational formation dynamics (natural boundary conditions) and the other set

is generated without taking advantage of the rotational formation dynamics (non-natural

boundary conditions). Figure 5.19(a) shows the minimum-time trajectories with an initial

separation distance of 25m between the craft and a final separation distance varying be-

tween 25m and 125m. Figure 5.19(a) also shows the closed-form natural solution using the

Hill’s equations14 in which one craft is placed in the radial equilibrium position and allowed

to drift in the absence of any Coulomb interaction with the second craft. Although the

two sets of trajectories appear symmetric, collisions may occur with the other craft with
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non-natural boundary conditions. The control solutions (not shown) exhibit sharp fluctu-

ations for each maneuver with non-natural boundary conditions. Also, the reconfiguration

times (not shown) are longer compared to that of the reconfigurations with natural bound-

ary conditions. Moreover, Figure 5.19(b) shows the numerical simulation times for each set

of maneuvers which are much lower with the natural boundary conditions. For instance,

in a worst-case scenario, with a separation distance of 125m, the simulation times for the

non-natural boundary conditions are almost two orders of magnitude greater than those of

obtained using the natural boundary conditions. Therefore, utilizing the natural formation

dynamics yields clean bang-bang controls, collisionless trajectories and much lower simula-

tion times.
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(b) Simulation Times

Figure 5.19: Minimum-Time Family of Maneuvers from Radial to Along-track Equilibrium
Position with Initial Separation Distance of 25m.

5.5.6 Radial to Orbit-normal Maneuver

The final example illustrates an optimal radial to orbit-normal maneuver with the following

boundary conditions

Li = Lf = 25 m, �i = 0 rad, �f = 0 rad (5.74a)

�i = �f = �̇i = �̇f = �̇i = �̇f = L̇i = L̇f = 0 (5.74b)

Figures 5.20 and 5.21 show the simulation results for a radial to orbit-normal reconfigu-
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ration with a fixed separation distance of 25m at the initial and final equilibrium positions.

The results for all four cost functions are obtained for a choice of 25 nodes. Figure 5.20(a)

illustrates the three-dimensional trajectories for this maneuver. It is interesting to note that

the minimum-fuel trajectory differs significantly from the others. More importantly, the

separation distance becomes close to zero as in Figure 5.20(b) indicating that the maneuver

could lead to a collision with the second craft. The in-plane state histories in Figure 5.20(b)

indicate that the boundary conditions are met. Figure 5.20(c) shows that the minimum-fuel

maneuver uses maximum Coulomb thrusting, thus minimizing the EP thrusting usage. The

charge histories in Figure 5.21 not only show the easily controllable charge magnitudes but

also show the charge sign switching during the reconfiguration.

As shown in Table 5.9, the constancy of the Hamiltonian value is satisfied for each

performance measure. The final time required to complete the maneuver is a minimum of 0.21

days for the minimum-time criterion and is a maximum of 0.79 days for the minimum-power

criterion. The RMS power consumption shown in Table 5.9 indicates that more Coulomb

propulsion is used over electric propulsion for minimum-time, minimum-acceleration and

minimum-fuel criteria. However, for the minimum-power criterion, more electric propulsion

is used over Coulomb propulsion. Note that overall power consumption is minimum for

minimum-power criterion satisfying the cost function. For the maneuver, a maximum of

about 4.3 Watts for Coulomb thrusting and a maximum of about 0.95 Watt for EP thrusting

are utilized, easily meeting the power requirements of charge emission devices and Colloid

thrusters. At the end of the maneuver at 25m in the orbit-normal equilibrium position, the

minimum-time, minimum-fuel and minimum-power Coulomb controls should explicitly drop

down to the equilibrium value of 9.88�N. The minimum-acceleration continuous Coulomb

control dropped down to the equilibrium value at the final time.

