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With ever increasingly capable tools available to interplanetary mission designers, newer
challenging classes of missions become accessible. Among these new classes of missions are Dis-
tributed Spacecraft Missions: designs where multiple spacecraft cooperate to achieve coordinated
science objectives. Several applications being explored include, but are not limited to: coordinated
launch, coordinated rendezvous, mega-constellation design, precision formation flying (PFF), very
long baseline interferometry (VLBI), and distributed aperture space telescopes. These mission ar-
chitectures promise to widen our gaze on the scientific phenomena in our solar system and beyond.
However, current operational state-of-the art global trajectory optimization platforms lack the core
capabilities to pose these complex new classes missions. These capabilities include: the ability to
model multiple individual trajectory optimization problems as one single coupled trajectory opti-
mization problem, the imposition of coordination constraints and cost functions, and the ability to
traverse massive search spaces. In this dissertation, we present a fully automated multi-agent multi-
objective technique for solving multi-spacecraft multi-target trajectory optimization problems using
a hybrid optimal control approach. We apply this technique to two benchmark problems: an Ice
Giants Dual Manifest mission design, and a variable fleet size Very Long Baseline Interferometry
mission design. The techniques developed in this work create a general transcription for Multiple

Traveling Salesmen Problems applied to global spacecraft trajectory optimization.
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Chapter 1

Introduction and Motivation

1.1 Distributed Spacecraft Missions

With ever increasingly capable tools available to interplanetary mission designers, newer chal-
lenging classes of missions become accessible. Among these new classes of missions are Distributed
Spacecraft Missions: designs where multiple spacecraft cooperate to achieve coordinated science
objectives. Several applications being explored include, but are not limited to: coordinated launch,
coordinated rendezvous, mega-constellation design, very long baseline interferometry (VLBI), and
distributed aperture space telescopes. These mission architectures promise to widen our gaze on
the scientific phenomena in our solar system and beyond. Several applications are discussed in

greater context as follows.

1.1.1 Coordinated Launch: A Dual Manifest Mission to the Ice Giants

At the Flagship class level, the Ice Giants, Uranus and Neptune, are of paramount interest
in the Planetary Science 2011 Decadal Survey [4]. These targets cannot both be visited by a single
spacecraft any time within the next 50 years [46]. Thus, a dual manifest mission becomes a nigh-
necessary option for performing science on both of these targets, where two spacecraft co-launch to
deep space. This would be more expensive than a mission to just one target, but potentially cheaper
than two separate missions [10,/44]. A pre-decadal survey study led by members of NASA /CalTech’s
Jet Propulsion Laboratory explored a grid of designs for separate ice giant missions, and additionally

put forth two point designs for a dual-manifest mission [44].



1.1.2 Distributed Aperture Space Telescopes

Distributed Aperture Space Telescopes make use of a capability known as aperture synthesis,
whereby smaller telescopes arrayed far apart use interferometry to mix their received signals to
achieve an angular resolution of a single, massive telescope [51]. Perhaps the most profound ground
system demonstration of this is the Atacama Large Millimeter Array (ALMA), comprised of 66
mobile radio dishes in northern Chile [I]. Its data has already been used in over 1,000 peer-
reviewed articles, for a wide array of radio astronomy research including exoplanet discoveries [I].
The potential to deploy a similar technology in space presents a significant opportunity beyond the
scope of this already powerful ground system.

With space telescopes growing ever larger, the eventual result is a telescope too large for one
or even several launch vehicles. Thus if multiple smaller units could be deployed in a large formation
and slew properly to targets, the result would be the largest distributed array ever conceived. In
space, the dominant challenge for the mission design and operations would be precise pointing at
the target of interest. The formation would have to be capable of reorienting itself to allocate some
spacecraft to point at one target, while some would point at another. Or, the entire formation
would potentially reorient to image a new target. Optimizing the trajectories for this formation

rapidly becomes an intractable task the more spacecraft there are in the fleet.

