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Panosian, Stephen (MS. Aerospace)

Stiffness Analysis of the Tethered Coulomb Structure Concept and Application

Thesis directed by Dr. Hanspeter Schaub

This thesis investigates the Tethered Coulomb Structure (TCS) concept and its operating

regime for creating large space structures and for providing satellite situational awareness. A TCS

consists of a three-dimensional tethered spacecraft formation that uses electrostatic forces to repel

the spacecraft and inflate the formation to a semi-rigid structure. The influential force modeling

and equations of motion are given. Numerical simulations of a two-node TCS show that TCS

systems have the greatest translational and rotational stiffness when the nodes have high voltage,

low separation distance and low mass. Single tether two node TCS at 30 kV with 5 m separation

are shown to withstand up to 50 deg/min initial rotations before reaching an entangled state.

Multiple tether TCS simulations demonstrate that additional tethers between TCS nodes provides

full three-dimensional stiffness and reduces the maximum absolute rotation for the system due to

an initial perturbation. Using a double- or triple-tether TCS increases the maximum allowable

initial rotation by 40-60%. Orbital perturbations, differential gravity and solar radiation pressure,

are examined and it is demonstrated that both can be considered negligible for this study. A TCS

configuration where one small spacecraft is tethered to a large spacecraft in orbit is presented.

Simulations using a simple attitude control law show that a TCS in this configuration can be used

to hold the smaller craft at a relatively fixed arbitrary position and rotation relative to the larger

craft. Using multiple tethers for this configuration allows for separation distances of up to 10 m

with less than 5 deg and 1 cm relative rotation and translation, respectively.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

Advancing space technologies such as remote sensing, high resolution surveillance, radiom-

etry, space telescopes, space situational awareness and power collection are pushing the limits of

current space based platforms. These technologies desire large space-based platforms on the order

of hundreds of meters. Due to launch vehicle fairing size, the space-based platforms for these tech-

nologies is currently restricted to free flying spacecraft formations and large space structures that

are capable of fitting in a fairing. Advanced space platform technologies with large on orbit shape

change ability would allow for hundreds of meter space platforms to be launched on current launch

vehicles and perform long duration missions without major fuel restrictions.

One method of creating large rigid space structures is on-orbit construction, which has been

demonstrated in recent years by the assembly of the international space station. Even though this

method is proven, it requires human or advanced autonomous assembly which is very costly. An

additional, less costly, means of large space platforms are deployable spacecraft. This is an active

area of research, with only a few being successfully implemented or tested on orbit.[8, 9]

Two proposed NASA missions, Goddard Stellar Imager and the Terrestrial Plantet Finder,

have the intent of creating kilometer size baselines in space.[1, 3]. These two missions propose

the use of free-flying spacecraft to generate their baseline because these types of formations are

capable of variable baselines, system redundancy and fractionated and responsive architectures.[2]

However, free-flying formations with their complex relative dynamics have the disadvantage that



2

they necessitate precise relative motion sensing and control which often requires high propellant

usage. Even if the issue of propellant usage can be overcome, whether it be chemical or electrical

propulsion, free flying formations are not ideal for proximity operations less than 100 meters. At

these lower separation distances, thruster exhaust plume impingement would most likely damage

the spacecraft.

Several, essentially propellantless, concepts in recent years that address the relative mo-

tion and control issue are to use Coulomb electrostatic interactions,[11, 20] magnetic formation

flying,[12] Lorentz forces,[18] or flux-pinning.[6] Of specific interest is the use of inter-spacecraft

Coulomb forces to conduct close formation relative control because of its low power and propel-

lant requirements.[11, 20, 21] Even with the benefits this technology provides, the control of such

a cluster of spacecraft remains a challenging area of research because of the non-affine nature of

electrostatic force actuation. Only two and three craft formations have had analytically stable

charge feedback control strategies developed.[15, 16, 17, 29] Additionally, Coulomb spacecraft have

been proposed for the self-assembly of large space structures.[10] However, there are no analytical

stability guarantees for this N−vehicle assembly. This work examines a new concept, the Tethered

Coulomb Structure, that addresses the pitfalls of other space based technologies.

1.2 Tethered Coulomb Structure Concept

A novel new technology called the Tethered Coulomb Structure (TCS) provides a means of

creating large space structures using Coulomb forces and spacecraft interconnected with tethers.[22,

24] Compared to the previously mentioned free-flying Coulomb spacecraft, a TCS provides the

added benefit that the relative translation and rotation of spacecraft is restricted by the length

and attachment point of the interconnecting tethers. Figure 1.1 illustrates the TCS concept where

individual spacecraft nodes are interconnected with fine, low-mass tethers. Electrostatic (Coulomb)

forces provide repulsion between nodes when the spacecraft have the same polarity. The Coulomb

forces inflate the TCS structure and provide structure rigidity while the shape and size of the TCS

is determined by the tether lengths and attachment points. However, it is envisioned that tether
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lengths could be varied on orbit. The potential on the spacecraft that creates the Coulomb forces

is obtained by using charge control devices. Active ejection of ions or electrons is used to drive

a spacecraft’s potential away from its natural space weather dependent equilibrium to the desired

potential.

Fixed tether 
attachment points

Tethers maintain structures 
shape/configuration

Thruster 
node

Conducting 
Tethers

Charged nodes 
provide rigidity

Sensor 
node

Figure 1.1: Tethered Coulomb Structure concept

Some key advantages of a TCS is that it would have long term mission capability because,

like Coulomb formation flying, it only requires Watt-levels of power and little propellant mass.[22]

The major benefit of a TCS compared to Coulomb formation flying is that the control required

for TCS is substantially reduced. TCS systems do not require precise charge levels to maintain

relative positions due to their shape being constrained by the tethers. Spacecraft charge levels

must only be maintained above a certain threshold for which the TCS system would be robust to

orbital perturbations such as differential gravity and solar radiation pressure. Additionally, relative

attitude control between spacecraft nodes will be negligible when the Coulomb and tensile forces

are in equilibrium.

It is envisioned that TCS configuration sizes will vary from two-node five-meter systems

to many node systems of hundreds of meters. Large TCS sizes are possible because the TCS

concept has the benefit of being able to be launched in a compact configuration and then deployed
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on-orbit. The deployment is controlled by the Coulomb inflationary forces which then provide

structural rigidity. The TCS shape is determined by the length of the tethers, but varying mission

sensing requirements could be accommodated with length-adjustable tethers. The TCS concept

is not restricted to large space structures but can also be used to hold a small spacecraft in a

reasonably fixed position relative to a primary spacecraft. This provides a means for situational

awareness or other local sensing. Additionally, a TCS system is not restricted to specific equilibrium

configurations or spin rates because the Coulomb force can be used to maintain tension in the tether.

Figure 1.2 shows how the TCS concept compares to other space platform technologies. Specif-

ically, it shows the relation between a systems on-orbit shape change ability and the required control

for that technology. Starting in the lower left of the figure is a large monolithic spacecraft, such as

the Hubble space telescope, which is a single structure with its only shape change ability being that

it can deploy solar panels on orbit. This technology requires minimal relative motion or structure

flexing control. Next in the figure is large deployable space structures. The iSat is one envisioned

large deployable spacecraft in which the structure could reach a 100 meters or larger. These types

of structures would have minimal mass and could require active damping to remove oscillations.

Continuing on, other larger structures such as solar sails, inflatable spacecraft then tethered space-

craft allow for more on-orbit shape change but would require more active control. On the far right

of the figure is free-flying formations. This technology provides immense amount of variation of

orbit shape, that is only limited to propulsion and fuel constraints. Even so, the relative sensing

and control would have to be much greater than any of the previous technologies. The proposed

TCS concept lies between a tethered spacecraft and free-flying formations. The shape change of

a TCS is only limited by the tether connection points and tether lengths. The nodal control is

vastly simplified because the Coulomb inflation and tensile forces bound the relative positions and

rotations.

