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The work presented in this dissertation takes inspiration from robotic sampling-based motion

planning ideas and presents an astrodynamics-informed kinodynamic motion planning (AIKMP)

algorithm which is a single-step sampling-based kinodynamic approach to orbital motion planning

problems (as opposed to existing two-step sampling-based motion planning approaches in litera-

ture). The AIKMP algorithm can quickly find solutions to spacecraft relative transfer problems

in a very cluttered environment and it iteratively improves on its computed transfer solution and

thus holds the potential of computing near-optimal transfers given a sufficient number of algo-

rithm iterations – without needing an initial guess of the solution. This algorithm introduces an

astrodynamics-informed pruning module that allows the motion planner to maintain and store a

sparse set of nodes improving its overall computation efficiency by ≈ 98% and storage efficiency by

≈ 80%. This work also presents a novel extension of the linearized Lambert solution (LLS) called

the closed-loop linearized Lambert guidance solution that allows a spacecraft to apply correction

burns during the transfer to improve the targeting accuracy in relative guidance problems in the

presence of perturbations like Drag, J2, and Solar Radiation Pressure (SRP). This novel closed-

loop guidance law is applied to Spacecraft Formation Flying (SFF) problem, and by presenting

theoretical developments backed with multiple simulation results it is shown that the algorithm

allows for stringent targeting accuracy with fuel efficiency in different SFF problems. It is also

demonstrated that closed-loop LLS guidance can be used to enable a spacecraft to safely follow a

reference trajectory generated by an orbital motion planner like the AIKMP algorithm at a cost of

≈ 3% fuel increase as compared to open-loop guidance that is unable to provide safety guarantees

in a cluttered and perturbed environment. Lastly, this work presents an extension of the popu-

lar E/I vector separation method derived for the case of drifting relative motion to infuse passive
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collision avoidance capabilities in sampling-based orbital motion planners. The resulting motion

planner performs tree extension in a more informed way such that collision avoidance constraints

are satisfied by each node and edge in the sampling-based tree. This way, every transfer solution

computed from the tree is guaranteed to be collision-free for the entire duration of the transfer in

the presence of multiple static (static relative to a moving reference frame) and moving obstacles

– a capability that is crucial for SFF applications. Overall, the AIKMP algorithm describes the

sufficient number of steps that can be adapted from a sampling-based robotic motion planner with

required modifications to achieve fuel-efficient and collision-free sampling-based motion planning

in astrodynamics applications. A notable aspect of this proposed motion planning framework lies

in its modularity, as individual modules of the algorithm can be adapted to any existing sampling-

based motion planner (tree-based planners or graph-based planners) to improve their applicability

to orbital motion planning.



Dedication

This thesis is dedicated to the unwavering love and unparalleled sacrifices of my beloved

parents, Akhil Chandra Deka and Cinema Medhi Deka, as well as my brother, Debasish Deka.

Their enduring encouragement has been my guiding light throughout this academic journey. Ma,

Papa - Thank you for staying strong through thick and thin while I pursued my dreams thousands

of miles away from home. Dada, thank you for turning my dreams of pursuing higher studies in

the US into reality with your boundless support, both emotionally and financially. Thank you for

never holding me back and always believing in me. I could not have done this without you.



v

Acknowledgements

Foremost, I extend my deepest gratitude to my advisor, Dr. Jay McMahon, whose unwavering

support has been the cornerstone of my Ph.D. journey. He has not only been a mentor and guide

but also a friend and guardian, offering encouragement and hope when I needed it most. My time

at ORCCA Lab will forever hold a special place in my heart. Thank you for everything, Jay,

and thank you, ORCCA. I would also like to express my appreciation to Dr. Dale Lawrence for

introducing me to the captivating world of research and providing invaluable guidance and career

advice during pivotal moments in my life. Heartfelt thanks to Dr. Hanspeter Schaub for imparting

lessons of utmost professionalism and humility in work. The insights gained from you, both within

and beyond the curriculum, are truly invaluable. My gratitude extends to all my Ph.D. committee

members for their constructive feedback, significantly enhancing the quality of this thesis. A special

acknowledgment is reserved for Dr. Saptarshi Bandyopadhyay, who played a crucial role in my

Ph.D. committee during my comprehensive exam. To all my friends, your companionship during

moments of laughter and tears has made this journey so much more meaningful. I found some of

my best friends during my time at CU, and I am forever grateful for these relationships. To my
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Chapter 1

Introduction

1.1 Background and Motivation

A space mission designed with multiple smaller spacecraft has many advantages compared

to a mission comprising a single traditional monolithic spacecraft. Besides introducing a single

point of failure to the entire mission, building, testing, and launching a monolithic spacecraft can

be more expensive compared to modular designs as the cost of manufacturing and integrating

all components into a single structure can be substantial. In fact, the complexity of assembling

and testing an entire monolithic spacecraft can also lead to longer development and deployment

cycles [20, 97, 91, 113]. As a result, there has been an increased interest in developing distributed

spacecraft formation flying (DSFF) missions in the aerospace sector [35]. Ever since NASA’s Gemini

(a) NASA’s Gemini 6 and 7 (1965) (b) ESA’s Proba-3 mission (planned 2024)

Figure 1.1: Evolution of spacecraft formation flying missions
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space program demonstrated the ability to perform coordinated spacecraft operations for the first

time [64] (Figure 1.1a), distributed spacecraft systems have attracted the interest of several leading

aerospace organizations. There are multiple NASA [126, 60, 11], DoD [112, 22, 40] and ESA missions

[62, 49, 90] that use spacecraft formation flying technology and are either flying, under development

or proposed. A few of such exciting missions include the Laser Interferometer Space Antenna

(LISA) mission that aims to detect and accurately measure gravitational waves [38, 65], the Darwin

mission that is a long-range interferometry mission to find Earth-like planets [62, 39], and the

upcoming PROBA-3 mission which will demonstrate high precision formation flying technologies

and techniques without relying on information from the ground [90, 125] (Figure 1.1b). Distributed

spacecraft systems also have great applications in on-orbit servicing (OOS)[68, 59, 88, 95]. In fact, a

recently released national strategy document by the United States White House details their interest

in developing autonomous robotic servicing space missions to aid satellite servicing, refueling, in-

space construction, and maintenance of large structures [1]. Such missions will heavily depend on

multiple spacecraft working in coordination to achieve the mission goals.

While spacecraft formation flying is an enabling technology for many next-generation space

missions, they are inherently very risky as multiple spacecraft need to coordinate and operate

in close proximity to each other [5, 7]. Reconfiguration of spacecraft within the formation is

considered one of the major challenges of such systems, which is why a great deal of research goes

into the problem of spacecraft motion planning with collision avoidance [51, 108, 117, 24]. The

stringent requirements of formation flying demand that the states of each agent in the formation

are defined relative to the other agents; this new dynamical description renders conventional control

and trajectory design approaches (used on monolithic spacecraft) ineffective. Hence, there is an

immense need for fast and efficient algorithms to compute near-optimal, safe, and collision-free

relative trajectories for such multi-spacecraft systems.

In the field of astrodynamics, traditional guidance algorithms like Lambert’s solution can

compute the transfer orbit for a spacecraft between two given position vectors [17, 32, 131]. How-

ever, such algorithms do not come with obstacle-avoidance capabilities. State-of-the-art methods
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for spacecraft collision avoidance include model predictive control [101, 132, 136] and artificial po-

tential functions [12, 28, 72, 135]. These methods work well in static uncluttered environments;

however, they often fall short when optimization and time-varying constraints become key features

of the problem. Moreover, gradient-based methods like artificial potential functions are also known

for their possible convergence to local minimum solutions. Another well-known approach for space-

craft collision avoidance is conjunction assessment. This method handles collision avoidance by

actively tracking the obstacles and performing escape maneuvers whenever the collision probability

gets higher than a specified threshold [102, 25, 114]. However, such an approach is only valid for

short-term encounters which is why they will be impractical for spacecraft formation flying appli-

cations. This is where inspiration can be taken from the vast literature on collision-free motion

planning techniques, popular in robotics, that can be leveraged for collision-free motion planning

applications in astrodynamics [79, 84, 123, 122, 57].

Building self-reliant autonomous systems has always been the ultimate goal in the field of

robotics. While popular robotic planning methods like the Monte Carlo tree search (MCTS) ex-

ists, they are effective for planning in discrete action spaces and hence have great applications

in designing game-playing bots or solving sequential decision problems [124]. As a result, in this

work, ideas from another powerful robotic motion planning technique called sampling-based mo-

tion planning algorithms are leveraged due to their efficiency in exploring high-dimensional state

spaces and handling complex, continuous environments making them more suitable for real-world

applications [76, 63, 70, 73]. The efficacy of these methods has been already proven in several chal-

lenging real-world systems such as the 2007 DARPA Urban Challenge [21] and the 2021 DARPA

Subterranean Challenge [105, 99]. In the 2007 DARPA Urban Challenge, vehicles were required

to race autonomously in a simulated 60-mile urban setting. Several teams in the competition used

sampling-based planning as their primary guidance technique, including MIT’s 4th-place winning

Talos car (Figure 1.2a) that used the Rapidly-exploring Random Trees (RRTs) [87, 81]. In the

2021 DARPA Subterranean Challenge, robots were required to conduct search and rescue oper-

ations in challenging underground tunnel environments with dangers like stairs, rough pathways,
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and dynamic obstacles like falling debris. CU Boulder’s MARBLE robotic vehicle (Figure 1.2b)

which used an RRT* planner to build the global map of the state space, won 3rd place [2, 98].

(a) DARPA Urban Challenge 2007 4th place winner:
MIT’s Talos car

(b) DARPA Subterranean Challenge 2021 3rd place
winner: CU Boulder’s MARBLE vehicle

Figure 1.2: Sampling-based planning in challenging terrestrial environments

Although not yet flown on any spacecraft hardware, sampling-based planning already has

made its way to space systems. NASA’s humanoid robot Robonaut [8, 75, 13] and NASA’s au-

(a) NASA’s humanoid robot: Robonaut (b) Autonomously flying robot: Astrobee

Figure 1.3: Sampling-based planning in International Space Station (ISS)

tonomously free-flying manipulator robot Astrobee [118, 53, 3] are currently operational in the

International Space Station (ISS) (Figure 1.3). Robonaut uses a variant of an RRT-based planner

to plan its motion to assist astronauts with various tasks on board (Figure 1.3a). Similarly, As-
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trobee which is the first microgravity testbed of its kind for free-flying manipulator dynamics, uses

sampling-based motion planning to generate its initial reference trajectory to enable the robot to

assist astronauts with routine tasks and perform experiments (Figure 1.3b).

Initial work in the field of robot motion planning treats the motion planning problem as

two distinct parts: solving basic path planning and then finding a trajectory and controller that

would track the path while satisfying the system dynamics [83]. Such algorithms consider only

kinematics and entirely ignore system dynamics while building the trees. Gradually, robot motion

planning algorithms were developed that were suitable for kinodynamic applications (problems

with simultaneous kinematic and dynamic constraints) [85, 80, 54, 86]. These algorithms satisfy

the probabilistic completeness property, i.e., they return a solution with a probability converging

to one as the number of samples grows to infinity, if such a solution exists. More recently, however,

the motive behind robot motion planning algorithms has shifted from providing feasible solutions

to achieving high-quality solutions. Algorithms were developed that are asymptotically optimal for

kinodynamic problems meaning that the solution approaches optimality as the number of samples

goes to infinity [76, 10].

The framework of the sampling-based motion planning algorithms is sufficiently general that

it applies to spacecraft and rovers just as it does to traditional robots [15, 121, 120, 61, 103,

74]. Existing work in the area of sampling-based orbital motion planning has looked into growing

sampling-based random trees in the traditional position and velocity space to achieve collision-free

motion planning of spacecraft: Frazzoli et. al. demonstrated that fast orbital motion planning

can be achieved by developing an RRT in the spacecraft’s relative position and velocity space [61].

In their proposed method, every node in the tree is involved in tree extension in every iteration

of the algorithm, and the tree attempts to connect to the goal state every time (Goal bias = 1),

adding to the density of the tree and hence computational inefficiency of the overall approach.

