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With ever increasingly capable tools available to interplanetary mission designers, newer

challenging classes of missions become accessible. Among these new classes of missions are Dis-

tributed Spacecraft Missions: designs where multiple spacecraft cooperate to achieve coordinated

science objectives. Several applications being explored include, but are not limited to: coordinated

launch, coordinated rendezvous, mega-constellation design, precision formation flying (PFF), very

long baseline interferometry (VLBI), and distributed aperture space telescopes. These mission ar-

chitectures promise to widen our gaze on the scientific phenomena in our solar system and beyond.

However, current operational state-of-the art global trajectory optimization platforms lack the core

capabilities to pose these complex new classes missions. These capabilities include: the ability to

model multiple individual trajectory optimization problems as one single coupled trajectory opti-

mization problem, the imposition of coordination constraints and cost functions, and the ability to

traverse massive search spaces. In this dissertation, we present a fully automated multi-agent multi-

objective technique for solving multi-spacecraft multi-target trajectory optimization problems using

a hybrid optimal control approach. We apply this technique to two benchmark problems: an Ice

Giants Dual Manifest mission design, and a variable fleet size Very Long Baseline Interferometry

mission design. The techniques developed in this work create a general transcription for Multiple

Traveling Salesmen Problems applied to global spacecraft trajectory optimization.
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Chapter 1

Introduction and Motivation

1.1 Distributed Spacecraft Missions

With ever increasingly capable tools available to interplanetary mission designers, newer chal-

lenging classes of missions become accessible. Among these new classes of missions are Distributed

Spacecraft Missions: designs where multiple spacecraft cooperate to achieve coordinated science

objectives. Several applications being explored include, but are not limited to: coordinated launch,

coordinated rendezvous, mega-constellation design, very long baseline interferometry (VLBI), and

distributed aperture space telescopes. These mission architectures promise to widen our gaze on

the scientific phenomena in our solar system and beyond. Several applications are discussed in

greater context as follows.

1.1.1 Coordinated Launch: A Dual Manifest Mission to the Ice Giants

At the Flagship class level, the Ice Giants, Uranus and Neptune, are of paramount interest

in the Planetary Science 2011 Decadal Survey [4]. These targets cannot both be visited by a single

spacecraft any time within the next 50 years [46]. Thus, a dual manifest mission becomes a nigh-

necessary option for performing science on both of these targets, where two spacecraft co-launch to

deep space. This would be more expensive than a mission to just one target, but potentially cheaper

than two separate missions [10, 44]. A pre-decadal survey study led by members of NASA/CalTech’s

Jet Propulsion Laboratory explored a grid of designs for separate ice giant missions, and additionally

put forth two point designs for a dual-manifest mission [44].
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1.1.2 Distributed Aperture Space Telescopes

Distributed Aperture Space Telescopes make use of a capability known as aperture synthesis,

whereby smaller telescopes arrayed far apart use interferometry to mix their received signals to

achieve an angular resolution of a single, massive telescope [51]. Perhaps the most profound ground

system demonstration of this is the Atacama Large Millimeter Array (ALMA), comprised of 66

mobile radio dishes in northern Chile [1]. Its data has already been used in over 1,000 peer-

reviewed articles, for a wide array of radio astronomy research including exoplanet discoveries [1].

The potential to deploy a similar technology in space presents a significant opportunity beyond the

scope of this already powerful ground system.

With space telescopes growing ever larger, the eventual result is a telescope too large for one

or even several launch vehicles. Thus if multiple smaller units could be deployed in a large formation

and slew properly to targets, the result would be the largest distributed array ever conceived. In

space, the dominant challenge for the mission design and operations would be precise pointing at

the target of interest. The formation would have to be capable of reorienting itself to allocate some

spacecraft to point at one target, while some would point at another. Or, the entire formation

would potentially reorient to image a new target. Optimizing the trajectories for this formation

rapidly becomes an intractable task the more spacecraft there are in the fleet.

1.1.3 Very Long Baseline Interferometry

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is the world’s first gravi-

tational wave observatory, consisting of two installations widely separate across the United States

[70]. LIGO has made more than six confirmed detections of “black hole merger” events using the

ingenuity of machine learning to filter faint signals from saturating noise- signals generated from

1E-10 meter changes in the length of its vacuum tubes, measured precisely by lasers[70, 21]. LISA

will perform LIGO’s tasks, but in space - leveraging the empty space to create a much larger in-

terferometer antenna [62]. While LIGO’s arms are 4 km long, LISA’s will be approximately 2.5
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million km. The mission will nominally launch in 2034 and use this extremely long interferometry

array to detect faint gravitational waves from as early as 1 second after the Big Bang [62]. The

mission is a composed of three identical spacecraft which launch and deploy into an equilateral

triangular formation which trails roughly 50 million km behind the Earth as it orbits the sun.

The author is directly experienced with preliminary trajectory optimization for this mission.

It requires the consideration of extremely tight path constraints. In general, the dominating problem

is precise pointing. But whereas distributed aperture telescopes must point precisely at a distant

target with simultaneity, LISA’s interferometers must point precisely towards each other. Their

relative separation distance is tightly constrained, as are the interior angles made by their triangular

formation, along with their ecliptic inclination, and distance from the Earth. No global optimization

of this mission design has been performed, but this task is likely the focus of continuing design work.

1.2 State of the Art of Global Trajectory Optimization

1.2.1 Direct versus Indirect Methods

Generally speaking in trajectory optimization, there are two classes of optimization methods:

direct and indirect. Indirect methods require an analytical formulation of necessary and sufficient

conditions for optimality derived in terms of system states and Lagrange multipliers [15]. These

conditions are then discretized to form a constrained parameter optimization problem. Direct

methods, by contrast, parametrize the problem using physically meaningful decision variables such

as ∆V , time of flight, etc. Interplanetary trajectory optimization problems are too large in terms of

number of decision variables and constraints to be solved analytically, and therefore require the use

of numerical methods. A Nonlinear Programming (NLP) solver is an effective means of performing

local gradient-based optimization for both direct and indirect problems. Numerous black box solvers

exist for this purpose, including tools such as SNOPT, IPOPT [39, 78] and MATLAB’s fmincon.

However, NLP solvers require a “good” initial guess to converge, and small changes in the initial

guess of an indirect method’s Lagrange multipliers may result in a large change in the trajectory,
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affecting the ability of the optimizer to converge. Additionally, should one decide to change the

number of parameters in the optimization problem, the necessary and sufficient conditions must

be re-derived in terms of the new system. Finally, direct methods can also eliminate the need to

track the sensitive switching function, which presents a major challenge for the indirect methods.

Thus indirect methods are highly sensitive approaches for these problems and we defer to direct

methods for their versatility [52, 31].

Numerous classes of direct method transcriptions for effectively posing a trajectory optimiza-

tion problem as a parameter optimization problem have been studied. These include, but are not

limited to: simultaneous methods, shooting methods, and the approximation of a trajectory as a

series of coast arcs with discrete impulsive maneuvers along each phase [31]. An excellent earlier

study surveying and classifying numerical techniques to which such transcriptions might be applied

may be found here [13]. Shooting methods solve a boundary value problem by reducing it to an

initial value problem, propagating an initial guess over a time arc, and using an NLP solver to

adjust the initial guess based on errors in the boundary conditions [52]. The sensitivity of shooting

methods, and indeed other direct methods, may be reduced via analytical derivatives of the cost

function and boundary conditions with respect to state parameters and/or the use of parallel or

multiple shooting techniques [52]. Examples of “multiple coast arcs with N impulsive maneuvers”

transcriptions may be found here [48]. Simultaneous methods include, notably, direct collocation

methods [52]. Collocation methods approximate a trajectory as some high order polynomial and

choose ‘collocation points’, separated equally in time, at which the system dynamics must be satis-

fied [43]. Collocation methods have proven effective for the optimization of low thrust trajectories

[31, 43].

1.2.2 Gradient Free Methods

In some cases, what are called “evolutionary” or “gradient-free” methods use populations of

trial decision vectors to search for an optimal solution. A subclass of these, known as evolutionary

algorithms, apply principles derived from natural selection, and can be effective in place of the com-
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bination of a direct transcription and NLP solver. These methods generally use a mechanism known

as stochastic gradient descent to search for a minimum to a cost function. An initially random

population of decision vectors undergoes ranking, genetic crossover, and mutation to produce the

most “fit” offspring. Several examples of gradient-free methods include Particle Swarm Optimiza-

tion (PSO), Differential Evolution (DE), binary genetic algorithms, and ant colony optimization

(ACO). Each of these methods use metaheuristics (generalized local search metrics) in place of ac-

tual gradient information to direct the search for an optimal solution. In PSO, the metaheuristics

to drive the search are each particle’s inertial, cognitive, and social weights [53]. For ACO, it is

a “pheromone” quantity exchanged by the “ants”; this algorithm has enjoyed widespread use for

applications ranging from protein folding to rule classification to financial predictions [60, 45, 80].

For DE, the metaheuristic is a difference vector calculated by randomly differencing two or four

decision vectors, which then perturbs the current global best solution [67].

The two major variations between methods are their metaheuristics, and the ranking mech-

anism of one genome against another. These methods lend themselves to problems where an NLP

solver encounters great difficulty due to a lack of gradient information in the problem formulation.

For example, the authors previously applied DE to the Cassini interplanetary cruise problem, using

the MGA1DSM transcription to parametrize candidate trajectories. MGA1DSM, while a facile

transcription for rapid prototyping, does not have analytical derivatives, and it was found that DE

performed well in place of a gradient-free local optimizer. In general however, when optimizing

continuous decision variables, and optimizing spacecraft trajectories specifically, a direct transcrip-

tion coupled with an NLP solver is less sensitive to the choice of initial guess and better suited to

implementing constraints than using evolutionary methods.

The true power of evolutionary methods is twofold. 1) They excel at traversing integer

decision spaces - where there can be no gradient information - over alternative brute-force grid

search methods. 2) While not always desirable for precisely locating a local optimum, they can

reliably determine the rough location of the global optimum. For these reasons, much research

has been done into framing global trajectory optimization problems as Hybrid Optimal Control



6

Problems (HOCP), with an evolutionary integer algorithm “outer-loop” whose decision vectors

are integer genomes encoding continuous trajectory optimization problems for to be solved by an

“inner-loop”.

1.2.3 Hybrid Optimal Control

Glocker et al. 2001 and Ross et al. 2005 provided solution methods to the HOCP formula-

tion of spacecraft trajectories, where an “outer-loop” handles the discrete (integer) variables, and

an “inner-loop” handles the continuous (floating point) variables [65, 77]. Conway et al. 2007

introduced a trade of two hybrid HOCP formulations - a genetic algorithm outer loop wrapped

around robust NLP solver inner-loop, followed by a “Branch and Bound” outer-loop wrapped

around a genetic algorithm inner-loop [28]. Evolutionary methods have been shown effective on

numerous multiple-flyby chemical thrust design problems, as in later work by Gad and Abdelkhalik

et al.[6, 7]. Vavrina et al. introduced a HOCP multi-objective framework for low thrust trajec-

tory optimization, which wrapped an evolutionary algorithm around Purdue’s GALLOP capability

[75, 59]. Separately, Vasile et al. 2011 introduced a multi-objective spacecraft trajectory optimiza-

tion framework applied to chemical problems such as the Cassini mission [72]. Englander, Vavrina,

Ghosh and others have since expanded upon these earlier analyses to include multiple-objectives

and low thrust mission design support [42, 29, 35, 30, 28, 23].

The conventional trajectory optimization problem that is solved by what we call the inner-

loop has been explored extensively. Englander et al. experimented with various stochastic global

search tuning parameters to increase the global problem scope and efficiency of the inner-loop [34].

As of now, a handful of interplanetary trajectory optimization platforms exist, including the Parallel

Global Multiobjective Optimizer (PaGMO) and the Evolutionary Mission Trajectory Generator

(EMTG) [30, 3]. However, neither of these tools is capable of multi-spacecraft interplanetary global

trajectory optimization. With many new potential classes of missions motivating the need for such

an optimization capability, this proposed work seeks to develop a technique to enable them.
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1.2.4 Multi-Agent Optimization

To optimize a coordinated multi-vehicle problem leveraging current cutting edge tools, sep-

arate designs would have to be optimized independently and manually/iteratively gridded over to

find independent trajectory designs that share the same constraints. For example, consider a mis-

sion in which two spacecraft depart from the same launch vehicle along an identical asymptote,

then perform independent maneuvers at different points in time to begin journeys to distinct des-

tinations. Using state-of-the-art tools, one would need to create a grid whose points would each be

defined by an epoch and a launch asymptote. For each grid point, two separate SVMs would need

to be run, both required to share the same launch epoch and asymptote parameters. However, the

best design found in this grid can in no way be guaranteed to represent the optimal solution. At

best, refining this grid search approach for efficiency would lead to a method that approaches, but

remains inferior to, the type of stochastic gradient descent already used by evolutionary methods.

The co-launched aspect of this mission, in fact, is a coordination constraint that couples the behav-

ior of the two spacecraft. This coupling is more properly handled with a treatment of two separate

SVM decision vectors as one MVM devision vector, with a local optimizer free to rapidly vary and

traverse candidate launch asymptotes within a launch window. Furthermore, if one were to add

N more spacecraft to the fleet, the problem becomes geometrically intractable to solve as separate

subproblems.

Multi-agent optimization is a thriving field in computer science which is applied, in large

part, to solve communications network traffic problems. In these problems, the server/client nodes

are treated as agents and the communication between any two may be modeled as a time-varying

digraph sequence [69]. For more information on computational graph optimization, we refer the

reader to the following source which discusses the motorized Traveling Salesman Problem (TSP)

[77]. In multi-agent optimization, a computational agent can be either a tool used in the opti-

mization process, the object of the optimization process, or both [69]. For example, PSO is a form

of multi-agent optimization where particles are the agents that perform the optimization. Several
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multi-agent multi-objective optimization algorithms have been developed and applied to problems

ranging network communications to robotics - such as with mechanical rovers coordinating site

visits.

Beni et al. 1989 explored decentralized swarm intelligence architectures for robots in terms

of classifying predictable versus unpredictable behavior [12]. Sun et al. developed the first non-

convex multi-agent optimization algorithm for communications networks [69]. In recent years,

multi-objective multi-agent genetic algorithms (MOMA GA) have been proposed, including Ag-

gregation by Variable Objective Weighting, Niched Pareto Genetic Algorithm, Strength Pareto

Algorithm (versions I and II), and more [41, 50, 82, 14]. Most of the focus in these algorithms how-

ever remains on single objective multi-agent optimization [9]. Additionally, none have been applied

to spacecraft trajectory optimization. Yliniemi et al. 2015 used rover site exploration to motivate

the development of a continuous-valued Multi-Agent Non-Dominated Sorting Genetic Algorithm

(NSGA-II) along with a brand new MOMA GA called The Pareto Concavity Elimination Trans-

formation (PaCCET) [79]. Ghosh and Coverstone et al. explored a multi-agent formulation of the

decision vector for low thrust trajectories for propellant-optimal cooperative cubesat maneuvers

[37]. They leveraged A HOCP framework as well, but used the outer-loop to optimize the number

of discretization points in the low thrust mesh and did not extend this approach to multi-objective,

multi-target global optimization problems. Ergo, a host of multi-agent methods and applications

exist with different approaches to handling and incentivizing the coordination of the agents in-

volved. This work draws on multi-agent principles to implement a prototype interplanetary global

trajectory optimization technique for MVMs.

1.3 Approach

In examining the state of the art, the global trajectory optimization of many different dis-

tributed spacecraft mission architectures proves intractable using current trajectory optimization

capabilities. When tasked with the global optimization of interplanetary Multi-Vehicle Mission

(MVM) trajectories specifically, state-of-the-art techniques are hindered by their need to treat the
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MVM as multiple decoupled trajectory optimization subproblems. This shortfall blunts their abil-

ity to utilize inter-spacecraft coordination constraints and may lead to suboptimal solutions to the

coupled MVM problem. Only a handful of platforms capable of fully automated multi-objective

interplanetary global trajectory optimization exist for single-vehicle missions (SVM), but none can

perform this task for interplanetary MVM.

Framing interplanetary spacecraft trajectory optimization as a hybrid optimal control prob-

lem (HOCP) has proven an effective approach [29, 75]. In a HOCP framework, trajectory opti-

mization is a Mixed-Integer Programming (MIP) problem. Some decision variables are discrete

(integers) while others are continuous (floating point), necessitating distinct optimization routines

for each type. Furthermore, the resulting mission designs are points within a solution space spanned

by multiple objectives (i.e., minimum fuel versus minimum time of flight). Thus, in order to effec-

tively characterize the solution space for a given mission design problem, a multi-objective HOCP

framework is essential. However, while tools exist to solve interplanetary multi-objective HOCPs

for a single spacecraft, no tool exists to do so for multi-spacecraft problems. Addressing the short-

comings of current approaches to MVM optimization, including the methods for handling inter-

spacecraft coordination objectives and constraints, are key to enabling the optimization of future

interplanetary MVMs.

Operational implementations of state-of-the-art global trajectory optimization techniques are

not structured to support multiple-spacecraft global trajectory optimization. In order to solve a

problem with a fleet containing a fixed number of spacecraft, these implementations would require

the analyst to run a large grid of studies, with each grid point representing a particular permutation

of constraint values that are applied identically to each of S independent single-vehicle spacecraft

trajectory optimizations. Each of the S SVM runs would need to be compared a posteriori for ad-

herence to constraints. While it would be possible to set certain boundary constraints, this inherent

separation of the MVM already makes it untenable to impose most inter-spacecraft coordination

constraints. Now if the analyst is solving a problem where the requisite fleet size to achieve the

coordinated science objectives is not known a priori, the analyst much choose a range of fleet
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sizes and run still more studies, one set of studies for each fleet size. These shortcomings –lack of

coordination constraint handling, lack of coordinated objective handling, and artificially inflated

computation time due to separate SVM optimization– motivate this thesis work. A transcription

which enables global trajectory optimization for multiple-spacecraft multiple-target exploration

problems is essential in tackling the next generation of complex space missions.

In this dissertation, we introduce such a technique. We present a Multi-Agent Multi-Objective

Hybrid Optimal Control Problem (MOMA HOCP) transcription which resolves many of the short-

comings with state-of-the-art techniques and demonstrate its efficacy on several benchmark global

trajectory optimization problems. The technique is fully automated (requiring no analyst-in-the-

loop tinkering to explore a given search space), and generic (generally agnostic to a particular

trajectory optimization problem). It supports an arbitrary number of spacecraft in a fleet and

allows both the fleet size and number of science targets explored by the fleet to vary during the

optimization. Several new inter-spacecraft coordination constraints and coordinated science objec-

tives are introduced, and their impact on the solution space of two different benchmark problems

is assessed. Finally, a HashMap archive utility is created to prevent repeat evaluations of previous

solutions and amplify the reach of the MOMA HOCP technique to explore the solution space using

partial seeding. Two benchmark problems are conceived to demonstrate the efficacy of the MOMA

HOCP technique: an Ice Giants Multi-Mission (where two spacecraft share a launch asymptote en

route to different outer planets), and a science-phase VLBI problem where a variable number of

spacecraft coordinate to image multiple distant radio sources.

We then propose, conceive, and apply techniques for more efficient search space traversal

as the dimensionality of optimization problems such as these is enormous. We introduce a fast

HashMap archive technique to ensure each point in a problem’s search space is explored only once.

We then introduce an algorithm augmenting this archive into a seed sharing capability in order to

potentially expedite the discovery of new solutions and propose an experiment to test its efficacy.
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1.3.1 Thesis Statement

A fully automated, multi-objective, multi-agent hybrid optimal control problem framework

allows analysts to combine individual spacecraft trajectory optimization problems into a coupled

optimization problem, impose inter-spacecraft coordination constraints, and pose coordinated sci-

ence objectives, enabling the global optimization of new classes of multi-spacecraft, multi-target

exploration missions.

1.4 Dissertation Overview

1.4.1 Organization

Chapter 2 details each algorithm applied and/or created for MOMA HOCP transcription.