5.6 Summary

This chapter presents an optimal-control framework for the reconfiguration of two-craft for-

mations in circular orbits. Several reconfiguration problems are discussed, with each problem

discretized using a Legendre pseudo-spectral method, and the resulting non-linear optimal
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(c) Electric Propulsion (EP) and Coulomb Propulsion (CP) Controls

Figure 5.20: Simulation Results of a Radial to Orbit-normal Maneuver with 25m Separation
Distance at the Initial and Final Positions. (— Min Time, – – Min Acceleration, ⋅ ⋅ ⋅ Min
Fuel, – ⋅ – ⋅ Min Power)
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Figure 5.21: Spacecraft Charge Time Histories of a Radial to Orbit-normal Maneuver with
25m Separation Distance at the Initial and Final Positions. (— Min Time, – – Min Acceler-
ation, ⋅ ⋅ ⋅ Min Fuel, – ⋅ – ⋅ Min Power)

Table 5.9: Results of a Radial to Orbit-normal Maneuver with 25m Separation Distance at
the Initial and Final Positions.

Cost Time tf Max L
′′

CP Power EP Power Hamiltonian
[RMS] [RMS] [Mean]

orbits m
s2

W W

Min Time 0.2187 2.6986× 10−7 4.2630 0.9520 −0.9971
Min Acceleration 0.4198 8.3519× 10−9 3.2739 0.4295 0.0001
Min Fuel 0.6085 3.8721× 10−7 2.5488 0.1698 0.0319
Min Power 0.7958 3.9053× 10−7 0.0909 0.2930 −0.0005
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control problems solved using the software package DIDO. Pontryagin’s Minimum Principle

verifies the feasibility and optimality of the open-loop numerical solutions. Four measures of

optimality are discussed: minimum reconfiguration time, minimum acceleration of the sepa-

ration distance, minimum electric propulsion fuel usage and minimum power consumption.

Results for these cost functions are illustrated for each reconfiguration problem with the

goal of maximizing Coulomb propulsion usage while utilizing minimum electric propulsion.

Because no linearizations are involved with nonlinear optimal control techniques, boundary

conditions in the nonlinear regime hold. Previous Coulomb formation flying work used lin-

earized time-varying dynamical models. Compared to previous work, the expansion and con-

traction reconfigurations in the radial, along-track and orbit normal directions are achieved

in shorter times. Successful in-plane radial to along-track optimal reconfigurations for each

performance measure are shown along with a family of minimum-time optimal maneuvers.

The results highlight the advantage of using natural formation dynamics in the selection of

boundary conditions for such maneuvers. Then, a final numerical simulation illustrates an

out-of-plane radial to orbit-normal maneuver.
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Chapter 6

CONCLUSIONS

Techniques from geometric mechanics, linear and non-linear feedback control systems,

and optimal control theory have been applied to investigate the dynamics and control of a

two-craft Coulomb tether formation in circular orbits and at libration points. This chap-

ter discusses the work accomplished that meets the objectives of the dissertation. It also

describes avenues for future research beyond the scope of this dissertation.

6.1 Main Results in this Dissertation

6.1.1 Two-Craft Tether Formation Relative Equilibria about Circular Orbits and Libration

Points

The relative equilibria of a two-craft formation moving in a restricted two-body system and

a restricted three-body system are presented using the exact gravitational and Coulomb po-

tentials. A general framework of two-craft connected by an elastic tether force is studied

with an emphasis on a virtual Coulomb tether as a special case. The orbit-attitude cou-

pling effects should be considered for large spacecraft separation distances; for LEO, greater

than tens of kilometers, for GEO, hundreds of kilometers, and at libration points, tens of

thousands of kilometers. Such coupling effects can be ignored for shorter spacecraft sepa-

ration distances. The negligible non-great circle effects shown validate the simple principle

axes condition to find equilibrium solutions in GEO circular orbits for Coulomb tether ap-

plications. Consequently, for a charged two-craft formation, the principal axis condition is

very good for genetic algorithms which seek approximate equilibrium answers. However, for

full non-linear solutions, these effects can be taken into consideration. Moreover, the three

