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Abstract

The focus of this paper is on Parameter-Adaptive Filtering (PAF) as it applies to
locating the center of mass of a spacecraft simulator. The model is of a rigid body with
an attached point mass used to excite the system. The equations of motion are developed
for the model. The technique of PAF is introduced mathematically and an algorithm for
implementation is provided. Three configurations are considered along with variations in
the uncertainty and noise levels of the sensor measurements.
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List of Parameters

=3

0] -angular velocity of the body frame with respect to the inertial frame
A -velocity of the point O
m, -mass of the body
C,  -1" moment of inertia of the body
r, -position vector from O to the mass particle
b -nominal location of the mass particle (x=0)
n -direction of travel of the mass particle
) -displacement from the nominal position of the mass particle
J 2" moment of inertia of the system
he -angular momentum of the system about point O
J, 2" moment of inertia of the body
J ) 2" moment of inertia of the point mass
h, -angular momentum of the body
ﬁp -angular momentum of the mass particle
Fext -external forces applied to the system
0.« -external torques applied to the system
My -mass of the particle
g -gravitational constant
o -vector of Euler angles
Vace -output acceleration vector
Y.,  -output angular velocity vector
X -state vector, x=[0 o o
y -output vector, y = [Q O Vo O ]
S -matrix relating angular velocity and angular rates
f -force due to gravity of the body

-force due to gravity of the point mass

p -unknown parameter vector
G -observer gain

Ax -linearized augmented input matrix

Ca -linearized augmented output matrix

\% -noise spectral density matrix

W -disturbance spectral density matrix

P -covariance matrix

X,  -state estimate

I -identity matrix

R" -rotation matrix from the inertial frame to the body frame

Iy -vector from point O to the rate gyro



Background Information

Prior research by the author led to a literature review on the topic of mass
property estimation. The papers discussed below are concerned with on-orbit estimation
algorithms of the dynamic parameters of a spacecraft. Dynamic parameters include the
moments of inertia, thruster parameters, mass, etc." The most important role of dynamic
parameters is in the backup attitude control system which may be used in case of primary
sensor failure.

The attitude control subsystem is important for the success of a spacecraft
mission. Many of the other subsystems are dependent upon the accuracy of the
orientation of the spacecraft. The thermal and power budgets are heavily dependent upon
the trajectory and orientation. Precise control of the attitude is also necessary for
scientific objectives. Continued success of a mission even after primary sensor failure
relies on accurate knowledge of the parameters in the equations of motion. Further
motivation for on-orbit estimation of parameters is the increasing complexity of
spacecraft. The space station receives additional modules, which change the mass
properties. Also, an extra-vehicular activity astronaut maneuvering while manipulating
massive components requires knowledge of the inertia matrix.’

Many different models and algorithms have been developed to solve the problem
of parameter estimation. Each solution has a unique method, but most employ the use of
rate and attitude sensors. A conservation of energy method is used by Tanygin and
Williams® to relate the inertia and angular velocity during a maneuver. Lee and Wertz*
use the principal of conservation of angular momentum to determine the inertia tensor of

the Cassini spacecraft. Once the dynamic equations are solved, a numerical technique is



often necessary to optimize the answer. Extended Kalman filters, batch least squares
estimation, or other cost function minimization techniques are used to estimate
parameters. 18

A paper by Mark Psiaki’ presents an approach based on satisfying Euler’s
equations. The unknowns are constituted by the parameters being estimated while the
attitude and rates are known. Linear and non-linear optimization techniques are used in
conjunction with each other to yield the best guess at the parameters. Recursive linear
techniques are used to obtain the estimates of the error. The iterative non-linear method
is used to estimate the parameters. The physical model of the system includes gravity
gradient torques, magnetic dipole moments, and an inertial impulse due to unmodeled
torques. Psiaki’s model is more complete than the others, but along with the
completeness comes complexity.

A simpler approach is taken by Tanygin and Williams.” The equations of motion

are used as the physical model.

lo+oxlo=M +ZpiXFi

Motion is excited by applying external torques, M, and forces, F. The equation must be

manipulated into a form suitable for a batch least squares estimation. The standard form

consists of a regressor matrix, @, a parameter vector, 0, and the output vector, Y.
oo=Y

The time rate of change of rotational kinetic energy involves the inertia matrix and is

used to convert the equations of motion into the necessary form. A vector of the

unknown parameters, inertia matrix and location of the center of mass, is formed. A

batch least squares estimation is used to minimize the quadratic cost function based on all



the measurements available. Noise and disturbances are not estimated in this method
resulting in a simpler, less reliable result. An alternative cost function is suggested by

Clemen, where Yy is the measured value, ¥ is the simulated value, and Y is the mean of the

1
measured values.

C 2
2. =)
_ =l
J = IN—2

2. =)
i=1
An example of actual parameter estimation was done on-board the Cassini
spacecraft. The inertia tensor is used by the attitude-control fault protection algorithms,
attitude estimator, thruster vector control algorithms, and the reaction wheel actuator.

Prior to launch an estimation of the inertia tensor was made. The inertia of each

component was determined and the location of the system center of mass was estimated.

