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In 2002, King, Parker, Deshmukh and Chong presented a technical report intro-

ducing the idea of using electrostatic forces in spacecraft formation flying. This was

the birth of the Coulomb formation flying concept. Since then, many areas related to

Coulomb formation flying have been studied, such as the equilibrium solutions for a

static multiple-craft Coulomb formation, the equilibrium solutions for a spinning two-

and three-craft Coulomb formation, Coulomb virtual tether control, and hybrid forma-

tion flying control et. al. This dissertation investigates two aspects related to the shape

control of a Coulomb cluster: two-craft collision avoidance using only Coulomb forces;

two- and three-craft Coulomb virtual structure control.

A Lyapunov-based nonlinear feedback control and an open-loop patched-conic-

section trajectory programming algorithm are developed to achieve the instant collision

avoidance of two spacecraft. The Lyapunov-based control requires only separation dis-

tance and rate as feedback, the control achieves collision avoidance and retains the

relative kinetic energy level. The trajectory programming algorithm searches a three-

phase patched-conic-section trajectory to avoid a potential collision. This approach

achieves collision avoidance, retains the direction and magnitude of the relative ve-

locity. There is an extra degree of freedom which can be utilized to find an optimal

trajectory corresponding to a specific cost function.

On the side of Coulomb virtual structure control, at first a Lyapunov-based par-

tial state feedback control is developed to control the separation distance of a spinning

two-craft formation to the desired distance. The boundaries of the separation distance

error due to the lack of the full position vector measurements are found analytically.
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The study of the one-dimensional constraint three-craft Coulomb virtual structure con-

trol develops two approaches to solve the charge implementation issue. Then a switched

Lyapunov-based control strategy is developed to stabilize the shape of a three-craft for-

mation to the desired triangular configuration. The stability of the switched control is

ensured using multiple Lyapunov function analysis tool. In the end a nonlinear control

strategy is presented to stabilize the three-craft formation to a desired collinear config-

uration. The collinear configuration control does not require high-frequency switching

of the control charges.
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CHAPTER 1

INTRODUCTION

The dissertation studies two aspects of research related to the shape control of a

spacecraft formation using only Coulomb forces: Coulomb virtual structure control and

two-spacecraft collision avoidance. This chapter introduces some important concepts

related to the content of the dissertation, and also reviews related previous work.

1.1 Close-Proximity Flying

A close-proximity flying cluster of spacecraft is a collection of physically separated

spacecraft (also called “distributed system of satellites”) with their states coordinated

to achieve certain objectives. Currently, close-proximity flying consists of three cate-

gories: spacecraft cluster, rendezvous and docking and spacecraft formation flying. The

spacecraft formation flying concept has a tight tolerance on the relative configuration,

while a spacecraft cluster has a relatively loose configuration. By altering the config-

uration of the formation, a wider range of missions can be accomplished as compared

to an equivalent single, large spacecraft. Formation flying can even achieve some struc-

tural properties by using the concept of “virtual structure”. Thus it performs as a large

structure without actually building a large, flexible and usually vulnerable structure in

space. Figure 1.1 illustrates the concept of a loosely controlled swarm of spacecraft.

In recent years, multiple-spacecraft distributed systems have aroused more and

more interests in the Aerospace Engineering area. A cluster of spacecraft flying in
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Figure 1.1: Illustration of clustered flying spacecraft. (Original image from
website: http://gizmodo.com/363617/boeing-to-design-new-darpas-networked-swarm-
spacecrafts)

close-proximity can reduce mission cost and increase the redundancy, reliability, perfor-

mance and survivability of space missions. The spacecraft cluster diversifies the launch

risks and thus greatly improves the robustness to launch failures. When encountering

a component failure of a spacecraft, the spacecraft cluster provides the capability to

replace that component with another nearby spacecraft without sacrificing that por-

tion of functionality. A growing number of space missions are being designed with

the purpose of studying and/or exploring the advantages of the distributed systems of

satellites. Princeton Satellite Systems describes some spacecraft clusters and formation

flying missions on their website through:1

Examples include the TICS, F6 and Orbital Express programs at DARPA,
the DART, MMS, SIRA, MAXIM and TPF missions at NASA, the

1 http://www.psatellite.com/research/formationflying.php
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Proba-3, Darwin and Cluster missions at ESA and commercial mis-
sions like OLEV. The applications range from automated rendezvous
for equipment and fuel delivery, to long-duration precise formation fly-
ing of distributed sensors, which could enable the detection of distant
Earth-like planets. A common thread for all such missions is the need
to autonomously perform coordinated operations among multiple free-
flying spacecraft.

1.2 Coulomb Formation Flying

Coulomb Formation Flying (CFF) is a novel approach to control a spacecraft

formation. The concept of CFF was originally proposed by King et. al. in 2002. [1]

It actively creates an electric field about the spacecraft and utilizes the internal elec-

trostatic forces within the formation to control the relative motion of the spacecraft.

Because the Coulomb force is at least inversely proportional to the square of the sepa-

ration distance, it is applicable in controlling a formation with the separation distances

charge particle emission device

Figure 1.2: Illustration of a Coulomb Formation Flying.
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within 100m. Outside of this region, the Coulomb force is too small to be utilized for

kilo-Volt levels of the spacecraft potentials. Considering separation distances within

100m, the magnitude of the Coulomb force generated is at the level of mili-Newtons to

micro-Newtons, which is gentle and precise. Figure 1.2 shows a scenario of CFF.

On each spacecraft, the charge is generated by continuously emitting charged

particles, ions or electrons, from the spacecraft by using the particle accelerators com-

parable to the hardware of an ion engine. The ion engine is the common actuator used

in the electric propulsion (EP) approach, which generates large exit velocities of the

ion particles such that the spacecraft gains a net external force from the momentum

exchange. With the CFF concept, comparable charge emission devices need to expel

the charge particles at a velocity large enough to escape the local electric field. The

force due to the momentum exchange effect is negligible and the mass of the expelled

particles is so trivial that the Coulomb thrusting is usually referred to as “essentially

propellantless”. Since the Coulomb thrusting approach does not need to generate mass

flow (based on the purpose of the momentum exchange mechanism) as in EP, the power

consumption is much less than that of EP.

1.3 Coulomb Virtual Structure

A virtual structure is a cluster of spacecraft with a nominally fixed relative con-

figuration. In a virtual structure, all spacecraft should appear frozen as seen from the

rotating local orbit frame. Generally, this fixed-configuration type of formation cannot

happen naturally without an active control, except for the leader-following type forma-

tion in a circular orbit. Feedback control is required to stabilize the configuration to the

reference configuration. The concept of virtual structure is one of several approaches

to the formation control problem. Other approaches include the leader-following and

behavioral approaches. The virtual structure approach is very convenient to prescribe

a coordinated behavior of the formation. Reference [2] proposes a novel idea of intro-
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Coulomb virtual structure

Figure 1.3: Illustration of a Coulomb virtual structure.

ducing the formation feedback from the spacecraft to the virtual structure control. In

that work, the authors at first assume a rigid structure in the orbit, then use the in-

verse dynamics method to determine a feedforward reference control using conventional

thrusters that can hold the spacecraft to stay in the rigid structure configuration. In

the last step, a feedback control loop is utilized to stabilize the formation to the desired

rigid configuration.

Coulomb virtual structure control is a special case of virtual structure control.

It is special in that it uses only the Coulomb forces as the control input. The classi-

cal virtual structure has the formation assuming a rigid shape regardless of the orbital

motion. Inverse dynamics are used to create a feedforward control to continually com-

pensate for the non-desired relative orbital motion. In contrast, the Coulomb virtual

structure assumes an ideal shape which is an equilibrium of the charged relative orbital
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motion. If the spacecraft potentials are held to specific values, then the differential grav-

itational forces are perfectly canceled. While the traditional virtual structure control

uses conventional inertial thrusters that are capable of generating forces in any direc-

tion, Coulomb forces always lie in the line-of-sight direction. The non-affine nature of

the system dynamics of the Coulomb virtual structure is another factor that makes the

control problem much more complicated than the traditional virtual structure control.

A portion of the research on Coulomb virtual structures focuses on finding the

equilibrium solutions of the charges and the positions for the spacecraft forming a cer-

tain shape naturally [3–6]. Another branch of research on Coulomb virtual structures

investigates the spinning Coulomb formation. Most of the previous works on Coulomb

virtual structures do not have any feedback control to stabilize the system, but rather

provide the guidances of the reference feedforward charges. Reference [7] is the first

work that studies the control of the Coulomb virtual structure. It develops a feedback

control based on a linearized model to stabilize a three-craft Coulomb formation to a

collinear configuration. Prior to this dissertation work, only linearized shape control of

a three-craft Coulomb structure has been studied.

The Coulomb virtual tether is a concept that is very similar to the Coulomb

virtual structure concept. A Coulomb virtual tether is a formation with spacecraft

connected by Coulomb forces instead of physical instruments like the traditional tethers.

The Coulomb virtual tether controls the orientation and the length of the virtual tether,

focusing on the collinear configuration. Coulomb virtual structure considers only the

shape control of the formation, with the desired shape being an equilibrium of the

charged relative motion.

1.4 Spacecraft Collision Avoidance

In any close-proximity flying space mission designs, the possibility for spacecraft

to collide must be treated carefully due to the huge cost of an unexpected collision. For
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CFF with separation distances ranging within 100 meters, the chance for the spacecraft

to collide is even higher. Collisions can occur when the spacecraft within the cluster

have certain control or sensor failures, or the cluster is lacking the guidance strategy to

guarantee the collision avoidance among a large number of the cluster members. For

long-term Earth-orbit missions, a collision can also occur when the influences of the

orbital disturbances accumulate.

Preventing collisions has many challenges. First, the collision onset must be

sensed with sufficient accuracy to warrant a corrective maneuver. Second, a control

strategy must be developed to provide the required small corrective forces without

causing plume impingement issues on neighboring satellites. Currently, the most com-

mon approach in dealing with spacecraft collision avoidance problem is to examine the

collision probability of a formation and perform some velocity corrections to reduce the

probability to a negligible level. This approach usually uses thrusters to achieve the

velocity corrections. This approach is intended to deal with the long-term disturbances

and works for a formation or cluster with large separation distances at the km level.

For a very tight formation mission such as rendezvous/docking or CFF with the

separation distances ranging within 10–100m, the above approach is no longer suitable to

promptly handle such a potential collision. Another approach, called the instant collision

avoidance maneuver, can be applied in these missions. In this approach, once a potential

collision is detected the control starts to maneuver the two or multiple spacecraft to

prevent the potential collision. Because this approach is designed to directly prevent

collision instead of reducing the collision possibility, it is more prompt and thus suitable

for tight formation missions. In the instantaneous collision avoidance problem, the main

requirement is to avoid collision, which means the separation distance should always be

greater than a certain constraint value.



8

1.5 Literature Review

King et al. [1] originally discussed the novel method of exploiting Coulomb forces

for formation flying in 2002. Since then the CFF concept has been investigated for

several different mission scenarios.

Berrymann and Vasavada et al. develop methods in References [3–6] to develop

the equilibrium charges and positions for multiple charged spacecraft formation flying.

Reference [3] presents a numerical algorithm to find the steady-state equilibriums which

freeze the satellite formation with respect to the rotating Hill frame. Reference [4]

investigates the analytical solutions to determine the equilibrium solutions for 2-craft

and 3-craft Coulomb formations. Reference [6] develops an analytical approach to find

the feasible equilibrium for a square-shaped 4-craft Coulomb formation. Reference [5]

presents necessary conditions for static and circularly-restricted formations. Note that

these references do not have any feedback control to stabilize the system, but rather

only provide the reference feedforward charges.

Natarajan et al. investigate the 2-craft Coulomb virtual tether control problem

in References [8–11]. Reference [8] introduces a charge feedback law to stabilize the

distance in a two-craft Coulomb tether formation based on a linearized model. The

gravity gradient torque is exploited to stabilize the Coulomb tether formation around

the orbit nadir direction. Reference [9] designs a hybrid feedback control using tra-

ditional thrusters always in the normal-to-tether direction to stabilize the attitude of

the formation without causing plume impingement issues. Reference [11] develops a

pure Coulomb tether control based on the linearized out-of-plane decoupled model. In

Reference [11], though the out-of-plane motion is not controlled, bounds on the ini-

tial out-of-plane oscillation are deduced using the linearized out-of-plane motion model

based on Bessel functions.

Schaub and Hussein study the spinning Coulomb virtual structure problem in
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References [7,12,13]. Reference [12] studies the invariant shape solutions for a spinning

three-craft Coulomb formation. It shows that only the collinear configuration and ex-

panding equilateral triangle configuration can be invariant. Reference [13] introduces

the spinning two-craft Coulomb tether concept. It is the first work that analyses the

open-loop stability of a Coulomb tether with constant spacecraft charges, based on a

linearized model. Assuming the Coulomb tether is flying in deep space, it shows that

the relative motion is locally stable if the spacecraft separation distance is less than the

Debye length, and the out-of-plane motion is always stable. Reference [7] studies the

three-craft Coulomb tether control problem. Based on a linearized model, a feedback

control strategy is developed to stabilize the three-craft Coulomb tether to the collinear

relative equilibria. The nonlinear system converges to the neighborhood of the desired

equilibrium, but due to the approximation using the linearization technique, the size of

the convergence neighborhood is limited.

Other than the above references, which are closely related to the Coulomb virtual

structure problem, Joe et al. introduce a formation coordinate frame which tracks

the principal axes of the formation in Reference [14]. Lappas et al. in Reference [15]

develop a hybrid propulsion strategy by combining Coulomb forces and standard electric

thrusters for formation flying on the orders of tens of meters in GEO. Simulation results

show that incorporating Coulomb forces into the control strategy brings more than

80 percent power savings for propulsion. Reference [16] proposes a N -craft Coulomb

structure control strategy by utilizing three drone spacecraft. The drones are used only

to assist controlling the N main spacecraft.

Other than CFF, other promising techniques for close-proximity flying include

Electric Propulsion (EP) [1] and Electro-Magnetic Formation Flying (EMFF) [17]. EP

systems generate forces by expelling ionic plumes. However, the ionic plumes can disturb

the motions of nearby spacecraft. Furthermore, the intensive and caustic charge plumes

can also damage sensitive instruments. The EMFF method controls relative separation
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and attitude of the formation by creating electromagnetic dipoles on each spacecraft in

concert with reaction wheels. In contrast to the EP method, the Coulomb formation

flying technique has no plume contamination issues. The Coulomb force field in a

vacuum is also simpler to model (point charge model) than the electromagnetic force

field (dipole model), and the strength only drops off with the square of the separation

distance and not the cube, as with the electromagnetic force field. The fuel-efficiency of

Coulomb thrusting is at least 3–5 orders greater than that of Electric Propulsion (EP),

and typically requires only a few Watts of electrical power to operate [1]. This is an

essential advantage in long-term space missions.

1.6 Challenges And Prospects Of Coulomb Thrusting

The previous sections provide an overview of how the Coulomb forces can be

utilized in formation control problems and collision avoidance maneuvers. This section

concludes the advantages and limitations of the Coulomb force. There are three major

advantages that make Coulomb thrusting approach very attractive to researchers in the

field of spacecraft clusters:

(1) Low power consumption. Coulomb thrusting is said to be at least 3-5 orders

of magnitude more power efficient than EP [1].

(2) Essentially propellentless. The Coulomb thrusting mechanism is not based

on momentum exchange, as in EP, but rather on generating an electric field.

Thus it does not require the high velocity plume flow that traditional or EP

thrusters do. The mass variation of the spacecraft is negligible, thus Coulomb

thrusting is usually deemed to be “essentially propellentless”.

(3) Clean thrusting method with essentially no plume impingement issues. Due

to the negligible low mass-flow rate, exhaust plume impingement issues do not

need to be considered [1].
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These advantages make the Coulomb thrusting approach very appealing in long-term

space missions. However there are several challenges in utilizing the Coulomb thrusting

concept:

(1) The Coulomb force lies on the line-of-sight direction, leading to limited

control authority.

(2) Plasma shielding effects make the Coulomb force impractically small when

the separation distance is larger than the local plasma Debye length.

(3) The magnitude of the Coulomb force decreases at least quadratically as the

separation distance increases.

(4) For a Coulomb formation with three or more spacecraft, the individual

charges appear in a non-affine form in the dynamics of the system.

The first disadvantage implies that using only Coulomb forces (cluster internal

forces), it is not possible to directly control the inertial orientation of the formation.

To control the complete inertial motions, CFF usually cooperates with other sources

of force and torque such as differential gravity, EP and traditional thrusters. The

second and third disadvantages indicate that the Coulomb force usage is applicable

only in very close-proximity formation flying. The distances between the spacecraft

should be less than the local Debye length λd. Though the application of the Coulomb

thrusting approach is strictly restricted to very tight formation flying, its advantages

which would enable long-term space missions at very low fuel costs and with high

reliabilities (no corrosive plume impingement issues) make it a very promising approach

in close-clustered formation flying.

The fourth item in the list of the challenges is not an issue for two-craft CFF,

because the required line-of-sight force can always be generated using an infinity of real

charges. When the number of the spacecraft is three or more, the non-affine nature of the
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dynamical system makes the complexity of the control problem increase dramatically

as the number of spacecraft increases. This causes a physical implementability issue

when there are three or more spacecraft. This issue makes the control strategy and

the stability analysis very complicated. The specific examples of this problem, and

the approaches that the dissertation develops to solve this problem are presented in

Chapters 6, 7 and 8.

Considering the advantages and the disadvantages of the Coulomb thrusting con-

cept, it is suitable for long-term, tight-cluster space missions where the separation dis-

tances remain within 100 meters. It is especially efficient in controlling the relative

motions, and thus the overall shape of the cluster. In missions that require the con-

trol of the inertial orientation of the formation, Coulomb thrusting can cooperate with

other sources of force and torque to achieve the mission while reducing the power or the

propellent consumption.

1.7 Dissertation Contents And Outline

This dissertation studies two aspects of the research related to the shape control

of a charged spacecraft cluster: 2-craft collision avoidance using Coulomb forces and 2-

and 3-craft Coulomb virtual structure shape control.

Collision avoidance is a general concern in a tightly clustered flying spacecraft with

separation distances ranging from dozens to hundreds of meters. With CFF, where the

separation distances are within 100 meters, the possibility of a collision is even higher.

This motivates us to investigate collision avoidance control that can be directly applied

in CFF.

As introduced in Section 1.3, Coulomb virtual structure control has rarely been

investigated. The dissertation studies the following aspects of the Coulomb virtual

structure control problem:
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(1) Nonlinear control of a spinning two-craft Coulomb virtual structure in GEO

orbit.

(2) Nonlinear control of a one-dimensional constrained Coulomb virtual struc-

ture.

(3) Nonlinear control of a three-craft Coulomb virtual structure to an expected

triangular shape (non-equilibrium configuration) in free space.

(4) Nonlinear control of a three-craft Coulomb virtual structure to an expected

collinear shape (equilibrium configuration) in free space.

The dissertation follows eight chapters. Chapter 2 introduces the Coulomb thrust-

ing concept in the plasma environment. Chapters 3 and 4 present a Lyapunov-based

feedback control and a patched-conic-section trajectory programming algorithm, respec-

tively, to achieve collision avoidance. Chapter 5 studies two-craft spinning Coulomb

virtual structure control in the geosynchronous orbit (GEO). Chapter 6 investigates

one-dimensional constrained three-craft Coulomb virtual structure control. Chapter 7

presents a stable switched controller for a three-craft triangular Coulomb virtual struc-

ture. Chapter 8 studies three-craft Coulomb virtual structure control problem with the

desired configuration to be collinear. Chapter 9 concludes the dissertation.



CHAPTER 2

SPACECRAFT CHARGE CONTROL

2.1 Coulomb Force in a Plasma Environment
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Figure 2.1: Illustration of Coulomb force generation.

The Coulomb force is also known as the electrostatic force. This dissertation

focuses on utilizing Coulomb forces between spacecraft to control the relative motions of

spacecraft within a cluster or formation. A spacecraft’s charge level is actively generated

and controlled by continuously emitting charged particles from the spacecraft. Devices

comparable to the ion engine are used to expel charged particles such as ions or electrons.

With the CFF concept, the velocity of the expelled mass flow does not have to be very

large as with the EP approach. The velocity just needs to be large enough for the

emitted charge particles to escape the local electric field. Note that an extra velocity of
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the charge flow should be maintained to compensate for the inverse charge flow from the

surrounding plasma environment to the spacecraft. For example, suppose a spacecraft

is generating a positive charge. The electrons surrounding the spacecraft are attracted.

This results in another charge flow that reduces the charge level of the spacecraft. To

maintain the charge level of the spacecraft, the undesired charge flow due to the plasma

environment should be compensated.

Because the Coulomb thrusting method requires only very low current levels, the

power consumption in generating Coulomb thrusting is 3–5 orders magnitude less than

the power required in EP [1]. The amount of emitted charge particle mass is trivial

comparing to the mass of the spacecraft. Coulomb thrusting is said to be “essentially

propellentless”. Coulomb thrusting does not use propellent thus won’t create plume

impingement around the formation which might cause corrosion to nearby spacecraft

using traditional thrusters.

In the space plasma environment, the electric field around a charged spacecraft

can be derived from the electric potential of the spacecraft. The electric potential of a

charge particle in plasma environment is given by: [18]

V = kc
q

r
exp

(
− r

λd

)
(2.1)

where kc = 8.99× 109C−2 ·N ·m2 is Coulomb constant, q is the charge of the particle,

r is the distance from the particle, λd is the Debye length . The Debye length controls

how rapidly the space plasma will shield a charged object. Taking a gradient of V , the

electric field is found:

E = −∇rV = kc
q

r2

(
1 +

r

λd

)
exp

(
− r

λd

)
êr (2.2)

where êr is the unit vector pointing from the particle to the position being considered.

This dissertation assumes that in a Coulomb cluster or formation the dimensions

of the spacecraft are negligible compared to the size of the formation. This indicates that
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in modeling the Coulomb forces the spacecraft in a CFF can be treated as particles, or

homogeneously charged spheres. Based on the electric field expression in Eq. (2.2), the

Coulomb forces within a cluster of charged spacecraft are found. Taking a N -spacecraft

Coulomb cluster as an example, the total Coulomb force exerted onto the spacecraft-i

is given by

FC,i =
N∑

j=1,j 6=i
−kc

qiqj
r2
ij

(
1 +

rij
λd

)
e
−
rij
λd êij (2.3)

where qi is the charge of ith spacecraft, rij is the distance between the ith and jth

spacecraf, êij is the unit vector pointing from ith spacecraft to jth spacecraft.

For an individual Coulomb force, which means only two spacecraft are considered,

the magnitude of the Coulomb force is proportional to the charge product Qij = qiqj ,

and approximately inversely proportional to the square of the separation distance. In-

dividual Coulomb forces alway lie on the line of sight direction and the direction is

determined by the sign of the charge product Qij due to the craft point mass or homo-

geneously charged sphere assumptions.

2.2 Space Plasma Environment

Though the Earth is an electrically neutral substance, more than 99% of matter

in Universe exists in plasma state. Earth is also surrounded by plasma environment

though its surface is neutral.

Plasma is the forth phase of matter that has enough energy for electrons to escape

from the nucleus. It consists of randomly moving electrons and nuclei, in other words,

charged particles. Plasma is greatly influenced by both magnetic and electric forces,

and in turn, plasma particles affect the magnetic and electric fields. There are many

interesting interactions between Earth’s plasma and solar activities, however, these are

not the focus of this dissertation. Because the plasma environment influences Coulomb

forces, this dissertation briefly discusses the interaction of the plasma environment with
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a charged spacecraft.

One important characteristic length of a plasma is the “Debye-Hückel shielding

distance”, λd, which already appeared in Eqs. (2.1)–(2.3). Usually this length termed

the Debye length for short. The of λd in terms of plasma properties is given by: [19,20]

λd =
√
ε0kT

n0e2
(2.4)

where ε0 = 8.854× 10−12farad/m is the permittivity of vaccuum, k = 1.381× 10−23J/K

is the Boltzmann’s constant, T is the space plasma temperature in Kelvin, n0 is the

density of the undisturbed field particles, e = sgn(e)1.602 × 10−19C is the electron

charge. The physical meaning of the Debye length is that only particles within λd are

directly influenced by each others’ electric fields. In order for a larger range of control

using Coulomb forces, a sufficiently large value of λd is required. From Eq. (2.4), it

can be seen that λd increases as T increases, and decreases as ne increases. The Debye

length λd is determined by the environment, it is not a factor that can be actively

controlled. But, based on knowledges and measurements from plasma physics field, the

range of λd in specific situations can be obtained. Thus the guideline about dealing

with the plasma’s influence on CFF is achieved.

2.3 Plasma Shielding

Note that the expressions of the potential V , electric field E and Coulomb force

FC in Eqs. (2.1)–(2.3) all contain the Debye length λd. The Debye length λd represents

the plasma shielding effect in space environment. Specifically, let’s take the Coulomb

force as an example:

FC = −kc
Q

r2

(
1 +

r

λd

)
e
− r
λd êr (2.5)

This expression of the Coulomb force is valid only under the assumption that in the

plasma environment the perturbing electrostatic potential is weak so that the electro-
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λd

Debye shielding sphere charge particles

Figure 2.2: Illustration of plasma shielding.

static potential energy is much less than the mean thermal energy, that is

eV (r)� kBT (2.6)

Otherwise, a new expression has to be obtained and the derivations in this dissertation

should be modified.

In this expression of the Coulomb force in Eq. (2.5), the factor S(r/λd) =(
1 + r

λd

)
e
− r
λd quantifies the plasma shielding. To study the behavior of the plasma

shielding, let us expand S(r/λd) into a series expression:

S(r/λd) =
(

1 +
r

λd

)
e
− r
λd

=
(

1 +
r

λd

)(
1− r

λd
+

1
2!

(
r

λd

)2

− 1
3!

(
r

λd

)3

+ ...

)

=1− 1
2

(
r

λd

)2

+
1
6

(
r

λd

)3

− ... (2.7)

Figure 2.3 show the value of S(r/λd) under different values of r
λd

. It can be seen

that 0 < S(r/λd) ≤ 1. S(r/λd) = 1 only when r/λd = 0 which implies r = 0 or
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Figure 2.3: Plasma shield curve, S(r/λd).

λd → ∞. S(r/λd) decreases to zero as r
λd
→ ∞. In CFF, we usually explore Coulomb

forces within the range 0 < r
λd

< 1. Note that S(1) ≈ 0.7358. This indicates that in

CFF the plasma shields at most 26.4% of the magnitude of a vacuum Coulomb force.

The typical values of the Debye length are listed in Table 2.1. [1] The Coulomb

thrusting is applicable for a formation mission with separation distances between space-

craft within 100m flying in GEO or High Earth Orbit (HEO), or within 40m in deep

space at 1AU.

Table 2.1: Typical values of the Debye length.

Location Range of λd

LEO [0.02, 0.4] m
GEO [142, 1496] m

1AU in deep space [20, 40] m



CHAPTER 3

TWO-SPACECRAFT COLLISION AVOIDANCE USING

COULOMB FORCES WITH SEPARATION DISTANCE AND

RATE FEEDBACK

This chapter considers the feedback control using only Coulomb forces to perform

a collision avoidance maneuvers. A potential collision of the two spacecraft flying in

deep space is considered where no external forces and torques are acting on the cluster.

A charge feedback control strategy is investigated that maintains a desired minimum

separation distance between two spacecraft. To minimize the sensor requirements, the

control requires only the separation distances and the rates measurements between the

craft during the collision avoidance phase. The separation distance is much simpler to

measure than the full six Degree-Of-Freedom (DOF) relative state vector.

A very simple way to avoid a collision has both spacecraft charged up to large

Coulomb values with equal sign. The resulting repulsive force drives the craft apart,

thus avoiding the collision. But this strategy also results in the two spacecraft flying

apart at a considerable velocity, thus noticeably changing their inertial motion. This

can cause sensing issues for the spacecraft themselves, but is also of concern if the 2

craft are operating within a larger cluster of spacecraft. This additional velocity makes

future collision avoidance maneuvers more challenging. Instead, the charge feedback

control is developed with the additional goal to minimize changes to the relative kinetic

energy level of the 2 spacecraft.
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Finally, the chapter also considers the effect of charge saturation on the collision

avoidance strategy. Even with sophisticated spacecraft designs, there will always be

a physical limit to which a craft can safely be charged. Of interest is determining

how much initial approach speed the craft can have and still avoid a collision if the

charge levels are limited. Analytical conditions are investigated to guarantee that a

collision can be avoided if a given charge limit is considered. The work in this chapter

has been presented in Reference [21] and has been published and a journal article in

Reference [22].

R1

R2

m1

m2

CM

r

r1

r2

v2

v1

Inertial Frame

êr

Figure 3.1: Illustration of the 2-spacecraft system.

3.1 Collision Avoidance Scenario

The spacecraft collision avoidance part in this dissertation focuses on a mission

scenario where loosely clustered satellites are flying in deep space in a bounded config-

uration. The satellites are assumed to have a low approach speed with respect to each

other, without external forces and torques acting on the cluster. The scenario being

envisioned is that a potential collision of two spacecraft flying in deep space will hap-

pen in a short amount of time if no collision avoidance maneuver is applied. A control

strategy that uses only Coulomb forces should be turned on and engaged to prevent this
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potential collision. Figure 3.1 shows the scenario of the two-spacecraft system.