1.1.3 Very Long Baseline Interferometry

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is the world’s first gravi-
tational wave observatory, consisting of two installations widely separate across the United States
[70]. LIGO has made more than six confirmed detections of “black hole merger” events using the
ingenuity of machine learning to filter faint signals from saturating noise- signals generated from
1E-10 meter changes in the length of its vacuum tubes, measured precisely by lasers[70] 21]. LISA
will perform LIGO’s tasks, but in space - leveraging the empty space to create a much larger in-

terferometer antenna [62]. While LIGO’s arms are 4 km long, LISA’s will be approximately 2.5



million km. The mission will nominally launch in 2034 and use this extremely long interferometry
array to detect faint gravitational waves from as early as 1 second after the Big Bang [62]. The
mission is a composed of three identical spacecraft which launch and deploy into an equilateral
triangular formation which trails roughly 50 million km behind the Earth as it orbits the sun.
The author is directly experienced with preliminary trajectory optimization for this mission.
It requires the consideration of extremely tight path constraints. In general, the dominating problem
is precise pointing. But whereas distributed aperture telescopes must point precisely at a distant
target with simultaneity, LISA’s interferometers must point precisely towards each other. Their
relative separation distance is tightly constrained, as are the interior angles made by their triangular
formation, along with their ecliptic inclination, and distance from the Earth. No global optimization

of this mission design has been performed, but this task is likely the focus of continuing design work.

1.2 State of the Art of Global Trajectory Optimization

1.2.1 Direct versus Indirect Methods

Generally speaking in trajectory optimization, there are two classes of optimization methods:
direct and indirect. Indirect methods require an analytical formulation of necessary and sufficient
conditions for optimality derived in terms of system states and Lagrange multipliers [I5]. These
conditions are then discretized to form a constrained parameter optimization problem. Direct
methods, by contrast, parametrize the problem using physically meaningful decision variables such
as AV, time of flight, etc. Interplanetary trajectory optimization problems are too large in terms of
number of decision variables and constraints to be solved analytically, and therefore require the use
of numerical methods. A Nonlinear Programming (NLP) solver is an effective means of performing
local gradient-based optimization for both direct and indirect problems. Numerous black box solvers
exist for this purpose, including tools such as SNOPT, IPOPT [39, [7§] and MATLAB’s fmincon.
However, NLP solvers require a “good” initial guess to converge, and small changes in the initial

guess of an indirect method’s Lagrange multipliers may result in a large change in the trajectory,



affecting the ability of the optimizer to converge. Additionally, should one decide to change the
number of parameters in the optimization problem, the necessary and sufficient conditions must
be re-derived in terms of the new system. Finally, direct methods can also eliminate the need to
track the sensitive switching function, which presents a major challenge for the indirect methods.
Thus indirect methods are highly sensitive approaches for these problems and we defer to direct
methods for their versatility [52] B31].

Numerous classes of direct method transcriptions for effectively posing a trajectory optimiza-
tion problem as a parameter optimization problem have been studied. These include, but are not
limited to: simultaneous methods, shooting methods, and the approximation of a trajectory as a
series of coast arcs with discrete impulsive maneuvers along each phase [31]. An excellent earlier
study surveying and classifying numerical techniques to which such transcriptions might be applied
may be found here [I3]. Shooting methods solve a boundary value problem by reducing it to an
initial value problem, propagating an initial guess over a time arc, and using an NLP solver to
adjust the initial guess based on errors in the boundary conditions [52]. The sensitivity of shooting
methods, and indeed other direct methods, may be reduced via analytical derivatives of the cost
function and boundary conditions with respect to state parameters and/or the use of parallel or
multiple shooting techniques [52]. Examples of “multiple coast arcs with N impulsive maneuvers”
transcriptions may be found here [48]. Simultaneous methods include, notably, direct collocation
methods [52]. Collocation methods approximate a trajectory as some high order polynomial and
choose ‘collocation points’, separated equally in time, at which the system dynamics must be satis-
fied [43]. Collocation methods have proven effective for the optimization of low thrust trajectories

131, 43).

1.2.2 Gradient Free Methods

)

In some cases, what are called “evolutionary” or “gradient-free” methods use populations of
trial decision vectors to search for an optimal solution. A subclass of these, known as evolutionary

algorithms, apply principles derived from natural selection, and can be effective in place of the com-



bination of a direct transcription and NLP solver. These methods generally use a mechanism known
as stochastic gradient descent to search for a minimum to a cost function. An initially random
population of decision vectors undergoes ranking, genetic crossover, and mutation to produce the
most “fit” offspring. Several examples of gradient-free methods include Particle Swarm Optimiza-
tion (PSO), Differential Evolution (DE), binary genetic algorithms, and ant colony optimization
(ACO). Each of these methods use metaheuristics (generalized local search metrics) in place of ac-
tual gradient information to direct the search for an optimal solution. In PSO, the metaheuristics
to drive the search are each particle’s inertial, cognitive, and social weights [53]. For ACO, it is
a “pheromone” quantity exchanged by the “ants”; this algorithm has enjoyed widespread use for
applications ranging from protein folding to rule classification to financial predictions [60, 45] [80].
For DE, the metaheuristic is a difference vector calculated by randomly differencing two or four
decision vectors, which then perturbs the current global best solution [67].

