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Coupled Attitude And Orbital Control System
Using Spacecraft Simulators

Scott Evan Lennox

(ABSTRACT)

Translational and rotational motion are coupled for spacecraft performing formation fly-
ing missions. This motion is coupled because orbital control is dependent on the space-
craft attitude for vectored thrust. Formation flying spacecraft have a limited mass and
volume for propulsion systems. We want to maximize the efficiency of the spacecraft,
which leads to minimizing the error introduced by thrusting in the wrong direction. This
thrust direction error leads to the need for a coupled attitude and orbital control strat-
egy. In this thesis a coupled control system is developed using a nonlinear Lyapunov
attitude controller and a nonlinear Lyapunov-based orbital controller. A nonlinear Lya-
punov attitude controller is presented for a spacecraft with three-axis momentum wheel
control. The nonlinear Lyapunov-based orbital controller is combined with a mean mo-
tion control strategy to provide a globally asymptotically stable controller. The attitude
and orbit control laws are verified separately using numerical simulation, and then are
integrated into a coupled control strategy. The coupled system simulations verify that
the coupled control strategy is able to correct for an initial relative position error between
two spacecraft.
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Chapter 1

Introduction

In the last few years the space industry has started to change its focus from single large

satellite missions to the use of many smaller satellites flying in formations. The concept

of small satellites flying in close proximity can increase the performance, reliability and

versatility, and decrease the cost of the space missions.

The concept of spacecraft flying in close proximity was first discussed in the fictional

work by Kurd Lassnitz in the late 19th century where he discussed the concept of a

satellite rendezvousing with a satellite base in orbit about Earth.1 Yuri Vasil’yevich

Kondratyuk was the first person to publish literature about the concept of rendezvous

as we know it today. Kondratyuk discussed the idea of matching the orbits of the two

spacecraft and the need for instruments that would control the guidance of the spacecraft

in 1916.2 The first spacecraft rendezvous occurred in December of 1965 by Gemini

VI, when Gemini VI and Gemini VII performed station keeping maneuvers to keep the

separation distance between the two spacecraft between 0.3 meter and 90 meters. The

first successful docking of two spacecraft was performed by Gemini VIII in March of

1966 and the first autonomous docking of two spacecraft occurred in October of 1967

by the Soviet spacecraft Cosmos 186 and Cosmos 188.3 These early missions led to the

development of many other missions that required spacecraft to fly in close proximity,

including the first autonomous formation flying maneuver performed by NASA’s Earth

Observing-1 spacecraft and Landsat7.

Many of the current formation flying missions are focused on space interferometry such

as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) and the

Terrestrial Planet Finder (TPF).4,5 Some of the other current formation flying missions

include Space Technology 5 (ST5), Space Technology 9 (ST9), and Aura.6,7, 8 These

missions are just a few of the formation flying missions that are currently in various
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phases of development.

1.1 Motivation

Formation flying presents many interesting and difficult problems that have not been

thoroughly researched. One of these topics is the idea of coupling the spacecraft’s attitude

and orbital control systems. Coupling the attitude and orbital control systems is required

because the translational and rotational motion is coupled.

The coupled translational and rotational motion becomes more apparent in spacecraft

with physical and operational constraints associated with the translational and rotational

motion. Formation flying spacecraft have physical and operation constraints associated

with thrust vectoring. An example of a physical constraint is the reduced volume and

mass allotted for the orbital propulsion system. In many cases there may be one or two

thrusters that need to be reoriented in the correct direction before an orbital maneuver

can be executed. Many of these small spacecraft use low thrust propulsion systems

that require almost continuous thrust. The thrust direction error needs to be minimized

to maximize the efficiency of these spacecraft, which leads to a coupled orbital and

attitude control system. The operations of a formation may also lead to a relative position

constraint. This relative position constraint requires a low thrust propulsion system to

be able to change the spacecraft’s position with accuracy on the thrust direction. This

accuracy is coupled with the attitude control system accuracy, thus the need for a coupling

of the attitude and orbital control systems.

1.2 Problem Definition

The purpose of this research is to develop and implement a coupled attitude and orbital

control system using an existing attitude control law and an existing orbital control law

for the use in spacecraft formation flying missions. There are numerous control strategies

that have been separately developed for attitude control and orbital control. The coupled

system needs to be modular to allow for the testing of these separate control strategies in

a coupled system. The coupled system needs to be developed for implementation using

Virginia Tech’s Distributed Spacecraft Attitude Control System Simulator (DSACSS).9
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1.3 Approach

We simplify the formation flying problem to the rendezvous problem where the spacecraft

knows its location (we call this location the “rendezvous” spacecraft), and its desired po-

sition (we call this position the “target” spacecraft). We consider the target spacecraft as

a passive spacecraft and the rendezvous spacecraft as a controllable spacecraft. The tar-

get spacecraft is in an orbit that is known to the rendezvous spacecraft. We assume that

the rendezvous spacecraft has one variable thrust thruster and a three-axis momentum

wheel system for attitude control. We also assume an ideal space environment without

disturbance forces.

We use an orbital controller to determine the ideal thrust direction to perform the orbital

maneuver. The thruster needs to be aligned with this ideal thrust direction, which may

require an attitude maneuver to occur. We choose a nonlinear attitude controller and a

nonlinear orbital controller as the primary control laws for the coupled system. A linear

bang-bang attitude controller is developed to estimate the time required for the nonlinear

attitude controller to perform the required attitude maneuver. These controllers and

an orbital propagator are used to develop the coupled system. We perform separate

numerical simulations on both the nonlinear attitude controller and nonlinear orbital

controller for validation of the control strategies. We also perform numerical simulations

on the coupled system to validate the coupled system strategy.

1.4 Overview

In Chapter 2, we present a literature review that includes previous work on attitude

control laws, orbital control laws, relative orbits for spacecraft formation flying, coupled

attitude and orbital control strategies, and Virginia Tech’s DSACSS System.

We present the attitude kinematics and the attitude and orbital equations of motion

in Chapter 3. We assume three-axis attitude control using N momentum wheels. We

present the attitude equations of motion in terms of Modified Rodrigues Parameters

(MRPs) and the orbital equations of motion in terms of the classical orbital elements.

The linear bang-bang and the nonlinear Lyapunov attitude controllers are presented in

Chapter 4. We also present the nonlinear Lyapunov-based feedback orbital controller

with mean motion control strategy in Chapter 4.

In Chapter 5, we present the coupled attitude and orbital control system. We also present

a two-body orbital propagator and a method for determining the maximum allowable
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attitude error between the desired attitude and the actual attitude for the thruster to

fire.

Numerical simulations are performed in Chapter 6 on the nonlinear Lyapunov attitude

controller and nonlinear Lyapunov-based feedback orbital controller with mean motion

control strategy using Matlab c©. These results are compared to the results found from the

numerical simulations of the coupled system, which are also performed using Matlab c©.

Chapter 7 presents a summary and the conclusions of the work presented in this thesis.

We also present some recommendations for future work to be completed using the coupled

attitude and orbital control system. We also discuss a basic overview of how to implement

the coupled control system on Virginia Tech’s Distributed Spacecraft Attitude Control

System Simulator.



5

Chapter 2

Literature Review

In this chapter, we present a review of the attitude and orbital control strategies developed

for formation flying. We introduce some the possible applications for the coupled attitude

and orbital control system. We also discuss articles pertaining to attitude controllers,

orbital controllers, and coupled attitude and orbital controllers. We conclude this chapter

with a discussion of Virginia Tech’s Distributed Spacecraft Attitude Control System

Simulator (DSACSS).

2.1 Applications

The coupled attitude and orbital control system is designed for use in formation flying

missions, but it is reasonable to assume that other single spacecraft missions can benefit

from the use of the coupled attitude and orbital control system. The use of a coupled

attitude and orbital control system is beneficial for all spacecraft missions because the

translational and rotational motion is coupled. This coupling becomes more apparent in

spacecraft that have constraints on the thrust direction. Small spacecraft are more likely

to have thrust direction constraints than larger spacecraft. We will see an increase in the

number of thrust direction constrained satellites with the increasing emphasis on small

satellites flying in formation.

Some of the proposed formation flying missions that would benefit from a coupled system

include: Aura, Geospace Electrodynamic Connections (GEC), Ionospheric Observation

Nanosatellite Formation (ION-F), Laser Interferometer Space Antenna (LISA), Magneto-

spheric Multiscale (MMS), SPECS, ST5, ST9, TechSat-21, and TPF.8,10,11,12,13,4, 6, 7, 14,5
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2.2 Attitude Controllers

There are numerous control methods available to control the attitude of a spacecraft. The

attitude control system of a spacecraft is dependent on the available spacecraft actua-

tors for attitude control. Some of the common actuators used on spacecraft are control

moment gyros, magnetic torquers, momentum wheels, reaction wheels, and thrusters.15

In this section we describe some of the different attitude control strategies.