The primary requirements for collision avoidance control are to make the sep-

aration distance always greater than a certain restricted value and drive the distance

outside of a certain potential collision region. To rigorously set up the problem, let’s

take a look at Figure 3.2. Spacecraft-1 (SC1) has a safety region

Bs =
{
R|‖R−R1‖ ≤ rs

}
,

where rs is a constraint distance. Bs can never be penetrated. SC1 has another region

called the activation region:

Ba =
{
R|‖R−R1‖ ≤ ro

}
It is measured by the distance ro. If Spacecraft-2 (SC2) enters the activation region

Ba and is heading towards the safety region Bs, then a collision avoidance maneuver is

turned on to control the system to prevent the potential collision, and drive SC2 outside

of the activation region Ba.

rs

ro

SC1

SC2

A

Figure 3.2: Collision avoidance setup.
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The primary collision avoidance goals are formulated as:

r(t) ≥ rs, for t ≥ 0, (3.1a)

r(tf ) > ro, tf <∞. (3.1b)

Achievement of these goals results in a successful collision avoidance maneuver. If the

inequalities in Eq. (3.1a) can not be satisfied by all means, then the potential collision

is deemed as non-avoidable.

Because the relative motion is very important in CFF (the entire Coulomb struc-

ture control part in this dissertation studies the relative motion of CFF), we also expect

that the relative kinetic energy level and keep the relative motion direction are retained.

In summary, the collision avoidance maneuver has two primary requirements and two

expected goals:

r(t) ≥ rs, t ≥ 0, (3.2a)

r(tf ) > ro, tf <∞; (3.2b)

‖ṙ(tf )‖ ≈ ‖ṙ(t0)‖, (3.2c)

êṙ(tf ) ≈ êṙ(t0) (3.2d)

Achievement of the expected goals in Eqs. (3.2c)–(3.2d) is a plus to the collision

avoidance maneuver, but it’s not required.

3.2 Charged Spacecraft Distance Equation Of Motion

Consider two spacecraft flying in the three-dimensional space where there are

no external forces acting on the system as shown in Figure 3.1. In CFF concepts

the electrostatic forces directly control separation distances ri but not the the inertial

positions Ri. This chapter intends to use the separation distance r and the distance

rate ṙ as the control feedback, thus the separation distance equations of motion are

required to develop the control strategy. The Coulomb force vector between the two
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spacecraft, acting on m1, is

F = −kc
q1q2

r3

(
1 +

r

λd

)
e
− r
λd r = −kc

q1q2

r2

(
1 +

r

λd

)
e
− r
λd êr, (3.3)

where kc = 8.99 × 109C−2 ·N ·m2 is the Coulomb constant, r is the distance between

the two spacecraft, r is the relative position vector pointing of spacecraft 1 (SC1) to

spacecraft 2 (SC2), êr is the unit vector of r, and λd is the Debye length. The effective

range of a given electrical charge is smaller if the plasma Debye length is shorter. For

high Earth orbits (HEO), the Debye length ranges between 100–1000 meters [1,23,24].

CFF concepts typically have spacecraft separation distances ranging up to 100 meters.

The inertial equations of motion of the two spacecraft are

m1R̈1 = −kc
q1q2

r2

(
1 +

r

λd

)
e
− r
λd êr, (3.4a)

m2R̈2 = kc
q1q2

r2

(
1 +

r

λd

)
e
− r
λd êr, (3.4b)

where Ri is the inertial position vector of the ith spacecraft. The inertial relative

acceleration vector r̈ is

r̈ = R̈2 − R̈1 =
kcq1q2

m1m2r2
(m1 +m2)

(
1 +

r

λd

)
e
− r
λd êr. (3.5)

In the kinematics of polar coordinates, the acceleration is given by

r̈ = (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ. (3.6)

Substituting Eq. (3.6) into (3.5) yields the scalar separation distance equation of motion:

r̈ = rθ̇2 +
kcQ

m1m2r2
(m1 +m2)

(
1 +

r

λd

)
e
− r
λd . (3.7)

Note that 2ṙθ̇ + rθ̈ = 0 is a consequence of the inertial angular momentum being

conserved with Coulomb forces. The term Q = q1q2 is the charge product between

the two spacecraft charges qi. Because only the separation distance and distance rate

will be fed back to the controller, θ̇ should be expressed in terms of r, ṙ, and the
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initial conditions. This is accomplished by considering the angular momentum about

the cluster center of mass.

The position vectors ri of the two spacecraft with respect to the center of mass

are

r1 =− m2r

m1 +m2
êr, (3.8a)

r2 =
m1r

m1 +m2
êr. (3.8b)

The angular momentum Hc of the system about the center of mass is

Hc = r1 × ṙ1m1 + r2 × ṙ2m2 =
m1m2

m1 +m2
r2θ̇ê3. (3.9)

Because there are no external torques acting on the system, the momentum vector Hc

is conserved. From Hc = Hc(t0), the angular rate θ̇ is derived

θ̇ =
r2
o

r2
θ̇(t0) =

ro
r2
‖ṙ(t0)‖ sinα0 =

(
1
m1

+
1
m2

) ‖Hc(t0)‖
r2

, (3.10)

where α0 = cos−1
(

ṙ(t0)·ro
‖ṙ(t0)‖ro

)
is the angle between ṙ(t0) and ro. Thus the separation

distance equations of motion in Eq. (3.7) is rewritten as

r̈ =
(

1
m1

+
1
m2

)2 ‖Hc(t0)‖2
r3

+
βQ

r2

(
1 +

r

λd

)
e
− r
λd , (3.11)

where β = kc(m1+m2)
m1m2

. The collision avoidance control law challenge is to design the

charge product Q such that certain avoidance conditions are satisfied.

3.3 Unsaturated Control Law

Recalling the setup of the spacecraft collision avoidance problem, SC1 has a safe

region Bs that can not be penetrated at any time. If another SC2 enters the region Bo

and is flying towards Bs, this relative motion is deemed as a potential collision. A control

law is then triggered to prevent the potential collision. Without loss of generality, it

is assumed that the initial relative acceleration is zero. This assumption is reasonable
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because upon detecting a potential collision, the spacecraft could equalize their charges

in preparation for a collision avoidance maneuver.

The chief goals of the control are preventing the potential collision and driving

SC2 out of Bro . They are formulated in Eqs. (3.2a)–(3.2b). Using only separation

distance and distance rate as feedback, the Lyapunov control designed in this chapter

is lacking information of the relative speed direction. This chapter only considers the

first expected goal: maintain the kinetic energy level as formulated in Eq. (3.2c). Since

only the separation distance is measured, not the full relative states, this condition will

only achieve equal radial energy states.

If the trajectory of SC2 does not touch the ball Brs , no relative orbit correction

is needed to avoid a collision. In this case the control strategy does not take effect.

This situation is illustrated in Figure 3.3(a). Otherwise the electrostatic force fields are

activated to repel the two spacecraft as shown in Figure 3.3(b).

Spacecraft-2

Spacecraft-1

rc

rs

ro

(a) Not a potential collision.

Spacecraft-1

Spacecraft-2

rs

ro

rc

(b) A potential collision.

Figure 3.3: Collision avoidance scenarios as seen by the first spacecraft.

Once SC2 enters Bo and is moving towards Bs, the collision avoidance control is

triggered. The state x1 =r(t) − ro< 0 represents how far SC2 has penetrated into the

region Bo, and the state x2 =ṙ(t) + ṙ(t0) represents the difference between the expected
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radial departure rate and the actual distance rate (note that ṙ(t0) < 0). As stated

above, the control law should reduce the absolute values of x1 and x2 when r(t) ≤ ro.

When r(t) > ro a collision avoidance has been achieved. From here on the control is

only trying to make ṙ(t) → −ṙ(t0) to achieve the secondary goal, that is to maintain

the radial relative kinetic energy level.

3.3.1 Lyapunov Based Control Design

Let us define the state vector x = (x1, x2)T as

x1 =

 r(t)− ro, r(t) < ro

0, r(t) ≥ ro
, (3.12a)

x2 = ṙ(t) + ṙ(t0). (3.12b)

Any final radial separation distance rfinal > ro is acceptable, and is reflected with a zero

x1 state. If the 2nd spacecraft is outside of the region Bro and the radial departure rate

is the opposite of the radial approach rate, then both collision avoidance states xi are

zero. Thus the desired final states are x1(tf ) = 0 and x2(tf ) = 0. To avoid a collision,

the safety region penetration variable x1(t) can never be less than rs − ro. To achieve

this behavior the Lyapunov function penalizing x1 is designed to go to infinity when

x1(t) = rs − ro. Let us define a Lyapunov candidate function as

V =
1
2
k1

(
1

x1 − rs + ro
− 1
ro − rs

)2

+
1
2
x2

2, (3.13)

where k1 is a constant positive coefficient. This function goes to infinity at the safety

boundary x1 → rs−ro and if the radial separation rate grows unbounded. Note that even

though x1 is defined piecewise, it does not introduce a discontinuity in the Lyapunov

function V at r(t) = ro. The first time derivative of the Lyapunov function is

V̇ = −k1

(
1

x1 − rs + ro
− 1
ro − rs

)
ẋ1

(x1 − rs + ro)2
+ x2ẋ2. (3.14)
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Note that here ẋ2 = r̈ as seen from Eq. (3.12b). The separation distance equation of

motion in Eq. (3.11) relates the charge product Q with r̈. To derive a control law from

the Lyapunov function, ẋ1 needs to be expressed in terms of the states, system constants

and/or initial conditions. From the definition of x1 in Eq. (3.12a), it is obvious that

ẋ1 = x2 − ṙ(t0) when r(t) < ro, but ẋ1 6= x2 − ṙ(t0) when r(t) ≥ ro.

Note that the term
(

1
x1−rs+ro −

1
ro−rs

)
is zero when r(t) ≥ ro, so the first term

in Eq. (3.14) is zero when r(t) ≥ ro, no matter what ẋ1 is. Thus ẋ1 can be globally

replaced with x2 − ṙ(t0) in the first term of Eq. (3.14) and simplify V̇ to:

V̇ = −k1

(
1

x1 − rs + ro
− 1
ro − rs

)
x2 − ṙ(t0)

(x1 − rs + ro)2
+ x2r̈(t). (3.15)

Note that V̇ is continuous and well defined for all ranges of the separation distance r.

Now the separation distance equation of motion in Eq. (3.11) can be directly substituted

into V̇ to design a charge feedback control law Q using Lyapunov’s direct method.

Assume a charge control law with the feedbacks of the separation distance and

the separation distance rate as

Q =
[
k1

β

(
1

x1 − rs + ro
− 1
ro − rs

)
r(t)2

(x1 − rs + ro)2
− k2

β
r(t)2x2

]
1

1 + r
λd

e
r
λd . (3.16)

Using the Lyapunov function V in Eq. (3.13), and substituting the charge control

in Eq. (3.16) into the equations of motion in Eq. (3.11), differentiating V yields the

Lyapunov function rate expression:

V̇ = k1

(
1

x1 − rs + ro
− 1
ro − rs

)
ṙ(t0)

(x1 − rs + ro)2
− k2x

2
2 + x2

(
1
m1

+
1
m2

)2 ‖Hc‖2
r3

.

(3.17)

Note that
(

1
x1−rs+ro −

1
ro−rs

)
≥ 0 and equals zero when x1 = 0. Because ṙ(t0) < 0 the

first term in Eq. (3.17) cannot be positive. Thus the Lyapunov function rate is bounded

by

V̇ ≤ −k2x
2
2 + x2

(
1
m1

+
1
m2

)2 ‖Hc‖2
r3

. (3.18)
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Let the function b(r) be defined as

b(r) =
1
k2

(
1
m1

+
1
m2

)2 ‖Hc‖2
r3

> 0. (3.19)

Note that b(r)→ 0 as r →∞. Because b(r) > 0, Eq. (3.18) shows that V̇ < 0 if

x2 > b(r) or x2 < 0. (3.20)

The V̇ expression in Eq. (3.18) does not yet yield any stability guarantees. Initial

conditions for V̇ < 0 must be determined.

3.3.2 State Convergence And Collision Avoidance Achievement

Next the stability and convergence of the charge control law in Eq. (3.16) is

discussed. A collision avoidance should result in r(t) > rs, while a secondary goal

attempts to drive x2 → 0.

Theorem 1 For a two body system with equations of motion as shown in Eq. (3.4),

the charge control law in Eq. (3.16) makes the state x2 converge to the interval [0, b(r)].

Further, assuming x1 → 0 in a finite time, x2 converges either to 0 or to b(r) as t→∞.

Proof Equation (3.20) shows that V̇ < 0 if x2 is outside of the interval [0, b(r)]. Ac-

cording to the Lyapunov stability theory, the charge control law in Eq (3.16) will drive

V̇ to zero. Thus x2 → [0, b(r)] asymptotically as t→∞.

By the asumption that x1 → 0 in a finite time t†, the inequality in Eq. (3.18)

becomes an equality for t ≥ t†. Then V̇ > 0 when x2 ∈ (0, b(r)), and V̇ = 0 when

x2 = 0 or x2 = b(r) for t ≥ t†. According to the Lyapunov stability theory, x2 will be

driven to 0 or b(r). So x2 converges either to 0 or to b(r) as t→∞. �

Theorem 2 Assuming a two body system with the dynamics described by Eq. (3.4) is

subjected to the charge control law in Eq. (3.16), then the states (x1, x2) → (0, 0) as

t→∞, where x1, x2 are defined by Eq. (3.12).
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Proof Theorem 1 guarantees that x2 → [0, b(r)] as t → ∞. The relationship between

x2 and ṙ in Eq. (3.12b) indicates that ṙ → [−ṙ(t0), b(r) − ṙ(t0)]. Because ṙ(t0) < 0, ṙ

will become a strictly positive value at a finite time t+. As a result at time t∗ > t+

the separation distance reaches the outer collision avoidance distance ro, and for t > t∗,

r(t) > ro. Refering to the definition of x1 in Eq. (3.12), it can be concluded that x1 → 0

in a finite time. Due to ṙ being strictly positive, the separation distance r → ∞ as

t→∞.

Having shown that the 2 spacecraft will depart the collision avoidance region,

next the convergence of x2 is investigated as t → ∞. If Hc = 0, the interval [0, b(r)]

becomes the zero point. Thus x2 → 0 due to the theorem 1 property x2 → [0, b(r)].

For the case where Hc 6= 0 the properties of x2 need to be further investigated. The

definition in Eq. (3.12b) yields x2(t0) = 2ṙ(t0) < 0. Here x2 will either converge to 0 or

to b(r) because x1 → 0 in a finite time has been proven. If x2 never reaches zero, then

x2 → 0. If x2 crosses zero and converges to b(r), then x2 → 0 due to b(r)→ 0. �

Theorem 3 For a two body system with dynamics described by Eq. (3.4), the charge

product control law in Eq. (3.16) prevents any potential collision by keeping r(t) > rs

for all time, and making r(t) > ro in a finite time.

Proof While proving x1 → 0 in theorem 2, it has been shown that r(t) > ro is true

for t > t∗. Thus the condition r(t) ≥ rs for all time is left to be proven. Note that

r(t) starts with ro > rs. The definitions of V in Eq. (3.15) and x1 in Eq. (3.12a) show

that V → ∞ if and only if r(t) decreases to be rs or x2 → ∞. Theorem 1 shows that

x2 9∞. Thus to prove r(t) > rs for all time, it’s equivalent to prove that V 9∞ for

all time.

The inequality in Eq. (3.18) shows that the only chance for V̇ to be positive is

x2 ∈ (0, b(r)). Thus a necessary but not sufficient condition for V → ∞ is that x2

stays in (0, b(r)) for an infinite time. But as mentioned while proving theorem 2, r(t) is
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increasing as x2 ∈ (0, b(r)). Since x1 increases as r(t) increases, x1 does not decrease to

ro − rs when x2 ∈ (0, b(r)). The definition of V in Eq. (3.13) shows that V is bounded

when x2 ∈ (0, b(r)) and x1 > ro− rs. Thus even when x2 ∈ (0, b(r)) for an infinite time,

V is still bounded. So V 9∞ is guaranteed for all time, hence r(t) > rs is true for all

time. �

Practically speaking the range of the electrostatic control is limited due to the

drop off of the Coulomb field strength with increasing separation distances. As a result,

the controller will be turned off after the state goes inside a certain deadzone region.

Let us define a radius rc > ro where the collision avoidance charge control is turned off.

The effect of this limitation is a termination of the control when x1 = 0 and r(t) > rc.

Note that when the truncation happens, the potential collision has been avoided. After

the control charges are turned off, there are no forces acting on the spacecraft. The

two spacecraft are now flying freely in space (with the assumption that the spacecraft

are flying in free space) with constant velocities. The separation distance rate is still

bounded, even though it’s not converging to the magnitude of the approach rate.

Given the charge product in Eq. (3.16) to produce the required electrostatic force

field, the individual spacecraft charges qi are evaluated through

q1 =
√
|Q|, (3.21)

q2 =sign(Q)q1. (3.22)

There is an infinity number of choices for how Q can be mapped into q1 and q2. This

strategy evenly distributes the charge amount across both craft. If one spacecraft can

handle a higher charge level than the other spacecraft, adding a coefficient can adjust

the charge distribution.
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3.4 Saturated Collision Avoidance Analysis

Without the saturations of the spacecraft charges, the controller presented in the

previous section can always prevent a potential collision. But in reality the spacecraft

charge magnitudes are always limited. The ability of the two-body system to prevent

a potential collision is reduced compared with the non-saturated control law. If the

spacecraft are moving fast enough, then a collision cannot be avoided with a limited

force. Hence for a given pair of limited charges, collision avoidance cannot be guaranteed

for all initial conditions.

This section discusses limited charge control requirements for a collision to be

preventable. Assume the two spacecraft are fully charged such that the charge product

reaches its maximum positive value. If the separation distance r still decreases to be less

than the safety restraint distance rs, the potential collision is deemed as not avoidable.

Otherwise, the potential collision is avoidable.

3.4.1 Constant Charge Spacecraft Equations Of Motion

Our discussion of the conditions for a potential collision to be avoidable is based on

the assumption that the charge product remains at its maximum value Q = Qmax > 0 to

generate the largest repulsive force. The Coulomb force expression in Eq. (3.3) simplifies

to

F = −kc
Qmax

r3

(
1 +

r

λd

)
e
− r
λd r, (3.23)

and the differential relative equation of motion is

r̈ = β
Qmax

r3

(
1 +

r

λd

)
e
− r
λd r. (3.24)

Note that the form of the Coulomb force is very similar to the gravity force;

this makes it possible to describe the motion using the formulas of the gravitational

2-body problem (2BP). Reference 12 provides an approach to analyze this Coulomb-

forced spacecraft motion using 2BP method. To apply a 2BP method in analyzing the
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Coulomb-forced motion, it is necessary to find the radius and the energy equation in a

similar form as in the 2BP. Let us introduce the effective gravitational parameter

µ(r) = −kc
Qmax(m1 +m2)

m1m2

(
1 +

r

λd

)
e
− r
λd . (3.25)

Next, assume that r � λd, which means the plasma shielding effect is negligible.

Then
(

1 + r
λd

)
e
− r
λd = 1 and the parameter µ(r) becomes a constant

µ = −kc
Qmax(m1 +m2)

m1m2
. (3.26)

The relative equations of motion reduce to the familiar 2BP form

r̈ = − µ
r3
r. (3.27)

Eq. (3.27) has the same form as the equation of motion of the gravitational 2BP,

except that here µ is a negative number because Qmax > 0. By assuming r � λd, µ

becomes a constant, so the orbit radial trajectory is a conic section curve. Because

µ < 0 for the repulsive force case, all relative trajectories are hyperbolas where craft

2 orbits the farther focus. [12] The signs of some parameters of the conic section are

different from that of the gravitational 2BP. In our case µ < 0, the semi-latus radium

p < 0 and the semi-major axis a > 0.

Because the repulsive hyperbolic motion has the craft orbit about an un-occupied

focal point, the radial equation is different from that of the gravitational 2BP [12]:

r =
p

1− e cos f
. (3.28)

Here the semi-latus rectum p = h2µ < 0, and h is the magnitude of the specific angular

momentum h = r × ṙ. The energy equation is derived in the same procedure as the

2BP, and yields an identical equation:

v2

2
− µ

r
= − µ

2a
, (3.29)
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where v is the magnitude of velocity vector ṙ

v2 = ṙ · ṙ = ṙ2 + (rḟ)2 = ṙ2 +
h2

r2
, (3.30)

and ḟ is the in-plane rotation rate.

Because the total energy is positive, the relative trajectory of the two spacecraft is

a hyperbola. As seen by SC1, SC2 is traveling along the hyperbola, and SC1 is standing

at the farther focus point [12] as illustrated in Figure 3.4.

Spacecraft 1

Spacecraft 2

d

rs

rp

r

f

v0

Figure 3.4: Illustration of the 2-Body hyperbolic trajectory.

From Eq. (3.28), the closest separation distance corresponds to r(f = 0) that is

the radius of periapsis

rp =
p

1− e = a(1 + e). (3.31)

Thus, given an initial spacecraft approaching speed, finding the criterion for a collision

avoidance is to determine a required saturated charge level that guarantees

rp ≥ rs. (3.32)

3.4.2 Avoidance Analysis

When the specific angular momentum satisfies h 6= 0, there exists an offset dis-

tance d between the position of SC1 and the direction of the relative velocity of SC2,
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as shown in Figure 3.4. Note that here it is assumed that the current flight path will

result in a potential collision where r will become less than rs. The specific angular

momentum is represented in terms of d and v0:

h = ‖ro × ṙ(t0)‖ = dv0. (3.33)

The parameter h is expressed in terms of v0 and d instead of the ṙ(t0) and ḟ0 set,

because it will be easier to find out the criterion of v0. Assume that r(t), ṙ(t) and f

can be measured, v0 and d are calculated through:

v0 =
√
ṙ(t0)2 + (roḟ0)2, (3.34)

d =
r2
o ḟ0

v0
. (3.35)

Because the angular momentum is conserved during the electrostatic collision

avoidance maneuver as with the 2BP, the relationship between the angular momentum

and the orbit elements is:

h2 = µa(1− e2). (3.36)

Solving for the eccentricity e yields

e =

√
1− h2

µa
. (3.37)

This e formulation can be used to calculate the periapses radius rp:

rp = a(1 + e) = a+

√
a2 − ah2

µ
. (3.38)

The collision avoidance criterion rp ≥ rs yields the condition

a+

√
a2 − ah2

µ
≥ rs. (3.39)

Subtracting a from both sides and squaring the result yields

−ah
2

µ
≥ r2

s − 2ars. (3.40)
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Now the semi-major axis a is needed to obtain the relationship between µ and

the initial states of the system. From the energy equation in Eq. (3.29), a is solved as:

a =
roµ

2µ− rov2
0

. (3.41)

Substituting Eq. (3.41) into Eq. (3.40), and using h = v0d, yields

− rov
2
0d

2

2µ− rov2
0

≥ r2
s −

2rorsµ
2µ− rov2

0

. (3.42)

Note that 2µ− rov2
0 < 0. Multiplying both sides by −(2µ− rov2

0) results in

rov
2
0d

2 ≥ r2
srov

2
0 + 2rs(ro − rs)µ. (3.43)

Eq. (3.43) shows the relationship of d, v0 and µ for an avoidable collision. Solving

Eq. (3.43) for µ, and utilizing the definition of µ in Eq. (3.26), yield the maximum

required charge criterion to avoid a collision with a given initial approach speed v0 and

miss-distance d.

Qmax ≥
m1m2

m1 +m2

rov
2
0(r2

s − d2)
2kcrs(ro − rs)

. (3.44)

For example, a large value of ṙ(t0)2 means SC2 is approaching SC1 at a high speed.

Here v0 is large, and according to Eq. (3.44), a large Qmax is required to avoid the

collision. If the upper limit of the initial separation distance rate ṙ(t0) is known, then

Eq. (3.44) tells us the minimum value of the saturated charge product needed to avoid

the collision. For a given formation flying mission where the maximum magnitude of

the possible separation distance rate has been determined, Eq. (3.44) helps us design

the electric charge devices of the Coulomb-forced spacecraft to provide the maximum

required repulsive forces.

Alternatively, solving Eq. (3.43) for v0 yields the criterion for the magnitude of

the relative velocity:

v0 ≤
√

2µrs(ro − rs)
ro(d2 − r2

s)
. (3.45)
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Figure 3.5: Critical surface of parameters for an avoidable collision.

If the parameter µ of the spacecraft is given (specifically maximum spacecraft charge),

then Eq. (3.45) tells us the maximum allowable relative velocity that guarantees the

collision to be avoidable. As expected, the smaller the allowable charge levels, the

smaller the allowable approach speeds v0 are.

To provide insight into the relationship between the maximum charge and initial

velocity, Figure 3.5 shows the critical surface of parameters d, v0 and Qmax under the

following conditions:  m1 = 50kg

m2 = 50kg
,

 rs = 4m

ro = 18m
. (3.46)

Parameters d, v0 and Qmax in the region above the critical surface represent avoidable

collisions. Beneath the surface are parameters of unavoidable collisions.

This critical surface is one quarter of a saddle surface. When the magnitude of

the relative velocity v0 is set, a larger the offset distance d is, a smaller Qmax is required.

And when d = rs, Qmax = 0, the trajectory of SC2 will touch the safe region of SC1

Brs but won’t penetrate it without any control. If the offset distance d is set, a larger

v0 results in the bigger ṙ0 component, thus a larger Qmax is required for a collision

avoidance maneuver. When v0 = 0, which means the two spacecraft are stationary to
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each other, nothing needs to be done to avoid a collision, so Qmax in this case remains

zero.

When h = 0, then the offset distance d = 0 and the spacecraft are lined up for a

head-on collision. For this worst case situation, the criteria in Eq. (3.44) and Eq. (3.45)

reduce to

Qmax ≥
ṙ(t0)2

2kc

m1m2

m1 +m2

rors
ro − rs

, (3.47)

ṙ(t0)2 ≤ 2µ
(

1
ro
− 1
rs

)
. (3.48)

Note that even though the derivation of the criteria is based on the assumption

that Q = Qmax > 0 and d < rs, the same procedure can also be performed in the case

Q = Qmin < 0 and d > rs. In this case the two spacecraft are attracting each other. The

problem is then changed to analyzing the requirements to prevent the two attracting

spacecraft from colliding. Following the same procedure in deriving the criterion in

Eq. (3.44), yields

Qmin ≥
m1m2

m1 +m2

rov
2
0(r2

s − d2)
2kcrs(ro − rs)

def= g. (3.49)

Eq. (3.49) has exactly the same form as Eq. (3.44). Because d > rs, here g < 0. It’s

assumed that the two spacecraft are attracting each other, so the charge product Q is

always negative. The smaller Q is, the larger the attracting force becomes, and thus

the more likely the two spacecraft will get closer. If in a mission the two spacecraft are

fully charged such that Q = Qmin, then Eq. (3.49) tells us the minimum allowable value

of the limit of the negative charge product Q, guaranteeing that the spacecraft won’t

collide.

3.5 Numerical Simulations

While the charge control is derived for the general 3-dimensional spacecraft mo-

tion, the conservation of angular momentum forces all resulting motion to be planar.
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Thus, without loss of generality, the following numerical simulations all consider planar

motion to simplify the visualizations.

The masses of the two spacecraft are m1 = m2 = 50kg. At first let us assume that

the spacecraft are flying in deep space with the Debye length being λd = 50m. The radii

of the safe region rs and the potential region ro are determined by the requirements of

a specific formation mission. For these simulations rs and ro are set as

rs = 3m, ro = 16m.

The region of the effective control range rc will be given in specific simulation examples.

The initial inertial coordinates and inertial velocities are R1 = [−8,−3]Tm

R2 = [8, 3]Tm
,

 Ṙ1 = [0.0060.002]Tm/s

Ṙ2 = [−0.006− 0.002]Tm/s
. (3.50)

These initial conditions are set up such that the spacecraft cluster’s center of mass is

stationary.

3.5.1 Simulation Without Control Truncation Or Charge Saturations

The unsaturated charge control law in Eq. (6.32) is guaranteed to prevent any

collision. As to the coefficients of the controller, the larger k1 is, the more the spacecraft

proximity near rs is penalized. A larger k2 results in more control effort in driving

ṙ → −ṙ(t0). For the first simulation the controller coefficients are chosen as

k1 = 0.000001kgm4s/C2, k2 = 0.0002s/C. (3.51)

These coefficients result in a case where the state x2 crosses zero and then converge to

b(r). Figure 3.6 shows the numerical simulation results with the initial conditions listed

above. Note that here the effective control range rc is set to be infinity and no control

truncation is occurring. The SC1 and SC2 start from a separation distance slightly

larger than ro. Before r(t) = ro, the control is not triggered and the charges remain
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Figure 3.6: Simulation results without truncation and charge saturations, in the case
that x2 crosses zero.
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zeros. When r(t) = ro, the control is triggered and the spacecraft start to repel each

other. After about 1.3 hours, it is found that r(t) > ro, and the control law is now

only trying to equalize the radial separation rate magnitude to the initial value. The

collision has already been avoided at this time. The following discussion illustrates the

analytical predictions of the behaviors of x2.