Chapter 3 discusses the problem formulation and results for the Ice Giants Multi-Mission benchmark

problem. Chapter 4 discusses the formulation and results for the very long baseline interferometry

problem. Finally, chapter 5 summarizes the significant contributions and conclusions of this thesis

and discusses our future work. The Appendix discusses the augmentation of the archive utility

created in 4 into a novel partial seeding technique to expedite the MOMA HOCP transcription’s

ability to traverse its search space, to be applied to further research on the VLBI problem.

1.4.2 Contributions

The chief contributions of this dissertation are summarized as follows.

Ice Giants Dual Manifest Study

• introduces a first-of-its-kind MOMA HOCP framework for interplanetary global trajectory

optimization

• creates an outer-loop transcription which encodes a coordinated launch asymptote problem

• creates and demonstrates the impact of several inter-spacecraft coordination constraints,

including: a coordinated launch asymptote constraint, a shared flyby genes constraint, and
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a shared trajectory phases constraint

Very Long Baseline Interferometry Study

• expands the generality of the outer-loop of the MOMA HOCP framework into a transcrip-

tion which can pose almost any Multiple Traveling Salesmen Problem

• applies a Null Gene technique to allow the number of spacecraft in a fleet to vary

• enables multiple observations at a single epoch when the size of a fleet exceeds 6 spacecraft

and incentivizes this behavior with an observation multiplicity cost function

• introduces a fast HashMap method for ensuring no repeated chromosomes are sent to the

inner-loop



Chapter 2

Algorithms

2.1 Background

In § 1.2, we discussed the state of the art of global trajectory optimization, identifying key

techniques which numerous operational platforms leverage in order to produce compelling trade

studies. No technique has been developed which combines: multi-agent techniques, multi-objective

optimization, and hybrid optimal control into one framework and applies their combination to

trajectory optimization. In this dissertation, we introduce a transcription which does. This tran-

scription uses a multi-agent multi-objective integer genetic algorithm outer-loop (in the form of a

multi-agent NSGA-II algorithm) wrapped around a single-objective inner-loop global search method

(Monotonic Basin Hopping, MBH). MBH stochastically explores the continuous decision parameter

space searching for the global optimum, generating candidate trajectories which are parametrized

into decision vectors using a direct transcription. For each benchmark problem, we apply a different

direct shooting transcription uniquely suited to that problem. These transcriptions are discussed

in detail in the problem formulations of Chapters 3 and 4. The NLP solver, MATLAB’s fmincon,

is used to solve for local optima given the decision vectors created by MBH.

2.2 Spacecraft Trajectory Optimization

Each of the components selected to build the MOMA HOCP technique in this work is complex

and nuanced. It is instructive to first consider a basic fundamental trajectory optimization problem

and develop a discussion through increasing levels of complexity, introducing each component at
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its appropriate level. Let us begin with the discussion of a two-point boundary value problem: the

base unit of a trajectory modeled in this dissertation.

In this example, we assume a spacecraft obeys two-body Newtonian gravity. The two bodies

include a large primary point mass, and a negligible secondary point mass (the spacecraft). The

equations of motion for the spacecraft are given by equation Eq. 2.1.

~̈r(t) = −µ ~r(t)

|~r(t)|3
(2.1)

where ~r(t) is the time-dependent cartesian position vector of the spacecraft with respect to the

origin of some inertial frame of reference. We can then represent the spacecraft’s position-velocity

state (Eq. 2.2) and its time derivative (Eq. 2.3).

~X(t)T = [~r(t)T , ~̇r(t)T ] (2.2)

~̇X(t)T = [~̇r(t)T , −µ ~r(t)
T

|~r(t)|3
] (2.3)

The spacecraft’s real physical trajectory is represented by a continuous time series of states.

However, in optimization, it is more convenient discretize this trajectory using a transcription

which can describe it completely using a limited set of decision variables. A decision variable xi is

a parameter which quantifies an element of a decision-making process, which a decision maker can

control. In optimization, the decision maker is the optimization algorithm. With direct trajectory

optimization, decision variables may include real parameters of the trajectory, for example: ∆V

vectors, position vectors, time of flight (TOF) durations, and spacecraft mass. The decision vari-

ables chosen in a particular transcription combine to form the decision vector ~x which encodes a

spacecraft trajectory.

The goal of direct trajectory optimization is to find a trajectory whose decision vector mini-

mizes some cost function (Eq. 2.4).
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J = g(~x) (2.4)

Now suppose we introduce a general constraint on the decision vector using Eq. 2.5.

φ = f(~x) (2.5)

The general trajectory optimization problem in our example is to find a solution decision

vector ~x which encodes a trajectory that follows Eq. 2.1 which minimizes the cost J(~x) subject

to φ(~x). The constraint φ(~x) may be a vector of constraints ~φ(~x), some linear, others nonlinear,

and some be equality or inequality constraints. If any of the constraints or the cost function is a

nonlinear function of the decision vector, the trajectory optimization is a nonlinear programming

problem. The trajectories in this dissertation are complex nonlinear programming problems- not

merely single-arc direct shooting problems, but coupled multi-point shooting problems with control,

to be solved by a nonlinear programming (NLP) solver. These problems also contain nonconvex,

multimodal, cost and constraint functions, and the existence of a solution can not be known a

priori. As such, it is difficult to come up with a good initial guess for their solutions, and given

the nonintuitive nature of their search spaces, an initial guess generator must be robust absent any

analyst intervention.

2.3 Inner-Loop Solver

Many techniques for locating initial guesses from within a search space have been explored.

These include, but are not limited to, graphical representations such as Tisserand plots, search

space pruning, and seed sharing [68, 48, 22, 66, 46, 54, 57, 36]. There are tradeoffs in each of

these methods. Stochastic search methods are at least as efficient as brute force, finding the global

optimum in less time and require no analyst intervention, but are inefficient as they require a long

runtime to reliably search the space. Graphical representations of the search space can impart

intuition about the complex search space to a mission analyst, allowing for quick identification of
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candidate solutions once created. However, they: require analyst to intervene in the optimization

process, and may not represent an accurate picture of viable initial guesses which satisfy problem

dynamics. Search space pruning techniques share similar tradeoffs to graphical methods as they

require an analyst to make decisions about which pockets of the search space are worth searching -

based on intuition and assumptions which may lead to no solutions being found or cause the analyst

to miss the best solutions. However, pruning allows the analyst to completely control the size of

the search space, and to some degree all global optimization problems are in practice subjected to

pre-pruning of their search space based on mission and time requirements.

In fully automated global trajectory optimization, it is essential to select both an initial

guess generator which will facilitate exploration of the global search space, a robust nonlinear

programming (NLP) solver to optimize initial guesses, and a trajectory transcription which will

enable the NLP solver to find good solutions quickly. In this dissertation, we refer the task of

conventional trajectory optimization to an inner-loop of a hybrid optimal control framework. The

inner-loop solves a single-objective trajectory optimization problem with no analyst intervention.

The inner-loop’s routine must reliably find the global optimum, and require no initial guess. It is

necessary to wrap a global search method around the local optimizer to enable the inner-loop to

routinely arrive with the statistical neighborhood of the global optimum. The stochastic global

search method employed in this work is a Monotonic Basin Hopping (MBH) algorithm [17, 35].

This algorithm derives its name from the supposition that the generally nonconvex cost function

being optimized contains local optima within basins, which can be traversed by a local optimizer.

Once the NLP solver drives a sub-optimal initial guess down to a local minimum (bottom

of a basin), MBH perturbs the current decision vector by some random hop distance out of the

basin and begins exploring the global space, keeping track of the global best found. This process

is repeated until either a maximum number of hops have been performed or an elapsed time has

passed (both of which are user-selectable parameters). This process is illustrated in Fig. 2.1.

MBH thus hops through the global search space stochastically. Its performance has been greatly

improved by using a Nonlinear Programming (NLP) solver to quickly optimize local minima [35].
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The following pseudocode captured in Algorithm 1 describes the version of MBH implemented

for this work. Versions of MBH such as that of [34] use Pareto random hops to explore the global

space, an approach we adopt in this dissertation as well.

Figure 2.1: Illustration of the MBH process for an arbitrary cost function f1 of one decision variable
x1, taken from [35].

The fundamental technique of MBH may be tuned in numerous ways. These include but

are not limited to: the criteria for hopping out of a basin, the random number distribution from

which new decision vectors are pulled (uniform, Gaussian, Pareto, etc.), and the shape parameters

of that random number distribution. In this dissertation, we explore two benchmark problems.

We employ a different version of MBH in each benchmark problem as we discovered more efficient

methodologies during this research. Algorithm 1.1 outlines the pseudocode for the variant used in

the Ice Giants Dual Manifest problem, while Algorithm 1.2 outlines the variant used in the VLBI

problem. Algorithm 1.1 contains two loops: a global hop loop, and a local hop loop. The purpose of

this structure is to enable global search space exploration while also improving the quality of local

optima found by the NLP solver. When a local optimum is found, the local hop loop uses a smaller

hop size than the global loop, forcing MBH to search for improved solutions nearby. Algorithm 1.2

dispenses with the “local hop” parameters which artificially constrain the hop distance for a certain

number of iterations after a local optimum is found. This change was made when it was discovered

to be more efficient to simply have one hop size, chosen from a Pareto random distribution, and

prioritize exploring the global space rather than the local neighborhood with each hop.

Algorithm 1.1: Monotonic Basin Hopping
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Initialize fbest

while current iteration < max iterations OR maximum elapsed time not reached

Generate random point x.

Run local optimizer to find point x∗ using initial guess x.

xcurrent = x∗

if x∗ is a feasible point then

if f(x∗) < fbest then

fbest = f(x∗)

save x∗ to archive

end if

while Nnot improve < Nmax

generate x′ by randomly perturbing xcurrent

Run local optimizer on x′ to find x∗

if (x∗ is a feasible point) & (f(x∗) < f(xcurrent)) then

Nnot improve = 0

xcurrent = x∗

if f(x∗) < fbest then

fbest = f(x∗)

save x∗ to archive

end if

else

Nnot improve = Nnot improve + 1

end if

end while

end if

end while

return best x in archive
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Algorithm 1.2: Monotonic Basin Hopping (VLBI Variant)

Initialize ~xbest, fbest

while current iteration < max iterations OR maximum elapsed time not reached

Generate random vector ~x

Run NLP solver to find point ~x∗ using initial guess ~x

if ~x∗ is a feasible point then

if f(~x∗) < fbest then

fbest = f(~x∗)

save ~xbest = ~x∗ to archive

end if

end if

current iteration = current iteration+1

Update total loop runtime

end while

return ~xbest from archive

2.4 Discrete Parameter Optimization

The inner-loop algorithm optimizes a continuous valued decision vector, but there are nu-

merous trajectory optimization problems which involve discrete variables. Discrete variables are,

strictly speaking, integers. These variables may be used to represent the towns in a traveling sales-

men problem (TSP), the planets or asteroids in a flyby sequence, the number of thrust arcs on a

low thrust trajectory, the number of throttle modes on a thruster, etc. One example of a discrete

optimization problem would be: given a final intercept destination at Jupiter, find the flyby se-

quence of 3 inner planets which a spacecraft may use to reach Jupiter in minimum time. In this

example, there are 4 inner planets to choose from: Mercury, Venus, Earth, Mars. We will allow the
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same planet to be used multiple times in the flyby sequence. Then given a 3-planet intermediate

flyby sequence, there are 43 = 64 possible flyby sequences to choose from. Assuming there are

no other variables in the decision vector other than those of the flyby sequence, this problem is

small enough to solve with a grid search. However, if we increase the required length of the flyby

sequence and/or the number of flyby bodies to choose from, the search space grows geometrically

with each additional flyby variable. Thus locating the global optimum quickly becomes intractable

using total enumeration, even if we can access substantial parallel computing resources.

The goal of a discrete optimization problem effectively becomes to find the optimal sequence of

integers which minimizes some cost function. However, unlike with continuous valued search spaces,

there is no cost or constraint Jacobian for the decision vector, thus gradient-free optimization

methods are necessary to traverse the search space. Evolutionary methods, a particular class

of gradient-free approaches, leverage principles of genetic crossover in biology, treating decision

vectors as chromosomes whose genes (decision variables) may be swapped or mutated at random.

Evolutionary methods have been demonstrated as effective search space traversal methods, and use

the following general process:

1) Start with a randomly generated population of chromosomes.

2) Evaluate the fitness of each chromosome in the population using some cost function.

3) Choose ‘parent’ chromosomes, according to their fitness, to seed the next generation of

chromosomes. In evolutionary algorithm research, giving preference to fitter parents to create

children is known as elitism.

4) Select two parents to pass their genes along to a ‘child’ chromosome. The child chromosome

is created by flipping a coin to choose a gene from each parent.

5) Apply a random mutation operator to the child’s genes, then return to step 2. After

crossover is completed, each gene in the child chromosome has a small chance to be randomly

mutated. Using elitism and crossover alone, the solution chromosomes tend to cluster in a subset

of the search space. This practice subverts this shortcoming, encouraging continued global search.

This process of searching the decision space for fit solutions and using the fittest members
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to seed new generations facilitates the discovery of better solutions to the optimization problem

over many generations, but there is no explicit convergence criterion in these approaches. However,

evolutionary methods find good solutions far more quickly than total enumeration grid searches,

especially for larger search spaces. The trajectory optimization problems we explore in this disser-

tation, however, are neither discrete nor continuous, but a hybrid of the two. In this dissertation,

the parameters being optimized form a mixed-integer programming (MIP) problem. Distinct opti-

mization routines are required for each class of parameter. An effective approach for optimizing a

MIP is to create hybrid optimal control problem (HOCP) formulation which combines a gradient-

based inner-loop with a gradient-free outer-loop. The outer-loop chooses integer chromosomes

which encode distinct continuous-valued trajectory optimization problems to be optimized by the

inner-loop.

To expand on the previous example of the minimum-time triple-planetary flyby sequence

optimization problem, the inner-loop may choose continuous parameters including the launch win-

dow, the characteristic launch energy C3 (km/s2), the maneuver vectors, and more. The inner-loop

thus optimizes the trajectory through a given flyby sequence for minimum time of flight, and once

the solution is returned, the outer-loop compares every flyby sequence chromosome and chooses

the ones with the lowest TOF cost to form the pool of parent chromosomes which will seed the

next generation. In general, however, global trajectory optimization is not a single-objective, but

a multi-objective problem. Numerous different quantities such as TOF and ∆V contribute to the

fitness of a given solution.

2.5 Multi-Objective Outer-Loop Solver

To solve a multi-objective global trajectory optimization problem, one common approach is

to combine the cost functions into one cost function: Jaug(~x) = G(J1(~x), J2(~x), ..., JM (~x)). This

approach is intuitive because an NLP solver can only optimize one cost function at a time. Global

trajectory optimization is already time-consuming for single-objective problems. At first glance,

in order to optimize a design for multiple objectives, a separate NLP solver run would need to be
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carried out for each objective. However, the goal of multi-objective optimization is to generate

the Pareto-optimal front of the solution space [26]. This M -dimensional hypersurface, where M

is the number of objectives, depicts the fundamental trade-offs between the objective functions

considered in a study, beyond which no improvement in the solutions can be made. No point

solution on the front completely dominates any other, that is, no solution is superior to another

across all its objectives. Thus, traversing from one point on the front to any other in any direction

requires degrading the performance of at least one objective. An illustration of this Pareto front is

shown in Fig. 2.2. Feasible designs exist in the blue region above the front, optimal solutions upon

it, and no designs may exist in the region below it. Note that to traverse this curve to the left or

right, at least one objective’s fitness must be degraded.

Instead of providing the inner-loop one combined cost function to optimize, we pose the

multi-objective problem as a vector of cost functions: ~J~x = [J1(~x), J2(~x), ..., JM (~x)]. The inner-

loop only optimizes a decision vector for J1(~x), but the solution it finds still contains data for all

J2(~x), ..., JM (~x). Once the inner-loop completes its optimization, the solution is returned to the

outer-loop, which then records any of its other cost function values, using non-dominated sort to

determine the solution’s Pareto rank. A Pareto rank of ‘1’ puts the solution on the first non-

dominated front (the Pareto front). If a solution has a rank greater than 1, it does not fall on the

Pareto front and represents a suboptimal solution. In this dissertation, these fronts are discrete

scatter plots of points rather than smooth curves, as designs do not necessarily exist at all possible

values of the cost functions.

The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is an ideal method for solving

multi-objective hybrid optimal control problems, employing a fast non-dominated sort routine

to evaluate a problem spanned by M objectives via the Pareto criterion [26, 30]. It has proven

effective on a wide range of flight dynamics applications [29, 35, 30]. The outer-loop, which operates

solely on a population of integer decision vectors, selects from integer-encoded menus of caps for

different objective functions and thus constrains the inner-loop problem, binning the secondary

objective functions to a particular range for each candidate design. Inner-loop designs optimize ∆v
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exclusively, but the resulting decision vectors carry information regarding any secondary objectives

such as TOF. With a single run of the inner loop, all of the multi-objective performance information

is returned to the outer-loop for the ranking of the population. Thus, rather than performing an

entire optimization run on a given outer-loop vector multiple times (once for each objective) a

user may evaluate M objectives in the same timespan it takes to evaluate just one. Further, if M

inner-loop runs were performed on a design, one for each objective, there is no guarantee that the

resulting vector of cost functions would be Pareto optimal. The NSGA-II algorithm starts with an

initial population of size P , then evaluates the fitness of that population by sorting its members

onto non-domination fronts according to the domination criterion, given by Eq. 2.6.

a ≺ b if

1) ∀(fi(a) <= fi(b)) i ∈ [1, k]

2) ∃(fj(a) < fj(b)) j ∈ [1, k]

(2.6)

That is, solution a dominates solution b if all k cost functions of solution a are less than or

equal to the cost functions of solution b, and at least one of a’s costs is less than b’s. The population

of solution chromosomes then undergo crossover and mutation with each other to create the next

generation of candidate solutions, and the process repeats, preserving elite members as it proceeds,

until a maximum number of generations set by the analyst have elapsed.
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Figure 2.2: Concept illustration of the Pareto front for a mission with two objectives, f1 and f2

[61].

2.6 Multiple Spacecraft, Multiple Objective Global Trajectory Optimization

Extensive research has been performed in each of the respective fields which are incorporated

in this dissertation. However, no technique has been developed which combines the state-of-the-

art from each of them into one capability that can perform multi-spacecraft multi-objective global

trajectory optimization for multi-target exploration missions. In this dissertation, we seek to ex-

plore new and interesting global trajectory optimization problems involving multiple coordinating

spacecraft. To do this, we combine state-of-the-art global trajectory optimization capabilities into

a multi-objective, multi-agent (MOMA) HOCP framework. In multi-agent optimization, agents

are computational entities with optimizable states and behavior or policies. We have discussed the

difficulties encountered in single-spacecraft multi-objective global trajectory optimization, partic-

ularly regarding the costs of executing the continuous trajectory optimization and the traversing

the massive discrete parameter space. As discussed previously, a single spacecraft multi-objective

multi-target exploration problem, such as an interplanetary mission to Jupiter using multiple in-

termediate flybys, grows geometrically in complexity as the length of the flyby sequence and/or

the menu of possible flyby targets increases. This complexity is further increased by the addition
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of multiple spacecraft.

Multi-spacecraft multi-target exploration missions require spacecraft to cooperate to achieve

coordinated science objectives, for example: visit a maximum number of asteroid targets without

any spacecraft intercepting an asteroid already visited by another. Similarly, the trajectories in a

fleet of spacecraft must satisfy numerous inter-spacecraft coordination constraints: time between

encounters, separation distance, formation geometry, precise pointing, coordinated launch, intercept

or rendezvous. No operational capability exists which can perform multiple spacecraft, multiple

objective, global trajectory optimization for multi-target exploration missions.

To leverage known operational capabilities to perform this task, the necessary approach would

be to decouple the multi-spacecraft problem into separate single-spacecraft optimization problems,

each run with single permutation of identical constraints, within a massive grid. This approach is

extremely costly in accounting for coordination constraints and objectives in comparison to creating

a multi-spacecraft parameterization which allows the multi-spacecraft problem to be solved at once.