Compared to the other spacecraft technologies in Figure 1.2, the TCS concept has one addi-

tional constraint, the local plasma environment. TCS systems must operate at GEO altitudes or

higher where the local plasma is nominally hot and sparse so that there is minimal charge shielding
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Free-flying
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Figure 1.2: TCS concept shape change attributes and control requirements comparison

due to the local plasma. Charge shielding effectively reduces the repulsion forces between space-

craft nodes which in more cold and dense plasma could cause a TCS to collapse. During Earth

eclipse at GEO, spacecraft can naturally charge to kilovolt potentials. These such levels are what

is envisioned for a TCS.[4, 13] Additionally, there is space-proven technology that could control

the charge of a spacecraft with a charge-emission device. This charge control, at the volt-level,

was demonstrated on the European CLUSTER mission.[5, 27, 28] Since the spacecraft are all in-

terconnected, a charge control device could be used on all structures or only on one craft and then

distributed via conducting tethers. The advantages and disadvantages of either charging scenario

are still being researched.

Previous research on the TCS concept investigates relative motion without nodal rotation[22]

as well as simplified two-dimensional translational and rotational motion about one axis.[24]. This

research expands upon previous work to investigate and quantify the full three-dimensional transla-

tional and rotational stiffness of a TCS using numerical simulations. Due to the high non-linearity

of a TCS, only numerical simulations are conducted. The stiffness of a two node TCS system is

used for analysis because it represents a lower bound on a TCS systems stiffness. TCS system

properties and effects of multiple tethers between nodes are examined to determine optimal TCS

configuration characteristics. Finally, this work presents and analyzes a TCS application in which a
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small spacecraft is tethered to a large spacecraft at GEO to determine the feasibility and operating

regimes of using the TCS concept for satellite self situational awareness.

1.3 Outline

The work in this thesis explores the fundamentals of the TCS concept and its application.

To begin, an explanation of the the electrostatic force model that is used in simulation is given.

This is followed by the definition of the other influential forces and the presentation of the full

translational and rotational equations of motion. Next the translational and rotation stiffness of a

two node TCS is analyzed. Specifically, the effects of system and nodal parameters are examined as

well as environmental impacts. The impact and benefit of multiple tethers between TCS nodes is

then presented. From here, the expected perturbations for a TCS and their impact are evaluated.

Following that, a specific application for a TCS is introduced in which a small TCS node is attached

to a larger node at GEO. Lastly, the final results from this work are presented and future work

ideas are given.



Chapter 2

Tethered Coulomb Structure Equations of Motion

2.1 Electrostatic Force Modeling

A Coulomb force is generated from the electrostatic interaction of two charged bodies. If two

bodies in a vacuum have charges q1 and q2, the Coulomb force between them is computed as:

|Fc| = kc
|q1q2|
r212

(2.1)

where kc = 8.99× 109 Nm2C−2 is the vacuum Coulomb constant and r12 is the separation distance

between bodies 1 and 2. If it is assumed that the spacecraft body is comprised of an outer spherical

surface that maintains a constant charge q1, then its potential in a vacuum is given as:

Vsc1 =
q1kc
ρ

(2.2)

where ρ is the radius of the spherical craft.

Equation 2.2 is only valid in a vacuum, which is not true at GEO. At GEO, the Coulomb

force will be partially shielded by free-flying charged particles of the local plasma environment. The

Debye length, λD, signifies the strength of the shielding due to the plasma. If a small spacecraft

potential compared to the local plasma thermal energy is assumed

ecVsc1 � κTe (2.3)

where ec = 1.602176×10−19 C is the elementary charge, κ = 1.38065×10−23 JK−1 is the Boltzmann

constant and Te is the plasma electron temperature in Kelvin, then the potential about this charged
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craft is represented by the Debye-Hückel equation [7, 30]:

V = kc
q1
r
e−(r−ρ)/λD (2.4)

This potential equation incorporates plasma shielding and represents a conservative bound of the

charge interaction the nodes will experience[14]. At GEO, the ecVsc1 � κTe condition is no longer

true if the spacecraft charges to 1-10 kV potentials. The neglected higher order terms of Poisson’s

partial differential equation, which led to Equation 2.4, results in less plasma shielding of the

electrostatic fields.[14] Thus, the use of Equation 2.4 is considered a conservative estimate of the

actual potential that might exist about a body. The benefit of using Equation 2.4 is that it allows

for simplified analysis, and faster numerical simulations because the full Poisson-Vlasov equations

do not need to be solved. Solving the full Poisson-Vlasov equations requires solving complex partial

differential field equations.

Taking the gradient of the potential in Equation 2.4 (assuming spherical symmetry) yields

the resulting Coulomb force Fc relationship between charged craft 1 and 2:

|Fc| = kc
q1q2
r212

e(−(r12−ρ))/λD
(

1 +
r12
λD

)
(2.5)

The Coulomb force of Equation 2.5 is created between two point charges and does not accommodate

realistic charge distribution effects from having two closely separated finite spheres. An improve-

ment to the Coulomb force is made by modeling the effective charge between two finite spheres

of fixed potential. This has a significant influence on the effective charge of each sphere when the

center-to-center separation is low relative to the sphere radii (separations less than approximately

10 sphere radii, r < 10ρ). Figure 2.1 shows two close spheres that maintain a fixed potential, Vi.

In the absence of sphere 2, the point charge of 1 is computed using Equation 2.2. However,

once sphere two is introduced the net potential of both spheres changes the effective sphere charge

and consequently the Coulomb force. The potential at sphere 1 is computed including the charge

of sphere 2 using the expression[25, 26]:

V1 = kc
q1
ρ

+ kc
q2
r

(2.6)
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ρ

r

V1 V2

q1 q2

ρ

Figure 2.1: Two closely separated charged finite spheres

Similarly, there is an equivalent potential equation for sphere 2. With spheres 1 and 2 set to known

and equivalent potential magnitudes V1 = V2, (a nominal TCS application characteristic) the two

potential equations can be independently solved for the resulting equivalent charge of each sphere:

qi =
Vi
kc

(
ρr

ρ+ r

)
(2.7)

If the spheres have a large separation distance (r � ρ) Equation 2.7 will reduce to the standard sin-

gle sphere charge defined in Equation 2.2, as required. The effective charge and repulsive Coulomb

force is reduced from the equivalent point charge model. Using the charges from this model and

the force equation of Equation 2.5 is a conservative estimate for the force in a plasma. Modeling

electrostatic forces between two finite spheres in a plasma is still under investigation.

Generalizing Equation 2.6 for N spheres gives the potential equation:

Vi = kc

 qi
ρi

+

N∑
j=1

qj
rij

 j 6= i (2.8)

Equation 2.8 can be reduced to a system of linear equations given by:

V = kcAq (2.9)

where A is given by:

A =



1
ρ1

1
|r12| · · ·

1
|r1N |

1
|r12|

1
ρ2

...

...
. . .

...

1
|r1N | · · · · · · 1

ρN


(2.10)

This system of equations is what is used in simulation to solve for the charges of each node.
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2.2 TCS Forces

The numerical simulation used for this research solves for the translational and rotational

motion of TCS nodes. The only forces assumed to be acting on a TCS at GEO are Coulomb,

tensile, gravity, and solar radiation pressure forces. The Coulomb force is given in the previous

sections by Equations 2.5 and 2.8. The remaining forces are discussed here.

The tethers are modeled as a proportional spring with nonlinear end displacements. This al-

lows for general tether stretching due to arbitrary node translation and/or rotation. The magnitude

of the tensile force from a single tether is given by:

|Fs| =


ksδL δL > 0,

0 δL ≤ 0.

(2.11)

where ks is the proportional spring constant and δL is the stretch in the tether. The spring constant

is given by:

ks =
EA

L
(2.12)

where E, A and L are Young’s modulus, tether cross-sectional area and the nominal tether length,

respectively. For this work E and A are assumed to be 271e9Pa and 5.29e − 10m2, respectively.