8810.8 —-136.8 1153
The overall system inertia tensor was found to be | —136.8 8157.3 156.4 | kg-m>.?
1153 1564 47218

An on-board algorithm involving the conservation of angular momentum was used to
make further estimations of the inertia tensor. A maneuver consisting of a Y-axis slew,
followed by a X-axis slew, another Y-axis slew, a Z-axis slew, and finally another Y-axis
slew was performed. The angular rates, reaction wheel spin rates, quaternions, reaction
wheel inertias, and location of the reaction wheels are all assumed to be accurately
known. Equating the initial angular momentum to the current angular momentum at each

time step provides an explicit equation for the inertia tensor. The angular momentum is



conserved by neglecting the effects of external torques for the duration of the maneuver.

86552 —144 132.1
The resulting estimate for the inertia tensor was | —144 79227 192.1 |kg-m*?
132.1 192.1 4586.2

Many of the algorithms are developed for space missions; however, the
application to spacecraft simulators is of interest. Spacecraft simulators are typically
used by small satellite builders. Small satellite programs are limited in time, financial
resources, and manpower resources.’ Simulators are used to test the attitude
determination and control system before sending the satellite into orbit. The size and
shape of spacecraft simulators limit the possibilities of directly determining the mass
properties. Therefore, similar methods as those used for on-board parameter estimation
must be used on simulators. The major difference between on-board and simulator
estimation is the gravity effect due to the inevitable misalignment of the center of mass
with the center of rotation.® An algorithm based solely on rate gyro measurements was
developed by Kim and Lee®. The conservation of angular momentum is used in the same
way as the method developed by Lee and Wertz. However, the gravity effect must be
accounted for since it is an external torque. A function is developed to allow for the

external torque, T,.
f =h—h0+j(a;xh—Tg)

Imbedded within the torque are the Euler angles between the body frame and inertial
frame. If attitude sensors are not available, the rate data must be integrated to yield
values for the angles. The numerical integration to find the Euler angles and f leads to

6
erroneous results.



Another method commonly used is parameter-adaptive filtering. Here, a Kalman
filter is used on a linear model for the system. The approach is to augment the system
variables to include the unknown parameters as states. The unknown parameters are then
estimated using measurements from sensors. One drawback is that there are no
guarantees of performance with this method.” The rule of thumb, given by Stengel’, is
that the number of unknown parameters should not exceed the number of states in the
original system.

Techniques have been developed for on-orbit parameter estimation. There are
advantages and disadvantages associated with each algorithm. The complete models are
able to provide better estimates, but at the cost of more computation time. Computation
time onboard spacecraft is typically limited. The simpler algorithms are able to provide
useful data if information such as the attitude and rates are known. The technique chosen
for is unique for each spacecraft and should be based upon the available sensors,

computation time, and accuracy needed.



1. Introduction

Spacecraft simulators are used as tools in the design process of satellites as well
as in education. Simulators are used to test attitude determination and control algorithms.
Knowledge of mass properties such as the inertia matrix and location of the center of
mass are necessary when testing an algorithm. The properties are always present as
parameters in the equations of motion. The size and shape of the simulators often
prohibit direct measurement of these properties. Determination of these properties by
another means is therefore necessary.

Parameter-Adaptive Filtering (PAF) provides estimates of unknown mass
properties through the use of an extended Kalman filter. This paper implements PAF in
order to estimate the location of the center of mass of a modeled spacecraft simulator.
The equations of motion for a rigid body with an attached point mass are developed. The
model includes the force of gravity along with the associated torques. The PAF
algorithm is then presented along with the implementation for this particular model.
Results are given for the actuated mass being used as the excitation. Results for three

nominal configurations are compared.



2. Equations of Motion

Included in this section is the development of the necessary equations of motion
for the spacecraft simulator to be modeled. First, the attitude representation is
considered. The appropriate kinematic equations are found. The derivation of the
dynamic equations follow, namely the angular velocity rate. The system modeled is a

rigid body with an attached point mass.
2.1 Kinematic Equations

The equations of motion for the attitude and angular velocities must be
determined. To represent the attitude, we choose a 1-2-3 Euler angle sequence to avoid
the singularity associated with symmetric sequences during the linearization. The Euler

angle rates take the form

0=S"w (D)
Where
. co, — S0,
S7(0)=— ch,56, cO,ch, 0 2)
co,

—-s@,c0, s0,s0, co,
Equation 2 was taken from Schaub & Junkins."
2.2 Dynamical Equations

In order to find the equations of motion for the angular velocity we follow a
similar process and notation as Hughes.'> We start by finding the angular momentum of
a rigid body and then add the contribution of the point mass. The derivative is then taken

in order to solve for the desired quantity, @. See figure 1 for diagram.
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Figure 1 Diagram of rigid body and point mass
2.2.1 Angular Momentum of the Body

The angular momentum of the body is taken about the point O. By definition the
angular momentum is the cross product of the position vector from O to the mass element

with the inertial velocity.
i~ - = (s |, =bi_ =
hb:IBrxvdm:J'Brx(v0+w xr)dm 3)
Using a vector identity and the definition of the unit dyadic, we rewrite this as
= =bi = =\=bi (&= =bi)s T oobi w =bi
'[Br x(a) xr)dm :'[B(r T)@ —(r 30) )rdm :IBrzl-w —Ir-@>dm 4)

which leads to the final form of the body angular momentum

h,

10

C, xV, +J, " ©)
where J is the second moment of inertia of the body about point O

J

e

m (P1-rr7) (©6)
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2.2.2 Angular Momentum of the Point Mass

The angular momentum about O for the point mass is found by applying the

definition

h:

o Fxvdm

@

= [ 7, (7, +@" xr, +60)dm

B

_ = o — bi e oA
=myF, xV, +J @ +mp5(rpxn)

where J ) is the second moment of inertia of the point mass about point O

_ 29 e T
_mp(rpl rp p)

[

p

The total angular momentum is then found by summation

o _ = = — bi S (e A
h®=m,f, xV, +C, xV, +J® +mp5(rpxn)

2.2.3 Derivative of Angular Momentum

The time rate of change of angular momentum is equal to the external torques.