great-circle relative equilibria (radial, along-track and orbit normal) of a two-craft formation

at all five libration points are presented. Also, the nongreat-circle effects are numerically
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shown to exist at the Earth-Moon collinear libration points. Interestingly, in the restricted

three-body system, a tether force is required for the along-track equilibrium, however, no

tether force is necessary in the restricted two-body system. For two-craft Coulomb tether

separation distances in a restricted three-body system, the negligible non-great circle effects

at collinear libration points indicate that the simple principle axes condition should suffice

in the development of equations of motion. Furthermore, the results obtained here are used

to investigate the dynamics and stability of a 2-craft Coulomb tether formation at libration

points. One conference paper has been presented from this work45 and a journal paper is

under review.

6.1.2 Dynamic Analysis of Two-Craft Coulomb Formation at Libration Points

The feasibility of a two-craft Coulomb formation concept is studied at libration points for

orbit-radial, along-track and orbit-normal equilibria. The new two-craft dynamics at the

libration points is provided as a general framework in which circular Earth orbit dynamics

form a special case. The general equations of motion for collinear libration points has a �

term which varies for each collinear libration point. Interestingly, setting ”� = 1” yields the

same equations of motion for all three equilibrium configurations in circular Earth orbits. At

the triangular libration points, although there are additional terms in equations of motion for

the three equilibria, the effect of these additional terms on the dynamics is small. Therefore,

the dynamics and the stability conditions are similar to those found in Reference 5 for a

2-craft formation at GEO. For orbit-radial equilibrium, a linearized charge feedback law is

used wherein Coulomb force stabilizes the separation distance, while exploiting the gravity

gradient torque due to the two primaries for stabilizing the in-plane attitude motion. For

both along-track and orbit-normal configurations, a hybrid control of Coulomb forces and

conventional thrusters is required for stabilizing the separation distance and orientation

respectively. Also, due to the large distances from the Earth-moon barycenter to the libration

points and due to the smaller rotation rate of the barycenter, the micro-Coulomb charge

requirements at the libration points is at least an order of magnitude smaller then that of a

two-body system in Reference 5. The thrusting forces required are less than micro-Newtons
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in magnitude and are applied in orthogonal directions. One conference paper has been

presented from this work46 and a journal paper is under preparation.

In the linearized study, the assumption is that the differential solar radiation pressure

on the formation is zero. When the differential solar drag on the two-craft formation is not

zero and in the presence of time varying SRP disturbances, a Lyapunov feedback control

method is presented for feedback stabilization of a radial equilibrium two-craft Coulomb

tether formation at any collinear libration point. The method uses a Lyapunov function

based on a first integral of motion of the two-craft Coulomb formation. The controller

designed by this method works very well and the control law utilizes a three-dimensional

control (separation distance, in-plane and out-of-plane motion). Both the control charges

needed in the order of micro-Coulombs and the transverse control forces in the order of

micro-Newtons are realizable in practice. A conference paper is under preparation which

focuses the application of Lyapunov feedback control method.

6.1.3 Optimal Reconfigurations of Two-Craft Coulomb Formation in Circular Orbits

An optimal-control framework for the reconfiguration of two-craft formations in circular or-

bits is presented. Several in-plane and out-of-plane reconfiguration problems are discussed,

with each problem discretized using a Legendre pseudo-spectral method, and the resulting

non-linear optimal control problems are solved using the software package DIDO. The fea-

sibility and optimality of the open-loop numerical solutions are verified with Pontryagin’s