The two major variations between methods are their metaheuristics, and the ranking mech-
anism of one genome against another. These methods lend themselves to problems where an NLP
solver encounters great difficulty due to a lack of gradient information in the problem formulation.
For example, the authors previously applied DE to the Cassini interplanetary cruise problem, using
the MGA1DSM transcription to parametrize candidate trajectories. MGA1DSM, while a facile
transcription for rapid prototyping, does not have analytical derivatives, and it was found that DE
performed well in place of a gradient-free local optimizer. In general however, when optimizing
continuous decision variables, and optimizing spacecraft trajectories specifically, a direct transcrip-
tion coupled with an NLP solver is less sensitive to the choice of initial guess and better suited to
implementing constraints than using evolutionary methods.

The true power of evolutionary methods is twofold. 1) They excel at traversing integer
decision spaces - where there can be no gradient information - over alternative brute-force grid
search methods. 2) While not always desirable for precisely locating a local optimum, they can
reliably determine the rough location of the global optimum. For these reasons, much research

has been done into framing global trajectory optimization problems as Hybrid Optimal Control



Problems (HOCP), with an evolutionary integer algorithm “outer-loop” whose decision vectors
are integer genomes encoding continuous trajectory optimization problems for to be solved by an

“inner-loop”.

1.2.3 Hybrid Optimal Control

Glocker et al. 2001 and Ross et al. 2005 provided solution methods to the HOCP formula-
tion of spacecraft trajectories, where an “outer-loop” handles the discrete (integer) variables, and
an “inner-loop” handles the continuous (floating point) variables [65, [77]. Conway et al. 2007
introduced a trade of two hybrid HOCP formulations - a genetic algorithm outer loop wrapped
around robust NLP solver inner-loop, followed by a “Branch and Bound” outer-loop wrapped
around a genetic algorithm inner-loop [28]. Evolutionary methods have been shown effective on
numerous multiple-flyby chemical thrust design problems, as in later work by Gad and Abdelkhalik
et al.[0, [7]. Vavrina et al. introduced a HOCP multi-objective framework for low thrust trajec-
tory optimization, which wrapped an evolutionary algorithm around Purdue’s GALLOP capability
[75, 59]. Separately, Vasile et al. 2011 introduced a multi-objective spacecraft trajectory optimiza-
tion framework applied to chemical problems such as the Cassini mission [72]. Englander, Vavrina,
Ghosh and others have since expanded upon these earlier analyses to include multiple-objectives
and low thrust mission design support [42] 291 35], 30}, 28, 23].

The conventional trajectory optimization problem that is solved by what we call the inner-
loop has been explored extensively. Englander et al. experimented with various stochastic global
search tuning parameters to increase the global problem scope and efficiency of the inner-loop [34].
As of now, a handful of interplanetary trajectory optimization platforms exist, including the Parallel
Global Multiobjective Optimizer (PaGMO) and the Evolutionary Mission Trajectory Generator
(EMTG) [30,3]. However, neither of these tools is capable of multi-spacecraft interplanetary global
trajectory optimization. With many new potential classes of missions motivating the need for such

an optimization capability, this proposed work seeks to develop a technique to enable them.



1.2.4 Multi-Agent Optimization

To optimize a coordinated multi-vehicle problem leveraging current cutting edge tools, sep-
arate designs would have to be optimized independently and manually /iteratively gridded over to
find independent trajectory designs that share the same constraints. For example, consider a mis-
sion in which two spacecraft depart from the same launch vehicle along an identical asymptote,
then perform independent maneuvers at different points in time to begin journeys to distinct des-
tinations. Using state-of-the-art tools, one would need to create a grid whose points would each be
defined by an epoch and a launch asymptote. For each grid point, two separate SVMs would need
to be run, both required to share the same launch epoch and asymptote parameters. However, the
best design found in this grid can in no way be guaranteed to represent the optimal solution. At
best, refining this grid search approach for efficiency would lead to a method that approaches, but
remains inferior to, the type of stochastic gradient descent already used by evolutionary methods.
The co-launched aspect of this mission, in fact, is a coordination constraint that couples the behav-
ior of the two spacecraft. This coupling is more properly handled with a treatment of two separate
SVM decision vectors as one MVM devision vector, with a local optimizer free to rapidly vary and
traverse candidate launch asymptotes within a launch window. Furthermore, if one were to add
N more spacecraft to the fleet, the problem becomes geometrically intractable to solve as separate
subproblems.