From Theorem 1 x2 converges to the interval [0, b(r)]. Further, it eventually

converges to b(r) if it crosses zero. Figure 3.6(d) and 3.6(e) show the histories of the

separation distance rate for different time spans. After x2 crosses zero it keeps rising

up as predicted. Figure 3.6(e) shows that x2 crosses b(r) at the point A. At this critical

point V̇ = 0 and x2 = b(r) > 0. Using Eq. (6.32) the charge product can be solved as:

Q = −‖Hc‖2
kcr

(
1 +

r

λd

)
e
r
λd . (3.52)

From the separation distance equation of motion in Eq. (3.11), we find that the accel-

eration of the separation distance is r̈ = 0. Note that ẋ2 = r̈, thus x2 stops increasing

at point A, and starts to decrease. At point A, ẋ2 = 0, and x2 is bounded by b function

value at point A. So x2 crosses the history of b(r) because b(r) is decreasing. After x2

hits b(r), it converges to the trajectory of b(r) asymptotically because V̇ < 0.

Figure 3.6(f) shows that after 15 hours the spacecraft start to attract each other

to make x2 to converge to b(r). As shown in Figure 3.6(e), this is when the state x2

becomes positive. Physically x2 > 0 means that the separation rate is now larger than

the original radial approach rate magnitude. To slow down the radial motion, the signs

of the charges become opposite to yield attractive forces. The reason the magnitudes of

the charges are increasing here is that the separation distance has already grown very

large. Even though the required control force is very small, the 1/r2 dependency of

the Coulomb force expression requires a large spacecraft charge to generate it. This

issue has little to no practical consequence because the collision avoidance maneuver

was effectively finished after about 1.3 hours. This long term behavior is illustrated to
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Figure 3.7: Simulation results without truncation and charge saturations, in the case
that x2 won’t cross zero.

provide a numerical example of the analytically predicted behaviors of x2.

When the controller’s coefficients are set to

k1 = 0.0002kgm4s/C2, k2 = 0.0001s/C. (3.53)

With these parameters the state x2 does not reach zero, as seen in the simulation

results in Figure 3.7. But x2 still converges asymptotically to zero from a negative

value. As shown in Figure 3.7(d), because k1 is large, the control charges that penalizes

the spacecraft proximity near rs dominate in the initial one hour. The first peak of the

charge product happens when the two spacecraft get closest. Physically, when the craft

get close, the repulsive force suddenly increases to a peak to repel the craft. This results
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in a sharp trajectory of the spacecraft as shown in Figure 3.7(a).

3.5.2 Simulation With Charge Truncations

In the following simulations the control is truncated when the separation distance

is larger than rc where rc > ro. The range of the control is denoted by Brc with radius

rc. The control charges are turned off when the separation distance r(t) > rc. Setting

rc = 20m, and the controller’s coeficients

k1 = 0.0001kgm4s/C2, k2 = 0.0003s/C, (3.54)

and using the previous spacecraft initial position and velocity conditions, yields Fig-

ure 3.8 that shows the simulation results in this case.

Because of the charge truncations, x2 is not guaranteed to converge to zero during

this maneuver. However, as the control analysis predicts, the radial rate tracking error

x2 will remain bounded while achieving a collision avoidance maneuver where x1 → 0.

To test the robustness of the control, the spacecraft are put in an geostationary

orbit to compare the performance with that of the spacecraft flying in deep space.

The initial conditions in Eq. (3.50) are treated as LVLH frame position and velocity

vectors, which are then mapped into inertial vectors with respect to the Earth centered

inertial frame. The full nonlinear equations of motion are then integrated with the same

charge collision avoidance control applied. After the integration the resulting motion is

mapped back into equivalent LVLH frame position vectors, where the rotating LVLH

frame is assumed to be the spacecraft cluster’s center of mass. The simulation results

are illustrated in Figure 3.8 simultaneously with the simulation performed in deep space.

The parameters of the two spacecraft and the controller are kept unchanged to

the truncated control example. In GEO the Debye length ranges from 100-1000 meters.

But for a fair comparison, here the Debye length is still set to be λd = 50m. While

the trajectories in Figure 3.8(a) are different for deep space and GEO cases, they both
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Figure 3.8: Simulation results with truncation but without charge saturations.

yield a separation distance r(t) that is always greater than the safety limit rs. From

the charge control law in Eq. (6.32), the charge product Q will increase if r(t) gets too

close to rs. In fact, Q→∞ if r(t)→ rs. Thus while the orbital motion is not analyzed

explicitly in this study, if the collision avoidance happens quickly enough as compared

to the orbital dynamics, the algorithm can still be effective.

3.5.3 Simulation With Charge Saturations

When the spacecraft charge saturations are introduced, a potential collision is

unpreventable if the two spacecraft are flying towards each other at a very high speed.

Eq. (3.44) and (3.45) provide the criteria for an avoidable potential collision. Note that
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even though the analysis of the criteria is based on the assumption that the Debye length

λd →∞, the following numerical simulation still has the Debye length set to λd = 50m

to show how close the simplified charge limit estimation in Eq. (3.44) is with that of a

more complex motion with a limited Debye length. With the same initial conditions as

in the previous simulation examples in Eq. (3.50), the initial offset distance d and the

magnitude of initial relative velocity v0 are

d = 0.6325m, v0 = 0.0126m/s.

Utilizing rs, ro and masses mi, the critical charge product for an avoidable collision is

QC =
m1m2

m1 +m2

rov
2
0(r2

s − d2)
2kcrs(ro − rs)

= 7.8492× 10−13C2. (3.55)

The critical saturation limit for each individual charge is qc =
√
QC = 0.88596µC.

Figure 3.9 shows simulation results with the same initial conditions but different

charge saturation limits. It is assumed that in the potential region Bro the two spacecraft

are fully charged to repel each other. This can be achieved by setting the controller’s

coefficients k1 and k2 to be some large numbers. Here the controller’s parameters are

set to be

k1 = 0.1kgm4s/C2, k2 = 0.1s/C. (3.56)

It can be seen that a larger qmax results in a more aggressive repulsion with a larger

periapses radius. When qmax = qc, the closest distance is slightly smaller than rs. SC2

penetrates about 0.21m inside the safe restraint region Brs with rs = 3m. This happens

because the Debye length effect partially shields the electrostatic force between the

spacecraft. Note that in real space missions, rs is a safety-restraint distance estimate

that guarantees no physical contact happens and the electrical devices on both spacecraft

won’t interfere with each other. The 0.25m’s penetration is not large when compared

with rs, only 7%. On the other hand, if we know how much Debye shielding will occur,

the value of rs can be adjusted to be larger such that the closest distance between the
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Figure 3.9: Simulation results with charge saturation.

spacecraft is still big enough to keep the spacecraft and all the devices safe. At this point,

it can be concluded that the estimation of the charge product criterion in Eq. (3.44) is

sufficiently accurate to provide a practical maximum required charge computation.

3.6 Conclusion

A Coulomb-force based collision avoidance control problem of two spacecraft is

discussed. After formulating the equation of motion of the separation distance, a colli-

sion avoidance charge control law with the feedback of the separation distance and the

distance rate is developed based on Lyapunov’s direct method. Without saturation and

truncation of the spacecraft charges, the control is able to prevent collisions while keep-
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ing the final kinetic energy the same as the initial kinetic energy. The charge truncation

introduces an uncertainty in maintaining the relative kinetic energy, but the collision

avoidance purpose is still achieved and the change in kinetic energy is guaranteed to be

bounded. The charge saturation may lead to a failure in achieving a collision avoidance.

Analytical conditions for a preventable collision are formulated by ignoring the plasma

shielding effect. Simulations show that the predicted minimum separation distance ob-

tained using the analytical criteria is close to the actual minimum distance when the

plasma shielding effect is taken into account, thus the criteria are practically usable.



CHAPTER 4

OPEN-LOOP ELECTROSTATIC SPACECRAFT COLLISION

AVOIDANCE USING PIECE-WISE CONSTANT CHARGES

Chapter 3 develops a Lyapunov-based control strategy to make a collision avoid-

ance maneuver between two spacecraft. That control strategy achieves two objectives:

avoid the collision and keep the final departure speed magnitude bounded to the iniital

approaching speed magnitude. Without charge saturations the controller can prevent

any collision. Considering charge saturations, the chapter finds the analytical criteria

for an avoidable collision are determined by assuming the Debye length to be infinity.

While this feedback control strategy can maintain specified safety separation distances,

this control will cause the craft to depart in a different direction from when the collision

avoidance maneuver started.

This chapter investigates a Coulomb force control strategy to achieve one more

objective: make the final speed in the same direction as the initial speed. A new open-

loop control approach is presented. By assuming the Debye length to be large compared

to the separation distance, and that the spacecraft charges are piece-wise constant, the

relative EOM has exactly the same form as gravitational two body problem (G2BP).

Thus the relative trajectory of the spacecraft is a conic section [12]. Through switching

the values of the spacecraft charges, a patched conic section trajectory is investigated

which will satisfy the separation distance and the departure velocity requirements. Of

interest are the charge magnitudes of these maneuvers. Numerical simulation will illus-
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trate how these open-loop charge solutions will generate the desired collision avoidance

maneuver. The work in this chapter has been presented as conference papers in Refer-

ences [25,26] and has been published as a journal article in Reference [27].

R1

R2

r
F

−F

m1, q1

m2, q2

êr

v1

v2

inertia frameInertial Frame

Figure 4.1: Illustration of the 2-spacecraft system.

4.1 Charged Spacecraft Equations of Motion

Consider two spacecraft free-flying in 3-dimensional space where there are no

external forces acting on the system. The scenario of the two body system is shown in

Figure 4.1. Assuming point-charge models for the spacecraft, the inertial equations of

motion of the two charged spacecraft are

m1R̈1 = −kc
q1q2

r2

(
1 +

r

λd

)
e
− r
λd êr (4.1a)

m2R̈2 = kc
q1q2

r2

(
1 +

r

λd

)
e
− r
λd êr (4.1b)

The notations of variables are the same as in Chapter 3. For the reader’s convenience,

the notations are briefly repeated here. The parameter kc = 8.99 × 109C−2 ·N ·m2 is

the Coulomb constant, r is the separation distance between the two spacecraft, r is the

relative position vector pointing from spacecraft 1 (SC1) to spacecraft 2 (SC2), êr is

the unit vector of r, and λd is the Debye length. Ri is the inertial position vector of
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the ith spacecraft. The inertial relative acceleration vector r̈ is

r̈ = R̈2 − R̈1 =
kcq1q2

m1m2r2
(m1 +m2)

(
1 +

r

λd

)
e
− r
λd êr (4.2)

Note that these equations do not explicitly consider planetary gravity acting on the

spacecraft. However, if the collision avoidance maneuver time is very small compared

to the cluster orbital period, then they can also be considered an approximation of the

charged relative orbital motion. For example, a GEO spacecraft collision avoidance

maneuver which takes minutes would be very short compared to the 1 day orbit period,

and thus the relative orbital motion would have a secondary effect on the relative motion.

This chapter is going to find a symmetric patched conic section trajectory to

prevent a collision, while forcing the departure velocity vector to be the same as the

initial arrival velocity vector. Reference 12 shows that if λd → ∞, and the charge

product Q = q1q2 is constant, then the relative motion trajectory of the two spacecraft

is a conic section. Letting λ→∞ and defining

µ = −kc
Q(m1 +m2)

m1m2
(4.3)

Eq. (4.2) is rewritten as

r̈ = − µ
r3
r (4.4)

Eq. (4.4) has exactly the same algebraic form as the EOM of G2BP. If the charge product

Q is constant, then the effective gravitational coefficient µ is also constant. Thus the

resulting motion can be described by a conic section. Note that here µ can be positive

or negative. For the oppostive charge sign case Q < 0, resulting in a positive effective

gravitational constant µ > 0. In this case Eq. (4.4) is exactly the same as the G2BP.

If Q > 0 and µ < 0, then the relative trajectory is a repulsive hyperbola, where SC2 is

moving along a hyperbola, and SC1 stays at the farther focus point. [12]
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Figure 4.2: Illustration of the symmetric patched conic section relative motion trajectory
with respect to mass m1.

4.2 3-Phase Symmetric Trajectory Scenario

For a Coulomb-forced two spacecraft collision avoidance problem, generally there

are an infinity of possible charge and charge switching time solutions which achieve a

collision avoidance. This chapter investigates symmetric trajectory programming ap-

proach to avoid a collision as well as hold the relative velocity.

An example of the 3-Phase symmetric relative trajectory scenario is shown in

Figure 4.2. At the beginning, the two spacecraft are flying freely and approaching each

other such that their minimum separation distance will violate a desired safety distance

rs. At the point A, the separation distance r between the spacecraft reaches a potential

collision region range ro. The spacecraft are charged such that Q > 0 and the spacecraft

start to repel each other to avoid the collision. The magnitude of the charge product is

held constant in Phase I until point B is reached. Thus the trajectory ÂB is a repulsive

hyperbola. At point B the charge product switches to a negative value such that the

spacecraft are attracting each other. During Phase II from the point B to the point C,

the charge product is again held constant. The arc B̂C is an attractive conic section

which can be ellipsis, parabola, or hyperbola depending on the relative arrival velocity

magnitude. At the point C the charge product switches back to the same value as in arc

ÂB to produce a symmetric trajectory to ÂB. At the point E, the charges are turned

off and the spacecraft begin to fly freely in space. The entire trajectory is symmetric
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about the axis OD. And the axis OD is the line crossing SC1 and perpendicular to the

initial relative velocity.

A B C

D

ESC 1

SC 2, O

Figure 4.3: Scenario of the circular Phase II trajectory.

4.3 Circular Transitional Orbit Programming

Before studying the general symmetric trajectories, let us first investigate a special

case where the Phase II trajectory is a section of a circle as illustrated in Figure 4.3.

Assume that the relative position vector rA and the relative velocity ṙA at point A

can be measured. From the description of the symmetric trajectory scenario in the last

section there are five unknowns that need to be determined: three charge products QI,

QII and QIII, and two charge switching times at points B and C. To solve for these five

variables some constraints need be clarified.

4.3.1 Constraints

For Phase I ÂB and Phase III ĈE to be symmetric, the charge products should

be the same value. Thus the first constraint is

QIII = QI (4.5)

Because the trajectory of Phase II B̂C is a section of a circle, its shape is always

symmetric about the symmetry axis OD. Thus a symmetric arc B̂C requires only that
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the angle ∠DOC satisfies

∠DOC = ∠BOD (4.6)

The point B connects Phase I and Phase II. Thus ṙB must be perpendicular

to rB, which means the point B is the periapsis of Phase I. This results in the third

constraint:

rB = rpI (4.7)

The trajectory of Phase II is a section of circle, this requirement can be formulated

using the angular momentum magnitude

h2
II = µIIrB (4.8)

The collision avoidance task requires that the separation distance r(t) must be

greater than a certain safe-restraint distance rs for all time:

r(t) ≥ rs (4.9)

This constraint is global and comes from the collision avoidance mission. For the con-

venience of calculation, this safety constraint is expressed by the condition

rmin = γrs (4.10)

where γ ≥ 1. In the case that Phase II is a section of a circle, rmin = rB. Thus the final

safety constraint for a circular transitional symmetric trajectory is

rB = γrs (4.11)

Now five constraints in Eqs. (4.5)–(4.8), and (4.11) have been found.

4.3.2 Circular Transitional Orbit Algorithm

The symmetric constraint in Eq. (4.5) provides QIII once QI is obtained. Note

that the angle ∠DOC is the true anomaly angle (in case the point D is the periapsis)
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of Phase II. Once the conic section properties of Phase II, especially QII, is achieved,

the charge switching time at the point C can be determined by using Kepler’s equation

and the symmetry constraint in Eq. (4.6).

Now three variables (QI, QII, tI) are left to be determined. The conic section

properties of Phase I are solved using rA and ṙA. The eccentricity vector of Phase I is

cI = ṙA × h−
µI

rA
rA (4.12)

where h = rA × ṙA is the specific angular momentum of the system, and

µI = −kc
QI(m1 +m2)

m1m2
(4.13)

is the effective gravitational coefficient of Phase I. Actually, by Eq. (4.3), finding the

charge products QI and QII is equivalent to finding µI and µII. Further, note the

notation where rA = |rA|. The vector h is constant by the assumption that there are

no external forces acting on the sytem. The eccentricity and semi-major axis of Phase

I are calculated by

eI = −‖cI‖
µI

(4.14a)

aI =
rAµI

2µI − rAv2
A

(4.14b)

where vA = ‖ṙA‖ is the magnitude of the relative velocity vector. The angle ∠AOD is

calculated as

∠AOD = arctan
(

h

rAvA

)
− π

2
(4.15)

By applying the constraint that the point B must be the periapsis of Phase I, the

charge switching time tB at point B is calculated through

tB =
|NAI|√
µI/aI

(4.16)

with the right hand side of this equation being completely determined by µI, which in

return is determined by QI. Thus, it can be concluded that the Phase I trajectory are

determined by the charge product QI.
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The radius rB is calculated by

rB =
h2/µI

1− eI
(4.17)

where the eccentricity eI is given by Eq. (4.14a). Substituting Eq. (4.17) into the safety

constraint in Eq. (4.11) and multiplying both sides by µI(1− eI)/(γrs), yield

µI(1− eI) =
h2

γrs
(4.18)

Subtracting both sides by µI, taking square of both sides and using eI = −‖c‖µI
=

‖rA
rA
− ṙA×h

µI
‖, yield

µ2
I e

2
I = µ2

I − 2µIṙA × h · rA/rA + ṙA × h · ṙA × h (4.19)

Substituting Eq. (4.19) into Eq. (4.18), yields

−2µIṙA × h · rA/rA + ṙA × h · ṙA × h =
h4

γ2r2
s

− 2µIh
2

γrs
(4.20)

Thus the Phase I effective gravitational coefficient for a circular transitional trajectory

is solved by grouping terms containing µI:

µI,c =
1
2

h4

γ2r2s
− ṙA × h · ṙA × h

h2

γrs
− ṙA × h · rA

rA

(4.21)

After obtaining µI,c, the variable tI is determined by Eq. (4.16). These values of

µI and tI ensure that at the point B the relative speed vector is perpendicular to the

relative position vector, meanwhile the safety constraint rB = γrs is also satisfied.

The next step is to find a proper QII or µII that results in a circular orbit. Using

the constraint for a circular transitional orbit in Eq. (4.8), µII is found to be

µII,c =
h2

rB
=

h2

γrs
(4.22)

To find the Phase II duration time tII, the Phase II symmetry constraint in

Eq. (4.6) is utilized. Note that the angular velocity is constant in Phase II, the duration

time is proportional to the angle ∠BOC as:

tII,c = ∠BOC · TII

2π
= 2∠BOD · TII

2π
=
∠BOD · TII

π
(4.23)
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The period of the Phase II circular orbit is TII =
√
µII/r3

II, while the angle ∠BOD is

given by

∠BOD = ∠AOD − |fAI| = ∠AOD + atan

(
îcI × îrA · îh
îcI · îrA

)
(4.24)

where îcI, îrA and îh are the unit vectors of cI, rA and h respectively. The angle ∠AOD

is expressed in Eq. (4.15).

Thus a symmetric trajectory with Phase II being a part of a circular orbit has

been found. Specifically, the variables µI, µII, QIII, tB, tII are calculated through Eqs.

(4.21), (4.22), (4.5), (4.16) and (4.23), respectively. Note that this circular transitional

trajectory solution is calculated analytically.

4.4 General Symmetric Trajectory Programming Strategy

After solving a circular Phase II trajectory in the last section, this section is

going to investigate the more general symmetric collision avoidance trajectories with

the Phase II trajectory being any type of conic section.

A general 3-Phase symmetric trajectory is shown in Figure 4.2. As mentioned in

the last section, as with the circular Phase II case, there are five unknowns that need

to be determined: [QI, QII, QIII, tB, tII].

4.4.1 Constraints

The general constraints are largely the same as those for the circular transitional

orbit. The three constraints in Eqs. (4.5), (4.6), and (4.10) are directly used to find a

general symmetric trajectory. Because here the Phase II trajectory is a part of general

conic section, the circular constraints in Eqs. (4.7) and (4.8) are not applicable.

Since the arc B̂C is not a part of circle, for Phase II to be symmetric about the

symmetric axis OD, the point D must be the periapsis or apoapsis of Phase II, unless
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the arc B̂C is a part of a circular orbit. This requirement is formulated as:

rD = rp,II, or rD = ra,II (4.25)

where rp,II and ra,II are the periapsis radius and apoapsis radius of Phase II.

Now there are four equality constraints to solve the patched conic collision avoid-

ance trajectory. Eqs. (4.5), (4.6) and (4.25) are from the symmetric patched conic

section properties. These three constraints ensure a symmetric trajectory. The con-

straint given by Eq. (4.11) is required by the collision avoidance task. To complete the

5-variable searching problem, one more constraint is needed.

Note that the four equality constraints ensure a collision avoidance and meanwhile

result in a symmetric trajectory, which means the symmetric trajectory programming

requirements have been satisfied. The remaining one degree of freedom actually pro-

vides a flexibility to search the five variables. Here this section assumes a proper value

of QI, then constructs a closed-loop numerical iteration routine to find other four vari-

ables. This iteration routine can be used as a part of the charge-optimal trajectory

programming problem which updates QI such that a certain charge cost function is

minimized.

4.4.2 General Numerical Iteration Routine

A numerical iteration routine is desired to find a symmetric patched conic section

trajectory for the collision avoidance problem, assuming that a proper value of QI has

been set. The charge product QI and the initial conditions [rA, ṙA] determine the conic

section of Phase I. Without loss of generality, assume that tA = 0. If tB is given, the

angle ∠AOB can be calculated using Kepler’s equation in Phase I. The states [rB, ṙB]

are also determined by solving the orbit EOM of Phase I. Utilizing the constraint that

the point D must be the periapsis or apoapsis of Phase II, the point C is determined by

the constraint in Eq. (4.6). Phase III is determined by the state of point C, which can
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be infered from tB. Thus the charge switching time variable tB logically determines the

whole patched conic section trajectory. In the numerical iteration routine, tB is chosen

as the variable to be propagated.

Because tB has been chosen as the variable to be propagated in the iteration loop,

it starts from an initial guess value, and is updated using an error of a target function.

In the present formulation of the algorithm the time point tB is assumed to be given.

The states at point B are determined by using the conic section properties of Phase I.

The mean hyperbolic anomaly of point B considered in Phase I is calculated using the

Kepler’s equation:

NBI = NAI +
√
µI

a3
I

· tB = NAI + nI · tB (4.26)

Then the hyperbolic anomaly HBI is calculated by numerically solving the standard

anomaly relationship: [28]

NBI = eIsinh(HBI) +HBI (4.27)

Thus the true anomaly of point B in Phase I is determined by

fB,I = 2 · arctan

(
tanh

(
HBI

2

)√
eI + 1
eI − 1

)
(4.28)

The radius and the magnitude of the relative velocity at point B are

rB =
h2/µI

1− eI cos fBI
(4.29a)

vB =

√
µI

(
2
rB
− 1
aI

)
(4.29b)

here h is the magnitude of the specific angular momentum determined by initial condi-

tions. Eq. (4.29b) is obtained from the energy equation.

After obtaining the relative motion states at point B, Phase II can be determined

by the symmetric conic section constraints. Specifically, the charge product QII and

point C can be calculated. At first, the angle ∠AOB is calculated by

∠AOB = |fB,I − fA,I| (4.30)
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The angle ∠BOD is determined by the geometry relation:

∠BOD = ∠AOD − ∠AOB (4.31)

According to the symmetric constraint in Eq. (4.6), the angle

∠COD = ∠BOD (4.32)

is determined. Thus the point C is located. Note that of the five variables which

determine the symmetric conic section trajectory, the points B, C, the charge products

QI, QIII have been solved. The only variable left to be determined is the charge product

QII. From the definition of µ in Eq. (4.4) we find:

µII = −kc
QII(m1 +m2)

m1m2
(4.33)

Once µII is solved, QII is also determined. The following development is going to solve

for µII based on the states of the point B and the symmetric constraints.

Since the arc B̂C is a part of a conic section, it has all of the properties of conic

section orbit. Utilizing the vis-viva equation, the eccentricity e is expressed as:

e =

√
1 +

(
v2

µ
− 2
r

)
h2

µ
(4.34)

For a given two body system without external forces, the specific angular mo-

mentum h is constant. Thus the expression of the eccentricity in Eq. (4.34) contains

only three variables r, v and µ. Substituting Eq. (4.34) into the radius equation, yields

r =
h2

µ+ cos f
√
µ2 +

(
v2 − 2µ

r

)
h2

(4.35)

Transforming Eq. (4.35) to separate the square root term, yields

cos f

√
µ2 +

(
v2 − 2µ

r

)
h2 =

h2

r
− µ (4.36)

Squaring Eq. (4.36) and using the fact that 1 − cos2 f = sin2 f , Eq. (4.36) can be

simplified to

sin2f µ2 − 2h2

r
sin2f µ− cos2f v2h2 +

h4

r2
= 0 (4.37)
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With h being constant, this quadratic equation of µ contains the variables f , r and

v. Note that Eq. (4.37) is valid for all conic section orbits. To solve for µII, one just

need to evaluate f , r and v at point B in Phase II and solve the quadratic equation in

Eq. (4.37). rB and vB are given by Eq. (4.29). If the point D is the periapsis location,

then

fB,II = −∠BOD (4.38)

Else, if D is the apoapsis location, then

fB,II = π − ∠BOD (4.39)

In both cases, the resulting final equations after substituting fBII into Eq. (4.37) are

identical:

sin2∠BOD︸ ︷︷ ︸
l1

µ2
II−

2h2

rB
sin2∠BOD︸ ︷︷ ︸
l2

µII− cos2∠BOD v2
Bh

2 +
h4

r2
B︸ ︷︷ ︸

l3

= 0 (4.40)

Analytically solving for µII from Eq. (4.40), the charge product in Phase II is then

obtained by Eq. (4.33).

Note that given µI, tB and ∠BOD, generally there are two solutions of µII to

Eq. (4.40). The solutions are

µ
(1)
II =

h2

rB
+

1
2 sin2∠BOD

√
l22 − 4l1l3 (4.41a)

µ
(2)
II =

h2

rB
− 1

2 sin2∠BOD

√
l22 − 4l1l3 (4.41b)

Substituting Eq. (4.41) into the RHS of Eq. (4.36), yields

h2

r
− µ = ∓ 1

2 sin2∠BOD

√
l22 − 4l1l3 (4.42)

This indicates that the two solutions result in two opposite signs in the RHS of Eq. (4.36).

But for a particular value of f , either −∠BOD or π − ∠BOD, the LHS of Eq. (4.36)

only has a specific sign. This means only one of the two solutions to Eq. (4.40) satisfies
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(b) Point D is the apoapsis of Phase II.

Figure 4.4: Two cases of using µ(1,2)
II solutions, in both cases only one of the two solutions

results in an actual symmetric trajectory.

Eq. (4.36). Physically speaking, only one of the two values in Eq. (4.41) will result in a

symmetric trajectory.

The two plots in Figure 4.4 show the two scenarios using µ(1,2)
II given by Eq. (4.41).

Figure 4.4(a) shows the case that we are intending to find a symmetric trajectory with

the point D being the periapsis of Phase II, and Figure 4.4(b) shows the case that the

point D is designated as the apoapsis of Phase II. In the scenario in Figure 4.4(a), the

angle ∠BOD = 71.9◦, and fB,II is expected to be −∠BOD = −71.9◦. With this value

of fB,II, the LHS of Eq. (4.36) must be positive, correspondingly, only µ
(2)
II satisfies

Eq. (4.36). This is confirmed by Figure 4.4(a). Figure 4.4(b) confirms the other fact

that only µ(1)
II results in the symmetric trajectory with the point D being the apoapsis

of Phase II.

By assuming the variables µI and tB are given, the previous development outlines

how to solve for the states at the points B and C, and the charge product of Phase II QII.

However, in our present collision avoidance application tB is not explicity determined

and will need to be solved using a numerical search routine. Note that three constraints

have been used in deriving these formulas, Eqs. (4.5), (4.25), and (4.6). Next the safety
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constraint in Eq. (4.10) needs to be utilized. The numerical search routine is intended

to find an appropriate tB such that the closest distance rmin = γrs, where γ ≥ 1.

The following theorem provides a rule to find the minimum distance rmin in the

whole trajectory.

Theorem 4 Consider the 3-Phase symmetric patched conic section trajectory as shown

by Figure 4.2. If the point D is the periapsis of Phase II, then the minimum distance

of the entire ÂE trajectory is the periapsis radius of Phase II, i.e.:

rmin = rp,II (4.43)

If the point D is the apoapsis of Phase II, then the minimum distance is the periapsis

radius of Phase I, i.e.:

rmin = rp,I (4.44)

Proof If D is the periapsis of Phase II, then rp,II is the minimum distance in Phase II.

So it’s true that rp,II < rB. Because ∠BOD < 90◦, fB,II ∈ (−90, 0)◦, thus ṙB < 0. Then

the periapsis of Phase I does not lie along the arc
_
AB. This indicates that throughout

Phase I ṙ < 0. Thus rB is the minimum distance in Phase I. Because rp,II < rB, rp,II is

the minimum distance in the entire trajectory.

If D is the apoapsis of Phase II, then rB is the minimum distance in Phase II

because fB,II ∈ (90, 180)◦and ṙB > 0. Note that if ṙA < 0, then the periapsis of Phase I

must lie in the arc
_
AB because ṙ crosses zero in Phase I. So rp,I is the minimum distance

in Phase I, this indicates that rp,I < rB. Because rB is the minimum distance in Phase

II, rp,I is the minimum distance in the entire trajectory. �

Theorem 4 states that if point D is the periapsis of Phase II, then the periapsis

of Phase I must not lie on the arc
_
AB. If point D is the apoapsis of Phase II, then the

periapsis of Phase I must lie on the arc
_
AB. Because the periapsis of Phase I lies in

_
AB, ṙ must cross zero in Phase I. Figure 4.5(b) illustrates this scenario in detail.
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Figure 4.5: Illustration of the two cases with the point D being the periapsis and
apoapsis of Phase II.

