
 
 

 
 
 
 
 

SOLAR SAIL ATTITUDE DYNAMICS AND CONING 
CONTROL: On Developing Control Methods for Solar Sail Coning 

at Orbit Rate to Attain Desired Orbital Effects 
 
 

    
 
 
 
 
 

Farheen Rizvi 
M.S./B.S. Concurrent Degree Candidate, 2010 

 
 
 
 
 
 
 
 
 
 

 
 

A thesis submitted to the  

Faculty of the Graduate School of the  

University of Colorado in partial fulfillment  

of the requirements for the degree of 

Master of Science 

Department of Aerospace Engineering Sciences 

2010



 
 

This thesis entitled: 

Solar Sail Attitude Dynamics and Coning Control: On Developing Control Methods for Solar 

Sail Coning at Orbit Rate to Attain Desired Orbital Effects 

written by Farheen Rizvi 

has been approved for the Department of Aerospace Engineering Sciences 

 

 

 

____________________________________ 

Dr. Dale A. Lawrence 

 

 

____________________________________ 

Dr. Hanspeter Schaub 

 

 

 

 

 

 

 

 
Date:______________ 

 
 

 
 
 

The final copy of this thesis has been examined by the signatories, and we 
find that both the content and the form meet acceptable presentation standards 

of scholarly work in the above mentioned discipline



iii 
 

 
 

Rizvi, Farheen (M.S. Aerospace Engineering Sciences) 
Solar Sail Attitude Dynamics and Coning Control: On Developing Control Methods for Solar 
Sail Coning at Orbit Rate to Attain Desired Orbital Effects 
Thesis Directed by Professor Dale A. Lawrence 
  

 In this thesis, a control method is developed for the solar sail normal vector to trace a 

desired circular coning trajectory at orbit rate. The coning trajectory is defined in the local 

vertical local horizontal (LVLH) frame and the coning occurs about an LVLH equilibrium sail 

attitude. Past research has shown that sail attitude equilibria exist in the LVLH frame under the 

influence of aerodynamic, gravity gradient and solar torques. Precession of the sail normal from 

these equilibria causes sail normal coning about that equilibrium attitude. If the coning happens 

at orbit rate, wide variety of orbital effects can be induced with minimum excitation of the 

sailcraft structure. This results in an inexpensive spacecraft with a longer duration mission as 

compared to other conventional efforts. A special case of analyzing circular cones (at orbit rate 

coning) revealed that new Sun-synchronous orbits were created and launch injection errors were 

overcome by employing the sail coning method. The control method herein minimizes the 

angular momentum error between the sail and desired angular momentum vectors at orbit rate. 

Since angular momentum is a function of sail normal, angular momentum error reduction raises 

hope in reducing the sail normal error between the sail normal and desired sail normal vector as 

well. The results show that even though the control method enables the sail angular momentum 

to track the desired angular momentum on the coning trajectory, the sail normal tracing can only 

occur about certain LVLH equilibrium points, for small cones and small initial condition angular 

position/velocity errors. The control method is robust for tracking the desired angular momentum 

at orbit rate, but not always for tracking the desired sail normal. The case where the sail normal 

does track the desired at orbit rate corresponds to tracing a 1° circular cone about an orbit 
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lowering LVLH equilibrium point. Even though the control torques are on the order of 10-6 Nm 

(acceptable on small sailcraft) for both a spinning and non-spinning sail, a spinning sail (spun at 

a specific equilibrium rate) requires less control torque (4 times lower than a non-spinning sail) 

to yield the desired orbit rate circular coning. The control torques can be applied to the sailcraft 

to enable orbit rate cone tracing of the sail normal and yield the desired orbital effects.
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NOMENCLATURE 
 

frameA−          →       inertial frame  
 

zyx ˆ,ˆ,ˆ                 →       unit vectors forming right-handed coordinate system for the A-frame 
                                     ( x̂ points along the vernal equinox, ẑ normal to the Equatorial plane, ŷ lies 
                                      in the Equatorial plane) 
 

frameB −          →       a principal frame (due to axi-symmetric mass properties), describes sail 
                                      tip and tilt velocities relative to the L-frame 
 

mln ˆ,ˆ,ˆ                 →       unit vectors forming right-handed coordinate system for the B-frame, 
                                      frame moves with sail normal tip and tilt but not with rotation about its  
                                      normal ( n̂ points along the sail normal, l̂ and m̂ lie in the plane of the sail) 
 

frameC −          →       sail body-fixed frame 
 

qpn ˆ,ˆ,ˆ                 →       unit vectors forming right-handed coordinate system for the C-frame  
                                     ( n̂ points along the sail normal, p̂ and q̂ lie in the plane of the sail) 
 

frameL −          →       local vertical local horizontal frame 
 

ovr ˆ,ˆ,ˆ                  →       unit vectors forming right-handed coordinate system for the L-frame  
                                     ( r̂ points along the orbit radius, v̂ is in the sail velocity direction, ô is 
                                      along the sail angular momentum vector) 
 
L                        →       square sail side length [m] 
 
A                        →       sail area [m2] 
 
cr                        →       distance to the sailcraft bus from the sail plane in the sail normal 

                                     direction [m] 
 
sm                      →       sail mass [kg] 

 
bm                      →       sailcraft bus mass [kg] 

 
s                        →       sail reflectivity 
 
sI                       →       inertia tensor [kgm2] 

 
nI                       →       axial moment of inertia [kgm2] 
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TI                      →       transverse moment of inertia [kgm2] 
 
a                        →       orbit altitude [km] 
  
i                         →       orbit inclination [deg] 
 
Ω                       →       orbit right ascension of ascending node [deg] 
 
sr                       →        right ascension of Sun [deg] 

 
sd                      →        declination of Sun [deg] 

 
sF                      →        solar flux at 1 AU [W/m2] 

 
n̂                →       sail normal unit vector 
 
cn̂                       →       desired sail normal unit vector (on the desired cone) 

 

 0n̂                      →       sail equilibrium attitude in the L-frame 
 
n̂Δ                     →       sail normal error between n̂ and cn̂  

 
β                       →       cone angle (angle between ô and sail normal vector in deg)  
 
φ                        →       clock angle (angle between v̂ and projection of sail normal onto the vr ˆˆ −   
                                     plane in deg)  
 
0β                      →       equilibrium cone angle [deg] 

 
0φ                       →       equilibrium clock angle [deg] 

 
cβ                      →       desired cone angle [deg] 

 
cφ                       →       desired clock angle [deg] 

 
δβ                      →       angular measure for cone perturbation from the equilibrium point [deg] 
 
δ                        →       half cone angle and euler (rotation) angle for the rotation matrix [deg] 
 
0
cR                      →       rotation matrix for calculating cn̂ by rotating 0n̂ through an euler axis and 

                                     angle 
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Ê                       →       euler (rotation) axis 
 
 C
Aω
                  →       angular velocity of the C-frame as seen in the A-frame [rad/s] 

 
1ω , 2ω , 3ω          →       B-frame components of C

Aω
 angular velocity from the simulation [rad/s] 

 
B

Aω
                   →       angular velocity of the B-frame as seen in the A-frame [rad/s] 

 
B

Lω


                   →      angular velocity of the B-frame as seen in the L-frame (describes sail tip 
                                    and tilt velocities with respect to the L-frame in rad/s) 
 

*
B

Lω
                   →      desired angular velocity [rad/s] 

  
⊥ω                      →      dot product of orbit rate velocity and sail normal vector [rad/s] 

 

Tω
                      →      projection of B

Aω
 onto the plane orthogonal to the sail normal vector 

                                     [rad/s] 
 
nω                      →       inertial sail spin rate [rad/s] 

 
noω                     →       equilibrium sail inertial spin rate [rad/s] 

 
cnω                    →       desired inertial sail spin rate [rad/s] 

 
sω                      →       sail spin rate about the sail normal vector relative to the B-frame [rad/s] 

 
oω                      →       orbit rate [rad/s] 

 

C
Ah


                   →       inertial sailcraft angular momentum of the C-frame as seen in the  
                                     A-frame [kgm2/s]            
 
h


                      →       angular momentum vector [kgm2/s] 
 
ch


                     →       desired angular momentum vector [kgm2/s] 
 
Sh


                     →       angular momentum vector from the sail simulation [kgm2/s] 
 

C
Ah


Δ / h


Δ          →       angular momentum error [kgm2/s]  
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termn _Δ          →        contribution from sail orientation terms in the angular momentum error 
                                      [kgm2/s] 
 

term_ωΔ         →        contribution from angular velocity terms in the angular momentum error 
                                      [kgm2/s] 
 
τ
                       →       net external torque acting on the sail [Nm] 

 
nτ
                      →       normal component of the net torque acting on the sail [Nm]  

 
Tτ
                      →       transverse component of the net torque acting on the sail [Nm]            
 
aτ


                     →       aerodynamic torque [Nm] 
 
amτ                    →       aerodynamic moment coefficient [Nm] 

 
sτ
                      →       solar torque [Nm] 
 
smτ                    →       solar moment coefficient [Nm] 

 
gτ
                     →       gravity gradient torque [Nm] 
 
gmτ                   →        gravity moment coefficient [Nm] 

 
controlτ               →        control torque [Nm] 

 
Sτ                    →        total torque from the simulation [Nm] 

 
cτ                     →        total torque required to be on the desired coning trajectory [Nm] 

 
Seτ                    →        environmental torque from the simulation [Nm] 

 
ceτ                    →        environmental torque of the desired coning trajectory [Nm] 

 
conestay _τ            →        additional torque required to stay on the desired cone [Nm] 

 
V                      →        Lyapunov function [(kgm2/s)2] 
 
controlk                →        control gain [1/s] 

 
eθ                      →        angular position error [deg] 
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d                       →        angular deviation which is added to the system to yield initial condition 
                                      error [deg] 

EN̂                    →        L-frame equilibrium attitude  
 
θ               →        angular deviation from the L-frame equilibrium attitude [deg] 
 
TC                    →        coning trajectory 

 
cmcp −            →        center of pressure to center of mass offset 

 
cmcpr −                →        cp-cm offset [m] 

 
ρ                     →         atmospheric density [kg/m3] 
 
DC                   →         coefficient of drag 

 
ŝ                      →         sailcraft Sun vector 
 
P                     →         solar pressure [N/m2] 
 
sf                    →         specular reflectance fraction 

 
t                      →          time [s] 
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I. INTRODUCTION 

I.1. Advantages of Solar Sail Technology 
 
 Solar sails are an attractive solution for expensive and massive space missions. 