Multi-agent optimization is a thriving field in computer science which is applied, in large
part, to solve communications network traffic problems. In these problems, the server/client nodes
are treated as agents and the communication between any two may be modeled as a time-varying
digraph sequence [69]. For more information on computational graph optimization, we refer the
reader to the following source which discusses the motorized Traveling Salesman Problem (TSP)
[77]. In multi-agent optimization, a computational agent can be either a tool used in the opti-
mization process, the object of the optimization process, or both [69]. For example, PSO is a form

of multi-agent optimization where particles are the agents that perform the optimization. Several



multi-agent multi-objective optimization algorithms have been developed and applied to problems
ranging network communications to robotics - such as with mechanical rovers coordinating site
visits.

Beni et al. 1989 explored decentralized swarm intelligence architectures for robots in terms
of classifying predictable versus unpredictable behavior [12]. Sun et al. developed the first non-
convex multi-agent optimization algorithm for communications networks [69]. In recent years,
multi-objective multi-agent genetic algorithms (MOMA GA) have been proposed, including Ag-
gregation by Variable Objective Weighting, Niched Pareto Genetic Algorithm, Strength Pareto
Algorithm (versions I and II), and more [41], (50} [82] 14]. Most of the focus in these algorithms how-
ever remains on single objective multi-agent optimization [9]. Additionally, none have been applied
to spacecraft trajectory optimization. Yliniemi et al. 2015 used rover site exploration to motivate
the development of a continuous-valued Multi-Agent Non-Dominated Sorting Genetic Algorithm
(NSGA-II) along with a brand new MOMA GA called The Pareto Concavity Elimination Trans-
formation (PaCCET) [79]. Ghosh and Coverstone et al. explored a multi-agent formulation of the
decision vector for low thrust trajectories for propellant-optimal cooperative cubesat maneuvers
[37]. They leveraged A HOCP framework as well, but used the outer-loop to optimize the number
of discretization points in the low thrust mesh and did not extend this approach to multi-objective,
multi-target global optimization problems. Ergo, a host of multi-agent methods and applications
exist with different approaches to handling and incentivizing the coordination of the agents in-
volved. This work draws on multi-agent principles to implement a prototype interplanetary global

trajectory optimization technique for MVMs.

1.3 Approach

In examining the state of the art, the global trajectory optimization of many different dis-
tributed spacecraft mission architectures proves intractable using current trajectory optimization
capabilities. When tasked with the global optimization of interplanetary Multi-Vehicle Mission

(MVM) trajectories specifically, state-of-the-art techniques are hindered by their need to treat the



MVM as multiple decoupled trajectory optimization subproblems. This shortfall blunts their abil-
ity to utilize inter-spacecraft coordination constraints and may lead to suboptimal solutions to the
coupled MVM problem. Only a handful of platforms capable of fully automated multi-objective
interplanetary global trajectory optimization exist for single-vehicle missions (SVM), but none can
perform this task for interplanetary MVM.

Framing interplanetary spacecraft trajectory optimization as a hybrid optimal control prob-
lem (HOCP) has proven an effective approach [29, [75]. In a HOCP framework, trajectory opti-
mization is a Mixed-Integer Programming (MIP) problem. Some decision variables are discrete
(integers) while others are continuous (floating point), necessitating distinct optimization routines
for each type. Furthermore, the resulting mission designs are points within a solution space spanned
by multiple objectives (i.e., minimum fuel versus minimum time of flight). Thus, in order to effec-
tively characterize the solution space for a given mission design problem, a multi-objective HOCP
framework is essential. However, while tools exist to solve interplanetary multi-objective HOCPs
for a single spacecraft, no tool exists to do so for multi-spacecraft problems. Addressing the short-
comings of current approaches to MVM optimization, including the methods for handling inter-
spacecraft coordination objectives and constraints, are key to enabling the optimization of future
interplanetary MVMs.