These values are representative of materials that are being consider for the TCS tethers.

If only a two node TCS with a single there is simulated, Equation 2.11 would give the total

tether force on a node. However, the simulation is capable of simulating more than two nodes

with multiple tethers between nodes. The NxN adjacency matrix, [K], defines which nodes are

connected and by how many tethers, where N is the number of spacecraft nodes. The tether length

increase of tether k between nodes i and j is defined by δLijk. Therefore, the resulting tensile force

acting on node i from the tether(s) connected to node j is:

Tij = ks

M∑
k=1

δLijkτ̂ijk (2.13)

where M is the number of tethers between nodes i and j as defined by [Kij ] and τij is the vector

defining the kth tether’s connections between node i to j.
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A two-body model for gravity is used in simulation to simulate a TCS operating on orbit at

GEO. The force from gravity is given as:

|Fg| =
µmi

|Ri|2
(2.14)

where µ = 3.986 × 1014 m3s−2 is the gravitational coefficient for Earth, mi is the spacecraft node

mass and Ri is the inertial position of node i.

Solar radiation pressure is simulated using a simplified model. The SRP force magnitude is

given by:

Fsrp = PsrpCrAsc (2.15)

where Psrp, Cr, and Asc are the solar radiation pressure, surface reflectivity of the spacecraft and

the cross-sectional area of the spacecraft, respectively.

2.3 Translational Equations of Motion

All four forces presented previously impact the translational motion of a TCS node. Including

gravity and solar radiation pressure, then summing over all nodes, including the Coulomb force of

Equation 2.5 and the tensile force of Equation 2.13, results in translational equations of motion of

node i being calculated by:

R̈i = − µ

|Ri|2
R̂i + PsrpCrAscŜi +

N∑
j=1

Kij
Tij
mi

+
N∑
j=1

kcqiqj(−r̂ij)
mir2ij

e(−(r12−ρ))/λD
(

1 +
rij
λD

)
, i 6= j

(2.16)

where R̂i is the unit vector from the Earth to node i, Ŝi is the unit vector from the Sun to node

i, N is the total number of nodes in the TCS model, and Kij is a scalar based on the adjacency

matrix which is 0 if no tethers connected or 1 if any tethers are connected. Figure 2.2 depicts

a general multi-node TCS with various amounts of tethers which is governed by Equation 2.16.

Equation 2.16 is the full translational motion for a TCS in GEO. However, most of the simulations

in this work use a simplified model for translational motion where gravity, solar radiation pressure
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Figure 2.2: Dynamic model setup for a 3D three-node example

and plasma effects are neglected. The simplified equation of motion is given by:

R̈i =
N∑
j=1

Kij
Tij
mi

+
N∑
j=1

kcqiqj(−r̂ij)
mir2ij

, i 6= j (2.17)

Justification for this simplification is given in further sections.

2.4 Rotational Equations of Motion

It is assumed that the only force that affects the rotational motion of a TCS are the tether

forces. Coulomb forces are neglected because they are assumed to be acting on the center of each

node. Differential gravity can be ignored because the spacecraft are spherical. Solar radiation

pressure can induce torques but its effects are not included here. Justification for this is given in a

later section. Therefore, the attitude of each spacecraft node is dependent on the torque acting on

the node from each tether:

BΓi =
N∑
j=1

[
M∑
k=1

(
Kij
Bpijk × [BI]i

ITijk
)]

, i 6= j (2.18)

where pijk is the body fixed vector that defines the location of the kth tether attachment point on

node i that connects to node j and [BI]i is the direction cosine matrix of the attitude of node i

relative to the inertial frame. The angular acceleration of each node is defined in the body frame
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with Euler’s rotational equations of motion[19]:

[I]ω̇i = −ωi × ([I]ωi) + Γi (2.19)

The attitude of each node is represented with the modified rodrigues parameters (MRP) which are

integrated using the differential kinematic equation:

σ̇i =
1

4

[
(1− σ2i )[I3x3] + 2[σ̃]i + 2σiσ

T
i

]
ωi (2.20)

The MRP set will go singular with a rotation of ±360◦. To ensure a non-singular description, the

MRP description is switched to the shadow set whenever |σ| > 1.[19]



Chapter 3

Translational and Rotational Stiffness

3.1 Translational Stiffness

Using the TCS equations of motion, a simplified two-node TCS configuration is numerically

simulated using Equation 2.17 to study the effects of various system parameters on the translational

stiffness of the TCS. Simulation validation can be found in Appendix A. The system parameters

under investigation are the node separation distance, node mass, tether spring constant and node

voltage. Table 3.1 shows the nominal parameters used in the numerical simulation sweeps. These

parameters are the values used when varying the other parameters. Figure 3.1 shows the trans-

lational frequency and peak to peak oscillation amplitude for the various simulations conducted.

For these simulations the nodes are started with the tensile and Coulomb forces in equilibrium and

then each node is given and equal and opposite initial translational velocity of 0.1 mm/s.

Figure 3.1 illustrates the common trends of a two node configuration as the TCS parameters

are varied. For example, Figures 3.1(a), 3.1(b), 3.1(c), and 3.1(d) show the frequency and amplitude

response if the voltage and separation distance is varied and all other parameters are held fixed.

Table 3.1: Translational simulation parameters

Separation Distance 5 m
Node Mass 50 kg

Spring Constant 35.8398 N/m
Node Voltage 30 kV
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Figure 3.1: Translational motion dependencies.
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Naturally the translational frequency and the amplitudes vary as the TCS equilibrium depends

on the voltage and separation distance used. The figure shows that larger voltages and shorter

separation distances increase the translational stiffness.

Figures 3.1(e) and 3.1(f) show how the translational stiffness increases if the nodal masses

are kept small. Thus, for the TCS concept, it is beneficial to keep the support nodes as light as

possible to increase the translational TCS stiffness. Additionally, Figures 3.1(g), 3.1(h) show that

a stiffer tether provides more translational stiffness.

3.2 Rotational Stiffness

Rotation of individual nodes is of specific interest for TCS systetms because the rotational

stiffness will have direct effects on deployment and orbital maneuvers of TCS systems. The aim

of this section is to determine the allowable rate and direction of node rotation that will return

the node to its original attitude and that which does not result in the tether becoming entangled

with the node. A TCS configuration must be robust towards initial conditions and perturbations.

Therefore the rotational stiffness of a two node configuration in deep space (no gravity) is examined.

Figure 3.2 details a rotation scenario that is studied. This scenario is chosen because there is no

net angular momentum, thus isolating the effects of TCS system parameters. Please note that this

2-node, single-tether configuration provides the worst possible rotational stiffness of a TCS system.

As such, it is a good system to study to examine lower performance bounds. This section examines

the two-node TCS for various TCS parameters and initial rotation rates. Additionally, the impact

of nodal properties such as inertia and nodal radius is examined.

3.2.1 System Parameter Effects

Similar to the translational stiffness analysis, a two-node TCS is examined for various volt-

ages, masses, separation distances and spring constants. The rotational case shown in Figure 3.2

is simulated with the parameters shown in Table 3.2, and the resulting rotational frequencies and

maximum angular deflections are shown in Figure 3.3. For these simulations the nodes are started
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Figure 3.2: Asymmetric rotational motion

at a TCS equilibrium with an initial angular spin rate of 10 deg/min.

Figures 3.3(a) and 3.3(c) show that the rotational stiffness of a TCS configuration can be

increased by decreasing either the node mass and/or decreasing the node separation distance.

Additionally, Figures 3.3(b) and 3.3(d) show that decreasing the separation distance and/or node

mass also decreases the maximum deflection of the nodes. Figures 3.3(e) and 3.3(f) illustrate

that the spring constant has little effect on the rotational stiffness of a TCS configuration. Finally,

Figures 3.3(g) and 3.3(h) show that increasing the node voltage effectively increases the TSC system

rotational stiffness.