Bandyopadhyay et. al devised a 2-step sampling-based planner to achieve fast motion planning

for spacecraft swarms in a cluttered environment [15]. The first step of their method explores the

3D space to generate a feasible path from the start state to the target state by extending the tree
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in the obstacle-free space using straight lines of adjustable step size (instead of using a steering

law). In the second step, the algorithm uses a sequence of convex optimization to generate a fuel-

optimal solution from the already generated feasible paths. Starek et. al. extended the application

of sampling-based Fast Matching Trees (FMTs) to achieve fast, safe, and fuel-efficient spacecraft

motion planning under Clohessy-Wiltshire-Hill Dynamics assumption [74, 121, 119]. This method

also results in non-smooth trajectory solutions that demand additional post-processing (a second

step) to compute the final fuel-efficient and smooth motion planning solution. Another work was

published recently that uses an RRT-based path planner for closeup on-orbit inspection of large

complex space structures using multiple small inspector spacecraft with applications to on-orbit

inspection missions [58]. However, as explained before and as will be discussed in the details of

this dissertation, RRT-based sampling-based planners can get computationally very expensive for

onboard applications. As a result, improvements in terms of implementation and computational

efficiency are desirable to make such algorithms suitable for fast and fuel-efficient sampling-based

orbital motion planning. Figure 1.4 summarizes how the proposed research in this thesis compares

with the discussed existing sampling-based orbital motion planners in the literature. It is to be

noted here that, while none of the mentioned existing planners consider external perturbations, in

this work although perturbations are not included in the motion planning directly, a closed-loop

guidance law is developed that can be used to extend the application of any sampling-based orbital

motion planners to perturbed environments.

1.2 Proposed Research

As mentioned before, several sampling-based motion planners exist in the robotics literature.

Because of their theoretical advancement in the field and the potential of their online implementa-

tions, such methods have started gaining attention for space applications including in multi-agent

spacecraft systems such as in spacecraft formation flying. However, extending the application

of robotic sampling-based motion planners to achieve orbital motion planning requires additional

considerations. Due to strict onboard memory limitations and run-time constraints, there is an
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Figure 1.4: Comparison of proposed research to existing sampling-based orbital motion planers in
the literature.

immense need for motion planning algorithms to be fast and efficient in computing near-optimal,

safe, and collision-free relative transfer trajectories for multi-spacecraft systems. This is where this

research comes in.

The thesis statement is as follows:

This research develops an astrodynamics-informed kinodynamic motion planning (AIKMP)

algorithm framework to enable fast computation of fuel-efficient, collision-free, and near-

optimal trajectories for spacecraft re-configuration in cluttered and perturbed environments

- without requiring any initial guess of the solution.

Figure 1.5 shows the different fields that have been combined in this work.

The characteristics that make the proposed algorithm unique are:

(1) Overall motion planning framework: As opposed to growing the sampling-based ran-

dom tree in the traditional position and velocity space to achieve collision-free motion

planning of spacecraft, the AIKMP algorithm is developed in the relative orbital element

space of the deputy spacecraft around a chief spacecraft. This provides very useful geomet-

ric insight into relative spacecraft motion.

The AIKMP algorithm also takes advantage of a spacecraft’s natural motion (coasting arcs)
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Figure 1.5: Venn diagram showing the different research fields that come together in the work
presented in this thesis.

during tree extension, to compute a safe and fuel-efficient transfer trajectory from one node

of the tree to another. This generates a single-step smooth final transfer solution without

demanding additional post-processing of the solution, unlike the existing sampling-based

orbital motion planning approaches as discussed in section 1.1.

(2) Efficiency: The AIKMP algorithm adapts tree pruning ideas from asymptotically near-

optimal sampling-based robotic motion planners like the Stable sparse RRT (SST) algo-

rithm and proposes an effective way of pruning a sampling-based random tree for astrody-

namics applications. This helps the orbital motion planner remove nodes and edges from

the tree that do not contribute to overall better solutions allowing the tree to maintain and

store a sparse set of nodes. This not only makes the algorithm computationally fast but

also significantly improves its storage efficiency.

(3) Modularity: This proposed sampling-based orbital motion planner is not specific to a

single definition of spacecraft relative motion dynamics. Any relative motion dynamical

model can be plugged in without any changes to the remaining modules of the algorithm.
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Similarly, the steering law that drives the extension of the sampling-based random tree can

also be updated without any changes to the rest of the algorithm. Moreover, the individual

modules of the AIKMP algorithm can be adapted to any existing sampling-based motion

planner (tree-based planners or graph-based planners) to improve their applicability to

orbital relative motion planning.

The contributions of the proposed work to the literature are as follows:

(1) An astrodynamics-informed kinodynamic motion planning (AIKMP) algorithm is proposed

which is a single-step sampling-based kinodynamic approach to orbital motion planning

problems as opposed to existing two-step sampling-based motion planning approaches in

the literature [15, 121, 119, 74]. The algorithm introduces an astrodynamics-informed

pruning module during the motion planning process to improve the overall computation

efficiency and storage efficiency which is often an issue with such sampling-based orbital

motion planners.

(2) With the pruning module excluded from the overall AIKMP algorithm, the same algorithm

translates to an astrodynamics-informed modified version of the popular sampling-based

Rapidly Exploring Random Trees (RRT). As opposed to a typical RRT-based orbital motion

planner [61], this algorithm uses a cost function minimization for tree extension and also

takes advantage of a spacecraft’s natural motion (coasting arcs), to perform safe and fuel-

efficient tree extension from one node of the tree to another. Moreover, the proposed

algorithm also uses a Goal bias probability (< 1) to guide the tree extension towards the

desired goal state. Such modifications make this astrodynamics-informed version of the

RRT more suitable for fuel-efficient orbital motion planning applications.

(3) A novel extension of the linearized Lambert solution (LLS) [93]- closed-loop linearized Lam-

bert guidance solution- is developed that allows a spacecraft to travel on a Lambert-like

arc in the presence of perturbations such as Drag, J2, Solar Radiation Pressure (SRP) with
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minimal targeting error. This extension of the LLS is applied to Spacecraft Formation Fly-

ing (SFF) problem, and it is shown that the resulting closed-loop LLS-guidance algorithm

allows for stringent targeting accuracy in different SFF problems.

(4) An extension of the popular E/I vector separation method [56, 37] is derived for the case

of drifting relative motion and is used to infuse passive collision avoidance capabilities

in sampling-based orbital motion planners. The resulting motion planner performs tree

extension in a more informed way such that collision avoidance constraints are satisfied by

each node and edge in the sampling-based tree. This way, every transfer solution computed

from the tree is guaranteed to be collision-free for the entire duration of the transfer in the

presence of multiple static (static relative to a moving reference frame) and moving obstacles

– a capability that is crucial for spacecraft formation flying applications.

1.3 Publications

The work done in this dissertation generated the following publications:

1.3.1 Journal Articles

(1) T. Deka and J. W. McMahon, Astrodynamics-Informed Kinodynamic Sampling-Based

Motion Planning for Relative Spacecraft Motion, Journal of Guidance, Control, and

Dynamics, Vol. 46, No. 12 (2023), pp. 2330-2345. The manuscript has been published.

(2) T. Deka and J. W. McMahon. Closed-loop Linearized Lambert Solution for Onboard

Formation Control and Targeting. Journal of Guidance, Control, and Dynamics,

2023. The manuscript is under review.

(3) T. Deka and J. W. McMahon. Efficient astrodynamics-informed kinodynamic motion

planning for relative spacecraft motion. Advances in Space Research (selected for

publication in a special issue on Formation Flying at IWSCFF 2022 conference), 2022.

The manuscript is under review.
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(4) T. Deka and J. W. McMahon. Stochastic sampling-based motion planning for relative

spacecraft motion with passive collision avoidance. Journal of Guidance, Control, and

Dynamics, 2023. The manuscript is in preparation.

1.3.2 Conference Papers

(1) T. Deka, H. K. Sipowa, and J. W. McMahon. “Closed-loop linearized Lambert Solution

(LLS) for on-board formation control and targeting.” In AAS/AIAA Astrodynamics

Specialists Conference, held virtually, Aug 9–12, 2020. Paper No. AAS 20-463.

(2) T. Deka and J. W. McMahon. “Astrodynamics-informed kinodynamic motion planning for

relative spacecraft motion.” In AAS/AIAA Astrodynamics Specialists Conference,

held virtually, Aug 9–11, 2021. Paper No. AAS 21-593.

(3) T. Deka and J. W. McMahon. “Astrodynamics-informed sparse kinodynamic motion plan-

ning for relative spacecraft motion.” In International Workshop on Satellite Constel-

lations & Formation Flying (IWSCFF), Milan, Italy, June 7–10, 2022.

(4) T. Deka and J. W. McMahon. “Efficient astrodynamics-informed kinodynamic motion

planning for safe relative spacecraft motion.” In AAS/AIAA Astrodynamics Special-

ists Conference, Charlotte, North Carolina, Aug 7–11, 2022. Paper No. AAS 22-664.

(5) T. Deka and J. W. McMahon. “Efficient astrodynamics-informed kinodynamic motion

planning for safe relative spacecraft motion.” In 45th Annual AAS Guidance, Navi-

gation, and Control (GN&C) Conference, Breckenridge, CO, Feb 2–8, 2023. Paper

No. AAS 23-103.

1.3.3 Other Publications

These were the publications that were co-authored during the timeline of this dissertation.

However, these did not add directly to the dissertation.



12

(1) H. K. Sipowa, J.W. McMahon, and T. Deka. ”Distributed unscented information Kalman

filter (uikf) for cooperative localization in spacecraft formation flying”. In AIAA SciTech

Forum, 2020. Paper No. AIAA-2020-1917.

(2) J.W. McMahon, N. Ahmed, M. Lahijanian, P. Amorese, T. Deka, et al., “Expert-Informed

Autonomous Science Planning for In-situ Observations and Discoveries”, In IEEE Aerospace

Conference, 2022. Paper No. 2491 1.

(3) J.W. McMahon, N. Ahmed, M. Lahijanian, P. Amorese, T. Deka, et al., “REASON-

RECOURSE Software for Science Operations of Autonomous Robotic Landers”, In IEEE

Aerospace Conference, 2023. Paper No. 2452 1.



Chapter 2

Stochastic sampling-based orbital motion planning

2.1 Review of sampling-based robotic motion planning

A few definitions as shown in Table 2.1, will be useful in understanding this section:

Parent node : A node that has other nodes (child nodes) growing from them.
Leaf node : A node that is Parent to no other node.
Vactive : All the nodes of the tree that take part in tree extension.
Cost(x) : Cost to reach node x from the start node (x0).
xrand : Sampled random node from the obstacle-free state space X.
δnear : A radius that defines a neighborhood around xrand for nearest neighbor

selection. This can be also called the ‘Nearest neighbor radius’.
xnearest : The nearest node to xrand within δnear in Vactive that has the best path

cost from the start node.
xnew : Final node reached after extending tree from xnearest towards xrand.
Goal bias : It is a probability used to bias the random exploration towards the goal

state (0 ≤ Goal bias ≤ 1). For example: if goal bias is 0.1, once every
10 iterations xrand = xgoal, and the tree attempts to extend towards the
goal state. The lower the goal bias, the higher the random exploration
by the motion planner and vice versa.

Table 2.1: Important terminologies used in algorithm description

.

The basic idea behind most sampling-based planners can be described in 3 major steps as

can be seen in Figure 2.1:

(1) Random sampling: A random collision-free state/node (xrand) is sampled in the defined

state space.
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(2) Choosing the nearest node in the tree: The nearest node to xrand in the existing tree

(xnearest) is chosen for extending the tree.

(3) Tree Extension: The existing tree is extended from xnearest towards xrand (either by using

a user-defined step size or by using a steering law) and the new node xnew and the new

edge connecting nodes xnearest and xnew are added to the tree provided the node xnew is

collision-free.

These steps are repeated till the goal state (xgoal) is reached. This way the planners connect nodes

with intermediate trajectories building a tree of feasible trajectories. Most sampling-based plan-

(a) Step 1: Randomly sampling node xrand in the collision-free state-space

(b) Step 2: Choosing the nearest node xnearest of the
random sample xrand in the existing tree

(c) Step 3: Extending the tree from xnearest towards
xrand and adding new node xnew to the tree

Figure 2.1: Basic concept behind sampling-based motion planners

ning algorithms differ from each other by slight changes in the way they implement these basic

steps (shown in Figure 2.1), but these little changes contribute to significant differences in the

overall performance of the algorithms. For example, Figure 2.1 explains the working of the popular
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Rapidly Exploring Random Tree (RRT) algorithm [85]. The RRT was among the first probabilis-

tically complete sampling-based planners developed that provides a fast implementation meaning

that if such a solution exists, the algorithm returns a solution with a probability converging to one

as the number of samples grows to infinity. There is a modified version of the RRT algorithm that

is asymptotically complete and asymptotically optimal, called the RRT* algorithm. The RRT*,

instead of directly picking the nearest node of xrand as xnearest in Step 2, picks the nearest node

(from multiple neighboring nodes within a certain radius) with the best cost from the starting node

as xnearest [76]. To improve the cost of the overall computed solution, the RRT* also performs

re-wiring of the edges of the tree once a new node is added. There is another popular proba-

bilistically complete sampling-based algorithm (graph-based instead of being tree-based) called the

Probabilistic Road Maps (PRMs) [77]. In this method, instead of sampling a single xrand in Step

1, the algorithm samples multiple random nodes at once and connects each random node with all

nodes close to it (within a certain radius) creating a graph structure. This graph structure can

then be queried to find the path between any two nodes in the graph.

