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As a satellite orbits the Earth, solar radiation pressure slowly warps its orbit by accelerating

the satellite on one side of the orbit and decelerating it on the other. Since the Earth is rotating

around the Sun, this perturbation cancels after one year for geostationary satellites. However,

during the year the eccentricity, and therefore the radius of periapsis, changes. Since disposed geo-

stationary satellites are not controlled, traditionally they must be reorbited higher than otherwise

to compensate for this change, using more fuel. This issue has increased interest in specialized or-

bits that naturally negate this eccentricity perturbation. The disposal orbit examined in this thesis

points its perigee toward the Sun and has a natural eccentricity based on the satellite’s parameters.

This converts the eccentricity vector derivative due to solar radiation pressure into a directional

change only, keeping the eccentricity magnitude, and the radius of periapsis, constant. A constant

radius of periapsis reduces the necessary semi-major axis for the disposal orbit, and therefore the

fuel needed to reorbit the satellite.

This thesis examines this disposal orbit and the solar radiation perturbation over a single

year. First, the solar radiation pressure yearly perturbation is derived from Gaussian variational

equations. This process validates the eccentricity vector behavior and gives useful insights into its

cause. After the derivation, the perturbation behavior is modeled in MATLAB for the proposed

disposal orbit. The traditional and proposed disposal orbits are also modeled used NASA’s General

Mission Analysis Tool to show the modified orbit behavior in a more realistic setting.

After the proposed disposal orbit’s radius of periapsis behavior is verified, its sensitivity to

various satellite parameters is analyzed. Solar radiation pressure, reflectivity, area, mass, initial-

ization, and perigee offset errors are examined. Analytical relationships are developed for these



iv

sensitivities to show their effects on the minimum radius of the periapsis over one year. This thesis

shows that while this orbit modification can be used to modify orbits in the short term, margins

should be included depending on uncertainties in the satellite parameter knowledge to guarantee

minimum altitude above the geostationary belt.
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Chapter 1

Introduction

1.1 Space Debris Situation

According to the Inter-Agency Space Debris Coordination Committee (IADC), space debris

is defined as “all man made objects including fragments and elements thereof, in Earth orbit or

re-entering the atmosphere, that are non functional” [8]. As more and more satellites are launched

into space, the risk of debris from collisions grows [17]. The first observed collision was in 1996,

where a piece from an Ariane upper stage damaged Cerise, a French-owned minisatellite [8, 18, 19].

Evidence of the true seriousness of this problem can be seen in the February 11, 2009, collision

between an Iridium satellite and an inactive Russian Cosmos 2251 spacecraft [10, 17]. This collision

was not predicted and created two large groups of space debris [17]. Some scientists believe in

Donald Kessler’s theory of “collisional cascading”, or “Kessler Syndrome”, which suggests that at

a certain point a collision will trigger further collisions until the Earth is surrounded by debris and

space is no longer accessible for operations [8, 17, 19]. Although so far the only collisions have

been in low-Earth orbit (LEO), the danger exists for all satellites. Even small debris can damage

satellites, which can lead to their early demise or reduced satellite control [8, 19].

Even though satellites are assigned positions in space, the risk continues to rise, especially in

regions with more satellites [10, 17, 19]. In addition, there is not enough equipment and manpower

available to track all of the debris [17]. Current instrumentation can only regularly track objects

greater the ten centimeters in LEO and one meter in geostationary orbit (GEO) [5, 8, 10, 17].

As technology improves, it is expected that the perceived scope of the space debris problem will
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increase [6, 7]. Assess to data is also an issue since some satellites are classified [17].

As this problem becomes more recognized, focus has shifted to accurate prediction of collision

risk, minimization of new debris, and management of existing debris [4, 8, 17, 18]. Satellites in LEO

are deorbited (either manually or due to atmospheric drag) [7, 17]. However, satellites in GEO are

too far above the Earth to be deorbited. Instead, these satellites are sent into “graveyard orbits”

above the GEO belt to avoid active GEO satellites [17].

1.2 Geostationary Satellite Background

Geostationary satellites stay directly above the same point on the Earth, which means they

are in circular orbits above the equator with a period of one sidereal day [10, 12, 17, 21]. Since

these satellites are stationary with respect to the Earth, they are ideally suited for such tasks as

communication and weather-observation [8, 10]. The first GEO satellite was launched in 1964, and

the first explosion in GEO occurred in 1978 [8]. Even though no collisions have occurred to date

in GEO, the battery casing of an Ekran satellite was observed breaking apart into pieces of debris

[10].

As seen in Fig. 1.1 (courtesy of NASA’s Orbital Debris Program Office [15]), there are a

number of objects in and around the GEO belt. Note the GEO ring is visible in the figure. While

these satellites are generally designed to last a long time (an average of fifteen years), they do

eventually die [10]. As of January 2005, DISCOS (an European Space Agency database) listed

1124 objects in the geostationary region, but only 346 of these were actively controlled satellites.

Inactive satellites numbered 549, either within or passing through the GEO belt. The remainder

had too little information to be tracked properly. [7].

The practice of using a disposal orbit has existed since 1977, when Perek proposed the

idea and INTELSAT sent the first satellite to one. Numerous standards have been formed by

different agencies [7]. In the United States, the Federal Communications Commission will not

license a satellite without an approved plan for its end-of-life, but it does not assign a minimum

disposal altitude for geostationary satellites [10]. The most widely acknowledged standard today
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Figure 1.1: GEO Image of Space Objects [15]

was developed in 1997 by the IADC [6, 7]. It accounts for the fact that at GEO, the main perturbing

effects on a satellite’s orbit are solar radiation pressure and third body gravitational attractions

from the Sun and Moon [21]. It also acknowledges that cross-sectional area is more of a factor at

GEO because geostationary satellites comprise the largest portion of current orbiting area due to

their large appendages [8]. The total increase in altitude (∆H) is shown in Eq. (1.1), where ρ is

the reflectivity (a.k.a. the solar radiation pressure coefficient), A is the average cross-sectional area

of the satellite visible by the Sun in m2, and m is the mass of the satellite in kg. [4, 6, 7, 8, 13].

The minimum reorbit altitude above GEO is set at 235 km plus an additional solar pressure term

[6, 7]. The 235 km includes a 200 km minimum above the GEO belt for active satellite operations

and maneuvers and 35 km for Earth and third body gravitational perturbations [4, 6, 7, 8, 13].

The protected 200 km zone also covers inclinations from −15◦ to 15◦ [4, 13].

∆H = 200 km + 35 km + 1000
ρA

m
km (1.1)

However, only about a third of the satellites in GEO have followed this recommended reorbit

plan. From 1997 to 2004, 117 spacecraft became inactive, but only 39 were reorbited properly.

Another 41 were reorbited below the minimum requirements, and 37 were left in the GEO belt [7].

This is partly because even though the IADC standard is internationally agreed upon there is no
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enforcement, especially since more and more satellites are owned by private companies (although

some reorbit to protect their active satellites and prevent economic loss) [10, 18]. In addition,

many of the satellites launched before 1990 were not reorbited [7]. Another contributing factor is

that some satellite operators only budget the absolute minimum fuel (or less) for reorbiting [6].

The cheapest way (fuel-wise) to reorbit under the IADC recommendation is to target a circular

orbit of this radius. However, this must include extra height to compensate for the solar radiation

perturbation, which can be as large as 50 kilometers [4].

1.3 Solar Radiation Pressure Yearly Eccentric Perturbation

As shown in Eq. (1.1), solar radiation pressure must be considered when defining a disposal

orbit. All satellites in orbit around the Earth are exposed to sunlight. Photons from the Sun have

linear momentum that is transferred to the satellite upon contact [23]. This creates a nonconserva-

tive force, described in Eq. (1.2), that acts on the satellite system [21]. The force of solar radiation

on the spacecraft is equal to the product of the solar pressure at Earth’s distance from the Sun

(p�), the reflectivity of the satellite’s surface (ρ), the area of the satellite perpendicular to the

radiation of the Sun (A), and a scaling factor of the distances of the Earth and satellite to the Sun

(r⊕/r) [1, 23].

F� = p�ρA
(r⊕
r

)2
= ma� (1.2)

Due to the scope of this thesis, the area is taken to be the average area incident to the Sun.

In reality, it changes because the attitude is not controlled, causing solar radiation to produce a

changing force as well as a torque on the satellite. The assumption that the area is averaged also

allows the assumption that the incidence angle is 0◦, so its effect can be ignored in this analysis [21].

Note that for Earth GEO orbits, the scale factor is assumed to be one since the distance from the

satellite to the Earth is much less than the distance form the Earth to the Sun. Equation (1.2) leads

to the ballistic radiation coefficient (BC), shown in Eq. (1.3), which is formed from the satellite
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parameters of the solar pressure acceleration [23].

BC =
ρA

m
(1.3)

The main perturbation that results from solar radiation pressure is a yearly variation in the

eccentricity vector [4, 11, 12, 23]. The solar radiation pressure slightly accelerates the satellite

as it travels away from the Sun and slightly decelerates it as it travels toward the Sun [12, 23].

This slowly changes the eccentricity vector [12]. If one starts with a circular orbit, it will become

eccentric as shown (not to scale) in Fig. 1.2 [12, 23]. However, as the Earth rotates about the Sun,

the acceleration vector from the Sun rotates about the Earth, changing the direction of the solar

radiation force relative to the orbit. The result is that the eccentricity vector returns to its initial

state after one orbit of the Earth around the Sun [12, 21]. This is because satellites in GEO are

almost continuously exposed to sunlight since they are so far out from the Earth [11].

This can be difficult to picture intuitively. Another way of looking at this perturbation is

in the eccentricity plane, shown in Fig. 1.3. The axes of this plane are formed from the modified

eccentricity values ex = e cos (Ω + ω) and ey = e sin (Ω + ω). The traditional orbital elements used

to create these are eccentricity (e), right ascension of the ascending node (Ω), and argument of

periapsis (ω). In this plane, the eccentricity vector traces a circle over one year [4, 13]. As seen in

Fig. 1.3, the location of the eccentricity vector on this circle is determined by α, which is the right

Original 
Orbit

Evolved 
Orbit

GEO Zone

Solar 
Radiation

Figure 1.2: Evolution of Traditional Disposal Orbit
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Ω+ ωα

α − π

ex

ey

!e

Figure 1.3: Eccentricity Vector in Eccentricity Plane

ascension of the Sun. As discussed later in this thesis, the radius of this eccentricity circle is the

natural eccentricity. [12]

Note from Fig. 1.3 that for the traditional disposal orbit, starting at a null initial eccentricity

leads to a maximum eccentricity that is twice the natural eccentricity. This increase in eccentricity

decreases the radius of periapsis, which is why the third term of the IADC recommendation exists.

(This behavior always exists in the GEO belt, but orbit maintenance for active GEO operations

often overshadows it [23].) This perturbation has been used occasionally for tasks such as station-

keeping, but recently it has been the focus of a new GEO disposal orbit proposed by operators of

an EADS Astrium Eurostar 2000 satellite [4, 12, 13].