Many of the control methods used on current spacecraft are linear controllers, but space-

craft dynamics are nonlinear, thus a nonlinear controller could be a more effective solu-

tion to control a spacecraft’s attitude motion. Tsiotras presented eight different nonlinear

feedback control laws using Lyapunov functions with quadratic and logarithmic terms

in Ref. 16. These control laws use Euler Parameters, Cayley-Rodrigues Parameters and

Direction Cosines. These controllers were expanded to include Modified Rodrigues Pa-

rameters in Ref. 17. Hall et al. used a Modified Rodrigues Parameter Lyapunov function

to derive three attitude tracking controllers using thrusters and momentum wheels.17

The three controllers were proven to be globally asymptotically stable using LaSalle’s

Theorem. Tsiotras et al. expanded on these attitude tracking controllers to include en-

ergy storage using the momentum wheels for an integrated power and attitude-control

system.18 Schaub et al. used a nonlinear feedback control law to control a spacecraft’s

nonlinear dynamics realizing the linear closed-loop dynamics of the system.19 An adap-

tive control law was developed to enforce the closed-loop dynamics with large errors in

the moments of inertia and external disturbances. Xing and Parvez derived a nonlinear

Lyapunov controller and a robust sliding controller for the tracking control problem.20

They converted the tracking control problem into a regulator problem using the relative

attitude state equations. Transforming the tracking problem into a regulator problem

simplifies the design procedure of the controllers.20

2.3 Orbital Controllers

Controlling the orbit of a spacecraft is accomplished using a propulsion system. There are

many different types of propulsion systems, but they all change the orbit of a spacecraft

by applying a force to the spacecraft.21 Similar to the attitude controllers, there are

numerous control methods available to control the spacecraft’s orbit. For most space

missions, orbital maneuvering is controlled by the ground station, but formation flying

leads to the use of autonomous orbital control for formation keeping.

Most of the orbital controllers that have been developed for formation flying missions
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have used the linearized equations of relative motion for two objects under the influence

of a point-mass gravitational field. These equations are commonly known as the Hill-

Clohessy-Wiltshire equations. Hill discussed these equations in Ref. 22 and Clohessy and

Wiltshire discussed these equations in Ref. 23. The equations of motion expressed in the

Hill reference frame are

ẍ− 2nẏ − 3n2x = Fx (2.1)

ÿ + 2nẋ = Fy (2.2)

z̈ + n2z = Fz (2.3)

where x, z, and y are the distances in the orbit radius direction, the orbit normal direction

of the reference spacecraft, and the direction that completes the right-handed coordinate

frame respectively, Fx, Fy, and Fz are the perturbation or control accelerations in the

Hill frame, and n is the mean motion of the reference spacecraft. These equations are

valid when the reference spacecraft is in a circular orbit and the distances between the

spacecraft are small in comparison to the orbital radii. When the forces acting on the

spacecraft are zero, the analytic solutions to Equations (2.1)–(2.3) are23

x(t) =
ẋ◦
n

sinnt−
(

3x◦ +
2ẏ◦
n

)
cosnt+ 4x◦ +

2ẏ◦
n

(2.4)

y(t) =
2ẋ◦
n

cosnt+

(
6x◦ +

4ẏ◦
n

)
sinnt− (6nx◦ + 3ẏ◦) t−

2ẋ◦
n

+ y◦ (2.5)

z(t) =
ż◦
n

sinnt+ z◦ cosnt (2.6)

where t is the time, and x◦, y◦, z◦, ẋ◦, ẏ◦, and ż◦ are the initial conditions on the relative

position and velocity.

A controller that uses the Hill-Clohessy-Wiltshire equations was presented in Ref. 24.

Kapila et al. presented a linear controller for formation keeping of a leader-follower

spacecraft formation. The simulations presented in this article did not include any or-

bital perturbations. Sabol et al. examined four different spacecraft formations using the

Hill-Clohessy-Wiltshire equations and determined that the orbital perturbations have a

significant effect on the ability of the spacecraft to maintain the formation.25 The per-

turbations affected each formation uniquely which suggests that perturbations need to

be included in formation-keeping controllers. A linear controller that was derived from

the Hill-Clohessy-Wiltshire equations with perturbations was presented in Ref. 26. The

relative position error was set to be ±21 meters. This relative position error is large

in comparison to some of the current mission requirements. We can use a nonlinear

controller that could reduce the relative position error because the nonlinear controller

can account for the nonlinear orbital dynamics. Vaddi and Vadali presented a linear
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quadratic regulator, nonlinear Lyapunov, and period matching controllers.27 These con-

trollers are valid for both circular and elliptical reference orbits. The relative position

errors were not reported in this reference.

Another way to describe the relative motion of formation flying spacecraft is to use

differential orbital elements. Schaub and Alfriend presented a hybrid continuous feedback

control law for a local Cartesian relative orbit frame and as a function of differential

orbital elements.28 These control laws are valid for both circular and elliptical orbits.

Schaub and Alfriend also present a direct mapping between the local Cartesian position

and velocity to the differential orbital elements. Schaub et al. presented two nonlinear

feedback control laws using mean orbital element differences in Ref. 29. The use of mean

elements allows for the specification of the relative orbit geometry using the mean of

the orbital elements (mean elements) and the instantaneous, time varying components

(osculating elements) as the errors in the relative orbit geometry.29 Ilgen developed a

Lyapunov-optimal feedback control law for orbital maneuvers.30 This control law uses

Gauss’ form of Lagrange’s planetary equations in classical and equinoctial orbital-element

forms. Naasz and Hall31 developed a nonlinear Lyapunov-based control law with mean-

motion control to perform autonomous orbital maneuvers for formation flying. This

control law can be used for formation-keeping and formation-maneuvering.

2.4 Coupled Controllers

The coupling of the attitude and orbital control systems is a relatively new concept and

there are only a few published papers. Wang and Hadaegh derived and implemented

attitude and orbital control laws in a simulation of microspacecraft flying in formations

in Ref. 32. These simulations were concerned with formation-keeping and the relative

attitude alignment. The relative attitude alignment of the microsatellites was derived

by finding the relative attitude of each microsatellite in the inertial frame.32 Wang and

Hadaegh also decoupled the orbital errors from the attitude errors. The decoupling or

neglecting the orbital dynamics of the spacecraft is seen in the literature. In most of

the literature, the orbital dynamics are neglected because the attitude dynamics occur

at a much faster rate than the orbital dynamics. Spacecraft formation flying leads to the

modeling of the attitude and orbital dynamics together.

Fragopoulus and Innocenti decoupled the dynamics to derive two controllers and then

combined the controllers to control the relative motion between two spacecraft in Ref. 33.

The control law utilizes eight thrusters for both the orbital and attitude control. The

orbital controller depends on the attitude controller only to determine which thrusters
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to fire. The attitude controller compensates for the torque applied to the spacecraft by

the thruster firing required for the orbital maneuver.33

Philip and Ananthasayannam presented a linear coupled attitude and orbital control

system using a vision system for the final stage of docking between two spacecraft.34 The

vision system determines the relative position and attitude which allows for the controller

to control the spacecraft depending on the relative position rates. Kruep developed a

method for computing the minimum fuel trajectory between different satellite positions

and orientations.35 Kruep derived a six-degree-of-freedom optimal trajectory using the

linearized Hill-Clohessy-Wiltshire equations and Euler’s equations of rigid body motion.

This method does not take into account the required attitude maneuvers needed before

the thrust is applied to the spacecraft. Pan and Kapilia presented a coupled nonlinear

controller to match the attitude of two spacecraft flying in formation.36 This control law

worked well for formation keeping and attitude matching between the spacecraft, but it

did not include the attitude maneuvers required for formation keeping. Yamaanaka also

ignored these attitude maneuvers in Ref. 37. Yamaanaka developed a feedback control

law for attitude control and a feedback and feed-forward orbital control to cancel the

relative accelerations between two spacecraft due to orbital motion.

Redding et al. derived a linear coupled controller for the Space Shuttle.38 They discussed

having to perform attitude maneuvers to align the orbital maneuvering thrusters, but

their model only included a two burn trajectory. This inclusion of the attitude maneuvers

is a step in the right direction, which was continued in Ref. 39. Naasz et al. discussed

and performed simulations of an orbital feedback control law and a magnetic torque coil

attitude control system for a spacecraft with limited thruster configurations and power

constraints.39 They applied the control laws to the Virginia Tech Ionospheric Scintilla-

tion Measurement Mission, which is part of the Ionospheric Observation Nanosatellite

Formation (ION-F) project.39 The ION-F project will perform formation flying demon-

strations while collecting scientific measurements. The orbital feedback control law is

presented in Ref. 31 and the attitude control system is described in Refs. 40 and 41. This

type of coupling is the direction that coupled control systems for formation flying should

head. Further research is required before a coupled attitude and orbital control system

can be used for formation flying missions.

2.5 Spacecraft Simulators

The coupled attitude and orbital control system needs to be incorporated into Vir-

ginia Tech’s Distributed Spacecraft Attitude Control System Simulator (DSACSS). The
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Figure 2.1: Virginia Tech’s Whorl-I

DSACSS system is made up of two independent spherical air-bearing platforms for for-

mation flying attitude simulation.9 Air-bearing platforms have been used for spacecraft

simulators for the last 45 years.42 Air-bearing platforms provide a testbed for attitude

controllers, attitude determinations systems, hardware verification and software develop-

ment for spacecraft.