Operational implementations of state-of-the-art global trajectory optimization techniques are
not structured to support multiple-spacecraft global trajectory optimization. In order to solve a
problem with a fleet containing a fized number of spacecraft, these implementations would require
the analyst to run a large grid of studies, with each grid point representing a particular permutation
of constraint values that are applied identically to each of S independent single-vehicle spacecraft
trajectory optimizations. Each of the S SVM runs would need to be compared a posterior: for ad-
herence to constraints. While it would be possible to set certain boundary constraints, this inherent
separation of the MVM already makes it untenable to impose most inter-spacecraft coordination
constraints. Now if the analyst is solving a problem where the requisite fleet size to achieve the

coordinated science objectives is not known a priori, the analyst much choose a range of fleet
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sizes and run still more studies, one set of studies for each fleet size. These shortcomings —lack of
coordination constraint handling, lack of coordinated objective handling, and artificially inflated
computation time due to separate SVM optimization— motivate this thesis work. A transcription
which enables global trajectory optimization for multiple-spacecraft multiple-target exploration
problems is essential in tackling the next generation of complex space missions.

In this dissertation, we introduce such a technique. We present a Multi-Agent Multi-Objective
Hybrid Optimal Control Problem (MOMA HOCP) transcription which resolves many of the short-
comings with state-of-the-art techniques and demonstrate its efficacy on several benchmark global
trajectory optimization problems. The technique is fully automated (requiring no analyst-in-the-
loop tinkering to explore a given search space), and generic (generally agnostic to a particular
trajectory optimization problem). It supports an arbitrary number of spacecraft in a fleet and
allows both the fleet size and number of science targets explored by the fleet to vary during the
optimization. Several new inter-spacecraft coordination constraints and coordinated science objec-
tives are introduced, and their impact on the solution space of two different benchmark problems
is assessed. Finally, a HashMap archive utility is created to prevent repeat evaluations of previous
solutions and amplify the reach of the MOMA HOCP technique to explore the solution space using
partial seeding. Two benchmark problems are conceived to demonstrate the efficacy of the MOMA
HOCP technique: an Ice Giants Multi-Mission (where two spacecraft share a launch asymptote en
route to different outer planets), and a science-phase VLBI problem where a variable number of
spacecraft coordinate to image multiple distant radio sources.

We then propose, conceive, and apply techniques for more efficient search space traversal
as the dimensionality of optimization problems such as these is enormous. We introduce a fast
HashMap archive technique to ensure each point in a problem’s search space is explored only once.
We then introduce an algorithm augmenting this archive into a seed sharing capability in order to

potentially expedite the discovery of new solutions and propose an experiment to test its efficacy.
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1.3.1 Thesis Statement

A fully automated, multi-objective, multi-agent hybrid optimal control problem framework
allows analysts to combine individual spacecraft trajectory optimization problems into a coupled
optimization problem, impose inter-spacecraft coordination constraints, and pose coordinated sci-
ence objectives, enabling the global optimization of new classes of multi-spacecraft, multi-target

exploration missions.

1.4 Dissertation Overview

1.4.1 Organization

Chapter [2| details each algorithm applied and/or created for MOMA HOCP transcription.
Chapter [3|discusses the problem formulation and results for the Ice Giants Multi-Mission benchmark
problem. Chapter [4] discusses the formulation and results for the very long baseline interferometry
problem. Finally, chapter 5| summarizes the significant contributions and conclusions of this thesis
and discusses our future work. The Appendix discusses the augmentation of the archive utility
created in {4] into a novel partial seeding technique to expedite the MOMA HOCP transcription’s

ability to traverse its search space, to be applied to further research on the VLBI problem.

1.4.2 Contributions

The chief contributions of this dissertation are summarized as follows.

Ice Giants Dual Manifest Study

e introduces a first-of-its-kind MOMA HOCP framework for interplanetary global trajectory

optimization
e creates an outer-loop transcription which encodes a coordinated launch asymptote problem

e creates and demonstrates the impact of several inter-spacecraft coordination constraints,

including: a coordinated launch asymptote constraint, a shared flyby genes constraint, and
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a shared trajectory phases constraint

Very Long Baseline Interferometry Study

e expands the generality of the outer-loop of the MOMA HOCP framework into a transcrip-

tion which can pose almost any Multiple Traveling Salesmen Problem

e applies a Null Gene technique to allow the number of spacecraft in a fleet to vary

e enables multiple observations at a single epoch when the size of a fleet exceeds 6 spacecraft

and incentivizes this behavior with an observation multiplicity cost function

e introduces a fast HashMap method for ensuring no repeated chromosomes are sent to the