1.4 Thesis Focus

1.4.1 Initial Solar Radiation Pressure Perturbation Examination

This solar radiation pressure effect is widely reported among astronautical texts, but in a

brief, qualitative manner. The first objective of this thesis is to rigorously examine this perturbation

analytically and numerically. To this end, a full mathematical derivation from Gaussian variational

equations is presented, as well as MATLAB and NASA’s General Mission Analysis Tool (GMAT)

simulations. The second objective of this thesis is to verify the proposed GEO disposal orbit, so
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particular attention is paid to the contrast between the traditional disposal orbit dictated by the

IADC and the proposed disposal orbit.

In the proposed orbit analyzed in this study, the natural eccentricity is targeted as the

eccentricity magnitude, while the eccentricity vector is pointed toward the Sun. Over the year, the

eccentricity vector will trace a circle centered on the eccentricity plane’s origin. This means the

eccentricity magnitude, and therefore the radius of periapsis, will stay constant. This is shown (not

to scale) in Fig. 1.4(a). In other words, the orbit maintains the same ellipse, but rotates so that it

remains pointing toward the Sun, as shown (not to scale) in Fig. 1.4(b) [4, 13].

1.4.2 Sensitivity Analysis

Once the solar radiation pressure perturbation has been rigorously analyzed and the proposed

orbit has been verified, attention is turned to the sensitivity of this orbit to various parameters. The

third objective of this thesis is to analyze the proposed orbit’s sensitivity to solar radiation pressure,

reflectivity, cross-sectional area, mass, initialization errors, and perigee-pointing offsets. These

parameters are difficult to know and control accurately for satellites in orbit. These sensitivities

(a) Earth View

Earth Orbit

about Sun

Satellite 

Orbit

about Earth

(b) Sun View

Figure 1.4: Evolution of the Proposed Disposal Orbit
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are analyzed with respect to the minimum radius of periapsis in both qualitative and quantitative

form. To the author’s knowledge, this has not been rigorously examined before for the proposed

orbit. Numerous insights into the origins of solar radiation pressure’s effect on orbit evolution and

applicability of the proposed orbit are found in the process of this analysis.

1.4.3 Overall Context of Analysis

The research in this thesis grants insight into disposal orbit behavior and a new potential

solution. However, one thesis cannot hope to complete a task such as redesigning a disposal orbit

by itself. This section addresses factors outside the scope of this thesis to put it in the context of

overall orbit stability.

1.4.3.1 Assumptions

There are a number of assumptions used in this analysis. While GMAT simulations show

these to be small deviations, they still must be noted. The Sun is treated as moving on the

equatorial plane, when in fact its average motion is on the ecliptic plane [21, 23]. The ecliptic plane is

inclined 23.44◦ from the equatorial plane [12], so there is a slight out-of-plane acceleration from solar

radiation pressure [23]. The cosine of this angle is 0.9175, so this assumption is acceptable for the

in-plane behavior. GMAT simulations show the out-of-plane effect, along with other perturbations,

to be smaller than the analyzed behavior. The Earth’s orbit about the Sun is also assumed circular,

which is a common assumption since the Earth’s orbit actually has an eccentricity of 0.0167 [12, 21].

1.4.3.2 Longer-Term Evolution

The proposed orbit has not yet been addressed specifically for long-term evolution. However,

general studies on long-term stability of super-synchronous orbits (SSO) have found some generic

results. For IADC disposal orbits, the eccentricity magnitude needs to be smaller than 0.005 for

long-term evolution (natural eccentricities are generally less than this) [3, 8, 9, 23]. Interestingly,

some studies have shown that pointing the disposal orbit’s perigee toward the Sun is also good
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for long-term evolution [3]. On the other hand, some studies have shown that perigees close to

the GEO protected zone are more likely to enter it in the future, but no data was given for which

eccentricity vectors these violators had [9].

Periodic variations in eccentricity have also been observed for longer periods due to a variety

of sources such as third body gravitational attractions, but no secular perturbations occur [2, 3].

GEO satellites also have a long-term perturbation of 53 years that shifts their inclinations between

−15◦ and 15◦. This is due to gravitational perturbations from the Earth, the Sun, and the Moon

[8]. This indirectly affects the solar radiation pressure perturbation by changing how much of the

solar radiation force acts in the orbit plane.



Chapter 2

Proposed Orbit Yearly Evolution Derived from Gaussian Variational Equations

To examine the proposed orbit’s effect on the solar radiation pressure eccentricity perturba-

tion in a more rigorous manner, first analyze the proposed orbit mathematically. To do so, a new

set of coordinates must be assigned to properly address the highly-circular nature of GEO disposal

orbits. Since the main focus of this study is the eccentricity vector, this analysis will focus on these

elements. The traditional orbital elements are the semi-major axis (a), eccentricity (e), inclination

(i), right ascension of the ascending node (Ω), argument of periapsis (ω), and true anomaly (θ)

[21]. The first and last of these are kept, but the middle four are combined into the new orbital

elements shown in Eq. (2.1) [4, 12].

ex = e cos (Ω + ω)

ey = e sin (Ω + ω)

ix = i cos (Ω + ω)

iy = i sin (Ω + ω) (2.1)

This traces a full circle for α = Ω +ω = 0 to 2π radians, which is equivalent to one year. To math-

ematically analyze this case, Gaussian variational equations are used to more intuitively examine

this behavior since the force is nonconservative. Note that while there are numerical integration is-

sues for some Gaussian variational equations with circular orbits [21], general eccentricity behavior

is analytically examined here without numerical integration.

The relevant Gaussian variational equations that calculate the orbital element derivatives
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with respect to time due to a perturbing acceleration are shown in Eq. (2.2), where h is the angular

momentum of the satellite, µ is the gravitational parameter of the Earth, ar is the radial solar

pressure acceleration, aθ is the cross-radial solar pressure acceleration, ah is the solar pressure

acceleration perpendicular to the orbit plane, and r is the distance of the satellite from the satellite

to the center of the Earth [23].

ė =
h

µ

(
sin θar +

(
e+ cos θ

1 + e cos θ
+ cos θ

)
aθ

)
ω̇ =

h

eµ

(
− cos θar +

(
2 + e cos θ

1 + e cos θ

)
sin θaθ

)
− r sin (θ + ω) cos iah

h sin i

Ω̇ =
r sin (θ + ω)ah

h sin i
(2.2)

2.1 Perigee aligned with Sun Setup

When the orbit’s perigee is aligned with the Sun as seen in Fig. 2.1, ar = a�(− cos θ),

aθ = a�(sin θ), and ah = 0 (where a� is the magnitude of the solar pressure acceleration). Using

these acceleration terms, Eq. (2.2) is simplified to Eq. (2.3).

ė =
ha�
µ

(
e+ cos θ

1 + e cos θ

)
sin θ

ω̇ =
ha�
eµ

(
1 +

(
sin2 θ

1 + e cos θ

))
Ω̇ = 0 (2.3)

Also note that α = Ω + ω when the satellite orbit’s perigee is aligned with the Sun.

Solar 
Radiation

ar
aθ

θ

Figure 2.1: Perigee-Aligned Solar Pressure Force
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2.2 Derivation of Ideal ėx

The period of the examined eccentricity perturbation is one year. To approximate the deriva-

tive for this, evaluate the change in these parameters over one orbit around the Earth of time length

T (one sidereal day for GEO). Start with Eq. (2.4) [12].

δex =

∫ T

0

(
ė cos (Ω + ω)− e

(
Ω̇ + ω̇

)
sin (Ω + ω)

)
dt (2.4)

Substituting Eq. (2.3) into Eq. (2.4) gives Eq. (2.5).

δex =
h cos (Ω + ω)a�

µ

∫ T

0

(
e+ cos θ

1 + e cos θ

)
sin θdt

−h sin (Ω + ω)a�
µ

∫ T

0

(
1 +

sin2 θ

1 + e cos θ

)
dt (2.5)

Since the eccentricity is so small, it is only taken to the first order. This type of approximation

is common in general perturbation analysis. While it does introduce a slight error, it allows easier

observance of the dominating behavior [21]. Therefore Eq. (2.5) is expanded into Eq. (2.6), which

is simplified into Eq. (2.7).

δex =
h cos (Ω + ω)a�

µ

∫ T

0
(e+ cos θ)(1− e cos θ) sin θdt

−h sin (Ω + ω)a�
µ

∫ T

0

(
1 +

sin2 θ

1 + e cos θ

)
dt (2.6)

δex =
h cos (Ω + ω)a�

µ

∫ T

0

(
e+ cos θ − e cos2 θ

)
sin θdt

−h sin (Ω + ω)a�
µ

∫ T

0

(
1 +

sin2 θ

1 + e cos θ

)
dt (2.7)

Next, the integral is switched from being taken over time to being taken over the true anomaly.

To do this, a relationship between dt and dθ is developed. Note that h = r2θ̇ is combined with

r = h2

µ(1+e cos θ) to form Eq. (2.8) [21, 23].

θ̇ =
h

r2
=
µ2(1 + e cos θ)2

h3
(2.8)

Equation (2.9) is developed by using the geometric series with d taken to the first order [20].

1

(1− d)2
=
∞∑
k=1

kdk−1
∞∑
k=1

kdk−1 = (1 + d+ · · ·)(1 + d+ · · ·) = 1 + 2d+ · · · (2.9)
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Equation (2.8) is simplified using Eq. (2.9) to get Eq. (2.10).

dt =
h3

µ2
dθ

(1 + e cos θ)2
=
h3

µ2
(1− 2e cos θ)dθ (2.10)

Plug Eq. (2.10) into Eq. (2.7), to get Eq. (2.11), which is simplified to Eq. (2.12).

δex =
h4 cos (Ω + ω)a�

µ3

∫ 2π

0

(
e sin θ + sin θ cos θ − e cos2 θ sin θ

)
(1− 2e cos θ)dθ

−h
4 sin (Ω + ω)a�

µ3

∫ 2π

0

(
1 +

sin2 θ

1 + e cos θ

)
(1− 2e cos θ)dθ (2.11)

δex =
h4 cos (Ω + ω)a�

µ3

∫ 2π

0

(
e sin θ + sin θ cos θ − 3e cos2 θ sin θ

)
dθ

−h
4 sin (Ω + ω)a�

µ3

∫ 2π

0

(
1 +

sin2 θ − 2e sin2 θ cos θ

1 + e cos θ
− 2e cos θ

)
dθ (2.12)

This is solved as Eq. (2.13), which is evaluated as Eq. (2.14) [20].

δex =
h4 cos (Ω + ω)a�

µ3

(
−e cos θ|2π0 + 0.5

∫ 2π

0
sin 2θdθ − 3e

∫ 2π

0
(sin θ − sin3 θ)dθ

)
−h

4 sin (Ω + ω)a�
µ3

∫ 2π

0

(
1 + sin2 θ(1− 2e cos θ)(1− e cos θ)− 2e cos θ

)
dθ (2.13)

δex =
h4 cos (Ω + ω)a�

µ3
(
−0.25 cos θ + 3e cos θ − e cos θ(sin2 θ + 2)

)
|2π0

−h
4 sin (Ω + ω)a�

µ3

∫ 2π

0

(
1− 2e cos θ + sin2 θ − 3e cos θ sin2 θ)

)
dθ (2.14)

Note that since the first term in Eq. (2.14) is evaluated to be zero, Eq. (2.15) is true for the

perigee-aligned case. ∫ T

0
ėdt = 0 (2.15)

To continue with the derivation, solve for the integrals in Eq. (2.14) to get Eq. (2.16) [20].