These above-mentioned sampling-based algorithms and their variations provide fast motion-

planning solutions and are widely used in the field of robotics [10, 76, 92]. However, one common

drawback of many basic sampling-based motion planners such as RRT and PRM is that they are

computationally very inefficient due to storing too many nodes in the trees/graphs. To overcome

this, Li et. al. developed an asymptotically near-optimal kinodynamic motion planning algorithm

called the Stable Sparse RRT (SST) algorithm. SST is computationally very efficient due to its

sparse nature as it performs additional steps for pruning the tree that help in removing sections

(nodes and/or edges) of the tree that do not contribute to overall better solutions [89]. Another

highlight of this algorithm is that it does not require a steering function for tree extension as solving

for a steering law can be challenging particularly when dealing with complex dynamical systems.

Instead, the algorithm picks a random control and a random propagation time to drive the xnearest

state towards the xrand state for building the tree. The SST algorithm is also computationally

very efficient due to its sparse nature as it performs an additional step for pruning the tree that
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helps in removing sections (nodes and/or edges) of the tree that do not contribute to overall better

solutions.

Directly extending an asymptotically-optimal motion planner like the RRT* to astrodynamics

applications will be computationally very expensive than using an efficient asymptotically near-

optimal SST algorithm due to the intensive tree-rewiring in every step of the RRT* algorithm which

essentially converts to computing multiple control solutions for the spacecraft motion at every step.

As a result, this work takes inspiration from an efficient robotic sampling-based motion planner

like the SST algorithm and presents an astrodynamics-informed kinodynamic motion planning

(AIKMP) algorithm. Although there is a compromise in terms of asymptotic optimality, the overall

computation efficiency gained by adapting ideas from SST is significant as will be demonstrated in

the upcoming chapters. The AIKMP algorithm describes the sufficient number of steps that can

be adapted from a sampling-based robotic motion planner to achieve fuel-efficient and collision-free

sampling-based motion planning in astrodynamics applications. This algorithm iteratively improves

on its computed transfer solutions and thus holds the potential of computing near-optimal transfer

solutions given a sufficient number of algorithm iterations – without needing an initial guess of the

solution.

2.2 AIKMP algorithm description

As discussed before, the high-level structure of the AIKMP algorithm is inspired by the SST

algorithm. However, to make such a sampling-based approach better suited for orbital motion

planning applications, instead of growing a sampling-based random tree in traditional relative

position and velocity space (as historically done in sampling-based orbital motion planning), the

AIKMP algorithm is a kinodynamic approach and is developed in the relative orbital element space

of the deputy spacecraft around a chief spacecraft. This way, each node in the tree is represented by

a relative orbit that provides visual insight into the orbit geometry and hence into relative motion.

Using relative orbital elements is also beneficial because, unlike the fast-varying cartesian relative

state vectors within a relative orbit, there is only one relative orbit element (that depends on the
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true anomaly difference) that needs to be solved to find the relative position of a spacecraft. The

AIKMP algorithm also takes advantage of a spacecraft’s natural motion (coasting arcs) during

tree extension, to compute a safe and fuel-efficient transfer trajectory from one node of the tree to

another. This ensures the smoothness of the final transfer solution for relative spacecraft motion.

Figure 2.2 demonstrates the flow of the AIKMP algorithm. All the colored blocks in the figure

represent major sub-routines of the algorithm. The colored blocks on the left depict the basic three

steps involved in any sampling-based motion planner (as discussed in Section 2.1). The colored

blocks on the right correspond to the pruning module which helps in improving the computation

efficiency of the motion planner. The various steps involved in the AIKMP algorithm are discussed

Figure 2.2: Flowchart showing the basic steps involved in the astrodynamics-informed kinodynamic
motion planning (AIKMP) algorithm (inspired by the SST algorithm).

here in detail:
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2.2.1 Step 1 - Tree Initialization :

This step initializes the tree with the starting node x0 and the edges of the tree are initialized

as an empty set. At this stage, since x0 is the only node in the tree, it is set as an active node

(Vactive) that takes part in tree extension.

2.2.2 Step 2 - Random Sampling (sampling xrand):

In this step, the algorithm samples a random node xrand from the obstacle-free region in the

given state space. Now as mentioned before, the AIKMP algorithm is developed in the relative

orbital element space rather than in the relative position and velocity space. Thus, in this step,

the AIKMP algorithm randomly samples a relative orbit around the chief with the relative orbital

element set (δOE) described as:

δOE = OEd −OEc = (δa, δθ, δi, δq1, δq2, δΩ) (2.1)

Here, OEd and OEc refers to deputy’s and chief’s orbital elements respectively, δa is the

relative semi-major axis, δθ is the relative true latitude angle, δi is the relative orbit inclination

angle, δΩ is the relative argument of the ascending node, and δq1 = δeX and δq2 = δeY where

relative eccentricity vector δ⃗e = (δeX , δeY )
T [111]. Details of the choice of spacecraft’s relative

orbit element description are given in Appendix A.

Now, although sampling-based motion planning algorithms are based on the random explo-

ration of the state space, a very large state space for random exploration may involve the algorithm

in too much randomness and this may hinder its convergence to the goal. Thus, given this along

with the need for fuel efficiency for the orbital motion planning problem at hand, restricting the

random search space to stable closed relative orbits around the chief spacecraft seems to be the

most intuitive solution. Transferring to a closed relative orbit will allow the deputy spacecraft

to spend time coasting around the chief, whenever necessary, without the fear of drifting in the

random-search state space to compute the relative motion transfer solution.

In classical two-body orbital motion, the condition on two inertial orbits to have a stable
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closed relative orbit is that their orbit energies must be equal which in terms of orbital elements

means that the difference in their semi-major axis (a) should be zero [110].

δa = 0 (2.2)

Thus, for the randomly explored relative orbits in the implementations in this chapter, the

algorithm always explores stable closed relative orbits around the chief.

Along with randomly exploring the state space, the sampling-based tree also needs to connect

to the goal state to find the transfer solution. As a result, to sample the relative orbital elements

other than δa, the algorithm either bias the random sampling more towards the goal state (by using

the ‘Goal bias’ probability that sets xrand = xgoal) or in an informed way, they are sampled from

suitable distributions such that the random exploration state space is bound to be “close” to the

initial and final relative orbits to avoid introducing too much randomness to the algorithm. For im-

plementation purposes, the δqi are picked from a uniform distribution in the range [−2∆qi 2∆qi],

where ∆qi = δqi,initial − δqi,final of the deputy’s desired relative transfer and i = 1, 2. Since incli-

nation change maneuvers are expensive, the δi values for random exploration are assumed to be

small and hence are picked from an exponential distribution in a suitable range as described in

Table 2.4. The relative position and velocity bounds are picked independently such that the overall

state space used for random exploration remains within linearization bounds of the linear relative

motion dynamics (assumed to be within 5% of the chief’s nominal state). These bounds on relative

position and velocity are particularly useful to bind the intermediate transfer orbits/arcs used for

transfers from one relative orbit to another that may not obey the relative OE bounds.

It is to be noted that such assumptions about limiting the random search space of the

algorithm can be completely avoided. However, it is important to realize that more randomness

may require more time for the convergence of the algorithm. Since the goal of using the orbital

motion planner is to compute a feasible fuel-efficient and collision-free transfer, it is of utmost

importance that the algorithm runs in a reasonable amount of time. Any description of relative

orbital elements can be used with the AIKMP algorithm for random exploration and any necessary
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constraints can be imposed on any element as required. Defining the state space for random

exploration is critical and depends on the mission requirements.

2.2.3 Step 3 - Best Nearest (finding xnearest):

In this step, the node with the best cost in the existing tree is picked as xnearest that is close

to the newly picked random node xrand and this node is used to extend the tree towards xrand.

To compute the “closeness” between two relative orbits, the algorithm uses a non-dimensional

weighted distance measure. The weighted distance (w) between two sets of relative orbital elements

δOE1 and δOE2 is defined as:

w(δOE1, δOE2) =

√
(
δa2 − δa1
achief

)2 + α(δi2 − δi1)2 + (δq1,2 − δq1,1)2 + (δq2,2 − δq2,1)2 + β(δΩ2 − δΩ1)2

(2.3)

where α and β are scaling factors that are assumed to be equal to 1 for demonstration purposes

but can take any appropriate values.

The “Cost” of a node x here is defined as the total fuel required to reach node x from the

starting node x0 of the tree and is defined as follows:

Cost(x) =
x−∑

X=x0

∆vX , (2.4)

Here ∆vX refers to the impulsive ∆v required to transfer from node/relative orbit X and X = x−

refers to the node right before node x that is used to transfer to node x.

To compute xnearest, after the random sampling step, the algorithm finds all the relative

orbits within a radius of δnear of xrand in Vactive for extending the tree. Let’s call this set of relative

orbits, xNEAR. If no relative orbit is found in the δnear radius neighborhood (i.e. if xNEAR is

empty), the algorithm selects the relative orbit closest to xrand according to Eq. 2.3 as xnearest.

Otherwise, if a single relative orbit is found in xNEAR, this is selected as the xnearest. Else if

multiple relative orbits are found in xNEAR, the algorithm picks the relative orbit with the best

path cost in xNEAR (computed according to equation 2.4) and calls it xnearest. This helps the

algorithm, make sure that the nodes with the best cost take part in the tree extension.
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For the purpose of this work, the δnear value was carefully chosen such that it is less than

the weighted distance (equation 2.3) between the initial and the final relative orbit.

δnear < w(xstart, xgoal) (2.5)

This makes sure that whenever the goal relative orbit is targeted directly (xrand = xgoal), the

algorithm doesn’t always pick xstart (corresponding to the initial relative orbit) as the nearest node

(as Cost(xstart) = 0) and also give other randomly explored nodes a chance to connect to the goal.

Equation 2.5 is a valid assumption because, in the first iteration, the AIKMP algorithm attempts

to extend the tree from the starting node to the final goal node directly. Hence, this solution is

already stored by the tree for comparison with other solutions computed by the algorithm.

2.2.4 Step 4 - Extend Tree (computing xnew):

Once xrand and xnearest are picked, a random time of flight (TOFnearest rand which is less

than the total time for the overall transfer TOFtotal) is considered for this intermediate transfer.

This routine attempts to extend the tree from xnearest towards xrand for the picked time of flight

by using a steering law. The node reached by this tree extension (xnew) is added as a new node

to the tree provided it is collision-free. Note that the xrand node itself is not directly added to the

tree but the resulting node from tree extension from xnearest towards xrand (xnew) is.

The AIKMP algorithm uses the Universal variable method of solving Lambert’s problem

[131] along with a particle-swarm-optimization-based [33, 133] Lambert burn strategy to find a

Lambert transfer solution to extend the tree using minimum fuel. Any computed trajectory that

passes through the obstacle space is discarded and the random sampling and tree extension steps

are repeated to make sure that the intermediate trajectories constructed by the algorithm are

collision-free.

Lambert’s guidance solution as steering law for AIKMP tree extension: The

SST algorithm suggests picking a random control and applying it for a random amount of time to

extend the tree [89]. However, this does not work very well in astrodynamics applications (as will
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be demonstrated later in Section 2.3). As a result, due to its flight heritage on the space shuttle

missions [67], a traditional Lambert’s guidance solution is used as the steering law for the AIKMP

algorithm to demonstrate how this can be used to achieve orbital motion planning. However, it is

to be noted that, the steering law for the AIKMP algorithm is not limited to using the Lambert

solution as will be demonstrated in the following chapter.

Figure 2.3: Lambert’s Problem

Lambert’s problem is concerned with determining the transfer orbit between two given inertial

position vectors for a given time of flight under Keplerian dynamics (Figure 2.3). It is one of the

most studied questions in the astrodynamics community. Many different approaches have been

developed over the years to solve Lambert’s problem [82, 17, 66, 32, 131]. In this work, the

Universal variable method [131] is used along with a particle-swarm-based optimization strategy

[33] to compute a minimum change in velocities required to achieve a desired transfer between two

position vectors.