The DSACSS system is comprised of one tabletop- and one dumbbell-style platforms. The

tabletop system is dubbed “Whorl-I” and the dumbbell system is dubbed “Whorl-II.”

Both systems use identical hardware components except for the structural components.9

Whorl-I is shown in Figure 2.1 and Whorl-II is shown in Figure 2.2.

The simulators are controlled using an onboard PC/104+ form-factor computer. Each

simulator is connected to a wireless network located in the Space Systems Simulation

Lab. An external desktop is also connected to the wireless network as the user’s access

to the simulators. The basic attitude actuators on the simulators are three-axis reac-

tion/momentum wheels (0.075 kg·m2) and three-axis nitrogen gas thrusters. Whorl-I

also has a control moment gyro to perform attitude maneuvers. Attitude determination

is currently being performed using three-axis accelerometers and rate gyros. Plans are in

the process to add another attitude sensor to allow for complete attitude determination.9

The coupled attitude and orbital controller will be implemented using Whorl-I. All of
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Figure 2.2: Virginia Tech’s Whorl-II

the simulations presented in this thesis are based on the physical properties of Whorl-I.

The moments of inertia for Whorl-I are presented in Table 2.1. These values were found

using a computer aided design (CAD) model of Whorl-I.

Table 2.1: Whorl-I moment of inertia estimates from CAD model

Parameter Estimate

Ixx 6.2 kg·m2

Ixy −0.9 kg·m2

Ixz −0.2 kg·m2

Iyy 7.5 kg·m2

Iyz 0.1 kg·m2

Izz 12.1 kg·m2
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2.6 Summary

In this chapter we have presented some of the possible applications for the coupled atti-

tude and orbital control system. We have also presented a literature review of attitude,

orbital and coupled attitude and orbital controllers developed for formation flying ap-

plications. We concluded this chapter by briefly describing Virginia Tech’s Distributed

Spacecraft Attitude Control System Simulator. We discuss the governing attitude kine-

matics and dynamics and the orbital dynamics for the coupled control system in Chap-

ter 3.
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Chapter 3

Kinematics and Dynamics

Before we examine the controllers we need to define the kinematics and dynamics of

the spacecraft system. We assume that the spacecraft uses a three-axis momentum

wheel system with N momentum wheels for attitude control. We also assume that the

spacecraft has a propulsion system with a variable thrust thruster and is not constrained

by the amount of propellant available to complete orbital maneuvers. In this chapter

we discuss the attitude kinematics and dynamics and the associated orbital dynamics.

Stereographic

3.1 Attitude Kinematics

There are numerous ways to represent the attitude kinematics of a spacecraft. The sim-

plest attitude representation is in the form of Euler axis (ê) and Euler angle (Φ), which is

derived from Euler’s Theorem. Euler’s Theorem states that the most general motion of

a rigid body with a fixed point is a rotation about a fixed axis. Other attitude represen-

tations include Euler angles, Quaternions (or Euler Parameters), Rodrigues Parameters,

and Modified Rodrigues Parameters (MRPs).43 The major problem with these represen-

tations are the inherent rotation singularities. The choice of which attitude representation

to use is dependent on the application and the user preferences.

We describe the kinematics of the spacecraft using Modified Rodrigues Parameters (MRPs).43

These kinematics are defined by Shuster in Ref. 44. Modified Rodrigues Parameters are

defined as

σ = ê tan

(
Φ

4

)
(3.1)
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where ê is the Euler axis and Φ is the Euler angle.43 The MRP singularities occur when

Φ = l360◦ where l is an integer. We can avoid this singularity by using the MRP shadow

set (σs),45 which is defined as

σs =
1

σTσ
σ (3.2)

The shadow set of MRPs replaces the original MRP set when σTσ > 1. The relationship

between the MRPs and the rotation matrix R is

R = I3 +
8 [σ×] [σ×]− 4

(
1− σTσ

)
[σ×]

(1 + σTσ)2 (3.3)

where I3 is the 3× 3 identity matrix, [σ×] is the skew symmetric matrix defined as

[σ×] =

 0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0

 (3.4)

and σ1, σ2, and σ3 are the components of σ. We can also define the kinematic differential

equations using MRPs as

σ̇ = G (σ) ω (3.5)

where

G (σ) =
1

2

(
I3 + [σ×] + σσT − 1 + σTσ

2
I3

)
(3.6)

and I3 is the 3× 3 identity matrix. The differential equation for the error kinematics is

δσ̇ = G (δσ) δω (3.7)

where δσ is the rotational error between the desired attitude and the current attitude of

the spacecraft, and δω is the difference in the angular velocities of the desired attitude

and the current attitude found using

δω = ωc −Rcdωd (3.8)

where ωc is the actual angular velocity of the spacecraft, ωd is the desired angular velocity

of the spacecraft, and Rcd is the rotation between the actual and desired attitude of the

spacecraft.17
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3.2 Attitude Dynamics

The rotational dynamics of the spacecraft with three-axis control using N momentum

wheels is defined in Ref. 17. The dynamics of the system is described as

ḣB = [hB×] J−1 (hB − Aha) + ge (3.9)

ḣa = ga (3.10)

hB = IωB + AIsωs (3.11)

where hB is the system angular momentum vector, I is the 3 × 3 moment of inertia

matrix of the entire spacecraft, Is is the N ×N axial moment of inertia matrix, A is the

3×N matrix containing the axial unit vectors of the momentum wheels, ha is the N × 1

matrix of the axial angular momenta of the wheels, ge is the 3× 1 matrix of the external

torques applied to the spacecraft, ga is the N×1 matrix of the internal torques applied to

momentum wheels, ωB is the 3× 1 angular velocity matrix of the body frame expressed

in the inertial frame, ωs is the N × 1 axial angular velocity matrix of the momentum

wheels with respect to the body, and J is the positive definite inertia-like matrix defined

as

J = I − AIsA
T (3.12)

We define ωB and ha using equations (3.11) and (3.12)

ωB = J−1 (hB − Aha) (3.13)

ha = IsA
TωB + Isωs (3.14)

With the relevant attitude kinematics and dynamics defined, we define the orbital dy-

namics of the system.

3.3 Orbital Dynamics

The orbital dynamics of spacecraft are most commonly expressed by two-body motion in

a gravitational field. The two-body motion allows for perturbation forces to be modeled

in the equations of motion. We define the spacecraft motion in the following sections.

3.3.1 Reference Frames

There are numerous reference frames available to describe the motion of the spacecraft.

We use the standard Earth-centered inertial, the spacecraft orbital, the Hill, and the
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Figure 3.1: The Earth inertial frame and the orbital frame for an equatorial orbit.

spacecraft body-fixed reference frames. The Earth-centered inertial frame has the unit

vectors of Î, Ĵ, and K̂ with the origin at the center of the Earth, O. The Î unit vector is

in the vernal equinox direction, the Î Ĵ plane is defined as the Earth’s equatorial plane,

and the K̂ direction is defined to be the Earth’s spin axis. The spacecraft orbital frame

is a rotating reference frame centered at the spacecraft center of mass with unit vectors

ô1, ô3, and ô3; where ô3 points in the nadir direction, ô2 is in the negative orbit normal

direction and ô1 completes the right-handed coordinate system. If the orbit is circular,

then the ô1 direction is the velocity direction of the spacecraft.46 The Earth-centered

inertial and the spacecraft orbital frame are shown in Figures 3.1 and 3.2. Figure 3.1

shows the orbital frame of an equatorial orbit and Figure 3.2 shows the orbital frame of

a spacecraft in an inclined orbit.

The Hill frame is a relative orbit frame that is used to define the relative motion be-

tween spacecraft. The Hill frame defines a chief satellite and deputy satellites, with the

reference frame centered at the center of mass of the chief satellite. The position of the

deputy satellites is defined relative to the chief satellite. The Hill frame is defined by

the unit vectors ôr, ôθ, and ôh; where ôr is in the orbit radius direction and ôh is in the

orbit normal direction of the chief spacecraft. The ôθ vector completes the right-handed

coordinate frame. The Hill frame is shown in Figure 3.3 where the chief satellite is the

gray spacecraft and the deputy is the white spacecraft. The variables x, y, and z are the
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Figure 3.2: The Earth inertial frame and the orbital frame for an inclined orbit.

Figure 3.3: The Hill reference frame.
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distances in the ôr, ôθ, and ôh directions respectively.43 The body-fixed reference frame

of the spacecraft is a right-handed orthogonal coordinate system where the center is the

mass center of the spacecraft and the unit vectors are fixed with respect to the spacecraft

physical properties.

3.3.2 Cartesian Coordinates

The equations of motion for a point-mass satellite expressed in cartesian coordinates are

r̈ = − µ

‖r‖3
r + ap (3.15)

where r is the position vector from the mass center of the primary body to the satellite, µ

is the gravitational parameter, and ap is the acceleration due to perturbations. If ap = 0

then we obtain the ideal two-body Keplerian equations of motion about a point-mass

central body.