δex = −h
4 sin (Ω + ω)a�

µ3
(
θ − 2e sin θ + 0.5θ − 0.25 sin 2θ − e sin3 θ

)
|2π0

= −3πh4 sin (Ω + ω)a�
µ3

(2.16)

The ex derivative is approximated using this result for one satellite orbit in Eq. (2.17). This is

possible because one day (the satellite’s orbit about the Earth) is sufficiently smaller than one year
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(the Earth’s orbit around the Sun).

dex
dθ

=
δex
2π

= −3h4 sin (Ω + ω)a�
2µ3

(2.17)

Substituting Eq. (1.2) into Eq. (2.17) and recognizing that the scaling factor is equal to one for

this study, Eq. (2.18) is obtained.

dex
dθ

= −3h4 sin (Ω + ω)(p�ρAm )

2µ3
(2.18)

Now find the time derivative of ex in Eq. (2.19) using Eq. (2.18) and the derivative of Eq. (2.1),

where eN is the natural eccentricity. Use the assumption that h2 = µa(1− e2) ≈ µa [21, 23].

ėx =
dex
dθ

dθ

dt
=
−3a2p�ρA

2µm
sin (Ω + ω)n = −eNn⊕ sin (Ω + ω) (2.19)

Note that n is the mean motion of the satellite around the Earth, while n⊕ is the mean motion

of the Earth around the Sun (a.k.a. α̇). Since the mean motion is defined as n2 = µ
a3

[21, 23],

Eq. (2.20) defines the natural eccentricity.

eN =
3p�ρA

2mn⊕na
(2.20)

When the data from a generic Eurostar 2000 satellite is plugged in, this value is similar to the

results of the operators who proposed the new disposal orbit [13]. Also note that when integrated,

ex matches Eq. (2.1). This eccentricity component helps the eccentricity vector trace a full circle

for α = Ω + ω = 0 to 2π radians as expected [12]. This also matches the behavior described in the

Eurostar 2000 literature [13].

When the orbit’s perigee is aligned with the Sun, the orbit becomes sun-synchronous-like. It

maintains its orientation with respect to the Sun, but the argument of periapsis changes instead

of the right ascension of the ascending node (which remains constant) [21]. This is mainly an

argument of semantics due to the small eccentricity of this orbit.
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2.3 Derivation of Ideal ėy

A similar analysis is conducted for ey. Using Eq. (2.1), the derivative of ey is approximated

in a similar fashion. Start with Eq. (2.21).

δey =

∫ T

0

(
ė sin (Ω + ω) + e(Ω̇ + ω̇) cos (Ω + ω)

)
(2.21)

Substitute Eq. (2.3) into Eq. (2.21) to get Eq. (2.22).

δey = sin (Ω + ω)

∫ T

0
ėdt+

h cos (Ω + ω)a�
µ

∫ T

0

(
1 +

sin2 θ

1 + e cos θ

)
dt (2.22)

With the results from the previous analysis for ex, Eq. (2.22) becomes Eq. (2.23) [20].

δey =
3πh4 cos (Ω + ω)a�

µ3
(2.23)

The derivative of ey with respect to θ over one orbit is approximated in Eq. (2.24).

dey
dθ

=
δey
2π

=
3h4 cos (Ω + ω)a�

2µ3
(2.24)

Now find the time derivative of ey in Eq. (2.25) using the same procedure as ėx.

ėy =
dey
dθ

dθ

dt
=

3a2p�ρA

2µm
cos (Ω + ω)n = eNn⊕ cos (Ω + ω) (2.25)

The natural eccentricity is again Eq. (2.20). Note that when integrated, ey matches Eq. (2.1) and

therefore creates the expected eccentricity circle with ex [12].

2.4 Effect on Radius of Periapsis

Now that the eccentricity behavior is derived, the corresponding change in the radius of

periapsis (rp), defined in Eq. (2.26), can be examined.

rp = a(1− e) (2.26)

Start with the Gaussian variational equation for the semi-major axis in Eq. (2.27) [23].

ȧ =
2a2

h
(e sin θar + (1 + e cos θ)aθ) (2.27)
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With the current definitions for the accelerations, Eq. (2.27) simplifies to Eq. (2.28).

ȧ =
2a2a�
h

(−e sin θ cos θ + sin θ + e sin θ cos θ) =
2a2a�
h

sin θ (2.28)

Now solve for the semi-major axis change over one orbit of the satellite around the Earth.

Start with Eq. (2.29).

δa =

∫ T

0

2a2a�
h

sin θdt (2.29)

Change the integration variable from time to true anomaly in the same manner as before to get

Eq. (2.30).

δa =
2h2a2a�

µ2

∫ 2π

0
sin θ(1− 2e cos θ)dθ (2.30)

Using the assumption that h2 = µa, Eq. (2.30) is equivalent to Eq. (2.31), which is solved to get

Eq. (2.32) [20].

δa =
2a3a�
µ

(∫ 2π

0
sin θdθ − 2e

∫ 2π

0
sin θ cos θdθ

)
(2.31)

δa =
2a3a�
µ

(
− cos θ|2π0 − 2e

(
sin2 θ

2

)
|2π0
)

= 0 (2.32)

Therefore the semi-major axis does not change over one orbit around the Earth, and by extension

remains constant for this analysis. This intuitively makes sense for the period of the orbit to remain

constant (an assumption that is not violated greatly by the solar radiation pressure perturbation)

[23]. This is also dependent on the assumption that the satellite is always in sunlight, which allows

the changes accrued over one satellite orbit to cancel each other out [11, 21]. (Even with eclipses,

the change in semi-major axis at GEO is shown in the very small - sometimes less than a meter over

the entire year [11].) Therefore the only change in the radius of periapsis, defined in Eq. (2.26),

over the year is due to the changing eccentricity values [21, 23]. By using the maximum eccentricity

value, the minimum radius of periapsis achieved over the year can be calculated.

As an example, the traditional and proposed orbits are compared for a Eurostar 2000 satellite.

The average solar pressure (p�) is taken as 4.57 x 10−6 N/m2 [21] and the Eurostar 2000 satellite’s

ballistic radiation coefficient (BC) is 0.05 m2/kg [4]. Note that the numerical value for the GEO

semi-major axis changes depending on how many perturbations are included in its calculation. For
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this study, the GEO semi-major axis is 42165.8 km. This is taken from Lagrangian calculations

where the latitude variation and the long-term drift due to the Sun and the Moon are nulled [12].

The traditional semi-major axis for the Eurostar 2000 satellite is 42,450.800 km, while the

proposed semi-major axis is 42,424.407 km. The traditional orbit raises the radius of periapsis and

semi-major axis 285.000 km, while the proposed orbit raises the radius of periapsis 235.000 km and

the semi-major axis 258.607 km. These results match the findings in literature [4].

2.5 Fuel Savings

The change in the semi-major axis between the two disposal orbits reduces the fuel needed

to reorbit, which is one of the drivers of this research. While multi-year orbit evolution is not

addressed in this study, the proposed orbit is a short term solution to help keep these satellites

above the GEO belt longer if not enough fuel is allocated for reorbiting. Again, a generic Eurostar

2000 satellite is used as an example. There are many types of maneuvers that can reorbit a GEO

satellite into the proper SSO. For ease of comparison, a standardized transfer is used to compare

the traditional reorbit fuel costs to the proposed reorbit fuel costs. Two maneuvers are used: one

to raise the apoapsis of the transfer orbit and one to make it the perigee of the new orbit [21, 23].

The equations for both reorbit methods are the same.

Using the assumption that the GEO orbit is circular, the ∆V for the first maneuver is

calculated in Eq. (2.33) using Eq. (2.34) [21, 23].

∆V1 =

√
2µ

aGEO
− µ

aTrans
−
√

µ

aGEO
(2.33)

aTrans =
aGEO + aSSO

2
(2.34)

Similarly, the second ∆V is calculated in Eq. (2.35) [21, 23].

∆V2 =

√
2µ

Rp,SSO
− µ

aSSO
−
√

2µ

Rp,SSO
− µ

aTrans
(2.35)

The difference between the traditional and proposed orbits lies in the aSSO term. For the

traditional orbit, this is the new radius of periapsis. However, this radius of periapsis must include
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the solar radiation pressure term, and is therefore higher than the proposed method’s radius of

periapsis.

For the new method, aSSO is calculated using Eq. (2.26) and the natural eccentricity. How-

ever, calculating this is complicated since the semi-major axis of the new disposal orbit is included

in the natural eccentricity calculation. Therefore start with Eq. (2.20) and substitute Eq. (2.26) to

get Eq. (2.36).

eN =
3p�ρA

2mn⊕nrp
(1− eN ) = β(1− eN ) (2.36)

This is rearranged by Eq. (2.37) to get Eq. (2.38).

(1 + β)eN = β (2.37)

eN =
β

1 + β
=

3p�ρA
2mn⊕nrp

1 + 3p�ρA
2mn⊕nrp

(2.38)

This eccentricity is used to calculate the necessary aSSO to get the second ∆V . The total ∆V is

then compared between the two methods.

To give scope to the amounts of fuel being discussed, an average GEO reorbit fuel requirement

is 11 m/s for IADC recommendations (2.3% of the average station-keeping fuel for 10 years) [8].

In particular, reorbiting a Eurostar 2000 satellite (natural eccentricity = 0.00055645) with the

traditional method costs 10.338 m/s for 285 km increase, while the proposed method only costs

9.383 m/s. This might seem insignificant, but 0.956 m/s of fuel can extend the mission of an

uncontrolled satellite for many months [4] or leave extra margin for reorbiting. It also helps avoid

uncertainty for the behavior of the last bit of fuel, which is difficult to measure and can perform

randomly due to bubbling, etc [8, 13]. In addition, these results match the results of the operators

who proposed this new disposal orbit [4].



Chapter 3

Ideal Proposed Orbit Simulations

Now that the proposed orbit has been proven mathematically to achieve the desired eccen-

tricity behavior, it is simulated in two forms. The first is a MATLAB simulation, which is based

directly on the derivation results. This is intended to show these results in a more intuitive form,

as well as verify them by matching results in published literature. The second is a series of simu-

lations for NASA’s open source General Mission Analysis Tool (GMAT). This is used to simulate

the behavior under multiple influences (gravitational perturbations, third-body effects, and solar

radiation pressure). GMAT 2011a was used for this study, which uses the same model for the solar

radiation pressure force as shown in Eq. (1.2) [1].