Even though these cases are a lower bound on TCS performance, Figure 3.4 shows that

the spacecraft are still capable of withstanding moderate initial rotation rates without the tether

wrapping up around the spacecraft. For this single tether spherical two-node TCS, tether wrap

up would occur when a node is rotated 90 degrees from the vector connecting the two nodes.

Figure 3.4(a), 3.4(b) and 3.4(c) show the maximum angular deflection of nodes over various initial

rotation rates and voltages for 2.5m, 5m, and 10m separation distances. The results from Figure 3.4

also agree with the results from Figure 3.3, which show that larger voltages and shorter separation

distances increase the rotational stiffness of the TCS configuration.
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Figure 3.3: Rotational motion dependencies.
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Table 3.2: Rotational simulation parameters

Separation Distance 5 m
Node Mass 50 kg

Spring Constant 35.8398 N/m
Node Charge 30 kV
Node Radius 0.5 m

Inertia Distribution Solid Sphere
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Figure 3.4: Stiffness towards initial spin rates

3.2.2 Spacecraft Nodal Properties

To further expand the TCS capabilities it is advantageous to explore other system parameters

that affect the rotational stiffness of the system. Spacecraft nodal parameters such as radius

and mass distribution are critical components in determining the rotational stiffness of a TCS

configuration. Figure 3.5 shows the effect of varying these nodal parameters on the maximum
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Figure 3.5: Node parameter variation

absolute rotation of a two-node configuration, disturbed about the X-axis. During the inertia

variation, the mass and radius are held fixed. For the radius variation, the inertia is based off of

the radius. Figures 3.5(a) and 3.5(b) show the results for a single-tether TCS as a function of mass

distribution and nodal radii respectively. All other simulation parameters are listed in Table 3.2.

With a node of a certain mass and radius, the shell model provides the largest possible

nodal inertia. This scenario is the lower bound on the rotational stiffness that can be achieved.

The solid sphere (homogeneous mass distribution throughout the sphere) will have a lower inertia,

and thus increased rotational stiffness. However, even the solid sphere model is very conservative.

Ideally the TCS nodes would have most of their mass near the node center, and thus obtain an

even lower moment of inertia. As Figure 3.5(a) indicates, compared to the shell model, a 2-3 fold

increase in the rotational stiffness can be achieved by designing the TCS nodes to have their most

massive components near the nodal center, and thus a lower inertia. Additionally, for a constant

mass distribution, solid sphere, Figure 3.5(b) shows that larger node radii increase the rotational

stiffness. Even though the inertia is increasing for larger radii, the larger moment arms for the

tether dominates and thus increases the stiffness. Therefore, Figure 3.5(b) indicates that the ideal

TCS would have its attachment point the furthest away from the center of the craft.

Taking into consideration the previous results of nodal parameters an ideal TCS spacecraft
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node design may appear similar to the conceptual illustration of Figure 3.6. The figure depicts

a multiple tether TCS, whose detailed effects are discussed in a later section. However, multiple

tether TCS have the same dependencies on inertia and radius. This design maximizes the spacecraft

rotational stiffness, increases nodal wrap-up angles and provides a spherical conductive surface for

even Coulomb force generation. The mass moment of inertia is minimized by placing the spacecraft

components within a low-mass exterior conducting shell. The tethers are connected to attachment

arms that extend beyond the shell increasing the tether moment arms and consequently rotational

stiffness. This attachment arm design also increases the maximum angle before nodal wrap up.

Tethers

Tether attachment arm

Spacecraft

Conducting shell

Figure 3.6: Illustration of conceptual TCS spacecraft node design

3.3 Environmental Impacts on Stiffness

Analyzed here is the effect of charge shielding which reduces the inflationary Coulomb force

and stiffness capabilities of the system.[24] The charge reduction is examined for a range of GEO

Debye lengths from nominal to worst-case conditions. Figure 3.7 shows the effect of these plasma

conditions on the rotational stiffness of a single-tether TCS configuration with disturbance about

the X-axis. The results shown are for the conservative partial charge shielding force model of

Equation (2.5). For spacecraft charges of these magnitudes, the effective Debye length will in fact

be larger improving the rotational stiffness results.
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Figure 3.7: Maximum absolute principal rotation as a function of environmental conditions (Debye
length)

Figure 3.7 shows that environmental conditions have minimal impact on the dynamics of a

closely-operated TCS system until Debye lengths on the order of 10 meters or smaller are con-

sidered. The maximum absolute rotation lines in the figures converge to the maximum rotation

values with no plasma shielding. Nominal values of Debye lengths (far right of figure) have no

effect, but as the plasma Debye length reduces to the worst case value the rotational stiffness de-

creases. When designing for the worst case plasma conditions, consideration must be made for

TCS nodal separations larger than 5 meters. Considering a TCS system with a large number of

nodes spanning 100 meters, the shorter Debye length plasma shielding will also impact the overall

rigidity of this system. The results in Figure 3.7 are specific to a simple two-node system and short

separations.



Chapter 4

Multiple Tether TCS

4.1 Multiple Tether Configurations

A key thing to note about rotation of single-tether two-node TCS is that it does not provide

full three-dimensional stiffness. Figure 3.2 shows that initial rotations about the Y-axis would have

no restoring torque. One way to provide the desired three-dimensional stiffness is to interconnect

the nodes with two or three tethers. The connections for these scenarios are shown in Figure 4.1.

However, the addition of tetheres does affect the rotation angle at which a node will become

entangled with a tether. The variation in entanglement angles can be seen for the double- and

triple-tether TCS configurations in Figure 4.1. Table 4.1 lists the nodal rotation angles at which

each TCS configuration will reach the entangled state. The entanglement rotations in Table 4.1 are

based upon geometry, where θ = tan−1(2cotφ) and ψ = tan−1
(
2cotφ/

√
3
)
. However, one should

note that nodes are not likely to be spherical and the tether attachment points could be attached

away from the nodes on booms, thus increasing the possible absolute rotations.

Table 4.1: Spherical node rotation causing tether entanglement (for single-axis, asymmetric rota-
tions)

Rotation Axis Single-Tether (deg) Double-Tether (deg) Triple-Tether (deg)

X-axis (Node 1 Positive) 90 90 - φ 90 - θ
X-axis (Node 1 Negative) 90 90 - φ 90 - φ

Y-axis N/A 90 90
Z-axis 90 90 90 - ψ



24

(a) Double-tether XZ view (b) Double-tether YZ view (c) Triple-tether XZ view (d) Triple-tether YZ view

(e) Triple-tether 3D configuration

Figure 4.1: Two-node TCS tether configurations and connections

4.2 Nodal Motion

A single-tether connection yields the simplest and most intuitive dynamics for a two-node

TCS configuration under the disturbance of an initial angular velocity. All system properties for

the following simulations are identical to those given in Table 3.2 and the tether attachment angle,

φ, is 45 degrees. Figure 4.2(a) shows the resulting dynamics of the single-tether system under an

initial asymmetric nodal rotation about the X-axis. It is important to note that for all results the

translational motion is only due to the rotational coupling, as the node is initially at translational

equilibrium. Figure 4.2(a) shows the smooth and sinusoidal nodal separation, the asymmetric nodal

rotations and the tether tension of a single-tether TCS. Under this small initial rotation disturbance

(10 deg/min) the nodes rotate a maximum of 18 degrees about the X-axis and the tether remains

under tension at all times. Larger initial disturbances can make the single-tether configuration go
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slack and cause the motion to no longer be sinusoidal. In contrast to the single-tether configuration,

Figure 4.2(b) shows the translational and rotational motion for the double-tether configuration with

initial rotations about the X-axis. The nodal motion is now piecewise linear. The nodes rotate, only

about the X-axis, at a constant rate until the tethers become taught and reverse the direction of

rotation. The piecewise linearity of a multiple tether TCS is due to the tethers no longer remaining

continuously taught. This is shown by the plot of tether tension for each tether (T1 and T2).