In this dissertation, we address this gap by creating a fully automated MOMA HOCP framework,

comprised of a multi-agent formulation of an NSGA-II outer-loop wrapped around a multi-agent

inner-loop which uses MBH and MATLAB’s fmincon NLP solver.

Combining these state-of-the-art algorithms into one capability is nontrivial. Leveraging

this overall capability to find good solutions to new multi-spacecraft global optimization problems

required the creation of new transcriptions for both the inner and outer loops, and new coordination

constraints and objectives. Further, to study problems with variable fleet sizes, it was necessary

to apply a technique which efficiently varies the outer-loop chromosome size. The Null Gene

transcription developed by Englander et al. [28] to vary the size of the planetary or asteroid flyby

sequence is leveraged here in a new and general way - to vary the number of spacecraft in a fleet.

The high level relationships between the components of this MOMA HOCP technique are shown

in Fig. 2.3.
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Figure 2.3: Flow Chart of algorithm execution. Each inner-loop problem represents a unique
candidate mission [61].



Chapter 3

Ice Giants Multi-Mission Design

3.1 Background

The framework developed in this dissertation is first introduced with three novel coordination

constraints to explore different coupled decision spaces. The technique is applied to explore the

preliminary design of a dual-manifest mission to the Ice Giants: Uranus, and Neptune, which has

been shown to be infeasible using only a single spacecraft anytime between 2020 and 2070. The

ice giants had extremely favorable alignment during the launches of the Voyager I and II missions.

Indeed, the relative geometry of Uranus and Neptune was similar enough that this would be the

most favorable for a hypothetical dual manifest mission for more than 150 years hence.

3.2 Problem Formulation

The primary objective of the analysis in this benchmark problem is to find missions, if they

exist, where two spacecraft may share a launch vehicle and perform gravity assist sequences of the

inner and outer planets to ultimately intercept the ice giants Uranus and Neptune. Planetary orbit

states were acquired from the JPL Horizons database at a single epoch, and were propagated inside

the optimizer, along with spacecraft trajectories, using a universal variable Kepler propagator.

This was done twofold for ease of prototype development and to avoid the slow runtime of SPICE

ephemeris lookups. A single impulsive maneuver is allowed between each pair of flyby bodies. With

the inner-loop’s functionality validated, the full MOMA HOCP technique was put to work on an Ice

Giant Multi-Mission preliminary design. The mission design consists of two high-thrust chemical
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propulsion spacecraft, one of which must intercept Uranus and the other Neptune. The MOMA

HOCP optimizer is tasked with optimizing the flyby sequences for each spacecraft for total ∆V ,

while also trading against time of flight (TOF).

Trajectories in this benchmark problem are transcribed using the Vinkó-Izzo Multiple Gravity

Assists with one Deep Space Maneuver (MGA1DSM) transcription, a direct method that is easy

to formulate and ideally suited to optimization with evolutionary algorithms. This is due to its

efficient transcription of a trajectory into few decision variables, and its use of implicit, rather than

explicit, constraints to satisfy trajectory continuity [48].

The towns which the “salesmen” (spacecraft) “visit” are planets. All trajectories begin at

the Earth, and propagate according to two-body patched conics assumptions. Each mission phase

is assigned a TOF and is composed of a forward propagated Kepler arc for some fraction η of that

TOF, hereafter known as the Deep Space Maneuver (DSM) Index. This Kepler arc is followed by an

impulsive DSM calculated by computing a minimum ∆V Lambert transfer arc to intercept the next

flyby target over a duration equal the remaining fractional TOF. For simplicity, the authors chose

to only allow for single-revolution Lambert arcs to be calculated. Allowing for multiple-revolution

arcs to be calculated would require additional, non-trivial changes to the problem. Specifically, the

outer-loop transcription would need to accommodate a boolean decision variable for each phase of a

trajectory determining whether the inner-loop would target a multi-revolution or single-revolution

transfer. The outer-loop transcription parsing algorithm would need to be altered to accommodate

this decision variable. Secondly, for a candidate MVM with M vehicles and N phases per vehicle,

this change would result in an increase of M×N outer-loop decision variables, significantly inflating

the decision space of the entire problem. The authors recognize the potential for interesting and

meaningful impact on the optimality of inner-loop solutions from implementing such a feature.

However, for the purposes of demonstrating the capabilities of the MVM outer-loop in this work, this

capability was deemed noncritical. In addition to choices of DSM index and total phase TOF, the

first phase begins with the choice of launch date in Modified Julian Date (MJD = JD−2,400,000.5),

C3, Right Ascension of Launch Asymptote (RLA), and Declination of Launch Asymptote (DLA),
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which all together define the initial position and outgoing velocity of the spacecraft. All subsequent

phases are transcribed with four parameters: hflyby (flyby altitude), η, total phase TOF, and the

angle β. This angle, β, is defined at a flyby body around the base of a V∞ in cone’s circumference

and determines the position of the outgoing hyperbolic velocity on this cone [48]. The sum of the

the TOFs for each phase arc in a spacecraft trajectory is subjected to the global TOF constraint

value imposed by the outer loop. Shown in Fig. 3.1, this transcription ensures unpowered flybys.

Figure 3.1: Illustration of the MGA1DSM transcription. This transcription is well suited for use
with evolutionary algorithms and is readily applied to trajectory optimization problems with small
bodies, planets, or both.

3.2.1 MVM Outer-Loop Transcription

The outer-loop problem is defined by a integer decision vector, which in turn is operated upon

by the NSGA-II algorithm. A multi-vehicle trajectory may be conceptualized as a 2-dimensional

decision vector. Each row would be a vector corresponding to the trajectory of a single space-

craft, while each column contains a gene whose value is the index encoding a particular physically

meaningful decision variable from a menu. In the concept of this work, in each row, the first

four genes comprise a header encoding bounding parameters: 1) launch window bounds, 2) global

TOF bounds, 3) C3 bounds, and 4) a gene encoding a required minimum number of identical flyby

variables in the flyby sequence. This fourth parameter is a coordination constraint that will be

discussed in a later section. Beyond this header, all remaining genes encode flyby targets.

The destination body, that is, the final gene in each row, for each spacecraft may be allowed

to vary, and is thus included in the decision vector. However for the results presented in this work,
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a constraint is imposed to make it fixed; it does not evolve during successive generations of the

NSGA-II algorithm. This is done to study problems where the desired final destination is known a

priori. While the header parameters need not necessarily be identical for both spacecraft, they are

constrained to be identical for all spacecraft in this work. For example, consider the dual-spacecraft

mission transcribed below. In Eq. 3.1, spacecraft 1’s trajectory is represented in the first row, while

spacecraft 2’s trajectory is represented in the second. In each row, the decision variables are integers

representing, in order: launch window, time-of-flight cap, C3, number of flyby genes required to be

shared by all spacecraft in the fleet Nshfb, and flyby bodies. Let us assign some example values to

this chromosome via Eq. 3.2.

X =

LW Tcap C3 Nshfb Planet1,1 Planet1,2 Planet1,3 Destination1

LW Tcap C3 Nshfb Planet2,1 Planet2,2 Planet2,3 Destination2

 (3.1)

=

1 5 2 1 1 10 4 6

1 5 2 1 2 3 5 7

 (3.2)

=

{1/1/2030, 5/1/2030} 10 yr [50, 60] km2s-2 (0 shfb) Venus NULL Jupiter Uranus

{1/1/2030, 5/1/2030} 10 yr [50, 60] km2s-2 (0 shfb) Earth Mars Saturn Neptune


(3.3)

It is helpful and intuitive to conceptualize an MVM in this way, but ultimately the two

dimensional concept is transformed into a 1-dimensional chromosome of independent genes. It is

worth noting that this requires a bookkeeping structure to track which variables map to which

spacecraft. The transformation is given in Eq. 3.4.{shared vars} {S/C 1’s unique vars}

{shared vars} {S/C 2’s unique vars}

 =⇒
[
Xshared XSC1 XSC2

]
(3.4)

This transcription parametrizes a multi-spacecraft problem as a a single trajectory until

the occurrence of a boundary event at which point another spacecraft spawns when its journey
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requires it diverge. A boundary event in this problem may be a DSM or a planetary flyby. In

the 2-dimensional conceptualization of the evaluated chromosome in Eq. 3.3, the number of rows

of this chromosome equals the maximum allowed number of spacecraft in a fleet (in this case 2)

while the number of columns is equal to the length of the header plus the maximum number of

allowed intercept bodies for a spacecraft (which in this case is 4). Note that one gene in equation

(2) evaluates to NULL. In the decision variable menu for allowed intercept bodies, which in this

work are planets, there are N possibilities to choose from when each intercept body gene in the

sequence is created. However, the gene creation process allows for an integer gene to be chosen

that is between 1 and 2N . Thus, there is a 50% chance that an intercept body gene is an integer

that does not correspond to an index on the decision variable menu. If and when this happens, the

inner-loop ignores that gene since there is no physical intercept body to be reached. The inner-

loop thus optimizes a pruned decision vector that does not contain any null genes; only physically

meaningful ones.

This Null Gene transcription was developed by Englander et al. 2013 to solve the problem of

allowing the length of a flyby sequence to vary while maintaining a fixed array size programmatically.

In short, the Null Gene transcription efficiently enables the encoding of the lack of an intercept

body [31]. It applies the insertion and deletion behaviors found in the genetic crossover of natural

selection to the optimization of a variable length flyby sequence. Final destination intercept bodies

are included in the outer-loop decision vector in order to be passed to the inner-loop. For the

problem explored in this work, the destinations are constrained to not crossover or mutate since

they are known. Overall, the multi-agent transcription summarized here presents an efficient setup

to pose MVM design problems, enabling outer-loop and inner-loop coordination constraints using

a header of of bounding parameters and a transformation of the overall problem into a single

chromosome.
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3.3 Outer-Loop Coordination Objectives (Minimax Approach)

The approach taken for multi-agent objectives is a weakest link formulation. For a given

objective function, the cost assigned to the fleet is equal to that of the highest cost spacecraft. In

the outer-loop, minimal-cost individuals are dominant. Over successive generations, evaluating a

fleet’s cost this way incentivizes minimization of the cost of all spacecraft in the fleet. This is known

in game theory as a minimax problem - where the maximum cost (or “loss”) across individuals

is minimized. This approach has never been applied to a interplanetary MVM design. In the

results presented in this work, TOF is a handled as an outer-loop minimax objective, with the

cost assigned to a trial fleet equal to the TOF of slowest spacecraft to reach its destination. This

coordinated objective approach can be applied to endless other quantities of interest to mission

designers such as payload mass, fuel mass, ecliptic inclination change, number of flybys, etc. The

choice of using minimax as a coordinated objective approach is driven by its applicability to integer

optimization problems, and by its ability to minimize the individual and collective loss by all

players in a game (or in this case, all spacecraft in a fleet). Secondly, consider a fleet of identical

spacecraft. TOF drives, among other factors, the design of the spacecraft bus. The longer the

TOF, the more redundant components needed, so minimizing the longest TOF also minimizes the

need for redundant hardware.

3.4 Outer-Loop Coordination Constraints

The dominant challenge of this work is how to efficiently and effectively handle coordination

constraints to facilitate robust global optimization of an interplanetary MVM. This challenge is com-

prised of multiple hurdles including how the outer-loop discretizes continuous-valued constraints,

how those constraints are manifested in the inner-loop, classifying these coordination constraints,

and understanding their impact on the solution space of an MVM design problem. In this work,

three coordination constraints are introduced.
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3.4.1 Shared Launch Vehicle Constraint

In this work, all spacecraft in a trial fleet are subject to the initial point coordination con-

straint of sharing a launch vehicle. This active coordination constraint approach guides the opti-

mizer through the true multi-mission solution space, coupling the performance of one spacecraft to

the other. In the outer-loop, this constraint is handled in the header block of the decision vector via

genes for each spacecraft encoding identical launch epoch bins, and C3 bins, and a boolean value

enforces that these genes remain identical for all spacecraft in the fleet during the outer-loop’s

genetic crossover process. At the inner-loop level, any parameters that the outer-loop stipulates

must be constrained to be identical are contained within a “shared parameters header”. Then,

any unique parameters to spacecraft #1 are concatenated to the header, followed by unique pa-

rameters to spacecraft #2, etc. Thus the inner-loop makes a transformation of the 2-dimensional

MVM vector into a 1-dimensional vector based on shared parameters, and this allows any shared

parameters and coordination constraints to be strictly enforced during optimization. The shared

launch vehicle constraint manifests in the inner-loop decision vector by holding the launch epoch,

C3, RLA and DLA parameters into the shared header.

3.4.2 Minimum Number of Identical Flyby Genes Constraint

For various reasons, a mission designer may want multiple spacecraft in a fleet to flyby

identical targets, not necessarily at the same time. For example, the Voyager spacecraft performed

staggered flybys of Jupiter and Saturn to leverage favorable turning angles. These staggered flybys

also enabled interesting secondary science objectives including imaging the planets at different

points along their orbits. This is an intermediate point constraint that is applied via an outer-loop

decision variable menu with genes specifying anywhere from zero to M desired identical flyby genes.

If a trial fleet is allowed N intermediate flybys to its destinations, then a user sets the shared flyby

genes menu to allow 0−M shared flyby genes (where M < N).

One subtle caveat is that given the outer-loop’s null gene transcription, flyby genes are not
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equivalent to physical flybys. With fixed non-null destination genes, the fleet size is constrained

to be constant at the user-specified maximum number. But with intermediate flybys, the number

of flybys can and does evolve over generations thanks to the null gene transcription’s insertion

and deletion behavior. For example, consider the following 2-dimensional conceptualization of an

outer-loop decision vector:

X =

LW Tcap C3 (3 shared flyby genes) Venus NULL NULL Jupiter Uranus

LW Tcap C3 (3 shared flyby genes) Venus NULL NULL Saturn Neptune


(3.5)

In Eq. 3.5, the outer-loop has generated a vector where both spacecraft share at minimum

the first three flyby genes, but 2 of those genes were generated null. So functionally, the inner-

loop problem is only optimizing trajectories with one intermediate flyby each rather than 3 (gene

deletion occurs). However when two trial fleets undergo crossover during NSGA-II, a null intercept

body gene may be swapped with a valid intercept body gene, and insertion occurs. Similarly, a

null gene can mutate into a valid gene. With the identical flyby genes constraint turned on, the M -

flyby-gene long flyby sequence for each spacecraft in the fleet must change identically throughout

the mating process, if at all, due to the transformation described in Eq. 3.4.

For lower C3 trajectories, a longer maximum length for the flyby sequence may be necessary

to deliver spacecraft to their destinations, but this length will also increase the runtime of the

optimizer. This occurs because 1) in the GA outer-loop, every gene added to a chromosome

geometrically increases the size of the search space and 2) at the inner-loop level, a feasible trajectory

with more intermediate flybys is geometrically more difficult to find with each additional flyby

added. Due to the slow convergence of fmincon coupled with the MGA1DSM transcription’s lack

of analytical derivatives, it was found that candidate missions involving very few intermediate flyby

encounters could be studied reliably in a tractable runtime.
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3.4.3 Minimum Number of Shared Trajectory Phases Constraint

This boolean constraint enables the transcription of a trajectory where both payloads fly

the exact same trajectory for a portion of the mission. This constraint may only be enabled if

the minimum shared flyby genes constraint is also enabled. If so, then for any non-NULL flyby

target genes, the two spacecraft are required to share the same trajectory until all specified shared

flybys are completed. However, if any of the shared flyby genes are NULL, such as in Eq. 3.5,

those outer-loop genes are ignored by the inner-loop before the trajectories to them are constructed.

This constraint is enforced by the inner-loop via a header of shared parameters. Just as with

the outer-loop vector in Eq. 3.5, the 2D hybrid decision vector conceptualization is transformed

into a 1D vector by the inner loop by parsing it into blocks in the following order: a header of

shared decision variables including launch asymptote, and shared trajectory phases, followed by

unique decision variables for spacecraft 1, then unique decision variables for spacecraft 2, etc. The

indices that encode these blocks are stored in a separate structure parsed during the evaluation of

an objective function. By making this transformation, the shared trajectory phases constraint is

strictly enforced. Were the vector to be handled as 2-dimensional, with one row per spacecraft, a

linear constraint would need to be imposed in the inner loop for every decision parameter that is

meant to be identical, and the NLP solver will pass through regions of constraint violation with

no guarantee of satisfying the constraint. With the transformation to 1 dimension, no extra linear

constraints need be imposed and there is no room to violate the coordination constraints. This

constraint produced the least feasible solution space, due to the relative geometry of Uranus and

Neptune.

3.5 Results

The 2013 Planetary Science Decadal Survey identifies both Uranus and Neptune as high

priority science targets for future missions. However, no one spacecraft can perform flybys of both
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targets within the next 50 years [46]. This is, in part, due to the lacking conjunction geometry that

existed during the Voyager spacecraft launches and occurs roughly once every 170 years. Therefore,

in order to visit both targets, two vehicles are needed. This entails two possibilities: either two

separate single-vehicle missions, or a dual vehicle multi-mission where both spacecraft are deployed

from the same launch vehicle. The approach of designing the latter via cross-referenced independent

grid searches for each spacecraft would be both prohibitively costly in terms of computing resources,

and insufficient to provide an understanding of the optimal solution space due an ability to impose

inter-spacecraft coordination constraints.

Independent searches, filtered a posteriori into a constrained space of shared launch opportu-

nities, are likely to miss optimal opportunities and provide only a handful of point solutions rather

than a full Pareto-optimal front. Here we present an early analysis of an Ice Giant Multi-Mission

design using the novel MOMA HOCP technique described in this work. During the analysis period,

the difference in ecliptic right ascension between Uranus and Neptune is considerable. This leads to

the performance of one trajectory being inversely proportional to that of the other. Launched along

the same asymptote, as the Uranus probe’s trajectory improves, the Neptune probe’s trajectory

worsens and vice versa. Below, in Table 3.1, are the parameters bounding the problem formulation.

Two modestly sized low C3 studies were run on the CU Boulder Summit cluster followed by

several otherwise equivalent high C3 studies. Each of these studies was multi-threaded and executed

on a single node that contained 24 cores, allowed a maximum runtime of 24 hours. The Summit

cluster does not have a proprietary MATLAB distributed computing license, so the authors were

unable to leverage multiple connected nodes to complete these studies. Each outer-loop decision

vector, optimized in parallel, was allotted an inner-loop optimization time of one hour, which yields

the optimization of one outer-loop generation per hour. Each of the studies included the shared

launch asymptote constraint, but two studies separately included the shared flyby genes constraint

and shared trajectory constraint. The low C3 studies biased results towards higher numbers of

intermediate flybys, while the higher C3 studies biased more direct transfers. The parameters for the

low C3 studies are shown in Table 3.1. Changes made for the high C3 studies are bolded. The choice



37

of C3 bounds for the latter study was made based on C3 values obtained from JPL’s pre-decadal

study, specifically the point solution for an Ice Giant Dual Manifest mission using an optimal,

purpose-built kick stage [44]. In this paper, only high impulse chemical thrust transfer trajectories

were examined. In the JPL study, both spacecraft utilized low thrust propulsion systems. Thus

an apples-to-apples comparison could not be accomplished in this study. However, were identical

inner-loop frameworks implemented, a multi-vehicle outer-loop capable of representing the coupled

problem and any appropriate coordination constraints would outperform a grid search outer-loop

that optimizes separate single-vehicle subproblems, similar to that in [44].

Fig. 3.2 depicts the Pareto fronts of ∆V versus minimaxed TOF for the fleet at the 22nd outer-

loop generation for the minimum identical/SHared FlyBy (SHFB) genes constraint and SHared

TRajectory phases (SHTR) constraint studies. Each circle represents a spacecraft fleet. The size

of each marker qualitatively reports the total number of intermediate flyby targets used by the

spacecraft in the fleet with the least amount of flybys. In these plots, there are two sizes: zero

intermediate flybys (smaller marker), and one intermediate flyby (larger marker). The SHTR study

exhibits a front with a noticeably sparser tail.