3.3.3 Classical Orbital Elements

Six pieces of information are required to define an orbit and the spacecraft position in

that orbit. The simplest form of this information are the components of the spacecraft

position and velocity vectors. It is difficult to visualize an orbit given the components of

the position and velocity vectors, so we also describe an orbit using the classical orbital

elements of the spacecraft. We use the classical orbital elements that are defined as: a

is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right ascension

of the ascending node, ω is the argument of periapse, and ν is the true anomaly of the

spacecraft.47

Using the orbital elements and assuming that the accelerations due to the perturbations

are zero, we write the spacecraft orbital equations of motion in Gauss’ form of Lagrange’s
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planetary equations48

da

dt
=

2a2

h

(
e sin νur +

p

r
uθ

)
(3.16)

de

dt
=

1

h
(p sin νur + [(p+ r) cos ν + re]uθ) (3.17)

di

dt
=

r cos θ

h
uh (3.18)

dΩ

dt
=

r sin θ

h sin i
uh (3.19)

dω

dt
=

1

he
[−p cos νur + (p+ r) sin νuθ]−

r sin θ cos i

h sin i
(3.20)

dM

dt
= n+

b

ahe
[(p cos ν − 2re)ur − (p+ r) sin νuθ] (3.21)

where M is the mean anomaly, θ = ω + ν is the argument of latitude, n is the mean

motion, p is the semi-latus rectum, h is the angular momentum, b is the semi-minor axis,

and ur, uθ, and uh are the radial, transverse, and orbit normal control accelerations. The

mean motion for the orbit is defined as

n =

√
µ

a3
(3.22)

where µ is the gravitational parameter for the central body.

3.3.4 Formation Flying

In this thesis we develop the coupled orbit and attitude control system for the use of

formation flying spacecraft. For all formation flying spacecraft, we can simplify the model

down to the current position of the spacecraft and the desired position of the spacecraft.

This is the rendezvous model where the current position spacecraft is the “rendezvous”

spacecraft and the desired position is the “target” spacecraft. The coupled system is

developed to solve this rendezvous problem. In the numerical simulations, we examine

the case where the rendezvous and target spacecraft are in the same orbit with difference

in the true anomaly (δν). This orientation is called the leader-follower formation and is

shown in Figure 3.4, where the white triangle is the rendezvous spacecraft and the gray

triangle is the target spacecraft.
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Figure 3.4: The rendezvous and target spacecraft in the leader-follower formation

3.4 Summary

We have introduced the attitude kinematics and dynamics and the orbital dynamics of

a spacecraft with three-axis momentum wheel control. We have discussed the different

reference frames and the concept of spacecraft formation flying that are used to develop

the coupled system. In the next chapter we use the kinematics and dynamics of the

system to develop the attitude and orbital control laws.
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Chapter 4

Controllers

The coupled attitude and orbital control system uses a nonlinear Lyapunov attitude

controller and a nonlinear Lyapunov-based feedback orbital controller as the main parts

of the coupled system. The nonlinear attitude controller uses a linear bang-bang attitude

controller to initially estimate the required maneuver time for the nonlinear controller.

Classical orbital elements are used to develop the Lyapunov-based orbital controller,

which is augmented by the addition of a mean motion control strategy. In this chapter

we introduce the linear and nonlinear attitude controllers and the orbital controller with

the mean motion control strategy.

4.1 Attitude Controllers

The linear and nonlinear attitude controllers are presented in the following section. We

derive the linear bang-bang controller and we present the nonlinear attitude controller

that was developed in Ref. 17.

4.1.1 Linear (Bang-Bang)

The bang-bang attitude controller provides an estimate of the time required for the non-

linear attitude controller to complete the attitude maneuver. The bang-bang controller

is derived using Euler’s Law46

ḣ = g (4.1)
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where h is the angular momentum about the mass center of the system and g is the

net applied moment about the mass center. We constrain the problem to be a planar

problem which leads to

ḣ = g

Imaxφ̈ = gmax (4.2)

where Imax is the maximum moment of inertia of the system, φ̈ is the angular acceleration

about the major axis, and gmax is the maximum applied torque that momentum wheels

can produce on the system. Integrating Equation (4.2) twice, we obtain∫ φ̇

φ̇o

Imaxdφ̇ =

∫ t

to

gmaxdt

Imax

(
φ̇− φ̇o

)
= gmax (t− to) (4.3)∫ φ

φo

Imaxdφ =

∫ t

to

(
gmax∆t+ Imaxφ̇o

)
dt

Imax∆φ = gmax

(
∆t2

2
− to∆t

)
+ Imaxφ̇o (∆t) (4.4)

where ∆φ = φ− φo and ∆t = t− to. We define to = 0 and obtain

Imax∆φ =
1

2
gmax∆t

2 + Imaxφ̇o∆t (4.5)

We assume that φ̇o = 0, φo = 0, and φ̇ is defined as a ramp function where the positive

maximum torque is applied for the first half of the maneuver and the negative maximum

torque is applied for the second half of the maneuver.49 This ramp function leads us to

examine the first half of the maneuver, where

Imax

(
φ− φ

2

)
=

1

2
gmax

(
∆t

2

)2

(4.6)

Solving equation (4.6) for ∆t produces

∆t = 2

√
2Imax

gmax

(
φ− φ

2

)
(4.7)

Equation (4.7) provides the estimate of time that is required to complete an attitude

maneuver using the nonlinear controller.
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4.1.2 Nonlinear

The nonlinear Lyapunov attitude controller is presented in Ref. 17 with the following

candidate Lyapunov function:

V =
1

2
δωTKδω + 2k1 ln(1 + δσTδσ) (4.8)

where K = KT > 0, δω is the angular velocity error, δσ is the rotation error between

the desired and current attitude states, and k1 > 0. After differentiating Equation (4.8)

and some simplification

V̇ = δωT
[
[hB×] J−1 (hB − Aha) + ge − Aga + k1δσ

]
where hB is the system angular momentum vector, J is the inertia-like matrix defined

in Equation (3.12), A is the matrix containing the axial unit vectors of the momentum

wheels, ha is the matrix of axial angular momenta of the wheels, ge are the external

torques applied to the spacecraft, and ga are the internal torques applied to the mo-

mentum wheels. The external torques and internal torques that are chosen to make V̇

negative semi-definite and bounded

ge = 0

ga = A−1
[
[hB×] J−1 (hB − Aha) + ge + k1δσ + k2δω

]
(4.9)

where k2 > 0. Plugging Equation (4.9) into Equation (4.9), V̇ simplifies to

V̇ = −k2δωTδω (4.10)

LaSalle’s Theorem50 was used to prove that V̇ is negative-definite. Proving V̇ is negative-

definite leads to the conclusion that the error dynamics and kinematics with the feedback

control law in Equation (4.9) is globally asymptotically stable.

4.1.3 Gain Selection

The gains (k1 and k2) for the nonlinear attitude controller are constrained to be positive

for a globally asymptotically stable control law. The gains are chosen dependent on

amount of torque available for attitude maneuvers and how aggressively the angular

velocity is to be damped.

We have presented the linear and nonlinear attitude controllers for a spacecraft with

three-axis control using N momentum wheels. We present the classical orbital element

control law and mean motion control strategy in the next section.
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4.2 Orbital Controllers

The nonlinear Lyapunov-based classical orbital element control law and mean motion

control strategy were developed in Ref. 31. The classical orbital element control law and

mean motion control strategy are presented in the following sections.

4.2.1 Classical Orbital Element

Recall Gauss’ form of the Lagrange’s planetary equations,48 Equations (3.16)–(3.21)

da

dt
=

2a2

h

(
e sin νur +

p

r
uθ

)
de

dt
=

1

h
(p sin νur + [(p+ r) cos ν + re]uθ)

di

dt
=

r cos θ

h
uh

dΩ

dt
=

r sin θ

h sin i
uh

dω

dt
=

1

he
[−p cos νur + (p+ r) sin νuθ]−

r sin θ cos i

h sin i
dM

dt
= n+

b

ahe
[(p cos ν − 2re)ur − (p+ r) sin νuθ]

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right

ascension of the ascending node, ω is the argument of periapse, M is the mean anomaly,

ν is the true anomaly, θ is the argument of latitude, n is the mean motion, p is the semi-

latus rectum, h is the angular momentum, b is the semi-minor axis, and ur, uθ, and uh are

the radial, transverse, and orbit normal control accelerations. Equations (3.16)–(3.21)

are rewritten in the following form

œ̇ = f (œ) + H̃ (œ)u (4.11)

where œ is the vector of orbital elements, [a e i Ω ω M ]T, H̃ (œ) is the input matrix found

using Equations (3.16–3.21), and u is the vector of controls [ur uθ uh]
T. The equations

of motion for the first five orbital elements are redefined as

η̇ = Hu (4.12)
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where

η =


a− a∗

e− e∗

i− i∗

Ω− Ω∗

ω − ω∗

 =


δa

δe

δi

δΩ

δω

 (4.13)

where (·)∗ is the target element and

H =


2a2e sin ν

h
2a2p
hr

0
p sin ν
h

(p+r) cos ν+re
h

0

0 0 r cos (ω+ν)
h

0 0 r sin (ω+ν)
h sin i

−p cos ν
he

(p+r) sin ν
he

− r sin (ω+ν) cos i
h sin i

 (4.14)

The control law was developed using a quadratic, positive definite Lyapunov function,

and was proved that the control law is globally asymptotically stable. The control law

for the first five orbital elements is

u = −HTK̃η = −


2a2e sin ν

h
2a2p
hr

0
p sin ν
h

(p+r) cos ν+re
h

0

0 0 r cos (ω+ν)
h

0 0 r sin (ω+ν)
h sin i

−p cos ν
he

(p+r) sin ν
he

− r sin (ω+ν) cos i
h sin i



T 
Kaδa

Keδe

Kiδi

KΩδΩ

Kωδω

 (4.15)

where Ka, Ke, Ki, KΩ, and Kω are positive gains. The angle errors δΩ and δω are defined

between −π and π.