Traditional spacecraft must carry in-space propulsion fuel that increases both launch mass and 

cost. A sail exposed to solar radiation offers free and continuous propulsion by manipulating the 

sail thrust vector direction relative to the Sun. Figure 1 illustrates a simple solar sail 

configuration and Figure 2 shows how the solar radiation thrust force is used for propulsion.                                                                                  

               

Figure 1: Solar sail configuration                        Figure 2: Solar radiation thrust force 

A solar sail consists of a sailcraft bus that houses the necessary electronics and hardware, a large, 

reflective, gossamer sail and an attitude manipulation component (tip vanes, thrusters, reaction 

wheels). The integrated effect of the reflected photons provides the propulsive thrust force. A 

large sail area is required in order to interrupt the photon radiation and produce an appreciable 

amount of thrust force. Since acceleration is inversely proportional to mass for a given thrust 

force, the mass of the sailcraft must be kept to a minimum. Thus, the sail and bus are designed to 

provide a large area-to-mass ratio and maximize the propulsion acceleration. Incident rays of 

sunlight reflect off of the sail (assume specular reflection from a perfectly flat sail) and produce 
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two force components: one in the direction of the incident sunlight and another in the opposite 

direction of the reflected rays. In the net force vector, the components tangent to the sail surface 

cancel and the components normal to the surface add to produce the thrust force approximately 

in the sail normal direction. NASA’s CubeSail project used a perfectly reflective 40 m2 square 

sail in simulation to show that at 1 AU from the Sun, 0.03 N of solar radiation thrust force can be 

produced [27]. Although this force is relatively small compared with other propulsion methods, 

it is available continuously and hence can still be used to propel spacecraft for long distances 

without carrying any propellant.   

 The free propulsion from solar radiation makes extended mission durations feasible with 

reduced spacecraft mass and cost. A typical science mission is expected to cost on the order of 

one million dollars per kilogram of spacecraft mass [27]. This leaves high potential for low-cost 

science missions that have reduced spacecraft mass. As an example, results from a comet 

rendezvous mission study to reach Comet 88P/Howell using chemical propulsion and solar 

sailing are shown in Figure 3. 

                                          [Rizvi, et. al. 2009]                                                                                                [Stough, et. al. 2008]  
Figure 3: Comet Rendezvous Mission Study Using Chemical and Solar Sail Propulsion 

Via traditional chemical propulsion, a Hohmann transfer from the Earth to the comet required 

400 kg of propellant mass, whereas the solar sail completed the same mission with a total 
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spacecraft mass of 3 kg (a factor of ~135 reduction in spacecraft mass). This translates into lower 

launch costs to Earth escape velocity and reduced development costs for the spacecraft [21]. The 

transfer time for the high thrust approach using chemical propulsion was 0.7 years as compared 

with 10 years for the solar sail. Therefore, for missions where transfer time is not a critical 

parameter, solar sail propulsion can result in significant fuel mass savings.  

 The significant solar thrust propulsion enables non-Keplerian orbits for solar sails. With 

this unique capability of solar sails, many space science missions can be achieved which are 

difficult to implement using conventional (chemical) propulsion techniques. Conventional 

propulsion can only produce Keplerian orbits such as ellipses, parabola and hyperbola (parts of a 

conic section). However, non-Keplerian orbits can be produced with constant sail thrusting 

through which orbit raising and precession can be achieved. One such mission is the study of the 

Earth magnetotail for which non-Keplerian orbits are desired. This requires the spacecraft orbit 

to continuously rotate to follow a Sun-synchronous path and also raise its orbit to explore the 

entire magnetotail. Two mission scenarios using conventional and solar sail propulsion are 

illustrated in Figure 4. 

 

Figure 4: Exploring Earth Magnetotail Using Chemical and Solar Sail Propulsion 



4 
 

 
 

The chemical propulsion (purple line – rocket) with fuel enough for initial orbit injection 

produces an elliptical orbit, which then stays inertially fixed as the Earth (along with the 

magnetotail) rotates about the Sun. Since the magnetotail rotates with the Sun-Earth line, an 

inertially fixed Keplerian orbit with spacecraft apogee inside the magnetotail provides less than 

three months of science data. The spacecraft collects data for a limited time until the magnetotail 

rotates away with the Earth. In contrast, the solar sail propulsion system provides a unique 

steering capability that enables long-term residence within the magnetotail. In addition, the sail 

orbit can also be raised to provide full coverage of the magnetotail. The solar sail propulsion 

(yellow line – sail) allows the semi-major axis of the orbit to increase and precess with the Earth 

rotation. With a continuous Sun-synchronous apse-line precession to rotate and raise an elliptical 

Earth orbit, at least two years of scientific data could be returned [11]. Solar sail propulsion may 

provide an optimum propulsion system over conventional chemical propulsion, at least in some 

missions. It may also have advantages over electric propulsion due to the ease in attaining non-

Keplerian orbits with reduced mission mass and cost [5].  

I.2. Solar Sail Previous Research and Challenges 
 
 Solar sail research has conducted orbit, attitude and structural analysis. The orbit analysis 

focuses on producing orbit raising/lowering and inducing orbital effects using the sails. These 

effects can yield otherwise expensive orbits such as Sun-synchronous and halo types. In order to 

achieve the desired orbital effects, the sail must operate at the required attitude to modulate the 

solar thrust. Thus, orbit analysis has also motivated the research work on sail attitude 

manipulation. This is the focus of the thesis. Most of the orbit and attitude research have made 

simplifying assumptions on the sail structural conditions, and these assumptions are made here as 

well. Detailed structural analysis becomes important once the orbit and attitude analysis proves 
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feasibility based on the simplified model. A realistic structural analysis is then be needed to 

answer questions related to sail shape deformations, sail behavior once deployed in space and 

modeling imperfect sails due to variations in mass distribution and reflective sail surface quality. 

 The coning control approach in this thesis is particularly appropriate for gossamer sail 

structural dynamics because it uses minimum control torque and smooth sail motion due to the 

sail operation around a fixed equilibrium attitude with circular coning at orbit rate. Since the 

orbit rate is low compared to sail structural mode frequencies, excitation of structural modes is 

unlikely.  

 Details of previous work in the above topics are provided below.  

I.2.1. Orbit Analysis 
 
 The free and continuous propulsion from the sun provides an inexpensive solution for 

altering the orbital parameters of the sailcraft. Semi-major axis changes in the orbit can provide 

orbit raising or lowering. Sail orbit raising can be used to escape from the planetary gravitation 

field. Sands analyzed an escape maneuver from the Earth gravitational field using the solar thrust 

force [25]. Using a flat, perfectly reflective sail that rotated about its axis at half the orbit rate, 

solar sailing was found to accelerate a payload to escape condition in several months from near-

Earth orbit. Apart from orbit raising and lowering, many other orbital effects can also be induced 

from the solar propulsion. Oyama, et. al. have investigated the orbital dynamics of an Earth-

orbiting solar sail in which argument of perigee and eccentricity variations emerged [18]. A 

simple steering law in which the sail was directed along the Sun line at all times in the orbit 

could generate the necessary orbital effects. This line of apse precession, coupled with 

eccentricity variations was used to examine the Earth magnetotail. The argument of perigee 
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changes allowed the sail to rotate along with the Earth-Sun line, while the eccentricity changes 

enabled the sail to provide full area coverage of the magnetotail (in length and width). 

 Apart from providing orbital effects, a solar sail can be operated at halo orbits about the 

created artificial Lagrange points. One application of this is to provide early warnings of solar 

plasma storms [20]. Geomagnetic storms can cause significant difficulties near the Earth, such as 

loss of spacecraft or degradation of GPS signals, and can even be lethal for astronauts 

performing extravehicular activity. Such events can be accurately predicted by monitoring the 

upcoming solar wind and can be detected by spacecraft instruments (particle detectors and 

magnetometers) located between the Sun and the Earth. One possible location is to place the 

spacecraft at the L1 Lagrangian point of the Sun-Earth system. Lying 1.5 million kilometers 

upstream from the Earth, it provides an opportunity to detect storms one hour before the 

corresponding solar wind reaches the Earth. In case the spacecraft was located further upstream 

from the Earth, the storm detection could be made earlier. Prado, et. al. have proposed that a 

Sun-facing solar sail can be used to place a sailcraft 3 million kilometers away from the Earth 

such that the storm warnings can be made even more in advance [20]. The solar radiation 

pressure would act oppositely to the gravitational attraction of the Sun. With this force cancelling 

effect, an orbit period identical to the Earth orbit but closer to the Sun will emerge. A sailcraft 

operating at this artificially-created Lagrange point upstream of the Earth is therefore a non-

Keplerian orbit that cannot be obtained by conventional propulsion techniques. 

I.2.2. Attitude Analysis 
 
 Conventional methods of attitude control such as thrusters are an expensive solution to 

use on small sailcraft because they add complexity and mass to the system (thruster and 

propellant mass), and the need for propellant limits the mission duration. Wokes, et. al. selected 
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miniature thrusters to counteract disturbances on a large 245 m x 245 m solar sail [6]. However 

for a relatively small 40 m2 sail, conventional thrusters are not an ideal solution. As compared 

with conventional spacecraft, significant solar thrust forces act on the sail. Many have proposed 

using simple sail-oriented devices that can manipulate this force and provide the necessary 

attitude control without carrying propulsive fuel.  

 Sail devices can alter the center of pressure and center of mass locations within the 

sailcraft system to give rise to control torques. Piggot, et. al. studied the use of four tip vanes 

(Figure 1) for attitude control [7]. The tip vane articulation can change the location of the center 

of pressure relative to the center of mass on the sail. This alters the forces on the sail and gives 

rise to torques. The tip vanes can be maneuvered in such a manner that will supply attitude 

control torques. Another attitude control technique uses the center of mass location change 

(instead of center of pressure) to provide the control torque. The sailcraft typically has a 

concentrated bus mass on the order of the mass of the sail. Thus, bus motion relative to the sail 

can produce significant changes in the location of the center of mass relative to the center of 

pressure. This center of pressure to center of mass (cp-cm) offset modifies the forces and thus 

results in torques on the sail. Wie, et. al. have utilized the motion of the sailcraft bus on a 

gimbaled boom to provide the necessary control torques [30]. Apart from a non-spinning square 

solar sail, Rizvi, et. al. have studied a spinning heliogyro that uses the sail blade pitching motion 

to alter the thrust forces on the sailcraft and produce the required control torques [21].  