ﬁi = Gexti

(7

(8)

)

(10)

The fact that point O is not inertial must be taken into account. The resulting equation is

&y

(12)

(13)

12



Using this relationship we find the angular momentum rate to be

h®=Guq +FxP=Vyx P=F,x P =0y —V, xP (14)
To obtain the angular momentum rate in the body frame the transport theorem must be
used

h'=h -@"x°h° (15)
Finally, the body frame time rate of change of angular momentum is found to be

R="g v, xp-""x°h° (16)

~ext,

2.2.4 Angular Velocity Rate

With equations 9 and 16 we are now ready to solve for @ explicitly. To
simplify the equations, with loss of generality, we choose point O to be the stationary
center of rotation of the simulator. All the terms involving the velocity of point O drop

out. All calculations are done in the body frame unless otherwise notated; therefore the

superscript notation will be dropped. Also, unless otherwise stated, @ refers to®”. We
substitute the definition of total angular momentum from equation 9 into the left and right

side of equation 16. The result is

Jo+dormdl,xi)=g, - o+msl, <) ()

where we have made use of the skew symmetric matrix defined by

v, 0 -v; v,
v=|v, [=Vvi=| v, 0 -y
A -V, 0
rearranging eq. 17 for @ yields
' » : : N : A
0=3"0g,,~Jo-ms, xaf-o (2w +m,slr, <] (18)

13



Care must be taken at this point not dismiss the derivative of the inertia matrix. The

movement of the point mass causes a change with time in the system inertia matrix.
2.3 Manipulation of Equations of Motion

Parameter-Adaptive Filtering can be simplified by manipulating the equations of
motion to isolate the unknown parameters. Also, for ease of calculations during the PAF
some limiting assumptions are made. We start with the kinematics followed by the
dynamics.

2.3.1 Linearization of the Kinematics
Starting with equation 2 we make the limiting small angle assumption resulting in

the following S™' matrix

1 -6, 0
s'@)={6, 1 0 (19)
-0, 0 1

Substituting back into equation 1 and carrying out the multiplication yields

1 -6, 0o 0, - 0,0,
6=8S"O)w=|6, 1 0|o,|=| b0 +o, (20)
-0, 0 1| o -0,0, + o,

Another useful approximation is for the force due to gravity for the point mass and the

body. The gravity always points in the — K direction in the inertial frame. Using the
small angle assumption and the rotation matrix from the inertial frame to the body frame,

the force due to gravity is given as >

f.o=mglo, -6, -1 (21)

f =myglo, -6, -1 (22)

—p p

14



2.3.2 Manipulation of the Dynamics
The motivation for this section is to isolate the location of the center of mass of

the body relative to the center of rotation, r .. To assist in the isolation of I, , the

Foem >
inertia matrix, its derivative, and the external torque from equation 18 are separated into
the contributions from the body and the point mass. Also the mass is constrained to
move at a constant velocity along the path, resulting in & = 0. Performing these

operations we arrive at

o={0,+3, )8, + 9,0, -, + 3 Jo-e (g, 43 Jo e misle, x| @3

Since the inertia of the body is constant, the derivative of the body inertia is equal to zero.

=0 (24)

r,=b+on (25)
t,=0on (26)

3, =myr, e, @)

3, =my (e, e, Jemy e, )e,) 28)

Using equations 21-22 , 23-27 the angular velocity rate is completely in terms of system

constants and the state vector given below

0 0, @,
X=|® with 6=|06, and w=|w, (29)
o o, ,

15



3. Parameter Adaptive Filtering

The following is an outline of the process of Parameter Adaptive Filtering as
adapted from [8]. The equations previously derived are then implemented into the
process. The goal in this application is to estimate the location of the center of mass of
the simulator.

3.1 Mathematical Formulation

We start with a nonlinear set of equations as previously derived, f;. In addition
we are also adding a nonlinear output, h, representing the measurements taken from the
simulator. The input equations have the unknown parameter, p, and could also have
unknown disturbances, w. The output is subject to random noise. In summary,

x =f,(x,p,w,t) (30)

y :h(x,v,t) (31)

The technique is now to add the unknown parameter vector, p, to the state vector. The

X
Xa :( j (32)
P

The result is a new system, which is more nonlinear in nature

. fl(x,p,w,t)

augmented state is defined as

The form of the equation 23 allows for the location of the center of mass to

remain constant. Since the parameter is constant, trivial dynamics, i.e. f, = 0, are used

16



here. An important note is that the parameter itself will not vary; only the estimate of the

parameter will vary.® The augmented system output is given as
ya=(b(xv.t) 0)
A hybrid extended Kalman filter is implemented on the augmented system

defined by the following equations:

X4 =fA( Xpo U, t)"'G( (XA’t)) ’A‘(to): X,
G=PC,(t)' V"
P=A,P+PA, -PC,V'C,P+W P(t,) =P,

In equations 35-37 Aa(t) and Cx(t) are defined as the Jacobians of fo and ya,

respectively, with the noise set to zero in both cases.
3.2 Computational Implementation

The focus of this section is to set up the algorithm and equations needed to

implement the discrete/continuous time hybrid extended Kalman filter used in PAF.