4.2.2 Mean Motion

The mean motion control is accomplished by defining a new target semi-major axis, a∗∗,

which forces the mean anomaly error to zero31

a∗∗ =

(
−KnδM +

1

a∗3/2

)−2/3

(4.16)

Here Kn is a positive gain and δM is defined between −π and π. As δM goes to zero, we

regain the original target semi-major axis, a∗. Naasz and Hall recommended replacing δM

with δθ in application, so that the mean motion control properly positions the spacecraft

within the orbital plane for circular orbits.31
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4.2.3 Gain Selection

Naasz and Hall also developed a gain selection method in Ref. 31. The gains for the

classical orbital element controller are found using

Ka =
h2

4a2 (1 + e)2

1

∆tt
(4.17)

Ke =
h2

4p2

1

∆tt
(4.18)

Ki =

[
h+ eh cos

(
ω + sin−1 e sinω

)
p
(
−1 + e2 sin2 ω

) ]2
1

∆tt
(4.19)

KΩ =

[
h sin i

(
−1 + e sin

(
ω + sin−1 e cosω

))
p (1− e2 cos2 ω)

√
∆tt

]2

(4.20)

Kω =
e2h2

p2

(
1− e2

4

)
1

∆tt
(4.21)

where ∆tt is the length of the thruster firing. The mean motion gain, Kn is chosen

depending on how aggressively we want to correct the argument of latitude error.31 These

gains are calculated at the beginning of the orbital maneuver and are held constant for

the duration of the maneuver.

4.3 Summary

In this chapter, we have presented the linear attitude controller and the nonlinear atti-

tude controller. The linear control law (Equation (4.7)) is used to estimate the time that

the nonlinear controller (Equation (4.9)) will take to perform a maneuver. The orbital

controller is presented as a classical orbital element Lyapunov-based control law, Equa-

tion (4.15), and a mean motion control strategy, Equation (4.16). The coupled attitude

and orbital control system is developed in Chapter 5.
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Chapter 5

Coupled System

The coupled attitude and orbital control system is developed using the linear and non-

linear attitude controllers and the orbital controller that were discussed in Chapter 4.

The coupled system also requires an orbital propagator and an attitude check method.

We define the orbital controller as the “thrust direction estimator” and the orbital prop-

agator as the “orbital estimator” for the use with the coupled system. In this chapter we

describe the overall program architecture of the coupled system and define the orbital

estimator and the attitude check method.

5.1 Program Architecture

The overall program architecture is shown in Figure 5.1, where each block is a separate

function with the specific inputs and outputs shown in the bottom portion of the blocks.

The simulation begins by defining a position and velocity of the target (rt◦ and vt◦) and

rendezvous (rr◦ and vr◦) spacecraft along with the attitude of the rendezvous spacecraft

(σ◦) at the initial time t◦. These initial conditions are used as the first set of inputs into

the control loop. The thrust direction estimator uses the position (rr◦, r
t
◦) and velocity (vr◦,

vt◦) data to produce a desired thrust vector (Tint
ideal) in the inertial frame at t◦. This desired

thrust vector direction and the spacecraft physical properties are used to determine a

desired attitude (σint) of the rendezvous spacecraft. The bang-bang attitude controller

uses the current attitude (σ◦) of the spacecraft (at t◦) and the desired attitude to estimate

the time to complete the attitude maneuver using the nonlinear attitude controller. This

time estimate (∆te) is used by the orbital estimator to determine the position (rre, rte)

and velocity (vre, vte) of both spacecraft after the attitude maneuver. The estimated

position and velocity data after the ∆te required for the attitude maneuver are used by



5.1 Program Architecture 28

Figure 5.1: The overall simulation architecture

the thrust direction estimator to determine the desired thrust vector (Tideal) after the

attitude maneuver (∆te). The thrust direction and the spacecraft physical properties are

used to determine the desired attitude (σ∗) after ∆te. The nonlinear attitude controller

uses the attitude (σ◦) of the rendezvous spacecraft at to and the desired attitude (σ∗)

after ∆te as the initial inputs. The nonlinear attitude control maneuver is performed for

the duration of time that the linear bang-bang attitude controller estimated (∆te).

The current attitude (σ1) after ∆te is compared to the desired attitude (σ∗) by the

attitude check function. This function determines if the current attitude is within a set

of error limits that the user specifies. If the current attitude is not within the error limits,

then the current attitude and the position and velocity of the target and rendezvous

spacecraft are used as the new inputs of the control loop. If the current attitude is

within the error limits, then the thruster “fires” according to the current attitude. The

thruster is considered an ideal thruster, so the magnitude of the thrust (Tmag) is variable

and is equal to the magnitude of the desired thrust direction vector (Tideal). The thrust is

applied to the rendezvous spacecraft in the form of an impulsive ∆v over a user-specified
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time interval (t2). The orbital estimator uses the thrust time along with the position

(rre, rte) and velocity (vrf , vte) after the addition of the ∆v to determine the position and

velocity of the spacecraft at t2. The position (rr◦, rt◦) and velocity (vr◦, vt◦) at t2 of both

spacecraft and the attitude (σ1) of the rendezvous spacecraft are used as the new inputs

to the control loop. The user defines the number of orbits to simulate and the control

loop keeps track of the total time of the orbital maneuver.

This program architecture is different from previous work where the section inside the

dashed bock was assumed to be the attitude maneuver. This simplified program ar-

chitecture was used by Nassz et al. in Ref. 39. Nassz et al. did not recalculate the

desired thrust direction for the orbital maneuver after the attitude maneuver has been

completed. This recalculation is included in the functions inside of the dashed box.

5.2 Orbital Estimator

The orbital estimator is used to propagate the orbits of both the target spacecraft and the

rendezvous spacecraft. The orbital estimator is the f and g method which is a solution

of Kepler’s two-body problem. We use the f and g expressions in terms of eccentric

anomaly to propagate the spacecraft orbit.47 The f and g method requires the input of

the initial position (r◦) and velocity (v◦) vectors of the spacecraft, and the propagation

time (∆t). Using the initial position and velocity vectors, we calculate the semi-major

axis (a) using the orbital energy equation

E =
v◦
2
− µ

r◦
= − µ

2a
(5.1)

where E is the total energy of the orbit, µ is the gravitational parameter, and r◦ and v◦
are the magnitudes of the initial position and velocity vectors, respectively. Using the

semi-major axis and the initial position and velocity vectors, we find the eccentricity (e)

of the orbit using the orbit angular momentum vector (ho),

ho = [r◦×]v◦ (5.2)

ho =
√
µa (1− e) (5.3)

where ho is the magnitude of the orbit angular momentum vector. We find the initial

eccentric anomaly (E◦) using

r◦ = a (1− e cosE◦) (5.4)

A quadrant check is required after E◦ is calculated. This quadrant check is

rT
◦ v◦ > 0 ⇒ 0 < E◦ < π (5.5)

rT
◦ v◦ < 0 ⇒ π < E◦ < 2π (5.6)
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Using the initial eccentric anomaly, we can find the initial mean anomaly (M◦) by

M◦ = E◦ − e sinE◦ (5.7)

Propagating the orbit by ∆t leads to change in mean anomaly (Mt) and eccentric anomaly

(Et) by

Mt = M◦ + n∆t (5.8)

Mt = Et − e sinEt (5.9)

where n is the mean motion of the orbit. Equation (5.9 is solved using Newton’s method.

We find the magnitude of the new position vector using

rt = a (1− e cosEt) (5.10)

and the change in eccentric anomaly (∆E) by

∆E = Et − E◦ (5.11)

The f and g expressions expressed in terms of eccentric anomaly are47

fE = 1− a

ro
(1− cos ∆E) (5.12)

gE = ∆t−

√
a3

µ
(∆E − sin ∆E) (5.13)

ḟE = −
√
µa sin ∆E

rtro
(5.14)

ġE = 1− a

rt
(1− cos ∆E) (5.15)

The final position (rt) and velocity (vt) vectors are calculated using47

rt = fEr◦ + gEv◦ (5.16)

vt = ḟEr◦ + ġEv◦ (5.17)

The f and g method is an idealized orbital estimator because this method does not

include any orbital perturbations.47

5.3 Attitude Check

Before the spacecraft can fire the thruster, we need to determine if the spacecraft’s

attitude is “close enough” to the desired attitude. Comparing the actual attitude and

the desired attitude is accomplished by determining the rotation matrix between the two

attitudes. We would also like to obtain a simple relationship to calculate the effect of an

attitude error before an orbital maneuver is performed.
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Figure 5.2: Attitude and position error geometry

5.3.1 Approach and Nomenclature

We define some of the nomenclature needed to examine these problems in Figure 5.2.