I.2.3. Structural Analysis 
 
 In order to analyze solar sail attitude dynamics and control, accurate prediction of forces 

and moments acting on the sail are required. Most attitude control systems have been developed 

for a flat sail. An actual sail in orbit, however, billows out due to the solar radiation pressure.  
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Such sail deformation alters the center of mass to center of pressure offset and thus modifies the 

resultant thrust force and moment acting on the sail. In a research study, a geometrically 

nonlinear finite element method is used to calculate force and moment exerted on an arbitrarily 

shaped solar sail subjected to solar radiation pressure [24]. In addition, it is shown that sail 

deformation due to solar pressure load can be approximated by deformations that are caused by 

corresponding uniform gas pressure load. This facilitates force and moment sail analysis via 

commercial finite element codes. With improved sail structural dynamics, force and moment 

predictions, more accurate attitude controller designs can be developed.  

 Along with sail shape aberrations, sail surface quality degradation also affects sail 

attitude. Non-uniform sail reflective property and mass distribution give rise to unknown forces 

and moments to the control algorithms. A study to reveal how real, imperfect sails act as 

propulsion devices shows that surface quality errors result in an unacceptable mission profile 

when no initial calibration or on-the-fly corrections are made [3]. Thus, surface quality 

degradation prediction remains a difficult challenge.  

 Apart from sail shape deformation and surface defects, sail deployment is also a concern. 

A challenge has been to study how folded sail membranes behave when deployed. The 

spacecraft structure houses the creased and packed sail until deployed in space. There is interest 

in the use of thin-film membrane structures for future gossamer spacecraft missions such as solar 

sails. Ultrasail (light weight, spinning solar sail) design relies on thin films for propulsion. The 

structure does not contain booms or masts, which significantly reduces mass and enables high 

payload fractions and accelerations [1]. A different study on a 500 mm x 500 mm thin-film 

membrane determined the shape of the deployed membrane and load displacement relationship 

for in-plane, diagonal loading of the sail corners [19]. Although the analytical analysis is 
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applicable to larger, sail-size membranes, it still remains inconclusive for sail deployment in 

space because the space environment torques and forces are not simulated. NASA’s advances in 

solar sail technology however simulated a more space-like environment. The NanoSail-D 

mission developed, deployed and conducted vacuum testing on two 20 m2 solar sail systems [4]. 

Although the mission never reached Earth orbit due to launch vehicle failures, NASA achieved 

advances toward these missions to develop, build and ground-test an innovative solar sail 

satellite. 

I.2.4. Inducing Orbit Effects via Sail Attitude Manipulation 
 

Orbit changes result from orienting the thrust vector with respect to the Sun, which 

requires the attitude of the sail to be controlled. Due to the large size of the sail, significant solar, 

aerodynamic and gravity gradient torques act on the sail and can disturb the sail attitude relative 

to the Sun. Accordingly, large control torques are needed to counteract these attitude 

disturbances, and an understanding of sail attitude dynamics is required in order to design 

appropriate control algorithms. 

Recent studies have analyzed natural sail dynamics in order to maintain the desired thrust 

vector pointing [9 and 13]. Generally, large external torques are required to maintain the desired 

thrust vector pointing relative to the Sun. Lawrence, et. al. have shown that specific kinds of 

torques can be generated naturally under the influence of solar, aerodynamic and gravity gradient 

torques [9]. This reduces the need for expensive and massive traditional attitude control 

techniques (attitude jets or reaction wheels). The basic idea is to operate at the attitude equilibria 

of the sail normal vector in the local vertical local horizontal (LVLH) frame. An extension of this 

idea is to utilize a slight deviation of the sail normal from these equilibria, which results in sail 
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normal coning about that equilibrium. McMahon, et. al. have shown that any desired orbit 

changes can be obtained with sail normal coning at orbit rate (circular cones) [13]. 

 
Figure 5: Sail Normal Coning in the Local Vertical Local Horizontal Frame 

In Figure 5, the sail normal cones about the LVLH equilibrium attitude, EN̂ . With a slight 

deviation,θ from the equilibrium attitude, the normal vector, n̂  traces a coning trajectory, CT in 

the L-frame (defines natural sail coning). The cone tracing should occur at orbit rate to attain 

desired sail orbit changes. Swartwout, et. al.’s sail steering law also produces the desired orbital 

effects, however with significant control torque and rapid maneuvers that can damage the sail 

[28]. In contrast, McMahon’s approach produces smooth sail rotation rates that avoid disturbing 

the structural sail dynamics [13]. In his work, all ranges of the desired orbital effects can be 

attained when the natural sail coning occurs at orbit rate [13]. This thesis intends to build upon 

these studies and explore the feasibility of designing a control that can enable the sail normal to 

trace a circular coning trajectory at orbit rate.   
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II. SOLAR SAIL CONING 
 
 In this chapter, the dynamics of the solar sail are presented. With the sail dynamics, the 

concept of sail attitude equilibrium in the local vertical local horizontal frame (L-frame) is 

explained. The L-frame sail attitude equilibria enable sail normal coning in the inertial frame (A-

frame). A small perturbation from the sail attitude equilibria induces L-frame coning of the sail 

normal about those sail equilibria. This L-frame coning of the sail is discussed in this chapter. It 

is shown that natural environmental torques can cause sail precession and enable L-frame sail 

coning.  

 Many orbital effects can be obtained due to the L-frame coning of the sail normal about 

the sail equilibria. However, the natural rate and shape of coning of the sail normal about the sail 

equilibrium point does not yield the desired orbital effects. Control torques can be used to 

enforce the desired rate and coning shape (circular cones). The use of control torque to enforce 

circular sail normal coning at the desired rate is the main subject of this chapter. The control 

torque magnitude is different based upon how fast the sail spins about its own axis (sail spin 

rate). The effects of variable sail spin rate on the required control torque are discussed. Finally, 

different sail spin rates are used in the sail simulation and results showing the coning of the sail 

normal in the L-frame about the sail equilibrium are presented.    

II.1. Dynamics of Spinning Solar Sails 
 
 The sailcraft studied consists of a solar sail and sailcraft bus, which is located out of the 

sail plane. The sailcraft model used in this study is shown in Figure 6. 



12 
 

 
 

 
Figure 6: Physical Components and Dimensions of the Sailcraft Model 

The sail is assumed to be flat, rigid, uniform, square with a sailcraft bus located out of the sail 

plane at a distance cr along the sail normal, n̂ . Since the sail is symmetric and rotation about n̂

does not alter any solar, aerodynamic, or gravity gradient forces, the sail attitude can be 

described only by the sail normal vector when considering these external effects. The bus is 

located near the plane of the sail (0.22 m) as compared with the sail size (40 m2), which enables 

the sailcraft moment of inertia to be similar to that of a flat plat [22]. A large, gossamer sail will 

be non-rigid in space. It is argued that the orbital element control applications using coning 

motions produce smooth, low frequency environmental torques, on the order of orbit frequency 

and require closed loop settling times on the order of several orbits. The disturbance frequencies 

and control system bandwidths are on the order of 10-4 Hz (for 700 km Low Earth Orbit), 

whereas the lowest structural modes of the sail are in the range of 10-1 to 10-2 Hz [5]. This 

suggests that the torque applications do not excite the sail structural modes, thus justifying the 

rigid body assumption from a control-structure interaction viewpoint. Non-uniform material 

properties within the sail will cause imperfect solar reflections and variations in pressure-loading 

on the sail. The varying pressure-loading issue will deform the sail and hence it will no longer 

remain flat in orbit. A deformed sail will experience different torques as a function of attitude. 

However, the varying pressure-loading issue is a secondary effect and offers more insight on the 
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sailcraft torque as a function of attitude by deviating from the ideal case. This thesis study 

focuses on the ideal (flat) case.  

 In order to describe the sail dynamics in a circular orbit, the reference frames used are 

given in Figure 7 [9].  

 
Figure 7: Reference Frames used to Develop Sail Dynamics9 

 The A-frame{ }zyx ˆ,ˆ,ˆ is the inertial (fixed) frame. The x̂ and ŷ define the Earth equatorial frame 

with x̂ pointing along the vernal equinox. The ẑ is normal to the equatorial frame. The local 

vertical local horizontal or L-frame { }ovr ˆ,ˆ,ˆ  rotates along with the orbit at orbit rate. The r̂ points 

along the orbit radial direction, v̂ is in the direction of the sail velocity vector and ô is aligned with 

the orbit angular momentum. The C-frame{ }qpn ˆ,ˆ,ˆ is the sail body-fixed frame. The n̂ points 

along the sail normal vector (normal to the plane of the sail). The p̂ and q̂ remain in the plane of 

the sail. The B-frame{ }mln ˆ,ˆ,ˆ is also a body frame except that it does not rotate with the sail in the 

rotation about n̂ . The l̂ and m̂ lie in the plane of the sail. Thus, the only difference between the B-

frame and C-frame is the rotation about n̂ . The B-frame is taken to be aligned with the C-frame 

at the initial time epoch. 
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 The sailcraft dynamics are described by forming a relationship between the inertial 

angular momentum vector and torque on the sail. The inertial angular momentum vector in the 

C-frame as seen in the A-frame is 
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The sI is fixed in the B-frame because the B-frame is a principal frame due to the symmetry about

n̂ . The B-frame is defined such that the relative angular velocity of the B-frame as seen in the L-

frame, B
Lω
 is zero about n̂ [9]. With this definition of the B-frame, the tip and tilt of the sail 

relative to the L-frame are described. The additional sail spin about n̂ is not included in the B-

frame. The advantage of creating a separation between the sail spin about n̂ and the tip and tilt 

velocities ( B
Lω
 ) about n̂  is that the dynamics can be written in terms of the normal (along n̂ ) and 

transverse (orthogonal to n̂ ) components. The inertial spin about n̂ is given by 
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where L
Aω
 is the orbit rate and 0ˆ =⋅ B

Ln ω
 follows from the definition of the B-frame. Now, B
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where Tω
 is the projection of B

Aω
 onto the plane described by n̂ . With these definitions, 
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(5)   

where TI and nI are transverse and axial moment of inertias. Now, equation 2 results in the sail 

dynamics in terms of the transverse and normal components. 
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(6)   

The derivation of the normal and transverse components of the sail dynamics can also be found 

in Lawrence, et. al. [13]. 