Again the method used in [8] is followed here. In the following steps the subscript

(34)

(35)

(36)

(37)

denoting the augmented system, A, is dropped to clarify notation. No disturbance input

was assumed in order to simplify the algorithm.

An 1initial state estimate and covariance are needed to initialize the filter. The

covariance of the parameter being estimated should be as small as possible to assure the

filter in converges correctly. We start the algorithm by propagating the state estimate

with the full nonlinear model:

%, (5) = % ( J.f

by

Second, the error covariance is propagated using the locally linearized model:

(38)

17



PO)=P(+)+ [AG)P()+ PIAG) de (39)

Third, the observer gain of equation 35 is obtained using the locally linearized model:

-1
G, =P, ()C(C.P ()T +V,) (40)
Next the nonlinear output is used along with the observer gain to update the state and

covariance estimates:
%, (+)= %)+ G, (v, ~h(x (-)0.t,)) (41)
P (+)=(1-G,C, )P, (-) (42)
These steps are repeated for the duration of the simulation. With the augmented system

the updated state estimate includes an approximation for the unknown parameter, p, at

each time step.

18



4. Results

Now that we have the equations of motion developed and suitable for the
parameter-adaptive filter routine, three nominal configurations are investigated. The
choice for each is based upon the actual configuration onboard the spacecraft simulator,
Whorl-I. There is a linear actuator, controlled moving mass, for each axis on the
simulator corresponding to the chosen configurations. The system constants not
dependent on configuration are the mass of the body, mass of the point mass, inertia of
the body, position of the rate gyro, and speed of the mass. All of these parameters were
assigned values corresponding to the physical system. Also, the initial conditions for the
states were set to zero for all simulations.

The inputs which distinguish between the test cases, aside from the linear actuator
being used, are the noise covariance, initial uncertainty, and time between measurements.
Each simulation propagates the full nonlinear model with knowledge of the location of
the center of mass. Gaussian white noise is added to the true model at each measurement
step to simulate sensor noise. The effects of these variables on the convergence of the
PAF are discussed throughout the remainder of this section.

4.1 Noise Covariance

The measurements taken at each time step were modeled from the sensors
available on the simulator. Currently the only sensors available are a three-axis rate gyro
and a three axis accelerometer. However, attitude knowledge was also modeled as
sensors will be available in the future. The rate gyros and accelerometers provide two

vector outputs, namely

19



Vg =@ (43)
Yoo =T, +0 0"r, — gR"k (44)
Based upon the manual for the MotionPak II and calibration conducted in [14],

the accuracy for both of these outputs was approximately +£5°s and £0.5m/s"2. The
values for measurement noise were chosen accordingly. Due to the lack of attitude
sensors at present, a number of uncertainty levels were investigated. The location of the
point mass is given by a step motor with negligible noise; therefore the noise was set to
zero for this output. The noise amplitude, v, and covariance matrices, V, took the

following form for the various outputs.
v,=N*c  (45a) V,=(n*c) *1,,, (45b)

v, =0 (46a) V. =c’*I,  (46b)

®,yacc ,yacc

4.2 Parameter Uncertainty

The a priori knowledge of the unknown parameters is known to have a large
impact on the effectiveness of PAF.® The robustness of this technique was tested by
varying the covariance of the initial guess, i.e. P,. The initial angular velocity was taken
to be known exactly. The initial attitude error was varied corresponding to the sensor

noise chosen for the same simulation.
4.3 Three Nominal Configurations

The equations of motion developed were only for a single point mass and a rigid
body. The location and path direction of the mass were varied to simulate the motion of

each of the three available linear actuators on the simulator. All simulations included the

20



mass moving 20 cm., which is the full length of the available linear actuators. The
system excitation due to the location and path of the masses was investigated.
4.3.1 X-Axis Linear Actuator

The first configuration we will consider is the mass moving parallel to the x-axis,
towards the y-axis. The nominal position of the mass is at one end of the traverse. The

corresponding position vectors are

b=[05 05 of n=[1 0 of

Sim1l | Sim2 | Sim3 | Sim4 | Sim 5
Time Step, (s) 0.01 0.01 0.01 0.1 0.01

Noise, 6 0.1 0.1 0.1 0.1 0.1
Attitude, n 3 3 1 3 3
Toem (M) [-0.01, | [-0.01, | [-0.01, | [-0.01, | [-0.01,

0.01, | -0.01, | -0.01, | -0.01, | -0.01,
0.02] | 0.02] | 0.02] | 0.02] | 0.02]
m~2)| 0.02 | 002 [ 002 | 0.02 | 05

Table 1 Inputs used for X-axis simulations, used in eq. 45 and 46

P, for r

ocm

The Euler angles, angular velocity, and angular accelerations all increased
dramatically in the first half second of simulation 1. The seemingly skewed model was
investigated further. The problem was a discrepancy between the physical simulator and
the model. The air bearing setup is by no means a single point of contact for rotation.
The forces acting on the simulator are not concentrated directly upward in the center.