The initial position of the rendezvous and target spacecraft are denoted by rt◦ and tt◦
respectively. The initial in-track error between the two spacecraft is represented as rint or

as the difference in the true anomaly δν. The initial velocity direction of the rendezvous

spacecraft is denoted by v. These initial conditions are used to determine the ideal thrust

vector (Tideal) using the orbital controller. The thrust vector with an attitude error, T,

has the same magnitude (Tmag) as Tideal. We limit the attitude error to only be in the

orbital plane, so that the attitude error is represented by the angle ψ. We define ψ to be

a positive rotation about the orbit normal direction away from the ideal thrust direction.

To examine the effect of ψ, we apply the ideal thrust vector to the rendezvous spacecraft

and propagate the resulting orbit for a duration of time, t. The resulting ideal position

is defined as rt,0 in Figure 5.2. We also apply the attitude error thrust vector to the

rendezvous spacecraft and propagate the resulting orbit for the same duration of time,

t. This resulting position is defined as rt,ψ in Figure 5.2. The position of the target
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spacecraft is also propagated using the time t, and the resulting position of the target

spacecraft is denoted by tt. To determine the effect of the attitude error we define the

separation distance, d, which is the scalar difference between rt,0 and rt,ψ.

We use an exact solution to the two-body problem and an approximate solution to

examine the effect of attitude error on the separation distance. The exact solution is

the f and g method and the approximate solution is found using the Hill-Clohessy-

Wiltshire relative orbit equations. The following sections introduce the two methods and

the corresponding results.

5.3.2 Exact Method

For the attitude error investigation we use the f and g expressions in terms of eccentric

anomaly.47 The f and g method requires the input of the initial position (rt◦), and

the velocity of the rendezvous spacecraft. The input velocity vi is found by adding an

impulsive change in velocity to the initial velocity of the rendezvous spacecraft v:

vi = v + T
toc
m

(5.18)

where

T = RioRadTideal (5.19)

T = Rio

 cos(−ψ) 0 − sin(−ψ)

0 1 0

sin(−ψ) 0 cos(−ψ)

Tideal (5.20)

Here toc is the thrust time used by the orbital controller, m is the mass of the rendezvous

spacecraft, Rio is the rotation between the orbital and inertial frame and Rad is the

negative rotation of the attitude error, ψ, about the negative orbit normal direction (ô2)

away from the ideal thrust direction (Tideal). The f and g method is used to determine the

final position (rt,ψ) and velocity (vt,ψ) vectors. The separation distance, d, is subsequently

found by applying the distance formula between the ideal position (rt,0) and the position

due to the attitude error (rt,ψ).

5.3.3 Approximate Method

Another way to determine the separation distance is to use the Hill-Clohessy-Wiltshire

equations of motion for relative orbits. Recall the Hill-Clohessy-Wiltshire equations of
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motion represented in the Hill coordinate frame:43

ẍ− 2nẏ − 3n2x = 0 (5.21)

ÿ + 2nẋ = 0 (5.22)

z̈ + n2z = 0 (5.23)

where x is in the radial direction, z is in the orbit normal direction of the reference

spacecraft and y is in the direction that completes the right-handed coordinate system.

These equations of motion assume that the reference orbit is circular and that the relative

position errors are small compared to the orbit radius, which defines the y direction is

in the spacecraft velocity direction. We have restricted the attitude error to be in the

orbital plane, which allows us to examine the radial and in-track equations of motion,

Equations (5.21) and (5.22). Schaub and Junkins (Ref. 43) presented the analytical

solution to the Hill-Clohessy-Wiltshire equations of motion as

x(t) = A◦ cos(nt+ α) + xoff (5.24)

y(t) = −2A◦ sin(nt+ α)− 3

2
ntxoff + yoff (5.25)

where n is the mean motion of the spacecraft, t is the time, A◦ and α are constants, and

xoff and yoff are integration constants. Applying the initial relative position and velocity

between the two spacecraft, we can determine the constants

A◦ =
(3nx◦ + 2ẏ◦)

√
ẋ2
◦ + (3nx◦ + 2ẏ◦)2

n(3nx◦ + 2ẏ◦)
(5.26)

α = − arccos

(
− 3nx◦ + 2ẏ◦√

ẋ2
◦ + (3nx◦ + 2ẏ◦)2

)
(5.27)

xoff = −2ẋ◦
n

+ y◦ (5.28)

yoff = 4x◦ +
2ẏ◦
n

(5.29)

where x◦ and y◦ are the initial relative position and ẋ◦ and ẏ◦ are the initial relative

velocity conditions between the two spacecraft in the Hill frame. Determining the relative

velocity between the two spacecraft in the Hill frame requires us to account for the

rotating reference frame.

To determine the separation distance, d, we use two sets of Equations (5.24) and (5.25)

with one set using the ideal initial conditions and the other set using the initial conditions

with an attitude error (ψ). Subtracting the two sets of equations we find

∆x =
(ẋe◦ − ẋi◦) sinnt

n
+

2(ẏe◦ − ẏi◦)(1− cosnt)

n
(5.30)

∆y =
(ẏe◦ − ẏi◦)(4 sinnt− 3nt)

n
+

2(ẋe◦ − ẋi◦)(cosnt− 1)

n
(5.31)
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where ∆x is the difference between the equations in the x direction in the Hill frame,

∆y is the difference between the equations in the y direction in the Hill frame, ẋi◦ and

ẏi◦ are the initial relative velocity for the ideal case and ẋe◦ and ẏe◦ are the initial relative

velocity for the attitude error case. The separation distance, d, is found using

d =
√

∆x2 + ∆y2 (5.32)

(5.33)

This method determines the separation distance between the ideal case and the case with

an attitude error.

5.3.4 Results

The orbit that is used for the attitude error study is defined by the orbital elements

in Table 5.1. The exact and approximate solutions are used to examine the separation

Table 5.1: Orbital elements used for attitude error study

Parameter Estimate Units

a 6823 km

e 0.001

i 28 degrees

Ω 135 degrees

ω 90 degrees

ν 45 degrees

distance caused by the attitude error for initial in-track error magnitudes, rint in Fig-

ure 5.2, of 0.5, 1.0, 1.5, and 2.0 km. The ideal thrust vectors are obtained using the

initial in-track error and the orbital controller. The ideal thrust vectors for the different

initial in-track error magnitudes are

rint = 0.5 (km) ⇒ 3.17× 10−3T̂ (N) (5.34)

rint = 1.0 (km) ⇒ 6.34× 10−3T̂ (N) (5.35)

rint = 1.5 (km) ⇒ 9.50× 10−3T̂ (N) (5.36)

rint = 2.0 (km) ⇒ 12.66× 10−3T̂ (N) (5.37)
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Figure 5.3: The separation distance as a function of attitude error (ψ) and initial in-track

error using the f and g method.

where

T̂ =

 0

−1

0

 (5.38)

The Tideal is expressed in the Hill coordinate frame, toc is ten seconds, and m is 100 kg.

We use ten seconds as the propagation time, t, for both methods.

Exact

Figure 5.3 shows how the separation distance changes as a function of attitude error (ψ)

and initial in-track error using the f and g method. When the attitude error is zero,

we have the ideal case with no separation distance. As the attitude error increases the

separation distance increases. We see that the separation distance is symmetric about

the ideal thrust direction, but is asymmetric when larger time steps are considered. This

asymmetry is caused by the orbital dynamics of the resulting orbits. When the thrust is

applied with a positive attitude error, the resulting velocity vector is in a direction away

from the Earth, which increases the altitude of the spacecraft. As the altitude increases

the velocity of the spacecraft decreases and the period of the orbit increases. Similarly,
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Figure 5.4: The separation distances as a function of attitude error (ψ) and initial in-track

position using the Hill-Clohessy-Wiltshire equations.

when the attitude error is negative, the resultant velocity direction is towards the Earth,

which causes the altitude and orbital period to decrease and the velocity to increase.

Approximate

The separation distance as a function of attitude error and initial in-track error found

using the Hill-Clohessy-Wiltshire equations is shown in Figure 5.4.

Comparison

The results from the f and g method are compared to the results from the Hill-Clohessy-

Wiltshire equations in Figure 5.5. This figure shows that there are differences between

the results obtained using the different methods. It is difficult to see the differences

between the results from each method in Figure 5.5. To examine the differences between

the results we subtract the Hill-Clohessy-Wiltshire separation distances from the f and

g method separation distances. These differences are shown in Figure 5.6 for all of the

possible in-plane attitude errors
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Figure 5.5: A comparison of the separation distance obtained from the two methods for

all attitude errors.

Figure 5.6: Difference between the f and g method and the Hill-Clohessy-Wiltshire

equations for attitude errors of ±180◦
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Figure 5.7: Ideal thrust magnitude at time t as a function of attitude error and initial

in-track error.

These differences between the results from the two methods are small compared to the

separation distances found using the two methods. The differences between the results

are on the order of 10−7 m which is on the order of the calculation error for Matlab c©. We

conclude that the Hill-Clohessy-Wiltshire equations approximates the f and g method

very well and can be used to determine the separation distance that would result from

an attitude error.