Maintaining a taught tether is not a required dynamic property, although there is concern of a

tether reaching a buckled or tangled state. In these simulations each tether only reaches a slightly

loose state on the order of millimeters over its entire 4 meter length.
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(b) Double-tether configuration

Figure 4.2: TCS nodal dynamic response to asymmetric nodal rotation about the X-axis

The triple-tether configuration results for this X-axis rotation results in similar dynamics to

that shown for the double-tether in Figure 4.2(b). Although the triple-tether demonstrates similar

separations and X rotations to the double-tether it adds another unique complexity to the two-

node TCS configuration. The 3D spread of the triple-tether attachment points adds coupled off-axis

rotational motions that is most apparent with rotations about the Z-axis. Figure 4.3 shows the three

axes rotational motion of a triple-tether node with an initial rotation about the Z-axis. From the
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figure it can be seen that there is no longer pure rotation about the Z-axis. Figures 4.1(c) and 4.1(d)

highlight the cause, showing that the connections for tethers 2 and 3 are no longer on a nodal axis

and rotation leads to tether force moments and off-axis rotations. Figure 4.3(b) shows the resulting

tensions for each tether, reiterating the coupling effect.
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Figure 4.3: Triple-tether nodal dynamic response to asymmetric nodal rotation about the Z-axis

4.3 Multiple Tether Advantages

As shown in the prior sections, additional tethers in a two-node configuration adds complexity

to the nodal dynamics. However, there are rotational stiffness advantages that multiple tethers

provide. With the inability of a tether to hold torsional loads there is no stiffness in the Y-axis

(for a single-tether) and only restoring torques for rotations about the X and Z axes are feasible.

Using a TCS configuration with two or three tethers allows for there to be a restoring torque for

rotations about any axis.

Additional tethers not only provide added system robustness to initial rotations, but they

also reduce the maximum deflection a node can incur. The maximum angular deflection of the node

is a measure of the TCS configuration rotational stiffness to an angular rate disturbance. Figure 4.4

demonstrates this by showing the maximum principal rotation angle reached as a function of initial

angular rate. The maximum rotation is shown for each of the tether number configurations and
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shown for three cases, each with an initial rotation about a different axis. Note the difference in the

angular rate axis of each of these figures. Angular rates about the Y-axis result in large rotations

much faster than the other two axis rotations. It is shown in Table 4.1 that the multiple tether

nodes have a reduced absolute rotation before entanglement occurs. For this reason Figure 4.5

shows the maximum rotation of the nodes relative to their corresponding entanglement rotation

angle. Additionally, Figure 4.6 reiterates the effect of multiple tethers on node rotation by showing

the absolute maximum rotations as a function of node potential for an initial 10 deg/min rotation.

The rotation about each axis is analyzed using the results of Figures 4.4-4.6.
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(a) Case 1: X-axis rotation
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(b) Case 2: Y-axis rotation
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(c) Case 3: Z-axis rotation

Figure 4.4: Maximum absolute principal rotation as a function of initial angular rate

Case 1 X-Axis: Figure 4.4(a) shows that for asymmetric rotation about the X-axis, the

addition of tethers reduces the maximum absolute angle reached from the single-tether case. For
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(a) Case 1: X-axis rotation
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(b) Case 2: Y-axis rotation
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(c) Case 3: Z-axis rotation

Figure 4.5: Maximum principal rotation relative to maximum entanglement rotation (Table 4.1)

lower initial rotation rates, a double- and triple-tether configuration yield similar rotations. At

higher rates the double-tether provides more stiffness than the triple-tether This is likely due to

the moment arms provided by the tethers. From Figures 4.1(b) and 4.1(d) it can be seen that the

attachment points in the positive Z direction for the two tether configuration are further away from

the X-axis than the three tether configuration. This difference provides a larger moment arm for

the restoring torques and is one reason the double-tether configuration is stiffer at higher rates for

this rotation. Additionally at higher rotation rates, the rotation coupling becomes more dominant

which increases the maximum rotation rate for a triple-tether configuration.

While the addition of tethers certainly reduces the absolute rotational deflection of the node,

the increased tether attachment locations places the node closer to the entanglement rotation. This
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(a) Case 1: X-axis rotation
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(b) Case 2: Y-axis rotation
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(c) Case 3: Z-axis rotation

Figure 4.6: Maximum absolute principal rotation as a function of nodal potential

is demonstrated in Figure 4.5(a) which shows the maximum angular deflection as a percentage of

the entanglement rotation, which is a function of each tether configuration and rotation axis (as

defined in Table 4.1). For low initial rotation rates the double-tether keeps the nodes the furthest

away from entanglement. Also, for low rotation rates, the triple-tether and single-tether provide

similar robustness to entanglement. However, as rates increase the performance of the double- and

triple-tether degrade faster than the single. Resulting in the triple-tether reaching an entanglement

state at about 30 deg/min and the double-tether reaching entanglement at about 40 deg/min.

The effect of multiple tethers on X-axis rotation as a function of node potential is seen

in Figure 4.6(a). The double- and triple-tether both provide more rotational stiffness across all

node potentials than a single-tether TCS configuration. The double-tether does provide a slightly
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more stiff system than the triple-tether configuration. The non-smooth nature of the triple-tether

configuration is due to the complex dynamics of the system, but a general exponential decay can

still be seen.

Case 2 Y-Axis: Rotational stiffness about the Y-axis for a double- and triple-tether con-

figuration is shown in Figure 4.4(b). The single-tether configuration is omitted because it has no

rotational stiffness for Y-axis rotations. From the Figure it can be seen that the double- and triple-

tether configurations provide equal rotational stiffness about the Y-axis, because the moment arms

about the Y-axis are equal. Figures 4.1(a) and 4.1(c) show how the moment arms are all the same

radial distance from the Y-axis.

Figure 4.5(b) shows how close the Y-axis angular deflection comes to reaching the entangle-

ment angle. The Y-axis has a reduced disturbance angular rate as the nodes have less rotational

stiffness, however the inclusion of additional tethers provides prevention of entanglement for the

disturbance range analyzed. In this case the single-tether entanglement rotation is undefined as

the tether is bound about itself.

Figure 4.6(b) provides additional evidence of the effects of multiple tethers on Y-axis rotation.

Again the double- and triple-tether configurations perform identically. However, at lower potentials

the nodes reach entanglement and are omitted from the plot. The lower rotation rates and the

large node rotation agrees with Figure 4.4(b) and shows that for a two-node TCS configuration the

Y-axis has the least rotational stiffness.

Case 3 Z-Axis: For a single-tether TCS, the Z-axis rotation is identical to X-axis rotation.

However, Figure 4.4(c) shows that a double-tether configuration provides less stiffness than a single-

tether for rotations about the Z-axis. Again the moment arm is the cause for this reduced stiffness.

The moment arm about the Z-axis in Figure 4.1(b) is less than what the moment arm of a single-

tether provides. The moment arm for this configuration is only in the Y direction and is reduced

proportionally to the attachment angle φ. A triple-tether configuration also has a moment arm that

is dependent on φ but the maximum rotation is less than that of a single-tether. The additional

stiffness in a three tether configuration is because tethers 2 and 3 in Figure 4.1(d) provide a larger
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moment arm about the Z-axis. The larger moment arm arises because tethers 2 and 3 are not

located in the ZY plane, which adds additional length to the moment arm.

The relative angular deflection about the Z-axis is shown in Figure 4.5(c). These results

indicate that the double-tether system will reach entanglement at disturbances above 20 deg/min.

The triple-tether however performs significantly better than than the double- and single-tether

configurations at keeping the node away from entanglement for low rotation rates.

The rotational stiffness for rotations about the Z-axis and dependence on node potential is

shown in Figure 4.6(c). The figure shows that a triple-tether configuration provides more rotational

stiffness than a single-tether. Also, a double-tether configuration again provides lower stiffness than

a single-tether for rotations about the Z-axis because of moment arm lengths.

Case Summary: The results of Figure 4.4 indicate that there is up to a 60% decrease in the

absolute maximum angular rotation about the X-axis by using a triple-tether over a single-tether.