3.1 MATLAB Simulation

For the first simulation, the proposed orbit is modeled in MATLAB. The results are listed

in Table 3.1, where the ratios are taken with respect to the idealized natural eccentricity and the

factors compare the actual components to the idealized components. For example, the center X

ratio is the ratio of the eccentricity circle center’s X coordinate to the ideal natural eccentricity

(i.e. the circle’s radius). Most of these values are listed for comparison with later results. Note

that in Fig. 3.1 the eccentricity vector starts on the ex axis and traces a circle. Since the circle is

based on the origin of the eccentricity plane, the length of the eccentricity vector, and therefore

the eccentricity magnitude, remains the same. Since the eccentricity magnitude remains constant,

the initial eccentricity magnitude is the maximum eccentricity magnitude. This gives the constant
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Table 3.1: Proposed Orbit Eccentricity Summary

Numerator Factor 1

Denominator Factor 1

Perigee Error 0◦

Initial ex 0.00055645

Initial ey 0

Initial |e| 0.00055645

Maximum |e| 0.00055645

Initial Eccentricity Ratio 1

Center X Ratio 0

Center Y Ratio 0
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Figure 3.1: Proposed Orbit Eccentricity Vector Behavior Over One Year

radius of periapsis in Fig. 3.2.

Note that while the initial right ascension of the Sun is assumed to be 0◦, this behavior occurs

no matter what the right ascension is as long as the orbit’s perigee points toward the Sun. The

eccentricity vector simply starts tracing the circle at a different point on the circle.
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Figure 3.2: Proposed Orbit Radius of Periapsis

3.2 GMAT Simulations

For the second simulation, both the traditional and proposed orbits are modeled in GMAT

for more realistic results.

3.2.1 Traditional Disposal Orbit

For comparison, the GMAT simulation models the evolution of a traditional circular disposal

orbit and the proposed disposal orbit over one year. The inputs for the traditional disposal orbit

analysis are shown in Table 3.2. A generic Eurostar 2000 satellite is used, so the satellite parameters

are either average values (referenced) or calculated (c) to achieve a ballistic radiation coefficient

(BC) of 0.05 [4]. Otherwise, these are the default GMAT values. Simulation conditions such as the

gravity model, etc., are also listed. The eccentricity behavior for this traditional orbit is shown in

Fig. 3.3(a). Note that the eccentricity increases from zero, so the radius of periapsis will decrease.

3.2.2 Proposed Disposal Orbit

The proposed orbit has two adjustments to the traditional orbit. The first is to target the

natural eccentricity instead of a null eccentricity. By using Eq. (2.20) and the given information,
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Table 3.2: Initial GMAT Parameters

Parameter V alue

Epoch 21545 TAI Modified Julian Date

Coordinate System Earth MJ2000 Equatorial

Semi-major Axis 42,450.8000 km (c)

Eccentricity 1 x 10−15 (c)

rest of Kep. elements 0◦

Initial Quaternion 0,0,0,1

Initial Attitude Rate 0◦/s

Dry Mass 1500 kg [22]

Reflectivity 1.5 [23]

Area for Solar Radiation Pressure 50 m2 (c)

Burns none

Integrator RungeKutta89

Initial Step Size 60 s

Accuracy 1 x 10−11

Minimum Step Size 0.001 s

Maximum Step Size 2700 s

Maximum Step Attempts 2,147,483,647

Force Model Error Control Root Sum Square Step

Force Model Central Body Earth

Primary Body Earth

Gravity Joint Gravity Model-2 Degree 8 Order 8

Drag None

Solar Radiation Pressure checked “on”

Propagate Mode None

Stop Tolerance 1 x 10−7

Stopping Conditions 365.2421897 days [21]

the natural eccentricity for the simulated Eurostar 2000 satellite is calculated as 5.5644595 x 10−4.

Research has shown that satellites are capable of obtaining eccentricities of 5 x 10−4 or less [3]. Note

that this is also similar to the targeted eccentricity from the literature studies of the Eurostar 2000

satellite, which from eN = 0.0115ρA/m is calculated at 5.75 x 10−4[4]. The second adjustment

is pointing the orbit’s perigee toward the Sun. This is accomplished in GMAT by starting the

simulation at a vernal equinox and setting Ω, ω, and θ to zero. Vernal equinox is set as 5:14 March

20, 2012, Universal Time [16]. Note that the eccentricity results in Fig. 3.3(b) do not vary nearly

as much as in Fig. 3.3(a).



23

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Time (days after vernal equinox)

E
c
c
e
n
tr

ic
it
y

(a) Traditional Orbit

0 50 100 150 200 250 300 350 400
4.8

5

5.2

5.4

5.6

5.8

6

6.2
x 10

−4

Time (days after vernal equinox)

E
c
c
e
n
tr

ic
it
y

(b) Proposed Orbit

Figure 3.3: Eccentricity Magnitude Comparison

3.2.3 Radius of Periapsis Comparison

The radius of periapsis trends for the two orbits are the opposite of the eccentricity trends,

as indicated in Eq. (2.26). (The radius of periapsis does include some extra perturbations from the

semi-major axis that are not due to solar radiation pressure.) The radius of periapsis differences

between the traditional disposal orbit and the proposed orbit are demonstrated in Fig. 3.4(a) and

Fig. 3.4(b). For the traditional orbit, the radius of periapsis decreases about 50 km from its initial

value, while the proposed orbit varies much less. Third body perturbations have not yet been

added, so this is the lower limit within IADC boundaries. (The Earth’s gravity model causes the

radius of periapsis to dip into the 35 km allocated to gravitational and third-body effects.)

While the expected trends from the derivation and MATLAB simulations are evident, there

are other trends as well. This is expected since these simulations include many other factors than

just solar radiation pressure. Gravitational perturbations from the Earth, eclipses, and out-of-plane

effects are included above. This behavior is further discussed in Appendix A. However, one major

contributor that has not yet been simulated is third-body perturbations, addressed in the next

section.
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(a) Traditional Orbit
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Figure 3.4: Radius of Periapsis over One Year

3.2.4 Third Body Perturbations

The other significant effect at GEO is third body perturbations from the Sun and the Moon.

Analytically examining this effect is beyond the scope of this thesis, but the previous GMAT

simulations are now repeated with third body perturbations added to show that despite third-body

perturbations, the overall effect on the radius of periapsis is the same. Eccentricity results are shown

in Fig. 3.5(a) for the traditional orbit and Fig. 3.5(b) for the proposed orbit. These perturbations

are more frequent and random than the gravity perturbations, but they are also much smaller

(described further in Appendix A). The mitigation between Fig. 3.6(a) and Fig. 3.6(b) still occurs.

Note that the radius of periapsis now varies over twice the distance as in Fig. 3.4(b), but the orbit

still does not enter the 200 km GEO protected zone.
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Figure 3.5: Eccentricity Magnitude with Third Body Effects over One Year
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Figure 3.6: Radius of Periapsis with Third Body Effects over One Year



Chapter 4

Sensitivity to Eccentricity

This eccentricity vector modification is intriguing and has merit for reorbit applications,

but the previous analysis is for the idealized case. Just as important is how this modification is

affected when errors in satellite knowledge or initialization occur. This modification is not useful

if the proper initial conditions are almost impossible to obtain. The effects of the major natural

eccentricity error sources and eccentricity initialization errors are explained in this chapter, and the

effects of a perigee pointing error are discussed in Chapter 5.

4.1 Natural Eccentricity Errors

For clarity, the natural eccentricity is repeated in Eq. (4.1). Numerous errors can be in-

troduced in this calculation due to the inexact nature of spacecraft management. Note that the

spacecraft knowledge errors in Eq. (4.1) are the same as the parameters of solar acceleration in

Eq. (1.2).

eN =
3p�ρA

2mn⊕na
(4.1)

At first, the initial eccentricity is assumed to be set by the guessed values to isolate the

spacecraft knowledge errors. In other words, the initial eccentricity is set exactly (an assumption

that will be disregarded later in this chapter). Therefore the center of the eccentricity circle, and

the overall eccentricity behavior, is developed from both the guessed (g) and the real (R) initial

conditions. This is most easily shown by examining the center of the eccentricity circle. The

coordinates of the center are shown in Eq. (4.2) [12]. Remember that the orbit’s perigee is assumed
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to be pointing directly toward the Sun, so α = Ω + ω.

X = ex,0 + eN,R cos (α0 − π) = eN,g cos (Ω0 + ω0)− eN,R cosα0

= (eN,g − eN,R) cos (Ω0 + ω0)

Y = ey,0 + eN,R sin (α0 − π) = (eN,g − eN,R) sin (Ω0 + ω0) (4.2)

4.1.1 Numerator Errors

Multiple components of the natural eccentricity’s numerator are susceptible to errors. How-

ever, Eq. (4.1) shows that the same percentage error in each component results in the same error

in the natural eccentricity, regardless of the error magnitude.

4.1.1.1 Numerator Components

The solar radiation pressure (p�) is the solar irradiance divided by the speed of light, but its

magnitude depends on the stage of the solar cycle [21]. Solar minima and solar maxima directly

affect the natural eccentricity, and therefore the radius of periapsis. While analyzing the long-term

evolution of solar radiation pressure is beyond the scope of this thesis, the sensitivity of the behavior

to changes from the mean solar radiation pressure can be examined.

Reflectivity (ρ) affects how much momentum is transferred by the sunlight [23]. Knowing

this parameter accurately is difficult because it varies for different materials and changes over time

[21]. A reflectivity of zero indicates a transparent surface, which means no force is transferred. A

reflectivity of one means the sunlight is fully absorbed. A reflectivity of two means the sunlight is

reflected and the force imparted on the satellite is doubled [21, 23].

To stay within the scope of this thesis, an average cross-sectional area (A) is used. However,

variations in area can be examined for their impact on this short-term perturbation. As mentioned

p reviously in Chapter 1, this also allows the satellite’s attitude to be ignored and a 0◦ incidence

angle to be assumed [21].
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4.1.1.2 Single Error Analysis

There are a number of ways to visualize the errors in the eccentricity behavior , but one of

the more intuitive is to look at the behavior of the eccentricity vector in the eccentricity plane over

one year, shown in Fig. 4.1. Area was selected as the erroneous variable, but each of the previous

parameters could be chosen since these results are normalized to percentage values. To simulate

this, the actual area is set as 10% greater than it is assumed. The results are summarized in Table

4.1. Note that the eccentricity magnitude increases from the initial set value in Fig. 4.2(a), which

will decrease the radius of periapsis in Fig. 4.2(b). Also note that a 10% increase in the natural

eccentricity (due to the numerator error) shifts the center X coordinate left by 10% of the ideal

natural eccentricity. This makes sense because the circle is larger but the initial eccentricity is the

same.

Note that these results include the assumption that the error occurs when the right ascension

of the Sun is 0◦. If the right ascension of the Sun is not zero, the same behavior occurs in the

eccentricity plane, but along the axis of the initial eccentricity instead of the ex-axis. This is logical

because the solar radiation force acts along this axis. When the perigee is aligned exactly, this is

the axis of the eccentricity vector. The analyses in the thesis are conducted with the right ascension

of the Sun at 0◦ to clarify patterns in the behavior.