Figure 4.6 shows the change of rp,II w.r.t. tB assuming that µI is held fixed.

The variable tp,I is the time for SC2 to fly from point A to the periapsis of Phase I.

It can be seen that when tB < tp,I and µ
(2)
II is used, rp,II is monotonically increasing

as tB increases; when tB > tp,I and µ
(1)
II is used, rp,II is monotonically decreasing as tB

increases. Thus a symmetric collision avoidance trajectory with the point D being the

periapsis of Phase II can be found by initializing t
(0)
B < tp,I and updating tB using a

common numerical methods such as Newton’s method or the Secant method.

Alternatively initializing t(0)
B > tp,I and using µ(1)

II leads to a symmetric collision

avoidance trajectory with the point D being the apoapsis of Phase II. Note that this

solution yields rp,II = γrs which is a conservative maneuver because the point D is

the apoapsis of Phase II. Another way to achieve the solution with the point D being

the apoapsis is to set rp,I = γrs, and solve for corresponding µI from Eq. (4.21). Any

symmetric trajectory with the point D being the apoapsis of Phase II will satisfy collision

avoidance requirement. Thus there are infinite choices of tB which lead to symmetric

maneuvers and varying apoapses.

Before performing a numerical search for tB for a given µI it must be decided
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apriori if a periapses or apoapses D point solution is sought. During the numerical

iterations the current estimates of tB must be constrained to remain either larger or

smaller than the periapses time tp,I of Phase I. If tB crosses tp,I without switching the

µII solution, the algorithm will lead to an asymmetric trajectory with fB,II lying in a

wrong quadrant, as shown by the dashed lines in Figure 4.4.

Note that the path with the point D being the apoapsis of Phase II is a longer

path, both in length and in time. Practically speaking, there is a bigger chance for the

longer path to be influenced by disturbances. Though in developing the algorithm the

Debye length effect is not taken into consideration, this effect does exist in the space

environment. Since the longer path will be influenced more due to disturbance, the

shorter path with the point D being the periapsis should be prefered.

Finally all the required sub-steps have been presented to outline the overall col-

lision avoidance algorithm. The basic logic is to search for a proper t∗B such that the

collision avoidance criteria

rp,II = γrs (4.45)

is satisfied, with the point D being the periapsis of Phase II. If for some reason t∗B is

not achievable, for example if t∗B is so short that the spacecraft have missed it already
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at time t∗B, the algorithm switches to find a circular transitional trajectory.

In this chapter, Newton’s method is used in the numerical searching for t∗B such

that the following target function becomes zero:

g(tB) = rp,II(tB)− γrs (4.46)

The iteration algorithm to determine a symmetric collision avoidance with D being the

periapses of Phase II propagates according to the following steps:

Step 1 Initialization: From the measurements rA and ṙA, calculate eI , aI

through Eq. (4.14), and calculate the angle ∠AOD through Eq. (4.15).

Prescribe a proper µI, which means |µI| must be greater than |µI,c| to

ensure rp,I > γrs. It must also make sure QI is implementable, which

means QI < Qmax. Calculate tp,I. Initialize tB:

t
(0)
B = αtp,I (4.47)

where 0 < α < 1.

Step 2 Solve for the point B’s states rB and vB through Eqs. (4.26)–(4.29).

Step 3 Solve for µ(2)
II by Eq. (4.41), using the minus sign. Calculate rp,II

through

rp,II = aII(1− eII) (4.48)

and aII is solved by the energy equation, eII is calculated through

Eq. (4.34) evaluating at point B in Phase II.

Step 4 Calculate g(tB) by Eq. (4.46). Judge whether |g(tB)| < Tol. If yes,

STOP. Otherwise, go to Step 5.

Step 5 Calculate g′ = ∂g
∂tB

using the finite difference method.

Step 6 Update t(i+1)
B = t

(i)
B − g

g′ , i = i+ 1. Go to Step 2.
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After choosing a proper value of QI, this routine calculates a symmetric collision

avoidance trajectory composed of three patched conic-sections.

4.5 Collision Avoidance Criteria with Charge Saturation

The previous section develops a numerical routine to find a symmetric patched

conic section trajectory to avoid the collision and meanwhile preserve the relative ve-

locity magnitude and direction of the two-spacecraft system. In deriving these routines,

it is assumed that the charge product of the two spacecraft is unlimited. If the charge

product limitation is taken into consideration, the system’s ability to avoid a potential

collision is then limited. Under certain conditions, for example the two spacecraft are

approaching each other too quickly, the collision would be unpreventable. This section is

intended to determine criteria to predict whether a potential collision can be prevented

using the presented collision avoidance routines.

Figure 4.7 illustrates the geometry of the two spacecraft system when the collision

avoidance strategy is triggered at time tA. The vectors rA, vA and h can be expressed
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in the {ı̂v, ı̂h, ı̂D} 1 frame as

rA=− xAı̂v + dı̂D (4.49a)

vA= v0ı̂v (4.49b)

h = rA × vA = dv0ı̂h (4.49c)

This section is investigating the critical state with γ = 1. Substituting Eq. (4.49) into

Eq. (4.21), and using the fact ‖rA‖ = ro, yields

µI,c =
ro v

2
0 d

2 − r2
s ro v

2
0

2rs(ro − rs)
(4.50)

Eq. (4.50) privides the value of µI that results in rp,I = rs. Thus the circular

transitional orbit solution gives µI in the critical state.

Theorem 5 Consider a repulsive hyperbola motion governed by Eq. (4.4), with µ < 0

being constant. Given initial position and velocity [r0, ṙ0], the radius of the periapsis

rp increases as |µ| increases.

Proof To mathematically prove this theorem, it’s required to express rp in terms of µ

and initial conditions. For a repulsive hyperbola, the periapsis radius is given as [12]

rp = a(1 + e) (4.51)

Here a and e are actually determined by the initial conditions and µ. Substituting

e =
√

1− h2/µa and Eq. (4.14b) into Eq. (4.51) and using |µ| = −µ instead of µ, yield

rp =
1

2|µ|/r0 + v2
0

(
|µ|+

√
|µ|2 + h2

(
2|µ|/r0 + v2

0

) )
(4.52)

where r0 = ‖r0‖, v0 = ‖ṙ0‖, h = ‖r0 × ṙ0‖, which are all determined by the initial

conditions.
1 {ı̂v, ı̂h, ı̂D} centers at SC1, with ı̂v pointing to the SC2’s relative velocity direction, ı̂h is the unit

vector of the relative angular momentum, ı̂D closes the right hand coordinate.
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It’s still not obvious to see the trend of rp as |µ| increases. Taking a partial

derivative of rp with respect to |µ|, yields

∂rp
∂|µ| =

1 +
(
|µ|+ h2/r0

) /
β

2|µ|/r0 + v2
0

− |µ|+ β

r0(2|µ|/r0 + v2
0)2

(4.53)

where β =
√
|µ|2 + h2

(
2|µ|/r0 + v2

0

)
. The trend of rp as µ increases is determined by

the sign of ∂rp
∂|µ| . Eq. (4.53) can be changed to be:

∂rp
∂|µ| =

1
(2|µ|/r0 + v2

0)2

{
|µ|
r0

+ v2
0 +

( |µ|2
r0

+ |µ|v2
0

) /
β

}
(4.54)

Eq. (4.54) gives a simplified expression of ∂rp
∂|µ| with every individual term being positive.

Thus the partial derivative ∂rp
∂|µ| is alway positive. This proves that rp increases as |µ|

increases. �

Applying Theorem 5 in the 3-Phase symmetric patched conic section scenario,

yields the following lemma.

Lemma 1 For the 3-Phase patched conic section scenario as shown in Figure 4.2, the

circular transitional trajectory solution provides the minimum value of QI that satisfies

the collision avoidance constraint rmin ≥ rs.

Proof For the critical case where γ = 1, the circular transitional trajectory has the

following properties:

rp,I = rs, rII = rs (4.55)

where rII is the radius of Phase II which is constant.

By Theorem 5, µI,c in Eq. (4.50) provides the minimum value of |µI| that satisfies

rp,I ≥ rs. From Eq. (4.3), the charge product QI is proportional to |µI|, thus the circular

transitional trajectory provides the minimum value of QI such that rp,I ≥ rs. For Phase

II, the radius is equal to rs, which satisfies the collision avoidance requirement. So the

circular transitional trajectory solution provides the minimum QI to avoid the collision.

�
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Theorem 6 For the two effective gravitational coefficients given by Eq. (4.21) and

Eq. (4.22), µI,c > |µII,c| if and only if d < d∗ = rs
√

ro
3ro−2rs

.

Proof First let us investigate µII,c − |µI,c|:

µII,c − |µI,c| =µII,c + µI,c

=
h2

rs
+
rov

2
0d

2 − r2
srov

2
0

2rs(ro − rs)

=
v2

0

2rs(ro − rs)
(

(3ro − 2rs)d2 − ror2
s

)
(4.56)

When |µI,c| > µII,c, µII,c − |µI,c| < 0, applying this to the formula in Eq. (4.56),

yields

v2
0

2rs(ro − rs)
(

(3ro − 2rs)d2 − ror2
s

)
< 0 ⇔ d <

√
ror2

s

3ro − 2rs
= d∗ (4.57)

�

Theorem 5 and Lemma 1 show QI is lower bounded by the circular Phase II

solution:

QI ≥ QI,c = − µI,cm1m2

kc(m1 +m2)
= − (rov2

0d
2 − r2

srov
2
0)m1m2

2kcrs(ro − rs)(m1 +m2)
(4.58)
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Figure 4.8: Charge product values under different d.
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When implementing these charge collision avoidance solutions, the averaged charge

is less of a concern because the spacecraft charge can be servoed with very little electri-

cal power and using essentially no fuel. [1] Instead, the required absolute levels should

be made as small as possible. This results in smaller required spacecraft potentials

and less issues with electrostatic discharges. Assuming that d satisfies the condition in

Theorem 6, then note that the circular transfer orbit provides the minimum QI colli-

sion avoidance solution. To illustrate this, consider the following numerical simulation

results with the initial conditions:

R1(t0)=[0, 0, 0]Tm, Ṙ1(t0)=[0, 0, 0]Tm/s, R2(t0)=[20, d, 0]Tm, Ṙ2(t0)=[−0.03, 0, 0]Tm/s

(4.59)

and with ro = 15m, rs = 5m. Figure 4.8 shows the charge product values under different

values of the offset distance d. For the circular transitional trajectory case Theorem 6

states that QI > QII when d < 3.2733m, and this is reflected in Figure 4.8(a).

For general symmetric trajectory cases, given a value of d, there remains one

degree of freedom to determine the collision avoidance trajectory. In the numerical

algorithm presented before we can choose a value of QI and then calculate all the

remaining variables. Figure 4.8(b) shows the value of |QII| corresponding to QI under

different d, with all other variables the same as in Figure 4.8(a). The shaded area is the

region where |QII| > QI.

Figure 4.8(b) illustrates that the solution with |QII| < QI always exists, while the

solution with |QII| > QI exists only when d > d∗. This agrees with intuition because

QI can be infinitely large to achieve the symmetric collision avoidance trajectory, but it

must be greater than a certain value to ensure a collision avoidance with r > rs. When

d < d∗, the minimum acceptable value of QI is still greater than corresponding |QII|

as predicted by Theorem 6, thus the solution with |QII| > QI does not exist in this

situation. Another important thing is that if d < d∗, the solution with QI = |QII| is the
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L∞ optimal charge solution; when d > d∗, the circular transfer orbit is the L∞ charge

optimal solution. This helps to choose a proper value of QI such that the maximum

charge level during the whole process is minimized.

Note that the criteria in Eq. (4.58) has exactly the same form as Eq. (42) in

Chapter 3. That equation is the requirement for the charge product such that the

collision can be avoided. It has the same form as Eq. (4.58) because Chapter 3 assumes

that the two spacecraft are fully charged to get the criteria in Eq. (42). This assumption

matches with the situation in Phase I, where the two spacecraft have a constant charge

product and are repeling each other. The physical meanings of the criteria in Eq. (42)

in Chapter 3 can also be utilized here. For a given formation flying mission in which

the maximum magnitude of the possible separation distance rate has been determined,

Eq. (4.58) provides a guide to design the spacecraft charge devices such that QI,c is

achieveable, thus the collision can be avoided with a symmetric trajectory.

If the maximum charge product has been specified, then Eq. (4.60) below tells us

the maximum allowable relative velocity that guarantees the collision to be avoidable.

v0 ≤
√

2QI,maxkc(m1 +m2)
m1m2

rs(ro − rs)
ro(d2 − r2

s)
(4.60)

Note that the inequality in Eq. (4.60) is obtained by solving for v0 from the inequality

in Eq. (4.58).

4.6 Numerical Simulations

A numerical iteration routine using Newton’s method to solve for a symmetric

patched conic section trajectory has been setup. The basic logic of the routine is to

first search an appropriate time value tB such that the target function g(tB) defined in

Eq. (4.46) converges to zero, and the point D is the periapsis of Phase II.

The following numerical simulation cases show the effectiveness of the routine in

different situations. All the cases share a common set of the parameters of the two
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spacecraft system:

m1 = m2 = 50kg, ro = 15m, rs = 7m, γ = 1. (4.61)

The initial inertial state vectors are also the same across all numerical studies unless

specified: R1(t0) = [0, 0, 0]Tm

R2(t0) = [−16, 3, 0]Tm

Ṙ1(t0) = [0, 0, 0]Tm/s

Ṙ2(t0) = [0.02, 0, 0]Tm/s
(4.62)

4.6.1 Ideal Conditions Examples

The phrase “ideal conditions” means the two spacecraft are flying in free space in a

vacuum (not plasma environment) with λd =∞. Setting the variable µI = −0.01m3/s2,

the corresponding charge product is QI = 27.81µC2. Under these conditions, Figure 4.9

shows two simulation results. The first trajectory has the point D as the periapsis of

Phase II. The second one is the case that the point D is the apoapsis of Phase II. This

can be achieved by initializing tB to be larger than tp,I, and using µ(1)
II instead of µ(2)

II

in the routine. Table 4.1 shows some detailed results of the simulations.
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Figure 4.9: Idea simulation.

In both of the two simulations, the collision avoidance requirement rmin ≥ rs is

satisfied. and the final relative speed direction is held the same as the initial direction.



73

Table 4.1: Results of the ideal simulations.

tB [s] rD [m] QII [µC2]
sim 1 291.42 7.00 -6.480
sim 2 391.61 15.64 -1.036

The first simulation has the shorter path, though the magnitude of QII is bigger. The

apoapsis case (means the case with the poind D being the apoapsis of Phase II) is very

conservative. Noticing that a small difference in tB results in a huge difference in the

total maneuver time, the longer transition time span makes the apoapsis case much

more vulnerable to disturbances.

4.6.2 Charge Expense Analysis

In this simulation case, the charge expense under different value of µI is analyzed.

According to different concerns about charge expense, the two charge cost functions J1

and J2 are defined below:

J1 = max(QI, |QII|), J2 =
2tBQI + tII|QII|

2tB + tII
(4.63)

Here J1 is the maximum magnitude of the charge products. It is important when the

maximum vehicle voltage level is of concern. J2 is the time averaged charge product

which provides insight into the nominal charge and voltages levels. Numerical sweeps

on |µI| are performed using the same parameters as in Eq. (4.61), but with the different

initial conditions:R1(t0) = [0, 0, 0]Tm

R2(t0) = [−16, 6, 0]Tm

Ṙ1(t0) = [0, 0, 0]Tm/s

Ṙ2(t0) = [0.03, 0, 0]Tm/s
(4.64)

Note that with the provided parameters and initial conditions, the condition in

Theorem 6 is not satisfied, which implies the solution with |QII| > QI exists. Figure 4.10

shows the values of J1 and J2 for each value of |µI|. Figure 4.10(a) shows that the

minimum value of J1 is achieved at the marked point where QI = |QII|. As |µI| increases,
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Figure 4.10: Charge expense history while sweeping µI.

before it reaches the point where |QII| = QI, |QII| dominates and J1 = |QII|. After the

marked point, J1 is linearly increasing because now J1 = QI and QI is proportional

to |µI|. Figure 4.10(b) shows that the minimum J2 happens at the point where QI is

minimum. This is because when QI = QI,c, 2tB is about two times greater than tII,

and as |µI| increases, tB is increasing and tII is decreasing. Thus the influence of tB

dominates J2.

The two plots in Figure 4.10 together show an example that according to difference

charge expense concerns, the “optimal” solutions can be different.

4.6.3 Simulation With Debye Length Effect

The algorithm developed in this chapter is an open loop programming algorithm,

assuming that the spacecraft are flying in free space which implies the orbital motion and

Debye length effect haven’t been taken into account. Figure 4.11 shows the difference

when the algorithm is directly applied in the simulation that the environment Debye

length λd = 50m. This value represents the Debye length in deep space at 1 AU distance

from the sun.

The final velocity direction of the disturbed trajectory has an offset of 3.98◦ from
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Figure 4.11: Relative trajectories of the two spacecraft under the condition λd = 50m.

the ideal trajectory. The minimum distance of the disturbed trajectory is 0.254m or

about 3.6% less than that of the ideal case γrs, due to the partial shielding of Coulomb

force. The Debye length always decreases the effectiveness of the Coulomb repulsion.

This effect could be compensated for with a γ > 1 safety factor. Future work will

investigate how to feedback stabilize such open-loop trajectories. A challenge here is the

under-actuated nature of the Coulomb thrusting. Further, the momentum conservation

makes it impossible to reverse the motion to compensate for an overshoot. Any feedback

control development could try to bias the tracking errors to slightly undershoot the

desired trajectory.

4.7 Conclusion

This chapter develops an open-loop trajectory programming algorithm to find a

symmetric trajectory composed of three patched conic-sections to avoidance a potential

collision. Compareing to the feedback charge control strategy developed in Chapter 3,

this approach is able to match both the direction and the magnitude of the relative

motion speed with the initial relative approach velocity vector. At first a circular

transitional trajectory is obtained analytically. This solution provides the minimum

charge product magnitude that ensures a collision avoidance. Assuming a value of the

charge product in Phase I, a numerical routine is developed to find a symmetric three-

conic-section trajectory by using the collision avoidance requirement and the symmetric

constraints. The dual-solution problem for the effective gravitational parameter is in-
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vestigated to analytically determine which results in a symmetric trajectory. The rule in

choosing the correct solution is that the switching time between Phase I and Phase II can

not cross the periapsis time of Phase I during the numerical iteration. The criteria for a

collision avoidance by using the symmetric trajectory algorithm with charge saturation

are found by investigating the geometries of the two-spacecraft system. Numerical sim-

ulations show that under different definitions of the cost function, the optimal value for

the charge product in Phase I varies. This implies that a routine to search for optimal

charge product in Phase I can be applied catering to a specific definition of the cost

function to initialize the algorithm presented in the chapter, which is used to find the

general symmetric collision avoidance trajectory.

The idea of generating the patched conic trajectory can be applied to more general

missions, such as two spacecraft fly-by maneuver. The scenario of fly-by maneuver is

that, two spacecraft have their initial position and velocity vectors resulting a certain

relative motion. Due to some reasons, now we want to change the relative motion

between the two spacecraft to some desired motion. The desired relative motion is

given by a relative speed vector. During the maneuver, the two spacecraft must not

collide. A possible approach is very similar to the symmetric trajectory programming

method used in collision avoidance. There are two obvious differences: the symmetric

axis should be tilted corresponding to the direction of the desired relative speed; Phase-I

and Phase-III may not have the same charge level according to the magnitude of the

desired relative speed. This research is very interesting and doable. It can be even

applied to capture the energy from a fly-by spacecraft which is very similar to the

“Gravity Assistant” concept used in interplanetary space missions.



CHAPTER 5

NONLINEAR CONTROL OF A TWO-CRAFT COULOMB

VIRTUAL STRUCTURE

Before investigating the three-craft Coulomb virtual structure, it’s necessary to

have in-depth knowledge about the simpler control case of a Coulomb virtual structure

with only two spacecraft. This chapter studies the Coulomb virtual structure control

problem in the scenario that a two-spacecraft formation operates in a Geostationary

Earth Orbit (GEO). Of interest is if the 2-craft shape controlled requires full-state

feedback, or if this shape control is possible with partial state feedback of the separation

distance information only. The work in this chapter has been presented in Reference [29]

and has been submitted to IEEE Transaction on Aerospace and Electronic System for

publication.

CM

r

R1

R2

Rc ôrc

m1, q1

m2, q2

Inertial Orbits F

−F

ôr1

ôr2

Figure 5.1: Scenario of the 2 spacecraft system.
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5.1 Equations Of Motion

The actively controlled Coulomb force between the spacecraft is the only force

utilized to control the separation distance. No hybrid thrusting (blend of Coulomb

and conventional inertial thrusting) is considered. Note that the Coulomb forces can-

not directly change the inertial angular momentum of the system because they are

system-internal forces. Instead, the objective of the control is to maintain the separa-

tion distance to be a certain desired value such that the shape of the two-body formation

is held nominally constant.

Assuming the spacecraft potential is small compared to the local plasma kinetic

energy, the Coulomb force between the two spacecraft acting on spacecraft-1 (SC-1) is

approximated as:

Fc = −kc
Q

L2

(
1 +

L

λd

)
e
− L
λd êr (5.1)

where kc = 8.99×109 Nm2C−2 is the Coulomb constant, Q is the charge product of the

two spacecraft, L = ‖r‖ is the separation distance between the two spacecraft, êr = r/L

is the unit vector pointing from SC-1 to SC-2, λd is the Debye length characterizing the

plasma shielding effect.

The inertial equations of motion (EOM) are given by

m1R̈1 = −GMm1

R2
1

ôr1 − kc
Q

L2

(
1 +

L

λd

)
e
− L
λd êr (5.2a)

m2R̈2 = −GMm2

R2
2

ôr2 + kc
Q

L2

(
1 +

L

λd

)
e
− L
λd êr (5.2b)

where G = 6.67428×10−11 m3kg−1s−2 is the gravitational constant, M = 5.9736×1024

kg is the Earth’s mass. The states Ri, mi and qi are the inertial position vector, the

mass and the charge of the ith spacecraft respectively, while ôri = Ri/Li is the unit

vector of the inertial position vector of the ith spacecraft.

In order to develop a control algorithm to stabilize the separation distance (i.e.

the virtual structure shape) of the two spacecraft, we derive the separation distance
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equation of motion.Using Eq. (5.2), the relative EOM is:

r̈ = R̈2 − R̈1 =
GM

R2
1

ôr1 −
GM

R2
2

ôr2 + kc
Q

L2

(
1
m1

+
1
m2

)(
1 +

L

λd

)
e
− L
λd êr (5.3)

Differentiating the identity L =
√
r · r twice yields the separation distance acceleration

relationship:

L̈ = r̈ · êr +
1
L
‖ṙ‖2

(
1− cos2∠(r, ṙ)

)
(5.4)

Substituting Eq. (5.3) into Eq. (5.4) yields the desired separation distance EOM:

L̈ =kc
Q

L2

(
1
m1

+
1
m2

)(
1 +

L

λd

)
e
− L
λd +GM

(
1
R2

1

ôr1 −
1
R2

2

ôr2

)
· êr︸ ︷︷ ︸

f1

+
1
L
‖ṙ‖2

(
1− cos2∠(r, ṙ)

)
︸ ︷︷ ︸

f2

(5.5)

Note that the term f1 is a function of the inertial position vectors of the formation,

while f2 is solely a function of the relative position vectors of the formation.

5.2 Two-Craft Shape Control Algorithm

The goal of this chapter is to develop a static shape control of a spinning charged

two-spacecraft formation. The control objective is thus only the shape of the formation,

not the orientation of the formation. This section develops a Lyapunov-based nonlinear

controller to make the separation distance of the two spacecraft stabilized at the desired

distance. Let us define a shape error as

∆x = L− L∗ (5.6)

where L∗ is the desired constant distance. The objective of the control is to make

∆x→ 0. Because the desired distance L∗ is constant, the relative trajectory of the two

body system is circular. For a two body Coulomb formation with separation distance

within 100m, the satellites’ major accelerations is due to the Coulomb forces. Thus,

after the distance error converges, the control charge would be a constant value that
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maintains the shape of the spinning structure. This chapter defines the control charge

product as a summation of a feed-forward and a feedback component:

Q = Qn + δQ (5.7)

Here Qn is the feed-forward control component that maintains the shape of the final

spinning structure, δQ is the feedback part that stabilizes the distance error.

5.2.1 Spinning Two-Craft Feed-Forward Control

The feed-forward control is obtained by finding the equilibrium solution of the

control charge product under the assumption that the two spacecraft are flying in deep

space. This way the influence of the planetary gravity is treated as a disturbance that is

taken care of by the feedback control part. Neglecting the planetary gravity influences,

the EOM in Eq. (5.5) becomes

L̈∗ = kc
Q

L∗2

(
1
m1

+
1
m2

)(
1 +

L∗

λd

)
e
−L
∗
λd + f∗2 (5.8)

where f∗2 is the ideal value of f2 when the distance error converges to zero. Forcing

L̈ = 0 yields the feed-forward control charge product:

Qn = − L∗2λd
kc(L∗ + λd)

m1m2

m1 +m2
e
L∗
λd f∗2 (5.9)

Note that Qn is a constant, it does not compensate for the distance error ∆x.

When implementing the feed-forward control, an estimated value of f∗2 is required at

the beginning of the control.

Note that to obtain an estimate f∗2 , measurements of both r and ṙ are required

at an instant. If the accuracy requirement of these measurements can be reduced, or

the requirement for f∗2 removed, then this charge control would be much simpler to

implement.



81

5.2.2 Full-State Feedback Control & Stability Analysis

The prior section determines the feed-forward charge product for a circular rela-

tive orbit by assuming a pure two-spacecraft system. This section develops the charge

feedback component of the final control that stabilizes the shape errors.

Define a Lyapunov candidate function as

V =
1
2
p∆x2 +

1
2

∆ẋ2 (5.10)

Taking a time derivative of V yields:

V̇ =∆ẋ(p∆x+ ∆ẍ)

=∆ẋ
(
k∆x+ kc

Q

L2

(
1
m1

+
1
m2

)(
1 +

L

λd

)
e
− L
λd + f1 + f2

)
(5.11)

Ideally we would like to force V̇ to be of the following negative semi-definite form:

V̇ , −d∆ẋ2 (5.12)

with d > 0. Note that V̇ is negative semi-definite because V is a function of both ∆x

and ∆ẋ, but only ∆ẋ appears in V̇ . Studying the higher order derivatives of V it can

be shown that this control will be asymptotically stabilizing.

Substituting Eq. (5.11) into Eq. (5.12), and solving for the feedback charge prod-

uct δQ, yields:

δQf =
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd

(
− p∆x− d∆ẋ− f1 − f2

)
−Qn

=
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd (−p∆x− d∆ẋ− f1 − f2 + f∗2 ) (5.13)

Note that the f∗2 term in the brackets comes from the feed-forward control Qn. The

usage of this term is to cancel out the function of the relative position vector f2. However

f∗2 is a constant while f2 is time varying, perfect canceling f2 is not achievable. Because

the f1 function requires knowledge of the inertial position vectors of the two spacecraft,

this feedback control in Eq. (5.13) is called full-state feedback control.
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The full-state feedback control given by Eq. (5.13) ensures V̇ to be negative

semidefinite as shown in Eq. (5.12). Taking a second time derivative of V , yields

V̈ = −2d∆ẋ∆ẍ (5.14)

When V̇ = 0, ∆ẋ = 0, thus V̈ = 0. Taking a third time derivative of V , yields

...
V = −2d∆ẍ2 − 2d∆ẋ∆

...
x (5.15)

When V̇ = 0,
...
V = −2d∆ẍ2 < 0. Thus the system is asymptotically stable under the

full-state feedback control in Eq. (5.13)

5.2.3 Partial-State Feedback Control & Stability Analysis

The full-state feedback control given by Eqs. (5.9) and (5.13) developed in the

previous section requires the measurement of the inertial and relative position vectors.

If the measurement is accurate then the full-state feedback control is asymptotically

stable. However, these position vectors are very difficult to measure accurately in a

tight formation flying in GEO orbit with separation distance within 100m. This section

studies the separation distance feedback control with the feedback components simplified

to only require separation distance measurements:

δQp =
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd (−p∆x− d∆ẋ) (5.16)

The feed-forward part is given by Eq. (5.9). The feedback part δQp in Eq. (5.16) is

obtained by removing the f1 function from δQf in Eq. (5.13). It requires only the mea-

surement of the separation distance which is easy to measure accurately. Substituting

Eq. (5.9) and (5.16) into the EOM in Eq. (5.5) yields

∆ẍ+ d∆ẋ+ p∆x = f1 + f2 − f∗2 (5.17)

Note that f2 is a function of the relative position vector, it’s time varying. Thus f∗2 −f2

never stays at zero no matter what the guess of f∗2 would be. In order to study this
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error, let us start from the expression of f2:

f2 =
1
L
‖ṙ‖2

(
1− cos2∠(r, ṙ)

)
(5.18)

It’s beneficial if f2 can be expressed in terms of the states ∆x and ∆ẋ. In this

way the Taylor series expansion can be utilized to linearize the function f2 about the

estimated value f∗2 . The following identities will be used in developing new expression

of f2:  r = Lêr

ṙ = L̇êr + Lθ̇êθ

(5.19)

The cosine function in Eq. (5.18) is expressed by:

cos∠(r, ṙ) =
r · ṙ
‖r‖‖ṙ‖ =

L̇√
L̇2 + (Lθ̇)2

(5.20)

For a fast spinning two-craft formation, the momentum is approximately con-

served if the local gravity gradient torque can be ignored over the short-term (fraction

of an orbit):

h = L2θ̇ = L∗2θ̇∗ (5.21)

where L∗ is the expected separation distance, θ̇∗ is the nominal spinning angular rate.