The low C3 studies both found the minimum ∆V solution to be one that shares no trajectory

phases at all, but where each spacecraft performs a flyby of one identical target (Jupiter, white

orbit). The result is shown in Fig. 3.3. Red star markers depict events including launch, deep space

maneuvers, and flybys. The Neptune probe performs a solar system escape maneuver to achieve

the energy change needed to reach Neptune. That is, the spacecraft launches from Earth, performs

a Jupiter flyby to target the Sun, and performs a solar flyby effectively achieving an Oberth Effect

energy increase to reach Neptune, analogous to the maneuver designed by Arora et al. for a Kuiper

Belt Object encounter [10]. This mission is summarized in Table 3.5 and has a total ∆V of 18

km/s with a TOF of 12.3 years for the slowest spacecraft to reach its target.

The higher C3 studies produced results in greater abundance. The Pareto fronts for each are

captured in Fig. 3.4. In Fig. 3.4 (b), depicting the front for the SHTR constraint, the structure

of the front is markedly sparser than either of its less tightly constrained counterparts. Due to
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the unfavorable phasing of Uranus and Neptune during the study window, numerically feasible

solutions for the SHTR constraint study were few and far between. No feasible or impractical-but-

feasible solutions were found in either the low or high C3 SHTR studies. Among other concerns

to be addressed in future work, a more thorough search is needed. In the SHFB study shown

in Fig. 3.4 (c), the Pareto front exhibits a distinct tail at the 10-year TOF mark, where local

families of otherwise equivalent ∆V solutions exist for all TOFs over 10-years. Across all studies,

the authors find that launch dates later than 1/1/2032 yield markedly fewer, if any, solutions. We

conclude that this is due mainly to the fact that the Ice Giants’ relative difference in ecliptic right

ascension has increased since the epoch of the Voyager probe launches, back when the planets were

in conjunction.

In Fig. 3.5 (a), the high C3 SHLV study’s minimum ∆V solution finds a trajectory whose

geometry suggests that the Neptune probe would benefit from an Earth flyby, while the Uranus

probe could potentially realize a ballistic trajectory with a slightly higher C3. Since the bounds of

this study did not allow for inner planet flybys, an Earth flyby was not an available option. In 8b,

the high C3 SHFB study, the minimum ∆V solution is the most promising MVM solution among all

studies run. Its primary shortcoming is the Uranus probe’s 7.5 km/s DSM. Secondarily, the ‘DSM’

on the Neptune trajectory is performed on the launch date, which implies a need for a higher C3 to

eliminate this maneuver. Mission itineraries for these high C3 SHLV and SHFB missions are given

in Table 3.3 and Table 3.3 respectively. We investigated the possibility of leveraging a Jupiter flyby

for the solution in Fig. 3.5 (b) - an option that was thought to have been missed by the outer-loop.

However, running this new inner-loop case for the same launch date as the previous example, a

lower ∆V solution did not in fact exist. The solution discovered is shown in Fig. 3.6.

Additionally, we present a comparison of the solutions in Fig. 3.5 (b) and Fig. 3.6 against

the optimization of each of their MVMs as two separate SVMs with the same epoch and C3 BUT
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Outer-Loop Parameter Value

Population Size 72

Number of Workers 72

Generations 24

Max. Intermediate Flybys 5

Mutation Rate 10%

Main Objective minimize fleet ∆V

Secondary Objective(s) [minimax TOF]

Launch Window Menu {[1 Jan, 1 May 2030] : 4 month : [1 Sep, 31 Dec 2040]}
Global TOF Cap Menu (years) [10, 11, ...,16]

Planetary Flyby Menu [Venus, Earth, Mars, Jupiter, Saturn]

Min. Shared Flyby Genes Menu [0, 1, 2, 3, 4]

Shared Phases Menu [0, 1]

C3 (km2s-2) Bounds Menu {[0.0, 2.5] : 2.5 km2s-2 increment : [22.5, 25.0]}
MBH Parameter Value

Max. Global Search Hops 10,000

Local Hop Magnitude ±5% of current decision parameter value

Improvement Criterion 1.0E-5

Nmax 25

Max. Runtime (minutes) 60

Outer-Loop Parameter Value

Max. Intermediate Flybys 4

Planetary Flyby Menu [Mars, Jupiter, Saturn]

C3 (km2s-2) Bounds Menu {[25.0, 30.0] : 5.0 km2s-2 : [210.0, 220.0]}

Table 3.1: Table of options parameters for the MOMA HOCP setup for both the low and high C3

regime studies.

Low C3, SHFB Date C3(km
2

s2
) RLA° DLA° ∆V (kms ) Alt. (rplanet)

Spacecraft 1 — — — — — —

Launch 1 May 2032 25 319.4 4.1 — —

DSM 1 (km/s) 5 Jul 2034 — — — 4.981 —

Flyby Jupiter 24 May 2036 — — — — 50.0

DSM 2 (km/s) 24 May 2036 — — — 2.622 —

Encounter Uranus 7 May 2044 — — — — —

Spacecraft 2 — — — — — —

Launch 1 May 2032 25 319.4 4.1 — —

DSM 1 (km/s) 11 Jun 2032 — — — 4.528 —

Flyby Jupiter 27 Dec 2036 — — — — 50.1

DSM 2 (km/s) 1 Mar 2039 — — — 5.591 —

Encounter Neptune 1 Jan 2045 — — — — —

Table 3.2: Mission itinerary for the minimum ∆V mission of the low C3 SHFB constraint study
(solution in Fig. 3.3).
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not constrained to share a launch asymptote. Rather, the two spacecraft are meant to find

the optimal mission to each of their own independent targets. We present this comparison to

quantify, within the bounds of the problem in this work, the infeasibility of a dual-manifest Ice

Giants mission for impulsive high-thrust spacecraft. The MVM solutions represent the “middle-

of-the-road” or “least worst” launch asymptote for a co-launched mission. As discussed further

in the following results, the least worst co-launched solution is considerably more costly than the

total cost of two separately launched missions with different asymptotes. Within the problem setup

of this work, if both spacecraft are launched along the same asymptote, a cheaper trajectory to

Neptune necessitates a more expensive trajectory to Uranus, and vice versa.

For the MVM solution in Fig. 3.6, its separately optimized SVMs are described in Fig.

3.9 and the corresponding mission itineraries are referenced in Table 3.8. For the MVM of Fig.

3.5 (b), the optimal distinct SVMs at its launch epoch and C3 are described in Fig. 3.7 and

the corresponding mission itineraries are referenced in Table 3.6. Both cases exhibit a significant

difference between the optimal coupled problem and the optimal uncoupled problems in terms of

trajectory behavior and total ∆V . Both versions of each case (single and multi-vehicle solutions)

were run for 30 minutes with identical outer loop vector parameters for equivalent comparison. In

the case of the Fig. 3.6 MVM versus corresponding Fig. 3.7, there is a total ∆V difference of

approximately 7.0 km/s. For the case of the Fig. 3.5 (b) MVM versus corresponding Fig. 3.8

SVMs, there is a total ∆V difference of approximately 1.2 km/s.

In order for the separate SVM formulation to find solutions that share a launch asymptote

using no prior knowledge of the optimal MVM solution, one approach would be to use a grid search

method which would take considerably more runtime than the MVM method of this work. Another

way to illustrate the need for the MVM capability in this work is to optimize one transfer for a

given launch date and C3, then optimize the second transfer but using the exact launch asymptote

of the first transfer.
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High C3, SHLV Date C3 (km2/s2) RLA° DLA ° ∆V (km/s) Alt. (rplanet)

Spacecraft 1 — — — — — —

Launch 8 Jun 2030 121.2 40.4 -5.2 — —

DSM 1 (km/s) 8 Sep 2030 — — — 4.546 —

Encounter Uranus 17 Nov 2039 — — — — —

Spacecraft 2 — — — — — —

Launch 8 Jun 2030 121.2 40.4 -5.2 — —

DSM 1 (km/s) 13 Dec 2033 — — — 10.596 —

Flyby Jupiter 12 Oct 2034 — — — — 93.9

DSM 2 (km/s) 20 Oct 2035 — — — 0.047 —

Encounter Neptune 9 Oct 2039 — — — — —

Table 3.3: Mission itinerary for High C3 SHLV constraint study (solution captured in Fig. 3.5 (a)).

High C3, SHFB Date C3 (km2/s2) RLA ° DLA ° ∆V (km/s) Altitude (rplanet)

Spacecraft 1 — — — — — —

Launch 16 May 2030 121.0 339.3 -37.0 — —

DSM 1 (km/s) 30 May 2034 — — — 7.584 —

Encounter Uranus 16 May 2046 — — — — —

Spacecraft 2 — — — — — —

Launch 16 May 2030 121.0 339.3 -37.0 — —

DSM 1 (km/s) 16 May 2030 — — — 1.854 —

Encounter Neptune 16 May 2046 — — — — —

Table 3.4: Mission itinerary for High C3 SHFB constraint study (solution shown in Fig. 3.5 (b)).
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High C3, SHFB Date C3 (km2/s2) RLA ° DLA ° ∆V (km/s) Alt. (rplanet)

Spacecraft 1 — — — — — —

Launch 15 May 2030 121.5 356.5 -51.2 — —

DSM 1 (km/s) 22 Jan 2033 — — — 3.517 —

Flyby Jupiter 19 May 2035 — — — — 105.2

DSM 2 (km/s) 21 Jul 2035 — — — 13.118 —

Encounter Uranus 22 May 2040 — — — — —

Spacecraft 2 — — — — — —

Launch 15 May 2030 121.5 356.5 -51.2 — —

DSM 1 (km/s) 17 May 2030 — — — 5.477 —

Encounter Neptune 24 Apr 2046 — — — — —

Table 3.5: Minimum ∆V solution itinerary for the mission in Fig. 3.6. This mission has the same
outer-loop decision vector as the mission in Fig. 3.5 (b) (itinerary in table 3.4), but with a Jupiter
flyby for the Uranus spacecraft. The total ∆V is significantly higher. The inner-loop runtime was
30 minutes; longer runtimes produced no improvement.

Finally, we present a comparison between an MVM point solution generated by the coupled

MOMA HOCP technique against that generated by sequential optimization of two SVMs with

identical asymptotes. Using the same epoch, and C3 bounds, as those for the optimal MVM in Fig.

3.5 (b), the inner-loop was made to find the optimal Uranus trajectory. Once this trajectory was

found, the Neptune trajectory optimization was run but constrained to use the asymptote from the

Uranus spacecraft’s trajectory. The resulting ”multi-spacecraft” mission from the sequential opti-

mization is outlined in Table 3.8, and its separate trajectories are depicted in Fig. 3.9. Compared

to its optimal MOMA solution in Table 3.4, the sequentially optimized multi-mission is 2 km/s

more expensive, supporting the need for a coupled MOMA HOCP formulation.
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High C3, SHFB Date C3 (km2/s2) RLA ° DLA ° ∆V (km/s) Alt. (rplanet)

Spacecraft 1 — — — — — —

Launch 16 May 2030 122.8 24.5 -5.7 — —

DSM 1 (km/s) 10 Sep 2032 — — — 4.651 —

Flyby Jupiter 20 May 2035 — — — — 50.1

DSM 2 (km/s) 13 Jul 2035 — — — 9.118 —

Encounter Uranus 23 May 2040 — — — — —

Spacecraft 2 — — — — — —

Launch 16 May 2030 125.0 328.8 -4.7 — —

DSM 1 (km/s) 2 Aug 2030 — — — 1.372 —

Encounter Neptune 16 May 2046 — — — — —

Table 3.6: Mission itineraries for two separate single-vehicle missions (solutions in Fig. 3.7), one
to Uranus and the other to Neptune, with minimized ∆V for each. Each case ran for 30 minutes.

High C3, SHFB Date C3 (km2/s2) RLA ° DLA ° ∆V (km/s) Alt. (rplanet)

Spacecraft 1 — — — — — —

Launch 16 May 2030 125.0 5.3 -0.8 — —

DSM 1 (km/s) 22 Oct 2031 — — — 6.648 —

Encounter Uranus 16 May 2045 — — — — —

Spacecraft 2 — — — — — —

Launch 16 May 2030 125.0 328.8 -4.7 — —

DSM 1 (km/s) 2 Aug 2030 — — — 1.372 —

Encounter Neptune 15 May 2046 — — — — —

Table 3.7: Mission itineraries for two separate single-vehicle missions (solutions in Fig. 3.8), one
to Uranus and the other to Neptune, with minimized ∆V for each. Each case ran for 30 minutes.

High C3, SHFB Date C3 (km2/s2) RLA ° DLA ° ∆V (km/s) Alt. (rplanet)

Spacecraft 1 — — — — — —

Launch 16 May 2030 125.0 5.3 -0.8 — —

DSM 1 (km/s) 22 Oct 2031 — — — 6.648 —

Encounter Uranus 16 May 2045 — — — — —

Spacecraft 2 — — — — — —

Launch 16 May 2030 125.0 5.3 -0.8 — —

DSM 1 (km/s) 28 Aug 2036 — — — 4.792 —

Encounter Neptune 16 May 2046 — — — — —

Table 3.8: Mission itinerary for the “sequentially optimized” version of the optimal SHFB MVM
in Fig. 3.5 (b). The separate trajectories are depicted in Fig. 3.9. Comparing against the
nominal MVM in Fig. 3.5 (b), the sequential optimization method produces a far more costly
mission ( 2 km/s more) than the coupled MVM method developed in this work. The sequential
result is significantly more suboptimal, as hypothesized. Regardless of the particular inner-loop
transcription, given some inner-loop optimizer, these results are clearly indicative of the need for
coupled optimization.
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(a)

(b)

Figure 3.2: Low C3 study results: (a) and (b) show, respectively, the Pareto fronts of ∆V versus
TOF for the minimum shared flyby genes constraint (SHFB) study, and the minimum number of
shared trajectory phases constraint (SHTR) study. In (a), the size of each marker codifies the
number of flyby genes shared, while in (b) it codifies the number of shared trajectory phases. The
smaller size represents zero shared flyby genes/trajectory phases, and the larger size represents two.
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Figure 3.3: Minimum ∆V solution for the low C3 SHFB study. Red stars indicate locations of deep
space maneuvers.
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(a)

(b)

(c)

Figure 3.4: High C3 studies: All fronts shown after 24 hours of outer-loop runtime. Pareto fronts
are depicted for the shared launch asymptote constraint study (SHLV) (a), SHTR study (b), and
SHFB study (c). Note the far more sparse front of the SHTR study.
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Figure 3.5: (a) The high C3 SHLV study’s minimum ∆V solution and (b), the high C3 SHFB
study’s minimum ∆V solution.

Figure 3.6: This is the high C3 SHFB case from Fig. 3.5 (b), but rerun with the same launch epoch
as Fig. 3.5 (b) to investigate the possibility of a synergistic Jupiter flyby. The mission does not
appear to benefit from a Jupiter flyby at the given launch epoch.
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Figure 3.7: The high C3 SHFB case from Fig. 3.6 , rerun with the same launch window and C3

bounds, but as two separate single-vehicle problems. A dual-manifest mission would result the
launch asymptote to be the one that least detriments each individual trajectory. With the launch
C3 and asymptotes not constrained to be identical, the trajectories are quite different as is the sum
of their ∆V , roughly 7 km/s lower than the coupled MVM, as shown in Table 3.6.

Figure 3.8: The high C3 SHFB case from Fig. 3.5 (b), rerun with the same launch window and C3

bounds as the Fig. 3.5 (b) mission, but as two separate single-vehicle problems. The total ∆V for
these missions is 8.110 km/s, cheaper than the 9.438 km/s ∆V of the multi-mission in Fig. 3.5 b.
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Figure 3.9: A co-launched MVM based off the solution Fig. 3.5 (b), but with each spacecraft’s
trajectory optimized sequentially rather than in parallel as a coupled problem. The resulting
trajectories are significantly more costly in terms of ∆V , as discussed in Table 3.8.
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3.6 Summary

In this paper, we have described the design of a novel Multi-Objective, Multi-Agent, Hybrid

Optimal Control technique for the global optimization of interplanetary multi-spacecraft trajecto-

ries. We have developed an outer-loop transcription that parametrizes an MVM as one coupled

problem as opposed to separate subproblems, and presented case studies to demonstrate the need

for this transcription when investigating multi-vehicle interplanetary trajectory optimization prob-

lems. Trajectories free to optimize separately, launch at the same epoch but not constrained to

share a launch asymptote, exhibited completely different behavior compared to the co-launched

MVM solution at the same epoch. Further, sequentially optimized single-vehicle trajectories, with

one spacecraft constrained a posteriori to use the launch asymptote of the previously optimized

trajectory, resulted in suboptimal solutions compared to the optimization of the corresponding

coupled MVM.

Three novel coordination constraints were investigated and as more were added, they pro-

jected different, often costlier, behavior onto the solution space of the problem. The shared launch

vehicle constraint introduced the basic coupling of multiple spacecraft trajectories into the same

launch asymptote. The SHFB constraint restricted optimization to explore search spaces where

one or more intermediate flyby targets would be visited by both spacecraft, and the results behaved

differently from those where this constraint was not enforced. The SHTR constraint was found to

be ill-suited to the Ice Giants problem during the analysis window due to the difference in ecliptic

right ascension of Uranus and Neptune, but may be an important constraint to investigate for

different problems. We introduced a minimax method as an inter-spacecraft coordinated objective

approach for the TOF cost function to incentivize each spacecraft in a fleet to arrive at their targets

in minimum time. The goal of this work was to develop and present a novel approach to posing and

optimizing interplanetary MVMs with basic feasibility, and the results of this work demonstrate

promise for the current technique.

The transcription presented in this chapter illustrated how a multi-spacecraft problem may
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be parametrized into a structure where there is initially a single trajectory with new spacecraft

then spawning at boundary events, such as post-launch deep space maneuvers, or planetary flybys.

A header of shared parameters by all spacecraft in the fleet precedes gene sequences representing

the unique individual traveling salesmen problems for each spacecraft. As developed thusfar, this

structure requires shared parameters in the header to pertain to consecutive phases of the fleet’s

trajectories starting from the first phase. The possibility of having a fleet where shared boundary

events are nonconsecutive can not be captured. In this dissertation, we seek to find a more general

transcription which can pose any MTSP in the outer-loop. To find such a transcription, we explore

a new benchmark problem in chapter 4.



Chapter 4

Very Long Baseline Interferometry Mission Design

4.1 Background

In this chapter, we introduce several new contributions to expand on the proof of concept

in Chapter 3. Whereas the previous benchmark problem examined the trajectories of a fleet with

two spacecraft whose final destinations were fixed, the final destinations in this problem are free

to vary as does the fleet size. The trajectories do not spawn at boundary events along a single

initial trajectory, but rather, begin at free points in space. We focus this benchmark’s analysis on

the science orbit phase of a VLBI mission. The overall MOMA-HOCP transcription employed is

now more generalizable for coordinated Multi-Traveling Salesmen Problems (MTSP) beyond this

one. We apply s Null Gene transcription to vary the fleet size, and a introduce a cost function

for observation multiplicity (multiple VLBI observations taken at the same epoch). We show

that through application of these techniques, we can efficiently explore the multi-objective Pareto

front across range of fleet sizes and observations taken. Within the Pareto front, many interesting

solutions appear, including one mission with a fleet of 7 spacecraft which images 16 radio sources.

We also find that in many cases, for a given fleet of spacecraft, allowing multiple VLBI observations

to be taken at each epoch yields a mission which images more targets in less time than a mission with

only one observation per epoch. In §4.2, we first introduce the GTOC-8 trajectory optimization

problem statement as a motivating point for this work, then describe problem we have created

which is very different. We then discuss the VLBI problem transcription we have created in §4.2

and provide examples to illustrate how the components behave. We then discuss several interesting
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results using this framework in §4.4, discuss how they motivate future work and draw conclusions

in §4.5.