Table 4.1: Numerator Error Eccentricity Summary

Numerator Factor 1.1

Denominator Factor 1

Perigee Error 0◦

Initial ex 0.00055645

Initial ey 0

Initial |e| 0.00055645

Maximum |e| 0.00066774

Initial Eccentricity Ratio 1.1

Center X Ratio -0.1

Center Y Ratio 0
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Figure 4.1: Eccentricity Vector Behavior over One Year with a Numerator Error
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Figure 4.2: Results from a Numerator Error

4.1.1.3 Monte Carlo Parameters

While single case error analysis lead to intuitive insights, it is one part of the overall determi-

nation of sensitivity. Gaussian distributions of the errors are examined to reveal overall trends due

to these errors. To accomplish this, the “gmdistribution” command is used to create an object with

a Gaussian distribution in MATLAB. This distribution is then sampled to generate raw data for
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the analysis. The sample size was determined by finding a distribution that followed the percentage

expectations of an ideal Gaussian distribution. This means that 68.26% of the values were within

one standard deviation of the mean, 95.44% of the values were within two standard deviations of

the mean, and 99.74% of the values were within three standard deviations of the mean [14]. This

performance standard also had to be balanced against computing time and power. Therefore 6000

values were run for each Gaussian distribution, which were sorted into 25 bins for the histograms.

In five test cases, the sample data averaged 0.328% error for one standard deviation, 0.182% error

for two standard deviations, and 0.042% for three standard deviations. Not much improvement

was noted for higher values, but computational time was significantly increased.

4.1.1.4 Monte Carlo Analysis

These parameters were used to analyze a Gaussian distribution of numerator errors. Area

was again selected as the erroneous variable. A Gaussian distribution was created in MATLAB

using 10% of the mean area as the standard deviation. Figure 4.3(a) shows the resulting center

X ratios, described by the trendline in Eq. (4.3). The ratio of the area to its mean is AR, which

is equivalent to the ratio of the actual natural eccentricity to the ideal (id) natural eccentricity.
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Figure 4.3: Center X Ratio Results from Numerator Errors
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There is a linear relationship between the area ratio and the center X ratio. This is intuitive since

the numerator errors merely change the radius of the eccentricity circle, which shifts its center in

the eccentricity plane accordingly. This linear relationship translates to the histogram of the center

X ratio results in Fig. 4.3(b), which also demonstrates a Gaussian distribution similar to the error

distribution.

Xc

eN,id
= −AR+ 1 (4.3)

Note that if the components in Eq. (4.3) are rearranged and the natural eccentricity ratio

is substituted for AR, Eq. (4.4) occurs. This indicates that the shift in the center X coordinate,

which ideally is zero, is the opposite of the difference of the actual natural eccentricity from the

ideal natural eccentricity. This was shown in the single error analysis and is expanded here for all

numerator errors. Again, since the initial right ascension of the Sun is assumed to be 0◦, all the

changes occur in the x-axis.

Xc = eN,id − eN (4.4)

Fig. 4.4 shows the maximum eccentricity magnitude obtained for each area ratio. Note that

the trendline for the errors in the right side of Fig. 4.4 is shown in Eq. (4.5). This trendline is

especially interesting because the coefficient is twice the idealized natural eccentricity and the y-

intercept is the idealized natural eccentricity (the parameters of a generic Eurostar 2000 satellite

are used). Note that if AR is zero, the ideal natural eccentricity results.

|e|max = 0.0011129AR− 0.00055645 (4.5)

One of the most interesting trends in Fig. 4.4 is that half of the numerator errors do not affect

the maximum eccentricity, and by extension the minimum radius of periapsis. While not initially

intuitive, this is explained visually in Fig. 4.5. Since the initial eccentricity is assumed to be exactly

set, the only change is the size of the eccentricity circle (ideally shown with the dashed line).

Errors that increase the natural eccentricity, and therefore the eccentricity circle’s size, increase the

maximum eccentricity as shown by the solid circle. Errors that decrease the natural eccentricity,

on the other hand, create a new eccentricity circle (shown in bold) completely contained in the
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ey

ex

Figure 4.5: Natural Eccentricity Error Explanation

original eccentricity circle. This circle’s maximum eccentricity is the initial eccentricity, which is

set exactly. Therefore, the maximum eccentricity itself does not change for these errors.

Fig. 4.6(a) shows the minimum radius of periapsis obtained for each area ratio. Note that

this behavior opposes the eccentricity behavior due to Eq. (2.26). The trendline for the errors on

the right side of Fig. 4.6(a) is shown in Eq. (4.6). A 10% increase in the area decreases the radius

of periapsis by 4.7214 km. However, the changed results are still mostly Gaussian as shown in
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Figure 4.6: Minimum Radius of Periapsis Results from Numerator Errors

Fig. 4.6(b). (Note the “errors” that do not change the radius of periapsis cause the increased value

of the right-most column.) These trends are the same for solar radiation pressure and reflectivity.

More importantly, this analysis implies that the minimum radius of periapsis can be protected from

natural eccentricity errors by targeting the maximum possible natural eccentricity.

rpmin = −47.214AR+ 47.214 (4.6)

4.1.2 Denominator Errors

The main variable susceptible to knowledge errors in the denominator is mass. Denominator

error effects are similar numerator error effects because the size of the eccentricity circle is still

changed. However, mass is inversely proportional to the natural eccentricity. While the trendlines

listed below are much more complicated due to this inverse relationship, the overall effects are

the same if the mass error is viewed as an inverted numerator error instead. For example, a 10%

increase in mass is comparable to a 10/11% increase in area.
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4.1.2.1 Single Error Analysis

To examine the effect of an error in the natural eccentricity’s denominator, first look at an

individual mass error’s effect on the radius of periapsis. For consistency, a 10% error is examined.

The results are summarized in Table 4.2. Note that the maximum eccentricity stays the same in

this example because increasing the mass decreases the natural eccentricity. As shown in Fig. 4.5,

this does not change the maximum eccentricity if the initial eccentricity is assumed exactly set.

Figure 4.7 illustrates that a 10% increased in mass corresponds to a 10/11% decrease in the

natural eccentricity and shifts the center X coordinate right 1/11% of the ideal natural eccentricity.

Note that the sum of the eccentricity ratio and X ratio is one again. As expected, the eccentricity

magnitude decreases from the initial set value in Fig. 4.8(a), which increases the radius of periapsis

in Fig. 4.8(b). This same behavior occurs if one of the numerator components is less than expected,

just like the numerator increase results are equivalent to a decrease in a denominator component.

Once again, the Sun’s right ascension is assumed to be 0◦.

Table 4.2: Denominator Error Eccentricity Summary

Numerator Factor 1

Denominator Factor 1.1

Perigee Error 0◦

Initial ex 0.00055645

Initial ey 0

Initial |e| 0.00055645

Maximum |e| 0.00055645

Initial Eccentricity Ratio 10/11

Center X Ratio 1/11

Center Y Ratio 0

4.1.2.2 Monte Carlo Analysis

To expand these insights into a general trend of denominator error behavior, analysis was

also conducted for a Gaussian distribution of mass errors. The standard deviation is set as 10%
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Figure 4.7: Eccentricity Vector Behavior over One Year with a Denominator Error
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Figure 4.8: Results from a Denominator Error

of the mean mass. Fig. 4.9(a) shows the center X ratios, which are described by the trendline in

Eq. (4.7) (where MR is the mass ratio to its mean). This trendline is more complicated since the

mass error corresponds to an inverted numerator error. However the histogram in Fig. 4.9(b) still

indicates a Gaussian distribution of results. Again, since the initial right ascension of the Sun is
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Figure 4.9: Center X Ratio Results from Denominator Errors

assumed to be 0◦, all the changes occur in the x-axis.

Xc

eN,id
= −1.2116MR4 + 5.9519MR3 − 11.579MR2 + 11.147MR− 4.3086 (4.7)

Fig. 4.10(a) shows the ratio of the actual natural eccentricity to the ideal natural eccentricity.

For mass, this ratio is the inverse of the mass ratio. (This differs from numerator errors, where

this ratio was self-defined.) The trendline for the natural eccentricity ratio is shown in Eq. (4.8).

Despite the added complexity, the sum of the center X and natural eccentricity ratios is still one as

shown in Eq. (4.9), which is equivalent to Eq. (4.3). Again, the histogram in Fig. 4.10(b) indicates

a Gaussian distribution of eccentricity ratios.

eN
eN,id

= 1.2116MR4 − 5.9519MR3 + 11.579MR2 − 11.147MR+ 5.3086 (4.8)

Xc

eN,id
+

eN
eN,id

= 1 (4.9)

Fig. 4.11 shows the maximum eccentricity magnitude for each mass ratio. The trendline for

the errors on the left side of Fig. 4.11 is shown in Eq. (4.10). The non-changing errors are now on

the right side of the figure since decreases in mass change the maximum eccentricity.
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Figure 4.10: Natural Eccentricity Ratio Results from Denominator Errors
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Figure 4.11: Maximum Eccentricity Magnitude from Denominator Errors

|e|max = 0.0028629MR4 − 0.011984MR3 + 0.01996MR2 − 0.016528MR+ 0.0062462 (4.10)

Fig. 4.12(a) shows the minimum radius of periapsis for each mass ratio, which again opposes the

eccentricity behavior due to Eq. (2.26). The trendline for the errors on the left side of Fig. 4.12(a)

is shown in Eq. (4.11). An increase in mass will not affect the minimum radius of periapsis, but

a 10% decrease reduces the minimum radius of periapsis by 5.2542 km. However, as shown in
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Figure 4.12: Minimum Radius of Periapsis Results from Denominator Errors

Fig. 4.12(b), the radius of periapsis results are still Gaussian for the changing values. Once again,

the minimum radius of periapsis can be protected from mass errors by using the minimum mass to

calculate the maximum possible natural eccentricity.

rpmin = −121.46MR4 + 508.44MR3 − 846.81MR2 + 701.21MR− 241.39 (4.11)

4.2 Initialization Magnitude Errors

Previously in this chapter, the initial eccentricity is assumed to be set exactly. This section

specifically disregards this assumption and examines errors from bad eccentricity magnitude ini-

tialization. Here, the natural eccentricity magnitude is known exactly, but the initial eccentricity

magnitude is not the same as this known value.

4.2.1 Single Error Analysis

In a similar manner to the natural eccentricity error analysis, first look at an individual

initialization error and how it affects the radius of periapsis. Here the achieved eccentricity is

10% greater than the desired (natural) eccentricity. The results are summarized in Table 4.3.

Note here that both the initial eccentricity and the maximum eccentricity are bigger than the
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natural eccentricity. This is because the initial eccentricity is no longer assumed to be exactly set,

therefore it is no longer a fixed point as demonstrated in Fig. 4.13. Even though the eccentricity is

maximized at initialization, this still decreases the radius of periapsis, as seen in Fig. 4.14(a) and

Fig 4.14(b), because the maximum eccentricity is larger than the natural eccentricity. Note that if

the initial eccentricity was smaller than the natural eccentricity, the maximum eccentricity would

still increase because the eccentricity circle would be shifted to the left instead of to the right.