Solving for θ̇ from Eq. (5.21) yields

θ̇ =
L∗2

L2
θ̇∗ (5.22)

Substituting Eq. (5.22) into Eq. (5.20) yields

cos∠(r, ṙ) =
L̇√

L̇2 +
(
L∗2

L θ̇∗
)2

(5.23)

Substituting Eqs. (5.19) and (5.23) into Eq. (5.18) yields

f2 =
L∗4

L3
θ̇∗

2
(5.24)

In this expression only L is a variable, other parameters are constants determined by

the expected separation distance and nominal spinning rate. Thus f2 is a function of L
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by assuming a fast spinning two-craft formation compared to the orbit period. Taking

a Taylor series expansion about the expected separation distance yields the first order

relationship:

f2(L) = f∗2 +
df2

dL
∆x = f∗2 −

3L∗4

L4
θ̇∗

2
∆x+O(∆x2) (5.25)

Substituting Eq. (5.25) into the close-loop EOM in Eq. (5.17) yields

∆ẍ+ d∆ẋ+ p∆x+
3h∗2

L4
∆x = f1 (5.26)

where h∗ = L∗2θ̇∗ is the nominal momentum. Note that f1 is a function of the inertial

position vector. The next section will prove that the value of f1 is very small for a

formation in GEO orbit (the magnitude is up to 10−6m/s2), thus the influence of f1 can

be neglected for short-term stability discussions. Note that the close-loop dynamics in

Eq. (5.26) is obtained by assuming the feed-forward part has perfect estimation f̂2 of

the expected value f∗2 . If the estimation is not perfect, then there would exist a constant

bias in the EOM. Denote the estimation error as

δf2 = f∗2 − f̂2 (5.27)

then the EOM in Eq. (5.26) becomes

∆ẍ+ d∆ẋ+
(
p+

3h∗2

L4

)
∆x = δf2 (5.28)

The estimation error δf2 acts as a constant perturbation to the system and may intro-

duce bias or even destroy the stability of the system. To get rid of this constant error,

this chapter uses an integral feedback term in the feedback control part:

δQp2 =
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd

(
−p∆x− d∆ẋ− ki

∫
∆x
)

(5.29)

By assuming a fast spinning two-craft formation and ignoring the inertial position

function f1, the partial-state feedback control in Eq. (5.16) is proved to be stable. If

there is an error of the estimated value of the expected f∗2 function, there would be a
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constant perturbation to the system that may introduce bias or instability factor. A

new feedback control that includes an integral feedback is used to get rid of the constant

bias. But the stability has not been analytically proved yet.

Schaub et. al. study the spinning 2-craft formation in Reference [13]. They prove

that the 2-craft spinning Coulomb tether is passively stable in deep space. This chapter

considers a different situation where the 2-craft system is spinning in a GEO orbit. The

gravitation forces are treated as extra disturbances. The stability is ensured for short

term fast spin compared to the orbit rate. But long term stability is not ensured.

5.2.4 Boundaries Of The f1 Function

The previous section develops an asymptotically stable full-state feedback con-

troller and a stable partial-state feedback controller. The stability proof of the partial-

state feedback controller assumes the influence of the inertial position function f1 is

neglectable. This section investigates the boundaries of the function f2.

SC-1

SC-2

Local Horizontal Plane

êr

r

Rc

R1

R2

ôr1

ôr2

α

CM

ôrc

Figure 5.2: Geometry of the 2-craft system.

Let us start from the definition of f1:

f1 =
GM

R2
1

ôr1 · êr −
GM

R2
2

ôr2 · êr (5.30)
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Because CFF considers formation with separation distance within 100 meters, L is very

small comparing with Ri. The following approximations have sufficient accuracy (the

error is within 3×10−5m for the formation in GEO orbit):

R1 = Rc −
1
2
L sinα (5.31a)

R2 = Rc +
1
2
L sinα (5.31b)

where α is the angle between the unit vector êr and the local horizon plane as shown

in Figure 5.2. α ranges within [−90, 90]◦. From Figure 5.2, the unit vectors ôr1 and

ôr2 can be expressed as

ôr1 =
1
R1

(Rcôrc −
1
2
Lêr) (5.32a)

ôr2 =
1
R2

(Rcôrc +
1
2
Lêr) (5.32b)

Substituting Eq. (5.31) and Eq. (5.32) into Eq. (5.30), yields:

f1 =GM
(
Rcôrc · êr − 0.5L
(Rc − 0.5L sinα)3

− Rcôrc · êr + 0.5L
(Rc + 0.5L sinα)3

)
=GM

(
Rc sinα− 0.5L

(Rc − 0.5L sinα)3
− Rc sinα+ 0.5L

(Rc + 0.5L sinα)3

)
(5.33)

Now the term f1 has been expressed as a function of the center of mass (CM)

radius Rc, the separation distance L and the angle α. Note that this chapter considers

a short-distance formation in a GEO orbit, the CM radius can be approximated by

the radius of the GEO orbit Rc = 4.2155 × 107m. The separation distance is within

100 meters, at the steady state it’s close to the desired value. The angle α can not

be controlled because Coulomb forces are internal forces in the formation and are not

capable to directly control the inertial orientation of the formation. α is the most

varying variable in the expression of f1 in Eq. (5.33), and it’s the only variable when

the formation is at the steady state. The behavior of f1 when α is changing should be

identified.
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Taking a partial derivative of f1 with respect to (w.r.t.) α, yields:

∂f1

∂α
=GM

{
Rc cosα

(Rc − 0.5L sinα)3
+

1.5L cosα(Rc sinα− 0.5L)
(Rc − 0.5L sinα)4

− Rc cosα
(Rc + 0.5L sinα)3

+
1.5L cosα(Rc sinα+ 0.5L)

(Rc + 0.5L sinα)4

}
=GM

{
1

(Rc − 0.5L sinα)4

(
R2
c cosα+RcL sinα cosα− 0.75L2 cosα

)
− 1

(Rc + 0.5L sinα)4

(
R2
c cosα−RcL sinα cosα− 0.75L2 cosα

)}
(5.34)

The extrema occurs when
∂f1

∂α
= 0. From Eq. (5.34), one obvious solution that makes

the partial derivative be zero is cosα=0. When cosα=0 then sinα=±1. Substituting

sinα=±1 into the expression of f1 in Eq. (5.33), yields:

f
(1)
1 = GM

[
1

(Rc − 0.5L)2
− 1

(Rc + 0.5L)2

]
(5.35)

Another solution that makes the partial derivative in Eq. (5.34) be zero is sinα = 0.

Substituting sinα=0 into Eq. (5.33), yields:

f
(2)
1 = −GML

R3
c

(5.36)

The following theorem proves that f (1)
1 is the maximum of f1, and f

(2)
1 is the

minimum of f1.

Theorem 7 Given a function of α defined by Eq. (5.33). Assume that L is constant

and α ∈ [−90, 90]◦. If Rc � L, then the maximum value occurs when cosα= 0, the

minimum value occurs when sinα=0. The maximum value is f (1)
1 given by Eq. (5.35)

and the minimum value is given by Eq. (5.36).

Proof The derivation from Eq. (5.34) to Eq. (5.36) has proved that f (1)
1 and f

(2)
1 are

two extrema of the function f1. Further investigation is needed to show that these two

extrema are the maximum and minimum point of the function. Taking a second order
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partial derivative of f1 w.r.t. α, yields:

∂2f1

∂α2
=GM

{
1

(Rc − 0.5L sinα)4

(
−R2

c sinα+RcL cos2 α−RcL sin2 α+ 0.75L2 sinα
)

+
2L cosα

(Rc − 0.5L sinα)5

(
R2
c cosα+RcL sinα cosα− 0.75L2 cosα

)
− 1

(Rc + 0.5L sinα)4

(
−R2

c sinα−RcL cos2 α−RcL sin2 α+ 0.75L2 sinα
)

+
2L cosα

(Rc + 0.5L sinα)5

(
R2
c cosα−RcL sinα cosα− 0.75L2 cosα

)}
(5.37)

When cosα=0 and sinα=1, α=
π

2
. The second order partial derivative becomes:

∂2f1

∂α2

∣∣∣∣
α=90◦

=GM
(−R2

c −RcL+ 0.75L2

(Rc − 0.5L)4
− −R

2
c +RcL+ 0.75L2

(Rc + 0.5L)4

)
=GM

{
(−R2

c + 0.75L2)
(

1
(Rc − 0.5L)4

− 1
(Rc + 0.5L)4

)
−RcL

(
1

(Rc − 0.5L)4
+

1
(Rc + 0.5L)4

)}
(5.38)

Because Rc � L, (−R2
c + 0.75L2) < 0. The following inequality is obvious:

1
(Rc − 0.5L)4

− 1
(Rc + 0.5L)4

> 0 (5.39)

So the value of the second partial derivative in Eq. (5.38) is negative:

∂2f1

∂α2

∣∣∣∣
α=90◦

< 0 (5.40)

When cosα=0 and sinα=−1, α=−π
2

. Then the second order partial derivative

is:

∂2f1

∂α2

∣∣∣∣
α=−90◦

=GM
(
R2
c −RcL− 0.75L2

(Rc + 0.5L)4
− R2

c +RcL− 0.75L2

(Rc − 0.5L)4

)
=GM

{
(R2

c − 0.75L2)
(

1
(Rc + 0.5L)4

− 1
(Rc − 0.5L)4

)
−RcL

(
1

(Rc + 0.5L)4
+

1
(Rc − 0.5L)4

)}
(5.41)

Note that
1

(Rc + 0.5L)4
− 1

(Rc − 0.5L)4
< 0 (5.42)
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So the partial derivative in Eq. (5.41) is negative:

∂2f1

∂α2

∣∣∣∣
α=−90◦

< 0 (5.43)

From the two results in Eqs. (5.40), (5.43), it can be concluded that cosα= 0 is

the maximum point of the f1 function. This proves that f (1)
1 is the maximum value of

f1.

When sinα=0, α=0. The second order partial derivative is

∂2f1

∂α2

∣∣∣∣
α=0

= GM

{
2RcL
R4
c

+
4L
R5
c

(
R2
c − 0.75L2

)}
(5.44)

Clearly each term in Eq. (5.44) is positive, so the partial derivative in Eq. (5.44) is

positive
∂2f1

∂α2

∣∣∣∣
α=0

> 0 (5.45)

This indicates that f (2)
1 in Eq. (5.36) is the minimum value of the function f1. �

Theorem 7 proves that f (1)
1 and f

(2)
1 are upper and lower bounds of the function

f1. Thus the value level of f1 can be determined by these two boundaries. For a

formation flying in a GEO orbit with separation distance within 100m, the boundaries

for f (1)
1 and f

(2)
1 are determined:

f
(1)
1 ≤1.0646× 10−6m/s2 (5.46)

|f (2)
1 | ≤5.3228× 10−7m/s2 (5.47)

Figure 5.3 shows the real values and boundaries of f1 and f2 in a simulation test. Fig-

ures 5.3(a) and 5.3(b) show the distance error history and the control charge product

history. After around 3000s the distance error settles down to be close to zero. Fig-

ure 5.3(c) shows the boundaries of f1. Figure 5.3(d) shows the true value and the

estimation of the relative position feedback term f2. Comparing with Figure 5.3(c), the

magnitude of the function f2 is 4 times in order greater than f1. Thus the influence of

the inertial position function f1 can be ignored.
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Figure 5.3: A simulation example to show the boundaries of f1 and the history of f2.

5.2.5 Comparison Of The Functions f1 And f2

The last section finds the upper and lower bounds of the function f1 which is

determined by the gravitational forces. A simulation case shows that the influence of f1

is very small as compared to f2. This section uses numerical sweeping to investigate in

detail the magnitudes of f1 and f2 under different conditions. The results can help to

determine whether the gravitation influence term f1, which requires the inertial position

feedback, can be ignored under a specific condition.

By the definitions of f1 and f2 in Eqs. (5.33) and (5.18) respectively, these two

terms are varying with the separation distance and the relative speed. Figure 5.4 shows

the the magnitudes of f1 and f2 by sweeping the value of the separation distance and the

relative speed. Note that the values of f1 and f2 are calculated assuming the spinning
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Figure 5.4: Comparison of f1 and f2 under different conditions.

two-craft system is in the nominal states, which indicates that the separation distance

does not change and the relative velocity is perpendicular to the relative position vector.

Figure 5.4(a) shows the magnitudes of f1 and f2 when sweeping the separation

distance. The relative speed magnitude is set to 1cm/s. It shows that when L < 96, f2 is

greater than f1. When L < 20m, f2 is at least one order greater than f1. Figure 5.4(b)

shows the magnitudes of f1 and f2 when sweeping the relative speed magnitude. It shows

that when v > 0.41cm/s, f2 > f1. f2 increases quadratically as the speed increases, f1

does not change with respect to the relative speed.

Coulomb formation flying considers very tight formation with separation distances

within 100m. So from the above results, if the relative speed is at cm/s level or above,

the influence of f2 dominates and f1 can be ignored. Otherwise the influence of dropping

the inertial feedback term f1 maybe significant and needs to be considered carefully.

5.3 Numerical Simulations

A Lypunov-based nonlinear feedback control has been developed in the previous

section. The control requires only the separation distance and rate feedback. It ignores

the two position vectors’ functions f1 and f2. The boundaries of the two functions
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are investigated. In this section, several numerical simulations are used to test the

performance of the controller and the behavior of the 2-craft formation.

The masses of the spacecraft are:

m1 = m2 = 50 kg (5.48)

The mass of the Earth is M = 5.9742 × 1024kg. The gravitational constant is G =

6.67428× 10−11m3kg−1s−2. Because the plasma shielding effect is strong at Low Earth

Orbit (LEO), Coulomb formation flying considers formations in GEO or deep space.

The initial position of the center of mass (CM) of the 2-craft system is set to be

Rc(t0) = [Rc, 0, 0]T (5.49)

where Rc = 42155000m which is the radius of a GEO orbit. Note that the vector Rc(t0)

is expressed in the ECI frame. The initial positions of the two spacecraft are functions

of Rc(t0):

R1(t0) = Rc(t0)− m2

m1 +m2
r(t0), R2(t0) = Rc(t0) +

m1

m1 +m2
r(t0) (5.50)

where r(t0) is the initial relative position vector expressed in the ECI frame. Note that

the initial position of the CM Rc(t0) and the spacecraft masses m1 and m2 have been

determined, the initial relative position vector r(t0) determines the initial positions of

the two spacecraft. The value of the relative position vector r(t0) will be specified in

the specific simulations cases.

The initial velocity of the CM of the two spacecraft system is defined as

Ṙc(t0) = [0, vc, 0]Tm/s (5.51)

where vc = 3070m/s is the nominal speed of a GEO orbit. Corresponding to the initial

positions of the two spacecraft in Eq. (5.50), the initial velocities of the two spacecraft

are given by:

Ṙ1(t0) = Ṙc(t0)− m2

m1 +m2
ṙ(t0), Ṙ2(t0) = Ṙc(t0) +

m1

m1 +m2
ṙ(t0) (5.52)
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where ṙ(t0) is the initial relative velocity. The value of ṙ(t0) will be specified in the

specific simulation cases as well.

5.3.1 Full-State Feedback Control Results

The full-state feedback control in Eq. (5.13) requires measurements of the inertial

and relative position vectors. The benefit is that it’s asymptotically stable. This simu-

lation case shows the performance of the full-state feedback control. The initial relative

position vector of the two spacecraft system is

r(t0) = [4, 4, 0]T m (5.53)

The initial relative velocity is

ṙ(t0) = [0.02, 0, 0.02]T m/s (5.54)

The expected separation distance is L∗ = 4m. The Debye length is λd = 150m.

The three controller coefficients are

p = 1× 10−5s−2, d = 4× 10−3s−1 (5.55)

Figure 5.5 shows the simulation results. Figure 5.5(a) shows the scenario as seen

from the inertial frame centered at the CM of the two-craft system. The distance

history in Figure 5.5(b) shows that the separation distance converges to the desired

distance. Figure 5.5(c) shows the control charge product converges to the feed-forward

charge product. Figure 5.5(d) shows the magnitude of the Coulomb force. During the

simulation the Coulomb force is within 10mN.

5.3.2 Partial-State Feedback Simulation

This chapter develops two partial-state feedback control given by Eqs. (5.16) and

(5.29). The control in Eq. (5.16) is stable assuming a fast spinning rate comparing to

the GEO orbit rate. But when the estimation f̂2 is not equal to f∗2 , the separation
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Figure 5.5: Full-state feedback control simulation.

distance would be biased to the expected distance. The control in Eq. (5.29) utilizes an

integral feedback to compensate for the bias. But the stability is not proved.

The initial conditions and the control parameters are the same with the previous

given by Eqs. (5.53)–(5.55). Figure 5.6 shows the simulation results using the feedback

control in Eq. (5.16). In this case the feed-forward part has the perfect guess of the

f∗2 value. It can be seen that the distance converges to the expected distance and the

charge product converges to the feed-forward charge product.

Figure 5.7 shows results of the same controller except that the estimation f̂2 is

not equal to f∗2 . Figure 5.7 shows that there is a constant bias in the separation distance
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Figure 5.6: Partial-state feedback control without integral feedback, with perfect esti-
mation of f∗2 .
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Figure 5.7: Partial-state feedback control without integral feedback, f̂2 = 0.81f∗2 .

and the charge product. This control is stable, but it can not remove the constant bias.

Figure 5.8 shows simulation under the control in Eq. (5.29). The integral feedback

coefficient is ki = 1× 10−7s−3. The integral feedback term removes the constant biases

in the separation distance and the charge product. This shows the great advantage of

the integral feedback control. But the stability of the feedback control with the integral

feedback is not proved analytically.
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Figure 5.8: Partial-state feedback control with integral feedback, f̂2 = 0.81f∗2 .

5.4 Conclusion

This chapter investigates a two-craft Coulomb virtual structure control problem.

A Lypunov-based full-state feedback control and a partial-state feedback control are

developed. The full-state feedback control is asymptotically stable but it requires mea-

surements of the inertial and relative position vectors which are difficult to obtain. The

partial-state feedback control without integral feedback is stable assuming a fast spin

rate. But the estimation error of the relative position function in the feed-forward part

introduces a constant bias in the distance. An integral feedback term inserted into

the partial-state feedback control removes the constant bias. But the nonlinear stabil-

ity of the partial-state feedback control with the integral feedback is only shown with

numerical simulations.



CHAPTER 6

ONE-DIMENSIONAL CONSTRAINT THREE-CRAFT COULOMB

VIRTUAL STRUCTURE CONTROL

As the number of the spacecraft increases to three, the complexity of the charge

control problem increases dramatically. Instead of studying the three-craft Coulomb

virtual structure control in three-dimensional space directly, this chapter focuses on the

1-D restricted 3-craft Coulomb virtual structure control to investigate charge imple-

mentability issues and charge saturation limitations. This 1-D constrained Coulomb

structure control is a precursor for the more general study of the 3-D Coulomb struc-

ture control. Further, this 1-D constrained control is directly applicable to the 1-D

non-conducting hover track control test bed which is under construction in the Auto-

matic Vehicle Control (AVS) Lab in the Aerospace Engineering Sciences department at

the University of Colorado at Boulder. The work in this chapter has been presented in

Reference [30] and has been accepted to IEEE Transaction on Aerospace and Electronic

System for publication.

6.1 Coulomb Virtual Structure Scenario

A Coulomb virtual structure is a cluster of spacecraft controlled by Coulomb

forces to assume a certain shape. Because the shape is specified by the separation

distances, the shape feedback control strategy uses the separation distances as the shape

tracking error. The objectives of the controller are to make the separation distances
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converge to desired values and to make the separation distance rates converge to zero

(fixed nominal shape assumption).

δx12 δx23

x1

x2

x3

xc

m1 m2 m3

x = 0

x

CM

Figure 6.1: One-dimensional Coulomb structure.

This chapter deals with an simple case, one-dimensional constraint 3-craft Coulomb

structure. One-dinemsional constraint means the three spacecraft are lying on a line,

and can only move on this line. Figure 6.1 shows the scenario of this case.

6.2 Charged Spacecraft Equations of Motion

The one-dimensional restricted Coulomb virtual structure simulates the motion of

the test vehicles floating on a non-conducting hover track. The inertial positions of the

three bodies are given through their inertial coordinates xi. Without loss of generality,

assume that x1 < x2 < x3. Assume that the spacecraft are flying freely in space. In

the scenario shown in Figure 6.1, assuming that the force acting from left to right to be

positive, the inertial equations of motion of the charged bodies are given by

m1ẍ1 = kc

[
− Q12

(x2 − x1)2
− Q13

(x3 − x1)2

]
(6.1)

m2ẍ2 = kc

[
Q12

(x2 − x1)2
− Q23

(x3 − x2)2

]
(6.2)

m3ẍ3 = kc

[
Q13

(x3 − x1)2
+

Q23

(x3 − x2)2

]
(6.3)

where kc = 8.99 × 109C−2 ·N ·m2 is the Coulomb constant, Qij = qiqj is the charge

product between the ith and jth craft. This product is introduced here because the
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charges qi always appear in pairs qiqj both in the dynamic equation and in the control

formulation. This approach leads to the problem of physical feasibility in extracting

individual charges qi from a given set of charge products Qij . This issue is addressed in

the later sections (Sections 6.3.2.2 and 6.3.3.2). A charge feedback law is expected to

control the relative motion of the three-body Coulomb structure and make the formation

assume a specific shape defined through the separation distances.

Not all of the inertial xi states can be controlled independently. Because the

spacecraft charges produce formation internal forces, the momentum of the Coulomb

cluster must be conserved if there are no other external forces acting on it. As a result

it is not possible to independently control all three inertial coordinates xi using only

Coulomb forces. For the 1-D motion considered in this chapter, the conservation of the

linear momentum imposes one constraint on the generalized coordinates x1, x2 and x3.

Thus, the motion of the three-body system only has two controlled degrees of freedom

(DOF). The formation shape is defined through the two separation distances δx12 and

δx23 as:

δx12 = x2 − x1, δx23 = x3 − x2. (6.4)

The third distance δx13 is determined by δx13 = δx12 +δx23. To control the shape of the

Coulomb structure is to drive [δx12, δx23]T to the desired constant values [δx∗12, δx
∗
23]T

that yield a specific virtual structure shape. For the control development, let the system

state vector X be defined as the relative distance tracking error:

X =

 ∆x12

∆x23

 =

 δx12 − δx∗12

δx23 − δx∗23

 . (6.5)

This chapter only considers the shape control of the Coulomb structure, and does

not attempt to control the formation cluster’s center of mass motion. From the inertial

equations of motion in Eqs. (6.1)–(6.3), using the definition of δxij , the separation
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distance equations of motion are found as

δẍ12 = ẍ2 − ẍ1 = kc

(
1
m1

+
1
m2

)
Q12

δx2
12

− kc

m2

Q23

δx2
23

+
kc

m1

Q13

δx2
13

, (6.6)

δẍ23 = ẍ3 − ẍ2 = − kc

m2

Q12

δx2
12

+ kc

(
1
m2

+
1
m3

)
Q23

δx2
23

+
kc

m3

Q13

δx2
13

. (6.7)

The formation kinetic energy T is a convenient measure for constructing a Lya-

punov function of the system and analyzing the stability of the equilibrium:

T =
1
2

3∑
i=1

miẋ
2
i . (6.8)

However, the control goal is to let the virtual structure assume a certain shape, which

implies that the relative kinetic energy should be zero. Thus the inertial kinetic energy

expression in Eq. (6.8) needs to be rewritten in terms of the relative coordinate rates

δẋ12 and δẋ23. Taking a time derivative of Eq. (6.4) yields

ẋ1 = ẋ2 − δẋ12, ẋ3 = ẋ2 + δẋ23 (6.9)

Substituting Eq. (6.9) into Eq. (6.8) leads to

T =
M

2
ẋ2

2 +
m1

2
δẋ2

12 +
m3

2
δẋ2

23 + ẋ2(m3δẋ23 −m1δẋ12) (6.10)

where M =
∑3

i=1mi is the total mass of the three spacecraft cluster. The expression

of the total kinetic energy in Eq. (6.10) still contains an inertial rate variable ẋ2 which

cannot be controlled independently with Coulomb forces. One more step to express ẋ2

in terms of δẋij is needed.

Note that the Coulomb forces are internal forces in the Coulomb structure, by

the assumption mentioned at the beginning that the spacecraft are flying freely in deep

space, the following center of mass condition must be true:

m1ẋ1 +m2ẋ2 +m3ẋ3 = Mẋc (6.11)

where xc is the inertial cluster center of mass coordinate. Utilizing Eq. (6.11), yields
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the following equation:

Mẋ2 = Mẋ2 −m1ẋ1 −m2ẋ2 −m3ẋ3 +Mẋc

= m1ẋ2 −m1ẋ1 +m2ẋ2 −m2ẋ2 +m3ẋ2 −m3ẋ3 +Mẋc

= m1δẋ12 −m3δẋ23 +Mẋc (6.12)

Thus ẋ2 is expressed in terms of δxij as:

ẋ2 =
1
M

(m1δẋ12 −m3δẋ23) + ẋc (6.13)

Substituting Eq. (6.13) into Eq. (6.10), yields

T =
1
2
ẊT [M ]Ẋ +

M

2
ẋ2

c (6.14)

where [M ] is the system mass matrix:

[M ] =
1
M

 m1m2 +m1m3 m1m3

m1m3 m1m3 +m2m3

 (6.15)

Obviously, [M ] is a positive definite matrix. Finally, the kinetic energy Trel of the 3-craft

cluster relative to the center of mass is given by

Trel =
1
2
ẊT [M ]Ẋ (6.16)

This energy expression directly reflects whether the virtual structure shape is changing

its geometry with time.

6.3 Control Strategy

6.3.1 Shape Coordinate Equations of Motion

This section develops a continuous feedback control strategy that controls the

1-D 3-body formation to a certain desired shape. The desired shape is given by a vector

of separation distances [δx∗12, δx
∗
23]T , and it is assumed to be stationary (i.e. constant

desired shape).
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For notational convenience the 3× 1 vector ξ is introduced as:

ξ =
[
kcQ12

δx2
12

,
kcQ23

δx2
23

,
kcQ13

δx2
13

]T
= kc[D]Q (6.17)

where [D] = diag
(

1
δx2

12
, 1
δx2

23
, 1
δx2

13

)
is a diagonal matrix, Q = [Q12, Q23, Q13]T is a vector

of the charge products. The vector Q is also the control input of the Coulomb structure

control system. Because the desired relative position coordinates are constants, the

tracking error dynamics is expressed using X as

Ẍ =

 1
m1

+ 1
m2

− 1
m2

1
m1

− 1
m2

1
m2

+ 1
m3

1
m3


︸ ︷︷ ︸

[A]

ξ = kc[A][D]Q (6.18)

6.3.2 Formation Shape Control

The controller in this subsection is intended to make the formation attain a certain

shape, which means both Ẋ and X are driven to zero. For the time being the control

development does not consider spacecraft charge saturation issues.

6.3.2.1 Minimum Norm Shape Stabilizing Control

Because the state vector X and the time derivative of the state vector Ẋ are all

expected to be zero, the Lyapunov function candidate here is defined as a quadratic

function of X and Ẋ as

V1 =
1
2
ẊT [M ]Ẋ +

1
2
XT [K]X (6.19)

where [K] is a 2 × 2 positive definite matrix. Because both [M ] and [K] are positive

definite, V1 is a positive definite function of Ẋ and X. Note that the first term in V1 is

the relative kinetic energy Trel of the system.

Differentiating Eq. (6.19) with respect to time, and utilizing the shape error

equations of motion in Eq. (6.18), yields

V̇1 = ẊT [K]X + ẊT [M ]Ẍ = ẊT
(

[K]X + [M ][A]ξ
)

(6.20)
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Denote [C] = [M ][A]; it turns out to be a constant matrix with the following simple

form:

[C] =

 1 0 1

0 1 1

 (6.21)

Next the Lyapunov function rate V1 is set to the negative semi-definite form

V̇1 = −ẊT [P ]Ẋ (6.22)

where [P ] is a 2× 2 positive definite matrix. V̇1 is negative semi-definite because V1 is

a function of both Ẋ and X, but only Ẋ appears in Eq. (6.22).

Equating the actual V̇1 in Eq. (6.20) and the desired V̇1 in Eq. (6.22) leads to the

following feedback control condition:

[C]ξ = −[K]X − [P ]Ẋ (6.23)

Solving Eq. (6.23) for ξ yields the charge product vector that stabilizes the system.

Because [C] only has rank 2, there is an infinite number of solutions for ξ in Eq. (6.23).