Minimum Principle. Four measures of optimality are discussed: minimum reconfiguration

time, minimum acceleration of the separation distance, minimum electric propulsion fuel

usage, and minimum electrical power consumption. Results for these cost functions are il-

lustrated for each reconfiguration problem with the goal of maximizing Coulomb propulsion

usage while utilizing minimum electric propulsion. The various two-craft reconfigurations

considered are: radial, along-track and orbit normal spacecraft separation distance expan-

sion and contraction maneuvers, radial to along-track and radial to orbit-normal maneuvers

with constant separation distance at the initial and final positions, and a family of radial to

along-track maneuvers. Because no linearizations are involved with nonlinear optimal control
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techniques, boundary conditions in the nonlinear regime hold. Previous Coulomb formation

flying work used linearized time-varying dynamical models. Compared to previous work,

the expansion and contraction reconfigurations in the radial, along-track and orbit normal

directions are achieved in shorter times. Successful in-plane radial to along-track optimal

reconfigurations for each performance measure are shown along with a family of minimum-

time optimal maneuvers. For such maneuvers, the advantage of using natural formation

dynamics in the selection of boundary conditions is highlighted. The orbit-normal spacecraft

separation distance expansion and contraction maneuvers as well as radial to orbit-normal

maneuvers involve three-dimensional reconfigurations which are illustrated considering the

coupled in-plane and the out-of-plane motions. Not only are useful optimal reconfigurations

for various problems found but interesting insights are given for respective cost functions.

For instance, for a radial to orbit-normal maneuver with a minimum-fuel cost function, extra

path constraints are necessary to avoid collisions between the craft. One conference paper

has been presented from this work47 and a journal paper is under preparation.

6.2 Future Work

There are many future research avenues for exploration beyond the work presented in this

thesis. A few of them are given here.

In the presence of time varying SRP disturbances at libration points, similar to the non-

linear feedback control strategy presented for orbit-radial configuration, a Lyapunov feedback

control method can be developed for stabilization of orbit normal or along-track two-craft

Coulomb tether formations.

For the reconfiguration of two-craft formations in circular orbits, solar radiation pressure

effects can be incorporated in the GEO environment. Also, optimal maneuvers of a two

spacecraft Coulomb formation at libration points can be studied. Furthermore, the optimal-

control framework presented here can be extended to determine optimal three-craft recon-

figurations between two charged equilibria configurations. Such three-spacecraft Coulomb

formations can be investigated by adding charge constraints to the problem formulation.

For satellite orbit problems, if the optimal control open-loop solutions can be generated
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fast enough, closed-loop feedback trajectories can be generated. In recent years, the notion

of Carathodory−� solutions are introduced that stem from the equivalence between closed-

loop and feedback trajectories.31 These ideas lead to a new set of foundations for achieving

feedback wherein optimality principles are interwoven to achieve stability and system perfor-

mance. Therefore, closed loop solutions can be investigated for optimal maneuvers of space-

craft Coulomb formations. By way of pseudospectral methods, optimal feedback control

based on the Carathodory−� trajectory concept is capable of solving real-time applications

because these techniques can generate solutions at a sufficiently fast sampling rate.
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Appendix A

LIE GROUPS

To explain the terminology used in chapter 2, basic properties and definitions of Lie

Groups are introduced here. References 43 and 44 present these concepts in detail.

Definition 1 [Group of transformations]. A group of transformations G is an aggregate

set of transformations gi such that the following properties are satisfied:

1. It contains the identity transformation.

2. Corresponding to each transformation gl there is an inverse transformation g−1
l .

3. The composition of transformations holds glgk ∈ G and the associativity rule (gigj) gk =

gi (gjgk) is satisfied.

For instance, the set of nonsingular linear transformation matrices forms a group as

all the above three properties are satisfied. Another important example is the symmetry

group of a rigid body. To maintain the symmetry of a rigid body, symmetry groups or

symmetry transformations gives rise to the set of all distance preserving transformations

which transforms the position of the body but preserves the distance between all pairs of

points of the rigid body.

Definition 2 [Lie group]. A Lie group is a smooth manifold G that has a group structure

consistent with its manifold structure such that the group operation and its inversion are

smooth maps between manifolds. A matrix representing a rotation about an axis through an

angle is an example of a Lie group. The three-dimensional rotation group SO(3) is defined

as

SO(3) =
{
C : R3 → R3 linear, CTC = E and detC = 1

}
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Lie groups describe continuous symmetries in physical systems using its Lie algebra g∗ for

its calculations. A Lie algebra is a vector space and uses linear algebra to study Lie groups.