4.2 Problem Formulation

This work was inspired by the problem statement of the 8th Global Trajectory Optimiza-

tion Competition (GTOC-8), which challenged mission designers to observe multiple distant radio

sources with VLBI using a fleet of 3 spacecraft, first propelled with some high chemical impulse

out of a parking Low Earth Orbit (LEO) onto science trajectories using low thrust, with the op-

portunity for lunar gravity assists to make dramatic orbit plane changes while saving fuel [49]. At

a given epoch, an observation of a radio source may be considered taken if the normal vector to the

triangle formed by the 3 spacecraft points within 0.1 degrees of the heliocentric position vector to

the distant radio source. The performance index for this problem aimed to maximize the number

of observations taken, while also rewarding several factors including: observations of targets with

lower declination, triangles with a larger minimum altitude (a metric for the interferometric base-

line), and observations of the same target (up to 3 repeat observations are rewarded). The target

set contains 420 radio sources, distributed all across the celestial sphere. The explicit GTOC-8

performance index (which is to be maximized) follows:

J =
∑
Nobs

Ph(0.2 + cos2δ) (4.1)

where Nobs is the total number of observations taken, P is the multiplier that rewards up to

3 repeat observations of a target, h is the minimum altitude of the observation triangle, and δ is

the target’s declination. The position unit vector to the target is given by

ŝ = cosδcosα x̂+ cosδsinα ŷ + sinδ ẑ (4.2)

where α and δ are the right ascension and declination of a radio source.

At a given epoch, any 3 spacecraft have the position vectors ~r1, ~r2, ~r3. The unit normal

vector to the plane formed by the 3 spacecraft is then:
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n̂ =
(~r2 − ~r1)× (~r3 − ~r1)

|(~r2 − ~r1)× (~r3 − ~r1)|
(4.3)

One must also consider the anti-normal vector, which is simply −n̂. An observation of a

target may be taken when ŝ · n̂ = 1 or ŝ · −n̂ = 1, that is, when the angle θ between ŝ and ∓n̂ is

0.0°. There is however a maximum 0.1°allowed pointing error.

The dynamics for the spacecraft are two-body Keplerian, but with an added low thrust term

with a maximum thrust of 0.1 Newtons.

~̈r = −µ r̂
r3

+
~T

m
(4.4)

where µ is the gravitational parameter of the Earth, ~T is the spacecraft’s thrust vector, and

m is its mass.

We used this formulation as a motivational starting point, but ultimately created a very dif-

ferent trajectory optimization problem. In our work, we sought to understand trades not captured

in the GTOC-8 problem formulation including the trade between fleet size and number of observa-

tions, and the relationship between multiple competing cost functions (performance indices). We

propagate trajectories according to two-body Keplerian dynamics in the heliocentric regime (where

the interferometry baseline is very long due to the size of the spacecrafts’ orbits) with semi-major

axes on the order of 1AU. We parametrize a trajectory into phases, where a phase is defined by

an initial and final state, a propagation time, an observation target, and a single impulsive ma-

neuver performed immediately after the observation of the target. The Keplerian initial state for

a spacecraft’s first phase is given explicitly in the decision vector while the rest are omitted. The

trajectory of a spacecraft is thus:

Xsc = [X0kep , ~t, {∆ ~Vij}] (4.5)

where X0kep = [a, e, i, Ω, ω, ν] is the initial state of the spacecraft given by the classical

orbit elements, ~t = [ t1, t2, ... tO] is the vector of propagation times to each of O subsequent VLBI

observations, and {∆~V } = [∆ ~V1, ∆ ~V2 ...,∆~VO] is the set of ∆~V maneuvers performed impulsively



55

immediately after one observation is taken to target the trajectory towards the next observation.

We frame the maneuvers in spherical coordinates with ∆~Vi = [|∆~Vi|, αi, δi] where α and δ are the

right ascension and declination of the maneuver and |∆Vi| is its magnitude. A single phase of each

trajectory begins with an initial Keplerian state, propagates analytically for some duration, arrives

at a final Keplerian state at which point an observation is taken, then a maneuver is applied. Note

that for a mission with O observations, there are O− 1 maneuvers. The Keplerian initial state has

6 elements, the ~t component has O elements, and the {∆~V } component has 3(O − 1) elements.

Finally, the decision vector describing the trajectories of the entire fleet is a concatenation of the

decision vectors of each individual spacecraft within the fleet.

~Xfleet = [ ~Xsc1 ,
~Xsc2 , ...,

~XscS ] (4.6)

Thus the decision vector for a fleet with S spacecraft with O epochs at which an observation

is taken has a cardinality of:

CIL = S(6 +O + 3(O − 1)) = S(3 + 4O) (4.7)

The goal for a mission with a given number of spacecraft and targets is to minimize the total

maneuver cost.

J( ~Xfleet) =

NS∑
i=1

NO−1∑
j=1

|∆~Vij | (4.8)

An observation of a target is taken when ∓ŝ · n̂ = 1. This sign dependence in creates

a piecewise constraint. So to enable consideration of both the normal and anti-normal to the

VLBI triangle for observations while maintaining a smooth constraint function, we instead use the

following equation, where perr is the pointing error.

perr = 1− (ŝ · n̂)2 (4.9)

A 0.1° pointing error equates to a value of perr ≈ 3.046e−6, a value which we will call pmax.

The angle between n̂ and ŝ will always vary between 0-180°, and this smooth nonlinear constraint

function evaluates to zero in either case, preventing a fork in the optimization. We now have a

geometric inter-spacecraft coordination constraint.
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This coordination constraint in Eq. 4.9 is applied at each observation taken. We can frame

this as a vector of constraints which must always be less than or equal to zero to ensure all

observations are taken.

FO×1( ~Xfleet) = 1− pmax − (ŝ · n̂( ~Xfleet))
2 (4.10)

Finally, the two-body dynamics of the problem lack the continuous thrust term of the GTOC-

8 problem due to this being an impulsive burn problem, with burns only applied once along a phase

after each observation. The spacecraft’s mass is also neglected.

~̈r = −µ⊙ ~r

r3
(4.11)

where µ⊙ is the gravitational parameter of the Sun. Fig. 4.1 gives an illustration of the

trajectory parameterization in physical space.

Xkep 0, 2
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Kepler1,1

Kepler2,1
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TOF3,1
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TOF2,2
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Figure 4.1: Example of the VLBI trajectory optimization problem with a fleet of three spacecraft
making two consecutive observations.
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In summary, given:

~̈r = −µ⊙ ~r

r3

~Xfleet = [ ~Xsc1 ,
~Xsc2 , ...,

~XscS ]

J( ~Xfleet) =

NS∑
i=1

NO−1∑
j=1

|∆~Vij |

FO×1( ~Xfleet) = 1− pmax − (ŝ · n̂( ~Xfleet))
2

(4.12)

Solve:

~X∗fleet → min(J( ~Xfleet)) subject to: FO×1( ~Xfleet) ≤ 0O×1 (4.13)

4.3 Outer-Loop Transcription

The outer-loop of this work transcribes a multi-spacecraft multi-target trajectory optimiza-

tion problem as a decimal integer chromosome. To capture all the information about discretizing

the trajectory optimization problem to be passed to the inner-loop, the following details must be

encoded within the chromosome structure.

1) Maximum number of spacecraft in the fleet.

2) Number of epochs at which a VLBI observation of a radio source may be taken.

3) The sequence of radio source targets.

4) For each target in the sequence, a trio of spacecraft within the fleet which will, at the epoch

of observation, form a triangle whose normal or anti-normal vector must point at the target. This

approach is generally extensible for MTSP i.e. “which salesmen visit which town?”. A chromosome

thus has the structure:

XOL = NS NO︸ ︷︷ ︸
Header

S1,1 S2,1 S3,1 T1︸ ︷︷ ︸
Observation 1

S1,2 S2,2 S3,2 T2︸ ︷︷ ︸
Observation 2

... Ss,o Ss,o Ss,o To︸ ︷︷ ︸
Observation O

(4.14)

where NS is the maximum number of spacecraft allowed in the fleet, NO is the maximum

number of observation epochs allowed. S1,j , S2,j , S3,j and Tj are the integers representing each

of the 3 spacecraft in the fleet which take part in the observation of target Tj . The size of the
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chromosome is determined entirely by the two header parameters. Assuming that only one obser-

vation per epoch may take place, the length of a chromosome is COL = 2 + 4NO. However, by

introducing the opportunity for multiple observations at one epoch, the length instead becomes

COL = 2 + 4bNS
3 cNO. The outer-loop’s genetic algorithm generates the initial population at ran-

dom, then subjects its members to crossover and mutation based on their fitness. These processes

consistently create chromosomes which do not transcribe a real trajectory optimization problem, so

they must be pruned into their reduced “legal” form before they can be executed by the inner-loop.

This is why the header contains maxima for the number of observation epochs and spacecraft,

rather than their actual values (derived through pruning). The rules governing the legality of the

chromosome include the following:

1) An observation is taken by a trio of spacecraft, each represented by a unique integer value;

no repetition. For example, the spacecraft trio sequence 1 2 3 is valid but 2 2 3 is invalid.

2) One spacecraft may only take part in one observation per epoch. For example, if a

candidate chromosome contains 6 spacecraft, it has an observation multiplicity value of 2. A given

observation epoch may then have 2 observations, encoded as:

S1,1 S2,1 S3,1 T1 S1,2 S2,2 S3,2 T2 = 1 3 5 140 2 4 6 16 (4.15)

In the example in Eq. 4.15, spacecraft 1, 3, and 5 are tasked with forming the interferometer

triangle which observes target 140 while at the same epoch, spacecraft 2, 4 and 6 observe target

16. If instead the sequence read:

S1,1 S2,1 S3,1 T1 S1,2 S2,2 S3,2 T2 = 1 3 5 140 1 4 6 16 (4.16)

the latter spacecraft trio sequence would be treated as invalid because spacecraft 1 may only take

part in one observation at a time, and the observation of target 16 would be pruned from the final

candidate chromosome. When the reduction process occurs, every bNS
3 c observation blocks of the

crude chromosome will be interpreted as simultaneous in the bookkeeping.

3) While the position vector to each distant radio source is mapped to a unique static integer

ID in a ‘Universe’ structure, the integer IDs of spacecraft in a candidate chromosome are dynamic:
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their final values change depending on the pruning conducted according to the first two rules.

In general, neither the number of observation targets nor the number of spacecraft in the final

chromosome match their pre-pruned quantities. For example, if after the first two rules are applied

and the chromosome is:

NS NO S1,1 S2,1 S3,1 T1 S1,2 S2,2 S3,2 T2 = 7 2 1 3 5 140 2 4 7 16 (4.17)

we note that in this posed 7-spacecraft / 2-epoch problem, there are only 6 unique spacecraft

IDs. To reduce these integer IDs to their legitimate values, we sort them, purge any duplicate

values, and assign them new values based on their index in the unique-valued sorted list.

4) An outer-loop chromosome is of fixed size COL for a given (outer-loop) problem. The first

three reduction rules allow many opportunities to delete genes from the chromosome. The final

means of deletion is given by the null gene transcription, which is applied to both the target IDs

and spacecraft IDs. Whenever either a target or spacecraft ID is generated it is given a 50/50

chance of being lesser or greater than the maximum number of possible targets or spacecraft in the

candidate pool respectively. The purpose of the null gene transcription is to allow the insertion or

deletion of genes during the crossover and mutation steps. This technique was applied in [29] to vary

the length of flyby targets in an interplanetary cruise trajectory. Here, we leverage the capability

to insert or delete spacecraft from the fleet as well as radio source targets. The chromosome is

stored in a “Fleet” structure along with the reduced chromosome, and an array of integers which

encodes the actual (reduced, non-null) number of observations at each of the NO epochs in the

crude chromosome. The sum of the values in this “observations per epoch” array gives the number

of actual observations in the reduced chromosome, acting as a bookkeeping variable determining

when the inner-loop must propagate the trajectories to a new epoch. In the reduced chromosome

then, the value of NO reduced to the number of elements in the observation bookkeeping array

which are nonzero (i.e. which epochs have more than zero observations). Similarly, the value of NS

in the reduced chromosome is changed to the length of the sorted unique array of spacecraft IDs.

To visualize the overall chromosome reduction process, consider the following crude chromo-
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some:

XOLcrude
= 7 2 1 3 5 140 2 2 7 19 2 5 7 13 2 3 1 (4.18)

Here we have a fleet with a maximum size of 7 spacecraft and maximum of 2 observation

epochs. Since b7
3c = 2, we may have at most two observations per epoch. We then parse this

chromosome as shown below.

XOLcrude
= 7 2︸ ︷︷ ︸

[Header]

1 3 5 140︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 2 7 19︸ ︷︷ ︸
[Observation 2, Epoch 1]

2 5 7 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

2 3 1 600︸ ︷︷ ︸
[Observation 2, Epoch 2]

(4.19)

Immediately, observation 2 at epoch 2 is pruned because there are 420 targets to choose from

and 600 is therefore a null gene.

XOL = 7 2︸ ︷︷ ︸
[Header]

1 3 5 140︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 2 7 19︸ ︷︷ ︸
[Observation 2, Epoch 1]

2 5 7 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

(4.20)

Now, the spacecraft trio for observation 2 at epoch 1 is illegal as spacecraft 2 cannot form a

triangle with itself and spacecraft 7.

XOL = 7 2︸ ︷︷ ︸
[Header]

1 3 5 140︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 5 7 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

(4.21)

We are now left with 2 observation epochs each with one legal observation. However, to

determine how many actual spacecraft the fleet will have, we perform the uniqueness sort of the

spacecraft integers.

unique sorted spacecraft IDs = [1, 2, 3, 5, 5, 7]→ [1, 2, 3, 5, 7]→ [1, 2, 3, 4, 5] (4.22)

Thus the actual fleet whose trajectories the inner-loop solver shall optimize contains 5 space-

craft and 2 observation epochs each with one observation. The final reduced chromosome is:

XOL = 5 2︸ ︷︷ ︸
[Header]

1 3 5 140︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 4 5 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

(4.23)

Note that multiple different crude chromosomes could map to the same reduced chromosome.

This feature is elaborated on in further detail in the outer-loop solver discussion. In a problem
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where the size of the chromosome is fixed, the null gene technique allows us to study problems

of variable size while preserving the fixed structure, i.e., without the need to come up with clever

ways to deal with asymmetric length vectors. In a problem with say 3 maximum targets and 2

maximum observation epochs, but absent the possibility of null genes, every chromosome evaluated

would have the same number of spacecraft and targets. It would not be readily possible to vary the

number of targets or spacecraft and extract the Pareto front between these parameters. To further

illustrate the need for the null gene technique, consider the following genetic crossover.

Parent1, crude = 7 2︸ ︷︷ ︸
[Header]

1 3 5 140︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 2 7 19︸ ︷︷ ︸
[Observation 2, Epoch 1]

2 5 7 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

2 3 1 600︸ ︷︷ ︸
[Observation 2, Epoch 2]

(4.24)

Parent2, crude = 7 2︸ ︷︷ ︸
[Header]

2 5 14 18︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 4 7 109︸ ︷︷ ︸
[Observation 2, Epoch 1]

5 6 7 22︸ ︷︷ ︸
[Observation 1, Epoch 2]

2 4 6 400︸ ︷︷ ︸
[Observation 2, Epoch 2]

(4.25)

Assume that we end up with the following child chromosome, created by choosing each gene

at random with 50% probability from either parent.

Child crude = 7 2︸ ︷︷ ︸
[Header]

2 3 14 140︸ ︷︷ ︸
[Observation 1, Epoch 1]

2 4 7 19︸ ︷︷ ︸
[Observation 2, Epoch 1]

2 6 7 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

2 4 6 400︸ ︷︷ ︸
[Observation 2, Epoch 2]

(4.26)

Given that there are 420 possible radio sources to observe and there may be at most 7

spacecraft in the fleet, gene “14” in observation 1, epoch 1 is a null spacecraft gene. During

the reduction process, the observation 1, epoch 1 block is “deleted” (ignored) by the inner-loop.

Additionally, the two observations at epoch 2 share spacecraft number 6, so the latter is deleted

despite it now having a non-null target gene of “400”. With these two blocks pruned, the spacecraft

IDs are reduced to reveal the actual number of spacecraft in the fleet whose trajectories will be

optimized by the inner-loop.

Child = 4 2︸ ︷︷ ︸
[Header]

1 2 4 19︸ ︷︷ ︸
[Observation 1, Epoch 1]

1 3 4 13︸ ︷︷ ︸
[Observation 1, Epoch 2]

(4.27)
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The child chromosome now has 3 fewer spacecraft and 2 fewer observations than allowed by

the bounds of the outer-loop problem, resulting in a very different trajectory optimization problem

for the inner-loop. Note that here we’ve omitted the mutation operation step for simplicity, but

in the algorithm, mutation occurs before reduction. This includes a 10% chance that each gene in

the crude child chromosome mutates, but a further check against the archive of past solutions to

ensure unique exploration of the search space. The NSGA-II algorithm uses elitism to preserve the

fittest members of the population, seeding children from predominantly elite parents (those on the

Pareto front). However, without mutation, the algorithm would tend to get stuck in a sub-optimal

solution space. Mutation preserves the diversity of the population and furthers the exploration of

the search space. The rules for chromosome reduction impact the MOMA HOCP structure and

this effect is illustrated in Fig. 4.2.

NSGA-II 
Outer-Loop

.
P1,N

P1,2

P1,1

Create First 
Generation

Extract Elites

Build Next 
Generation 
from Elites
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Yes No
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Multi-Objective 
Non-Dominated 
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Figure 4.2: Detailed flow chart of inner-loop and outer-loop algorithm interaction.

The search space of this problem is vast, well beyond the computing resources available to

the authors during the course of this work. Even for a version of the problem orders of magnitude

smaller, a brute force search for solutions would be untenable. While genetic algorithms are proven

superior resources to brute force in large combinatorial spaces, their stochastic search process must

be kept as efficient as possible. One aspect of this efficiency is preventing the algorithm from re-
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evaluating a chromosome it has already evaluated. There are many ways to check for re-evaluation,

the most straightforward of which is to log the chromosome’s sequence in a text file. Every time

a new chromosome is created, the text file may be searched for the new sequence to see if it has

been tried before and if so, generate a new trial chromosome. The check must be repeated until an

unevaluated chromosome is created or until it is deemed impossible to avoid re-evaluation (though

the latter condition is unlikely to be reached in large decision spaces like this one).

However, as the list of previously evaluated chromosomes lengthens, the lookup time for file

reading becomes slow compared to other lookup alternatives. If the list contains on the order of

5,000 elements, then performing a lookup from a key-value pair hashmap is multiple times quicker.

Hashmap lookup time relative to the linear lookup time of file reading becomes exponentially

quicker as the list grows from 5,000 to 10,000 to 100,000 elements and so on. To check for previous

evaluation, we create a hashmap with a key-value pair corresponding to the chromosome sequence

and a boolean is tried respectively. Specifically the key is created as follows.

1) A crude chromosome is stripped to its reduced form, e.g.:

XOL = 5 2 1 3 5 140 2 4 5 13 (4.28)

2) The “observations per epoch” integer array is appended to it, creating an augmented re-

duced chromosome. This is necessary to distinguish otherwise identical chromosomes with different

observation multiplicities. Continuing using the example in step 1, we have:

XOLaug = 5 2 1 3 5 140 2 4 5 13 1 1 (4.29)

since there are two epochs and two observations, yielding an “observations per epoch” vector

of 1 1 .

3) 9 bits are required to store an integer as high as 420 (the maximal value of a target’s

ID). Therefore each decimal integer in the augmented reduced chromosome is converted to a 9-bit

binary string (with the rightmost bit representing 20), yielding a sequence of bit-strings which may
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become quite large as the number of spacecraft and observation epochs increases:

XOLaug = 5 2︸ ︷︷ ︸
[Header]

1 3 5 140︸ ︷︷ ︸
[Observation 1, epoch 1]

2 4 5 13︸ ︷︷ ︸
[Observation 1, epoch 2]

1 1︸ ︷︷ ︸
[number of obs. each epoch]

(4.30)

Key = [‘000000101’︸ ︷︷ ︸
5

, ‘000000010’︸ ︷︷ ︸
2

,

‘000000001’︸ ︷︷ ︸
1

, ‘000000011’︸ ︷︷ ︸
3

, ‘000000101’︸ ︷︷ ︸
5

, ‘010001100’︸ ︷︷ ︸
140

,

‘000000010’︸ ︷︷ ︸
2

, ‘000000100’︸ ︷︷ ︸
4

, ‘000000101’︸ ︷︷ ︸
5

, ‘000001101’︸ ︷︷ ︸
13

,

‘000000001’︸ ︷︷ ︸
1

, ‘000000001’︸ ︷︷ ︸
1

]

(4.31)

4) All the 9-bit values presented as character strings are concatenated into one character

string. This creates a unique key for a given crude chromosome. Once the outer-loop creates this

chromosome, the map (stored in memory to be referenced during the execution of the outer-loop)

is updated with the entry:

M〈Key,Value〉 = 〈‘000000101000000010...000000001’, true〉 (4.32)

Thus whenever a new crude chromosome is created, it is reduced, its key is generated, and

the outer-loop checks the HashMap stored in memory for the existence of the key.