Table 4.3: Initialization Error Eccentricity Summary

Numerator Factor 1

Denominator Factor 1.1

Perigee Error 0◦

ICerrorFactor 1.1

Initial ex 0.00061209

Initial ey 0

Initial |e| 0.00061209

Maximum |e| 0.00061209

Initial Eccentricity Ratio 1.1

Center X Ratio 0.1

Center Y Ratio 0
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Figure 4.13: Eccentricity Vector Behavior over One Year with an Initialization Error
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Figure 4.14: Results from an Initialization Error

Also note that a 10% increased initial eccentricity increases the center X coordinate by 10% of the

natural eccentricity. This is the opposite of the numerator errors. This is because an initialization

error shifts an eccentricity circle of the same size to a new starting point, whereas numerator errors

change the eccentricity circle’s size for the same starting point. Again, the right ascension of the

Sun is assumed to be 0◦.

4.2.2 Monte Carlo Analysis

To expand the single initialization error analysis results to all initialization errors, analysis

was conducted for a Gaussian distribution of initialization errors. The distribution uses 10% of the

natural eccentricity as the standard deviation. Figure 4.15(a) shows the center X ratios, which are

described by the trendline in Eq. (4.12) (where ER is the ratio of the initial eccentricity (e0) to

the natural eccentricity). This trend is also evident in Eq. (4.13), which is formed from Eq. (4.12).

Again, the linear relationship between the center X ratio and the eccentricity ratio is intuitive since

these errors merely shift the eccentricity circle. This linear relationship translates to the histogram

of the center X ratio results in Fig. 4.15(b), which demonstrates a Gaussian distribution similar to
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Figure 4.15: Center X Ratio Results from Initialization Errors

the error distribution.

Xc

eN
= ER− 1 (4.12)

Xc = e0 − eN (4.13)

Figure 4.16 shows the maximum eccentricity magnitude obtained for each area ratio. Note

that since the initial eccentricity is no longer set as a fixed point, all of the errors now increase

the maximum eccentricity. The trendlines for the left and right sides are shown in Eq. (4.14). As

expected, these expressions reflect symmetric behavior since shifting the eccentricity circle right

or left in the eccentricity plane results in the same maximum eccentricity change. Note that the

ER coefficients are the natural eccentricity and the left y-intercept is twice the idealized natural

eccentricity, so an ER of one results in the maximum eccentricity equaling the natural eccentricity

as expected.

|e|max,left = −0.00055645ER+ 0.0011129

|e|max,right = 0.00055645ER (4.14)

Fig. 4.17(a) shows the minimum radius of periapsis obtained for each eccentricity ratio.

The trendlines for the left and right sides are shown in Eq. (4.15). As expected, these trendlines
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Figure 4.16: Maximum Eccentricity Magnitude from Initialization Errors

oppose the symmetric eccentricity behavior. Note that both a 10% increase and a 10% decrease

initialization error decreases the radius of periapsis by 2.3607 km. Interestingly, this is half of the

radius of periapsis reduction caused by a 10% increase in the natural eccentricity. This is because

while both errors shift the eccentricity circle by the same magnitude (in opposite directions), the

natural eccentricity error does so by increasing the eccentricity circle’s radius. This change affects

the maximum eccentricity vector twice. Since initialization errors act symmetrically on the radius

of periapsis, the results represent half a Gaussian distribution as shown in Fig. 4.17(b).

rpmin,left = 23.607ER− 23.607

rpmin,right = −23.607ER+ 23.607 (4.15)
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Figure 4.17: Minimum Radius of Periapsis Results from Initialization Errors



Chapter 5

Sensitivity to Perigee Direction

Just as the previous chapter examined various eccentricity errors and their effect on the pro-

posed orbit, this chapter analyzes the effects of perigee offset errors (when the perigee is not pointing

directly toward the Sun). To examine this mathematically, add an offset angle φ between the Sun

direction and perigee as shown in Fig. 5.1. Now ar = −a� cos (θ + φ) and aθ = a� sin (θ + φ),

which are expanded into Eq. (5.1). Note that ah is still zero.

ar = a�(− cos θ cosφ+ sin θ sinφ)

aθ = a�(sin θ cosφ+ cos θ sinφ) (5.1)

Solar 
Radiation

ar

φ

Perigee

θ

aθ

Figure 5.1: General Solar Pressure Force
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With this offset error in the perigee direction, the angles are now related by Eq. (5.2),where g is

the guess or assumed value, and R is the real or true value.

Ω + ω = αg = αR + φ (5.2)

The true right ascension of the Sun, which determines the behavior of the eccentricity circle, is

shown in Eq. (5.3).

αR = Ω + ω − φ (5.3)

To isolate the perigee offset error the initial eccentricity magnitude is assumed to be exactly set

as the natural eccentricity, so the overall eccentricity vector behavior is developed from both the

guessed and real initial conditions.

5.1 Derivation with Perigee Offset

To analyze a perigee offset error’s effect mathematically, the modified accelerations are in-

serted into the Gaussian equations from Eq. (2.2) to get Eq. (5.4).

ė =
ha�
µ

(
sinφ+

(
e+ cos θ

1 + e cos θ

)
(sin θ cosφ+ cos θ sinφ)

)
ω̇ =

ha�
eµ

(
cosφ+

(
1

1 + e cos θ

)
(sin2 θ cosφ+ sin θ cos θ sinφ)

)
Ω̇ = 0 (5.4)

5.1.1 Derivation of ėx with Perigee Offset

The approach to this analysis is similar to the approach taken in Chapter 2. To find δex,

plug Eq. (5.4) into Eq. (2.4) to get Eq. (5.5). Remember that eccentricity is taken to the first order

since it is very small.

δex =
ha�
µ

(cos (Ω + ω)

∫ T

0

(
sinφ+

e+ cos θ

1 + e cos θ
(sin θ cosφ+ cos θ sinφ)

)
dt

− sin (Ω + ω)

∫ T

0

(
cosφ+

sin2 θ cosφ+ sin θ cos θ sinφ

1 + e cos θ

)
dt) (5.5)
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Note that when compared to the ideally aligned case, Eq. (5.5) is rewritten as Eq. (5.6), where id

stands for the ideal perigee-pointing case.

δex = cosφδex,id + sinφ
ha�
µ

(cos (Ω + ω)

∫ T

0

(
1 +

e+ cos θ

1 + e cos θ
cos θ

)
dt

− sin (Ω + ω)

∫ T

0

sin θ cos θ

1 + e cos θ
dt) (5.6)

The perigee offset is assumed constant since one day is relatively small compared to one year. The

first term is the effect due to the perigee-aligned solar radiation pressure acceleration component,

and the second part is due to the unaligned acceleration component. Continue the derivation by

expanding Eq. (5.6) to Eq. (5.7).

δex = cosφδex,id + sinφ
ha�
µ

(cos (Ω + ω)

∫ T

0
(1 + (e+ cos θ)(1− e cos θ) cos θ) dt

− sin (Ω + ω)

∫ T

0
(1− e cos θ) sin θ cos θdt) (5.7)

Simplify and change the integration variable from time to true anomaly in Eq. (5.8), which

is then simplified to Eq. (5.9).

δex = cosφδex,id + sinφ
h4a�
µ3

(cos (Ω + ω)

∫ 2π

0

(
1 + cos2 θ + e cos θ − e cos3 θ)(1− 2e cos θ

)
dθ

− sin (Ω + ω)

∫ 2π

0
(1− e cos θ) (1− 2e cos θ) sin θ cos θdθ) (5.8)

δex = cosφδex,id

+ sinφ
h4a�
µ3

(cos (Ω + ω)

(
θ|2π0 +

∫ 2π

0
cos2 θdθ − e

∫ 2π

0
cos θdθ − 3e

∫ 2π

0
cos3 θdθ

)
− sin (Ω + ω)

(∫ 2π

0
sin θ cos θdθ − 3e

∫ 2π

0
sin θ cos2 θdθ

)
) (5.9)

Solve Eq. (5.9) to get Eq. (5.10) [20].

δex = cosφδex,id

+ sinφ
h4a�
µ3

(cos (Ω + ω)

(
2π +

(
θ

2
+

sin 2θ

4

)
|2π0 − e sin θ|2π0 − 3e

(
sin θ

3
(cos2 θ + 2)

)
|2π0
)

− sin (Ω + ω)

(
sin2 θ

2
+ e cos3 θ

)
|2π0 ) (5.10)
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Note that the last term in Eq. (5.10) is evaluated to be zero, so for the non-perigee aligned accel-

eration component Eq. (5.11) applies (where ua stands for the unaligned component).∫ T

0
ω̇uadt = 0 (5.11)

Continue to simplify Eq, (5.10) to get Eq. (5.12).

δex = cosφδex,id + sinφ
3πh4a� cos (Ω + ω)

µ3
(5.12)

Plug in the result for the ideally aligned case in Eq. (2.16) to get Eq. (5.13).

δex = cosφ(−3πh4 sin (Ω + ω)a�
µ3

) + sinφ
3πh4a� cos (Ω + ω)

µ3
(5.13)

Note the aligned and unaligned components are very similar. Simplifying further, the change in ex

over one day is evaluated as Eq. (5.14).

δex =
3πh4a�
µ3

(− cosφ sin (Ω + ω) + sinφ cos (Ω + ω)) (5.14)

Therefore the general ex derivative is approximated by Eq. (5.15).

dex
dθ

=
δex
2π

=
3h4a�

2µ3
(− cosφ sin (Ω + ω) + sinφ cos (Ω + ω)) (5.15)

Plug Eq. (1.2) into Eq. (5.15) and recognize the scale factor is one for this study to get Eq. (5.16).

dex
dθ

=
3h4

2µ3
p�ρA

m
(− cosφ sin (Ω + ω) + sinφ cos (Ω + ω)) (5.16)

Again, use the assumption that h2 = µa to get the time derivative of ex in Eq. (5.17), which is

then simplified to Eq. (5.18).

ėx =
dex
dθ

dθ

dt
=
−3a2p�ρA

2µm
(cosφ sin (Ω + ω)− sinφ cos (Ω + ω))n (5.17)

ėx =
−3a2p�ρA

2µm
sin (Ω + ω − φ)n = −eNn⊕ sin (Ω + ω − φ) (5.18)

Again, this matches the literature results since αR = Ω + ω − φ [12]. Note that the natural

eccentricity is the same as Eq. (2.20) as well [12]. When Eq. (5.18) is integrated, Eq. (5.19) results.

ex = eN cos (Ω + ω − φ) (5.19)
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This traces a full circle for αR = Ω + ω − φ = 0 to 2π radians, which corresponds to one year.

Therefore the circular eccentricity plane behavior is once again verified. Interestingly, since the

sum of Ω, ω, and -φ goes from 0 to 2π radians, these values compensate for each other’s behavior.

This means the ω and φ behavior must balance since Ω is shown to be constant. Therefore φ is not

constant over a year if ω does not track α completely.