II.2. Sail Equilibria in the L-frame and Inertial Sail Normal Coning 
 
 Any fixed sail normal n̂ in the L-frame describes the sail equilibrium attitude in the L-

frame. The sail attitude can be defined by the sail normal vector, n̂ because the sail is symmetric 

about n̂ and the rotation about n̂ does not alter the forces on the sail. When the sail normal, n̂ is 

fixed in the L-frame, but not aligned with ô , the sail rotates with the orbit and produces inertial 

coning of n̂ at orbit rate.  
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Figure 8: Illustration of Inertial Coning of the L-frame Fixed Sail Normal 

In Figure 8, the sail normal remains fixed in the L-frame (indicated by the constant angleψ ) and 

causes inertial coning of n̂ at orbit rate. By choosing ψ appropriately, the sail angular momentum 

precesses to provide inertial coning with desirable orbit change effects. The angular momentum 

precession, in turn, is caused by torques acting on the sail. To obtain the desired angular 

momentum precession, the required torques on the sail must be determined.  

 For n̂ to remain fixed in the L-frame and enable inertial coning, the sail angular 

momentum must precess at a desired rate. The 0=B
Lω
 because there is no tip and tilt of n̂ relative 

to the L-frame ( n̂ is fixed in the L-frame). In addition, B-frame is also fixed in the L-frame by 

the definition of the B-frame ( )0ˆ =⋅nB
Lω
  and thus 
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since ô is fixed in the L-frame and the orbit rate, oω is assumed to be a constant (because the sail 

force changes the semi-major axis, and hence the orbit period slowly as compared to the sail 

attitude motions). With 0=B
A

B

dt
d

ω
  
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since ô and n̂ are fixed in the L-frame. Now, the torques orthogonal to n̂ become 

                                                         ( ) nII TTnnT ˆ×−= ⊥ ωωωτ
                                                     (9)   

From the control viewpoint, the sail spin rate sω  must remain a constant. A constant sω avoids 

any abrupt and impractical changes in the sail spin rate that can damage the sail. Since

⊥+= ωωω sn  and ⊥ω is a constant ( noo ˆˆ ⋅=⊥ ωω : sail attitude, n̂  and ô are fixed in the L-frame 

and oω is a constant) then for sω to remain a constant, nω also has to be a constant. The nω can 

remain a constant when the torque along n̂ is zero.   
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because sω is a constant and n̂ is fixed in the L-frame. The sail normal n̂ can be described in the L-

frame via a cone angle β and a clock angleφ . 
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Figure 9: Cone and Clock Angles of the Sail Normal relative to the L-frame9 

From Figure 9 [9], the sail normal, n̂ becomes 
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Thus, for n̂ and sω to remain fixed in L, the normal and transverse torques must satisfy 
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(14)   

These are the required torques that will enable the desired sail angular momentum precession for 

the inertial coning of the sail normal in the A-frame. According to Lawrence, et. al., the 

environmental torques acting on the sail can provide the necessary torques for such sail attitude 

equilibria to exist in the L-frame and have inertial sail coning [9], as discussed in more detail 

below. 
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II.3. Environmental Torques 
 
 In order to attain a fixed orientation of n̂ in the L-frame, a balance between the torques 

acting on the sail and precession of the sail angular momentum is required. Apart from control 

torques, the natural environmental torques acting on the sail are the aerodynamic, solar pressure 

and gravity gradient torques. The aerodynamic and solar pressure torques produce negligible 

forces in conventional spacecraft. However, due to the large sail area, the forces emerging from 

the aerodynamic and solar pressure torques are greatly magnified in the sailcraft. In addition, the 

sailcraft has significant gravity gradient torques because its mass properties resemble that of a 

flat plate. Lawrence, et. al. propose that the desired inertial coning of the sail normal can be 

attained by advantageously employing these environmental torques with the natural spin 

dynamics of the sail [9]. The sailcraft is spun at a specific rate such that the aerodynamic, solar 

pressure and gravity gradient torques provide the desired precession of the momentum vector 

and thus induce inertial coning of n̂ .  

 The aerodynamic torque, aτ
 on the sailcraft depends on the orientation of n̂ relative to the 

aerodynamic force vector, which is approximately in the direction of the sailcraft velocity vector,

v̂ . 
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where amτ is the aerodynamic moment coefficient for a given cp-cm offset cmcpr − , atmospheric 

density ρ , coefficient of drag DC , sailcraft velocityv relative to the atmosphere and sail area A . 

The solar torque, sτ
 depends on the orientation of n̂ relative to the sailcraft Sun vector, ŝ (assume 

that the Sun vector is in the orbit normal direction, os ˆˆ = ). 
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where smτ is the solar moment coefficient for a given solar pressure, P and specular reflectance 

fraction, sf . The gravity gradient torque, gτ
 is given by 
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where gmτ is the gravity moment coefficient that depends on sailcraft mass properties and orbit 

rate.  

II.4. Torque Balance to Attain Sail Equilibria in the L-frame 
 
 The net torque, gsa ττττ


++=  must satisfy equation 14 and yield the required torques to 

provide inertial coning of n̂ and thus fixed attitude in the L-frame. Three simultaneous equations 

emerge, creating a balance between the net torque,τ  and required torque (equation 14). 
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(18)   

where noω corresponds to the equilibrium sail spin that the sail must maintain in order to provide 

the required torques (to satisfy the three components of equation 18). Thus, a given β andφ

orientation of n̂ in the L-frame is an equilibrium solution to the sail attitude dynamics when a spin 

rate noω exists and satisfies the three equations for arbitrary values of amτ , smτ , oω (orbit 

parameters), nI  and TI  (sailcraft design parameters). The equilibrium cases that emerge due to 

relationships between amτ , smτ , oω , nI and TI are excluded because these would restrict the orbit 

and sailcraft properties and make the mission impractical. Thus, the sail spin rate is treated as a 
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variable to reach equilibrium. There are two types of equilibria points explored in this thesis 

because they were found to be neutrally stable equilibria [9] and produced orbit lowering/raising 

(a typical application of solar sails). 

1. 0=φ : causes orbit lowering by producing a component of solar thrust vector in the anti-

velocity direction. The equilibrium spin rate required is 

                                 ( )( )βττω
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no −+=                                     (19)   

2. πφ = : causes orbit raising by producing a component of solar thrust vector in the 

velocity direction. The required equilibrium spin rate is 
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Simulation results for one of these equilibrium points are presented in the following section.  

II.5. CubeSail Simulation 
 
 Lawrence, et. al. have created a MATLAB simulation for a CubeSail (small solar sail 

satellite) that propagates the sailcraft attitude under the influence of aerodynamic, solar pressure 

and gravity gradient torques over a circular, Low Earth Orbit [9]. The orbit and sailcraft 

parameters used are shown in Table 1. 
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Table 1: Orbit and Sailcraft Parameters 

Orbit Parameters 
Altitude, a  700 km 

Inclination, i  90° 
Right ascension of ascending node, Ω  180° 

Orbit rate, oω  1.06 x 10-3 rad/s 
Right ascension of sun, sr  90° 

Declination of sun, sd  0° 
Solar flux at 1 AU, sF  1358 W/m2 

Atmospheric density, ρ  5 x 10-14 kg/m3 
Aerodynamic moment coefficient, amτ  1.18 x 10-5 Nm 

Solar moment coefficient, smτ  9.84 x 10-6 Nm 
Gravity gradient moment coefficient, gmτ  6.33 x 10-6 Nm 

Sailcraft Parameters 
Sail side length, L  6.325 m 

Sail mass, sm  1.7 kg 
Sailcraft bus mass, bm  1.3 kg 

Distance to bus from sail plane in n̂ direction, cr  0.22 m 
Axial moment of inertia, nI  11.3 kgm2 

Transverse moment of inertia, tI  5.7 kgm2 
Sail reflectivity, s  0.9 

Aerodynamic coefficient of drag, dC  2.2 
Specular reflectance fraction, sf  0.7 

Along with these parameters, for a cone angle of 350 =β and clock angle of 00 =φ ( noω was 

calculated to be 6.32 x 10-4 rad/s), the simulation was run for two orbital periods. Figure 10 

shows the results for the motion of the sail normal, n̂ in the L-frame. 



23 
 

 
 

 
 

Figure 10: Sail Equilibrium in the L-frame (Sail Normal is Fixed in the L-frame) 

The β andφ angles along with the n̂ stay fixed in the L-frame. Figure 11 shows the results for the 

motion of n̂ in the A-frame. 

 

Figure 11: Inertial Coning of the Sail Normal in the A-frame 

Observe that n̂ is fixed in the L frame, but exhibits inertial coning (in the A-frame). 
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II.6. L-frame Sail Normal Coning 
 
 Lawrence, et. al. have shown that for the developed sail dynamics, a small sail normal 

perturbation from the L-frame attitude equilibrium enables the sail normal to cone about that 

equilibrium point [9]. This constitutes sail normal coning in the L-frame illustrated in Figure 12.  

 
Figure 12: Illustration of the Sail Normal Coning in the L-frame 

The 0n̂ exhibits the sail equilibrium point and n̂ is the coning sail normal vector. The perturbation 

is given by a small deviation,δβ  in the cone angle,β . The coning is defined such that the cone 

need not be circular or have a fixed coning rate. As discussed earlier, McMahon, et. al. have 

shown that desired orbital effects can be induced when the L-frame coning occurs at orbit rate 

such that one rotation of n̂ around 0n̂ is completed in one orbital period and has a circular coning 

shape [13].   

II.7. Orbital Effects from L-frame Sail Normal Coning 
 
 McMahon, et. al. have analyzed the special case of circular coning of n̂ about a stable 

equilibrium attitude in the L-frame [13]. Neutrally stable equilibria are considered because small 

perturbations from the equilibrium does not allow n̂ to asymptotically increase away from or 

decrease towards the equilibrium point. Thus, a natural coning motion is exhibited. When one 
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coning rotation is completed per orbit, nearly any orbital effect can be induced with zero control 

torque and minimal excitation of structural dynamics (due to the smooth coning motions). As a 

special case, operating at the sail equilibrium attitude (and not cone about the attitude) the 

induced orbital effects are restricted to orbit raising and lowering.  