Particle swarm optimization-based Lambert tree extension strategy: The objec-

tive of using this strategy is to find a pair of true anomalies in the initial and final deputy orbits

(f1 and f2 respectively) that require minimum fuel (total ∆v) for the transfer between the two

orbits. The ∆v required for the transfer can be computed by summing the magnitude of change

in velocity required by the spacecraft to be on the transfer orbit from its initial orbit (∆v1) and

the magnitude of change in velocity required by the spacecraft to be on the target orbit from its
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transfer orbit (∆v2), as shown by equations 2.6, 2.7 and 2.8.

∆v1 = |v⃗t1 − v⃗1| (2.6)

∆v2 = |v⃗2 − v⃗t2| (2.7)

∆v = ∆v1 +∆v2 (2.8)

Here, v⃗1 is the velocity of the spacecraft in its initial orbit right before executing the initial impulsive

transfer burn, v⃗t1 is the velocity in the transfer orbit right after executing the initial burn, v⃗2 is the

velocity of the spacecraft in its final orbit after executing the final impulsive transfer burn, and v⃗t2

is the velocity of the spacecraft in its transfer orbit right before executing the final burn.

A particle-swarm-based non-linear optimization technique [33, 133] is used to compute the

pair of true anomalies (f1 and f2) in the initial and final orbits respectively, that will give a minimal

∆v Lambert transfer solution between the two orbits. The values for the true anomalies f1 and f2

are bound between [0, 2π). Specifically, f1 is bounded between [fsnear, fsnear+2π−0.1] radians and

f2 is bounded between [fsrand− 2π+0.1, fsrand] radians. Here fsnear is the state in the initial orbit

that is already connected to the existing random tree and fsrand corresponds to a randomly picked

state in the target orbit. To get around the problem of local minima in this optimization problem,

50 swarm particles are used and 1000 iterations are allowed for the swarm to converge to an optimal

solution. This approach explores the entire solution space using the swarm particles and enables

sharing of information among them. This way, each particle is always aware of the best solution

explored by any particle in the swarm, and with every iteration, each particle moves towards the

best solution explored until that iteration. This process continues until the entire swarm converges

to a single solution or the maximum number of iterations is reached. The solution with the lowest

cost is then picked as the final solution. It is important to note that a swarm-based method like

particle swarm optimization (PSO) gets very computationally expensive depending on the number

of optimization variables [33, 30, 128]. As a result, two different strategies of tree extension are

tested here:

(1) Full PSO tree extension: In this strategy, the PSO routine optimizes for both f1 and f2 as
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explained above.

(2) Single-orbit PSO tree extension: In this strategy, the tree extension uses an initial coasting

arc, propagated for a randomly picked time of flight, to determine the f1, and the swarm

optimization is used to compute the optimal f2 for the transfer.

The findings from using both these strategies will be elaborated later in the 2.3 section. One of the

drawbacks of any Lambert algorithm is the difficulty of finding a solution for 180o transfers, as the

transfer plane is not defined in this case. To get around this problem, coasting arcs are used (that

require no additional fuel) and Lambert burns are performed only when θ ≤ 170.9o or θ ≥ 180.1o,

where θ is the angle of transfer.

It is also to be noted that, using higher numbers for the particle-swarm optimization param-

eters (swarms particles and/or a number of iterations) will only improve the computed solution.

Since this chapter presents a proof of concept, the above-described values are chosen for the param-

eters in the interest of computation time. Also, in this work, both long and short-angle Lambert

transfers are considered while picking the transfer with the least fuel requirement, and the inter-

mediate transfers use single-revolution Lambert transfers. Although, the overall solutions can be

multiple-revolution transfers.

In the work presented here, the spacecraft’s relative motion planning problem is being solved

by exploring the relative orbits of the deputy around the chief, and for that purpose, Lambert’s

solver has been used to aid the AIKMP algorithm in tree extension. Since the Lambert solver

requires the deputy’s initial and final inertial position vector to compute the required transfer, the

tree extension step of the AIKMP algorithm here uses transformations from relative orbit elements

to inertial states as required. Specifically, once xrand is picked for tree extension from xnearest, a

random time of flight is considered for the transfer (TOFnearest rand) and both these deputy relative

orbits (xrand and xnearest) are used to compute the corresponding deputy’s inertial orbits at the

initial and final time instants. The swarm-based iterative-search Lambert burn strategy is then

used to find the pair of true anomalies (f1 and f2) in the two deputy orbits respectively to extend
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the tree using minimum fuel. The computed optimal f2 defines the target state in the final orbit

for the tree extension step. This state is used to compute the new node/relative orbit xnew in the

tree that is reached during this iteration of tree extension.

Relative motion dynamics: To keep things simple initially for demonstration purposes,

the linear model of orbital relative motion dynamics described by the Hill-Clohessy-Wiltshire

(HCW) equations has been used. This model describes the relative motion of a deputy space-

craft near a chief that is in a circular orbit [32, 131]. These equations of motion are valid for

circular chief orbits as long as |ρ⃗|/|r⃗c| << 1 and show the characteristic decoupling of the motion in

the radial-tangential direction (x-y plane) from the normal direction (z plane). The HCW equations

are given as:

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

n =

√
µ

a3

(2.9)

where, x, y, and z refer to the deputy states relative to the chief as expressed in the chief-centered

LVLH frame and n is the chief’s mean motion.

Many other collision-free spacecraft formation flying reconfiguration schemes have been de-

veloped that are specifically based on the Hill-Clohessy-Wiltshire (HCW) model [26, 52]. However,

it is to be noted that the application of the AIKMP algorithm is not limited to this description of

spacecraft relative motion and can be applied to any description of spacecraft relative motion as

will be seen in the following chapters.

Adding edges to the tree by Extend Tree: As explained before, the idea here is to

find the transfer trajectory from point A1 in Orbit A to point B1 in Orbit B as shown in Figure

2.4. But by using the particle-swarm-based Lambert solver, suppose it was found that transferring

from point A2 in the first orbit to point B2 in the second orbit using Lambert burns requires the

least fuel. Thus the Extend Tree routine will add three edges to the tree (provided these edges do
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not intersect the obstacle space), i.e. edges A1 → A2, A2 → B2 and B2 → B1. Out of these edges,

edges A1 → A2 and B2 → B1 are coasting arcs (shown in black markers in Figure 2.4) that do not

require additional fuel for the transfers, thus, contributing to the minimum fuel requirement for

the algorithm.

Figure 2.4: Collision-free edges added to the tree after every iteration of the AIKMP algorithm
through the Extend Tree routine

Once the final node (xnew) has been reached after the Lambert transfer and the edge/edges

connecting xnearest to xnew have been found to be collision-free, all the computed edges are added

to the existing tree and the orbit that xnew belongs to is added to Vactive. This randomly explored

orbit can now take part in the next iterations of tree extension.

Also, it is worth noting that, this strategy of tree extension along with the Goal bias makes

sure that the random-search-based tree is always able to find a collision-free transfer solution to

the goal as the Lambert solution always attempts to connect the existing tree to the goal with

probability = Goal bias.

2.2.5 Steps 5 and 6 - Node Locally Best and Prune Dominated Nodes, (repre-

sented by the colored blocks on the right in Figure 2.2):

These two routines prune/delete the ”bad nodes” from the tree which are nodes that do

not contribute to a better-cost transfer solution. Active tree pruning is not a part of the work

presented in this chapter meaning that every new node that is computed by the tree extension
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step is considered the locally best node. The pruning modules will be considered in the following

chapter (Chapter 3) where the focus will be more on improving the computational efficiency of this

algorithm.

2.3 Implementation and simulation results

2.3.1 Collision-free spacecraft reconfiguration using AIKMP

Here a relative orbit transfer scenario is set up that comprises two spacecraft: the chief

spacecraft and the deputy spacecraft. In this scenario, the deputy spacecraft attempts to safely

reconfigure itself from a state in an initial relative orbit to a state in a final relative orbit around

the chief as shown in Figure 2.5. The chief is assumed to be in a circular orbit. The deputy’s

transfer must be collision-free with the chief or any other obstacle present in the scenario (say

another spacecraft in a formation or simply a “keep-out zone”) and the deputy should also use

less fuel during the transfer. It is to be noted that, since the initial and the final configuration of

Figure 2.5: Relative orbit transfer scenario description.

the spacecraft are fixed in this implementation scenario, the total time of flight (TOFtotal) for the
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overall transfer will be constrained as shown in equation 2.10.

TOFtotal = TOFstart goal +N ∗ Period chief (2.10)

Here, TOFstart goal refers to the minimum time required to transfer from the defined initial

relative state to the final relative state, N is a whole number constrained such that the TOFtotal is

within a maximum time-of-flight (TOFmax) allowed for the transfer.

Due to having a fixed initial and final spacecraft relative configuration in this scenario, the

allowable times for the individual Lambert transfers (TOFnearest rand, specifically TOFf1 f2) for

tree extension will also be constrained. Here (f1, f2) refers to the pair of true anomalies in the

initial and final orbits respectively, chosen for the minimum fuel transfer between the two orbits.

Whenever the goal relative orbit is targeted for tree extension, the TOFnearest rand which is now

called TOFnearest goal will be constrained by the TOFtotal as:

TOFnearest goal = TOFtotal − TOFstart nearest (2.11)

where TOFstart nearest is the total time taken by the tree to reach the xnearest node from the starting

node of the tree. For all the other cases, when a random relative orbit is targeted for tree extension,

the TOFnearest rand can be picked randomly such that TOFmax is not violated.

The classical orbital elements (COEs) of the chief and the initial and final COE differences

of the deputy spacecraft (δCOEi and δCOEf respectively) are shown in Table 2.2, the initial and

final relative states of the deputy spacecraft are shown in Table 2.3, and the state space bounds

along with initialization of the various parameters used by both the SST algorithm and the AIKMP

algorithm are described in Table 2.4.

To demonstrate the performance of the AIKMP algorithm, multiple test cases have been

considered for the above-mentioned transfer scenario.

Case 1: Keplerian dynamics + Collision avoidance with chief:

In this case, there is no other obstacle in the scenario other than the chief spacecraft itself (as

shown in Figure 2.5).
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Chief
COEs

Values
Deputy
δCOEi

Values
Deputy
δCOEf

Values

a 15000 km δa 0 km δa 0 km
e 0 δe 3.333× 10−5 δe 1.111× 10−5

i 50o δi 9.549× 10−4o δi 0o

Ω 10o δΩ 0o δΩ 0o

ω 10o δω 0o δω 0o

Table 2.2: Orbital elements of chief and deputy spacecraft.

Deputy initial
relative state

Values
Deputy final relative

state
Values

x (km) 4.999× 10−1 x (km) −1.666× 10−1

y (km) 3.138× 10−4 y (km) 2.529× 10−10

z (km) −4.333× 10−2 z (km) −2.457× 10−12

ẋ (m/s) 5.374× 10−5 ẋ (m/s) −3.724× 10−11

ẏ (m/s) −3.436× 10−1 ẏ (m/s) 1.145× 10−1

ż (m/s) −8.461× 10−2 ż (m/s) −4.697× 10−12

Table 2.3: Initial and Final desired relative states of deputy spacecraft.

Relative
position-velocity

bounds
Values

Other parameters
(in relative position-
velocity space)

Values

x, z (km) [−0.5 +0.5] δnear SST 0.005
y (km) [−1.5 +1.5] δbest SST 0.0001

ẋ, ẏ, ż (m/s) [−0.5 +0.5]

Relative OE bounds
(for random
exploration)

Values
Other parameters

(in OE space)
Values

δa (km) 0 δnear 1.6× 10−5

δi (in rad) [10−8 10−3] δbest 0
δq1 [−2∆q1 2∆q1] Others Values
δq2 [−2∆q2 2∆q2] Goal bias 0.1

δΩ (in rad) 0 Obstacle tolerance
(sphere)

radius 20m

Table 2.4: Different state space bounds and algorithm parameters used in AIKMP algorithm and
the basic SST algorithm implementations. Here ∆qi = qi,initial − qi,final

.

Here, first, a 2-impulse Lambert’s solution has been implemented to achieve this transfer.

The result of this implementation is shown in Figure 2.6. After that, the AIKMP algorithm is
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implemented in the same scenario using both the tree extension strategies as discussed in section

2.2.4. The results obtained are as shown in Figures 2.7 and 2.8. In these figures, the black color

refers to coasting arcs, the cyan color refers to Lambert transfer to a randomly explored orbit and

the blue color refers to the Lambert transfer to the goal orbit.

(a) 2-burn Lambert transfer solution
(b) Relative state error of solution trajectory with
respect to the goal state.

Figure 2.6: Lambert solution to transfer deputy from Start state to Goal state in Case 1. The total
∆v required for the transfer is 15.05 cm/s.