inner-loop



Chapter 2

Algorithms

2.1 Background

In § we discussed the state of the art of global trajectory optimization, identifying key
techniques which numerous operational platforms leverage in order to produce compelling trade
studies. No technique has been developed which combines: multi-agent techniques, multi-objective
optimization, and hybrid optimal control into one framework and applies their combination to
trajectory optimization. In this dissertation, we introduce a transcription which does. This tran-
scription uses a multi-agent multi-objective integer genetic algorithm outer-loop (in the form of a
multi-agent NSGA-II algorithm) wrapped around a single-objective inner-loop global search method
(Monotonic Basin Hopping, MBH). MBH stochastically explores the continuous decision parameter
space searching for the global optimum, generating candidate trajectories which are parametrized
into decision vectors using a direct transcription. For each benchmark problem, we apply a different
direct shooting transcription uniquely suited to that problem. These transcriptions are discussed
in detail in the problem formulations of Chapters |3| and [4. The NLP solver, MATLAB’s fmincon,

is used to solve for local optima given the decision vectors created by MBH.

2.2 Spacecraft Trajectory Optimization

Each of the components selected to build the MOMA HOCP technique in this work is complex
and nuanced. It is instructive to first consider a basic fundamental trajectory optimization problem

and develop a discussion through increasing levels of complexity, introducing each component at
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its appropriate level. Let us begin with the discussion of a two-point boundary value problem: the
base unit of a trajectory modeled in this dissertation.

In this example, we assume a spacecraft obeys two-body Newtonian gravity. The two bodies
include a large primary point mass, and a negligible secondary point mass (the spacecraft). The

equations of motion for the spacecraft are given by equation Eq.

r(t)
7))

F(t) = —n (2.1)

where 7(t) is the time-dependent cartesian position vector of the spacecraft with respect to the

origin of some inertial frame of reference. We can then represent the spacecraft’s position-velocity

state (Eq. and its time derivative (Eq. [2.3).

X" =[r)", #()"] (2.2)

X7 = [f)", —n (2.3)

AP

The spacecraft’s real physical trajectory is represented by a continuous time series of states.
However, in optimization, it is more convenient discretize this trajectory using a transcription
which can describe it completely using a limited set of decision variables. A decision variable x; is
a parameter which quantifies an element of a decision-making process, which a decision maker can
control. In optimization, the decision maker is the optimization algorithm. With direct trajectory
optimization, decision variables may include real parameters of the trajectory, for example: AV
vectors, position vectors, time of flight (TOF) durations, and spacecraft mass. The decision vari-
ables chosen in a particular transcription combine to form the decision vector & which encodes a
spacecraft trajectory.

The goal of direct trajectory optimization is to find a trajectory whose decision vector mini-

mizes some cost function (Eq. [2.4]).
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J = g(&) (2.4)

Now suppose we introduce a general constraint on the decision vector using Eq.

¢ = f(@) (2.5)

The general trajectory optimization problem in our example is to find a solution decision
vector & which encodes a trajectory that follows Eq. which minimizes the cost J(Z) subject
to ¢(Z). The constraint ¢(Z) may be a vector of constraints ¢(Z), some linear, others nonlinear,
and some be equality or inequality constraints. If any of the constraints or the cost function is a
nonlinear function of the decision vector, the trajectory optimization is a nonlinear programming
problem. The trajectories in this dissertation are complex nonlinear programming problems- not
merely single-arc direct shooting problems, but coupled multi-point shooting problems with control,
to be solved by a nonlinear programming (NLP) solver. These problems also contain nonconvex,
multimodal, cost and constraint functions, and the existence of a solution can not be known a
priori. As such, it is difficult to come up with a good initial guess for their solutions, and given
the nonintuitive nature of their search spaces, an initial guess generator must be robust absent any

analyst intervention.

2.3 Inner-Loop Solver

Many techniques for locating initial guesses from within a search space have been explored.
These include, but are not limited to, graphical representations such as Tisserand plots, search
space pruning, and seed sharing [68, [48], 22} (66, [46], 54, 57, [36]. There are tradeoffs in each of
these methods. Stochastic search methods are at least as efficient as brute force, finding the global
optimum in less time and require no analyst intervention, but are inefficient as they require a long
runtime to reliably search the space. Graphical representations of the search space can impart

intuition about the complex search space to a mission analyst, allowing for quick identification of
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candidate solutions once created. However, they: require analyst to intervene in the optimization
process, and may not represent an accurate picture of viable initial guesses which satisfy problem
dynamics. Search space pruning techniques share similar tradeoffs to graphical methods as they
require an analyst to make decisions about which pockets of the search space are worth searching -
based on intuition and assumptions which may lead to no solutions being found or cause the analyst
to miss the best solutions. However, pruning allows the analyst to completely control the size of
the search space, and to some degree all global optimization problems are in practice subjected to
pre-pruning of their search space based on mission and time requirements.