 When the coning motion is implemented, changes in the orbital angular momentum 

vector, energy and eccentricity vector emerge. The orbital effects that are induced via the coning 

motions can have many applications. One application is for Sun-synchronous orbits, where the 

orbit right ascension of ascending node must drift at a required rate for the spacecraft to remain 

Sun-synchronous. The nodal drift is naturally caused by the J2 gravitational effect and is a 

function of orbit radius, inclination and eccentricity. With the proper coning motion of n̂ , the 

solar sail can be used to overcome undesired nodal drift from errors in the semi-major axis (orbit 

radius and eccentricity) and inclination. In addition, the solar sail can also be used to provide 

additional nodal drift and thus create new Sun-synchronous orbits which are not possible with 

just the J2 effect. Another application of the coning motion is to use the solar sail to overcome 

injection error from the launch. McMahon, et. al. have shown that the launch errors from the 

Pegasus, Delta II, Delta IV, Atlas V, Falcon I, Minotaur I and IV, and Taurus launch vehicles for 

Low Earth Orbits could be overcome by a solar sail [13].  

II.8. Inducing L-frame Sail Normal Coning 
 
 To attain sail equilibria in the L-frame and enable inertial sail coning, the sail angular 

momentum must achieve the desired precession rate. For the desired precession rate, the sail 

must spin about its axis at a required rate. The sail spin about its axis is described in Figure 13.  
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Figure 13: Sail Spin about the Sail Normal Vector 

The desired sail spin rate will be referred to as the equilibrium sail spin rate. The equilibrium 

spin rates ( noω ) required for the sail attitude equilibria used in this study are given in equations 

19 and 20. As the sail normal precesses from the equilibrium point and cones in the L-frame, the 

sail need not spin at the equilibrium rate. The control torques required to remain on the desired 

coning trajectory differ based upon the sail spin rate used. In order to minimize costs, the sail 

spin rate requiring the least control torque magnitude needed to trace the desired orbit rate 

circular coning trajectory should be used. The control torque induces the desired coning and 

enforces orbit rate coning. The part of the control torque used to induce the desired coning 

(referred to as coning control torque) allows the sail normal to trace the desired shape of the 

coning trajectory, whereas the other part of the control torque enforcing orbit rate coning (called 

as the rate control torque) allows the sail normal to trace the trajectory at the desired rate. The 

total control torque required to attain the desired orbit rate circular coning is a combination of 

these two control torques. When the sail normal is precessed from the attitude equilibrium and 

has the equilibrium sail spin rate, Lawrence, et. al. have shown that the sail normal exhibits 

natural coning about that sail equilibrium in the L-frame [9]. Due to the already coning behavior 

of the sail normal, the coning control torque magnitude is reduced. The natural coning motion 

does not occur at the desired orbit rate [9]. In order to enforce the coning at orbit rate, the 

magnitude of the rate control torque increases for the equilibrium sail spin case. This is because 

the spinning sail adds to the total angular momentum of the sailcraft and thus increases the rate 

control torque required to provide the desired momentum precession. As the sail spin rate 
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magnitude is reduced however, the sail does not carry as much momentum due to which the 

momentum can be precessed more easily with reduced rate control torque. On the other hand, 

deviations from the equilibrium spin rate can cause loss of natural coning behavior. This 

increases the need to require more coning control torque such that the desired coning motion can 

be attained. The rate control torque magnitude is the least for the zero sail spin rate because a 

non-spinning sail adds no additional momentum to the sailcraft momentum. This makes the 

desired momentum precession possible with the least rate control torque. Conversely, the coning 

control torque magnitude is the least for the equilibrium sail spin rate because the already coning 

behavior (natural coning) is best attained when the sail spins at the equilibrium rate. Due to this 

trade-off between the rate control torque and coning control torque (combination of both yields 

the total required control torque), it is interesting to study which sail spin rate can result in the 

desired orbit rate circular coning with the least control torque magnitude. In this thesis, the L-

frame sail coning is analyzed for two sail spin rates: equilibrium spin rate and zero spin rate. 

Before determining the required control torques needed to enforce the desired coning, it is 

important to study the natural motion of the sail with the equilibrium and zero sail spin rates 

under the influence of the environmental (natural) torques. In the CubeSail simulation, a small 

perturbation ( 1=δβ ) is added to a sail equilibrium having a cone angle, 35=β  and clock 

angle, 0=φ (the significance of choosing this equilibrium point is explained in III.2).The 

simulation results showing the coning of n̂ in the L-frame for these two spin rates are presented.  
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Figure 14: Sail Normal Coning in the L-frame about the Equilibrium Point, [β=35°, ϕ=0°] Using 
the Equilibrium Sail Spin Rate 

The three-dimensional plot shows the motion of n̂ in the L-frame. The two-dimensional plot gives 

a time history of the cone and clock angles over the course of several orbital periods. The n̂ cones 

about the equilibrium point in the L-frame. However, the coning does not occur at orbit rate (one 

cone is traced in one and a half orbits). 

 

Figure 15: Sail Normal Coning in the L-frame about the Equilibrium Point, [β=35°, ϕ=0°] Using 
Zero Sail Spin Rate 

Even though n̂ stays in the vicinity of the equilibrium point, the coning is not well-defined in 

Figure 14. Since the sail is not spinning about n̂ at the equilibrium spin rate (has zero sail spin), 
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the dynamics are different, and recognizable L-frame coning is not observed. Although quasi-

periodic, the motion of n̂  in the L-frame does not occur at orbit rate (one cone is traced every 

two orbits in this case). 

 Since the natural motion is not orbit rate circular coning (desired for useful orbital 

effects) control torques on the sailcraft are necessary. This thesis addresses the type of control 

method that can be used in order to enforce orbit rate circular coning and analyzes its 

performance. As Figures 13 and 14 suggest, control torque magnitude required to attain orbit rate 

circular coning will differ based upon the sail spin rate. In the case with equilibrium spin, more 

torque is required to precess the angular momentum desirably (due to the large angular 

momentum), but less is required to initiate the desired coning since the natural sail motion is 

already coning. In the case with zero spin, more torque will be required to attain the desired 

coning because the natural coning is not well-defined, but less is required to precess the angular 

momentum as there is only the angular momentum due to orbit rate rotation of the sailcraft. The 

amount of control torque required and which sail spin rate uses the least torque magnitude will 

also be explored in this thesis. 
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III. CONTROL METHOD 
 
 A control method is developed to enable the sail normal n̂ to track the desired sail normal 

cn̂  on the circular coning trajectory and provide orbit rate coning in the L-frame. The control law 

must establish a relationship between the control torque, controlτ  and sail motion n̂ relative to the 

desired cn̂ that provides closed loop stability. Note that the sail angular momentum, h


and controlτ  

are related by the simple dynamics τ=⎥⎦
⎤

⎢⎣
⎡h

inertial  . Thus, a control method will be developed such 

thath


tracks the desired angular momentum, ch


on the coning trajectory at orbit rate. The control 

law is used to reduce the error between h


and ch


. Since sail angular momentum is a function of 

sail normal/angular position (equation 32), the control law is created with the hope that error 

reduction in angular momentum and thus tracking the desired angular momentum at orbit rate 

will also lead to tracking the desired sail angular position at orbit rate (enable n̂ to track cn̂ ). 

III.1. Angular Momentum Error Reduction Control Method Theory 
 
 This control method enables the sail angular momentum vector Sh


to trace the sail angular 

momentum vector on the desired circular coning trajectory ch


at orbit rate. This in-turn can cause 

the sail normal vector, n̂ to trace the desired normal, cn̂ and hence yield the desired circular 

coning at orbit rate. Here Sh


is the simplified notation for the angular momentum vector of the C-

frame as seen by the A-frame (given as [ ]CS
A
h


). Likewise, ch


is the simplified notation for the 

desired angular momentum vector of the C-frame as seen by the A-frame (given as [ ]Cc
A
h


). In 
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order to prescribe ch


the kinematics of the coning trajectory are calculated. For a given 0β and 0φ , 

the desired coning trajectory is illustrated in Figure 16. 

 
Figure 16: Desired Coning Trajectory 

The desired trajectory traces a circular cone (half cone angle,δ ) about nominal sail normal 0n̂ at 

orbit rate oω . The cone lies in a plane perpendicular to 0n̂ . The sail normal position on the cone at 

each time step is given by cn̂ . The motion of the sail normal cn̂ is determined by rotating 0n̂ via a 

time-varying rotation matrix, 0
cR which has rotation axis Ê and rotation angleδ . In order to 

calculate Ê , a vector, 1Ê perpendicular to 0n̂ is defined in the L-frame components.  

                                                          [ ]
( ) ( )
( ) ( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
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⎢

⎣
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⋅

=→⊥

0

00
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101

sin
coscos
sincos

ˆˆˆ

β

φβ

φβ

LEnE                                                        (21) 

A plane can be defined by two orthogonal vectors. Along with 1Ê , the plane of the cone is 

determined by calculating another vector, 012 ˆˆˆ nEE ×= . Now, the vector Ê  at each time step can 

be expressed as a linear combination of 1Ê and 2Ê in the plane of the cone. 

                                                                 ( ) ( ) 2010
ˆsinˆcosˆ EtEtE ⋅+⋅= ωω                                                                    (22) 
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With the rotation axis, Ê and defined rotation angle,δ , the rotation matrix, 0
cR  is [26] 

( ) ( )
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(23) 

and the sail normal, cn̂ is given by 0
0 ˆˆ nRn cc ⋅= . Using the definition of the sail normal in the L-

frame, the desired angular position ( cβ and cφ ) of the sail at each time step on the coning 

trajectory can be computed as 

                                                      [ ]
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                                     (24) 

Figure 17 presents an example of the desired circular coning trajectory (half cone angle, 1=δ ) 

throughout one orbital period for a given sail equilibrium point at 350 =β and 00 =φ .   

 

 
Figure 17: Desired Circular Coning Trajectory having Half Cone Angle, δ=1° about a Nominal 

Sail Normal of β0=35°, Φ0=0° (One Orbital Period) 
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The nominal sail normal 0n̂ is rotated at each time step with 0
cR to yield the desired cone given by

cn̂ . The cβ and cφ of the coning motion (extracted from cn̂ ) exhibit sinusoidal behavior and can be 

expressed as 
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                                  (25) 

From the desired angular position, the desired angular position rate ( cβ and cφ ) is determined. 
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The rate also has sinusoidal motion. Along with the desired angular positions and rates, the 

desired angular velocity ( *
B

Lω
 ) is also required to derive the kinematics of the coning trajectory. 

The rate of change of cn̂ in the L-frame is 

                              

[ ] [ ] [ ]LcLB
LLc

cB
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B
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L

n
dt
nd

n
dt
nd

dt
nd ˆ

ˆ
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×=→×+= ωω
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(27)

      

 

since the sail normal is fixed in the B-frame. The B-frame is defined such that the motion of n̂ in 

the L-frame only describes the sail tip and tilt velocities (there is no rotation about the n̂

direction). Hence, equation 27 can define only two velocity components uniquely. Let the 

angular velocity components of B
Lω
 in the L-frame be  
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Now 
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dt
nd Lcˆ can be expanded as 
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and re-arranged to give 
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The A matrix is singular because its determinant is found to be zero. One of the velocity 

components is linearly dependent on the other two and hence multiple solutions for B
Lω
 exist. 