The HashMap archive utility yields significant savings during the MOMA HOCP execution.

On a test archive comparison using an archive of 10,000 keys, the HashMap required an average

lookup time of 15 milliseconds (ms) versus an average text file lookup time of 171 ms. This HashMap

geometrically outperforms the text file lookup time as the number of entries increases. In this test

case, the text file archive lookup is more than 11 times slower than the HashMap. Over the course

of 10,000 lookups, this average 156 ms difference yields a total of over 26 minutes of runtime saved.

In this chapter, the maximum inner-loop runtime is set to 30 minutes, thus almost an entire inner-

loop optimization time is saved be using the HashMap lookup. At worst, if the performance offset
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Entries File Lookup (ms) HashMap Lookup (ms)

300 6.3 6.4
1,000 19.1 6.9

10,000 171.7 15.1

Table 4.1: Average archive lookup durations as a function of entries in the archive.

remained constant, this would amount to a savings of almost 44 hours if the outer-loop evaluated

one million solutions. Table 4.1 shows the performance discrepancy as a function of the number of

entries in the archive. For a small number of archive entries, the text file lookup is faster. In an

archive with 300 entries, the average lookup time between the two methods is approximately equal.

Beyond this value, the the text file approach becomes geometrically slower.

The purpose of performing a uniqueness check using an archive is to ensure that the search

space is efficiently explored, with no repeat evaluations of identical chromosomes. Each time a

new chromosome is created, there is a non-negligible chance that it is a duplicate of one which

has already been solved by the inner-loop. We catalogued the incidence of duplicate chromosome

discovery during the outer-loop execution for a VLBI outer-loop problem with a population size of

72 chromosomes that evolve over 100 generations. The evolutionary process was found to generate

15.17 chromosomes per generation which already existed in the HashMap archive, before finding

one that was unique, for a total of 1,517 duplicate chromosomes over the entire program execution.

Thus, to explore the same number of unique chromosomes in the search space without invok-

ing the HashMap archive to check for uniqueness, the analyst should expect to explore an excess of

1500 repeat chromosomes. In the VLBI problem presented in this dissertation, the inner-loop exe-

cution time is capped at 30 minutes. This amounts to a total runtime savings of 758.5 hours when

the HashMap is invoked, assuming every chromosome’s trajectory optimization problem is solved

in serial. Using the parallel computing capabilities of the CU Boulder Summit cluster available

during this dissertation (24 CPUs), the runtime to explore an identical number of unique search

space points with the HashMap is 6.25 days versus 7.60 days without; a 20% savings. These data
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demonstrate that the HashMap archive is an essential component of the MOMA HOCP framework.

Fig. 4.3 illustrates the number of duplicate chromosomes created per generation as well as the total

duplicates found over the course of the outer-loop run. For the first 10 generations (720 chromo-

somes created), the outer-loop has no trouble finding unique chromosomes, but it then quickly

encounters duplicates as the HashMap archive begins to populate. The growth in the total number

of duplicates encountered is roughly linear. This is due to the massive size of the outer-loop search

space. It will not become prohibitively difficult to find unique chromosomes within the scope of

this dissertation, so we do not observe an exponential increase in the rate of duplicate chromosome

discovery.

Figure 4.3: Left: Number of duplicate chromosomes created at each generation. Right: total
duplicate chromosomes discovered as a function of generations.

Outer-Loop Coordination Objectives

For this benchmark problem, we sought to explore the trade space between 5 objectives.

The outer-loop ranks chromosomes with lower-valued cost functions as dominant, minimizing the

cost functions of each solution mission. Thus cost functions must be scaled accordingly based on

whether the analyst desires to maximize or minimize a key quantity. The “primary” objective is

the one optimized explicitly by the inner-loop.

J∆Vtot =

NS∑
i=1

NO−1∑
j=1

|∆~Vij | (4.33)
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is the total ∆V for the fleet, computed directly by summing up each inner-loop |∆~V | magnitude

decision variable for each spacecraft at each observation epoch (apart from the first one, at which

no |∆~V | is applied).

“Secondary” objectives are calculated by the outer-loop after the inner-loop optimization is

complete.

JTOF =

NO∑
i=1

ti (4.34)

where ti ∈ ~t is each TOF decision variable in the inner-loop decision vector.

JSC = ~XOL(1) (4.35)

is the total number of spacecraft in the fleet.

JNtarg =
1

length( ~XOL == “target”)
(4.36)

is the inverse of the total number of targets observed by the fleet. This causes the number of targets

in a mission to be maximized.

JMmax =
1

max(number of observations per epoch)
(4.37)

is the inverse of the maximum number of observations at an epoch, causing the observation multi-

plicity to be maximized.

Rather than amalgamate these 5 individual cost functions into one, the non-dominated sort

step in the NSGA-II algorithm assigns each solution mission a non-domination rank based on its

vector of cost functions. As mentioned previously, solution A dominates solution B if all of solution

A’s costs are less than or equal to those of solution B AND at least one of its cost functions is less

than the corresponding cost for B.
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Inner-Loop Parameter Value

Maximum MBH Hops 100
Maximum Run Time (minutes) 30
Maximum NLP Solver Iterations 50,000
Cost Function J∆Vtot

Initial Semimajor Axis bounds (AU) [0.5, 1.5]
Initial Eccentricity bounds [0.0, 0.8]
Initial Inclination bounds (deg) [0.0, 45.0]
Initial RAAN bounds (deg) [0.0, 360.0]
Initial AOP bounds (deg) [0.0, 360.0]
Initial True Anomaly bounds (deg) [0.0, 360.0]
Phase TOF bounds (days) [14, 1000]
∆V magnitude bounds (km/s) [0.0, 0.3]

Table 4.2: Options parameters for the inner-loop of the MOMA HOCP scheme.

4.4 Results

Since each outer-loop chromosome encodes an inner-loop trajectory optimization problem,

which itself may take a long time to optimize, the inner-loop becomes the bottleneck to traversing

a meaningful fraction of the outer-loop search space. During a series of test runs on inner-loop

problems of varying complexity, we determined a 30-minute execution time cap for the MBH

algorithm would be sufficient to locate the global optimum. A 100-hop (iteration) cap was also

set, and the MBH algorithm terminates at whichever condition comes first. There may be cases

where a fleet’s trajectories may be feasible or optimal if given longer to optimize, but we discovered

most solutions of interest could be found within 30 minutes and judged the greater priority to be

exploring the outer-loop search space. We set the inner-loop parameters for the study in Table 4.2.

The inner-loop execution is one of two major bottlenecks in the execution of the transcription

we present. It must be overcome via substantial distributed computing resources. If the outer-loop

problem were as simple sending a 3-spacecraft fleet to conduct NO unique observations of radio

sources in serial, pulling from a pool of NT targets, the size of the search space is:

NTPO =
NT !

(NT −NO)!
(4.38)
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Outer-Loop Parameter Value

Population Size 72
Number of Workers 24
Generations 100
Maximum Fleet Size 7
Maximum num. Observation Epochs 30
Mutation Rate 10%
Main Objective J∆Vtot

Secondary Objective(s) [JTOF, JSC , JNtarg , JMmax ]

Table 4.3: Options parameters for the outer-loop of the MOMA HOCP scheme.

Given the bounds on number of targets and epochs in this problem (420 and 30 respectively),

this formula shows that the search space is already enormous. Accounting for all the possible

permutations of spacecraft trios and possible observation multiplicity at each epoch, exploring the

entire search space by brute force, even with massive computing resources, is absolutely untenable.

The best we can do is: apply what computing resources are available, discover interesting results

along the way, hypothesize that the patterns we discover hold across different subsets of the global

search space, and test this hypothesis in the course of future work.

The University of Colorado at Boulder possesses a distributed computing resource known as

the Summit Cluster. We used a 24-core node to execute a 100 outer-loop generation job. For this

work, we determined an outer-loop population size of 72 chromosomes and a cap of 100 generations

to be the tractable problem size. With 24 cores, 24 inner-loop problems may be run in parallel.

At 30 minutes runtime each, with perfect efficiency, this means each generation completes in 90

minutes, yielding a total execution time for the study of 150 hours or 6.25 days. This equates to

evaluating 1152 chromosomes every 24 hours. Each outer-loop generation’s results are archived as

the algorithm proceeds, enabling us to build on results and continue exploring of the search space at

any point during the execution of the nominal job. In summary, we set the outer-loop parameters

for this study in Table 4.3.

We conceived the study in this work to demonstrate how a novel techniques for multi-objective
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optimization, variable fleet size, and observation multiplicity could enhance the ability of mission

analysts to pose, solve, and understand multi-spacecraft multi-target exploration problems like this

one. The allowable fleet size for this study ranged between 3 and 7 spacecraft. This range captures

the minimum proof-of-concept span for these contributions. A candidate VLBI mission is not viable

without a minimum of 3 spacecraft due to the observation geometry requirement. Adding a 4th

spacecraft increases the opportunity to achieve more observations, by some unknown ∆obs. Adding

a 5th to the fleet has a similar effects, though we hypothesize the returns diminish slightly. A fleet

of 6 spacecraft should have ample opportunity to image more targets than 5 because not only does

it add another observer, but now there are enough spacecraft to allow two observations at a time.

This feature may thus reduce the overall duration of the mission, theoretically allowing the fleet to

image twice the number of targets as a 3-spacecraft fleet but in the same amount of time. Finally,

we allow for the possibility of a 7-spacecraft fleet to estimate the diminishing ∆obs gained by adding

just one more spacecraft.

Ideally, we aimed to find missions with static orbits for all spacecraft, requiring no ∆V .

Therefore initially, the problem was posed with TOF as the inner-loop cost function and maneuvers

were omitted from the transcription. The TOF between encounters was constrained to be 14 days at

minimum. This value was selected as an estimate of the turn-around time for the mission operations

team to prepare for the next observation. The TOF cost was traded at the outer-loop level against

JSC and JNtarg . This approach yielded a tenuous Pareto front, where the algorithm struggled to

find many solutions at all, let alone solutions with a high ratio of
JNtarg

JSC
. Moreover, the solutions it

did find contained phase propagation times at the minimum 14 day value. With no other metric

for optimality, the inner-loop had minimized cost by directly minimizing the TOF variables in the

decision vector. Thus the missions it did find observed very few targets because it is difficult to

observe a large quantity of targets in such a short time. It became apparent that in order to find a

broader diversity of solutions, maneuvers must be included in the inner-loop transcription. While

ideally these maneuvers would optimize to zero, their inclusion in the transcription facilitated the

discovery of better solutions, with phase TOF free to relax to its maximum if needed. This change
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successfully fleshed out the diversity of the Pareto front, however it lead to the discovery of static

orbits (zero magnitude maneuvers) with very long mission durations, often exceeding 10 years.

Nevertheless, the forthcoming solutions present a depiction of the optimal solution space for the

bounds set on this particular problem.

Fig. 4.4 displays two different cross-sections of the 5-dimensional Pareto front for this study.

Blue points represent fleets where one observation was taken at one epoch. Red points indicate

fleets where at least one epoch yielded 2 simultaneous observations (JMmax = 1
2). A 2-dimensional

Pareto front will visually present a clear intuitive trade curve as depicted in Fig. 2.2, and similarly

each 2-dimensional cross-section of a 3-dimensional Pareto front will also present a smooth curve.

However, a Pareto front whose dimensionality D exceeds 3 will not do so as its non-domination

pattern exists only in RD while we are only able to plot the front in R3. The results in the right

portion of Fig. 4.4 show the best case trade of observed targets versus fleet size, and we quantify

this trade in Table 4.4. We display the Pareto front at three different intermediate generations of

the algorithm’s execution in Fig. 4.4, 4.5 and 4.6 to identify interesting behavioral trends and show

how the population evolves over time.

There are 29, 40, and 40 missions on the Pareto fronts for generations 10, 40 and 100 respec-

tively. The number of front members generally increases as the number of generations increases,

but this does not always happen. The cap on the front size, per the framework of the NSGA-II

algorithm, is 2× the outer-loop population size, which in this case would be 144. Additionally,

as more dominant solutions are found over generations, previously dominant solutions are deleted

from the front when they are supplanted, as occurred between generations 40 and 100 in this study,

leading to a plateau in the number of front members over time.

As the algorithm continues to run, we observe expected trends beginning to take shape. We

observe a greater prevalence of solutions with higher observation multiplicity (multiplicity =1 in

blue, 2 = red), enabling the imaging of more targets in a given amount of time. The over-arching

structure appears to be achieved after 10 generations, with the front generally not expanding beyond

its extrema by generation 40 but rather fleshing out its diversity. In the left of Fig. 4.5, several data
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points are highlighted to compare how increasing the fleet size to 6 often enables a given number

of targets to be imaged in half the time as a fleet of size 3-5. After 100 generations we observe

that the ratio of targets to spacecraft has been maximized, with a substantial increase in targets

observed by the best 3-spacecraft fleet, and the maximum quantity of targets previously observable

with no fewer than 7 spacecraft now observed by a fleet of only 6 (Fig. 4.6). Note that all but

one 6-spacecraft mission on the front coordinates multiple observations during a single epoch at

least once. The 7-spacecraft 16-target solution still exists in the solution set, but it no longer falls

upon the non-dominated front as the 6-spacecraft 16-target solution is more dominant because it

achieves the same TOF, ∆V , and number of targets using 1 fewer spacecraft. As shown in Fig. 4.12

and outlined Table 4.8, it accomplishes this by imaging 2 targets during its 10th observation epoch,

while the 7-spacecraft solution from generation 40 used no observation multiplicity. A dominant

7-spacecraft solution (with a greater number of targets) likely exists in the search space, but was

not found during this work. We quantify the ∆obs quantity for the final generation in Table 4.5.

After 100 generations, we discover that for fleets ranging in size from 3-6 spacecraft can at best

expect to observe an additional two targets per spacecraft added to the fleet. This trend may be

very different after 100 additional generations, just as it it varied over the first 100 generations of

this study. This trend will continue to be examined in future work.

We also display the frequency of different targets’ occurrence along the Pareto front at gen-

eration 10 and generation 40 in Fig. 4.8 to show how the final front may appear mostly unchanged

over time in terms of its cost functions, but the underlying choices of targets within those opti-

mal solutions changes significantly. It is interesting to observe the frequency of various targets

that appear in the sequences of missions along the non-dominated front. Initially, we may expect

targets with very similar coordinates to be the easiest to observe in sequence because very little

∆V is required to change the orbit planes of the fleet to observe them all. Similarly, it may be

desirable to fly a mission with some targets nearly normal to a given orbit plane while even more

targets are nearly anti-normal to the plane. However, with fairly relaxed orbit and TOF parame-

ters, we observe very different behavior, with solution missions observing targets at widely varying
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coordinates using zero ∆V .

Finally, we highlight several point solution missions: a simple 3-spacecraft 1-target mission

to illustrate the mission concept in physical space (Fig. 4.7), a 6-spacecraft 14-target solution to

display a far more complex solution that also leverages multiple observations at one epoch (Fig.

4.10), the most complex mission after 40 generations (7 spacecraft, 16 targets) (Fig. 4.11), and the

most complex mission after 100 generations (Fig. 4.12). In Fig. 4.7, the 3 spacecraft trajectories are

shown in white, propagating to the states (marked by magenta stars) where the VLBI observation

triangle is formed. The translucent triangle formed by their positions contains a vector located at

its centroid which is parallel to the position vector of the radio source. The sun is situated at the

origin, marked with a yellow star. The mission in Fig. 4.10 uses zero ∆V in exchange for 12.9 years

total time of flight and its mission itinerary is given in Table 4.6. All observations are shown in the

same figure to illustrate the non-intuitive complexity of missions like this one which the algorithm

finds. Observations that occur simultaneously are color-coded as magenta triangles with magenta

normal vectors. Fig. 4.11 displays the mission with 7 spacecraft imaging 16 targets with zero ∆V

in exchange for 17.5 years total time of flight and its itinerary is outlined in Table 4.7. There are

no multi-observation epochs in this solution, but its complexity is otherwise staggering.

Each mission on the Pareto fronts in Fig. 4.4, 4.5, and 4.6 uses zero ∆V , therefore its

fleet’s trajectories are static orbits. This property ensures that the observations of all targets its

sequence will repeat cyclically over a period equal to the duration of the nominal mission, which

may add long-term scientific value. The targets’ coordinates in each of the 3 highlighted missions

are shown in Fig. 4.9, where NS is the number of spacecraft in the mission and NO is the number of

observations the fleet makes. The targets in these missions’ observation sequences are spread out all

across the sky. There is considerable overlap between the targets observed by the fleets in Fig. 4.10

and Fig. 4.12, including incidentally the same pair of targets at each mission’s multi-observation

epoch.
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NS NTarg

JNtarg

JSC
∆obs TOF (years)

3 9 3.0 N/A 14.3
4 10 2.5 1 11.8
5 13 2.6 3 16.8
6 15 2.5 2 20.1
7 16 2.3 1 17.5

Table 4.4: Total targets observed for zero ∆V as a function of fleet size based on data from
generation 40 (Fig. 4.5). ∆obs is the number of observations gained by increasing the fleet size by
one.

NS NTarg

JNtarg

JSC
∆obs TOF (years)

3 10 3.3 N/A 11.2
4 12 3.0 2 13.9
5 14 2.8 2 17.4
6 16 2.7 2 17.5
7 10 1.4 — 7.2

Table 4.5: Total targets observed for zero ∆V as a function of fleet size based on data from
generation 100 (Fig. 4.6).

Fig. 4.10 Mission Itinerary
Epoch ID Spacecraft Trio Radio Source ID Source α° Source δ ° TOF (years)

1 2-4-6 352 347.56319 41.75708 0.3
2 3-4-5 221 321.37855 2.63145 0.07
3 2-3-5 341 203.87887 42.64595 0.4
4 3-4-5 96 84.34929 -28.09646 1.6
5 2-5-6 414 5.34961 76.87223 0.04
6 1-3-4 97 94.89564 -32.6827 0.04
7 2-3-5 350 321.51644 40.91679 1.5
8 1-3-5 58 311.60358 -51.32555 0.96
8 2-4-6 339 178.73763 36.56666 0.96
9 1-3-5 399 151.78999 73.55852 0.7

10 1-2-5 403 268.67363 71.39317 1.47
11 1-5-6 389 260.35891 59.51633 1.97
12 3-4-5 80 245.14647 -42.82787 2.62
13 2-4-6 51 200.69828 -49.92761 1.21

Table 4.6: Itinerary for Fig. 4.10. 6 spacecraft observe 14 unique targets over 12.9 years using zero
∆V with 2 simultaneous observations at epoch 8.
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Fig. 4.11 Mission Itinerary
Epoch ID Spacecraft Trio Radio Source ID Source α° Source δ ° TOF (years)

1 1-2-3 51 200.69828 -49.92761 1.1
2 3-4-6 72 141.98388 -38.5905 1.3
3 3-5-6 22 36.98163 -63.48211 0.7
4 3-4-6 237 125.2422 9.52288 2.0
5 1-2-3 194 48.79947 0.17478 0.5
6 2-4-7 214 248.77494 -1.81304 1.3
7 1-3-4 55 265.90339 -47.6815 0.9
8 2-4-5 206 169.416 -1.98228 1.1
9 1-4-6 200 110.41998 -0.00215 0.4

10 1-5-6 250 259.49626 12.40535 0.8
11 2-4-5 75 179.9135 -36.72425 1.6
12 2-3-4 185 321.02702 -12.50944 1.0
13 2-4-5 43 77.40982 -48.80318 1.2
14 5-6-7 394 358.96459 73.96146 1.6
15 1-2-3 195 59.11799 0.1232 0.9
16 4-5-6 332 88.01375 39.94318 1.1

Table 4.7: Mission Itinerary for Fig. 4.11. 7 spacecraft observe 16 unique targets over 17.5 years
using zero ∆V .