Let ξ̂ be the minimum norm solution to Eq. (6.23):

ξ̂ = −[C]†
(

[K]X + [P ]Ẋ
)

(6.24)

where [C]† = [C]T ([C][C]T )−1 is the minimum norm pseudo-inverse of matrix [C]. The

hat symbol above the vector ξ means that ξ̂ given by Eq. (6.24) is the minimum norm

solution among the general solutions to Eq. (6.23); and ξ̂ is not the final solution of ξ

that will be used in the control. Note that ξ̂ in Eq. (6.24) minimizes the norm of the

charge product vector while satisfying Eq. (6.23), but not the charge inputs qi of the

control.

6.3.2.2 Spacecraft Charge Computation Issues

After obtaining a solution ξ to Eq. (6.23), the charge product vector is given by

Q =
1
kc

[D]−1ξ (6.25)
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The individual charges qi are finally calculated through the algorithm [4]

q1 =

√
Q12Q13

Q23
(6.26a)

q2 = sign(Q12)
Q12

q1
(6.26b)

q3 = sign(Q13)
Q13

q1
(6.26c)

Note that a singularity occurs if ξ1 · ξ2 · ξ3 = 0. When one or two elements of ξ

equal zero, this singularity can be avoided by performing a search routine in the null

space of the [C] matrix which will be discussed in the following several paragraphs. The

remaining case is that ξ = 0 which indicates that q1 = q2 = q3 = 0. This state occurs

only either when X = 0 and Ẋ = 0, which means the system has reached the desired

state, or due to (−[K]X − [P ]Ẋ) being zero.

Now consider general cases where ξ1 · ξ2 · ξ3 6= 0. Note that ξ1 · ξ2 · ξ3 < 0 yields

imaginary values of qi [4]. Since charges must always be real numbers, ξ1 · ξ2 · ξ3 < 0 is

not an implementable solution. This is a fundamental issue with developing any charge

feedback law.

Eq. (6.24) provides the minimum norm solution ξ̂ of ξ to Eq. (6.23). There is

an infinite number of solutions that satisfy Eq. (6.23) since the matrix [C] is a 2 × 3

matrix. Using the null space of [C], all possible ξ values that satisfy Eq. (6.23) are

parameterized as

ξ =


ξ1

ξ2

ξ3

 = ξ̂ + γ


−1

−1

1

 (6.27)

where the parameter γ can be any real number. The control problem is reformulated

to determine a parameter γ that satisfies the implementability constraint:

f(γ) = ξ1 · ξ2 · ξ3 = (ξ̂1 − γ)(ξ̂2 − γ)(ξ̂3 + γ) > 0 (6.28)

This inequality constraint guarantees that the charges qi are real, and also ensures that
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the singularity case ξ1 ·ξ2 ·ξ3 = 0 does not occur. Because f(γ) is a third order function,

there always exists real numbers of parameter γ that satisfy the inequality in Eq. (6.28).

6.3.2.3 Charge Minimization Routine

Any real value of parameter γ that satisfies the inequality in Eq. (6.28) makes

the solution physically implementable with real charge qi solutions. In fact, the null

space of the input matrix [C] can be used to charge up the vehicles without causing

any relative motion to occur. The ξ̂ vector is found such that the norm of the vector

ξ is minimized. However, this does not correspond to the solution that the spacecraft

charges qi are minimized. Define a charge cost function J(γ) as

J(γ) =
3∑
i=1

q2
i (6.29)

The solution ξ that minimizes spacecraft charges qi corresponds to a particular γm that

satisfies the inequality constraint in Eq. (6.28), and at the same time minimizes the

charge cost function J(γ).

Consider the constraint inequality in Eq. (6.28), where (ξ̂1, ξ̂2, ξ̂3) are given by

Eq. (6.24). There are three real roots for the equation f(γ) = 0 which are (ξ̂1, ξ̂2,−ξ̂3).

We rearrange the roots in a descending order and denote them as (γ1, γ2, γ3), where

γ1 ≥ γ2 ≥ γ3. The solution to the constraint in Eq. (6.28) turns out to be γ > γ1 or

γ3 < γ < γ2. If γ2 = γ3, then the solution is simply γ > γ1. Figure 6.2(a) shows a

numerical example of f(γ) and (γ1, γ2, γ3).

Thus a charge minimizing routine is introduced to search for the parameter γm

within the two open intervals (γ1,∞) and (γ3, γ2). The numerical search algorithm used

in this chapter is the secant method shown in Figure 6.3.

Once γm is obtained, the solution that minimizes the norm of the charge vector

(q1, q2, q3) is achieved, and of course it’s also implementable. Figure 6.2 shows an exam-

ple of the search result at one instant, where γm1 and γm2 are two local minimization
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Figure 6.2: Illustration of γm search routine.
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Figure 6.3: Illustration of γm search routine.

points.

Notice that generally there are two eligible intervals in the search routine. Some-

times this may introduce chatter because γm switches between γm1 and γm2 when J(γm1)
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and J(γm2) are very close. To reduce the chatter of the charge history, one approach

is to change the criteria for γm to switch between the two intervals. If γm(i) = γm1(i),

then γm(i + 1) = γm2(i + 1) if and only if J(γm2) < αJ(γm1), where 0 < α ≤ 1. Or in

words, the charge solutions are only switched to the alternate set if the change in the

cost function is sufficiently large.

6.3.3 Formation Shape Rate Regulation

This subsection develops a regulator that arrests the relative motion of the for-

mation by driving Ẋ to zero. After presenting a saturated stabilizing control strategy,

a method to obtain implementable spacecraft charges qi is introduced.

6.3.3.1 Saturated Regulator

Because the purpose of the control is different from that of the shape control

presented in section 6.3.2, a new Lyapunov function is introduced catering to the new

demand. The regulator is intended to stop any relative motion of the formation, so the

new Lyapunov function candidate V2 is defined in terms of the relative velocity vector

in a quadratic, positive definite form:

V2 = Trel =
1
2
ẊT [M ]Ẋ (6.30)

Taking time derivative of V2, and using the tracking error dynamics in Eq. (6.18), yields

V̇2 = ẊT [M ]Ẍ = kcẊ
T [C][D]Q (6.31)

The saturated control strategy attempts to drive the rates Ẋ to zero as quickly as

possible, leading to a Lyapunov optimal control development [31]. Here the spacecraft

charges are always held at the maximum magnitude. The control algorithm will need

to determine the required signs of the spacecraft charges. The charge product vector Q
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is expressed as

Q =


Q12m 0 0

0 Q23m 0

0 0 Q13m




s1

s2

s3

 = [Qm]s (6.32)

where Qijm = qimqjm is the product of the charge saturation limits of the ith and jth

spacecraft. The vector s = sign(Q) is a 3×1 sign vector with the components being ±1

or zero. The matrix [Qm] is a constant matrix determined by charge limitations of the

spacecraft. Because [Qm] is constant for a given 3-body Coulomb structure, the charge

product Q is determined only by s. Thus the vector s is actually the essential variable

that determines the saturated regulator. The Lyapunov function rate is rewritten as

V̇2 = kcẊ
T [C][D][Qm]s (6.33)

To guarantee stability, the Lyapunov rate function V̇ is set to be a negative semi definite

function as

V̇2 = −ẊT [P ]Ẋ (6.34)

where [P ] is a 2×2 positive matrix. Note that Eq. (6.34) has the same form as Eq. (6.22).

Substituting Eq. (6.34) into Eq. (6.33) provides an equation to solve for s. At

first, let us treat s as a general vector instead of a sign vector. A sign vector can be

obtained by evaluating the signs of the elements in s. Note that [C] is a 2×3 matrix, thus

there is an infinite number of solutions for s after equating Eq. (6.34) and Eq. (6.33).

Using the pseudo-inverse of matrix [C], leads to the minimum norm solution s̃ (the tilde

symbol means s̃ is not a sign vector) :

s̃ = − 1
kc

[Qm]−1[D]−1[C]†[P ]Ẋ (6.35)

Define a sign vector s as:

s = sign(s̃) = −sign
(

1
kc

[Qm]−1[D]−1[C]†[P ]Ẋ
)

(6.36)
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Here s is a sign vector, but it may be un-implementable. This problem will be discussed

following this subsection. Substituting s in Eq. (6.36) into charge vector Q in Eq. (6.32)

constructs a saturated charge product control law:

Q = [Qm]s = −[Qm]sign
(

1
kc

[Qm]−1[D]−1[C]†[P ]Ẋ
)
. (6.37)

The resulting actual Lyapunov function rate should be investigated, because after taking

the sign function of s̃, the actual Lyapunov function rate is different from the nominal

one in Eq. (6.34). Substituting the actual charge product in Eq. (6.32) into Eq. (6.31),

yields

V̇2 = kcẊ
T [C][D][Qm]s = kcẊ

T [C][D][Qm]sign(s̃) (6.38)

Note that the sign function can be deemed as a rescaling of the magnitude of a

number, a scale matrix is introduced:

[E] = diag(a1, a2, a3), (6.39)

where ai is defined as

ai =


1
‖s̃i‖ , if s̃i 6= 0

0, if s̃i = 0
. (6.40)

Thus s can be rewritten as

s = [E]s̃. (6.41)

Substituting Eq. (6.41) into Eq. (6.38), and using Eq. (6.35) yields

V̇2 =kcẊ
T [C][D][Qm][E]s̃

=− ẊT [C][D][Qm][E][Qm]−1[D]−1[C]†[P ]︸ ︷︷ ︸
[F ]

Ẋ (6.42)

Without loss of generality, set the positive definite matrix [P ] introduced in

Eq. (6.34) to be a diagonal matrix:

[P ] =

 p1 0

0 p2

 (6.43)
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Utilizing previous definitions of matrices [C], [D], [Qm], [E], and [P ], the matrix [F ] is

expanded as:

[F ] =
1
3

 p1(2a1 + a3) p2(−a1 + a3)

p1(−a2 + a3) p2(2a2 + a3)

 (6.44)

From the condition pi > 0, it can be verified that the matrix [F ] is positive definite if

ai > 0 and it is positive semi definite if ai ≥ 0. By the definition of matrix [E], ai ≥ 0.

So the matrix [F ] is positive semi definite. The sign of the actual Lyapunov function

rate is then determined:

V̇2 = −ẊT [F ]Ẋ ≤ 0. (6.45)

Thus the saturated control law in Eq. (6.36) is globally stable. But it’s not asymptoti-

cally stable because the matrix [F ] can be zero if the states X grow infinitely large.

6.3.3.2 Implementable Saturated Control

The saturated charge product control in Eq. (6.37) provides a globally stable

control that stops the relative motion of the formation. But this formula does not ensure

physical implementability of the charge products. Similar to the shape controller’s

design, an implementable sign vector s = [s1, s2, s3] must satisfy:

s1 · s2 · s3 > 0 (6.46)

Unlike the case in the shape control design, the saturated regulator should be

dealt with care because the sign function (or the matrix [E]) scales everything inside

its argument. Note that the matrix [E] is also varying with its argument. The previous

approach that explores the null space of a certain matrix does not easily work out

because of the rescaling of the matrix [E], and the coupling of the matrix [E] with the

sign function’s argument.

Note that in designing the stabilizing saturated control using Lyapunov stability

theory, the stability property is achieved by setting the Lyapunov function rate to be
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negative semi-definite. This is ensured by the positive-definite property of the 2 × 2

matrix [P ]. In most cases, this matrix is constant because usually it’s unnecessary to

change the value of the matrix [P ] and a constant [P ] matrix may result in a better

convergence property of the system. Because the saturated control in Eq. (6.37) is

globally stable but not asymptotically stable, changing the matrix [P ] won’t sacrifice

convergence property of the system. Since the matrix [P ] is only required to be positive-

definite to guarantee the stability of the system, there exists a flexibility in choosing

[P ].

Without loss of generality, set the matrix [P ] to be diagonal: [P ] = diag(p1, p2).

For [P ] to be positive-definite, the parameters p1 and p2 must be positive. Let p1 and

p2 be constants. To set up a varying matrix [P ], a variable parameter τ is introduced

to rewrite the matrix [P ] as

[P ] =

 p1 0

0 τp2

 (6.47)

here τ > 0 should be positive to ensure [P ] to be positive-definite. Note that because the

matrices [Qm] and [D] are all positive definite and diagonal, the sign vector in Eq. (6.36)

can be simplified as

s = −sign([C]†[P ]Ẋ) (6.48)

Substituting the values of the matrices [C]† and [P ] into Eq. (6.48), the vector s is

expanded as

s = −sign


1
3


2p1ẋ12 − τp2ẋ23

−p1ẋ12 + 2τp2ẋ23

p1ẋ12 + τp2ẋ23



 (6.49)

For the sign vector s to result in an implementable control, the vector inside the sign

function must satisfy

(2p1ẋ12 − τp2ẋ23)(−p1ẋ12 + 2τp2ẋ23)(p1ẋ12 + τp2ẋ23) < 0 (6.50)
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transform the inequality in Eq. (6.50) to be:

g(τ) = (p2ẋ23τ − 2p1ẋ12)(2p2ẋ23τ − p1ẋ12) · (p2ẋ23τ + p1ẋ12) > 0 (6.51)

Now the logic is clear that to find an implementable control by varying the matrix

[P ] is to find a parameter τ > 0 that satisfies the inequality g(τ) > 0. Next the existence

of a solution is verified. When ẋ23 > 0, the inequality in Eq. (6.51) can be transformed

to

h(τ) =
(
τ − 2p1ẋ12

p2ẋ23︸ ︷︷ ︸
b1

)(
τ − p1ẋ12

2p2ẋ23︸ ︷︷ ︸
b2

)(
τ +

p1ẋ12

p2ẋ23︸ ︷︷ ︸
−b3

)
> 0 (6.52)

Note that h(τ)→∞ as τ →∞. There always exists τ > 0 such that h(τ) > 0.

If ẋ23 < 0, the inequality in Eq. (6.52) changes to be

h(τ) < 0 (6.53)

Note that (b1, b2, b3) are the three roots to the equation h(τ) = 0, and they share the

simple relation sign(b1) = sign(b2) = −sign(b3). When b1, b2 > 0 and b3 < 0, then any

τ ∈ (b2, b1) satisfies h(τ) < 0. If b1, b2 < 0 and b3 > 0, in this case any τ ∈ (0, b3)

satisfies h(τ) < 0.

Note that ẋ12 = 0 or ẋ23 = 0 are transient states, unless Ẋ = 0 which means the

relative motion has been arrested. Thus there always exists τ > 0 that results in an

implementable control.

6.4 Domains of Convergence

So far a two-stage control strategy has been presented to control the 1-D Coulomb

formation. At first a saturated charge control is used to stop the relative motion of the

3 spacecraft. After the relative motion converges to zero, the formation shape control

is activated to make the spacecraft to form a certain shape defined by the provided

distances.
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As mentioned before, the saturated charge control in Eq. (6.37) is globally stable,

but not asymptotically stable. Under some initial conditions, such as the three space-

craft flying apart too fast, the relative motion cannot be arrested. This section is going

to determine the domains of the initial conditions that result in stabilizable motions.

6.4.1 Convergence Criterion For Symmetric Relative Motion

In setting up experiments on hover track test bed, it’s needed to know whether a

configuration of the 1-D Coulomb structure can be stabilized. This section tries to find

analytical conditions for stabilizable symmetric motions. Even though the symmetric

motion is a special case for the 1-D Coulomb formation, it can be implemented in the

hover track test bed.

Here the phrase “symmetric relative motion” means the distances between any

two adjacent spacecraft are always equal to each other, and the adjacent distance rates

are also equal. That is

δx12 = δx23, δẋ12 = δẋ23 (6.54)

Corresponding to this situation, the masses and charge limits of each body should all be

equal, m1 = m2 = m3 = m, q1max = q2max = q3max = qmax. In this case the description

of the motion can be greatly simplified. This simplified case will provide analytical

insight into the specific instance when the saturated charge control is able to arrest any

relative expansion.

For the 1-D Coulomb formation, the most likely scenario which could result in

an unarrestable motion is that three spacecraft are departing from each other. That is

δẋ12 > 0 and δẋ23 > 0. The following discussion deals with this “worst” case to find the

criterion for the arrestable motions. The unarrestable motion happens when the center

spacecraft attracts the two other spacecraft, but the distance rate vector Ẋ still does
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not decrease to zero. In this case the charges of the 3 spacecraft are

q1 = q3 = ±qmax, q2 = ∓qmax (6.55)

Chapter 3 presents an analytical way to find the criteria for the avoidance of

a potential collision between 2 charged craft. It assumes that the charge product is

constant, thus the trajectory of the 2-body motion is a conic section. Utilizing the

methodology from the gravitational 2-body problem (2BP), the criteria is found through

calculating the periapsis radius which is the closest distance between the 2 spacecraft

in the conic section trajectory.

Motivated by this analytical approach to solve the 2-body Coulomb forced motion,

another concept from the traditional gravitational 2BP, total energy level, is introduced

to study the 3-body 1-D Coulomb formation. Note that in the gravitational 2BP, the

hyperbola is a non-retrievable trajectory type, and it corresponds to an energy level

that is greater than zero. By assuming that the charges of the spacecraft are constant,

the total energy (kinetic energy and potential energy) of the 3-body system is constant.

The unarrestable motion corresponds to a positive energy level, and the stabilizable

motion has a total energy that is negative.

The general relative kinetic energy Trel is given by Eq. (6.16). Using the symmetric

conditions provided above, Trel is simplified to be

Trel =
m2

2M
δẋ2

12 +
m2

2M
(δẋ12 + δẋ23)2 +

m2

2M
δẋ2

23 =
M

3
δẋ2

12 (6.56)

where M = 3m is the total formation mass. The electrostatic potential energy of the

formation is

Ve = kc
Q12

δx12
+ kc

Q23

δx23
+ kc

Q13

δx12 + δx23
(6.57)

Utilizing the symmetric motion condition in Eq. (6.54) and Eq. (6.55), Ve is simplified

to be

Ve = kc

(
−q

2
max

δx12
− q2

max

δx12
+

q2
max

2δx12

)
= −3kcq

2
max

2δx12
(6.58)
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Thus the total energy is obtained by adding up the kinetic energy and potential

energy:

Et = Trel + Ve =
M

3
δẋ2

12 −
3kcq

2
max

2δx12
(6.59)

which has a very simple form due to the symmetric relative motion assumption. Because

the charges of the spacecraft are constants in this saturated control discussion, the total

energy is also constant. For a stabilizable motion, the total energy Et should be negative,

that is

Et =
M

3
δẋ2

12 −
3kcq

2
max

2δx12
< 0 (6.60)

If Et < 0, then it is impossible for δx12 → ∞. However, if Et > 0, then δẋ12 will

approach a positive value as δx12 → ∞. Transforming Eq. (6.60) such that only δx12

and δẋ12 remain on the left hand side yields the condition

δẋ2
12δx12 <

9kcq
2
max

2M
=

3kcq
2
max

2m
(6.61)

Eq. (6.61) provides an analytical criterion for the initial states δx12 and δẋ12 to

result in a stabilizable symmetric motion. From this criterion it can be seen that when

the charges and masses of the three spacecraft are set, both the distance and distance

rate should be within a certain range to ensure that the symmetric relative motion can

be stopped. A bigger charge limit results in a bigger value in the right hand side of the

inequality in Eq. (6.61). Thus the area in the δx12−δẋ12 plane that satisfies the criterion

is bigger. Note that this criterion is valid only for the symmetric relative motion of the

1-D Coulomb formation. The following discussion will investigate the convergence area

of general motions of the 1-D Coulomb formation.

6.4.2 Convergence Area For General Cases

The previous subsection derives the converge criterion for the symmetric relative

motion by investigating the total energy of the system. Due to the changing polarity

of the spacecraft charges, the energy of the system is not constant even though the
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magnitude of the charges remain the same. It’s very difficult to apply the similar

approach as in the symmetric motion to analyze the general convergence area of the

saturated control.

Though an analytical solution is difficult to achieve, numerical results are al-

ways obtainable. The convergence area can be illustrated by marking each set of initial

conditions with which the distance rates converge to zeros in the numerical simula-

tion. Without the assumption of symmetric motion, the initial conditions of the motion

contain four independant variables: [δx12, δx23, δẋ12, δẋ23]. Thus the convergence area

should be configured as a four dimensional region. To illustrate the convergences areas

in 2-dimensional plots, the distances and distance rates are illustrated separately. After

a certain set of initial [δẋ12, δẋ23] is prescribed, the resulting initial [δx12, δx23] condi-

tions’ area of convergence is illustrated in a 2-D phase plane. And the convergence area

of the variables [δẋ12, δẋ23] is demonstrated in the similar way in the δẋ12− δẋ23 plane.
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Figure 6.4: Area of convergence of (δx12, δx23).

Taking the 1-D non-conducting hover track vehicles as an example, let the masses

be m1 = m2 = m3 = 10kg, and the charge limits be q1max = q2max = q3max = qmax =

5 × 10−5C. Let the control parameters be p1 = p2 = 1kg/(C2·s). Figure 6.4 shows
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the convergence areas of the distances δx12, δx23 under different initial distance rates.

Figure 6.4(a) shows the case when the initial distance rates [δẋ12, δẋ23] = [0.1, 0.1]m/s.

The shaded area represents the initial conditions which lead to converged states. It can

be seen that the convergence area is not quite symmetric in δx12 and δx23 directions.

This is because the charge implementation strategy by varying the matrix [P ] does not

result in symmetric solutions while switching the values of the individual distances δx12

and δx23. Figure 6.4(b) shows the convergence area of the δx12 − δx23 plane when the

initial distance rates are set to be [δẋ12, δẋ23] = [0.1, 0.2]m/s. The convergence area

shrinks greatly in δx23 direction. This is because the departing speed δẋ23 is larger

than δẋ12; it makes δẋ23 converge much more difficult than δẋ12.
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Figure 6.5: Area of convergence of (δẋ12, δẋ23).

Figure 6.5 illustrates two convergence areas of the distance rates in the δẋ12−δẋ23

plane. It can be seen that the convergence area reduces in the direction where the

distance increases. The scales of the axes δẋij range within [−0.2, 0.8]m/s in the plots.

The negative distance rate means the two spacecraft are approaching each other. If the

magnitude of the negative distance rate is too big, then the spacecraft are getting close

too fast, this may result in collision of spacecraft which is not contained in the scope
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of this chapter. Chapter 3 develops the analytical criteria for two spacecraft which are

approaching each other to be able to avoid a collision.

6.5 Numerical Simulation

A two-stage control strategy has been developed to control the shape of the 1-

D constrained Coulomb structure. At first the saturated control is used to arrest the

relative motion of the spacecraft. After the relative motion has been stabilized, the

formation shape controller is employed to make the formation construct a certain shape

that is defined by the given desired distances [δx∗12, δx
∗
23]. This section presents some

numerical simulation results to show the performance of the control strategy.

The physical parameters of the model are set to be the parameters of a proposed

1-D hover track test bed and are used to test the control algorithm of the 1-D Coulomb

structure stabilization control. The masses of the three spacecraft are m1 = m2 = m3 =

10kg, while the desired shape is given as [δx∗12, δx
∗
23] = [4, 4]m. The separation distances

between craft are within 5 meters. Without loss of generality, let the magnitudes of the

charges of the spacecraft share a common limit qmax = 5 × 10−5C. Let us choose the

initial positions and velocities to be:

[x1, x2, x3] = [−3, 0, 2]m (6.62)

[ẋ1, ẋ2, ẋ3] = [−0.04, 0, 0.04]m/s (6.63)

Figure 6.6 shows the first stage of the control which arrests the relative motion.

The two simulation stage results are illustrated separately because the saturated control

has a stronger control forces and the relative motion converges much faster than the

time needed in the continuous shape control. The parameters of the saturated regulator

are p1 = p2 = 1kg/(C2·s). The relative distance rates converge to zero in a very short

time, and the control charges are always saturated until the distance rates converge.

The stability of the control is guaranteed, and if the initial conditions are within the
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Figure 6.6: Numerical simulation results of stage I: relative motion regulation.

convergence area presented in the last section, then the relative rates will converge to

zero.

Figure 6.7 illustrates the simulation results of the second stage, continuous for-

mation shape control. The parameters of this control are

[K] =

 3.6 0

0 1.8

 kgm/s2, [P ] =

 14.4 0

0 7.2

 kgm/s (6.64)

The values of matrices [K] and [P ] are chosen to balance between the overshooting and

the response speed. Figure 6.7(a) and (b) show the process of the Coulomb structure

to converge to the desired shape. Figure 6.7(c) and (d) are the charge histories under

different conditions. The chattering issue of the charges is nontrivial in the control

process. As mentioned before in the formation shape control section, the chattering

effect is partly due to the switching between two possible values of the variable τ . The

parameter α ≤ 1 has been introduced to buffer the switching. With α = 1, no buffer

is acting on the system. When 0 < α < 1, the buffer is taking effect. Comparing

Figure 6.7(c) and (d), it can be seen that when α = 0.7, the chattering effect is reduced

to some extent. Though the buffer can not totally eliminate the chattering, the benefit

is that this approach does not influence the dynamics of the system. This is because
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Figure 6.7: Numerical simulation results of stage II: formation shape control.

any value of the variable τ results in a vector that is within the null space of the input

matrix of the control.

6.6 Conclusion

A two-stage stable charge feedback control strategy is developed to shape the

configuration of the 1-D restricted Coulomb structure. The first stage intends to arrest

the relative motion of the formation. A globally stable, but not asymptotically stable

saturated control is designed using Lyapunov’s direct method. Varying the value of

a positive definite matrix used in designing the Lyapunov function rate guarantees

real charge solutions. The analytical criterion for a stabilizable symmetric motion is
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obtained by evaluating the total energy level of the system. For general cases, the

convergence areas of the initial states for stabilizable motions are illustrated numerically.

The second stage is a continuous formation shape control. It is used to control the

shape of the Coulomb structure to a certain desired configuration. The control is also

designed using Lyapunov’s method. A minimum charge search routine in the null space

of the input matrix is used to solve the control charge implementability problem. The

search routine not only makes the charge control law physically implementable, but also

results in minimum control charges at every instance. Numerical simulations verify the

effectiveness of the control strategy.

This chapter presents two strategies to solve the charge implementation issue:

utilizing the null space of the control input matrix (matrix [C] in this chapter); varying

the Lyapunov rate matrix (matrix [P ] in this chapter). These approaches can be uti-

lized in the further studies of the multiple spacecraft Coulomb virtual structure control

problem.



CHAPTER 7

THREE-CRAFT NON-EQUILIBRIUM COULOMB VIRTUAL

STRUCTURE CONTROL

Chapter 5 studies the two-craft Coulomb virtual structure control in 3-D space.

Chapter 6 develops a two-stage stable charge feedback control strategy to shape the

configuration of a one-dimensionally constrained 3-craft Coulomb structure. Based on

the knowledge provided by these two chapters, this chapter investigates the more gen-

eral problem of Coulomb virtual structure control: three-craft triangular configuration

Coulomb structure control. The objective is to find a stable control strategy to make a

three-craft formation stabilize to an arbitrary triangular configuration. The work in this

chapter has been presented in Reference [32] and has been submitted to AIAA Journal

of Guidance, Control and Dynamics for publication.

7.1 EOM of the 3D Coulomb Structure System

Figure 7.1 illustrates the 3-D three-craft Coulomb structure scenario. Assuming

the spacecraft are flying in free space and no external forces acting on the system, the

EOMs of individual spacecraft are:

m1R̈1 =− kc
q1q2

L2
12

ê12 − kc
q1q3

L2
13

ê13 (7.1a)

m2R̈2 =kc
q1q2

L2
12

ê12 − kc
q2q3

L2
23

ê23 (7.1b)

m3R̈3 =kc
q1q3

L2
13

ê13 + kc
q2q3

L2
23

ê23 (7.1c)
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Figure 7.1: Three-dimensional three-craft Coulomb structure.

where Lij is the separation distance between spacecraft-i (SCi) and spacecraft-j (SCj),

êij is the unit vector point from SCi to SCj.

Note that using only Coulomb forces can only control the relative motion of

spacecraft, not the inertial positions, and the purpose of this work is to control the

shape of the Coulomb structure. The shape of a 3-body formation can be completely

defined by the three separation distances between any two spacecraft. Here the control

goal is defined as making the three separation distances (L12, L23, L13)T converge to the

desired distances (L∗12, L
∗
23, L

∗
13)T . The first step is to identify the separation distances’

EOMs.

For notational convenience, introduce a vector ξ:

ξ = (ξ1, ξ2, ξ3)T = kc

(
q1q2

L2
12

,
q2q3

L2
23

,
q1q3

L2
13

)T
(7.2)
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From the EOMs in Eq. (7.1), the relative positions’ EOMs are found to be:

r̈12 = ξ1

(
1
m1

+
1
m2

)
ê12 − ξ2

1
m2
ê23 + ξ3

1
m1
ê13 (7.3a)

r̈23 = −ξ1
1
m2
ê12 + ξ2

(
1
m2

+
1
m3

)
ê23 + ξ3

1
m3
ê13 (7.3b)

r̈13 = ξ1
1
m1
ê12 + ξ2

1
m3
ê23 + ξ3

(
1
m1

+
1
m3

)
ê13 (7.3c)

Using the facts that rij = ri − rj and Lij = rij · êij , the separation distances’ EOMs

are found:

L̈12 =ξ1

(
1
m1

+
1
m2

)
+ ξ2

cosα2

m2
+ ξ3

cosα1

m1
+
‖ṙ12‖2
L12

(
1− cos2∠(r12, ṙ12)

)
(7.4a)

L̈23 =ξ1
cosα2

m2
+ ξ2

(
1
m2

+
1
m3

)
+ ξ3

cosα3

m3
+
‖ṙ23‖2
L23

(
1− cos2∠(r23, ṙ23)

)
(7.4b)

L̈13 =ξ1
cosα1

m1
+ ξ2

cosα3

m3
+ ξ3

(
1
m1

+
1
m3

)
+
‖ṙ13‖2
L13

(
1− cos2∠(r13, ṙ13)

)
(7.4c)

Starting from the separation distance EOMs in Eq. (7.4), a control strategy is

expected to drive the separation distances to desired values, using ξ as the control

vector.