5.1.2 Derivation of ėy with Perigee Offset

A similar analysis is conducted for ey. Substitute Eq. (5.4) into Eq. (2.21) to get Eq. (5.20).

δey =
ha�
µ

(sin (Ω + ω)

∫ T

0

(
sinφ+

e+ cos θ

1 + e cos θ
(sin θ cosφ+ cos θ sinφ)

)
dt

+ cos (Ω + ω)

∫ T

0

(
cosφ+

sin2 θ cosφ+ sin θ cos θ sinφ

1 + e cos θ

)
dt) (5.20)

This can be written in terms of the ideally aligned results as Eq. (5.21), which is then simplified to

Eq. (5.22).

δey = cosφδey,id + sinφ
ha�
µ

(sin (Ω + ω)

∫ T

0

(
1 +

e+ cos θ

1 + e cos θ
cos θ

)
dt

+ cos (Ω + ω)

∫ T

0

sin θ cos θ

1 + e cos θ
dt) (5.21)

δey = cosφδey,id + sinφ
ha�
µ

(sin (Ω + ω)

∫ T

0

(
1 + e cos θ + cos2 θ − e cos3 θ

)
dt

+ cos (Ω + ω)

∫ T

0
sin θ cos θ(1− e cos θ)dt) (5.22)

Now switch the integration variable again from time to true anomaly to get Eq. (5.23), which

is simplified to Eq. (5.24).

δey = cosφδey,id

+ sinφ
h4a�
µ3

(sin (Ω + ω)

∫ 2π

0

(
1 + e cos θ + cos2 θ − e cos3 θ

)
(1− 2e cos θ)dθ

+ cos (Ω + ω)

∫ 2π

0
sin θ cos θ(1− e cos θ)(1− 2e cos θ)dθ) (5.23)
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δey = cosφδey,id

+ sinφ
h4a�
µ3

(sin (Ω + ω)

(∫ 2π

0
dθ − e

∫ 2π

0
cos θdθ +

∫ 2π

0
cos2 θdθ − 3e

∫ 2π

0
cos3 θdθ

)
+ cos (Ω + ω)

(∫ 2π

0
sin θ cos θdθ − 3e

∫ 2π

0
sin θ cos2 θdθ

)
) (5.24)

Solve the integrals to get Eq. (5.25) [20].

δey = cosφδey,id

+ sinφ
h4a�
µ3

(sin (Ω + ω)

(
2π − e sin θ|2π0 +

(
θ

2
+

sin 2θ

4

)
|2π0 − 3e

(
sin θ

3
(cos2 θ + 2)

)
|2π0
)

+ cos (Ω + ω)

(
sin2 θ

3
|2π0 + e cos3 θ

)
)

= cosφδey,id + sinφ
h4a�
µ3

sin (Ω + ω)3π (5.25)

Note that Eq. (5.11) is proven again for the unaligned component. Combine Eq. (5.25) with the

ideal results in Eq. (2.23) to get Eq. (5.26).

δey =
3πh4a�
µ3

(cosφ cos (Ω + ω) + sinφ sin (Ω + ω)) =
3πh4a�
µ3

cos (Ω + ω − φ) (5.26)

Using Eq. (5.26), the general ey derivative with respect to true anomaly is calculated in

Eq. (5.27).

dey
dθ

=
δey
2π

=
3h4a�

2µ3
cos (Ω + ω − φ) (5.27)

After plugging in Eq. (1.2) with a scale factor of one, Eq. (5.27) becomes Eq. (5.28).

dey
dθ

=
3h4

2µ3
p�ρA

m
cos (Ω + ω − φ) (5.28)

To find the time derivative of ey, use the assumption that h2 = µa again to get Eq. (5.29).

ėy =
dey
dθ

dθ

dt
=

3a2p�ρA

2µm
cos (Ω + ω − φ)n = eNn⊕ cos (Ω + ω − φ) (5.29)

This matches the literature results since αR = Ω + ω − φ [12]. Note that natural eccentricity is

once again Eq. (2.20) [12]. When integrated, Eq. (5.29) becomes Eq. (5.30).

ey = eN sin (Ω + ω − φ) (5.30)
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This traces a full circle for αR = Ω + ω − φ = 0 to 2π radians, so the known eccentricity vector

behavior is still verified. The main change from the ideal perigee-pointing case to the general

perigee offset case is that the eccentricity magnitude is no longer constant due to the unaligned

component.

5.1.3 Comparison of Aligned and Unaligned Solar Radiation Pressure Effects

The preceding analysis reveals an intriguing insight into the solar radiation pressure’s effect

on an orbit’s eccentricity vector. For the solar radiation pressure acceleration component aligned

with perigee, ė is zero over one orbit around the Earth and ω̇ is nonzero, while the opposite is

true for the unaligned component. Therefore the aligned component of the solar radiation pressure

provides the rotation of the eccentricity vector, while the unaligned component of the solar radiation

pressure provides the change in eccentricity magnitude. The general orbit behavior is a perigee

offset-scaled combination of these two components. This leads to Eq. (5.31) and Eq. (5.32).

ė = ėid cosφ− ėua sinφ

ω̇ = ω̇id cosφ− ω̇ua sinφ (5.31)

∫ T

0
ėiddt =

∫ T

0
ω̇uadt = 0∫ T

0
ėuadt = e

∫ T

0
ω̇iddt =

3h4a�π

µ3
(5.32)

5.1.4 Effect on Radius of Periapsis with Perigee Offset

The goal of this analysis is to find the effect of perigee offset errors on the radius of periapsis.

Once again, use the Gaussian variational equation to determine the effect of a perigee offset error

on the semi-major axis (which for the ideal case remains constant). With the new acceleration

terms, Eq. (2.27) because Eq. (5.33), which is simplified to Eq. (5.34).

ȧ =
2a2a�
h

(e sin θ(− cos θ cosφ+ sin θ sinφ) + (1 + e cos θ)(sin θ cosφ+ cos θ sinφ)) (5.33)

ȧ =
2a2a�
h

(sin θ cosφ+ sinφ(e+ cos θ)) (5.34)
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Note that the first term is the same as the ideal result in Eq. (2.28) scaled by cosφ, and will

therefore integrate to zero. However, the (scaled) unaligned acceleration effect must be taken into

account. The change in semi-major axis for one orbit of the satellite around the Earth is Eq. (5.35).

δa = 0 +

∫ T

0

2a2a�
h

sinφ(e+ cos θ)dt (5.35)

Changing the integration variable from time to true anomaly results in Eq. (5.36).

δa =
2h2a2a� sinφ

µ2

∫ 2π

0
(e+ cos θ)(1− 2e cos θ)dθ (5.36)

Once again, the perigee offset angle is assumed constant over one orbit of the satellite around the

Earth.

Expanding Eq. (5.36) and assuming h2 = µa while only keeping first-order eccentricity terms

results in Eq. (5.37).

δa =
2a3a� sinφ

µ

∫ 2π

0
(e+ cos θ − 2e cos2 θ)dθ (5.37)

This integral is solved as Eq. (5.38) [20].

δa =
2a3a� sinφ

µ

(
eθ + sin θ − 2e

(
θ

2
− sin 2θ

4

))
|2π0 = 0 (5.38)

This shows that the unaligned component of acceleration also does not change the semi-major axis

over one orbit of the satellite around the Earth, rendering the semi-major axis constant for this

analysis. Therefore the only change in the radius of periapsis over the year is due to the changing

eccentricity values. Again, this is dependent on the assumption that the satellite is always in

sunlight, which allows the changes accrued over one satellite orbit to cancel each other out [21].

5.2 MATLAB Simulation

Once again, the mathematical analysis results for perigee offset errors are also simulated in

MATLAB. To isolate perigee-offset error effects, the natural eccentricity is assumed to be known

and the initial eccentricity magnitude is assumed to be exactly set by the operator. Therefore,

the eccentricity circle’s location in the eccentricity plane is determined by both the real behavior
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(R) and the assumed initial conditions (g). This is easily assessed by examining the center of the

eccentricity circle, shown in Eq. (5.39) [12].

X = ex,0 + eN cos (αR − π) = eN cos (Ω0 + ω0)− eN cosαR = eN cosαg − eN cosαR

= eN (cosαg − cosαR)

Y = ey,0 + eN sin (αR − π) = eN sin (Ω0 + ω0)− eN sinαR = eN (sinαg − sinαR) (5.39)

5.2.1 Single Error Analysis

The first MATLAB simulation looks at an individual perigee offset error and how it affects

the radius of periapsis. A 36◦ error is used to maintain an examination of 10% errors (of 360◦).

The general results are summarized in Table 5.1. As explained in further detail in Section 5.2.2, the

center Y coordinate also changes, so the center Y ratio is the ratio of this coordinate to the natural

eccentricity. Analytically, the center X ratio is equal to 1− cosφ and the center Y ratio is equal to

− sinφ. However, it is more intuitive to look at Fig. 5.2. Notice that the guessed initial eccentricity

is on the x-axis, since the eccentricity vector is assumed to be aligned with the Sun. Since there is

actually a 36◦ angle between the orbit’s perigee and the Sun, the center of the eccentricity circle is

relocated accordingly. Alternately, the initial eccentricity is at the 36◦ position on the circle instead

of at 0◦. Since the length of the eccentricity vector is changing, the eccentricity magnitude is also

Table 5.1: Perigee Offset Eccentricity Summary

Numerator Factor 1

Denominator Factor 1

Perigee Error 36◦

Initial ex 0.00055645

Initial ey 0

Initial |e| 0.00055645

Maximum |e| 0.00090035

Initial Eccentricity Ratio 1

Center X Ratio 0.19098

Center Y Ratio -0.58779
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changing as shown in Fig. 5.3(a). This increases the maximum eccentricity, shown in Table 5.1,

which leads to the change in the radius of periapsis shown in Fig. 5.3(b). Note that this behavior is

not perfectly sinusoidal because the center of the eccentricity circle is not on the ex axis. However,

the circular behavior is apparent in the sinusoidal behavior of the component derivatives in Fig. 5.4.
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Figure 5.2: Eccentricity Vector Behavior over One Year with a Perigee Offset
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Figure 5.3: Results from a Perigee Offset
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Figure 5.4: Eccentricity Component Derivatives with a Perigee Offset

5.2.2 Monte Carlo Analysis

After examining a single perigee offset error, a Gaussian distribution of perigee offset errors

is examined to form a general trend of the resulting radius of periapsis behavior. For this analysis,

the Monte Carlo parameters from Chapter 4 were used to create the Gaussian distribution. The

standard deviation was set at 36◦. Figure 5.5(a) shows the center X ratios for the perigee offsets.

This symmetric behavior is not intuitive unless the eccentricity plane is examined as shown in

Fig. 5.6. The dotted circle is the targeted eccentricity vector behavior, while the other three circles

show perigee offset errors in multiples of 90◦. Note that the centers of these circles (and all other

possible perigee offset error circles) create a circle themselves (shown in bold). This circle is why

the center X ratio behavior is symmetric (assuming the eccentricity magnitude is set exactly).