Fig. 4.12 Mission Itinerary
Epoch ID Spacecraft Trio Radio Source ID Source α° Source δ ° TOF (years)

1 2-3-6 276 167.12468 18.58792 0.7
2 1-4-5 400 180.79924 69.38621 0.6
3 1-2-3 271 114.02224 22.72405 1.8
4 3-4-5 341 203.87887 42.64595 1.0
5 2-3-4 143 242.76637 -22.44479 0.3
6 4-5-3 161 73.34137 -9.86491 1.0
7 1-4-5 22 36.98163 -63.48211 2.5
8 1-2-4 148 298.58878 -19.39339 1.4
9 2-3-5 350 321.51644 40.91679 1.2

10 1-3-5 58 311.60358 -51.32555 0.7
10 2-4-6 339 178.73763 36.56666 0.7
11 1-3-5 399 151.78999 73.55852 0.5
12 1-2-5 403 268.67363 71.39317 2.5
13 1-5-6 389 260.35891 59.51633 0.8
14 3-4-5 80 245.14647 -42.82787 1.7
15 2-4-6 51 200.69828 -49.92761 0.6

Table 4.8: Mission Itinerary for the mission in Fig. 4.12.
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Figure 4.4: Left: Cross-section of non-dominated front at generation 10 with 29 solution fleets
showing TOF versus observed targets trade. Right: the same front but showing the fleet size
versus observed targets cross-section.

Figure 4.5: Above: cross-sections of the Pareto front after 40 generations. In the highlighted data
points, x = TOF in years, y = number of spacecraft, and z = number of targets.
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Figure 4.6: Above: cross-sections of the Pareto front after 100 generations.

Figure 4.7: A fleet of 3 spacecraft making 1 observation of radio source 124.
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Figure 4.8: This figure shows the frequency distribution of different targets in the Pareto front at
generation 10 (left) and 40 (right).
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Figure 4.9: This figure shows the distribution of radio sources observed by the fleets in Fig. 4.10,
4.11, and 4.12.
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Figure 4.10: 6-spacecraft 14-target mission from generation 40’s Pareto front, leveraging observation
multiplicity, with itinerary outlined in Table 4.6.
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Figure 4.11: The most complex member of generation 40’s Pareto front: 7 spacecraft observing 16
targets, with itinerary in Table 4.7.
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Figure 4.12: The most complex member of generation 100’s Pareto front: 6 spacecraft observing
16 targets, with itinerary outlined in Table 4.8.
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4.5 Summary

In this work, we have created and demonstrated the utility of a general Multi-Objective,

Multi-Agent Hybrid Optimal Control Problem (MOMA HOCP) transcription for coordinated Mul-

tiple Traveling Salesmen Problems (MTSP) in context of global trajectory optimization, applied to

a Very-Long Baseline Interferometry (VLBI) problem. We have leveraged a Null Gene transcription

to vary the number of spacecraft in a fleet, allowing for the characterization of fleet size as a cost

function to be traded against others including quantity of observed radio sources, time of flight

(TOF), and more. This allowed us to quantify the trade of fleet size versus observed targets –a key

trade study for mission analysts lacking a priori knowledge of the number of spacecraft required

to achieve coordinated science objectives. In allowing for a fleet size greater than or equal to 6

spacecraft, we allowed members of the fleet to coordinate multiple observations at the same epoch,

allowing us to capture solutions along the Pareto front with increased quantity of observed targets

without increased TOF. We observed certain expected trends, including missions with 2S space-

craft observing the same number of targets as missions with S spacecraft in half the time, while

other unexpected trends emerged, such as the prevalence of solutions where targets were not closely

grouped in the sky. The outer-loop of this transcription is extensible to a general coordinated MTSP

class of optimization problems. The transcription is a scaffold for traversing combinatorially vast

discrete-valued search spaces, encoding which “salesmen” visit which “town” and enabling efficient

characterization of a D-dimensional Pareto front–capabilities which are essential for exploration of

multi-spacecraft multi-target exploration problems.

We briefly discussed the trend in popularity of different targets over successive generations

of Pareto fronts. We note that an analogous trend not of targets but of target sequences is also an

interesting point of investigation, and will study this trend in future work. The greatest limitation

placed on techniques such as the transcription in this paper is the quantity of available distributed

computing resources. While this novel transcription is a scaffold to traverse a vast decision space, a

high quantity of computing resources is needed to sufficiently do so, and any efficiency measure that
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can be taken must be. We have utilized a HashMap as an archive of previously solved solutions to

prevent the outer-loop from re-evaluating the same chromosome multiple times, facilitating quicker

traversal compared to a file I/O comparison approach. This technique may be augmented further

to allow an archive comparison not of two entire chromosomes, but of partially alike chromosomes.

For example, if the chromosome 1 2 3 is created and the chromosome 1 2 4 is stored in the

archive, the archive utility could return the 1 2 portion of the optimal 1 2 4 solution fleet’s

inner-loop decision vector as a partial-seed for the optimization of 1 2 3 . This seeding procedure

may at best greatly speed up the inner-loop optimization of 1 2 3 , but is no worse of a seeding

method than pulling the entire trajectory’s initial guess decision vector from a uniform random

distribution (as is currently done). Via partial seeding, the inner-loop would only be generating

the initial guess for the fleet’s decision variables from 2 3 at random instead of doing so for the

entire mission. In short, introducing a partially alike seeding capability only stands to improve

search space traversal.



Chapter 5

Conclusions and Future Work

This dissertation has explored the creation and novel application of several techniques for

global trajectory optimization which combine to form a general MOMA HOCP transcription for the

global trajectory optimization of multiple-spacecraft multiple-target mission design. This chapter

summarizes the chief contributions of this dissertation and results produced therein, and discusses

areas of future work to further the work presented here.

5.1 Conclusions

In this work, we created a global trajectory optimization transcription which frames multiple-

spacecraft multiple-target missions as Multiple-Objective Multiple-Agent Hybrid Optimal Control

Problems (MOMA HOCP). We selected the NSGA-II algorithm to optimize the discrete decision

variables in an outer-loop and the MBH stochastic global search method wrapped around an NLP

solver to optimize the continuous decision variables in an inner-loop. We parameterized the tra-

jectories for each benchmark optimization problem using shooting transcriptions with coast arcs

punctuated with a single impulsive burn along each phase, with a phase defined between two

“targets”.

The MOMA HOCP transcription encapsulates the trajectory optimization for an entire fleet

of spacecraft into a single decision vector rather than multiple separate decision vectors for separate

optimization problems. This encapsulation enabled the imposition of numerous inter-spacecraft co-

ordination constraints and coordinated science objectives while removing the need for an alternative
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brute force grid search approach.

The outer-loop component of the MOMA HOCP transcription uses a “chromosome” structure

to discretize an inner-loop multi-spacecraft trajectory optimization problem. The chromosome is

composed of a header to constrain the size of both the inner-loop trajectory optimization and

the outer-loop search, as well as a Multiple Traveling Salesmen Problem (MTSP) gene sequence

which encodes which targets in the search space will be explored in which order by which salesmen

(i.e. spacecraft). When this chromosome is interpreted by the inner-loop as a real trajectory

optimization problem, a single cost function is minimized, after which the solution fleet structure

is returned to the outer-loop where any additional costs a mission analyst wants to trade are

computed (without re-running the inner-loop). The NSGA-II algorithm efficiently searches the

discrete decision space for favorable trajectory optimization problems to be posed and ranks their

multi-objective performance to find the Pareto front.

In the IGMM benchmark problem, coordination constraints explored included a shared launch

asymptote constraint for two spacecraft, a shared trajectory phase constraint (where multiple space-

craft must flyby the same planet or a sequence of planets on their overall journeys before diverging),

and a shared flyby target constraint (two spacecraft must flyby the same body but not necessarily

at the same time). With the shared launch asymptote constraint, only a single trajectory exists

until the first maneuver is applied at which point a new trajectory for one spacecraft spawns at

this maneuver, as a boundary point. The header structure of the outer-loop chromosome was used

to capture the shared parameters of both spacecraft in the mission, reducing the size of the chro-

mosome and the already massive outer-loop search space. This same boundary point spawning

is applied in the case of the shared trajectory phase constraint- with only one trajectory existing

until the two spacecraft need to flyby different targets. We demonstrated by example in this bench-

mark problem that sequential optimization of separate single vehicle trajectories yielded suboptimal

results compared to those using the MOMA HOCP technique for the multi-mission.

In the VLBI mission design, the MOMA HOCP technique was further developed to more

efficiently explore the outer-loop search space. An archive utility was created to prevent the re-
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evaluation of previously optimized chromosomes. If the outer-loop creates a chromosome which

is identical to that of a mission which has already been optimized, a check is performed and a

new candidate chromosome is created. While a standard technique for an archive is to write past

solutions to a text file, we use a HashMap structure as a computationally faster strategy over file

I/O. The HashMap used in the VLBI benchmark problem mapped a bit string, which encodes a

chromosome, to a boolean value indicating whether the chromosome had been tried or not. In

both the IGMM and VLBI benchmark problems, complex rules had to be created to bookkeep

reduce, and interpret the outer-loop chromosome into a real trajectory optimization problem for

the inner-loop.

The VLBI problem also introduced new coordination constraints. The chief constraint was

an observation geometry constraint on the trajectories of a given trio of spacecraft at a given epoch

to facilitate the interferometry of a distant radio source. A VLBI triangle must be formed at a

given observation epoch whose normal (or anti-normal) vector points to within a small tolerance of

the the direction to the distant radio source. The GTOC-8 problem statement applied a piecewise

constraint to accomplish this while we introduced a smooth constraint to aid the optimizer. Another

constraint (which was interpreted by the outer-loop as a cost function) was the requirement for

multiple trios of spacecraft to attempt observations at the same time if possible, to reduce the

overall mission TOF cost. This feature often enabled 6-spacecraft fleets to often image the same

number of targets as a 3-spacecraft fleet in half the time.

Finally, applied in the IGMM problem to vary the length of the planetary flyby sequence,

a Null Gene transcription was applied in the VLBI work to vary the size of the fleet as well,

demonstrating an elegant technique for mission analysts to capture the trade of fleet size against

any other cost functions without using brute force to run separate studies with fixed fleet sizes.

This technique is especially useful when a mission analyst does not know a priori the requisite fleet

size to achieve the mission’s objectives.

This research has shown that a MOMA HOCP transcription can be an effective capability for

solving multiple-spacecraft multiple-target global trajectory optimization problems. The technique
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developed and iteratively improved upon in this work was demonstrated on two benchmark prob-

lems in the deep space regime, but is by no means constrained to that regime. Indeed, we conclude

that the overall transcription created in this work may be generally applied for the cislunar regime,

the LEO regimes, and other MTSP beyond the scope of trajectory optimization altogether. This

is due to its encapsulation of all the information required to pose and solve a MTSP: a chromo-

some which encodes which salesmen visit which towns in what order. The outer-loop chromosome

structure is parsed and interpreted by an inner-loop whose transcription is arbitrary and problem-

specific, and is problem agnostic to choice of MTSP.

We applied the first proof-of-concept transcription to an Ice Giants Multi-Mission design

problem with several novel coordination constraints and discovered how these constraints induce

costly changes in the trajectories optimized by the algorithm. The particular trajectory optimiza-

tion problem statement was shown to prove physically untenable for operational mission design

because of practical limitations on fuel due to the unfavorable relative positions of the ice giants;

NASA’s Voyager missions truly capitalized on a rare opportunity where the heavens aligned. We

demonstrated that a MOMA HOCP technique is far more effective for posing the multi-spacecraft

multi-target problem as a single rather than multiple separate trajectory optimization problems.

We applied a more matured version of this transcription to a very long baseline interferometry

problem and applied a null gene transcription to vary the size of a fleet. We discovered numerous

missions which imaged over a dozen distant radio sources. The dominant solutions were static

constellations which used zero ∆V to image target sequences in non-intuitive ways. We expected

dominant solutions to image sequences of radio sources which were all clustered together with very

similar right ascension and declination ordered pairs, but instead found missions which image a

sequence of targets all across the sky. Moreover, these solutions being static constellations will

cause their observation patterns to repeat cyclically, enhancing the long term scientific value of the

mission. We allowed the size of the fleet to range up to 7 spacecraft, which enabled multiple trios

of spacecraft within the fleet to image targets at the same time, as expected.

Finally, we discussed how the HashMap archive technique is being augmented into a partial-
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seeding algorithm for the inner-loop to decrease its runtime, and we hypothesize we will find

a significant speed improvement. If this technique proves effective, it will not only aid in the

trajectory optimization but also in quicker traversal of the outer-loop search space.

5.2 Future Work

The results presented in this dissertation merit future research on numerous fronts. One

particular area of work is to create techniques that improve the tractability of the outer-loop search

space. NP-Hard hybrid optimal problems such as those in this work are generally intractable for two

reasons: insufficient distributed computing resources with which to traverse the discrete outer-loop

search space, and the runtime cost of solving a global trajectory optimization problem with the

inner-loop– a single point within the outer-loop search space. Whether a mission analyst applies

techniques ranging from brute force to genetic algorithms to neural networks, the determining factor

on whether a statistically representative fraction a search space can be traversed is the number of

processors available. Because of this, efficiency measures need to always be taken to accelerate the

traversal of a search space.

The HashMap archive contribution in the VLBI work was demonstrated to first order as quick

check to avoid re-evaluation in the outer-loop. In the Appendix, we discuss how this structure can

be leveraged further as a seeding capability to potentially widen the second bottleneck in global

trajectory optimization: the runtime of a specific trajectory optimization problem. Future work is

to carry out numerical validation of the hypotheses of the partial seeding algorithm development.

These implementations will at worst add no efficiency or reach to the MOMA HOCP transcription

while at best they will transform the technique into one with significant reach compared to other

state-of-the-art methods. These tasks will serve to create a framework for global trajectory opti-

mization that serves mission analysts exploring massive search spaces, enabling the design of new

classes of distributed spacecraft missions.
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Appendix A

Seed Sharing Technique

A.1 Background

Global trajectory optimization is inherently difficult due to many factors including the com-

plexity and/or sensitivity of the dynamical models, the often non-analytical cost and constraint

function Jacobians, the high quantity of local optima, and the size of the global search space. To

obtain a locally optimal trajectory for a given problem, a good initial guess is needed. Myriad

initial guess generation methods have been developed for different classes and sizes of trajectory

optimization problems. For example, a conventional approach for finding transfer trajectories to

a libration point orbit in the restricted 3-body problem (RTBP) is to generate the stable and un-

stable manifolds of the orbit and seed an NLP solver with a trajectory on the manifold. Chemical

high impulse interplanetary trajectories such as those in this dissertation use Keplerian dynamics

to approximate trajectories as conjoined conic sections. Indeed, the choices of initial guess meth-

ods are highly dependent upon the sensitivity, dynamics, and parameterization of the trajectory

optimization problem. The inner-loop of this work uses a stochastic search method, MBH, to draw

initial guess trajectories from a uniform random distribution in the first iteration and perturb them

using a Pareto random distribution for subsequent iterations. MBH is thus the method used to

find good initial guesses and search the global space of a given trajectory optimization problem.

Many other techniques for quickly locating good initial guesses from a search space have been

explored. These include, but are not limited to, graphical representations such as Tisserand plots,

search space pruning, and seed sharing [68, 48, 22, 66, 46, 54, 57, 36]. There are tradeoffs in each of
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these methods. Stochastic search methods are at least as efficient as brute force, finding the global

optimum in less time and require no analyst intervention, but are inefficient as they require a long

runtime to reliably search the space. Graphical representations of the search space can impart

intuition about the complex search space to a mission analyst, allowing for quick identification of

candidate solutions once created. However, they: require analyst to intervene in the optimization

process, and may not represent an accurate picture of viable initial guesses which satisfy problem

dynamics. Search space pruning techniques share similar tradeoffs to graphical methods as they

require an analyst to make decisions about which pockets of the search space are worth searching -

based on intuition and assumptions which may lead to no solutions being found or cause the analyst

to miss the best solutions. However, pruning allows the analyst to completely control the size of

the search space, and to some degree all global optimization problems are in practice subjected to

pre-pruning of their search space based on mission and time requirements.

Seed sharing describes a general practice of solving a subset of a problem space and using

the results of the subset to seed candidate solutions in the subset’s neighborhood. This practice is

preferable when the number of different possible inputs in a search space is high, but the difference

between nearby inputs is small and an analyst seeks to study most if not the entire search space

without reducing its size. This practice has been applied extensively for interplanetary global

trajectory optimization of single-spacecraft missions in an operational environment [54, 46]. In

this chapter, we propose a novel seed sharing technique for multiple-spacecraft global trajectory

optimization, applied to the vast search space of the VLBI problem. This technique tackles the

problem of seeding a mixed-integer decision vector by identifying partially alike chromosomes.

We discuss the scope of the VLBI search space and motivation for this technique in § A.2.

We then define criteria for partially alike chromosomes in § A.3 and describe the technique in

§ A.4. We prime further discussion using a simple example in § A.5 followed by a complicated

example in § A.6. We then propose an experiment to test this capability in § sec:expseed and

discuss anticipated findings of the experiment in § A.8. The development and future results of

the work this chapter will inform the future work of this dissertation, as multi-spacecraft global
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trajectory optimization problems pose complex high-dimensionality search spaces which will require

new traversal algorithms to locate optimal solutions quickly.

A.2 Motivation

Throughout this dissertation, we have identified many key techniques that contribute to the

successful formulation of a transcription for the global trajectory optimization of multi-spacecraft

multi-target exploration missions. We have also discovered several key bottlenecks with these

techniques. The most significant is the availability of ample distributed computing resources. The

benchmark problems posed in this dissertation are combinatorially vast.

In the VLBI problem, as posed in chapter 4, we can estimate the size of the outer-loop search

space by considering the two outer-loop bounding parameters: number of spacecraft in the fleet

NS and number of observation epochs NO. For simplicity, let us consider the chromosomes for a

VLBI problem where: NS and NO are fixed, only one observation is allowed at each epoch, each

spacecraft trio is legal (sorted in ascending order and each ID unique), and each observation target

gene is a unique non-null one. If the fleet size is 3, then there is only one possible legal trio for each

observation: 1− 2− 3 and the number of chromosomes in this problem is given by Eq. 4.38. If the

fleet size is greater than 3, the number of possible chromosomes multiplies by an iterated function

Ptrio(NS) which quantifies the number of legal trio permutations that may occur at each observation

epoch for a given NS . The hypothetical value of NS = 2 constitutes a fleet of 2 spacecraft which

can not form a triangular formation. Let us define Ptrio(2) ≡ 0, the base value of the Ptrio iterated

function. Then, Ptrio(3) = 1. Table A.1 shows the manually calculated values of Ptrio for different

values of NS . We may express the value of Ptrio using the expression in Eq. A.1, where δ(NS) is an

iterative function increment which must be added to the first two terms NS − 1 and Ptrio(NS − 1).

Its expression is given in Eq. A.2. However, in the case of NS = 2, we define the base value of

δ(NS) ≡ −1.
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NS Ptrio

2 0
3 1
4 4
5 10
6 20
7 35

Table A.1: Ptrio as a function of NS .


Ptrio(NS) = (NS − 1) + Ptrio(NS − 1) + δ(NS) : NS ≥ 3

Ptrio(NS) = 0 : NS < 3

(A.1)


δ(NS) = δ(NS − 1) + (NS − 3) : NS ≥ 3

δ(NS) = −1 : NS < 3

(A.2)

Using the base values for Ptrio and δ(NS), we can solve Eq. A.1 for a fleet size of 3 spacecraft,

following the steps in Eq. A.3.