7.2 Virtual Structure Control Strategy

The goal of the virtual structure control is to make the separation distances

converge to the given desired distances:

(L12, L23, L13)T → (L∗12, L
∗
23, L

∗
13)T . (7.5)

It is assumed that the desired shape of the 3-body system is stationary, which indicates

that the nominal separation distances L∗ij are constant. Using the state vector X =

(L12, L23, L13)T , the separation distances’ EOMs in Eq. (7.4) are rewritten into a
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concise form as:

Ẍ =


(

1
m1

+ 1
m2

)
cosα2
m2

cosα1
m1

cosα2
m2

(
1
m2

+ 1
m3

)
cosα3
m3

cosα1
m1

cosα3
m3

(
1
m1

+ 1
m3

)


︸ ︷︷ ︸

[B]


ξ1

ξ2

ξ3

+


1
L12
‖ṙ12‖2

(
1− cos2∠(r12, ṙ12)

)
1
L23
‖ṙ23‖2

(
1− cos2∠(r23, ṙ23)

)
1
L13
‖ṙ13‖2

(
1− cos2∠(r13, ṙ13)

)


︸ ︷︷ ︸

f

(7.6)

The objective of the 3-craft Coulomb structure shape control is to drive the dis-

tances between any two craft to desired values thus to construct a certain triangular

shape, i.e. drive X to desired value X∗, assuming that X∗ is constant. Define state

tracking error vector ∆X = X −X∗.

7.2.1 3-Side Control Law

Define Lyapunov function candidate as

V =
1
2

∆XT [K]∆X +
1
2

∆ẊT∆Ẋ (7.7)

where [K] is a 3× 3 positive definite matrix. The derivative of V is

V̇ = ∆ẊT ([K]∆X + ∆Ẍ) (7.8)

= ∆ẊT ([K]∆X + [B]ξ + f) (7.9)

Prescribe V̇ as the following negative semi-definite function:

V̇ = −∆ẊT [P ]∆Ẋ (7.10)

Because [B] is a nonsingular matrix, the unique solution to Eq. (7.10) is

ξ = [B]−1(−[K]∆X − [P ]∆Ẋ − f) (7.11)

Charges can be deduced from the definition of ξ in Eq. (7.2) as
q1 =

√
ac
bkc

|L12L13|
|L23|

q2 = sign(bc)
√

ab
ckc

|L12L23|
|L13|

q3 = sign(c)
√

bc
akc

|L23L13|
|L12|

(7.12)
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Notice that a · b · c ∼ (q1q2q3)2, so for implementing this control law with non-

imaginary charges, ξ must satisfy

a · b · c ≥ 0 (7.13)

When ξ does not satisfy the inequality in Eq. (7.13), the control becomes unimple-

mentable. Unfortunately, because ξ is the only solution to Eq. (7.10), nothing more

can be done to deal with this implementable problem based on the Lyapunov function

given by Eq. (7.7). Thus, the following section seek an alternate control strategy.

7.2.2 2-Side Control Strategy

The previous section develops a Lyapunov-based control law that controls the

three triangle side-lengths at once. The control is asymptotically stable, but it’s not

always physically implementable because at times it requires imaginary charges. If we

control two sides at once instead of controlling three sides, correspondingly a subset of

the state-space EOMs in Eq. (7.6) are considered, then the control input matrix [B]

becomes a 2× 3 matrix. Utilizing the null space of the control input matrix, there is a

family of solutions that have the same response. An implementable solution can always

be found from this solution family. The use of the null space of the input matrix to

determine implementable real charge solutions is discussed in Chapter 6.

This section proposes a strategy that always controls the “worst” two sides of

the triangle. By continuously switching to control the “worst” two sides, it’s expected

that the system is stabilized and the state tracking error converge to zero. However, the

actual switching strategy must be carefully chosen to avoid making the system unstable.
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Define the switching criterion by investigating the three sub-Lyapunov functions as:

Va =
1
2
k(∆X2

1 + ∆X2
3 ) +

1
2

(∆X2
1 + ∆X2

3 ) ,
k

2
∆XT

a ∆Xa +
1
2

∆ẊT
a ∆Ẋa, (7.14a)

Vb =
1
2
k(∆X2

1 + ∆X2
2 ) +

1
2

(∆X2
1 + ∆X2

2 ) ,
k

2
∆XT

b ∆Xb +
1
2

∆ẊT
b ∆Ẋb, (7.14b)

Vc =
1
2
k(∆X2

2 + ∆X2
3 ) +

1
2

(∆X2
2 + ∆X2

3 ) ,
k

2
∆XT

c ∆Xc +
1
2

∆ẊT
c ∆Ẋc. (7.14c)

The subscripts (a, b, c) denote the errors of the two sides cornered at the (1st, 2nd, 3rd)

spacecraft respectively. The final Lyapunov function candidate being activated is chosen

to be the largest sub-Lyapunov function:

Vctrl = max{Va, Vb, Vc}. (7.15)

Once the control ξ is determined, the motions of the three sides are determined

by Eq. (7.6). In order to develop a control algorithm to only stabilize two sides at once,

the dynamics of the two sides being controlled are:

Ẍctrl = [Bctrl]ξ + fctrl, (7.16)

where [Bctrl] is a 2× 3 matrix with the two rows selected from the matrix [B] according

to the two sides being controlled.

Taking a first-order time derivative of Vctrl, yields:

V̇ctrl = ∆ẊT
ctrl

(
k∆Xctrl + [Bctrl]ξ + fctrl

)
. (7.17)

Let V̇ctrl be the semi-definite function

V̇ctrl = −∆ẊT
ctrl[P2]∆Ẋctrl, (7.18)

where [P2] is a 2 × 2 positive definite matrix. Substituting Eq. (7.17) into Eq. (7.18),

yields:

[Bctrl]ξ = −k∆Xctrl − fctrl − [P2]∆Ẋctrl. (7.19)
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Note that [Bctrl] is a 2× 3 matrix. As mentioned in the beginning of this section, there

is a family of solutions of ξ that satisfy the control condition in Eq. (7.19). Let us begin

with the minimum norm solution to Eq. (7.19):

ξ̂ = [Bctrl]†
(
− k∆Xctrl − fctrl − [P2]∆Xctrl

)
, (7.20)

where [Bctrl]† = [Bctrl]T ([Bctrl][Bctrl]T )−1 is the pseudo-inverse of the matrix [Bctrl].

Note that ξ̂ in Eq. (7.20) is the minimum solution to Eq. (7.19) which minimizes the

norm of the ξ vector. The general solution to Eq. (7.19) can be written as:

ξ = ξ̂ + γ · bctrl, (7.21)

where bctrl is a 3×1 base vector of the null space of the matrix [Bctrl]. Because [Bctrl] is

a 2× 3 matrix, it always has a non-empty null space. The scalar parameter γ ∈ R can

be any real number. The flexibility of the value of γ provides a single degree of freedom

(DOF) that can be utilized to find an implementable (real spacecraft charge) control

solution.

With the implementation problem having been narrowed down to finding a proper

value of γ to make the solution ξ implementable, we rewrite the implementability cri-

terion as:

ξ1 · ξ2 · ξ3 ≥ 0. (7.22)

Substituting Eq. (7.21) into the criterion, yields:

g(γ) , ξ1 · ξ2 · ξ3 =
(
ξ̂1 + γbctrl(1)

)(
ξ̂2 + γbctrl(2)

)(
ξ̂3 + γbctrl(3)

)
≥ 0, (7.23)

where ξ̂i is given by the minimum norm solution in Eq. (7.20). The next step is to find

a value of γ that satisfies the inequality g(γ) ≥ 0. Note that g(γ) is a cubic equation of

γ. The two typical cases of the function g(γ) are illustrated in Figure 7.2. In both cases,

there are two continuous intervals of γ that make g(γ) ≥ 0. This indicates that there

always exists a family of solutions that make the 2-side control implementable with the

same dynamical behavior.
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Figure 7.2: Examples of g(γ) function in two cases.

Because there is an infinite number of solutions that make the control imple-

mentable, a solution is chosen which minimizes the spacecraft charge magnitudes to

simplify the technical implementation of this charge control solution. A charge cost

function is defined:

J(γ) =
3∑
i=1

q2
i . (7.24)

Chapter 6 develops an algorithm based on Newton’s method to search the optimal

solution of γ that minimizes the cost function J(γ). The same algorithm is applied here

to determine the charge-optimal solution.

For a switched Lyapunov-based control, the stability needs to be reevaluated

because the switching may introduce discontinuity to the Lyapunov candidate functions.

The following property states that if the control charges can switch infinitely fast then

the switched control with the switch strategy given by Eq. (7.15) is stable.

Property 1 The switched control strategy with the switch rule given by Eq. (7.15) is

stable if V̇ctrl < 0 and the control charges are capable to switch infinitely fast, which

indicates the switching happens when

Vctrl = max{Vk|Vk = Va, Vb, Vc and Vk 6= Vctrl}. (7.25)
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Proof Because the control can switch infinitely fast, the Lyapunov function being con-

trolled Vctrl is continuous. Note that V̇ctrl ≤ 0, the system is stable by Lyapunov stability

theorem.

�

In the ideal case with the control charges can switch infinitely fast, the Lyapunov

function being controlled is continuous and non-increasing. However, in practice the

control frequency is always limited resulting control cycles of a finite duration. The

discrete control time step makes the Lyapunov function being controlled discontinuous at

the switch point. This discontinuity breaks down the stability proof based on continuous

Lyapunov function. The next section utilizes a multiple Lyapunov function analysis tool

to analyze the stability of the switched system and develops a stable switch strategy

with present of the limited control time step.

7.3 Multiple Lyapunov Functions Analysis

The last section designs a switching control strategy that always controls the

“worst” two sides of the triangle, with the “worst” two sides defined by the corresponding

Lyapunov function candidates. Stability is ensured if the switching can occur infinitely

fast. The action of the switching may cause stability issues if the switching occurs over

finite time steps. The tracking error of the uncontrolled triangle side can become the

largest error during the finite control interval.

Multiple Lyapunov functions for switched systems is a tool to analyze this type of

systems with discretely switched control objectives. [33] Before analyzing the switched

system, it’s necessary to define several concepts.

Definition A switched system is a simple case of a hybrid system that is of multi-modal,

while the system switches in a way that there are finite switches in finite time. [33]
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Definition Control cycle period is the time period while the control has to be con-

stant without updating, it’s limited by the hardware components such as sensors and

actuators. The value of the control cycle period is constant.

Definition Switch cycle period is the time period during when the active Lyapunov

function hasn’t been switched. The value of the switch cycle period is not constant, the

minimum possible value is equal to the control cycle period.

The switched control developed in the last section switches according to the three

Lyapunov functions defined in Eq. (7.14). Now the switch frequency is constrained by

the control cycle period. The maximum switch frequency is the inverse of the control

cycle period. This satisfies the definition of the switched system that there are finite

switches in finite time.

7.3.1 Stability Analysis

The stability of a switched system can not be characterized using only the Lya-

punov stability theorem of a continuous system. Even when all the Lyapunov function

rates of the activated models are negative semi-definite, the system can still be unstable

due to the control objective switching.

Figure 7.3 shows a simulation example of the three-body Coulomb virtual struc-

ture control using the continuous control strategy developed in the previous section,

but implemented with finite control cycles. Figure 7.3(a) shows the distance errors,

Figures 7.3(b)–7.3(d) show the Lyapunov functions in different time ranges. The plots

show that the system is stable during Region 1, but unstable during Region 2. Special

tools should be engaged to explain and analyze this behavior.

Branicky’s contribution in Reference 33 is a milestone in analyzing nonlinear

hybrid system. He proves several theorems that justify the stability of different hybrid

systems based on Lyapunov’s stability theorem. This chapter employs Theorem 2.3
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Figure 7.3: Simulation example of the unstable switch control strategy.

from Reference 33 repeated here for clarity:

Theorem 8 (Theorem 2.3 in Reference 33) Suppose we have candidate Lyapunov func-

tions Vi, i = 1, · · · , N and vector fields ẋ = fi(x). Let S be the set of all switching

sequences associated with the system.

If for each S ∈ S we have that for all i, Vi is Lyapunov-like for fi and xS(·) over

S|i, then the system is stable in the sense of Lyapunov.

where “Lyapunov-like function” is defined as:

Definition (Reference 33) Given a strictly increasing sequence of times T in R, we say

that V is Lyapunov-like for function f and trajectory x(·) over T if:
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• V̇ ≤ 0 when it’s activated

• V is monotonically nonincreasing on E(T )

where E(T ) denotes the even sequence of T : t0, t2, t4, · · · . �

Theorem 8 explains the behavior in Figure 7.3. Figure 7.3(c) shows a snapshot

at Region 1. It can be seen that at every other switching time, each Lyapunov function

candidate is less than its value at the time point that is two switching cycles before.

By Theorem 8, the Lyapunov function candidates (Va, Vb, Vc) are Lyapunov-like and the

system is stable in this region. Figure 7.3(d) is a snapshot during Region 2. In this

case, the control switches at the maximum frequency and the switching cycle period is

equal to the control cycle period. Even though during each control cycle the controlled

Lyapunov function is decreasing, the un-controlled Lyapunov functions increase faster

than the controlled Lyapunov function’s decreasing rate. At every other switching

time, each Lyapunov function candidate is greater than its value at the time that is

two switching periods earlier. So the Lyapunov function candidates (Va, Vb, Vc) is not

Lyapunov-like during Region 2, and the system is unstable in this region.

The stability of the switched control strategy given by Eq. (7.15) and Eq. (7.21) is

not guaranteed because the Lyapunov function candidates (Va, Vb, Vc) are not guaranteed

to be Lyapunov-like.

7.3.2 Switched Control Stability Requirements

Theorem 8 explains why the switched control strategy given by Eq. (7.15) and

Eq. (7.21) can be unstable at times. This section improves the control strategy to make

the Lyapunov function candidates Va–Vc satisfy the Lyapunov-like conditions, such that

the system is made stable even with discrete non-zero control cycles.

Assume that during one switching cycle Vβ is the controlled Lyapunov function.

The corresponding two sides being controlled are denoted as ith and jth sides, the
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uncontrolled side is the kth side. Here “uncontrolled” does not mean the control won’t

affect the kth side, but the kth is not taken into consideration in developing the control

algorithm. Note that when Vβ is under control, the errors in the ith and jth sides are

decreasing, but the trend of the error in the kth side is undetermined.

Figure 7.3(d) shows an example that when Va is decreasing, Vb and Vc are in-

creasing at a very high rate. This means that the errors in the L12 and L13 sides are

decreasing, but the error in the L23 side is increasing dramatically and destroys the sta-

bility of the system. To ensure stability of the system, the uncontrolled side’s behavior

can not be neglected.

Note that the control in Eq. (7.21) makes the errors in both of the two sides ith

and jth decreasing. The error in the uncontrolled side needs to be investigated. Define

three error functions in the same form as the Lyapunov function candidates:

V1 =
k

2
∆X2

1 +
1
2

∆Ẋ2
1 , V2 =

k

2
∆X2

2 +
1
2

∆Ẋ2
2 , V3 =

k

2
∆X2

3 +
1
2

∆Ẋ2
3 . (7.26)

Without loss of generality, rearrange the state vector in the form

X =

 Xctrl

Xuc

 , (7.27)

where Xctrl is composed of two distance errors corresponding to the two controlled side,

Xuc denote the distance error of the uncontrolled side. Correspondingly the EOM is

rewritten to be:  Ẍctrl

Ẍuc

 =

 [Bctrl]

Buc

(ξ̂ + γbctrl
)

+

 fctrl

fuc

 , (7.28)

where Buc is a 1 × 3 vector that is the line in the matrix [B] corresponding to the

uncontrolled side, fuc is the component of the vector f corresponding to the uncontrolled
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side. Substituting ξ̂ in Eq. (7.20) into Eq. (7.28) and carrying out the algebra, yields: Ẍctrl

Ẍuc

 =

 −k∆Xctrl − [P2]∆Ẋctrl

Buc[Bctrl]†
(
− k∆Xctrl − [P2]∆Ẋctrl − fctrl

)
+ γBucbctrl + fuc

 .

(7.29)

Taking a time derivative of the error function of the uncontrolled side Vuc and

substituting Ẍuc, yield:

V̇uc =k∆Ẋuc(∆Xuc + ∆Ẍuc)

=k∆Ẋuc

(
∆Xuc +Buc[Bctrl]†

(
− k∆Xctrl − [P2]∆Ẋctrl − fctrl

)
+ γBucbctrl + fuc

)
.

(7.30)

Eq. (7.30) shows that the sign of the uncontrolled side’s error is undetermined. Even

though there are two parameters [P2] and γ that can be adjusted, this flexibility does not

guarantee there exists a solution to make V̇uc negative because in some cases controlling

three sides is impossible.

To find a way to solve this problem, it is beneficial to take a closer look at the

unstable situation shown in Figure 7.3(d). Note that the three Lyapunov function

candidates are actually the combinations of the error functions:

Va = V1 + V3, Vb = V1 + V2, Vc = V2 + V3. (7.31)

Figure 7.4 shows the details of the Lyapunov function candidates and the error

functions during several unstable switches. In Figure 7.4(a), during the nth switch cycle,

V̇c < 0 while V̇a and V̇b are positive. V̇c < 0 indicates V̇2 < 0 and V̇3 < 0. This is verified

by Figure 7.4(b). So Va,b > 0 is due to the excessive increasing of V1, as shown in

Figure 7.4(b). At the beginning of the next control cycle, (n + 1)th control cycle, it is

identified that Va is the largest Lypunov function candidate. According to the switch

strategy in Eq. (7.15), the controller switches to control Va which indicates V1,3 < 0 as

shown in Figure 7.4(b). Focusing on V1 in Figure 7.4(b), one can see that during the
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(n+ 1)th control cycle, V1 is controlled such that V̇1 < 0. But the rate of decreasing of

V1 is smaller than its increasing rate during the nth control cycle. This results in that at

the next switch time (at the point C in Figure 7.4(b)), V1 hasn’t decreased to the same

level as the value at the beginning of the nth control cycle (at the point A). That is

V
(C)

1 > V
(A)

1 . According to Branicky’s theorem in Theorem 8, V1 is not Lyapaunov-like

and the stability is not guaranteed.

By the above analysis, it can be concluded that the instability comes from two

sources:

(1) The decreasing rate of the error function of the new controlled side is not big

enough to compensate for its increased amount during the last control cycle.

(2) The increasing rate of the error function of the new uncontrolled side is too big.

Upon entering a new control objective switch, both the new uncontrolled and the new

controlled sides’ error functions need to be taken care of to ensure the Lyapunov function

candidates to be Lyapunov-like. Corresponding to Figure 7.4(b), the magnitude of the

slope of V1 during the (n+1)th control cycle should be greater than the slope during the

nth control cycle. The increasing rate of V2 during the (m + 1)th control cycle should

be less than its decreasing rate during the nth control cycle. Figure 7.5 illustrates this

idea. In this way, V (C)
1 < V

(A)
1 and V

(C)
2 < V

(A)
2 . V3 is always being controlled during

the two control cycles so it’s automatically satisfied that V (c)
3 < V

(A)
3 . Thus all of the

Lyapunov function candidates are Lyapunov-like during the two control cycles.

To take care of the new controlled side, which indicates this side was uncon-

trolled in the last control cycle, the first step is to determine the requirement to remain

Lyapunov-like for this side. Let Vm denote the new controlled side’s error function. The

requirement for this side to be Lyapunov-like is that the change of the corresponding

error function in the new switch cycle ∆V (n+1)
m should be less than its change in the
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previous switch cycle ∆V (n)
m . This can be expressed mathematically in the way:∫

(n+1)
V̇ (n+1)
m dt < −∆V (n)

m , (7.32)

where
∫

(n+1) means the integration across the (n+1)th switch cycle. Because the control

cycle period is very small, the inequality in Eq. (7.32) is approximated by

V̇ (n+1)
m ∆t < −∆V (n)

m , (7.33)

where ∆t is the control cycle period which is constant. This requires the error function

rate V̇ (n+1)
m should be less than a certain value:

V̇ (n+1)
m < −∆V (n)

m /∆t. (7.34)

Because the subscript m denotes the new controlled side, V̇ (n+1)
m is determined to be

negative. If ∆V (n)
m is negative which means Vm decreases in the nth control cycle, then

the requirement in Eq. (7.34) is automatically satisfied. Otherwise, a strategy that
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makes the inequality in Eq. (7.36) always satisfied is expected. Taking a time derivative

of Vm then substituting the EOM of Xm in Eq. (7.28) yields:

V̇m = ∆Ẋm

(
k∆Xm +Bm[Bctrl]†(−k∆Xctrl − [P2]∆Ẋctrl − fctrl) + fm

)
. (7.35)

In this expression of V̇m only the control coefficients k and [P2] are not dependent

on the states and can be utilized to adjust the value of V̇m. We choose to change the

matrix [P2] to make the error functions to be Lyapunov-like. Substituting Eq. (7.35)

into the inequality in Eq. (7.36), yields:

∆ẊmBm[Bctrl]†[P2]∆Ẋctrl >∆Ẋm

(
k∆Xm + fm

+Bm[Bctrl]†(−k∆Xctrl − fctrl)
)

+
∆V (n)

m

∆t
. (7.36)

The inequality in Eq. (7.36) is the requirement for the matrix [P2] that ensures

the error function of the new controlled side is Lyapunov-like. The requirement for the

new uncontrolled side is similar:

∆ẊucBuc[Bctrl]†[P2]∆Ẋctrl >∆Ẋuc

(
k∆Xuc + fuc

+Buc[Bctrl]†(−k∆Xctrl − fctrl)
)

+
∆V (n)

uc

∆t
. (7.37)

The inequalities in Eqs. (7.36), (7.37) are two conditions that guarantees the error

functions to be Lyapunov-like. Note that the matrix [P2] should be positive definite, so

there are three requirements for [P2] that ensures a globally stable switched control.

7.3.3 Stable Switched Strategy

The previous section determined three requirements that ensured a stable switched

control. This section develops a new switched control strategy that implements the sta-

bility requirements found in Eqs. (7.36) and (7.37). Above all, the existence of solutions

that satisfy the stability requirements needs to be investigated. Let us begin with

introducing an asymmetric positive definite matrix.
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Property 2 A 2× 2 matrix [A] in the form

[A] =

 A11 A12

−A12 A22

 (7.38)

is a positive definite matrix if and only if:

A11 > 0, A22 > 0. (7.39)

Proof The symmetric part of the matrix [A] is:

[As] =
1
2

[A] +
1
2

[A]T =

 A11 0

0 A22

 . (7.40)

It is evident that the symmetric matrix [As] is positive definite if and only if A11 > 0 and

A22 > 0. A necessary and sufficient condition for a real matrix to be positive definite

is that its symmetric part is positive definite. Thus the matrix [A] is positive definite if

and only if A11 > 0 and A22 > 0. �

This form of a positive definite matrix is more general than symmetric positive

definite matrices. This provides more flexibilities in solving the inequalities in Eqs. (7.36)

and (7.37). Note that the inequalities in Eqs. (7.36) and (7.37) can be written in the

general form:

aT [P2]b > c, (7.41)

where a and b are two 2-dimensional vectors, c is a real number that equals the right

hand side (RHS) of the inequalities. The following theorem studies the existence of the

solutions to this inequality.

Theorem 9 Assume a positive definite matrix in the form:

[A] =

 A11 A12

−A12 A22

 , (7.42)
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where A11 and A22 are positive. Define two arrays: a = [a1, a2]T and b = [b1, b2]T . If

the following two inequalities and one equation do not happen at the same time:

a1b1 < 0, (7.43a)

a2b2 < 0, (7.43b)

a2b1 = a1b2, (7.43c)

then for any c ∈ R, there always exists a solution of the matrix [A] that satisfies the

inequality:

aT [A]b > c. (7.44)

Proof It needs to be proved that the solution of [A] exists under the following two

cases:

(1) a2b1 6= a1b2,

(2) a2b1 = a1b2 and a1b1 > 0 and/or a2b2 > 0.

Carrying out the algebra in the inequality in Eq. (7.42), yields:

a1b1A11 + (a1b2 − a2b1)A12 + a2b2A22 > c. (7.45)

Note that the requirements for Aij are A11 > 0 and A22 > 0, the third element A12

can be any real number. Next the existence of the positive definite matrix [A] is proven

under the enumerated two cases.

Case 1: a2b1 6= a1b2. When a2b1 6= a1b2, the element A12 can be used to adjust

the value of the left hand side (LHS) of the inequality in Eq. (7.45). If a1b2 > a2b1,

then any real value of A12 that satisfies:

A12 >
c− a1b1A11 − a2b2A22

a1b2 − a2b1
(7.46)

is a solution to the inequality in Eq. (7.42) while preserving the positive definiteness of

the matrix [A]. Alternatively if a1b2 < a2b1, then any real value of A12 that satisfies:

A12 <
c− a1b1A11 − a2b2A22

a1b2 − a2b1
(7.47)
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is a solution to the inequality in Eq. (7.42).

Case 2: a2b1 = a1b2 and a1b1 > 0 and/or a2b2 > 0. When a2b1 = a1b2, the

inequality in Eq. (7.45) simplifies to

a1b1A11 + a2b2A22 > c. (7.48)

Because either a1b1 > 0 or a2b2 > 0, without loss of generality it’s supposed a1b1 > 0.

Solving for A11 from the inequality in Eq. (7.48), yields:

A11 >
1

a1b1
(c− a2b2A22). (7.49)

The inequality in Eq. (7.49) does not conflict with the requirement that A11 > 0. Thus

any value of A11 that satisfies:

A11 > max
{

1
a1b1

(c− a2b2A22), 0
}

(7.50)

is a solution to the inequality in Eq. (7.42). �

Theorem 9 proves the existence of solutions to the inequalities in Eqs. (7.36) and

(7.37) unless the condition in Eq. (7.43) occurs. Note that the two inequalities and one

equation in Eq. (7.43) are rarely to happen at the same time. Moreover, a1b2 = a2b1 is

a transient state. Generally this situation is neglectable.

Now all steps are in place to lay out the new stable switched charge control

strategy. Note that the old switched control strategy works well most of the time,

the temporary loss of stability happens due to the discrete control time steps. The first

switch strategy given by Eq. (7.15) is still valid unless the Lyapunov-like condition being

violated.

Beginning a new control cycle, there are three possible combinations of the con-

trolled sides. One of them corresponds to no switching case, the other two correspond

to two switched control cases. For the notational convenience, denote the three pos-

sibilities as “no switching”, “switch-1” and “switch-2”. When an unstable switching,
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Figure 7.6: Stable switch strategy flowchart.

which means the switching does not satisfy the requirements in Eqs. (7.36) and (7.37),

is detected, it is easier to change the new controlled side than to change the value of

the matrix [P2]. Based on this rule, a new switch strategy is developed and shown in

Figure 7.6.

Figure 7.6 illustrates the strategy of switching. The details of calculating the

value of the matrix [P2] is not illustrated. Upon changing the value of [P2], it’s better

to start with simpler diagonal form. If the diagonal form of [P2] matrix cannot provide

a stable switched control, then the more complex asymmetric matrix form as shown in

Eq. (7.42) is sought.

7.4 Numerical Simulations

This section presents numerical simulations to show the effectiveness and perfor-

mance of the stable switched 3-craft charge control. The desired shape here is triangular

configuration. For notational convenience, the old controller with the switching strategy

given by Eq. (7.15) is called Controller-1, the new stable controller with the switching
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strategy given by Figure 7.6 is called Controller-2.

Both Controller-1 and Controller-2 are used to control the 3-craft Coulomb virtual

structure. Under the same initial conditions the performances of the two controllers can

be compared. The response of the system is different in different situations. When

the initial errors and separation distances are large, the control charges levels are large.

The following two simulation cases illustrate the behavior of the system under two

controllers. In all of the simulations the masses of the three spacecraft are the same:

m1 = m2 = m3 = 50 kg. (7.51)

7.4.1 Big Control Effort Case

The initial positions and velocities of the three spacecraft are
r1 = [9,−2, 0]T m

r2 = [0,−4, 0]T m

r3 = [−2,−2, 0]T m

,


ṙ1 = [0, 0.01, 0]T m/s

ṙ2 = [0, 0, 0]T m/s

ṙ3 = [0,−0.01, 0]T m/s

. (7.52)

The expected triangular shape of the virtual structure is defined by the separation

distances:

X∗ = [6, 7, 5]T m. (7.53)

The proportional feedback coefficients are:

k = 0.0003 s−2. (7.54)

The nominal value of the matrix [P2] is

[P ∗2 ] =

 0.02 0

0 0.02

 s−1. (7.55)

Note that the value of the [P2] matrix is varying using Controller-2.