We want to determine an allowable attitude error for the coupled system. To examine

the effect of the attitude error we take the rendezvous spacecraft position at time t with

an attitude error on the thrust direction (rt,ψ), and use the orbital controller to determine

the magnitude of the new ideal thrust vector using the target spacecraft position (tt). The

magnitude of this thrust vector as a function of the attitude error for the different initial

in-track position errors is shown in Figure 5.7. We see that the new ideal thrust magnitude

has a minimum when the attitude error is zero for each initial in-track error (rint). As

the initial in-track error decreases the range of thrust magnitudes decreases. The ideal

thrust magnitude at time t is a maximum when the attitude error is 180◦ for each initial

in-track error. The ideal thrust magnitude changes by 15, 12, 13 and 11 percent for

the 0.5, 1.0, 1.5, and 2.0 km initial in-track errors respectively. It is not clear how to

determine the allowable attitude error from these results with a variable thrust thruster.
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Figure 5.8: The position error in the orbital frame for a maneuver with the ideal thrust

direction

We examine the effect of a constant attitude error on the total simulation time required

for two spacecraft to rendezvous to determine the allowable attitude error. We define

a rendezvous to be when the distance between two spacecraft is less than 10 cm and

the difference between the magnitude of the velocity vector is less than 1 mm/s. We

use the orbital controller with a constant attitude error on the ideal thrust direction to

perform this analysis. We constrain the attitude error to be in the orbital plane which is

represented by ψ in Figure 5.2.

Figure 5.8 shows how the the position error in the orbital frame varies throughout the

rendezvous maneuver without an attitude error (ideal case). Figure 5.9 shows how the

position error varies throughout the rendezvous maneuver with a constant attitude error

of 63◦. These simulations are performed using the orbital controller with an initial in-

track error of 1 km. The rendezvous maneuver for the 63◦ attitude error case takes

approximately half the time of the ideal case maneuver. We contribute this to the fact

that the thrust was greater in the attitude error case. The total applied ∆v is 0.06763

m/s for the ideal case and 0.18635 m/s for the 63◦ case. The increase in ∆v for the 63◦

case is more than double the ∆v required for the ideal case.

We present the normalized maneuver time and the required ∆v to complete the ren-

dezvous maneuver as functions of constant attitude error in Figure 5.10. The maneuver
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Figure 5.9: The position error in the orbital frame for a maneuver with a fixed attitude

error of 63◦

Figure 5.10: Normalized maneuver time and total required ∆v as a function of attitude

error
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time is normalized using the maneuver time for the ideal case. We see that the ideal

case without an attitude error is not the optimal case. The maneuver time decreases

as the attitude error increases while requiring approximately the same amount of ∆v

to complete the maneuver. From this graph we determine that the allowable attitude

error in the orbital plane is between -10◦ and 40◦. This range of attitude errors is chosen

because the maneuver time and required ∆v are almost constant.

5.4 Summary

We have developed the overall architecture of the coupled attitude and orbital control

system using a linear and nonlinear attitude controller and an orbital controller (thrust

direction estimator). We have also presented the f and g method as the orbital propa-

gator (orbital estimator) of the coupled system. We have developed a method to check

the attitude of the spacecraft compared to the desired attitude of the spacecraft and

examined the effect of an attitude error on the thrust direction. In the next chapter we

will perform numerical simulations on the nonlinear attitude and orbital controllers and

the coupled system.
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Chapter 6

Numerical Simulations

We test the coupled orbital and attitude control system using simulations, but we verify

the nonlinear attitude controller and the orbital controller (thrust direction estimator)

separately. The simulations of the separate controllers and the coupled attitude and

orbital control system are performed using Matlab c©. In the following sections we discuss

the attitude controller, the orbital controller and the coupled orbital and attitude control

technique simulations.

6.1 Attitude Controller

We perform simulations using the nonlinear attitude controller to demonstrate that the

controller is globally asymptotically stable as proven analytically in Ref. 17. The following

spacecraft parameters are used

I =

 6.2 −0.9 −0.2

−0.9 7.5 0.1

−0.2 0.1 12.1

 (kg ·m2)

Is =

 0.075 0 0

0 0.075 0

0 0 0.075

 (kg ·m2), A =

 1 0 0

0 1 0

0 0 1


where I is the moment of inertia matrix of the system, Is is the moment of inertia matrix

of the momentum wheels, A is the axial unit vector matrix of the momentum wheels.
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Figure 6.1: The change in the Modified Rodrigues Parameters of the spacecraft.

The following initial conditions are used

ωi =

 −0.1

0.15

0.05

(rad

s

)
, σi =

 0

0

0

 , k1 = 0.3, k2 = 1.5

ω∗ =

 0

0

0

(rad

s

)
, σ∗ =

 0.3

0.2

0.4


where ωi is the initial attitude, σi is the initial angular velocity of the system, σ∗ is

the desired attitude, ω∗ is the desired angular velocity, k1 is the attitude gain, and k2

is the angular velocity gain. Figure 6.1 shows how the attitude varies throughout the

simulation. The attitude of the spacecraft starts at the initial conditions and proceeds to

the desired attitude in approximately 80 seconds. Figure 6.2 is the variation of the body

angular velocity and Figure 6.3 is the applied torque provided by the momentum wheels

throughout the simulation. These figures show that the angular velocity and the applied

torque start at their initial conditions and then converge to zero after approximatively 80

seconds. This simulation is representative of the attitude simulations. We conclude that

the nonlinear attitude controller is effective in controlling nonlinear attitude dynamics.
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Figure 6.2: The change in the angular velocity of the spacecraft.

Figure 6.3: The applied torque produced by the momentum wheels.
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6.2 Orbital Controller (Thrust Direction Estimator)

The orbital controller simulations are performed assuming that the spacecraft is able

to apply thrust in any direction instantaneously. The initial conditions and spacecraft

parameters for the simulation are

a∗ = 6823 (km), e∗ = 0.001, i∗ = 28◦, Ω∗ = 135◦, ω∗ = 90◦, ν = 0◦

δa = 0, δe = 0, δi = 0◦, δΩ = 0◦, δω = 0◦, δν = −
(

2

6823

)◦
∆tt = 100 (sec), m = 100 (kg), Kn = 0.05

where (·)∗ are the target spacecraft orbital elements, δ(·) are the change in orbital ele-

ments of the rendezvous spacecraft compared to the target spacecraft, ∆tt is the time

that the thruster fires, m is the mass of the rendezvous spacecraft, and Kn is the mean

motion control gain. Figure 6.4 shows the position error between the rendezvous and

target spacecraft in the orbital frame. The position error between the two spacecraft

becomes zero after approximately 14 orbits. Figure 6.5 shows the change in semi-major

axis of the rendezvous spacecraft throughout the simulation. The semi-major axis of the

rendezvous spacecraft initially starts at the same semi-major axis as the target spacecraft

and then decreases as the rendezvous spacecraft lowers its orbit and then increases back

to the target spacecraft semi-major axis to complete the rendezvous maneuver. Figure 6.6

is the magnitude of the thrust applied to the rendezvous spacecraft. The magnitude of

the required applied thrust is on the order of millinewtons. Figure 6.7 shows the thrust

direction in the orbital frame. The thrust direction changes rapidly over the course of

the simulation, and switches back and forth between the positive and negative velocity

direction of the rendezvous spacecraft. These figures are representative of similar simula-

tions performed using different initial conditions. We conclude that the orbital controller

is effective in formation-keeping and formation-maneuvers.

6.3 Coupled System

We have demonstrated numerically that the orbital controller (thrust direction estimator)

and nonlinear attitude controller are globally asymptotically stable. We now couple these

controllers according to the architecture described in Chapter 5. The coupling of the

two controllers is performed so that the attitude controller can orient the spacecraft in
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Figure 6.4: The position error in the orbital frame as seen by the rendezvous spacecraft.

Figure 6.5: The change in semi-major axis of the rendezvous spacecraft(a) compared to

the target spacecraft(a∗).
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Figure 6.6: The magnitude of thrust applied to the rendezvous spacecraft.

Figure 6.7: The thrust direction of the rendezvous spacecraft in the orbital frame.
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the correct direction before the orbital controller can apply the thrust. The spacecraft

parameters and the initial conditions for the simulation are

a∗ = 6823 (km), e∗ = 0.001, i∗ = 28◦, Ω∗ = 135◦, ω∗ = 90◦, ν = 0◦

δa = 0, δe = 0, δi = 0◦, δΩ = 0◦, δω = 0◦, δν = −
(

2

6823

)◦
∆tt = 100 (sec), m = 100 (kg), Kn = 0.05, k1 = 0.3, k2 = 1.5

I =

 6.2 −0.9 −0.2

−0.9 7.5 0.1

−0.2 0.1 12.1

 (kg ·m2)

Is =

 0.075 0 0

0 0.075 0

0 0 0.075

 (kg ·m2), A =

 1 0 0

0 1 0

0 0 1



ωi =

 0

0

0

(rad

s

)
, σi =

 0

0

0

 , T̃ =

 −1

0

0


where T̃ is the orientation of the single thruster in the body frame of the rendezvous

spacecraft. Figure 6.8 shows the relative error between the rendezvous and target space-

craft in the orbital frame. The coupled controller takes approximately half an orbit longer

to reach the target spacecraft than the orbital controller (Figure 6.4). This delay in the

coupled system is expected and attributed to the time required to complete the attitude

maneuvers. Figure 6.9 shows the variation of the semi-major axis over the simulation

time. There is not much of a difference between this figure and Figure 6.5 where the

semi-major axis decreases because of the mean motion control strategy and then in-

creases as the position error decreases until the rendezvous maneuver is completed. The

thrust magnitude is shown in Figure 6.10. These values are greater than the values seen

in Figure 6.6. This increase in thrust magnitude is also attributed to the introduction

of the time delays between the application of thrust to the spacecraft. The values for

the thrust are relatively small, which is good for propulsion systems on formation flying

spacecraft that require small changes in position. Figure 6.11 shows the attitude error

between the desired attitude and the current attitude that was found after the attitude

maneuver was completed. The allowable attitude error is also shown in Figure 6.11.