As an alternative to the existing model, the location of the center of mass was
chosen such that the initial body and point mass torques cancel. The system would
become excited as the point mass moved. The resulting angles, angular velocities, and
angular accelerations were much more similar to those of the physical simulator (figures
3-4). Both the simulation and the physical simulator approach 10 degrees in roll and yaw

after approximately 1 second. All future simulations were conducted with the contrived

21



center of mass. The following, figures 2-4, are the results for simulation 2. Figure 2

shows the convergence of the unknown vector, r,, , to the correct value to within 2 mm

for all three components. The z-component of the center of mass took much longer to
converge do to lack of excitation and the length of time the corresponding Euler angle
took to converge. The results for simulation 3 are not shown here, the dynamics
remained very similar regardless of the increased Euler angle noise. The location of the

center of mass converged only slightly faster than the previous simulation.

hodel-based estimate (blue), Measurement-updated estimate (green), and true value (red)
|:|2 T T T T T T T T

02 04 oe 08 1 12 1.4 1.6 18 2

rl:IIZI'I'I ¥ l:m:I

|:||:|5 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2
|:|1 T T T T T T T T T
E
e DW}“M A .
8
_I:I'] 1 1 1 1 1 1 1

| |
a 0z 04 og 08 1 12 1.4 1.6 18 2
time (s)

Figure 2 Simulation 2 results for location of center of mass
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Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)
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Figure 3 Simulation 2 results for Euler angles

Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)
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Figure 4 Simulation 2 results for angular velocity
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Simulation 4 investigated the effect of measurement time increments. Having

held everything else constant from simulation 2, the sampling rate was changed from 100

Hz. to 10 Hz. The results show that the sampling rate has a large impact on the

effectiveness of PAF. Without a large number of measurement updates the simulated
model has longer to stray from the true dynamics. Figure 5 shows the estimate of the

location of the center of mass.

Simulation 5 investigated the effect of the a priori estimate of the center of mass.

This was done by changing the initial covariance, P,. Again, simulation 2 was used to

compare against. The covariance was increased from 0.02 m”2 until the system

diverged. This occurred at 0.3 m”"2, figure 6 shows the results for the first 0.7 sec of the

simulation, at which time the estimate begins to diverge.

Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)

0.5
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>
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Eo - . I
N T \
Eol N\
82 \_X
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

Figure S Simulation 4 results for location of center of mass
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Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)
05 T T T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

_20 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (s)

Figure 6 Simulation 5 results for location of center of mass, through divergence

4.3.2 Y-Axis Linear Actuator

Simulations were run with the mass moving parallel to the y-axis, moving toward
the x-axis. The nominal position of the mass is at one end of the traverse. The
corresponding position vectors are

b=[0.5 05 of n=[0 1 of

There were no significant differences from the x-axis linear actuator simulations.
This is due to the symmetry of the location of the point mass and the ‘close to symmetric’
properties of the body inertia matrix.
4.3.3 Z-Axis Linear Actuator

The final configuration considered the mass moving parallel to the z-axis, away
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from the X-Y plane. The nominal position is once again at one end of the traverse. The
position vectors defining this configuration are
b=[05 0 o] n=[0 o 1J

The mass moving along the z-axis provides an inherently different system
because the gravity torque produced by the point mass remains relatively constant.
Again, the contrived center of mass was used, although different than the previous center
of mass due to geometry. Simulations were once again run to compare the variables
previously discussed, with surprisingly similar results. The effect of output noise was

then investigated using this configuration. Table 2 shows the input variables.

Sim6 | Sim 7
Time Step, (s) 0.01 0.01
Noise, o 0.1 0.2
Attitude, n 1 1
Toem (M) [-0.01, | [-0.01,
0.0, 0.0,
0.02] | 0.02]
P, for r,,, (m"2)| 0.02 0.02

Table 2 Inputs used for Z-axis simulations
Simulation 6 had the standard noise applied to the output (figure 7). As in

previous cases the x and y components of r,,, converged to the correct values. However,

the z component never converged for this configuration. Also, the simulation diverged
approximately 2 out of 3 times it was run. The fact that it diverged shows a weakness of
PAF. The technique has no guarantee of convergence, nonetheless it can be run a
number of times until it does converge, still providing useful information. A larger
motion about the Z-axis would provide a better rate of convergence.

When the noise was increased in simulation 7, results similar to simulation 6 were

achieved. However, the initial error was larger and the settling time was longer (figure
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8). If noise was increased further the system did not converge for any of the components

of ry,.

hodel-based estimate (blue), Measurement-updated estimate (green), and true value (red)
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Figure 7 Simulation 6 results for location of center of mass
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Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)
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Figure 8 Simulation 7 results for location of center of mass

4.3.4 Results Summary

PAF is a legitimate method to compute the center of mass of a spacecraft
simulator based upon the given results. Once the location has been estimated, the masses
can be actuated to adjust the center of mass to coincide with the center of rotation. Future
work could expand the given algorithm to include other unknowns such as the mass of
the rigid body, and/or the moments of inertia of the body. The effectiveness of PAF will
decrease as the number of unknowns increase. However, if more sensor measurements

become available then the effectiveness will increase.
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5. Conclusion