In fully automated global trajectory optimization, it is essential to select both an initial
guess generator which will facilitate exploration of the global search space, a robust nonlinear
programming (NLP) solver to optimize initial guesses, and a trajectory transcription which will
enable the NLP solver to find good solutions quickly. In this dissertation, we refer the task of
conventional trajectory optimization to an inner-loop of a hybrid optimal control framework. The
inner-loop solves a single-objective trajectory optimization problem with no analyst intervention.
The inner-loop’s routine must reliably find the global optimum, and require no initial guess. It is
necessary to wrap a global search method around the local optimizer to enable the inner-loop to
routinely arrive with the statistical neighborhood of the global optimum. The stochastic global
search method employed in this work is a Monotonic Basin Hopping (MBH) algorithm [17, 35].
This algorithm derives its name from the supposition that the generally nonconvex cost function
being optimized contains local optima within basins, which can be traversed by a local optimizer.

Once the NLP solver drives a sub-optimal initial guess down to a local minimum (bottom
of a basin), MBH perturbs the current decision vector by some random hop distance out of the
basin and begins exploring the global space, keeping track of the global best found. This process
is repeated until either a maximum number of hops have been performed or an elapsed time has
passed (both of which are user-selectable parameters). This process is illustrated in Fig.
MBH thus hops through the global search space stochastically. Its performance has been greatly

improved by using a Nonlinear Programming (NLP) solver to quickly optimize local minima [35].
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The following pseudocode captured in Algorithm 1 describes the version of MBH implemented
for this work. Versions of MBH such as that of [34] use Pareto random hops to explore the global

space, an approach we adopt in this dissertation as well.

Base design

Hop 2 \ " After gradient-based

optimization

\/After gradient-based
optimization

X4

Figure 2.1: Illustration of the MBH process for an arbitrary cost function f; of one decision variable
x1, taken from [35].

The fundamental technique of MBH may be tuned in numerous ways. These include but
are not limited to: the criteria for hopping out of a basin, the random number distribution from
which new decision vectors are pulled (uniform, Gaussian, Pareto, etc.), and the shape parameters
of that random number distribution. In this dissertation, we explore two benchmark problems.
We employ a different version of MBH in each benchmark problem as we discovered more efficient
methodologies during this research. Algorithm 1.1 outlines the pseudocode for the variant used in
the Ice Giants Dual Manifest problem, while Algorithm 1.2 outlines the variant used in the VLBI
problem. Algorithm 1.1 contains two loops: a global hop loop, and a local hop loop. The purpose of
this structure is to enable global search space exploration while also improving the quality of local
optima found by the NLP solver. When a local optimum is found, the local hop loop uses a smaller
hop size than the global loop, forcing MBH to search for improved solutions nearby. Algorithm 1.2
dispenses with the “local hop” parameters which artificially constrain the hop distance for a certain
number of iterations after a local optimum is found. This change was made when it was discovered
to be more efficient to simply have one hop size, chosen from a Pareto random distribution, and
prioritize exploring the global space rather than the local neighborhood with each hop.

Algorithm 1.1: Monotonic Basin Hopping



Initialize fpest
while current iteration < max iterations OR maximum elapsed time not reached
Generate random point .
Run local optimizer to find point * using initial guess «.
Teurrent = T*
if z* is a feasible point then
if f(2*) < fpest then
Joest = f(z*)
save z* to archive
end if
while Nyotimprove < Nmag
generate ' by randomly perturbing Zeyrrent
Run local optimizer on 2’ to find x*
if (z* is a feasible point) & (f(2*) < f(Zcurrent)) then
Nnotimprove = 0