From Figures 2.7 and 2.8, it is observed that the AIKMP transfer solution computed by

the single-orbit PSO tree extension strategy requires lesser fuel (total ∆v= 13.24 cm/s after 1500

iterations) as compared to the AIKMP solution computed using the full-PSO strategy (total ∆v=

13.57 cm/s after 1000 iterations). This highlights an important property of the AIKMP solution

that even though using the full-PSO gives better cost intermediate transfer arcs, the cost of the

overall transfer solution depends on the random exploration nature of the algorithm and hence the

number of iterations for which the algorithm was allowed to run.

Comparing results from Figures 2.6 and 2.8, it is also observed that the AIKMP algorithm, in

fact, was able to compute a transfer trajectory that required lesser fuel (total ∆v= 13.24 cm/s) than
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(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements vs time of the final AIKMP solution

Figure 2.7: Transfer trajectory as computed by the AIKMP algorithm (ran for 1000 algorithm
iterations) for Case 1 using the full PSO tree extension strategy. The total ∆v required for the
transfer is 13.57 cm/s.



32

(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements vs time of the final AIKMP solution

Figure 2.8: Transfer trajectory as computed by the AIKMP algorithm (ran for 1500 algorithm
iterations) for Case 1 using the single-orbit PSO tree extension strategy. The total ∆v required for
the transfer is 13.24 cm/s.



33

the transfer solution computed by the full-PSO based Lambert solver (∆vlambert= 15.05 cm/s). It

is to be noted here that the total time taken by the solution computed by the AIKMP algorithm

is slightly higher than the time taken by the Lambert transfer solution. This is because the total

time of flight for the transfer trajectory is not considered a constraint in this problem description.

The goal of this implementation is to achieve fuel-efficient transfer with collision avoidance.

For the remaining test cases in this chapter, the single-orbit PSO tree extension strategy has

been used and the AIKMP algorithm to allowed to run for 1500 iterations.

Case 2: Case 1 + obstacle avoidance with a static obstacle with respect to chief

Although the Lambert solution trajectory shown in Figure 2.6 is not in collision with the

chief in this case, collision-free transfer solutions cannot be guaranteed using traditional guidance

methods like Lambert’s solution because such methods have no collision-detection capabilities built

in them. This is where the AIKMP algorithm can be most beneficial.

To demonstrate the obstacle-avoidance capability of the proposed algorithm, the initial sce-

nario (Figure 2.5) has been modified by introducing another static obstacle with respect to the

chief (a keep-out zone for the motion planner). This obstacle is placed strategically such that the

original Lambert solution trajectory (as shown in Figure 2.6a) actually collides with it as shown

in Figure 2.9. This is to make sure that the problem at hand cannot be solved directly by using a

traditional guidance algorithm like Lambert’s solution.

Both the SST algorithm (uses a random control for a random amount of time to propagate

the tree) and the AIKMP algorithm are implemented with the single-orbit PSO-based tree exten-

sion strategy in this obstacle-avoidance scenario. The results of the random exploration of both

algorithms are shown in Figure 2.10.

In this implementation, it is to be noted that the basic SST algorithm was not able to find a

solution trajectory connecting the start state to the goal state in the allowed 1500 iteration. How-

ever, the AIKMP algorithm did find multiple solutions, and the final best cost solution trajectory

(∆v= 13.57 cm/s) computed by the algorithm is shown in Figure 2.11.

Case 3: Case 2 + obstacle avoidance with a static obstacle that obstructs the deputy’s
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Figure 2.9: Modified implementation scenario with a static obstacle/keep-out zone in the chief-
centered relative frame such that the original Lambert solution is in collision

(a) Random exploration by SST motion planning
algorithm in relative position and velocity state-
space

(b) Random exploration by the AIKMP algorithm
in relative OE state-space

Figure 2.10: Random exploration by both SST and the AIKMP algorithm for Case 2
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(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements of the final AIKMP solution versus time

Figure 2.11: Transfer trajectory as given by the AIKMP algorithm for Case 2. The total ∆v
required for the transfer is 13.57 cm/s.
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initial relative orbit.

In Case 1 and Case 2, it is observed that the transfer solution computed by the AIKMP algorithm

performs an initial coast (the initial black colored section of the plots in figure 2.8 and 2.11)

before transferring to a random orbit (the cyan colored arcs in the same figures). Thus, to test

the obstacle-avoidance capability of the algorithm further, in this implementation, a keep-out zone

(with respect to the chief) is considered on the initial trajectory of the deputy spacecraft to test how

the algorithm computes a new collision-free transfer solution. The results of this implementation

are shown in Figure 2.12.

The results for Case 3 validate the reason why the solution trajectory in Case 1 and Case

2 comprised the long initial coasting arcs. This is because, by using the initial coasting arc, the

overall fuel requirement of the transfer trajectory was found to be lesser: For Case 1: ∆v = 13.24

cm/s, Case 2: ∆v = 13.57 cm/s, For Case 3: ∆v = 15.74 cm/s.

Using 5 different sequences of random numbers for the random exploration for both Case 2

and Case 3, as demonstrated in Figure 2.13, it is observed that the cost (total required ∆v) of

the AIKMP solution improves with more iterations. This conforms with the expected asymptoti-

cally near-optimal nature of the sampling-based SST algorithm, which approaches a near-optimal

solution as the number of iterations approaches infinity [89]. Also, it is to be noted here that the

minimum ∆v Lambert transfer solution, in this case, is in collision and hence has a very high cost

(∆vlambert = ∞).

Case 4: Obstacle avoidance with multiple large obstacles with respect to the chief:

To demonstrate the obstacle avoidance capability of the AIKMP algorithm in a very cluttered

environment, multiple large obstacles (spheres of radius = 100m) are added in the previous scenario

and the results computed are as shown in Figures 2.14 and 2.15. The results clearly show the

capability of the AIKMP algorithm to detect an obstacle and then perform maneuvers to avoid the

collision while using less fuel.
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(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements of the final AIKMP solution for Case 3 versus time

Figure 2.12: Transfer trajectory as computed by the AIKMP algorithm for Case 3. The total ∆v
required for the transfer is 15.74 cm/s.
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(a) Cost of AIKMP solution versus the number of
iterations for Case 2

(b) Cost of AIKMP solution versus the number of
iterations for Case 3

Figure 2.13: Cost of AIKMP solution versus the number of iterations using 5 different sequences
of random numbers (denoted by the different colors) for the random exploration.

(a) Transfer solution in 3D relative position space.
(b) In-plane motion of the AIKMP transfer solutions
in relative position space

Figure 2.14: Transfer trajectory as computed by the AIKMP algorithm with larger and more
obstacles (Case 4). The total ∆v required for the transfer is 21.24 cm/s.
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(a) Relative state error of solution trajectory with respect to the goal state.

(b) Relative orbital elements of the final AIKMP solution versus time

Figure 2.15: Transfer trajectory as computed by the AIKMP algorithm with larger and more
obstacles (Case 4). The total ∆v required for the transfer is 21.24 cm/s.
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2.3.2 Collision-free leader-follower formation using AIKMP

Here, a target leader-follower formation scenario is defined for the chief and deputy spacecraft

systems. In this scenario, the deputy starts at an initial relative orbit and re-configures itself to

the defined final leader-follower formation. The difference in this implementation as compared to

the previous cases is that, in the final transfer arc to the goal relative state, the deputy has to

target one particular relative state depending on where the chief is at that time. In implementa-

tion, this just removes the requirement of needing the PSO loop for this final transfer arc to the goal.

The classical orbital elements (COEs) of the chief and the initial and final COE differences

of the deputy spacecraft (δCOEi and δCOEf respectively) are re-defined as shown in Table 2.5.

Chief
COEs

Values
Deputy
δCOEi

Values
Deputy
δCOEf

Values

a 15000 km δa 0 km δa 0 km
e 0 δe 3.333× 10−5 δe 0
i 30o δi 9.549× 10−4o δi 0o

Ω 5o δΩ 1× 10−5o δΩ 0o

ω 10o δω 0o δω 0o

Table 2.5: Orbital elements of chief and deputy spacecraft for the Leader-Follower formation sce-
nario.

In the targeted formation, the deputy is desired to stay ≈ 13 km ahead of the chief spacecraft

which translates to a true anomaly difference of 0.05o with the chief spacecraft.

Case 5: Leader-Follower scenario + Collision avoidance with chief + Obstacle avoid-

ance with static obstacle with respect to chief

Same as Case 1 and Case 2 as described above, the re-configuration solution is initially computed

using the swarm-based Lambert transfer and considers a static obstacle on this computed Lambert

solution. This ensures that the current scenario cannot be solved by a straightforward ∆v-optimal

Lambert solver, as shown in Figure 2.16. The results of the AIKMP algorithm in this scenario

(∆v= 63.51 cm/s) are as shown below in Figure 2.17. The obstacles considered in this scenario
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Figure 2.16: Minimum ∆v requiring Lambert solution colliding with the obstacles in the leader-
follower scenario

are solid spheres with a defined radius or obstacle tolerance. In the results shown in Figure 2.17,

the obstacle tolerance = 20 meters.

Case 6: Case 5 + Obstacle avoidance with another static obstacle with respect to

chief

In this case, another obstacle (static in the chief-centered relative frame) is introduced to the

scenario of Case 4, and implement the AIKMP algorithm for two very different obstacle toler-

ances/radii: 20 m and 200 m, as identified by the differently colored spheres in Figure 2.18. The

goal is to demonstrate how the AIKMP algorithm recomputes a transfer solution for active obstacle

avoidance with any defined obstacle space.

Figure 2.18 compares the AIKMP solutions for the two different obstacle tolerances. As can

be seen, the AIKMP solution for an obstacle tolerance of 20 m (as shown by the plot in black color)

originally passes through the obstacle space with a tolerance of 200 m (as shown by the spherical

regions in yellow color). But with a prescribed larger obstacle space (10 times larger radius than

the former) the algorithm was able to compute a collision-free solution transfer solution. It is also

observed that in this case, the total fuel required by the solution with a larger obstacle tolerance
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(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements of the final AIKMP solution for Case 3 versus time

Figure 2.17: Transfer trajectory as computed by the AIKMP algorithm for Case 4. The total ∆v
required for the transfer is 63.51 cm/s.

is lesser than the solution with a smaller obstacle tolerance. A possible reason for this is that the
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Figure 2.18: Comparison of AIKMP solutions for the leader-follower formation scenario with multi-
ple obstacles (static in chief-centered relative frame) and with two different obstacle tolerances/radii

number of iterations allowed for computing the transfer (1000 iterations) wasn’t enough for the

algorithm to fully explore the state space to compute better solutions. As a result, the tree grown

in the case with smaller obstacle tolerance couldn’t capture the presence of other better solutions.

This demands improved computation efficiency of the algorithm that will make it feasible to run

such a random exploration-based motion planning algorithm for a longer number of iterations in

search of better transfer solutions. The results of this case, however, do clearly demonstrate the

capability of the AIKMP algorithm to detect an obstacle that is in the way of a spacecraft and

then perform maneuvers to avoid the collision while using less fuel.

2.4 Summary

By augmenting sampling-based motion planning ideas from the field of robotics with knowl-

edge of astrodynamics, fuel-efficient and collision-free motion planning can be achieved in astro-
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dynamics applications. In this chapter, an astrodynamics-informed kinodynamic motion planning

(AIKMP) algorithm is presented that can regularly find solutions to spacecraft relative transfer

problems – without requiring an initial guess of the solution. Instead of growing a sampling-based

tree in traditional relative position and velocity space (as historically done in sampling-based or-

bital motion planning), the AIKMP algorithm is developed in the relative orbital element space of

the deputy spacecraft around a chief spacecraft. This provides very useful geometric insight into

relative spacecraft motion, as well as helps in generating an overall smooth final transfer trajectory.

Through several examples, it was demonstrated that the AIKMP algorithm can efficiently detect

an obstacle and compute a safe and fuel-efficient transfer trajectory for spacecraft around obsta-

cles. It was also shown that this algorithm iteratively improves on its computed solutions given

that the maximum allowed time of flight for the transfer is flexible although bounded (the final

solution cannot take an infinitely long amount of time of flight) – a very reasonable assumption

to consider in the context of relative motion planning with obstacle-avoidance capabilities. The

version of the AIKMP algorithm presented in this chapter (without the pruning modules), in fact,

translates to an astrodynamics-informed modified version of the popular sampling-based Rapidly

Exploring Random Trees (RRT). This algorithm uses cost function minimization for tree extension

as opposed to extending every node in the tree in every step. Also, this algorithm uses a Goal bias

probability < 1 to guide the tree extension towards the desired goal state instead of attempting

to connect to the goal state in every iteration of the algorithm [61]. Such modifications make this

algorithm more suitable for fuel-efficient orbital motion planning applications. The use of the goal

bias along with the Lambert steering law biases the tree extension step toward the goal state and

ensures that the tree connects to the goal state provided that at least a single goal bias run is

executed. This contributes to probabilistically complete nature of the AIKMP algorithm meaning

that as the number of iterations of the algorithm tends to infinity, the planner will be able to find

a feasible transfer solution with probability = 1, if a solution exists.