For example, SO(3) is a Lie group and is characterized by its Lie algebra. A Lie group G

and its Lie algebra g∗ are related in a manner similar to which a flow and the associated

vector field are related. The corresponding vector field v on a flow Φ (x, t) given by

v (x) =
d

dt
∣t=0Φ (x, t) ,

is called the infinitesimal generator of the flow.

Let so(3) be the set of skew-symmetric matrices defined by

so(3) =
{
�̂ : R3 → R3, linear

∣∣∣�̂ + �̂T
∣∣∣ = 0

}
where � = (�1, �2, �3) is a vector and �̂ is

[
�̂
]

=

⎡⎢⎢⎢⎣
0 −�3 �2

�3 0 −�1

−�2 �1 0

⎤⎥⎥⎥⎦
This set so(3) forms the Lie algebra of SO(3) given as �̂r = � × r for any r ∈ R3. If we

define the Lie algebra isomorphism between the space R3 and so(3) by � 7→ so(3) then the

matrix exponential e�̂t is a rotation about � by the angle ∥�∥ t in the form

C (t) = e�̂t.

The action of the Lie group SO(3) on the configuration manifold Q is expressed as C ⋅ q

where Q is given by

Q =
{
q =

(
qi ∈ R3, i = 1, . . . , n

)}
.
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And the associated action of the infinitesimal generator �Q on Q is a vector field defined as

�Q (q) =
d

dt

(
e�̂t ⋅ q

)
t=0

= �̂q = � × q.

where � is the angular velocity vector.

The tangent space TqQ is the collection of all tangent vectors to all possible curves

passing through a given point qi. The set of all position-velocity pairs is a manifold and the

tangent bundle TQ of the manifold is denoted by

TQ = {(q,v) : q ∈ Q,v ∈ TqQ}

Similarly, in the phase space of position-momentum pairs the cotangent bundle T ∗Q becomes

T ∗Q =
{

(q,p) : q ∈ Q,p ∈ T ∗
qQ
}
.

Every vector space V has a dual V ∗: V ∗ = {l : V → R : l linear}. The dual space to vector

space V is defined as the vector space V ∗ consisting of all real-valued linear functions. As

an example, for n point masses moving in a central force field, the dual pairing between

(q,p) ∈ T ∗Q and (q,v) ∈ TQ is given by the inner product

⟨p,v⟩ =
n∑
i=1

pivi

This inner product structure identifies the vector space v and its dual p. And the Legendre

transformation FL : TQ→ T ∗Q gives rise to the linear momentum mapping

pi = mivi i = 1, . . . , n

If all the point masses need to be rotated simultaneously then the SO(3) action on Q is

TCq : q 7→ C ⋅ q := (C ⋅ qi) . (A.1)
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The infinitesimal generators associated with this group action is given by

!Q := !̂q = !× q = (! × qi) . (A.2)

Similarly to map the angular velocity and its dual, the angular momentum, consider the

momentum map J : T ∗Q→ g∗ given by

⟨p, !Q (q)⟩ = ⟨p, ! × q⟩ =

n∑∑∑
i=1

pi ⋅ (! × qi) =

n∑∑∑
i=1

pi (qi × pi) ⋅ ! = J (q, p) ⋅ ! (A.3)

That is,

J (q, p) = q × p := Σn
i=1qi × pi (A.4)

Which is the standard formula for angular momentum of a group of particles. And the

Legendre transformation FL : TQ→ T ∗Q gives rise to the angular momentum mapping

so (3)→ so∗ (3) : ! 7→ J (�Q (q)) = I (q)! (A.5)

Where is I (q) the inertia tensor and is expressed in the rotational kinetic energy of the point

masses as

2KH (�,!) = � ⋅ I (q)! =

n∑∑∑
i=1

mi (� × qi) ⋅ (! × qi) (A.6)