Similarly, there is up to a 35% decrease in the Z-axis rotation with a triple-tether over the single. As

the single-tether offers no Y-axis rotational stiffness the addition of tethers does provide rotational

stiffness. These values are approximate and are calculated for an initial rotation rate of 30 deg/min

and a node voltage of 30 kV. The actual quantitative increase in stiffness is a function of the initial

rotation rate and node potential.

The multiple tether configurations have a geometry that places the tether attachment point

closer to the entanglement rotation prior to any rotational motion. The results of Figure 4.5 indicate

that the multiple tethers offer minimal advantage in reducing the chances of entanglement, and

sometimes performs worse than a single-tether. The advantage of using multiple tethers is that

it reduces the absolute nodal rotation for an equivalent initial disturbance as well as introducing

3D rotational stiffness. Additionally, the issue of entanglement could be overcome by placing the

tethers on booms away from the spherical surface of the spacecraft.

In addition, from these results it would appear that a equally spaced quad tether would offer

all axis rotational stiffness as well as symmetric moment arms. This combination may provide

an advantageous rotational stiffness capability over the tether configurations used in this study.
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However, a quad tether configuration is no longer statically determinate and any slight discrepancy

in tether length results in asymmetric motions. This concept is to be investigated in future studies.

4.4 Multiple Tether Nodal Properties

The effects of nodal properties for a single-tether TCS are examined in Section 3.2.2. Similar

results for mass and inertia variation can be shown for multi-tether TCS. The results are shifted

similarly to those in the previous section. With multi-tether TCS there is one additional nodal

property that can affect the rotational stiffness, the tether connection angle, φ, shown in Figure 4.1.

Figure 4.7 shows the results of a double-and triple-tether TCS configuration as a function of the

tether attachment angle φ. All other simulation parameters are listed in Table 3.2.
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Figure 4.7: Variation in tether attachment angle (solid: double-tether, dashed: triple-tether)

Figure 4.7 shows that as the tether attachment angle increases, the moment arm increases,

thus the maximum absolute rotation decreases. Based on the results of this figure an ideal tether

attachment angle is approximately between 20 to 45 degrees. A large angle (φ) near 90 degrees can

provide similar rotation restrictions, but places the node much closer to the tether entanglement

rotation, as defined in Table 4.1.



Chapter 5

TCS Perturbations

5.1 Orbital Perturbation Study

The full translational equations of motion, Equation 2.16, for a TCS models a system that

is affected by differential gravity and solar radiation pressure (SRP). However, both forces have

been neglected in previous sections to isolate effects on translational and rotational motion. This

section examines both perturbations separately and provides justification for using the simplified

equations of motion of Equation 2.17. A two-node TCS will be used for this analysis. Since the

rotational and translational equations of motion are coupled, both the translation and rotation of

a two node TCS are investigated.

5.2 Differential Gravity

Previous simulations examine TCS rotational motion with no gravitational effects. However,

TCS systems are envisioned to be operated at GEO where differential gravity can affect the nodal

dynamics. A two node TCS system will only be stable on orbit if the two nodes are in an orbit

radial configuration. This condition is also stable if the nodes undergo initial asymmetric rotations.

Table 5.1 shows the percent difference between the max principal rotations of a two-node TCS

system with 10 deg/min asymmetric initial rotations in deep space as compared to GEO. From

the table it can be seen that putting the benchmark problem into GEO has minimal effect on the

rotation of the TCS system. Therefore, differential gravity can be excluded from simple rotational

simulations so that the TCS system dynamics can be isolated and analyzed. However, it is impor-
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tant to note that with differential gravity effects, rotations are no longer purely about a single axis

for single- and double-tether TCS but they are very small respectively.

Table 5.1: Max rotation percent difference between Deep Space and GEO

Initial Rotation Axis Single-Tether Double-Tether Triple-Tether

X-Axis -0.0839% 0.6780% -1.1596%
Y-Axis N/A -0.1514% -0.1514%
Z-Axis 1.5793% 1.3376% -2.2354%

5.3 Solar Radiation Pressure

5.3.1 SRP Compression

Solar radiation pressure is the only other prominent external force for spacecraft at GEO.

The force on a spacecraft due to solar radiation pressure is given in Equation 2.15. The worst case

SRP compression force for a two spacecraft system is when the two TCS nodes are aligned relative

to the sun and one node shields the other from the SRP. This worst case configuration is shown in

Figure 5.1.

Figure 5.1: Worst case two craft SRP compression configuration

The key concern with SRP and TCS is if it will cause the TCS to lose tension. For the worst

case scenario, loss of tension will occur when Coulomb inflationary force between nodes 1 and 2,

Equation 2.5, is equal to the SRP force on node 1. Dividing Equation 2.15 by Equation 2.5 yields

a percent of lost coulomb force. Simplifying and letting K = πPsrpCrkc be a constant, results in
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Table 5.2: SRP rotational simulation parameters

Separation Distance 5 m
Node Mass 50 kg

Spring Constant 35.8398 N/m
Node Charge 30 kV
Node Radius 0.5 m

Psrp 4.56e-6 N/m
Cr 1

the percent of lost Coulomb force

%LCF = K
r212

V 2e−(r12−ρ)/λD
(

1 + r12
λd

)100 (5.1)

which only depends on the node voltage(V ), separation distance (r12), the node radii (ρ) and the

Debye length (λd). However, if the nodes are not the same radius, the ratio of the crafts radii must

be added to the numerator of Equation 5.1. The simulation is started at TCS equilibrium with the

parameters of Table 5.2. As long as the percent of lost coulomb force is less than 100, there will be

no loss of tension in the TCS. Figure 5.2 shows the percent of lost Coulomb force for the plausible

operating regions for a two identical node craft in deep space.
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Figure 5.2: Percentage of lost Coulomb force

It is important to note that this is for the worst case configuration with a worst case Debye
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length of 4 m. Even so, the SRP force only overcomes the Coulomb force for low potential values

at high separation distances. Looking at the typical operating regions of 30 kV potentials and 5 m

separation. Figure 5.2 shows that the SRP force is less than a percent of the Coulomb force and

thus can be considered negligible.

Note that this plot shows this force ratio percentage on a logarithmic scale. For the voltages

(20-40kV) and separation distances (2-5m) that are being considered between the nodes, the solar

radiation force is 2-3 orders of magnitude smaller than the Coulomb force. For smaller TCS

configurations the solar radiation pressure will have a negligible impact. However, as larger TCS

node clusters are considered, the differential solar could contribute to large scale flexing of the TCS

shape.

5.3.2 SRP Torques

The effects of solar radiation pressure on TCS compression is not the only way SRP can affect

a TCS. SRP may also induce torques on a TCS. Two different worst case SRP torque scenarios

are examined for a single tether two node TCS in deep space. The first scenario is a SRP torque

about the system center of mass. This can arise when one craft is experiencing the effects of SRP

and the other is not, due do some external shielding of a craft. The SRP torque about the center

of mass scenario is shown in Figure 5.3.

Assuming the two craft are identical and that the SRP force is given in Equation 2.15, then

the torque on the system will be given by

Tsrp = Fsrp
r

2
(5.2)

where r is the node separation distance. Since this scenario is considered a worst case it is not

envisioned to last for long durations. A three hour simulation for the SRP center of mass torque

was conducted to examine the effects of the torque. The simulation was started with the Coulomb

and tensile forces in equilibrium. The parameters for the simulation are shown in Table 5.2. The

simulation shows that as expected, the two craft TCS begins to rotate about its center of mass due
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Figure 5.3: SRP center of mass torque scenario

to the external torque. After the three hour simulation the TCS was rotating at 1.5e-4 rad/s about

the center of mass. However, when working with formations of spacecraft the relative positions

and rotations are often of more importance. The change in relative position and rotation for the

simulation was less than 1e-15 m and 1e-15 deg, effectively zero. Therefore the only concern with

having a SRP torque around the system center of mass is that the system will begin to rotate as a

whole.