The problem of estimating the center of mass of a spacecraft simulator was
investigated. The equations of motion were developed for a rigid body with an attached
point mass. The Parameter-Adaptive Filtering technique was outlined for a nonlinear
system of equations using a hybrid extended Kalman filter. Three configurations
corresponding to the three linear actuators on Whorl-1, a spacecraft simulator, were
explored. PAF was successful if the output noise was sufficiently low, a priori
knowledge of the true location was known to within 5 cm., and output measurements

were taken often enough.
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Appendix
Wseript.m

% This script implements a hybrid extended Kalman filter for a spacecraft simulator

%define global variables for the simulation
global deltadot Jb mb mp b nhat g x_cs A

symsw sl w s2w s3th slth s2th s3r ocm slr ocm s2r ocm s3 delta s real
omega s =[w_sl;w_s2;w_s3];
theta_s = [th_sl;th s2;th s3];

r ocm s =[r ocm sl;r ocm s2;r ocm_s3];

%define system constants

deltadot =-0.1 ; %?1x1?
Jb=[6.2,-09,-2;-9,75,0.1;-2,0.1, 12.1]; %?3x3?
mb = 100; %?1x1?

mp = 2; %7?71x1?

b=1.5;.5;0]; %?3x1?

nhat = [1;0;0]; %73x1?

r y=[-.15;-.15;.05]; %73x1?

g=9.8I; Y%m/s"2

%calculate symbolic variables for use in A calculation
r_op = b+delta_s*nhat;
Jp = mp*skew(r_op)*skew(r_op);

r_opdot = deltadot*nhat;
Jpdot = mp*skew(r_op)*skew(r_opdot);

fb = mb*g*[th_s2;-th s1;-1];
fp = mp*g*[th s2;-th sl;-1];

omegadot_s = inv(Jb+Jp)*(cross(r_ocm_s,fb)+cross(r_op,fp)-Jpdot*omega s-
skew(omega s)*(Jb+Jp)*omega s-mp*deltadot*skew(omega s)*(cross(r_op,nhat)));

%calculate the sub-matrix which is the omega dot jacobian
A _sub = jacobian(omegadot_s,[theta_s;omega s;delta s;r ocm_s]);

%Determine the symbolic A matrix to be evaluated at each time step later

A=[0 0 -omega s(2) 1 -theta s(3)0 0 0 0 O;

0 0 omega s(1)theta s3) 1 0 0 0 0 O
0 -omega s(1) 0 -thetas(2) 0 1 0 0 0 O;
A_sub;

0 0 0 0 0 00O0O0 O

0 0 0 0 0 00O0O0 O

0 0 0 0 0 00O0O0 O

0 0 0 0 0 000 0 0]

%Determine the symbolic C matrix to be evaluated at each time step later

yacc_s = skew(omega_s)*skew(omega s)*r y - g*[-theta_s(2);theta_s(1);1];
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C_sub =jacobian(yacc_s,[theta_s;omega_s;delta_s;r ocm_s]);

C=[1 0 0 0 0 00O0O0 O
0 1 0 0 0 00O0O0 O
0 0 1 0 0 00O0O0 O
0 0 0 1 0 00O0O0 O
0 0 0 0 1 0000 O
0 0 0 0 0 10000
C sub;

0 0 0 0 0 0100 OF

% Initial states where theta is the attitude, omega is the angular rate,
% delta is the displacement of the mass from nominal position, r ocm is
% vector from point o to the mass center

thetal 0=0;
theta2 0=0;
theta3 0=0;
omegal 0=0;
omega2 0=0;
omega3_ 0=0;
delta_0=0;

r ocml 0=-0.01;
r ocm2 0=-0.01;
r ocm3 0=.02;

x_0=[thetal 0;
theta2 0;
theta3 0;
omegal 0;
omega2 0;
omega3 0;
delta_0;

r ocml 0;
r ocm2 0;
r_ocm3_0];

% Sample time interval
dT=0.01;

T=[0:dT:2.0];
N=length(T);

%Actual values of the state (full nonlinear dynamics)

[T, TrueState] = ode45('True RHS', T,x_0);

% Initial state estimate
% xhat 0 = [thetal 0;

% theta2 0;
% theta3 0;
% omegal 0;
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% omega?2 0;

% omega3 0;
% delta 0;

% 0;

% 0;

% 0];

%Initial state covariance

P _0(1:3,1:3)=eye(3);

P 0(4:6,4:6)=eye(3);
P_0(8:10,8:10)=0.4*eye(3);

%Noise covariance

sigma=0.1;
V= (sigma”2)*eye(10);

%Initialize arrays

xhat_minus = zeros(10,N);
P_minus = zeros(10,10,N);
xhat plus = zeros(10,N);
P_plus = zeros(10,10,N);

% Initialize extended kalman filter

xhat plus(:,1) = xhat 0;
P plus(:,;,1)=P_0;

%Start kalman filter
for k = 1:N-1

%Update the current state for each interval
x_cs = xhat_plus(:,k)

%Update state estimate by integrating the nonlinear equations
x_minus_0 = xhat plus(:,k);

t0 = T(k);

tfinal = T(k+1);