Since the center X ratio behavior is symmetric, its histogram in Fig. 5.5(b) is similar to a one-sided

Gaussian distribution. The trendline for the center X ratio, which is very complicated despite

this symmetric behavior, is shown in Eq. (5.40). Upon examination, this trendline reflects the

trigonometric behavior of the single case analysis for the range of data. (Neither MATLAB or

Excel allow the direct formation of trigonometric trendlines.)
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Figure 5.5: Center X Ratio Results from Perigee Offset Errors
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Figure 5.6: Perigee Offset Error Explanation

Xc

eN
= 9.2243 x 10−13φ5 − 3.3076 x 10−9φ4 − 7.8682 x 10−9φ3

+1.5059 x 10−4φ2 + 1.0709 x 10−5φ+ 6.15 x 10−4 (5.40)

Note that since these perigee offset errors are angles, the changes are not limited to just

the ex axis regardless of the right ascension of Sun. Figure 5.7(a) shows the center Y ratio for

the perigee offsets, which are described by the trendline in Eq. (5.41). This developed trendline

is also a more complicated version of the trigonometric behavior seen in the single error analysis.
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Figure 5.7: Center Y Ratio Results from Perigee Offset Errors

Again, the shape of the center Y ratio trend comes from the circle of centers shown in Fig. 5.6.

Interestingly, the histogram in Fig. 5.7(b) does not preserve the Gaussian behavior of the error

distribution. This is partly because the periodic sinusoidal behavior of the center Y ratio limits its

value between -1 and 1, as shown in Fig. 5.7(a).

Yc
eN

= −1.1656 x 10−11φ5 + 9.1479 x 10−12φ4 + 8.7717 x 10−7φ3

−4.6989 x 10−8φ2 − 1.7444 x 10−2φ+ 2.0366 x 10−5 (5.41)

Fig. 5.8 shows the maximum eccentricity magnitude for each perigee offset. Any offset in

perigee direction increases the maximum eccentricity, as shown in the trendlines for the right and

left sides in Eq. (5.42) . As expected from Fig. 5.8, these trendlines oppose each other due to the

rotation of the eccentricity circles shown in Fig. 5.6. Also note that Fig. 5.8 shows behavior that

is an interesting combination of the center X ratio and the center Y ratio trends.

|e|max,left = 1.1092 x 10−10φ3 − 9.8827 x 10−10φ2

−9.7342 x 10−6φ+ 5.5634 x 10−4

|e|max,right = −1.0875 x 10−10φ3 − 1.2344 x 10−9φ2

+9.7412 x 10−6φ+ 5.563 x 10−4 (5.42)
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Figure 5.8: Maximum Eccentricity Magnitude from Perigee Offset Errors

Fig. 5.9(a) shows the minimum radius of periapsis for each perigee offset. Again, this behavior

opposes the eccentricity behavior due to Eq. (2.26). The trendlines for the left and right sides are

shown in Eq. (5.43). Perige offsets of 36◦ and −36◦ both decrease the radius of periapsis by 14.6 km.

The histogram of the radius of periapsis results, shown in Fig. 5.9(b), shows a half Gaussian-like

trend due to this symmetric behavior.

rpmin,left = −4.8502 x 10−9φ4 − 5.6484 x 10−6φ3 − 1.4999 x 10−5φ2

+0.41182φ− 6.1701 x 10−4

rpmin,right = −5.2218 x 10−9φ4 + 5.7124 x 10−6φ3 − 1.8414 x 10−5φ2

−0.44176φ− 8.3165 x 10−4 (5.43)



58

−150 −100 −50 0 50 100 150
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

M
in

im
u
m

 R
a
d
iu

s
 o

f 
P

e
ri
a
p
s
is

 (
k
m

 a
b
o
v
e
 G

E
O

 +
 2

3
5
 k

m
)

Perigee Error (deg)

(a) Raw

−45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

100

200

300

400

500

600

Minimum Radius of Periapsis (km above GEO + 235 km)

T
im

e
s
 O

c
c
u

rr
e

d
 o

u
t 

o
f 

6
0

0
0

(b) Histogram

Figure 5.9: Minimum Radius of Periapsis Results from Perigee Offsets



Chapter 6

Conclusions

As discussed in this thesis, operators of an Eurostar 2000 satellite have proposed a new

disposal orbit developed to counteract the yearly perturbation due to solar radiation pressure. By

aligning the orbit’s perigee with the Sun and giving the orbit the satellite’s natural eccentricity, the

derivative of the eccentricity vector resulting from solar radiation pressure is converted to a change

in perigee direction only. The eccentricity magnitude stays the same while the perigee direction

rotates around the Earth with the right ascension of the Sun. While the solar radiation pressure

perturbation has been discussed previously in literature, it was rigorously verified mathematically by

a derivation from Gaussian variational equations and demonstrated through a MATLAB simulation.

This simulation also verified the proposed orbit under idealized conditions. NASA’s General Mission

Analysis Tool was then used to model this orbit under a variety of realistic conditions. While other

perturbations added smaller high-frequency perturbations, the radius of periapsis variation was

still drastically reduced with the proposed orbit.

This thesis then expanded the analysis to include the sensitivity of this orbit mitigation to

different parameters. These errors were divided into three categories, which were modeled with both

single errors and Gaussian error distributions. The first dealt with errors in the natural eccentricity

calculation. The natural eccentricity is dictated by the solar radiation pressure, reflectivity, area,

and mass. All of these except for mass proportionally affected the natural eccentricity, so equal

percentage changes led to equal radius of periapsis changes for these parameters (for the same

satellite). Mass is inversely proportional to natural eccentricity, so the inverse of its percentage
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change was equivalent to the others’ percentage changes. Assuming the initial eccentricity can be set

exactly, half of these errors do not decrease the radius of periapsis because only increases in natural

eccentricity affect the maximum eccentricity. This indicates the maximum natural eccentricity

should be used to ensure the desired minimum radius of periapsis.

The second error category disregards the exact initialization assumption and instead assumes

perfect knowledge of the natural eccentricity. All initialization errors result in a decrease in the

radius of periapsis. Moreover, this reduction is half of the radius of periapsis reduction from the

corresponding percentage error in natural eccentricity. However, the same decrease in the radius of

periapsis results regardless of whether the error is an increase or decrease of the same percentage.

The third category is errors in pointing the orbit’s perigee toward the Sun. The evolution

of the orbit was rederived to account for the generic alignment. This showed that the component

of solar radiation pressure that is aligned with the perigee direction controls the change in the

eccentricity vector direction, while the unaligned component of the solar radiation pressure controls

the change in the eccentricity magnitude. Once the known perturbation behavior was again verified,

the results of perigee offset errors were modeled in MATLAB. While additional changes in the ey

axis occur since these are angle errors, all errors decreased the radius of periapsis. Therefore while

the produced orbit nulls the solar radiation pressure perturbation in the ideal case, margin must

be left for errors, especially when absolute knowledge of the satellite’s parameters and control of

reorbiting does not exist.

This thesis addresses the one-year perturbation due to solar radiation pressure, which is

one piece of a much larger puzzle to design disposal orbits. The non-idealized effects of solar

radiation pressure need to be investigated over the long term for the proposed orbit before it can

be practically used since this derived behavior assumed first-order eccentricity values, no eclipses,

and constant parameters. The out-of-plane solar radiation force and inclination variances should

also be analyzed for their long-term effects on the overall orbit. Other perturbations, such as

luni-solar perturbations or Earth gravitational potential effects, may become larger factors over

the long term, slowly shifting an ideally-positioned eccentricity circle away from the eccentricity
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plane’s origin and decreasing the radius of periapsis. In addition, further sensitivity studies specific

to the spacecraft will need to be performed to determine a specific satellite’s ability to achieve

the necessary eccentricity vector in the disposal orbit on its last bit of fuel. In conclusion, even

though this new orbit shows potential for orbit design, there is more analysis to be done before

implementing it.
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Appendix A

Further Investigation into GMAT behavior

As demonstrated in Chapter 3, there are trends in the eccentricity and the radius of periapsis

behavior that are unaccounted for by the derived solar radiation pressure perturbation. These

effects are isolated and compared in the simulations below. The following simulations use the

proposed orbit parameters.

A.1 J2 Effects

The first effect isolated is the J2 effect. The Earth’s point mass creates a constant orbit that

does not change its shape or orientation in space. The oblateness of the Earth causes high-frequency

variations in the eccentricity, and therefore the radius of periapsis due to Eq. (2.26). These changes

are relatively small and fast compared to the analyzed solar radiation pressure perturbation, so

over a year it appears as a “band” of results around the average behavior, as seen in Fig. A.1(a)

and Fig A.1(b).

A.2 Full Gravity Model Effects

After examining the J2 results, all of the Earth’s gravitational model is included in the

simulation. The Joint Gravity Model-2 Degree 8 Order 8 model is used in this thesis. Figure A.2(a)

shows a slight variation in the eccentricity bounds, but Fig. A.2(b) implies that there are also

periodic variations in the semi-major axis. Once again, these perturbations are smaller than the

solar radiation pressure perturbation the proposed orbit is designed to overcome.
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Figure A.1: Results with J2 Effect Only
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Figure A.2: Results with Full Gravity Model

A.3 Third Body Effects

Next, the third body effects of the Sun and the Moon are isolated and analyzed. As seen in

Fig. A.3(a) and Fig. A.3(b), these effects are more random than the gravitational effects, although

general periodic patterns and a slight secular slope are seen (this is a part of a longer periodic effect).



66

0 50 100 150 200 250 300 350 400
4

4.5

5

5.5

6

6.5

7
x 10

−4

Time (days after vernal equinox)

E
c
c
e
n
tr

ic
it
y

(a) Eccentricity Magnitude

0 50 100 150 200 250 300 350 400
230

232

234

236

238

240

242

Time (days after vernal equinox)

R
a
d
iu

s
 o

f 
P

e
ri
a
p
s
is

 (
k
m

 a
b
o
v
e
 G

E
O

)

(b) Radius of Periapsis

Figure A.3: Results with Third Body Effects

Again, these perturbations are smaller than the solar radiation pressure perturbation analyzed in

this thesis.

A.4 Out-of-Plane Solar Radiation Pressure Effects

Finally, an interesting trend occurs when just solar radiation pressure and the Earth’s point

mass are used to propagate the proposed orbit. The eccentricity and radius of periapsis results

are shown in Fig. A.4(a) and Fig. A.4(b). This additional perturbation is from the solar radiation

pressure, but is smaller than the original examined solar radiation pressure effect (which is nulled

by the proposed orbit). Since this perturbation is also a yearly periodic effect, the most probable

explanation is the 23.44◦ angle between the equator and the ecliptic plane. [12] This causes a

small part of the solar radiation pressure to act out of the orbital plane, causing this effect. Since

the extra perturbation is so much smaller than the analyzed solar radiation perturbation, it is not

analyzed in this thesis. In fact, it often is masked by other perturbations as seen in Fig. 3.6(a) and

Fig. 3.6(b).
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Figure A.4: Results with “Corrected” Solar Radiation Pressure