Figure 18 depicts the meaning of multiple solutions in this case. 

 
Figure 18: Multiple Angular Velocity Solutions 

In Figure 18, B
Lω
 is expressed in the B-frame components. All solutions have the same l̂ and m̂  

components but different n̂ components because the use of cB
L n̂×ω
 equation makes the n̂ velocity 

component arbitrary (the kinematic equation 27 can only describe two velocity components 

uniquely). However, the B-frame is defined to have no component of the angular velocity in the

n̂ direction. This requires the n̂ velocity component to be zero. Thus, the unique angular velocity 

solution, *
B

Lω
 can be obtained by projecting one of the B

Lω
 solutions onto the plane defined by cn̂

such that no component of the angular velocity occurs in the sail normal direction. 
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The unique solution is obtained by removing any velocity component in the cn̂ direction. Now, 

the simulation and desired angular momentum vectors can be expressed as 

                                                                ( ) ( ) ( ) mIlInIh TTnS ˆˆˆ 321 ⋅+⋅+⋅= ωωω
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                                                      (31) 
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where 1ω , 2ω and 3ω are the B-frame components of C
Aω


, and cnω is the desired inertial sail spin 

given by 
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because 0ˆ * =⋅ B
L

cn ω
 and choosing 0=C

Bω
 for no sail spin rate relative to the L-frame for the 

zero sail spin case. The angular momentum error is then found to be   
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 (34) 

where the error term is decomposed into and expressed as a function of sail normal angular 

position and sail normal angular velocity components. In order to determine a control torque

controlτ   that reduces the angular momentum error, a Lyapunov stability approach will be used. 

First, a Lyapunov function candidate is defined. 

                                                         ( ) ( )cS
T

cS hhhhV


−−=
2
1

                                                     (35) 

From equation 35 , the function V is positive definite with respect to angular momentum error. 

The behavior of the derivative of V can then be used to infer the behavior of the angular 

momentum error.  
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Because the inertial derivative of angular momentum yields torque, the derivative of V can also 

be expressed as 
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where Sτ and cτ are total torques of the actual (simulation) and desired coning trajectory, Seτ and

ceτ are environmental torques of the simulation and coning trajectory, conestay _τ and controlτ  are the 

additional torques  required to stay on the desired cone and the control torque applied in the 

simulation, respectively. The derivative of V becomes 
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In order to ensure that the derivative of V remains negative definite with respect to the angular 

momentum, controlτ  should be chosen as 

                                         ( ) econestayCScontrolcontrol hhk δτττ −+−⋅−= _


                                        (39) 

which enables the derivative of V to be negative definite, as desired. 

                                                ( ) ( )CS

T

CScontrol hhhhk
dt
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(40) 

The stability analysis proves that C
Ah


Δ decays to zero [26] and thus the control law enables Sh


to 

track ch


, for any positive control gain, controlk . 
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 This seems to be a nice result. Unfortunately, from examining the decomposed 

components within the angular momentum error (equation 34), the Lyapunov function is not 

positive definite with respect to the sail normal because V can be zero even when sail normal is 

not (a combination of non-zero sail normal angular position error and velocity error can enable V 

to become zero). Thus, whether the sail normal error ( cnnn ˆˆˆ −=Δ ) decays to zero has not been 

proven. Since the angular momentum error is a function of sail normal angular position (equation 

34), the control law reducing C
Ah


Δ is implemented anyway (below) with the hope that 0→Δ C
Ah


can cause 0ˆ→Δn  and enable n̂ to track the desired cn̂ on the coning trajectory. 

 The environmental torques act on the sail based on its attitude, and these attitudes differ 

in the simulation and on the desired coning trajectory, unless the simulation trajectory exactly 

matches the desired coning motion. Since the application of control torque controlτ  is intended to 

enable 0→Δh


, and that may cause simulation sail attitude, n̂  →desired cone sail attitude, cn̂ , it 

may be reasonable to assume that eδτ is small. In this case 
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dt
dV 

−⋅−= _ττ
 

                                                
( ) conestayCScontrolcontrol hhk _ττ +−⋅−=
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(41)

 

The conestay _τ can be given by 

                                                               cecconestay τττ −=_                                                         (42) 

 where cτ is the torque required to trace the desired cone, which is rather complicated to calculate 

on-line (inertial derivative of the desired angular momentum, equation 32). The environmental 

torques on the desired cone, ceτ involve many estimates of environmental factors and thus their 

analytical predictions can become inaccurate. If possible, such calculations (variables involving 
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many unknowns) on a small sailcraft should be avoided. They can be avoided with the idea that 

in controlτ , controlk is a user-defined constant term and can be chosen large enough such that its term 

in equation 41 dominates the effect of conestay _τ . With these simplifications, the Lyapunov 

function and control torque are approximated by 
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(43) 

 
The next section examines the behavior of this simplified control law. 

  

III.2. Angular Momentum Error Reduction Results and Discussion 
 
 The sail dynamics under the influence of environmental torques are presented for the zero 

and equilibrium sail spin rates. For the zero sail spin, the results for the equilibrium points, 

[  0,35 == φβ ] - orbit lowering and [  180,145 == φβ ] - orbit raising are given. These two 

equilibrium points were selected because they induced the largest orbital effects (energy, angular 

momentum and eccentricity) for 1° cones (see Appendix A). The robustness of the control 

method is tested by adding initial condition errors to the sail angular position (these simulate 

errors in the sail attitude that emerge from disturbances) and using larger coning cones (greater 

orbital effects can be induced with cones larger than 1°). 

III.2.1. Orbit Lowering Case with Zero Sail Spin 
 
 In the orbit lowering case, the thrust is in the anti-velocity direction. The equilibrium 

point used is  0,35 == φβ . The control method performance in tracing the desired cone at orbit 

rate is examined. The control method is designed to reduce the angular momentum error. The 

Lyapunov function indicates the performance of the control method for reducing this error.   
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Figure 19: Lyapunov Function, Its Approximated Derivative and A-frame Angular Momentum 

Components for Coning Trajectory having Half Cone Angle, δ=1° about a Nominal Sail Normal 
of β0=35°, Φ0=0° 
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The Lyapunov function V in Figure 18, and thus the angular momentum error magnitude, is 

significantly lower than the absolute sailcraft angular momentum (~103 times lower). This 

indicates that the control method is successful in reducing the angular momentum error. On the 

other hand, even though the (approximate) derivative of V is always negative, the function V 

does not monotonically decrease. The derivative of V was approximated from 

( ) ( )CS
T

econestaycontrol hh
dt
dV 

−⋅+−= δτττ _  to ( ) ( )CS
T

control hh
dt
dV 

−⋅= τ  with simplifying 

assumptions eliminating conestay _τ  and eδτ , as discussed earlier. In order to understand the 

incompatible behavior between V and its approximated derivative, the individual torque 

components in the non-approximated derivative are examined in Figure 20. 

 
Figure 20: Torques of the System in the B-frame 
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The controlτ is approximated using ( )CScontrol hhk


−− . The magnitude is on the order of 10-6 Nm, 

which is reasonably sized for a small sailcraft. For a similar 3 kg and 40 m2 solar sail, magnetic 

control was used to enable inertial coning of the sail normal at orbit rate and predicted maximum 

control torques on the order of 10-5 Nm [8]. In Figure 20, the eδτ torque is ~103 times lower in 

magnitude than controlτ and conestay _τ , justifying the assumption of elimination eδτ from equation 41 

( eδτ is negligible as compared with controlτ and conestay _τ ). Note, however, that the conestay _τ torque is 

nearly identical (except for numerical noise) to the controlτ . The conestay _τ is determined numerically 

by calculating the total torque cτ required for precessing the angular momentum on the desired 

cone and deducting the environmental torques, ceτ  from cτ (equations 42 and 44). The total 

torque on the desired cone, cτ is the inertial derivative of the desired angular momentum, ch
 . A 

numerical solution for cτ can be obtained via a finite difference    

                                                          
t
h

tt
hh ccc

c Δ

Δ
=

−

−
=



12

12τ                                                          (44) 

where ch


Δ is the change in desired angular momentum over a period of time, tΔ . The 1ch


and 2ch


are calculated at times t and tt Δ+ via equation 32. The magnitude of tΔ is decreased enough (with 

machine limitations) to approximate 0→Δt . When the non-approximated derivative of V is used 

that includes the effects of conestay _τ and ceτ , the Lyapunov function and its derivative correspond 

to each other. 
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Figure 21: Lyapunov Function and Its Derivative 

The derivative is no longer always negative explaining why V does not decrease. Even though V 

does not decrease, the oscillations of V are bounded. This indicates that the momentum errors 

within the system remain bounded and do not grow with time. Since V is a measure of the 

angular momentum error, the control method thus enables the sail angular momentum to trace 

the desired with some small, bounded error. The acceptable nature of this error in the cone 

tracing is discussed later in this section. 

 One may wonder why, in Figure 20, the conestay _τ torque is essentially identical to the 

control torque, controlτ . Observe that the actual torque on the system from the simulation, Sτ and 

total torque required to stay on the desired cone, cτ are given by 
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conestaycerequiredc

controlsesimactualS

_

/

ττττ

ττττ

+==

+==
                                                  (45) 

When eδτ is negligible, the environmental torques seτ and ceτ can be expressed as 

                                                                  eceSeceSee τττττδτ ==⇒→−= 0                                                        

(46) 

from which the total system and desired cone torques become 

                                                                          
conestayerequiredc

controlesimactualS

_

/

ττττ

ττττ

+==

+==
                                                                   

(47) 

From these equations, in order to trace the desired cone and induce the required angular 

momentum precession rate, we must have the total simulation torque, Sτ → the desired cone 

torque, cτ . This explains the behavior in Figure 20, where controlτ is found to be identical to

conestay _τ .   