[t, x_minus_output] = ode45('True_ RHS',[t0 tfinal], x_minus_0);
xhat_minus(:,k+1) =x_minus_output(length(t),:)’;

clear t x_minus_0 x_minus_output

%Update the covariance by locally linearizing the nonlinear model
P _minus 0 =[P plus(1,1:10,k), P_plus(2,2:10,k), P_plus(3,3:10,k) P_plus(4,4:10,k), P_plus(5,5:10,k),
P plus(6,6:10,k) P_plus(7,7:10,k), P_plus(8,8:10,k), P_plus(9,9:10,k) P_plus(10,10,k)]';
[t,P_minus_output] = ode45('Covariance RHS',[t0 tfinal],P_minus 0 );
P_minus(:,;,k+1) = [P_minus_output(length(t),1:10);
P_minus_output(length(t),2), P minus_output(length(t),11:19);
P_minus_output(length(t),3), P_minus_output(length(t),12),
P_minus_output(length(t),20:27);
P_minus_output(length(t),4), P_minus_output(length(t),13), P_minus_output(length(t),21),
P_minus_output(length(t),28:34);
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P_minus_output(length(t),5), P_minus_output(length(t),14), P_minus_output(length(t),22),

P_minus_output(length(t),29), P_minus_output(length(t),35:40);

P_minus_output(length(t),6), P minus_output(length(t),15), P_minus_output(length(t),23),

P_minus_output(length(t),30), P_minus_output(length(t),36), P_minus_output(length(t),41:45);

P_minus_output(length(t),7), P_minus_output(length(t),16), P_minus_output(length(t),24),

P_minus_output(length(t),31), P_minus_output(length(t),37), P_minus_output(length(t),42),
P_minus_output(length(t),46:49);

P_minus_output(length(t),8), P_minus_output(length(t),17), P_minus_output(length(t),25),

P_minus_output(length(t),32), P_minus_output(length(t),38), P_minus_output(length(t),43),
P_minus_output(length(t),47), P_minus_output(length(t),50:52);

P_minus_output(length(t),9), P_minus_output(length(t),18), P_minus_output(length(t),26),

P_minus_output(length(t),33), P_minus_output(length(t),39), P_minus_output(length(t),44),
P_minus_output(length(t),48), P_minus_output(length(t),51), P_minus_output(length(t),53:54);

P_minus_output(length(t),10),P_minus_output(length(t),19), P minus_output(length(t),27),

P_minus_output(length(t),34), P_minus_output(length(t),40), P_minus_output(length(t),45),
P_minus_output(length(t),49), P_minus_output(length(t),52), P_minus_output(length(t),54),
P_minus_output(length(t),55)];

clear t P_minus_0 P_minus_output t0 tfinal

%Compute observer gain

thetahat = xhat minus(1:3,k+1);

omegahat = xhat minus(4:6,k+1);

deltahat = xhat _minus(7,k+1);

r_ocmhat = xhat minus(8:10,k+1);

w_sl = omegahat(1);w_s2 = omegahat(2);w_s3 = omegahat(3);
C _num = eval(C);

P =P minus(:,;,k+1);

G =P*C_num™*inv(C_num*P*C num'+V);

%Revise state estimate
theta = TrueState(k+1,1:3)';
omega = TrueState(k+1,4:6)";
delta = TrueState(k+1,7);
r_ocm = TrueState(k+1,8:10)";
if k>30
omegadot_appr = ((omega-TrueState(k,4:6)")./dT);
omegadot apprhat = ((omegahat-xhat minus(4:6,k))./dT);
else
omegadot_appr = [0;0;0];
omegadot apprhat = [0;0;0];
end
yacc = skew(omegadot_appr)*r_y+skew(omega)*skew(omega)*r y - g*[-theta(2);theta(1);1]
yacchat = skew(omegadot_apprhat)*r y+skew(omegahat)*skew(omegahat)*r y - g*[-
thetahat(2);thetahat(1);1];

y = [theta;omega;yacc;delta] + [3*sigma*randn(3,1); sigma*randn(3,1); sigma*randn(3,1);0];

yhat = [thetahat;omegahat;yacchat;deltahat];
xhat_plus(:,k+1) = xhat_minus(:,k+1)+G*(y-yhat);
clear theta omega delta r_ocm thetahat omegahat deltahat r ocmhat w_sl w_s2 w_s3

%Revise covariance estimate

thetahat = xhat plus(1:3,k+1);

omegahat = xhat _plus(4:6,k+1);

deltahat = xhat plus(7,k+1);

r_ocmhat = xhat plus(8:10,k+1);

w_sl = omegahat(1);w_s2 = omegahat(2);w_s3 = omegahat(3);
C_num = eval(C);
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P plus(:,:,k+1) = (eye(10)-G*C_num)*P_minus(:,:,k+1);
clear thetahat omegahat deltahat r ocmhat w_sl w_s2 w_s3
k

end

figure(1)

subplot(3,1,1);

plot(T,xhat minus(8,:),T,xhat_plus(8,:),T,TrueState(:,8));
ylabel('r 0o ¢ m x (m)");

title("Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)");
subplot(3,1,2);

plot(T,xhat minus(9,:),T,xhat_plus(9,:),T,TrueState(:,9));
ylabel(t 0 ¢ my (m));

subplot(3,1,3);