Figure 7.7 shows the responses of the system under the two different control

strategy. Comparing the separation distance errors in Figures 7.7(a) and 7.7(b), it is
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(a) Separation distance errors, Controller-1.
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(b) Separation distance errors, Controller-2.

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

time [s]

Er
ro

r f
u

n
ct

io
n

s 
in

 3
 s

id
es

 [m
2
/s

2
]

 

 

V
1

V
2

V
3

(c) Error functions, Controller-1.

0 500 1000 1500
10

−10

10
−8

10
−6

10
−4

10
−2

time [s]

Er
ro

r f
u

n
ct

io
n

s 
in

 3
 s

id
es

 [m
2
/s

2
]

 

 

V
1

V
2

V
3

(d) Error functions, Controller-2.
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Figure 7.7: Big control effort simulations.
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evident that the stable switched control strategy performs better than the unstable

switched control. Using this set of initial states and controller parameters, the old

controller assuming continuos switching capabilities cannot stabilize the distance errors

to zero, while the stable switched control strategy with finite control cycles stabilizes

the errors near zero. Because the rotating triangular configuration is not an equilibrium

solutions, the errors cannot converge perfectly to zero. The smaller the control cycles

are, the smaller the final state errors will become.

The error functions’ histories in Figure 7.7(c) explains the behavior of the continuous-

switching controller. During the time around 700–1000s, the controller switches at the

highest frequency and the error functions do not satisfy the Lyapunov-like conditions.

The details are similar to Figure 7.4(b). Thus this is an unstable part of the response.

Figure 7.7(d) shows that under the control of the stable switched control strategy, the er-

ror functions drop to very low level (10−7m2/s2) within 1000s, but won’t really decrease

to zero. This means the system is stable, but not asymptotically stable as explained

above.

Figures 7.7(e) and 7.7(f) show the charge histories of the two simulations. It can

be seen that under the control of the stable switched controller, the charge histories

have more spikes than that of the unstable switched control. This is due to the varia-

tion of the matrix [P2] in the stable switched control. Despite the spikes in the charge

histories, it can be seen that after the distance errors settle down (after 800s as shown

in Figure 7.7(b)), the control charge level that holds the spinning triangle is around

5µC. But at the beginning the charge level goes up to 90µC which is not practically

implementable. The practically implementable charge level is within 10µC. This simu-

lation case is aggressive. The intention is to show the different behaviors under different

situations.
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7.4.2 Small Control Effort Case

In this simulation, the initial errors and the separation distances are small thus

the controllers require small charge levels. The initial conditions are set as
r1 = [2, 0, 0] m

r2 = [0, − 4, 0] m

r3 = [−2, − 2, 0] m

,


ṙ1 = [0, 0.002, 0] m/s

ṙ2 = [0, 0, 0] m/s

ṙ3 = [0, − 0.002, 0] m/s

. (7.56)

The expected separation distances are given by:

X∗ = [4, , 4, 4]T m. (7.57)

The controller coefficients are

k = 0.0003 s−2, [P ∗2 ] = diag(0.005, 0.005) s−1. (7.58)

Figure 7.8 shows the simulation results under the two controllers. Figures 7.8(a),

7.8(c) and 7.8(e) show the results of the simulation using Controller-1. The distance

error history in Figure 7.8(a) shows that at the beginning 2000s, the errors are staying

at high level. The error functions shown in Figure 7.8(e) verify that during [0,2000]s,

there are several temporary unstable regions where both of the three error functions are

increasing. After 2000s, the distance errors are decreasing significantly.

Figures 7.8(b), 7.8(d) and 7.8(f) show the results of the simulation using Controller-

2. Figure 7.8(b) shows that the distance errors decrease and stabilize to zero in much

shorter time than using Controller-1. Comparing the charge histories in Figures 7.8(c)

and 7.8(d), it can be seen that there are more spikes when Controller-2 is being used.

Figure 7.8(b) also shows that the distance errors do not converge to zero. This is because

the new switched control Controller-2 is stable, but not asymptotically stable.

It’s not always the case that Controller-2 performs better than Controller-1. Un-

der different initial conditions and different controller coefficients Controller-1 may per-

form better than Controller-2. There is one difference between the two simulation cases.
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(a) Separation distance errors, Controller-1.
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(b) Separation distance errors, Controller-2.
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Figure 7.8: Small control effort simulations.
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When using Controller-1 in the large control effort case in the illustrated simulation re-

sults, the distance errors settles down to a certain level and stack there. But in the

small control effort case, the distance errors keep changing and won’t stay at a certain

level.

7.5 Conclusion

This chapter investigates the three-spacecraft Coulomb formation triangular shape

control problem. Assuming continuous switching capability, a 2-side switched control

strategy is developed to always control the worst two sides instead of controlling both of

the three sides. Here an implementable control solution is always guaranteed. However,

the discrete control time steps may cause temporary instability of the shape control. A

stable switched control strategy is developed based on the multiple Lyapunov functions

analysis. This new switch strategy ensures all of the error functions to be Lyapunov-like

thus stability is guaranteed. Numerical simulations demonstrate the improvement of

the stable switched control. The new switched control also induces spikes in the control

charges because the new control changes the value of the distance rate feedback gain

matrix to ensure stability. The method of employing Lyapunov-like control functions

is a promising approach to investigate the relative control of charged spacecraft with

more than three vehicles. The new switched control strategy is successful in stabilizing

a non-equilibrium triangular shape.



CHAPTER 8

THREE-CRAFT EQUILIBRIUM FIXED SHAPE CONTROL

The previous chapter studies the control of a three-craft triangular shape con-

figuration. For a general triangular shape, there does not exist an equilibrium charge

solution, which makes the control problem very changeling. That is why the controller

has to keep switching to control different two sides at every instance.

This chapter studies the special case of the three-craft Coulomb virtual structure

control where the expected configuration is collinear. For a general collinear configura-

tion, there always exists equilibrium charge solution. By this information, we know that

the controller does not have to keep switching frequently to control only two sides of

the system. In the neighborhood of the equilibrium, the controller should be capable to

control both three sides simultaneously. From this perspective, the control charges will

be smoother comparing to the stable switched control developed in the previous chap-

ter. This is the motivation of studying the shape control specifically for the collinear

configuration in this chapter.

8.1 Equations Of Motion

This chapter develops a control algorithm using only Coulomb forces to make a

free-flying three-craft system stabilized to the desired collinear configuration. Figure 8.1

shows the setup of the spinning three-craft system. Figure 8.1(a) shows the basic ge-

ometry and notations. The parameters m1–m3 are the masses of the three spacecraft,
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(a) Geometry of the three-body system.
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(b) Collinear equilibrium illustration.

Figure 8.1: Charged three-Body system.
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r1–r3 are the three inertial position vectors of the spacecraft, r12–r13 are the relative

position vectors between the spacecraft, and rcm is the inertial position vector of the

center of mass (CM). Note that if we let the center of the inertial frame be the CM of

the 3-craft, then rcm = 0. The angle αi is the angle between the two relative position

vectors cornered at the ith spacecraft. Figure 8.1(b) shows the scenario of the equi-

librium/expected state. The collinear configuration system is spinning about the CM.

Note that depending on the CM location, the spinning direction of m2 may be reversed

from the illustration in Figure 8.1(b).

By the assumption that the three-craft system is flying in a free space, the inertial

equations of motion (EOMs) of the three spacecraft are given by:

m1r̈1 =− kc
q1q2

r2
12

ê12 − kc
q1q3

r2
13

ê13 (8.1a)

m2r̈2 =kc
q1q2

r2
12

ê12 − kc
q2q3

r2
23

ê23 (8.1b)

m3r̈3 =kc
q1q3

r2
13

ê13 + kc
q2q3

r2
23

ê23 (8.1c)

where kc = 8.99 × 109 Nm2C−2 is the Coulomb constant, qi is the charge of the ith

spacecraft which can be actively controlled, êij is the unit vector pointing from the ith

to the jth spacecraft, and rij is the separation distance between the ith and the jth

spacecraft. These equations of motion assumes that the separation distance is small

compared to the local plasma Debye length, and that the partial charge shielding from

the plasma environment can be ignored. For the convenience of notation, a vector ξ is

defined as a function of the charge products and the separation distances:

ξ = (ξ1, ξ2, ξ3)T =
(
kc
q1q2

r2
12

, kc
q2q3

r2
23

, kc
q1q3

r2
13

)T
(8.2)

One way to specify the collinear configuration is through the relationship of the

separation distances:

r13 = r12 + r23 (8.3)
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Note that the separation distances can be directly controlled using only Coulomb forces,

the separation distances’ EOMs are expected for developing the control algorithm. Using

the inertial EOMs in Eq. (8.1), the following relative positions’ EOMs are achieved:

r̈12 = r̈2 − r̈1 = ξ1

(
1
m1

+
1
m2

)
ê12 − ξ2

1
m2
ê23 + ξ3

1
m1
ê13 (8.4a)

r̈23 = r̈3 − r̈2 = −ξ1
1
m2
ê12 + ξ2

(
1
m2

+
1
m3

)
ê23 + ξ3

1
m3
ê13 (8.4b)

r̈13 = r̈3 − r̈1 = ξ1
1
m1
ê12 + ξ2

1
m3
ê23 + ξ3

(
1
m1

+
1
m3

)
ê13 (8.4c)

Applying the relationship between the separation distance and the relative position

vector r̈ij = r̈ij · êij + 1
rij
‖ṙij‖2

(
1− cos2∠(rij , ṙij)

)
to Eq. (8.4), yields the separation

distances’ EOMs:

r̈12 = ξ1

(
1
m1

+
1
m2

)
+ ξ2

1
m2

cosα2 + ξ3
1
m1

cosα1 + g1 (8.5a)

r̈23 = ξ1
1
m2

cosα2 + ξ2

(
1
m2

+
1
m3

)
+ ξ3

1
m3

cosα3 + g2 (8.5b)

r̈13 = ξ1
1
m1

cosα1 + ξ2
1
m3

cosα3 + ξ3

(
1
m1

+
1
m3

)
+ g3 (8.5c)

where gi is the shortcut for the highly nonlinear term:

g1 =
1
r12
‖ṙ12‖2

(
1− cos2∠(r12, ṙ12)

)
(8.6a)

g2 =
1
r23
‖ṙ23‖2

(
1− cos2∠(r23, ṙ23)

)
(8.6b)

g3 =
1
r13
‖ṙ13‖2

(
1− cos2∠(r13, ṙ13)

)
(8.6c)

8.2 Equilibrium Charge Solution

The objective of the control development is to find an algorithm of the charges

[q1, q2, q3]T that makes the separation distances stabilized to the desired distances

[r12, r23, r13]T → [r∗12, r
∗
23, r

∗
13]T

where the following requirement enforces the expected configuration to be collinear:

r∗13 = r∗12 + r∗23 (8.7)
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CMm1 m2 m3

r1

r2

r3

r12 r23

Figure 8.2: Geometries of the equilibrium state.

This section investigates the equilibrium charge solutions under given expected

separation distances. There are two questions need to be answered: does the solution

exist; what is(are) the solution(s). For easier understanding of the physical meanings

of gi, let us rewrite these nonlinear terms in terms of the angular momentum:

g∗ =


g∗1

g∗2

g∗3

 =


r∗12

H2

(Σmir2i )2

r∗23
H2

(Σmir2i )2

r∗13
H2

(Σmir2i )2

 (8.8)

where H is the magnitude of the angular momentum of the three-craft system H =

Σri × (miṙi). Because there are no external forces acting on the system, the angular

momentum is conserved, thus H is determined by the initial conditions. The scalar

parameter ri is the separation distance of the ith spacecraft measured from the CM as

shown in Figure 8.2. The relationship between ri and rij is:
r1 =

m2 +m3(1 + a)
m1 +m2 +m3

r∗12

r2 = r1 − r∗12

r3 = r1 − (1 + a)r∗12

(8.9)

where a is the ratio between the two separation distances a = r∗23 : r∗12. Let us define

other two ratio parameters as:

β =
q∗2
q∗1
, γ =

q∗3
q∗1

(8.10)

Thus, instead of solving the individual charges [q∗1, q
∗
2, q
∗
3]T directly, the following deriva-

tion solves the parameters [q∗1, β, γ] corresponding to the individual charges. The sepa-
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ration distances’ EOMs at the equilibrium state are derived from Eq. (8.5):

r̈∗12 =
kcq
∗2
1

r∗212

(
1
m1

+
1
m2

)
β − kcq

∗2
1

r∗212

1
m2

βγ

a2
+
kcq
∗2
1

r∗212

1
m1

γ

(1 + a)2
+ g∗1 = 0 (8.11a)

r̈∗23 = −kcq
∗2
1

r∗212

1
m2

β +
kcq
∗2
1

r∗212

(
1
m2

+
1
m3

)
βγ

a2
+
kcq
∗2
1

r∗212

1
m3

γ

(1 + a)2
+ ag∗1 = 0 (8.11b)

r̈∗13 =
kcq
∗2
1

r∗212

1
m1

β +
kcq
∗2
1

r∗212

1
m3

βγ

a2
+
kcq
∗2
1

r∗212

(
1
m1

+
1
m3

)
γ

(1 + a)2
+ (1 + a)g∗1 = 0

(8.11c)

Next this chapter is going to find the solutions for [q∗1, β, γ] from Eq. (8.11).

Note that the three equations in Eq. (8.11) are linearly coupled, specifically adding up

Eq. (8.11a) and Eq. (8.11b) yields Eq. (8.11c). Thus there are actually two independent

equations for solving three parameters. There exists one extra DOF in this problem.

Supposing that a value q∗1 is given, performing some algebras of Eq. (8.11), yields the

following quadratic equation for γ:

γ2+γ
[
(1+a)2ν

(
m1m2+(1+a)m1m3

)]
−(1+a)2a2ν

(
(1+a)m1m3+am2m3

)
= 0 (8.12)

where ν is a function of q∗1:

ν =
r∗312H

2

kcq∗21 (Σmir2
i )2Σmi

(8.13)

The other parameter β is given by

β = − γ

(1 + a)2
− ν
(
m1m2 + (1 + a)m1m3

)
(8.14)

Thus, after solving γ from Eq. (8.12), the equilibrium charge solution is solved. Note

that the real solution to a quadratic equation does not always exist. The existence of

the real solutions to Eq. (8.12) requires the following inequality:

f(ν) = (1 + a)4m2
1

(
m2 + (1 + a)m3

)2
ν2

+ 2a2(1 + a)2
(
(1 + a)m1m3 + 2am2m3 −m1m2

)
ν + a4 ≥ 0 (8.15)

where f(ν) is a quadratic function of ν. Note that ν is a function of q∗1 as shown in

Eq. (8.13), proper value of q∗1 might guarantee the inequality in Eq. (8.15) to be true.

For the inequality in Eq. (8.15), there are two cases need to be discussed:
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(1) There are no real solutions or there are two identical solutions to f(ν) = 0. In

this case the inequality in Eq. (8.15) is always true. m1 ≥ am2 ensures this

case.

(2) There are two distinct solutions to f(ν) = 0, corresponding to the situation

m1 < am2. In this case the requirement for ν is ν ≥ ν2 or ν ≤ ν1, where ν1,2

are the two real solutions to f(ν) = 0 and ν2 > ν1.

If ν2 ≤ 0, any choice of q∗1 will automatically satisfy ν ≥ ν2, because ν > 0 by

definition. Otherwise ν2 > 0, the requirement for q∗1 is

q∗1 ≤
√

r∗3H2

kc(Σmir2
i )2Σmiν2

(8.16)

or q∗1 ≥
√

r∗3H2

kc(Σmir2
i )2Σmiν1

if ν1 > 0. (8.17)

The requirement in Eq. (8.16) can always be satisfied regardless of the charge

saturation issue.

Concluding the above analysis of the existence of the equilibrium solutions, if

m1 > am2 or ν2 ≤ 0, given any value of q∗1 there exists a pair of equilibrium solutions.

Otherwise any value of q∗1 that satisfies the inequality in Eq. (8.16) results in a pair of

equilibrium solutions.

8.3 Lyapunov-Based Nonlinear Control Algorithm

The objective of the control is to make the three separation distances stabilized

to the desired separation distances corresponding to the desired collinear configuration.

Define the state vector as:

X = (r12, r23, r13)T (8.18)

The objective is rephrased as X → X∗ where X∗ represents the desired separation

distances. The separation distances’ EOMs is rewritten as:

Ẍ = [B]ξ + g (8.19)
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where [B] is the 3× 3 matrix:

[B] =


1
m1

+ 1
m2

cosα2
m2

cosα1
m1

cosα2
m2

1
m2

+ 1
m3

cosα3
m3

cosα1
m1

cosα3
m3

1
m1

+ 1
m3

 (8.20)

Note that ξ is a function of the individual charges. The following development finds an

implementable algorithm of ξ to stabilize the system.

Define the Lyapunov function to be:

V =
1
2

∆XT [K]∆X +
1
2

∆ẊT∆Ẋ (8.21)

where [K] is a 3×3 positive definite function. Taking a time derivative of V and utilizing

the EOMs in Eq. (8.19), yields:

V̇ =∆Ẋ([K]∆X + ∆Ẍ)

=∆Ẋ
(
[K]∆X + [B]ξ + g

)
(8.22)

In order to utilize the equilibrium charge solution developed in the last section,

the control vector ξ is rewritten as:

ξ = ξ∗ + δξ (8.23)

where ξ∗ corresponds to the equilibrium charge solution. Forcing V̇ to be the negative

semi-definite form:

V̇ = −∆ẊT [P ]∆Ẋ (8.24)

yields the following equation:

[B]δξ = −[P ]∆Ẋ − [K]∆X − [B]ξ∗ − g (8.25)

Solving δξ from Eq. (8.25) yields a solution of ξ that would stabilize the system. One

issue is that by the definition in Eq. (8.20) the matrix [B] is not always invertible. The

following theorem proves that the matrix [B] is singular only at the collinear configu-

rations.
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Theorem 10 Given a 3 × 3 matrix [B] defined by Eq. (8.20), with (α1, α2, α3) being

the inner angles of a triangle as shown in Figure 8.1(a), the matrix [B] is singular if and

only if cosα1 cosα2 cosα3 = −1.

Proof One necessary and sufficient condition for a square matrix to be singular is

that its determinant is zero. To prove the above theorem, we just need to prove that∣∣[B]
∣∣ = 0 if and only if (iff.) cosα1 cosα2 cosα3 = −1. From the definition in Eq. (8.20),

the determinant of [B] is

∣∣[B]
∣∣ =
(

1
m1

+
1
m2

)(
1
m2

+
1
m3

)(
1
m1

+
1
m3

)
+

2 cosα1 cosα2 cosα3

m1m2m3

−
(

1
m1

+
1
m2

)
cos2 α3

m2
3

−
(

1
m2

+
1
m3

)
cos2 α1

m2
1

−
(

1
m1

+
1
m3

)
cos2 α2

m2
2

(8.26)

Because cos2 αi ≤ 1, the following inequality is true:

∣∣[B]
∣∣ ≥( 1

m1
+

1
m2

)(
1
m2

+
1
m3

)(
1
m1

+
1
m3

)
+

2 cosα1 cosα2 cosα3

m1m2m3

−
(

1
m1

+
1
m2

)
1
m2

3

−
(

1
m2

+
1
m3

)
1
m2

1

−
(

1
m1

+
1
m3

)
1
m2

2

(8.27)

Note that the equal relationship in Eq. (8.27) is true iff. cos2 αi = 1, i = 1, 2, 3. The

RHS. of the inequality can be simplified:

∣∣[B]
∣∣ ≥ 2 + 2 cosα1 cosα2 cosα3

m1m2m3
(8.28)

From the inequality in Eq. (8.27), the determinant
∣∣[B]

∣∣ ≥ 0,
∣∣[B]

∣∣ = 0 iff. cosα1 cosα2 cosα3 =

−1. �

Note that the necessary and sufficient condition for
∣∣[B]

∣∣ = 0, cosα1 cosα2 cosα3 =

−1, represents all the collinear configurations, including the desired collinear configura-

tion specified by X∗.

Let us investigate those situations where
∣∣[B]

∣∣ = 0. At the equilibrium state

where X = X∗, the state errors ∆X = 0 and ∆Ẋ = 0. From the procedure of finding
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the equilibrium charge solution, at the equilibrium state [B]ξ∗ + g = 0. Thus at the

equilibrium state, the RHS of Eq. (8.25) is zero. In this situation, any element in the

null space of the singular matrix [B] is the solution to Eq. (8.25), including the zero

vector.

Another special case is the one-dimensional constraint motion. This situation has

been discussed in Chapter 6. In this case there are only two DOFs in the system, we

need to control only two sides. Thus we use only two equations from Eq. (8.25), which

contains three equations.

Other than the above two cases, we can not control all the three sides simul-

taneously when [B] is singular. In this situation, the stable switched control strategy

developed in Chapter 7 is engaged to control only the two sides of the system at each

intance while the stability is still guaranteed.

8.4 Numerical Simulations

8.4.1 Control Results With The Exact Feedforward Part

Figure 8.3 shows the simulation results in the case that the feedforward charge

components are calculated using the correct value of the angular momentum of the

3-craft system. The initial conditions are as following:

R1 =[−4, 1, 0]T m (8.29)

R2 =[25, 0, 0]T m (8.30)

R3 =[40, 0, 0]T m (8.31)

Ṙ1 =[0, 0.001, 0.0001]T m/s (8.32)

Ṙ1 =[0, 0, 0]T m/s (8.33)

Ṙ1 =[0, 0.001, 0]T m/s (8.34)

The masses of the spacecraft are m1 = m2 = m3 = 50kg. The controller coeffi-
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Figure 8.3: Simulation results with the exact knowledge of the angular momentum.

cients are [P ] = 0.00015I3×3 s−1, [K] = 10−8I3×3 s−2, where I3×3 is the 3 × 3 identity

matrix. The expected separation distances are set to be X∗ = [20, 20, 40]Tm.

Figure 8.3(a) shows the trajectories as seen from the inertial frame, the boxes

represent the final locations of the three spacecraft. Figure 8.3(b) shows the histories

of the separation distances. Figure 8.3(c) shows the separation distance errors in log

scale. The threshold for turning off the feedback part is V = 10−11m2/s2. In this

case the distance error levels settle down to centimeter level. Figure 8.3(d) shows the

charge histories. There are three situations of the control: 3-side control when [B] is

invertible; 2-side switched control when [B] is not invertible; only feedforward part when

V < 10−11m2/s2.
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8.4.2 Simulation Results With Incorrect Feedforward Part

This simulation example tests the case that the angular momentum information

is incorrect thus results in an incorrect set of the equilibrium charges. The initial con-

ditions are exactly the same as the previous simulation. In calculating the equilibrium

charges, the angular momentum is reduced to 20% of the true value He = 0.2H. The

resulting feedforward charges are qff = [1,−0.255, 1]µC. But corresponding to the

true value of the angular momentum and qe1 = 1µC, the equilibrium charges should

be qe = [1,−0.385, 1]µC. This indicates that the feedforward charges are not the equi-

librium charges, without the feedback part the system will not stay at the equilibrium

configuration.

The simulation results are shown in Figure 8.4. Comparing to Figure 8.3, one

can find that the response of the system is similar, except after around 28 hours of

the simulation time. That is because at that time the feedback part of the control is

turned off because V < 10−11m2/s2. But since the feedforward charges are not the

equilibrium charges, the control charges drive the system worse much faster than the

previous simulation where the exact feedforward charges are achieved. From the charge

histories in Figure 8.4(d), it can be seen that the time span when the feedback charges

are turned off is much shorter than that in the previous simulation. This explains why

the response of the system is different from the previous simulation after around 28

hours of the simulation time.

8.4.3 Extreme Simulation Example

This simulation case is to use an extreme example to illustrate that the control

works globally. The “extreme” example is chosen to be that the controller needs to

“flip-over” the locations of two spacecraft. All the simulation conditions are the same

as the previous simulations except that the locations of the three spacecraft are set to
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Figure 8.4: Simulation results without the exact knowledge of the angular momentum.

be:

R1 =[−4, 1, 0]T m (8.35)

R2 =[40, 0, 0]T m (8.36)

R3 =[25, 0, 0]T m (8.37)

In this set of initial conditions, SC-3 is roughly allocated in the center of the

nearly collinear configuration. While the expected collinear configuration requires SC-2

be the center of the configuration, the controller needs to flip-over the relative positions

of SC-2 and SC-3.

The simulation results are shown in Figure 8.5. The trajectories in Figure 8.5(a)

seems a bit nasty, but the final positions marked by the three boxes shows the three
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Figure 8.5: Simulation results without the exact knowledge of the angular momentum.

spacecraft are alined. Figure 8.5(b) shows that L23 and L13 stabilize to their expected

values after around 10 hours, L12 grows up to 60m, then stabilizes after around 40 hours.

The distance errors in Figure 8.5(c) show that the error of L12 stabilizes to centimeter

level, while the errors in L23 and L13 are at much lower level. Figure 8.5(d) shows that

there is a spike of the control charges goes up to 80µC. Practically this charge level is

very difficult to achieve using current technology. This simulation example is just used

to illustrate the theoretical global-ness of the control algorithm.

8.5 Conclusion

This section develops a Lyapunov-based globally stable control algorithm to make

a three-craft Coulomb formation stabilized to an expected collinear configuration. The



164

equilibrium charge solution is utilized as the feedforward part of the control. The

stable switched control strategy is engaged when it is not implementable to control both

three sides simultaneously. Numerical simulations show that even when the feedforward

charges are incorrect the control still stabilizes the system to the desired configuration.

An extreme simulation example, which requires to flip-over the relative positions of two

spacecraft, illustrate that the control is globally stable.

A comparison to the charge modulation approach is an interesting future work

of the three-craft Coulomb virtual structure control. Charge modulation approach is

another way to solve the implementation issue. Instead of controlling both sides during

one control cycle, the charge modulation method continuously divides the cycle into sev-

eral sub-cycles. During each sub-cycle, this approach generates charges to control only

a certain subset of all of the three sides, and the charge levels are several times greater

than that needed for one control cycle. Because the charge modulation approach contin-

uously switches between the sub- sets at a constant frequency, the power consumption

is much greater. Another obvious drawback of charge modulation method is that, as the

number of spacecraft in the cluster increases, the sub-cycle period becomes very small.

This means the charge modulation must work as a very high frequency if the Coulomb

structure is composed of many spacecraft. This high frequency not only increases power

consumption, it might not be able to achieved at all.



CHAPTER 9

CONCLUSIONS

Based on the point-mass, point-charge model, this dissertation studies the ap-

plication of Coulomb thrusting in the two-craft collision avoidance problem and the

Coulomb virtual structure control problem. In both of these studies, the dissertation

uses only Coulomb forces as the control input.

For the spacecraft collision avoidance problem, the Lyapunov-based feedback con-

trol achieves collision avoidance and retains the relative kinetic energy level. The open-

loop trajectory programming algorithm achieves collision avoidance and retains both

the direction and the magnitude of the relative velocity. The trajectory programming

algorithm utilizes the extra degree of freedom to find an optimal trajectory according

to a certain cost function.

Regarding the Coulomb virtual structure control problem, the study of the spin-

ning two-craft formation control in GEO orbit reveals that, the spinning of the two-craft

system dominates the gravitational part in the closed-loop dynamics assuming a fast

spin rate, and the influence of the spinning is stable. For a three-craft Coulomb virtual

structure, there do not exist equilibrium charge solutions except for the collinear con-

figuration. For the triangular configuration control problem, always controlling both

three sides is not possible. The dissertation presents a stable switched two-side control

strategy to ensure the existence of the null space of the control input matrix, which can

be utilized to find implementable solutions. With the presence of the control input dis-
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cretization, the stability of the switched control is ensured using the multiple Lyapunov

function analysis tool.

Concluding the contributions, this dissertation broadens the application of Coulomb

thrusting. It investigates the application of Coulomb thrusting in spacecraft collision

avoidance problem and nonlinear control of Coulomb virtual structure. Technical wise,

the following results/ideas are valuable for future research in Coulomb formation flying

area:

(1) The patched conic-section programming algorithm can be generalized to the

flyby maneuver or gravity assist concept. The symmetric trajectory program-

ming algorithm achieves a trajectory that retains the magnitude and direction

of the relative velocity. By altering the constraints of the problem, the algo-

rithm might be able to achieve an arbitrary relative velocity that corresponds

to the flyby maneuver objective.

(2) The dissertation presents two approaches to find implementable charge solu-

tions. The first one is to utilize the null space of the control input matrix. By

utilizing the null space, the control solution can be modified to be implementable

without changing the dynamics of the system. The second one is to vary the

Lyapunov function rate. By varying the value of the Lyapunov function rate,

the control solution is modified. Certain constraint must be satisfied to ensure

control implementability and stability of the system. So this approach is more

restrictive to apply than the first approach.

(3) In the three-craft triangular shape control problem, the strategy of controlling

the “worst” two sides ensures the existence of the null space of the control input

matrix. This idea can be generalized to be controlling a subset of the system,

which can be utilized in multiple-craft shape control problem.

The first item in the above listed contributions provides a direction of future re-



167

search after this dissertation, Coulomb flyby maneuver. The second and third items

provide important tools for general multiple-craft Coulomb virtual structure control

problem. Besides these two directions of future research, note that the dissertation

makes several simplifications in setting up the Coulomb virtual structure control prob-

lem. For example the dissertation does not take gravitational forces, Debye shielding

effect and other disturbances into account in three-craft Coulomb virtual structure con-

trol part. Future research need to investigate the effects of these forces/disturbances to

the stability of the system.
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