The second SRP torque of interest is an SRP body torque. This type of torque can occur if

a only a portion of a spacecraft is shielded. Figure 5.4 show a possible scenario. The figure shows

that node one shields approximately half of node two from the SRP force. Therefore the SRP force

on node two is given by

Fsrp2 = PsrpCr
Asc
2

(5.3)

This force is simplified by by assuming the SRP only acts on a half sphere instead of the crescent

shape that most likely would occur with spherical craft. This total force is applied at the centroid

of the cross-section half-circle of node two and results in the body torque

Tsrp = Fsrp
4r

3π
(5.4)

where r is the radius of the node. This type of SRP torque, one that arises when nodes shield
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Figure 5.4: SRP body torque scenario

other nodes, will become more prominent when working with larger TCS systems that have many

nodes. A simulation is run where the only SRP force applied is on half of node two. The force on

node one is neglected to isolate the effects of the body torque on one node. The nodes are started

at equilibrium and all parameters are listed in Table 5.2. The change in relative position between

the two nodes is again less than 1e-15 m. However, there is a change in relative rotation, which is

shown in Figure 5.5. From the figure it can be seen that there is max relative rotation of 0.1 deg
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Figure 5.5: SRP body torque relative rotation

between the two craft. The rotation due to SRP body torques is minimal and the effects of these

torque will not be the dominating perturbation.

The results of both SRP induced torque scenarios show that SRP will only have minimal

effects on a TCS. The relative positions and rotation between TCS will be negligibly affected. The
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key effect from solar radiation pressure is that it will rotate a TCS system as a whole. This, like

most other space systems affected by SRP, could be counteracted using thrusters or momentum

wheels.



Chapter 6

Mother Child TCS

6.1 Mother Child Set-Up

One envisioned use of a TCS is to provide local situational awareness for a geosynchronous

satellite. Here one large spacecraft (the Mother) has a smaller spacecraft (the Child) tethered to

it as illustrated in Figure 6.1. This type of TCS configuration can provide a unique vantage point

for on-orbit inspection of the Mother craft, rendezvous, docking and refueling operations and space

environment measurements. The key advantage that a TCS can provide for situational awareness

at GEO is that it can hold a Child spacecraft at a relatively fixed position and angle with respect

to the Mother craft with minimal use of control and propulsion.

M1

M2

C2

C1

Or

Oa

Ft

Fc

Fc

Ft

Child

Mother

Figure 6.1: Illustration of Mother Child spacecraft scenario
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6.2 TCS vs Tethered Structure

The trivial set up for a Mother Child TCS configuration is when the two craft are in the orbit

radial configuration. This type of system would even be effective for spacecraft without charge,

but less robust to perturbations. Charging the spacecraft allows for additional configurations with

negligible relative translation and rotation. For example, using the parameters in Table 6.1, the

maximum relative translation and rotation of the two craft after one orbit when the craft are

oriented in either of the principal local vertical local horizontal directions is less than 1 mm and

0.001 deg, respectively. These simulations use a one tether TCS where the spacecraft started with

initial Coulomb and tensile forces in equilibrium. Additionally, the craft have rotation rates equal

to that of the orbit frame (360 deg/day).

Table 6.1: Mother Child simulation parameters

Parameters Mother Child

Mass (kg) 2000 50
Radius (m) 2 0.5

Voltage (kV) 30 30
Separation (m) 7 7

A configuration of more interest is when the Child craft is placed at an arbitrary position

relative to the mother craft. One such example would be placing the Child craft where it would

have positive radial and along track components relative to the Mother craft. Figure 6.2 shows time

elapsed snapshots of a tethered structure (TS) and TCS for this set up with the system parameters

given in Table 6.1. From the figure it can be seen that for a TS the relative position and attitude

of the two craft varies over an orbit. The tether is mostly slack and the child craft only rotates the

Mother craft after approximately 5 hours. The TCS however, maintains a reasonably fixed relative

position and rotation between the two craft and the changes in relative position and rotation from

the initial conditions can be seen in Figure 6.3. The reason for this consistency is that the tether

between the two craft remains almost always in tension throughout the orbit. These results are
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(a) TS at t = 0 hrs (b) TCS at t = 0 hrs

(c) TS at t = 5.5 hrs (d) TCS at t = 5.5 hrs

(e) TS at t = 14 hrs (f) TCS at t = 14 hrs

Figure 6.2: TS and TCS comparison of mother child configuration
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Figure 6.3: TCS Mother Child relative position and rotation

also typical if the Child craft has an out of plane component, relative to the Mother craft.

6.3 Fixed Mother Craft

Even though a Mother Child TCS keeps relative positions and rotations nearly constant for

an arbitrary set up, it does cause the system as a whole to rotate relative to the orbit frame. This

is typically not desired, but can be easily fixed by implementing a simple attitude control solution.

Figure 6.4 shows the relative values for a Mother Child configuration with a stable attitude control

given in Equation 6.1 where [A] and [B] are positive definite gain matrices.[19]

u = −[A]σ − [B]ω (6.1)

In this scenario the Mother craft orientation is held fixed by using high gains, while the tethered

Child spacecraft is free to translate and rotate due to the differential gravity and Coulomb forces.

Of interest is how much the Child spacecraft will move relative to the Mother craft in this scenario.

The parameters for this simulation are given in Table 6.1 and the control was updated at 1Hz with

gains of 100.

From Figure 6.4(a) it can be seen that the Child craft position attempts to move in the
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Figure 6.4: TCS Mother Child relative position and rotation with control

positive radial and negative along track position, which is expected for a craft with an initially

larger orbit. However, this motion is restricted by the tether and oscillates under 50 mm in each

direction. The top plot in Figure 6.4(b) shows the relative rotation between the Child and Mother

craft, while the bottom plot illustrates the rotation of the Mother craft relative to the orbit frame.

From the figure it can be seen that this simple control can hold a Child craft’s orientation within

a degree of the Mother and keep the Mother aligned with the orbit frame. The relative motion is

larger, as expected, than with the free-mother craft scenario. However, in this constrained Mother

craft orientation scenario the relative motions are still held very small with the constant electrostatic

force. Additionally, simulations show that out of plane motion can also be constrained with this

control law. Since this simple control can constrain the motion of the Child craft it is now beneficial

to examine what effects various system parameters have on the configuration’s relative dynamics

and required torques to determine feasible operating regimes.

6.4 System Parameter Effects

The results from the previous section show that a Mother Child TCS can be controlled and

maintained in a relatively fixed position. This section analyzes the effects of system parameters
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on the relative positions and rotations as well as the required control torque. The parameters

of interest are the separation distance, node voltage and the Child mass. All parameters, except

the one being varied, for the following simulations are listed in Table 6.1 and the control from

Equation 6.1 is updated at 1Hz with gains of 100. This work addresses the worst case scenario for

the Mother Child configuration. Therefore, the Child will be placed equally in the radial, along

and cross track directions. Additionally, for reasons similar to those in Chapter 4 multiple tethers

between the two craft will be examined.

6.4.1 Separation Distance

The distance between the Mother and Child craft determines what operations the child can

perform, as well as what field of view the Child will have of the Mother. The larger the separation

distance between the two, the greater field of view the Child will have of the Mother for inspections

and situational awareness. Figure 6.5 shows the max relative rotations, max variation in separation

distance and required torques for various Mother Child separation distances. All three plots in

Figure 6.5 show that increasing separation distance increases the maximum relative rotation, the

maximum variation of relative distance and the required torque. Figures 6.5(a) & 6.5(b) show that

Mother Child TCS have reduced rotations and variations in separation distance with increasing

tether number. This reduced rotation result agrees with that of Chapter 4. Figure 6.5(a) shows

that, depending on the Child’s task, separation distances of up to 10 m could provide reasonable

relative rotations of about five degrees for this worse case scenario. The results of Figure 6.5(b)

show that there will only be sub centimeter variations in separation distance between the two craft

for all separation distances analyzed. Lastly, Figure 6.5(c) shows that using multiple tethers has

negligible effects on the required torque.