plot(T,xhat minus(10,:),T,xhat plus(10,:),T,TrueState(:,10));
ylabel('r o ¢ mz(m)");

xlabel('time (s)');

figure(2)

subplot(3,1,1);

plot(T,xhat_minus(1,:)*180/pi,T,xhat plus(1,:)*180/pi,T,TrueState(:,1)*180/pi);
ylabel('theta_1 (deg)");

title('Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)");
subplot(3,1,2);

plot(T,xhat minus(2,:)*180/pi,T,xhat plus(2,:)*180/pi,T,TrueState(:,2)*180/pi);
ylabel('theta 2 (deg)");

subplot(3,1,3);

plot(T,xhat_minus(3,:)*180/pi,T,xhat_plus(3,:)*180/pi, T, TrueState(:,3)*180/pi);
ylabel('theta 3 (deg)');

xlabel('time (s)');

figure(3)

subplot(3,1,1);

plot(T,xhat_minus(4,:)*180/pi,T,xhat_plus(4,:)*180/pi, T, TrueState(:,4)*180/pi);
ylabel('omega 1 (deg/s)");

title('Model-based estimate (blue), Measurement-updated estimate (green), and true value (red)");
subplot(3,1,2);

plot(T,xhat _minus(5,:)*180/pi,T,xhat plus(5,:)*180/pi,T,TrueState(:,5)* 180/pi);
ylabel('omega 2 (deg/s)');

subplot(3,1,3);

plot(T,xhat_minus(6,:)*180/pi,T,xhat_plus(6,:)*180/pi, T, TrueState(:,6)* 180/pi);
ylabel('omega 3 (deg/s)");

xlabel('time (s)");

figure(4)
plot(T,xhat_minus(7,:),T,xhat_plus(7,:),T,TrueState(:,7));
ylabel('delta (m)");

xlabel('time (s)");
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True RHS.m

%True Dynamics for the simulation of a rigid body and point mass
function x1dot = True RHS(t,x1)

global deltadot Jb mb mp b nhat g

%break state into individual vectors
theta = x1(1:3);

omega = x1(4:6);

delta = x1(7);

r_ocm =x1(8:10);

%calculate current location of point mass from 'o'
r_op = b+delta*nhat;

%calculate current contribution of point mass to inertia matrix
Jp = mp*skew(r_op)*skew(r_op);

Y%calculate rate of change of Jp
r_opdot = deltadot*nhat;
Jpdot = mp*skew(r_op)*skew(r opdot);

%calculate the forces due to gravity

fb = mb*g*[theta(2);-theta(1);-1];
fp = mp*g*[theta(2);-theta(1);-1];

Y%propagate the states

thetadot = [ omega(1)-theta(3)*omega(2);
theta(3)*omega(1)+omega(2);
-theta(2)*omega(1)+omega(3)];

% cross(r_ocm,fb)

% cross(r_op,fp)

% Jpdot*omega

% skew(omega)*(Jb+Jp)*omega

% mp*deltadot*skew(omega)*(cross(r_op,nhat))

omegadot = inv(Jb+Jp)*(cross(r_ocm,fb)+cross(r_op,fp)-Jpdot*omega-skew(omega)*(Jb+Jp)*omega-
mp*deltadot*skew(omega)*(cross(r_op,nhat)));
r_ocmdot = [0;0;0];

%assemble statedot column vector
x1dot = [thetadot;omegadot;deltadot;r ocmdot];



Covariance RHS.m
%RHS file for the covariance propagation

function xdot = Covariance RHS(t,x)

global deltadot Jb mb mp b nhat g x_cs A

%break state into individual values, these are the current state values...constant during the integration
period

th sl =x_cs(1);

th s2 =x_cs(2);

th s3 =x_cs(3);
w_sl =x_cs(4);
w_s2 =x_cs(5);

w_s3 =x_cs(6);
delta s=x_cs(7);
r_ocm_sl =x_cs(8);
r_ocm_s2=x_cs(9);
r_ocm_s3 =x_cs(10);

P=[x(1:10);
x(2), x(11:19)';
x(3), x(12), x(20:27)";
x(4), x(13), x(21), x(28:34)';
x(5), x(14), x(22), x(29), x(35:40)";
x(6), x(15), x(23), x(30), x(36), x(41:45)";
x(7), x(16), x(24), x(31), x(37), x(42), x(46:49)';
x(8), x(17), x(25), x(32), x(38), x(43), x(47), x(50:52)";
x(9), x(18), x(26), x(33), x(39), x(44), x(48), x(51), x(53:54)',
x(10),x(19), x(27), x(34), x(40), x(45), x(49), x(52), x(54), x(55)];

A num = eval(A);
Pdot=A_num*P + P*A num’;

xdot =

[Pdot(1,1:10),Pdot(2,2:10),Pdot(3,3:10),Pdot(4,4:10),Pdot(5,5:10),Pdot(6,6:10),Pdot(7,7:10),Pdot(8,3:10),P

dot(9,9:10),Pdot(10,10)];

skew.m

% xc = cr(x)

%  x=3x1 matrix

%  xc = skew symmetric 3x3 matrix

% [0 x(3), x(2)
% x(3) 0, -x(1)
% x(2) x(1) 0]

function xc = cr(x)

xc=[0, -x(3), x(2);
X(?’)a 09 'X(l);
-X(2), X(1)7 0 ]7
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