 The corresponding behavior for the sail normal is shown in Figure 22.  
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Figure 22: Sail Angular Positions for Coning Trajectory having Half Cone Angle, δ=1° about a 
Nominal Sail Normal of β0=35°, Φ0=0° in the L-frame 

The three-dimensional plot indicates that the control method enables the simulation sail normal

n̂  to trace the desired circular cone. The simulation and desired trajectories in this case begin at 

the same initial conditions. In the cone and clock angles plot, bothβ andφ complete one cycle in 

one orbital period and repeat the same pattern in the next orbital period. Thus, the control method 

also enables orbit rate coning. The errors in the individual components of sail normal in the 

coning tracing are shown in Figure 23. 

 
Figure 23: Individual L-frame Components of Simulated and Desired Sail Normal with Errors 

As the cone is traced, Figure 23 shows that the error magnitudes of the r̂ , v̂  and ô  sail normal 

components oscillate. Even though there are errors in the coning tracing, they appear to be 

bounded. In addition, the error magnitudes are significantly lower than the absolute component 
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magnitudes (101-103 times lower). McMahon, et. al. assert that the shape of the coning need not 

be accurate as long as orbit rate coning is achieved in order to yield the orbital effects [13]. Thus, 

slight deviations from the circular coning are not expected to have significant deviations in the 

averaged orbital effects induced over an entire orbit.   

 A sensitivity analysis is performed where the control gain, controlk is varied to study the 

maximum angular position error between the simulated and desired sail normal. The angular 

position error definition is illustrated in Figure 24.  

 
Figure 24: Angular Position Error 

The angular difference between the desired and simulated sail normal is defined as the angular 

position error. The controlk was varied over a range of 0-2 and the variation in maximum angular 

error (over one orbital period) was studied. In order to understand the results, the angular error 

between the simulated and desired angular momentum is also shown.  
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Figure 25: Sensitivity Analysis of Maximum Angular Position and Momentum Error (for One 

Orbital Period) to variations in kcontrol 

The angular position error, eθ decreases more rapidly with steadily increasing controlk . As the 

magnitude of controlk increases, the decrease in eθ becomes less rapid, until the limiting eθ of 0.05° is 

reached (indicated by the dashed line). Smaller controlk magnitudes result in smaller control torque 

magnitudes at each time step. With smaller control torque magnitudes, the simulated angular 

momentum is not corrected to trace the desired angular momentum as rapidly. This means that 
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the angular momentum error is larger for smaller controlk  magnitudes. As controlk increases, the 

angular momentum is corrected more rapidly to trace the desired. This results in a smaller error. 

The angular momentum error decays rapidly with increasing controlk . Since the angular position 

error is a function of angular momentum error, the eθ also decays in a similar fashion. Ideally, 

the error should decay to zero as increasing control torque will enable the simulation to trace the 

desired exactly. However, the eθ decays to a limiting value and not zero. This is because eθ is 

calculated using the simulated trajectory and desired analytical trajectory, whereas the control 

torque is a function of simulated trajectory and desired numerical trajectory. This means that the 

simulated trajectory traces the desired numerical trajectory and not analytical. The difference 

between analytical and numerical desired trajectories is shown in Figure 26. 

 

Figure 26: Numerical and Analytical Desired Coning Trajectories having Half Cone Angle, δ=1° 
about a Nominal Sail Normal of β0=35°, Φ0=0° (One Orbital Period) 
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The total torque on a coning trajectory (half cone angle, 1=δ ) for a given nominal 350 =β and

00 =φ  is calculated using equation 44 (calculate cτ ). This torque was applied in the simulation 

to yield the numerical coning trajectory. Differences exist because the instantaneous derivative 

of desired angular momentum is not available ( cτ is calculated numerically). The maximum 

angular position error between the analytical and numerical coning trajectories was found to be 

0.05°. Hence, the eθ in Figure 25 decays to the numerical desired trajectory and reaches a limiting 

value of 0.05° (same as the maximum angular position error between the analytical and 

numerical coning trajectories). 

 The performance of the control method with the exact initial conditions has been 

presented so far. Practically, internal/external disturbances on the sailcraft causes initial 

condition errors with the sail attitude. Thus, the performance with initial condition errors should 

also be analyzed. Figure 27 illustrates how initial condition errors are added to the system. 

 

Figure 27: Initial Condition Error 

The red dot represents the exact initial conditions for the system. The initial condition error is 

obtained by adding an angular deviation d such that the initial angular position (and hence initial 
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angular velocity) contains errors with respect to the desired coning trajectory. The control 

method performance for 1° and 10° deviations follows. 

 
Figure 28: Control Method Performance in Tracking Desired Angular Momentum and Sail 

Normal with Initial Condition Error of 1° (d=1°), Zero Sail Spin 

The Lyapunov function decreases to the levels as with no initial condition errors. This means that 

the control method is able to track the desired angular momentum vector even with the initial 

condition error. The sail normal motion is coning about the sail equilibrium point, however the 

desired normal is not traced as well as with no initial condition errors. The rate of coning has 

also deviated slightly from orbit rate. The Lyapunov function levels drop to the expected levels 

after one time step. This is clearly evident in the sail angular momentum vector motion shown in 

Figure 29. 

             
 

Figure 29: Simulated and Desired Angular Momentum for Coning Trajectory with Initial 
Condition Error, d=1°, kcontrol=1 
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As expected, as the control authority is decreased ( )1.0=controlk , the simulation angular 

momentum tracks the desired cone more gradually (see Figure 30). 

 
Figure 30: Simulated and Desired Angular Momentum for Coning Trajectory with Initial 

Condition Error, d=1°, kcontrol=0.1 

With decreased control authority, the control torque application is reduced which enables the sail 

angular momentum to track the desired gradually instead of after one time step. This behavior is 

preferable in a small sailcraft to avoid any abrupt changes to the attitude that can damage the sail.  

 The result with a larger initial condition error of 10° is presented in Figure 31.   
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Figure 31: Control Method Performance in Tracking Desired Angular Momentum and Sail 

Normal with Initial Condition Error of 10° (d=10°), Zero Sail Spin 

The control method performance in tracing the desired angular momentum has deteriorated 

slightly, which is indicated by the Lyapunov function magnitude increase as compared with the 

1° deviation case (~10 times increase). However, there is significant deterioration in tracing the 

desired sail normal as compared with the 1° error case. The sail normal appears to trace a larger 

cone at a slightly different rate. This means that even though the control method performance did 

not deteriorate noticeably in tracing the desired angular momentum, the performance degraded 

significantly in tracing the desired sail normal. 

 The control method robustness is further examined by analyzing the results for tracing 

larger cones (larger half-cone angles). The results for 5° and 60° cones are presented below. 

 
Figure 32: Control Method Performance in Tracking Desired Angular Momentum and Sail 

Normal with 5° cone, Zero Sail Spin 
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The errors from tracking the desired angular momentum are on the same order of magnitude as 

for the 1° cone (Lyapunov function level has the same order of magnitude).  In addition, there 

are no significant deviations from orbit rate coning of the sail normal vector. The sail normal 

motion tracks the desired 5° circular cone with no significant differences as compared with the 

1° cone case. 

 
Figure 33: Control Method Performance in Tracking Desired Angular Momentum and Sail 

Normal with 60° cone, Zero Sail Spin 

However, the control performance has deteriorated significantly for cones as large as 60°. The 

sail normal does not cone around the equilibrium point. The angular momentum tracking also 

has increased errors as compared with smaller cones (~102 times larger). 

III.2.2. Orbit Raising Case with Zero Sail Spin 
 
 In the orbit raising case, the thrust is applied in the velocity direction. The equilibrium 

point is  180,145 == φβ . The Lyapunov function behavior, V is presented in Figure 34. 
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Figure 34: Lyapunov Function, Its Approximated Derivative and A-frame Angular Momentum 

Components for Coning Trajectory having Half Cone Angle, δ=1° about a Nominal Sail Normal 
of β0=145°, Φ0=180° 
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that the control method is successful in reducing the angular momentum error. However, the 

control method does not enable the sail normal to trace the desired coning trajectory. 

 
Figure 35: Sail Angular Positions for Coning Trajectory having Half Cone Angle, δ=1° about a 

Nominal Sail Normal of β0=35°, Φ0=0° in the L-frame 

The red dot/circle represents the desired trajectory. Thus, the sail normal does not cone or even 

stay in the vicinity of the desired cone. Even though the angular momentum error is small and is 

able to trace the desired trajectory, the sail normal error does not. This can be explained by 

studying the behavior of individual terms in the angular momentum error.      

            ( ) ( )( ) ( )[ ]  

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The following plot explains the behavior by examining the individual termn _Δ and term_ωΔ

that constitute the angular momentum error, C
Ah


Δ . 



55 
 

 
 

 
Figure 36: Individual Δnterm and Δωterm terms (β0=145°, Φ0=180°) 

The individual terms cancel each other, meaning that the combination of the terms tend to zero 

even when the individual terms do not. As discussed in section III.1, the Lyapunov function is 

positive definite with respect to the angular momentum,h


and not with respect to the sail normal,

n̂ . Thus, 0→Δh


does not guarantee 0ˆˆˆ →−=Δ cnnn and does not ensure that the sail normal 

tracks the desired sail normal. In this simulation case, 0→Δh


 indeed does not cause the 

simulation sail attitude, n̂  →desired cone sail attitude, cn̂ . Although the control method 

performance for the angular momentum is as expected (traces the desired), the angular position 

performance is not desirable. 

III.2.3. Orbit Lowering Case with Equilibrium Sail Spin 
 
 In the orbit lowering case with zero sail spin, the sail normal was able to track the desired 

trajectory at orbit rate as opposed to in the orbit raising case (could not track the desired coning 

trajectory). Thus for comparison purposes, only the orbit lowering case for the equilibrium sail 
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spin is presented. The equilibrium sail spin rate was calculated to be -2.97 x 10-4 rad/s 

( nsC
B ˆ⋅= ωω
 from equation 33). The Lyapunov function is given in Figure 37. 

 
Figure 37: Lyapunov Function or Coning Trajectory having Half Cone Angle, δ=1° about a 

Nominal Sail Normal of β0=35°, Φ0=0° 
 
The Lyapunov function levels are on the same order of magnitude (10-12), however the levels are 

lower in magnitude (~2 times) as compared with the zero sail spin case (Figure 21). This 

indicates that the control method performance is more effective in reducing the angular 

momentum with the equilibrium spin. The cost at which this control performance is achieved is 

given by the control torque.  
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Figure 38: Torques of the System in the B-frame 

Similar to the zero sail spin case (Figure 20), the magnitude of controlτ is on the order of 10-6 Nm 

(reasonable to apply on small sailcraft) and the eδτ torque is ~103 times lower in magnitude than

controlτ and conestay _τ , justifying the assumption of elimination eδτ from equation 41 (see section 

III.2.1 for more details). However, as compared with the zero sail spin case, the control torque 

required in the l̂ and m̂ directions is lower in magnitude. Figure 39 shows a comparison between 

the total control torque magnitude required in the equilibrium and zero sail spin cases. 
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Figure 39: Control Torque Magnitude Required in the Equilibrium and Zero Sail Spin Rate 
Cases 

The control torque, controlτ required to enable the desired orbit rate circular coning is less in 

magnitude in the equilibrium sail spin case than for the zero sail spin case (~4 times less). This 

indicates that the equilibrium spin case can provide better control method performance (angular 

momentum error magnitudes are lower as compared with those of the zero sail spin case - Figure 

21 and Figure 37) with a smaller cost (due to the smaller control torque magnitudes).  