Ptrio(NS) = (NS − 1) + Ptrio(NS − 1) + δ(NS)

= (NS − 1) + Ptrio(NS − 1) + [δ(NS − 1) + (NS − 3)]

= 2NS − 4 + Ptrio(NS − 1) + δ(NS − 1)

= 2(3)− 4 + Ptrio(2) + δ(2)

= 2(3)− 4 + 0 +−1

= 1

(A.3)

This relation holds for all fleet sizes, and we can iteratively use it to thus compute that the

number of permutations of trios for a fleet of 8 spacecraft at a given observation epoch is 56. For

the simplified VLBI problem defined in this section, the size of the outer-loop search space is given

by Eq. A.4. For a fixed fleet size of 7, a fixed number of observation epochs of 30, and a search

space of 420 targets, this evaluates to DOL = 35∗420!
390! ≈ 6× 1079 legal chromosomes.
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DOL =
Ptrio(NS)NT !

(NT −NO)!
(A.4)

This is an absolutely enormous problem. What’s more, in this dissertation, NS and NO are

varied using a Null Gene transcription, multiplying the size of the outer-loop search space even

further. The search space includes a chromosome for every possible fleet size versus every possible

number of observations. Its size is given by equation A.5.

DOLfull
=

7∑
NS=3

30∑
NO=1

Ptrio(NS)420!

(420−NO)!
(A.5)

Additionally, the time required to traverse the full search space is further increased by the

duration required by the inner-loop solver to perform the trajectory optimization for each point

in the space– on the order of hours per point solution. These two bottlenecks: the time cost of

solving for a point solution, and the size of the outer-loop search space, motivate the creation and

application of new techniques to speed up the search space traversal. The HashMap archive utility

introduced in the VLBI problem design is a first order step in expediting this traversal, preventing

previously solved outer-loop chromosomes from being passed to the inner-loop using the quick

lookup of a hash function. We seek to extend this technique further by seeding the cumbersome

inner-loop problem using archived solutions from the HashMap when possible. If a new candidate

outer-loop chromosome is created that is similar (but not identical) to an archived solution, then

seeding parts of the candidate’s mission with the identical phases of the archived solution will at

worst yield no benefit, but at best will greatly accelerate the convergence time of the inner-loop.

Genetic algorithms such as NSGA-II facilitate a much more efficient traversal of the search

space by choosing handfuls of points in the search space at random and evaluating their multi-

objective costs, approximating the otherwise non-existent gradient information of the discrete search

space. The results of the NSGA-II algorithm reveal which missions’ sequences have which cost. If

we can further make an association between fractional mission sequences and a vector of costs, this

may allow for even quicker traversal of the outer-loop search space. The creation of a partial-seeding
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technique in this dissertation could serve to reduce the cost at the outer-loop and inner-loop level.

If a partially-seeded chromosome is run by the inner-loop and is solved significantly quicker than

seeded from random, this also enables the outer-loop to resume searching the discrete space sooner.

A.3 Definition of partially alike chromosomes

We define a partially alike chromosome as one which shares at least one gene with another

chromosome. However, the shared genes are not necessarily located at the same indices within

their chromosomes. The order of genes within the chromosome matters because the locations of

different genes indicate specific context for how the chromosome is evaluated. In the work presented

in this dissertation, the chromosomes in the outer-loop use sequences of genes to transcribe a

trajectory. A single gene is insufficient to determine whether two chromosomes (missions) could

share identical mission segments; a trajectory phase is always defined between at least two boundary

events. The number of genes in a sequence that warrants a “partially” alike designation varies per

trajectory optimization problem, but for our purposes that number is always at least two. This

harkens to the nature of a TSP, where in the Ice Giant Multi-Mission problem, two spacecraft

(salesmen) each perform flybys (visits) of sequences of planets (towns), occasionally visiting the

same planet at the same time. In the VLBI problem, multiple spacecraft (salesmen) simultaneously

take interferometric observations of (visit) multiple distant radio sources (towns). The journey a

salesmen takes to visit a town is constrained by the road map and is uniquely defined by the

salesmen’s ID and the initial and final towns on that journey, and their journeys may be considered

similar if they contain an identical partial sequence of towns.

Let us define the minimum comparable segment length Lmin of an outer-loop chromosome.

When comparing 2 chromosomes for similarities, they chromosomes must share a minimum num-

ber of genes in sequence to be considered partially alike. In this work, the salesmen are always

spacecraft, but their visits and town vary entirely based on the trajectory optimization problem

statement. In all cases however, the spacecraft must follow distinct trajectories to achieve their

goals. Each spacecraft’s trajectory encompasses a series of targets. The base unit of a trajectory in
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this work is a phase. A given spacecraft’s trajectory phase begins with an outgoing position/velocity

state which allows the spacecraft to visit a target and ends with with new position/velocity state

that facilitates a visit of its next target.

For the ice giants problem, at the outer-loop level, an entire phase is transcribed by 2 genes:

the IDs for the outgoing and incoming flyby planets. Therefore for that problem, Lmin = 2. In the

VLBI work, each phase of mission is defined by a unique trio of spacecraft following their trajectories

to image a distance radio source. The previously observed radio source, the 3 spacecraft, and next

radio source genes give Lmin = 5. To generalize: two outer-loop chromosomes are partially alike

if they have at least one identical phase sequence. The number of parameters used to define a

phase in the outer-loop is problem-subjective. Further, careful bookkeeping is required to parse a

chromosome to ensure a gene sequence being compared actually represents a phase. For instance,

while the length of the chromosomes need not be identical nor the gene sequence be located at

the same indices in both chromosomes, a header gene sequence must not be compared to a phase

sequence.

A.4 Description of partial seeding technique

The partial likeness check of the newly created candidate chromosome is performed following

reduction, then uniqueness check, using a HashMap structure similar to the one created for the

work in chapter 4. However whereas the value corresponding to the archive key in prior work

was merely a boolean, it is now the key’s corresponding solution fleet structure. This change is

necessary in order to access the physical trajectories of the fleet, to use for seeding the candidate,

in the event that a partially alike archived solution is found. The new map structure is summarized

in Eq. A.6

M〈Key,Value〉 = 〈bit string,Fleet〉 (A.6)

To illustrate the partial likeness check, consider the following chromosome structure (Eq.A.7).
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XOL = NS NO︸ ︷︷ ︸
Header

S1,1 S2,1 S3,1 T1︸ ︷︷ ︸
Observation 1

S1,2 S2,2 S3,2 T2︸ ︷︷ ︸
Observation 2

... Ss,o Ss,o Ss,o To︸ ︷︷ ︸
Observation O

(A.7)

As described in detail in chapter 4, this structure denotes a header containing the number of

spacecraft and the number of observation epochs in the trajectory optimization problem, followed by

a sequence of VLBI observations of different targets taken by different trios of spacecraft. We may

look at this chromosome in a slightly different way, in terms of trajectory phases. The trajectories

of a given trio of spacecraft are defined with between two boundaries (observation targets) Eq. A.8.

XOL = NS NO︸ ︷︷ ︸
Header

S1,1 S2,1 S3,1 T1︸ ︷︷ ︸
Phase 1**

T1 S1,2 S2,2 S3,2 T2︸ ︷︷ ︸
Phase 2

... To−1 Ss,o Ss,o Ss,o To︸ ︷︷ ︸
Phase O

(A.8)

Phase 1 is a special phase because the initial boundary point is undefined. There are infinitely

many solutions to the VLBI problem in the case of one observation target; infinitely many states

that a trio could take which form a triangle whose normal or anti-normal vector points to the distant

radio source T1. Propagation is not even necessary unless a problem is posed involving a sequence

of multiple targets whose arrangement in the sky merits it. Therefore, in the partial likeness test,

if the gene sequence for phase 1 of a candidate chromosome matches that of an archived solution,

we ignore this similarity unless there is also an identical phase sequence defined explicitly between

two targets later in the chromosome.

To determine the degree of similarity between a candidate and an archived chromosome, we

apply the following process.

1) Identify the indices in the archive key (bit string) which delimit each phase gene sequence.

2) Identify each phase gene sequence in the candidate key.

3) For each phase gene sequence in the candidate key, check for the existence of that sequence

at each initial phase index in the archive key.

4) Each time a phase gene sequence match is found, increment the rank (number of identical

phases) that the archive key shares with the candidate key.
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The above 4 steps are repeated until every single archive key in the HashMap has been

searched. This linear search is necessary in order to find all partially alike keys, if any. If there

are multiple partially alike archive keys to the candidate key, the first criterion for selecting the

key whose fleet will partially seed the candidate’s inner-loop decision vector is the one with the

maximum number of identical phase gene sequences. The purpose of this criterion is to minimize

the portion of the inner loop decision vector which is seeded at random, maximizing the chance

of finding a feasible or optimal solution quickly. However, if multiple archive keys have the same

number of identical phases to the candidate, then the one with the most consecutive identical phases

is chosen as the seed mission. This second criterion is derived from the fact that, all things being

equal, a seed solution with a consecutive chain of phases constitutes a more completely solved

problem than a seed with multiple nonconsecutive phases –in which case maneuver targeting must

be done to create a complete trajectory for unseeded phases. If there are still multiple identically

ranked keys according to these two criteria, we employ one last deterministic check for seed selection.

If any archive keys have the same fleet size as the candidate, that mission is chosen to seed. If there

are still multiple seed contenders after these 3 criteria are applied, one is chosen from the list at

random.

The third criterion derives from the fact that a fleet’s trajectories are coordinated. Though

implicitly so in many cases, this coordination impacts the usefulness of a phase from one fleet to

another. For example a solution fleet with 5 spacecraft might have an identical phase to a solution

mission with 4 spacecraft. However, if the candidate mission to be partially seeded has a fleet size

of 5, then all things being equal, the genes from the 5-spacecraft archive mission are preferable

because coordination of the first 4 spacecraft trajectories with a 5th was taken into account. This

accounting is necessary for the candidate’s 5-spacecraft mission. Fig. A.1 shows how the overall

MOMA HOCP transcription is modified with the addition of the partially alike seeding technique.

Fig. A.2 illustrates the entire process of this partial seed ranking technique.
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A.5 Example of a Simple Partial Seeding Problem

Assuming Lmin = 2 and that any 2 sequential genes constitute a mission phase, consider the

following two integer chromosomes.

Xcandidate = 1 2 3 (A.9)

Xarchive = 1 2 4 (A.10)

Here we observe that the archived chromosome is partially alike to the candidate chromosome,

with a similarity rank of 1. The phase sequence 1 2 is shared between them. Thus, the candidate’s

inner-loop decision parameters for the phase punctuated by “towns” 1 and 2 would be initialized

to the values for the archived solution fleet’s trajectories corresponding to this same phase. Those

for the next phase, towns 2 and 3 would be chosen from a bounded uniform random distribution,

as is already done by default.

A.6 Example of a Complicated Problem

Returning to the parametrization of the VLBI problem from Chaper 4, consider the following

partial seeding problem. We assume there are no multi-observation epochs in this example.

Xcandidate = 6 3 1 2 3 11 4 5 6 72 1 4 5 13 (A.11)

X1, archive = 6 2 1 3 5 11 4 5 6 72 (A.12)

X2, archive = 5 2 1 2 3 11 1 4 5 101 (A.13)

X3, archive = 5 3 1 2 3 11 1 3 4 72 1 4 5 13 (A.14)
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In this more complicated problem, we have 3 solutions in the archive, two of which are

partially like the candidate chromosome. We can use the rules in section A.4 to determine which

archived chromosome is the most like the candidate. For clarity we parse the chromosomes into

header and phases and compare similarities.

Xcandidate = 6 3︸ ︷︷ ︸
Header

1 2 3 11︸ ︷︷ ︸
Phase 1

11 4 5 6 72︸ ︷︷ ︸
Phase 2

72 1 4 5 13︸ ︷︷ ︸
Phase 3

(A.15)

X1, archive = 6 2︸ ︷︷ ︸
Header

1 3 5 11︸ ︷︷ ︸
Phase 1

11 4 5 6 72︸ ︷︷ ︸
Phase 2

(A.16)

X2, archive = 5 2︸ ︷︷ ︸
Header

1 2 3 11︸ ︷︷ ︸
Phase 1

11 1 4 5 101︸ ︷︷ ︸
Phase 2

(A.17)

X3, archive = 5 3︸ ︷︷ ︸
Header

1 2 3 11︸ ︷︷ ︸
Phase 1

11 1 3 4 72︸ ︷︷ ︸
Phase 2

72 1 4 5 13︸ ︷︷ ︸
Phase 3

(A.18)

We observe that archived chromosome 1’s phase 2 matches the candidate’s phase 2, archive

2’s phase 1 matches the candidate’s phase 1, and that both archive 3’s phase 3 and phase 1 match

those of the candidate. While archive 2 shares the first phase genes of the candidate, it shares no

other phases so its similarity rank is zero. Both archive 1 and 3 share 1 nontrivial phase with the

candidate, but since archive 3 also shares phase 1, it outranks archive 1. Therefore, the candidate

will have phases 1 and 3 seeded from archive 3, while phase 2 will be seeded from a combination of

uniform random parameters and shooting based on the seeded phases adjacent to it.

Once the outer-loop seed is selected, the seed sharing algorithm for the inner-loop is invoked

to extract the necessary trajectory data for the phases to be seeded. The algorithm is a decision

tree which fills in the unseeded phases of each spacecraft’s trajectory within the fleet. First, the

algorithm chooses a TOF from a bounded uniform random distribution for each unseeded phase.

Then for each spacecraft, it determines which phases include the spacecraft partaking in a VLBI

observation. Of those, it determines which phases are being seeded and which are not. Four

possible seeding patterns may occur: 1) the spacecraft is only included in unseeded phases, 2) it
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is only included in phase one (the phase is seeded), 3) it is only included in a single seeded phase

that is not phase one, or 4) it is mentioned in multiple seeded phases between which there are

one or more unseeded phases which may or may not include it. In case 1), the spacecraft’s entire

trajectory is chosen using the current uniform random distribution method. In cases 2) and 3),

forward and/or backwards propagated Kepler arcs are generated from the seeded state to fill in the

rest of the trajectory. In case 4), a Lambert solver is used to target the maneuvers to transfer the

spacecraft between “bookending” states. Then if there is more than one unseeded phase between

any two seeded phases, the Lambert state at the final bookend may be used to propagate a Kepler

arc backwards in time through each intermediate phase. This process must then be repeated for

every instance of a case 4) pattern in the chromosome. The seed sharing technique is depicted in

its entirety in Fig. A.3.

The inner-loop seeding process for this example in Eq. A.15 is captured in Fig. A.4. In this

example, we have seed data for spacecraft 1, 2 and 3 for phase 1 as well as data for spacecraft 1, 4,

and 5 in phase 3. Phase 2 is unseeded, ergo, the initial and final states of all spacecraft during this

phase must be solved for. We begin by choosing the time of flight for this phase from a uniform

random distribution. Recall from Chapter 4 that the phase TOF is bounded between 14 and 365

days. For spacecraft 1, we know its final state in phase 1 and its initial state in phase 3. To complete

its mission trajectory, we use the Lambert solver to target the maneuvers required to transfer

between these two states within the chosen phase 2 TOF. We may not use Kepler propagation

because the two states are not guaranteed to fall on the same conic section. For spacecraft 2 and 3,

we have no information about their states in phases 2 and 3, so we may simply use forward Kepler

propagation without maneuvers to generate their trajectories during these phases. In the case of

spacecraft 4 and 5, the only information we have is their trajectory data for phase 3. To obtain the

trajectories which lead to the desired states in phase 3, we can back-propagate Kepler arcs without

maneuvers. Finally, spacecraft 6 has no seed data associated with it, so its trajectory parameters

are chosen entirely from the bounded uniform random distribution. Once all the targeting of solve

for parameters is completed, the entire fleets trajectories have been enumerated and this resulting
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seed is the first initial guess passed to the NLP solver in the inner-loop.

Seed Sharing Algorithm

For each spacecraft

Determine which phase(s) 
contain it

Any seeded phases?

Yes No

Phase-1 only?

Forward Kepler
propagate remaining 
trajectory

Choose TOF for unseeded phases

Only one phase > 1?

Forward and 
backward Kepler
propagate remaining 
trajectory

Lambert solver between 
bookending seeded 
phase(s) 

Two seeded phases 
bookending unseeded 
phase(s)

Multiple consecutive unseeded 
phases?

Backward Kepler propagate 
from final lambert state 
over each TOF for the 
unseeded phases to create 
states for consecutive 
intermediate phases

Choose phase-1 params at 
random and forward Kepler 
propagate the restYes No

Yes No

Repeat for all alternating 
seeded phase patterns

Yes No

Figure A.3: The inner-loop seed sharing decision tree algorithm.
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Legend
S/C IDinitial/final, phase

Solve for

Given

Phase delimiter
Target

“observes”
Forward Kepler arc
Backward Kepler arc
Forward Lambert arc

10/f,1

10/f,1

10/f,1

11 72 13

10,1 1f,1 10,2 1f,2 10,3 1f,3

20,1 2f,1 20,2 2f,2 20,3 2f,3

30,1 3f,1 30,2 3f,2 30,3 3f,3

40,1 4f,1 40,2 4f,2 40,3 4f,3

50,1 5f,1 50,2 5f,2 50,3 5f,3

60,1 6f,1 60,2 6f,2 60,3 6f,3

Phase 1 Phase 2 Phase 3

Figure A.4: The seeding of the candidate mission in Eq. A.15 using the archived mission in Eq.
A.18.

A.7 Experimental Design

The results of the work in Chapter 4 yielded a pool of over 1000 converged missions. These

mission fleet structures will be used as the first test data set using the new HashMap archive. The

proposed experiment is outlined thusly.

1) Create a brand new generation of candidate chromosomes as usual in NSGA-II.

2) Duplicate this generation, and used partial seeding on one group, no seeding on the other.

3) Perform evaluation of the experimental and control group in parallel.

4) The MBH inner-loop execution on a particular chromosome stops if and when the first

∆V = 0 solution is found and the elapsed MBH hop time and number of hops are recorded as fields

in the solution fleet data structure.

5) Repeat this entire process for an NSGA-II run of 100 generations.

6) Store solution fleets every generation for each group (not just the Pareto fronts) for analysis

afterward.

7) Calculate the mean and standard deviation of the MBH hops and runtime parameters for

each group. Draw conclusions on efficacy of this seeding technique.
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A.8 Objectives and Anticipated Findings of the Experiment

The ultimate goals of creating and applying this novel seeding technique are twofold. 1)

Achieve quicker convergence, on average, for a solution mission to the global optimum via the

inner-loop. 2) Identify “fitter” sequences to amplify the reach of the outer-loop algorithm. By

enhancing the HashMap archive into seed sharing capability, the-outer loop will be able to “learn”

which phase sequences are best combined to produce longer, more complex missions.

Currently, the outer-loop generates new chromosomes via genetic crossover of elite parents

followed by random mutation. These chromosomes are then initialized into missions by the inner-

loop by drawing parameters from a bounded uniform random distribution– a process which is

inefficient, relying on MBH to find a data point which leads the NLP solver to the global optimum

over many iterations. The seed sharing capability will potentially expedite the inner-loop and

outer-loop, but also introduces a potential inflection point in the outer-loop design of future work.

This seed sharing technique could be leveraged to create a different method of child chromosome

creation: smart seeding.

We can introduce a criterion (i.e. iteration) at which point the outer-loop transitions from

creating chromosomes via crossover and mutation to creating them by stitching together multiple

fit sequences from the archive. For example, as the outer-loop evaluates more and more generations,

two particular target sequences may appear frequently on the non-dominated front: a 4-target se-

quence and a completely different 3-target sequence. After the outer-loop plateaus and struggles

to add new solutions to the Pareto front, it could attempt to search the decision space by chaining

together, for instance, the 4-target and 3-target sequences and solve for a 7-target sequence. The

outer-loop could also choose to prepend, append or bookend these converged sequences with a

randomly generated sequence to solve for, say, a 25-target mission. Smart seeding thus has the po-

tential to facilitate continued exploration of the outer-loop search space and find complex solutions

that would take far longer to find purely stochastically.
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