Chapter 3

Efficient Astrodynamics informed sampling-based planning

In the previous chapter, the algorithm used Lambert’s solver along with particle swarm-

based optimization to extend the tree from one node to another while using minimum fuel for

the intermediate transfer. However, it was shown that irrespective of how good the intermediate

transfers are, the overall solution is driven by the random exploration and hence the number of

algorithm iterations allowed to run. Thus it is necessary that the algorithm is fast and efficient so

that it can be run for more iterations and has possible onboard applications. Two major aspects

of the previous version of the AIKMP algorithm that can be improved upon for computational

efficiency are:

(1) Tree extension using Lambert’s steering law: A common drawback of the solutions to

Lambert’s problem is the requirement of an iterative root-finding method to calculate the

time of flight that can quickly become computationally expensive and hence are undesirable

for onboard applications.

(2) Storing too many nodes in the tree: This will directly affect the performance of several

modules in the AIKMP algorithm, particularly the routines that search over the existing

tree nodes to achieve their goal, such as the Nearest neighbor selection routine.

Thus in this work, the focus is on improving the computation efficiency of the previously demon-

strated AIKMP algorithm.

A few new definitions on top of definitions in Table 2.1, will be useful in understanding this section
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as shown in Table 3.1:

Vinactive : The nodes that remain in the tree (because they are a parent to
some active node) but they do not participate in tree expansion
themselves.

Redefined Cost(x) : Sum of cost to reach node x from the start node (x0) and an
estimate of the cost to reach the target node from node x.

Witness node (s) : Every witness node defines a local neighborhood around them-
selves in the state space. These neighborhoods need not be mu-
tually exclusive, however, all these neighborhoods together define
the entire state space for the planning problem.

Representative node
(s.rep)

: Each witness node s maintains one representative node (s.rep)
within their neighborhoods that describes the path with the best
cost from the start node to that particular region.

δbest (Pruning radius) : A radius that defines a neighborhood around witness node s to
check for better cost solutions in that region. If better solutions
exist, nodes in this neighborhood and their parent nodes undergo
pruning.

Table 3.1: Important notations related to tree pruning used in the algorithm description

.

3.1 Modifications to steps of AIKMP:

With the goal of improving computation efficiency in mind, some major modifications have

been introduced to the basic steps of the previous version of the AIKMP algorithm that has been

detailed here.

3.1.1 Modified Step 1 (Tree initialization):

Same as before, this step initializes the tree with the starting node, x0. As this is the only

node in the tree, in this stage, it is set as an active node (Vactive) that takes part in tree extension.

The witness node (s) (which defines local neighborhoods in the given state space), as well as the

witness representative node (s.rep) (which represents the node with the best cost in the region

defined by s), are also set as x0, to begin with. The definitions of the witness node and the witness

representative node can be found in Table 3.1
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3.1.2 Modified Step 3 (Best Nearest - finding xnearest):

This routine uses the same weighted distance measure as shown in equation 2.3 to compute

the nodes that lay within a neighborhood of radius δnear of the sampled node xrand. Same as before,

if no relative orbit is found in the δnear radius neighborhood, the algorithm selects the relative orbit

closest to xrand according to Eq. 2.3 as xnearest. Otherwise, it picks the relative orbit with the best

path cost in that neighborhood as xnearest.

The “Cost” of a relative orbit, for this work has been updated to the sum of total fuel required

to reach that relative orbit from the starting relative orbit (cost-to-come) and an estimate of the

total fuel that will be required to reach the goal orbit from the current node (cost-to-go). This is

done because, fundamentally, arriving at an intermediate node explored by the tree using less fuel

doesn’t guarantee that the overall fuel required to transfer to the goal state will be also reduced.

As a result, the new cost of a node x is formally defined as:

Cost(x) =
x−∑

X=x0

∆vX +∆vest, (3.1)

where ∆vX refers to the impulsive ∆v applied to transfer from node/relative orbit X and (X = x−)

refers to the node right before node x that is used to transfer to node x. ∆vest refers to the estimated

cost-to-go, that is the estimated ∆v required to directly transfer from the current node to the goal

node.

The details of computing the estimated cost-to-go (∆vest) are described in Appendix B.

Same as in the previous chapter, for the purpose of this work, the δnear value is chosen such

that it is less than the weighted distance (equation 2.3) between the initial and the final relative

orbit.

δnear < w(xstart, xgoal) (3.2)

This makes sure that whenever the goal relative orbit is targeted directly (xrand = xgoal), the

algorithm doesn’t always pick xstart (corresponding to the initial relative orbit) as the nearest

node and also give randomly explored nodes a chance to connect to the goal. From equation 3.1,
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Cost(xstart) = ∆vest as the first term (
x−∑

X=x0

∆vX) = 0 (since this is the starting node and x− = x0

here). Thus, it is possible that xstart may have a lower cost than other nodes in the tree which is

why the tree may always try to extend the starting node to the goal node. Equation 3.2 is a valid

assumption because anyway, the first tree extension that the AIKMP algorithm attempts to do is

a direct extension from the starting node to the final goal node. Hence, this solution is already

stored by the tree for comparison with other solutions computed by the algorithm.

3.1.3 Modified Step 4 (Extend Tree - computing xnew):

The previous chapter showed how a traditional guidance algorithm like Lambert’s solution

along with a swarm-based optimization technique can be used as the steering function for solving

the spacecraft’s relative motion planning by exploring the relative orbits of the deputy around the

chief [43]. One common drawback of the solutions to Lambert’s problem is the requirement of an

iterative root-finding method to calculate the time of flight. Such iterative processes can quickly

become computationally expensive and hence are undesirable for onboard applications. Moreover,

since the Lambert solver requires the deputy’s initial and final inertial position vector to compute

the required transfer, the previous tree extension step often used transformations from relative

orbit elements to inertial states and back as required – adding to its computational inefficiency. As

a result, to overcome these shortcomings, the entire tree extension step is translated to the relative

state space by replacing Lambert’s solution with a linearized Lambert solution (LLS) [93], which

is a linearization of the Prussings and Conway’s Lambert solution [32] [Appendix C]. The chief’s

trajectory is used as the nominal trajectory for the LLS used in this work to compute the deputy’s

transfer.

Linearized Lambert Steering function: The LLS states that if the transfer solution

to a nominal trajectory is known, the solution to its nearby trajectories can be quickly computed

as a simple linear update to the nominal trajectory solutions without requiring the iterative root-

solving process. Lambert’s solution gives the terminal velocities (v1 and v2) required to transfer

between any two position vectors (r1 and r2) in a given amount of time of flight. The LLS gives the
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additional velocities (δv1 and δv2) required to achieve a neighboring transfer (δr1 and δr2) with

an allowed difference in time of flight (δt), shown in orange in Figure 3.1b)) to a nominal transfer.

A visual depiction of Lambert’s solution and the LLS is shown in Figure 3.1. Defining a nominal

(a) Lambert’s solution (b) Linearized Lambert Solution (LLS)

Figure 3.1: Lambert’s solution as compared to the LLS. The LLS gives the additional velocities
(δv1 and δv2) required to achieve a neighboring transfer (δr1 and δr2) with an allowed difference
in time of flight (δt) to a nominal transfer.

transfer solution as functions of the position vectors r1, r2 and the transfer arc semi-major axis a

we have:

∆t = g(r1, r2, a) (3.3)

vi = fi(r1, r2, a), for i = {1, 2} (3.4)

The complete definitions of functions g and f are described in Appendix C. Here, ∆t refers to the

transfer time, and v1 and v2 refer to the initial and final velocity vectors respectively. The LLS

says that variations in position vectors (δr1 and δr2) and time of flight (δt) can be introduced and

corrections to the terminal velocities (δv1 and δv2) and the transfer arc semi-major axis (δa) can

be computed as a simple linear update to the nominal trajectory solutions without requiring the

iterative root solving process [93]:

δa =

[
∂g

∂a

]−1(
δt− ∂g

∂r1
δr1 −

∂g

∂r2
δr2

)
(3.5)

δvi = Γiδt+

[
∂fi
∂r1

− Γi
∂g

∂r1

]
∂r1 +

[
∂fi
∂r2

− Γi
∂g

∂r2

]
∂r2 (3.6)

where, Γi =
∂fi
∂a

[
∂g

∂a

]−1

(3.7)
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The details of the derivation of the equations 3.5, 3.6 and 3.7 can be found in [93]. One

thing to note here is that the δvis computed by equation 3.6 refers to the additional velocity on

top of the nominal transfer trajectory. The net ∆v required by the deputy for the transfer can be

computed as:

∆v1 = |(δv1 + v1)− v1 d| (3.8)

∆v2 = |v2 d − (δv2 + v2)| (3.9)

∆v = ∆v1 +∆v2 (3.10)

This ∆v is used to compute the ”cost-to-come” (∆vX) in the new definition of the cost as shown

in Equation 3.1. Here, v1 d is the velocity of the deputy spacecraft in its initial orbit right before

executing the initial impulsive transfer burn, v2 d is the velocity of the deputy spacecraft in its

final orbit after executing the final impulsive transfer burn, v1 and v2 are velocities of the nominal

transfer at the instant of deputy’s initial burn and final burn respectively as shown in Figure 3.1a.

It is to be noted that for implementation purposes in this work, the LLS implementation assumes

δt = 0. Assuming δt = 0 for the intermediate LLS-based tree extensions doesn’t affect the potential

of the AIKMP algorithm in finding near-optimal transfers. This is because, in every iteration of the

AIKMP algorithm, a random time of flight is picked for the intermediate transfers which is equiv-

alent to exploring different values of δt for that particular transfer. When the algorithm is allowed

to run for a large number of iterations, the results will be the same as exploring different values for

δt for the intermediate transfers but indirectly. However, the AIKMP algorithm framework is not

limited to this assumption.

Particle swarm optimization-based LLS tree-extension strategy: Same as the

single-orbit PSO strategy used before (section 2.2.4), here the transfer uses an initial coasting

arc (propagated for a randomly picked coasting time) before executing the transfer to the target

relative state. However, it is important to note here that different states in a relative orbit do not

correspond to simply varying the relative true latitude (δθ) values from 0 to 2π. Varying the δθ

means considering different phasing between the deputy and the chief that results in relative states
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that belong to different relative orbits around the chief [Appendix A]. Thus, to pick the target

relative states in the target relative orbit (xrand) for fuel-efficient tree extension, the PSO variable

used by the AIKMP algorithm is ‘propagation time’ ranging from [0,Period] instead of the true

latitude angle.

The PSO approach explores the entire solution space using the swarm particles which in

this case will be different relative states in the target relative orbit xrand. The particles share

information among themselves in every iteration of the algorithm and as a result, each particle is

always aware of the best solution explored by any particle in the swarm. Every iteration, each

particle moves towards the best solution explored till that iteration and this process continues until

the entire swarm converges to a single solution or the maximum number of iterations is reached.

The solution with the lowest cost is then picked as the final transfer solution and the final relative

orbit corresponding to this solution is called the xnew node for this particular tree extension step.

To get around the problem of local minima in this optimization problem, we use 50 swarm particles

and allow a maximum of 1000 iterations for the swarm to converge to a near-optimal solution.

Relative motion dynamics: Once the required ∆v impulses for the transfer are computed

using the PSO-base LLS, the transfer arc (edge of the tree) is computed using the full non-linear

dynamical model of orbital relative motion [111]. These equations are provided below:

ẍ = − µ

r3d
(rc + x) +

µ

r2c
+ xḟ2 + 2ḟ

(
ẏ − y

ṙc
rc

)
ÿ = − µ

r3d
(y) + yḟ2 − 2ḟ

(
ẋ− x

ṙc
rc

)
z̈ = − µ

r3d
(z)

(3.11)

where, x, y and z refer to the deputy states relative to the chief as expressed in the chief-centered

LVLH frame, ḟ refers to the rate of change of the chief’s true anomaly, rc refers to chief’s orbit

radius and rd =
√
(rc + x)2 + y2 + z2.
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3.1.4 Introducing Step 5 (Node Locally Best - adding best cost nodes to the tree):

After the new node (xnew) is computed, the algorithm evaluates if xnew has locally the best

path cost in the tree. To do so, the routine uses the weighted distance measure (equation 2.3) to

check if xnew lies in the neighborhood described by a pruning radius (δbest) of an existing node

defining that area (also called the witness node of snew). Figure 3.2 will be helpful here to visualize

the working of the Pruning modules (both steps 5 and 6.) The new node of the tree xnew is

Figure 3.2: Visualisation of the different nodes involved in Pruning (applicable to AIKMP Steps 5
and 6)

considered the best node if either of the following conditions holds true:

(1) Using equation 2.3, if w(xnew − snew) ≤ δbest, and Cost(xnew) ≤ Cost(snew.rep) (given by

equation 3.1), where snew.rep is called the representative node denoting the best cost path

in the area defined by snew.