%
Lcurrent = T

if f(2*) < fpest then
Frest = F(2*)
save x* to archive
end if
else
Nrot improve = Nnot improve + 1
end if
end while
end if
end while

return best z in archive
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Algorithm 1.2: Monotonic Basin Hopping (VLBI Variant)
Initialize Tpest, foest
while current iteration < max iterations OR maximum elapsed time not reached
Generate random vector &
Run NLP solver to find point #* using initial guess ¥
if 7* is a feasible point then
if f(Z*) < fpest then
Joest = f(Z¥)
save Thest = T+ to archive
end if
end if
current iteration = current iteration+1
Update total loop runtime
end while

return Ty from archive

2.4 Discrete Parameter Optimization

The inner-loop algorithm optimizes a continuous valued decision vector, but there are nu-
merous trajectory optimization problems which involve discrete variables. Discrete variables are,
strictly speaking, integers. These variables may be used to represent the towns in a traveling sales-
men problem (TSP), the planets or asteroids in a flyby sequence, the number of thrust arcs on a
low thrust trajectory, the number of throttle modes on a thruster, etc. One example of a discrete
optimization problem would be: given a final intercept destination at Jupiter, find the flyby se-
quence of 3 inner planets which a spacecraft may use to reach Jupiter in minimum time. In this

example, there are 4 inner planets to choose from: Mercury, Venus, Earth, Mars. We will allow the
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same planet to be used multiple times in the flyby sequence. Then given a 3-planet intermediate
flyby sequence, there are 43 = 64 possible flyby sequences to choose from. Assuming there are
no other variables in the decision vector other than those of the flyby sequence, this problem is
small enough to solve with a grid search. However, if we increase the required length of the flyby
sequence and/or the number of flyby bodies to choose from, the search space grows geometrically
with each additional flyby variable. Thus locating the global optimum quickly becomes intractable
using total enumeration, even if we can access substantial parallel computing resources.

The goal of a discrete optimization problem effectively becomes to find the optimal sequence of
integers which minimizes some cost function. However, unlike with continuous valued search spaces,
there is no cost or constraint Jacobian for the decision vector, thus gradient-free optimization
methods are necessary to traverse the search space. Evolutionary methods, a particular class
of gradient-free approaches, leverage principles of genetic crossover in biology, treating decision
vectors as chromosomes whose genes (decision variables) may be swapped or mutated at random.
Evolutionary methods have been demonstrated as effective search space traversal methods, and use
the following general process:

1) Start with a randomly generated population of chromosomes.

2) Evaluate the fitness of each chromosome in the population using some cost function.

3) Choose ‘parent’ chromosomes, according to their fitness, to seed the next generation of
chromosomes. In evolutionary algorithm research, giving preference to fitter parents to create
children is known as elitism.

4) Select two parents to pass their genes along to a ‘child’ chromosome. The child chromosome
is created by flipping a coin to choose a gene from each parent.

5) Apply a random mutation operator to the child’s genes, then return to step 2. After
crossover is completed, each gene in the child chromosome has a small chance to be randomly
mutated. Using elitism and crossover alone, the solution chromosomes tend to cluster in a subset
of the search space. This practice subverts this shortcoming, encouraging continued global search.

This process of searching the decision space for fit solutions and using the fittest members
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to seed new generations facilitates the discovery of better solutions to the optimization problem
over many generations, but there is no explicit convergence criterion in these approaches. However,
evolutionary methods find good solutions far more quickly than total enumeration grid searches,
especially for larger search spaces. The trajectory optimization problems we explore in this disser-
tation, however, are neither discrete nor continuous, but a hybrid of the two. In this dissertation,
the parameters being optimized form a mixed-integer programming (MIP) problem. Distinct opti-
mization routines are required for each class of parameter. An effective approach for optimizing a
MIP is to create hybrid optimal control problem (HOCP) formulation which combines a gradient-
based inner-loop with a gradient-free outer-loop. The outer-loop chooses integer chromosomes
which encode distinct continuous-valued trajectory optimization problems to be optimized by the
inner-loop.

To expand on the previous example of the minimum-time triple-planetary flyby sequence
optimization problem, the inner-loop may choose continuous parameters including the launch win-
dow, the characteristic launch energy C3 (km/s?), the maneuver vectors, and more. The inner-loop
thus optimizes the trajectory through a given flyby sequence for minimum time of flight, and once
the solution is returned, the outer-loop compares every flyby sequence chromosome and chooses
the ones with the lowest TOF cost to form the pool of parent chromosomes which will seed the
next generation. In general, however, global trajectory optimization is not a single-objective, but
a multi-objective problem. Numerous different quantities such as TOF and AV contribute to the

fitness of a given solution.

2.5 Multi-Objective Outer-Loop Solver

To solve a multi-objective global trajectory optimization problem, one common approach is
to combine the cost functions into one cost function: Jaue(Z) = G(J1(Z), J2(Z), ..., Jar(£)). This
approach is intuitive because an NLP solver can only optimize one cost function at a time. Global
trajectory optimization is already time-consuming for single-objective problems. At first glance,

in order to optimize a design for multiple objectives, a