6.4.2 Node Voltage

Voltage of the Mother and Child spacecrafts determines what the magnitude of the repulsion

force between the two spacecraft is. From a spacecraft design perspective, the lower the voltage
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Figure 6.5: Mother Child separation distance variation effects

required on the craft the better. For these simulations there is an identical voltage on each craft,

but in practice different voltages could be used to simplify the design of either craft. Figure 6.6

shows the relative rotations, max variation is separation distance and required torques for various

Mother Child voltages. Similar to the distance variation, Figures 6.6(a) & 6.6(b) show that ad-

dition of tethers decreases the maximum relative rotations and distance variations. Additionally,

these figures show that increasing voltages also decreases these relative quantities. However, from

Figure 6.6(c) it can be seen that neither additional tethers nor increasing voltage has an effect

on the required torque to maintain the shape configuration. This is expected because torque is

dependent on the transverse force and the moment arm. Even so, this shows that the rigidity of

the connection between the Mother and Child has no effect on the required control torque.
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Figure 6.6: Mother Child voltage variation effects

6.4.3 Node Mass

The mass of the Child craft will likely depend on its function and that function’s required

hardware. This section analyzes the effects of various masses on the dynamics of the Mother Child

TCS. Figure 6.7 shows the relative rotations, max variation is separation distance and required

torques for various Child masses. The data in Figures 6.7(a), 6.7(b) & 6.7(b) show that lower mass

nodes minimize the relative dynamics of the Mother child configuration as well as minimizes the

required control torque. Figures 6.7(a) & 6.7(b) show that additional tethers provide increased

stiffness off a Mother Child TCS. However, similar to previous sections, multiple tethers have no

effect on the required control.
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Figure 6.7: Mother Child mass variation effects

6.5 Mother Child Summary

Having a relatively close on-orbit point of reference for a large GEO spacecraft provides many

unique opportunities for that craft. Holding a spacecraft at a arbitrary and relatively fixed position

relative to a larger craft can not be accomplished with a simple tethered spacecraft. However, the

analysis of the Mother Child TCS concept shows that with a simple control, (Equation 6.1) a TCS

can hold a smaller Child craft relatively fixed at any desired position while in orbit. Further analysis

shows that separation distances of up to 10m results in minimal relative rotation (¡ 5 degree) and

variations in separation distance (¡ 1 cm). The required control torque is also less than 0.04 Nm

per orbit. Optimal Mother Child configurations with the most stiffness occur with low separation

distance, high voltage and low Child mass. Lastly, it is shown that multiple tethers between the
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craft can greatly increase the stiffness of a Mother Child TCS and allow for separation distances of

up to 15 m, depending on the child’s function.



Chapter 7

Conclusions and Future Work

This work examines the dynamics of TCS systems. Force models and equations of motion

are given. Simulations are conducted to examine the effects of varying system parameters on

translational and rotational stiffness for a two node TCS. It is found that systems with nodes

that have low mass, high potential and that are close together provide the highest translational

and rotational stiffness. Additionally, it is shown that tether properties have negligible effects on

rotational motion.

Rotational analysis of a single tether two-node TCS configuration with 30 kV potentials and a

5 m separation shows that this configuration can withstand moderate initial rotations up to around

50 deg/min before the tether would become entangle with the spacecraft. Also, adding additional

tethers yields full three-dimensional stiffness and increases the maximum allowable initial rotation

by 40-60%. However, tether entanglement will now occur at lower absolute values of rotation, if

the nodes are spherical. Finally, for optimal rotational stiffness it is found that the ideal node

configuration should have most of its mass at the center of the structure with the largest possible

radius for the tether attachment points and if multiple tethers are used, the optimal connection

angle is 45 degrees.

The effects of orbital perturbations caused by differential gravity and solar radiation pressure

are analyzed. Simulations show that differential gravity has minimal effect on the rotations of the

two-node benchmark TCS. Compression of a TCS system due to solar radiation pressure can be

considered negligible because it only has noticeable effects for low potentials (¡10 kV) and large
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separation distances (¿ 10 m). Nodal torques due to SRP show that only when there is partial

shielding of a node will the torques affect relative position and rotation of TCS. However, SRP can

cause TCS systems to rotate as a whole.

Lastly, the Mother Child TCS concept is presented to show a practical TCS use. Mother

Child simulations show that a TCS can be used to hold a small craft relatively fixed to a large craft

in any orbit configuration if an attitude controller is implemented on the Mother craft. Relative

rotations and translations between the Mother and Child spacecraft can be limited to less than 5

degrees and 10cm for a 10 meter separation between spacecraft in a worst case orbit configuration.

The Mother Child stiffness can be increased by using lower separation distances, higher voltages

and lower mass Child nodes. Additionally, more favorable orbit configurations, no cross track

separation, can greatly increase the Mother Child stiffness.

Future work for the TCS dynamics studies could be to study the use of more than two

spacecraft for full three-dimensional stiffness. Controlled deployment of a TCS is also an aspect of

TCS systems that needs to be addressed. Lastly, control laws for damping of a TCS system should

be examined as well as other methods of system stabilization.
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Appendix A

Simulation Validation

A.1 Linearized Equations of Motion

Node 1 Node 2
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Figure A.1: Asymmetric two-node system with two degrees of freedom

Figure A.1 shows the two-node single tether TCS setup which is the base configuration for

the TCS studies in this work. This appendix outlines the verification of the numerical simulation

used. The linearized equations of motion for two-node TCS are[23]

δr̈ ≈ − 1

m

[
2kcQ

r3e(Q)
+ ks

]
δx (A.1)

for translation and

θ̈ ≈ −ρks
I

[re(Q)− ro] θ (A.2)

for rotation where re(Q) is the equilibrium separation distance, ro is the TCS separation distance

with no tension in the tether, Q is the charge product of the two nodes. Figure A.1 depicts the two-

node TCS these equations are derived for. The linearized equations of motion yield a translational



56

frequency of

ωT =

√
1

m

[
2kcQ

r3e(Q)
+ ks

]
(A.3)

and a rotational frequency of

ωR =

√
ρks
I

[re(Q)− ro] (A.4)

Figure A.2 shows a comparison of the TCS simulation translational and rotational frequencies as

compared to the analytical frequencies. For the translational frequencies, the TCS was set with

each node offset from equilibrium by an equal distance. For the rotational case, the nodes were set

at TCS equilibrium and then given an initial rotation. Figure A.2 shows that both translational and

rotation frequencies agree with the analytics for small disturbances. However, it can be seen that

the linearization begins to break down at a translational offset of more than 10−4m and an initial

rotation of more that 1 deg/min. Even so, the figure further validates the use of the numerical

simulation.
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Figure A.2: Frequency comparison between simulation and analytics

A.2 Tether Model Comparison

The numerical simulation for the dynamic modeling of TCS systems models a tether as a

proportional spring with non-linear end displacements. This simplified model is used to allow for
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increased speed in simulation. A higher fidelity finite element model (FEM) was used to model TCS

tethers as well. Identical simulations were run using both models. A comparison of the two models

effects on rotation and tether tension is given in Figure A.3. The results of each simulation are

not expected to be exactly equal, but close. The simulations were conducted with the single-tether

two-node rotational TCS configuration in Figure 3.2 with the parameters of Table 3.2. However,

the inertia of the craft is modeled as a disk and the initial rotation is 30 deg/min. Additionally,

for this comparison a simplified charge model of

Vi =
qikc
ρ

is used because the FEM model is not currently incorporating Equation 2.7. From the figure it can

be seen that both models provide nearly identical rotations and tensions. The FEM model however,

does provide slightly large force magnitudes as well as allows for compression in the tethers. Even

so, the results of Figure A.3 show that the simplified tether model used in this work is acceptable.
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Figure A.3: Comparison of tether model simulation results