(2) If w(xnew − snew) ≥ δbest. In this case, xnew is added as another witness node to the tree.

xnew is added to the existing tree only if it is determined as the locally best node in the tree

according to either of the above-mentioned conditions.
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Tree pruning can be very beneficial for stochastic sampling-based orbital motion planners,

and defining the radius parameters for the nearest neighbor selection (δnear) and for pruning (δbest)

is an open and critical problem that determines the effectiveness of tree pruning in motion planning.

For example: if the pruning radius is very large, that means that the algorithm will be very selective

in adding new nodes in the tree and once a new node is added – more nodes will be pruned/deleted

from its neighborhood, limiting the randomly exploring nature of the tree. On the other hand, if

the pruning radius is very small, it will be equivalent to not using any pruning (δbest = 0 for no

pruning case).

For the purpose of this work, the pruning radius (δbest) is picked as smaller than the nearest

neighbor radius (δnear).

δbest < δnear (3.12)

Otherwise, it is possible that most of the time a new node (xnew) may not be added to the tree

because xnearest is already within δnear of xrand and the first term in the cost function (
x−∑

X=x0

∆vX

in equation 3.1) for xnearest is lesser than xrand, as the tree will require some ∆v to extend to xrand

from xnearest. Thus if ∆vest for xnearest < ∆vest for xnew, xnew will never be added to the tree

over the xnearest. Thus, to maximize the robustness and computational performance of the AIKMP

algorithm, it is important to smartly define these parameters for a given implementation scenario.

3.1.5 Introducing Step 6 (Prune Dominated Nodes - deleting nodes and edges

from the tree):

This routine is executed only if xnew was found as the best node by Node Locally Best routine

according to condition 1 mentioned in Step 5 and if the time taken to reach node xnew from the

initial node is lesser than the total time allowed for the overall solution trajectory. It computes the

nearest witness node snew to xnew and its representative node (snew.rep). It then moves the old

representative node from Vactive to Vinactive and sets snew.rep = xnew since xnew qualified as the

new node with the best cost path in that region. If the moved node (old snew.rep) is a leaf node,

then the routine deletes the node completely from the tree and erases the edge it formed with its
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parent node. The routine then repeatedly goes on deleting all the subsequent parent nodes erasing

a section of the tree provided they belong to Vinactive and are leaf nodes themselves. This helps the

tree in maintaining a sparse set of nodes that in turn helps in improving the storage requirement

as well as the computational efficiency of the overall algorithm, as will be demonstrated in the

upcoming sections.

3.2 Implementation and simulation results

To demonstrate the performance of the AIKMP algorithm with the mentioned modifications

the Case 2 scenario is picked as described in section 2.3 that has the chief spacecraft along with

another keep-out zone for the orbital motion planner to avoid. Three different versions of the

AIKMP algorithm are compared to solve the transfer solution to the scenario and compare their

performances:

(1) AIKMP version 1: This version uses the PSO-based Lambert solution as the steering law

to extend the tree forward (as previously demonstrated in results of Case 2 in section 2.3).

(2) AIKMP version 2: This version of the AIKMP algorithm uses the PSO-based LLS steering

law (explained in section 3.1.3) along with the pruning routine (explained in sections 3.1.4

and 3.1.5).

(3) AIKMP version 3: In this version of the AIKMP algorithm, the PSO strategy is replaced

with an orbit discretization approach. Same as the PSO approach, here the transfer uses an

initial coasting arc (propagated for a randomly picked coasting time) before executing the

transfer to the target relative orbit. The only difference is that instead of using a swarm-

based optimization, this approach discretizes the targeted closed relative orbit states in the

time interval of [0,Period], and computes the best possible state that minimizes the cost of

that particular transfer as given by equation 3.1.

Performance comparison and analysis:

The solution for version 1 that uses the PSO-based Lambert solution as the steering law to extend
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the tree is already demonstrated in Figure 2.11. The results of implementing versions 2 and 3 are

shown in Figures 3.3 and 3.4 respectively. The cost of the transfer solution computed by versions

1, 2, and 3 are 13.57 cm/s, 14.98 cm/s, and 15.16 cm/sec respectively which are very similar to

the order of magnitude. However, a significant difference in the performance as per computation

requirements was observed between the different versions. The computation time required by the

three versions of the AIKMP algorithm is compared and the results are shown in Figure 3.5.

As can be seen from Figure 3.5a, the computation time per iteration required by the AIKMP

algorithm can be improved by ≈ 80% by using the PSO-based LLS steering law along with pruning

instead of using the PSO-based Lambert’s steering law. Figure 3.5b shows the comparison between

the cumulative time taken by the complete AIKMP algorithm vs the total number of iterations.

This cumulative time is a combination of the time taken by the tree extension step as well as

other steps of the algorithm that depend on the total number of edges in the tree (for example

the Best Nearest routine). It is observed that, for a total of 3000 iterations, using LLS along with

pruning instead of Lambert’s solution as the steering law for the motion planner improves the

overall computation efficiency of the algorithm by ≈ 78%. This efficiency is further improved to

≈ 96% by replacing the PSO routine with the orbit discretization strategy as discussed before.

It was observed that discretizing the target relative orbit evenly at every 1-degree interval (360

equally spaced discretization points) yielded ≈ 96% computation efficiency improvement for a cost

of ≈ 12% fuel increase as compared to using a PSO-based Lambert’s steering law. The performance

of version 3 of the algorithm is comparable to using a standard nonlinear optimization routine such

as sequential convex programming (SQP)-based optimal LLS transfer, as seen in Figure 3.5. This

frequency of discretization is a parameter that can be picked by the user. However, as proven

and pointed out before (section 2.3.1), it is important to remember that irrespective of how much

each individual transfer to the intermediate waypoints is improved, the cost of the overall transfer

solution highly depends on the random exploration nature of the algorithm and hence the number

of iterations for which the algorithm was allowed to run.

Figure 3.6 shows a comparison between the computation times required by AIKMP to com-
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(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements of the final AIKMP solution for Case 2 versus time

Figure 3.3: Transfer trajectory as computed by the AIKMP algorithm (Version 2) for Case 2. The
total ∆v required for the transfer is 14.98 cm/s.
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(a) Transfer solution in 3D relative position space.
(b) Relative state error of solution trajectory with
respect to the goal state.

(c) Relative orbital elements of the final AIKMP solution for Case 2 versus time

Figure 3.4: Transfer trajectory as computed by the AIKMP algorithm (Version 3) for Case 2. The
total ∆v required for the transfer is 15.16 cm/s.
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(a) Comparison of computation time per iteration required for the Tree extension step

(b) Comparison of cumulative computation time required by the full AIKMP algorithm

Figure 3.5: Computation time requirement by the different versions of the AIKMP implementation
vs number of algorithm iterations

pute the first transfer solution in the different test scenarios (Case 2, Case 3, and Case 4 with

obstacles) described in Chapter 2 using Lambert steering law and LLS steering law with pruning.

As evident from the figure, the efficient AIKMP algorithm is able to quickly find possible transfer
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solutions to scenarios with a very cluttered environment (within ≈4 seconds in this case).

(a) Using Lambert steering law (Chapter 2) (b) Using LLS steering law with pruning

Figure 3.6: Computation time required by AIKMP to compute the first transfer solution in the
different test scenarios (Case 2, Case 3, and Case 4 with obstacles) using Lambert steering law and
LLS steering law with pruning.

AIKMP steering law
No. of nodes in final

tree
No. of edges in final

tree

Lambert’s solution OR
Linearized Lambert’s solution

≈ 2400 ≈ 5200

Linearized Lambert’s solution
+ Pruning

≈ 490 (≈80% less nodes) ≈ 1500 (≈70% less
edges)

Table 3.2: No. of nodes and edges retained by the tree built by AIKMP algorithm with and without
pruning for tree extension.

It was also observed that the total number of nodes and edges in the tree at the end of 3000

iterations without tree pruning was found to be ≈ 2400 nodes and ≈ 5200 edges. However, with

pruning, the number of nodes stored by the random tree was reduced by ≈ 80%, and the number
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of stored edges was reduced by ≈ 70%. The number of active nodes stored in the pruned tree was

419 nodes and inactive nodes were 64, which gives a total of 483 nodes and a total of 1496 edges

were stored. This has been summarized in Table 3.2. Thus, using LLS steering law along with a

pruning routine not only improves the computation time required by the AIKMP algorithm, it also

significantly reduces the storage requirement by the algorithm.

3.3 Summary

The AIKMP algorithm has great potential to be used for efficient planning of collision-free

and fuel-efficient transfer trajectories for astrodynamics applications and this algorithm does not

require an initial guess of the solution trajectory. The algorithm can quickly compute feasible

transfer solutions for relative motion planning problems in very cluttered environments and the

algorithm is probabilistically complete meaning that as the number of iterations of the algorithm

tends to infinity, the motion planner will be able to find a feasible transfer solution with probability

= 1, if a solution exists. By using linearized Lambert’s solution (LLS) instead of Lambert’s solution

as the steering law for the motion planner, it was shown that the overall computation efficiency of the

algorithm can be improved by ≈ 78%. This efficiency can be further improved by augmenting the

algorithm with a pruning module that improves the overall computation efficiency of the algorithm

by ≈ 96%. It was also shown that the modifications made to the AIKMP algorithm also significantly

reduced the storage requirement by the algorithm. With pruning, the number of nodes stored by

the random tree was reduced by ≈ 80%, and the number of stored edges was reduced by ≈ 70%.

The presented sparse and efficient version of the AIKMP algorithm is a single-step sampling-

based kinodynamic approach to orbital motion planning problems (as opposed to existing two-step

sampling-based orbital motion planning approaches in literature) and can quickly find solutions to

spacecraft relative transfer problems – without requiring an initial guess of the solution.
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Closed-loop Linearized Lambert Solution for Onboard Formation Control and

Targeting

Lambert’s Problem is one of the most extensively studied problems in astrodynamics. The

problem is concerned with determining the Keplerian transfer orbit between two position vectors

for a given time of flight, as shown in Figure 3.1a. Many different approaches have been developed

over the years to solve Lambert’s Problem [82, 17, 66, 32, 131]. However, one common drawback

of the solutions to this problem is the requirement of an iterative root-finding method involved

in calculating the time of flight. Such iterative processes can quickly become computationally

expensive and hence are undesirable for onboard applications. To address this problem, McMahon

and Scheeres developed the linearized Lambert solution (LLS) algorithm, which can determine

high-accuracy solutions to neighboring transfers to a wide range of nominal transfer trajectories

[93]. They show that, if a nominal Lambert arc is known, a neighboring solution can be obtained

through a linear update to the required nominal velocities, as illustrated in Figure 3.1b. In his

work, McMahon derived this linearization solution using 2-body dynamics and proved that the

algorithm gives roughly 99.9% computational savings as compared to the Lambert solution at the

cost of less than 1% errors in accuracy.

The proposed study leverages the subtle properties of the LLS algorithm [93] and extends

its application to a perturbed environment. A closed-loop LLS re-targeting scheme is implemented

that segments the transfer arc into sub-arcs and applies multiple LLS correction burns to correct

deviations due to linearization errors and non-Keplerian perturbations. An optimization problem is
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formulated and it is demonstrated that the algorithm can be extended to satisfy mission constraints

like maximum relative separation constraints with fuel-efficient transfers. This novel extension

of the LLS is applied to Spacecraft Formation Flying (SFF) problem, and it is shown that the

resulting closed-loop LLS-guidance algorithm allows for stringent targeting accuracy in different

SFF problems. It is to be noted that the closed-loop LLS retargeting can be applied to any linearized

Lambert’s solution formulation [9, 116, 107] and is not restricted to first-order linearization solutions

such as the one used in this paper.

4.1 Closed-Loop LLS as a re-targeting scheme in Spacecraft Formation

Flying

The linearized Lambert solution (LLS) developed by McMahon and Scheeres states that if

the transfer solution to a nominal trajectory is known, the solution to its nearby trajectories can be

quickly computed as a simple linear update to the nominal trajectory solutions without requiring

the iterative root-solving process [93]. The linearization of the Prussings and Conway’s Lambert

solution [32] that they use are shown in section 3.1.3. The closed-loop LSS solution segments a

linearized Lambert transfer arc into sub-arcs and applies multiple correction burns to correct for

deviations due to linearization errors and non-Keplerian perturbations during the transfer.