 The control method performance to enable sail normal tracing is shown in Figure 40.  
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Figure 40: Sail Angular Positions for Coning Trajectory having Half Cone Angle, δ=1° about a 

Nominal Sail Normal of β0=35°, Φ0=0° in the L-frame, Equilibrium Spin 

The simulation sail normal, n̂ traces the desired circular cone. In addition, the cone and clock 

angles repeatedly complete one cycle in one orbital period. This indicates orbit rate coning. As 

compared with the zero sail spin (Figure 22), the coning tracing appears more accurate. To gain 

more confidence in this, the errors in the individual components of sail normal while tracing the 

desired cone are shown in Figure 23. 
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Figure 41: Individual L-frame Components of Simulated and Desired Sail Normal with Errors, 

Equilibrium Spin 

As the cone is traced, the oscillating nature of the error magnitudes is similar to the ones in the 

zero sail spin. However, the magnitudes are 10 times lower in the equilibrium spin case than the 

zero spin case. This means that the control method was able to provide better sail normal 

tracking at a lower cost (lower control torque magnitude) with the equilibrium spin as compared 

with the zero spin for this L-frame sail equilibrium point (  0,35 == φβ ).    

 The performance of the control method with initial condition errors is analyzed and 

compared with the zero sail spin case below.  
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Figure 42: Control Method Performance in Tracking Desired Angular Momentum and Sail 

Normal with Initial Condition Error of 1° (d=1°), Equilibrium Spin 

The Lyapunov function is on the same order of magnitude as for the zero sail spin case, 

indicating that the control method performance in reducing the angular momentum error is 

similar. However, the sail normal coning at orbit rate is better defined in the zero sail spin case. 

The cone and clock angles complete one revolution in one orbital period more closely than in the 

equilibrium spin case. The sail normal motion is also more circular in the zero sail spin case. 

 
Figure 43: Control Method Performance in Tracking Desired Angular Momentum and Sail 

Normal with Initial Condition Error of 10° (d=10°), Equilibrium Spin 

The Lyapunov function is on the same order of magnitude as in the zero sail spin case. However, 

the sail normal motion is neither at orbit rate nor does the sail normal trace the desired cone. The 

sail normal cones around the equilibrium point at a much slower rate (approx. once in 4 orbits) as 

compared with the zero sail spin case (approx. once every 1.25 orbits). 
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IV. CONCLUSION AND FUTURE WORK 
 
 Past work has shown that orbit rate coning of the sail normal vector about an LVLH 

attitude equilibrium point induces desired orbital effects and is unlikely to excite the structural 

sail dynamics. Sail attitude equilibria exist in the LVLH frame under the influence of gravity 

gradient, aerodynamic and solar torques. When the sail normal is precessed from some of these 

equilibria, the sail normal naturally cones about that equilibrium point. However, the sail normal 

coning has to follow a circular coning trajectory at orbit rate to induce the desired orbital effects. 

In this thesis, a control method is developed that enables sail normal coning (circular cones) 

about the LVLH attitude equilibria at orbit rate. The control method is designed such that the sail 

angular momentum tracks a desired trajectory. 

 The performance of the angular momentum error reduction control method was analyzed 

in this thesis. The control method caused the sail angular momentum to track the desired angular 

momentum on the coning trajectory over an orbit and reduced the initial angular momentum 

error in all cases studied.  The method is robust to initial condition errors in tracking the desired 

angular momentum. Since angular momentum is a function of the sail angular position (sail 

normal), a reduction in angular momentum error was hoped to reduce the sail normal error 

between the sail normal and desired sail normal on the coning trajectory. This control method 

only functioned well for tracking the desired angular position (sail normal) at certain LVLH 

equilibrium points, for small cones and small initial condition errors. In the orbit lowering case 

(  0,35 == φβ ), the control method allowed the sail normal to trace the desired sail normal on 

the circular coning trajectory at orbit rate. The coning was at orbit rate (accurate coning rate), but 

there were errors in the shape of the coning (inaccurate circular coning). Even though there were 

errors in the circular cone tracing (10 to 103 times lower than the absolute sail attitude), they 
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were bounded. In addition, past work asserted that the shape of coning need not be as accurate as 

long as orbit rate coning is achieved in order to attain the desired orbital effects. Thus, slight 

deviations from circular coning that cause these error magnitudes in the coning tracing are within 

the acceptable range. The performance of the control method deteriorated (deviated from orbit 

rate coning and had increased circular cone tracing errors) when the initial condition deviation 

was increased to 10° and cones became as large as 60°. Moreover, in the orbit raising case 

(  180,145 == φβ ), the control method could not enable circular cone tracking at orbit rate. 

Therefore, the control method performed well in tracking the desired sail normal at certain 

equilibrium points, for smaller initial condition errors and for smaller cones. In these cases, the 

sail normal error remained small.  The reason why the control method performed well with sail 

angular momentum and not the sail normal was because the sail normal errors cancelled with sail 

velocity errors in the angular momentum error term to yield a small angular momentum error 

even with large sail attitude and velocity errors.    

 For the cases where the desired sail normal tracking could occur at orbit rate, studies 

were performed on a spinning (spun at the equilibrium spin) and non-spinning sailcraft (zero sail 

spin) in order to determine the required control torque for inducing the desired coning. The 

required control torque is a combination of two control torque components: rate control torque 

and coning control torque. The rate control torque defines that piece of the total control torque 

which enforces orbit rate coning and allows the sail normal to trace the trajectory at the desired 

rate. The coning control torque is that piece which is used to induce the desired coning and 

allows the sail normal to trace the desired shape of the coning trajectory. It was argued that rate 

control torque is lower in the zero sail spin case (total angular momentum is lower for a non-

spinning sail and thus the momentum vector is easier to precess), whereas the coning control 
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torque is lower for the equilibrium sail spin case (equilibrium sail spin causes natural coning that 

reduces the required control authority). It was interesting to determine which sail spin rate could 

result in the desired orbit rate circular coning with a lower cost (lower control torque magnitude). 

Even though, the required control torque was on the order of 10-6 Nm for both a spinning and 

non-spinning sail (10-6 Nm was found to be a reasonable torque magnitude from other work on 

small sailcraft with similar dimensions and mass properties), the required control torque was 

lower in magnitude with the equilibrium spin. For the equilibrium point used (orbit lowering 

case:  0,35 == φβ ), the equilibrium spin case required ~4 times less control torque for the sail 

normal to stay on the desired circular coning trajectory at orbit rate. In addition, the equilibrium 

spin case provided a more effective control method performance in tracking the desired angular 

momentum and sail normal as compared with the zero sail spin case. In this case (specific 

equilibrium point) and with this result, the sail can be operated at the equilibrium spin rate. 

However when initial condition errors were added to the system, the zero sail spin case showed 

more robustness (better performance) in tracking the desired circular coning trajectory at orbit 

rate than the equilibrium sail spin case. 

 An extension of this thesis can take many interesting directions. Past work analyzed orbit 

rate coning for circular coning trajectories in order to induce the desired orbital effects. The 

assumption for circular coning can be relaxed and induced orbital effects for non-circular cones 

can be studied. A non-circular cone alters the sail normal thrust vector direction relative to the 

sun differently. This produces different orbital changes whose usefulness can be analyzed. This 

could relieve the control method from the need to provide perfectly circular cone tracing and 

only concentrate on enabling orbit rate coning. To better understand this control method, future 

work can include an understanding of why the desired sail angular momentum tracking does not 
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enable sail normal tracking at the same level of accuracy. It would be useful to see what drives 

the individual sail normal and velocity dependent terms in the angular momentum error equation 

to cancel each other, and to see this behavior can be prevented.  

 The results at the equilibrium point  0,35 == φβ for the equilibrium sail spin revealed 

better performance in tracking the desired circular coning trajectory as compared to the zero sail 

spin case (10 times better) at a lower control torque cost (with no initial condition errors). The 

control torque calculation did not include the additional control torque that is required to operate 

the sail at the desired equilibrium sail spin (spin rate control torque). Further studies can include 

the magnitude of this spin rate control torque to make more accurate comparison with the control 

torque required in the zero sail spin case. In order to operate the sail at the equilibrium spin as 

opposed to having zero sail spin, the implications of providing extra mechanisms needed to spin 

the sail can also be explored. In addition, the relative control method performance from using the 

equilibrium and zero sail spins could be tested at other equilibrium points to see if the 

comparison between the two spin rates and conclusion drawn for this specific case hold in 

general. 

 The results here also indicate that the desired sail normal is traced more accurately (orbit 

lowering case) at some equilibria than at others (orbit raising case). In order to gain a better 

understanding of this phenomenon, linearized sail dynamics about the sail equilibria could be 

developed. Studying the near-equilibrium behavior may reveal why the desired sail normal is 

traced more accurately (orbit lowering case) at certain equilibrium points than at others (orbit 

raising case).  

 In this thesis, a flat, rigid sail model was used. A large, gossamer sail will not be perfectly 

flat or rigid in space. The dynamics can be more accurately captured by analyzing a realistic sail 



66 
 

 
 

shape. This work can be further extended to include non-flat, non-rigid sail dynamics. Finally, 

the practical implementation of the control torque required to enable the orbit rate coning of the 

desired trajectory with the existing hardware can be studied (e.g. using reaction wheels, tip 

vanes, or sailcraft bus deflection). 
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VI. APPENDIX A 
 
McMahon, J. et. al. have shown that for 1° cones, the greatest orbital effects occur at

 0,35 == φβ for orbit lowering and  180,145 == φβ for orbit raising [13]. 

 

 
Figure 44: Orbital Effects for Orbit Lowering (clock angle = 0°) and Raising (clock angle = 

180°) over Cone Angle 

 
 
   

 