The allowable attitude error is between -10◦ and 40◦ in the orbital plane and ±5◦ out

of the orbital plane. The thruster is not fired when the attitude error is greater than
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Figure 6.8: The position error in the orbital frame as seen by the rendezvous spacecraft.

(coupled control)

the allowable attitude error. For this simulation the thruster fired 86% of the time. The

thrust direction for the coupled system switches between the positive and negative orbit

velocity direction of the rendezvous spacecraft. This variation is similar to Figure 6.7, so

this graph is not included in the analysis of the coupled system. We conclude that the

coupled attitude and orbital control can be used for formation flying missions while not

significantly increasing the time to accomplish orbital maneuvers.

6.4 Summary

We have presented the numerical simulations for the nonlinear attitude controller, nonlin-

ear orbital controller and the coupled attitude and orbital control system in this chapter.

We have shown that the coupled system performs well when compared to the orbital

controller. In the next chapter we summarize the work completed in this thesis, draw

some conclusions and provide some recommendations for future work.
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Figure 6.9: The change in semi-major axis of the rendezvous spacecraft(a) compared to

the target spacecraft(a∗). (coupled control)

Figure 6.10: The magnitude of thrust applied to the rendezvous spacecraft. (coupled

control)
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Figure 6.11: The magnitude of the error between the desired thrust direction and the

actual thrust direction.
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Chapter 7

Summary, Conclusions and

Recommendations

In this chapter we provide a summary of the work presented in this thesis. We draw

some conclusions about the coupled attitude and orbital control system and provide

some recommendations for future work to be performed using the coupled system.

7.1 Summary

We have discussed the concept of coupling the attitude and orbital systems. This coupling

concept is relatively new and required for spacecraft formation flying missions because

the translational and rotational motion is coupled. We have presented a literature review

of attitude and orbital controllers and of coupled attitude and orbital controllers.

We have presented the attitude kinematics and dynamics and the orbital dynamics as-

sociated with spacecraft formation flying missions. We presented a nonlinear Lyapunov

attitude controller and a nonlinear Lyapunov-like orbital controller with mean motion

control that were used in the coupled attitude and orbital control system.

We presented the coupled system architecture where a two-body orbital propagator was

used to propagate the spacecraft orbit and a linear bang-bang attitude controller was

used to estimate the time required by the nonlinear attitude controller to perform a

given attitude maneuver. We have determined an allowable attitude error to fire the

thruster. We have determined that the Hill-Clohessy-Wiltshire equations can be used to

determine the effect of the attitude error for small time intervals.
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We performed numerical simulations using the attitude and orbital controllers using

Matlab c©. We used the two attitude controllers, the orbital controller and the orbital

propagator to couple the system. This coupled system was demonstrated by performing

numerical simulations in Matlab c©.

7.2 Conclusions

The coupled attitude and orbital control system presented in this thesis is able to correct

for an initial relative position error between two spacecraft. This coupled control strategy

is one of the first to use a nonlinear attitude controller and a nonlinear orbital controller

for formation flying missions. The use of the nonlinear controllers allows for the nonlinear

dynamics of the system to be modeled and controlled more effectively than with linear

controllers. This coupled control strategy uses a linear attitude controller to estimate

the time required for the nonlinear attitude controller to perform a maneuver. The

time estimates provided by the linear controller where not exact, but they allowable the

nonlinear controller to maneuver the attitude to within the allowable attitude error 86%

of time.

The coupled system has the possibility of a negative effect on the orbital controller (thrust

direction estimator). This negative effect is caused by the addition of the time required

for the completion of the attitude maneuvers. The coupled control strategy presented in

this thesis negatively affects the performance of the orbital controller by approximately

a half an orbit. This negative affect on the orbital controller is not significant when the

total orbital maneuver time is considered. The coupled control strategy increases the

orbital maneuver time by 3.5%. This error is not significant because the time required to

accomplish the attitude maneuvers is relatively small in comparison to the time required

for the orbital maneuvers. The coupled control strategy also does not require a large

propulsion system. The simulations were completed using a 100 kg spacecraft with a

variable thrust propulsion system. The thrust magnitudes for the simulations were on

the order of millinewtons or less.

The results found in this thesis could be improved by increasing the number of thrusters.

By increasing the number of thrusters, the magnitude and thus the time required for the

attitude maneuvers would be decreased. If enough thrusters were added to the spacecraft,

we would reach the ideal case represented by the thrust direction estimator.

The implementation of the coupled control strategy has the ability for the substitution

of different control laws with minimal changes to the overall system. This allows for the

testing of many different coupled control systems which may lead to an optimal solution
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for a particular mission. This implementation also allows for the substitution of different

orbital estimators (orbital propagators). This substitution allows for the addition of

orbital perturbations and high fidelity integrators.

The coupled control strategy has been proven to work for spacecraft formation flying

applications, but the implementation of coupled control strategies on single spacecraft

missions could be beneficial to mission performance.

7.3 Recommendations

The coupled system presented in this thesis was developed so that it could be implemented

on Virginia Tech’s Distributed Spacecraft Attitude Control System Simulator (DSACSS).

In the following section we discuss how the coupled system could be implemented on the

DSACSS system. We also present some recommendations for future study.

7.3.1 Implementation in DSACSS

Implementing the coupled attitude and orbital control system in DSACSS requires con-

verting the Matlab c© code into the C/C++ DSACSS software architecture. The DSACSS

simulators have an onboard PC/104+ form-factor computer to control the spacecraft sim-

ulators. These computers are not fast enough to control the attitude of the simulators

and to run the orbital propagator and orbital controller. We require that the attitude

control and attitude determination be completed onboard the spacecraft simulators and

the orbital control and orbital propagation be completed on a desktop computer. A com-

munications C++ class has been developed to allow for the PC/104+ and the desktop

to communicate the required information for the coupled attitude and orbital control

system.

The DSACSS system includes a Global Positioning System (GPS) Enhanced Onboard

Navigation System (GEONS), which is a high fidelity orbital propagator that should be

incorporated into the coupled system. The GEONS software allows for the use of a high

fidelity orbital propagator and a simple two-body orbital propagator. The coupled sys-

tem should be tested using the high fidelity orbital propagator after the initial testing has

been completed using the two-body orbital propagator. The GEONS software is from

the Goddard Space Flight Center and is discussed in Ref 51. The DSACSS system also

includes a GPS simulator which is used to visually examine the relative orbits between

formation flying spacecraft. In the future, it may be possible to include these GPS mea-
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surements in the coupled system to determine the effect of non-ideal orbit determination.

7.3.2 Attitude Error

It was very difficult to determine the allowable attitude error for this system, because

we used a variable thrust thruster that did not have a maximum thrust. Typically, a

spacecraft has a single thrust value21 which would allow for the allowable attitude error

to be determined by the limitations of the propulsion system.

Alfriend and Lovell determine that the thrust direction error is insignificant compared to

the error associated with orbit determination.52 We presented results on the separation

distance on the order of millimeters. Determining the absolute position of a spacecraft

within millimeters is not possible with the current technology. It is possible that forma-

tion flying spacecraft could determine their relative positions within millimeters.

Javorsek and Longuski presented the concept of changing the thrust profile for a spinning

spacecraft to decrease the position error caused by the error on the thrust direction.53

This concept might be applicable to formation flying missions and the associated attitude

maneuvers required for formation keeping. More research needs to be performed to

determine the effect of the attitude error has on spacecraft formation flying.

7.3.3 Controllers

This coupled control system was developed to be a modular system and to allow for other

attitude and orbital controllers to be tested as a coupled system. There are numerous

attitude and orbital controllers that have been developed that could be tested using this

coupled system.

The linear bang-bang attitude controller can be replaced with a controller that estimates

the time required for the nonlinear attitude maneuver to be completed. Schaub et al.

presents a linear bang-bang attitude controller with a control on the sharpness of the

applied torque switches that could increase the accuracy of the time estimate function.54

This coupled system was developed assuming that the propulsion system had a variable

thrust thruster and that the thrust was always applied at the center of mass of the

spacecraft. This concept needs to be expanded to include a more realistic propulsion

system and propulsion systems that induce torques on the attitude of the spacecraft.
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