4.1.1 Scenario description:

To demonstrate the working of the closed-loop LLS algorithm a simple spacecraft reconfig-

uration example scenario is considered. The scenario comprises a Chief and a Deputy spacecraft

where the Chief maneuvers from an initial state (true anomaly of 180o) to a target state (true

anomaly of 20o) in its original GEO orbit in a quarter of a day (6 hours). The orbital elements of

the Chief’s initial trajectory and the transfer trajectory are shown in Table 4.1. The Deputy aims

to maneuver around the Chief in order to maintain an initial and final desired relative separation

δr1 = δr2 = [5, 0, 0] km as seen by the Chief centered Radial, In-track and Cross-track (RIC)

frame. The δr1 and δr2 need not necessarily be equal here and can take any values around the
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reference trajectory provided the linearization is valid.

Orbital elements
Values for initial
chief trajectory

Values for the
transfer orbit

Semi-major axis (a) 41798 km 87593.54 km
Eccentricity (e) 0.75 0.88
Inclination (i) 3.219o 176.78o

RAAN (Ω) 65o 245o

Argument of Periapsis (ω) 5o 140.93o

Initial true anomaly (ν0) 180o −146.02o

Targeted true anomaly (ν) 20o 14.10o

Table 4.1: Orbital elements of Chief’s initial trajectory and transfer trajectory in defined
reference scenario for demonstrating the concept of the closed-loop LLS (GEO case)

Figure 4.1: Working of the Deputy’s closed-loop LLS in conjunction with Chief’s Lambert solution
in the spacecraft formation re-targeting scenario.

Figure 4.1 provides a flowchart of the proposed closed-loop LLS guidance of the Deputy

spacecraft. Here, (r1c, v1c) represents the Chief’s initial inertial state, (r2c, v2c) represents the

Chief’s final desired inertial state, (r1d, v1d) represents the Deputy’s initial inertial state, (r2d, v2d)

represents the Deputy’s final desired inertial state, and v−
1d refer to the velocity of the Deputy right

before applying the LLS correction burn. Thus the initial and final desired relative separations of
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Deputy wrt the Chief are δr1 and δr2 respectively, where

δr1 = r1d − r1c (4.1)

δr2 = r2d − r2c (4.2)

The total time of flight here is represented by TOF, propagation time in iteration L of closed-loop

LLS is depicted by tprop L, and the remaining time of flight at the beginning of iteration L is given

by ∆tL. The relation between the three is:

∆tL = TOF −
L−1∑
l=1

tprop l (4.3)

Here, given the Chief’s current state, target state, and ∆t, the Chief performs a Lambert transfer

to reach its goal and this is considered as the Chief’s transfer trajectory to the target state as

can be seen in Figure 4.1. With the knowledge of both the Chief and Deputy’s current states,

target states, time of flight (δt represents the difference in the time of flight of the chief and the

deputy), parameters α, β and the Chief transfer trajectory semi-major axis a, the LLS is computed

for the deputy spacecraft to maneuver it from its start state to goal state. This gives the linear

update to the nominal velocities of the Chief trajectory that will be required by the Deputy (δv1)

to reach its desired goal state from the start state. After this initial burn is applied, the Deputy

is allowed to drift as per its dynamics for tprop < TOF. At the end of this tprop, given the current

state of the Chief spacecraft, the LLS solution for the Deputy is recomputed and the resulting

velocity correction is applied as correction burn for re-targeting to its goal state again from the

current state. This process of recomputing the LLS and applying correction burns is repeated until

∆t = 0. The number of correction burns to be applied is completely based on the scenario/mission

requirement. For example, if the mission requirement is to achieve better targeting accuracy, one

might choose to implement multiple correction burns whereas if the mission requirement is only to

minimize the overall fuel consumption, one might prefer lesser or no correction burns.
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4.1.2 Performance of the closed-loop LLS:

For ease of understanding the performance of the closed-loop LLS algorithm, the implemen-

tation is broken down into two parts. First, the algorithm is implemented in the described scenario

using Keplerian dynamics only. For demonstration purposes, the total number of burns is limited

to 3 that are arbitrarily placed during the transfer, and no restriction is assumed in terms of fuel

usage. The first correction burn is applied once the Deputy has propagated for an angle = θ/2,

where θ is the total transfer angle of the transfer arc from the start state to the goal state. The

second correction burn is applied when the total propagation angle = 3θ/4.

Here,

n total number of burns =⇒ 1 LLS burn + (n− 1) correction burns. (4.4)

It is to be noted here that in this example, equation 4.4 considers only the initial LLS burn

because the goal for the deputy here is to reach the target relative position δr2 irrespective of the

arrival velocity.

Let r′2d and r′2c be the final actual positions of the Deputy and the Chief respectively each

wrt the inertial frame. Let δr′2 be the Deputy’s actual final position relative to the Chief’s actual

final position, defined as

δr′2 = r′2d − r′2c (4.5)

The targeting error that is considered here for evaluation is eRIC which is defined as the targeting

error as seen by the Chief-centered RIC frame.

eRIC = ∥δr2 − δr′2∥2 (4.6)

4.1.2.1 Performance with Keplerian dynamics:

Since external perturbations are not considered in this case, the result of this implementation

will demonstrate the effect of the closed-loop LLS in overcoming the linearization errors of the single

burn LLS.

For the case when only a single LLS burn is applied to transfer the deputy from its initial state to its
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desired final state, the eRIC is found to be 1.5 meters (Table 4.2), which is due to the linearization

error of the LLS.

Now, to compare its performance with the closed loop LLS and to evaluate the targeting accuracy,

as described earlier, after propagating the Deputy for θ/2 angle, the LLS to target the final desired

position is recomputed and a single correction burn is applied. In another case, a second correct

burn is computed using LLS after the Deputy has propagated for a total angle of 3θ/4. Figure

4.2 shows the resulting transfer of the deputy spacecraft in the Chief-centered RIC frame after

the application of the closed-loop LLS burns. As can be seen from Table 4.2, with just a single

correction burn, the eRIC is reduced by ≈ 27%, whereas with two correction burns it is reduced by

≈ 67%.

(a) 3D representation (b) Component-wise representation

Figure 4.2: Deputy relative position wrt Chief as seen by Chief’s RIC frame (with two closed-loop
LLS correction burns).
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No. of total
burns

Deputy’s required ∆v (in km/s)
eRIC (in

m)

% reduction
in targeting

error

1 Initial burn: 2.52 1.5 –

2 Initial burn: 2.52 1.1 ≈ 27%
First correction burn: 6.21× 10−7

Initial burn: 2.52
3 First correction burn: 6.21× 10−7 0.5 ≈ 67%

Second correction burn: 1.48× 10−7

Table 4.2: Fuel required by the deputy for each closed-loop LLS burn and deputy’s final position
error with Keplerian dynamics in the re-targeting scenario

4.1.2.2 Performance with non-Keplerian dynamics:

Here external perturbations are introduced to the previous implementation scenario namely:

solar radiation pressure (SRP), drag, and J2 perturbations which are defined as follows:

Cannonball model for computing SRP acceleration:

asrp = −PsrpCrA

m
δ̂r (4.7)

Here Psrp = P0(R0/Rsun)
2 is the SRP acting on an object at a distance Rsun from the Sun, where

P0 = 4.57× 10−6 Pa is the SRP at R0 = 1 AU which is the distance from the Earth to the Sun. Cr

is the spacecraft coefficient of reflectivity, A is the cross-sectional area of the spacecraft facing the

sun, m is the mass of the spacecraft, δr = rsun−rs is the relative distance between the spacecraft

and the Sun, rsun is the position vector of Sun and rs is the position vector of the spacecraft, both

relative to the ECI frame.

The differential SRP acceleration expressed in the chief centered LVLH frame components is defined

as:

O∆asrp = [ON ](asrp,d − asrp,c) (4.8)

Here, asrp,d and asrp,c refer to the SRP acceleration acting on the deputy and the chief spacecraft

respectively. [ON] is the Direction Cosine Matrix (DCM) that maps vectors from the inertial frame
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to the chief-centered LVLH frame or the O frame.

Drag acceleration:

adrag = −ρCdA|Vrel|Vrel

2m
(4.9)

Here, Cd is the spacecraft drag coefficient and A is the cross-sectional area of the spacecraft per-

pendicular to its direction of motion. Vrel = V s − Vatm is the spacecraft’s velocity relative to the

velocity of the surrounding atmosphere Vatm. Here the air particles in the atmosphere are assumed

to be rotating at the same spin rate as the Earth. This gives Vatm = ωatm × rs, where inertial

angular velocity of the atmosphere ωatm = [0 0 2π
86400 ]

T rad/s.

The atmospheric density ρ is computed by using the Exponential decay model of atmospheric

density as shown in equation 4.10, where Re = 6.4×106 m is the radius of the Earth, H = 8.5×103

m is the atmospheric scale height and ρ0 = 1.3 kg/m3 is the atmospheric density at the Earth’s

surface (|rs| = Re).

ρ = ρ0 exp

[
−(|rs| −Re)

H

]
(4.10)

The differential drag acceleration expressed in the chief centered LVLH frame components is defined

as:

O∆adrag = [ON ](adrag,d − adrag,c) (4.11)

adrag,d and adrag,c refer to the drag acceleration acting on the deputy and the chief spacecraft

respectively.

J2 acceleration:

aJ2 =
3JµRe

2

2|rs|5


(5 Z2

|rs|2
− 1)X

(5 Z2

|rs|2
− 1)Y

(5 Z2

|rs|2
− 3)Z

 (4.12)

Here, J = 0.001082 is the constant coefficient reflecting the gravitational effect of Earth’s

oblateness due to its rotation, X, Y , and Z are the x,y, and z-components of the position vector
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rs of the spacecraft relative to the ECI frame.

The differential J2 acceleration expressed in the chief centered LVLH frame components is defined

as:

O∆aJ2 = [ON ](aJ2,d − aJ2,c) (4.13)

aJ2,d and aJ2,c refer to the J2 acceleration acting on the deputy and the chief spacecraft respec-

tively.

In the presence of these perturbations, the exact 3 cases as described in section 4.1.2.1 are run, and

the eRIC and burn magnitude for the 3 re-targeting cases with different allowed total numbers of

burns are depicted in Table 4.3.

No. of total
burns

Deputy’s required ∆v (in km/s)
eRIC (in

m)

% reduction
in targeting

error

1 Initial burn: 2.52 5.4 –

2 Initial burn: 2.52 4.1 ≈ 24%
First correction burn: 2.61× 10−3

Initial burn: 2.52
3 First correction burn: 2.61× 10−3 1.2 ≈ 78%

Second correction burn: 3× 10−3

Table 4.3: Fuel required by the deputy for each closed-loop LLS burn and deputy’s final position
error with non-Keplerian dynamics in the re-targeting scenario

As can be seen, the closed-loop is able to reduce the eRIC by ≈ 78% after the application

of the two correction burns. The main takeaway from this implementation is that, with a set of

rightly spaced correction burns over the transfer trajectory, the closed-loop LLS has the potential to

improve spacecraft targeting accuracy significantly even with the presence of external perturbations.

Now, it is important to note here that although the demonstrated example case considers the

reference trajectory of a chief spacecraft, for the LLS or the closed-loop LLS algorithm to work,

the Chief need not even be a real spacecraft doing maneuvers and can just be a nominal reference
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trajectory. Moreover, the Chief can also have different dynamics as compared to the Deputy, if

necessary.

4.2 Closed-loop LLS for spacecraft re-targeting with maximum relative

separation constraints

4.2.1 Scenario description:

Here, the closed-loop LLS is used to ensure a maximum separation distance requirement

between a reference trajectory (a ”virtual chief”) and the deputy spacecraft with minimum fuel

usage. A scenario is defined with a single deputy spacecraft and a nominal GEO reference trajectory

as the virtual chief. The scenario begins with the Deputy spacecraft starting in an eccentric orbit

around the central body it is orbiting, staying close to the virtual chief. As expected, with the

passage of propagation time, the Deputy will deviate from its original trajectory due to the effect

of external perturbations. However, around the virtual chief, a sphere of radius 10 km is defined

and the Deputy must perform maneuvers to stay within this sphere.

To achieve this, a Planning Algorithm is developed using closed-loop LLS to prevent the Deputy

from violating the maximum relative separation constraint. This Planning Algorithm comprises

two main parts:

(1) A Constraint checker: This is responsible for monitoring the relative separation between

the virtual chief and the Deputy’s current position. If the relative separation is below

the specified threshold, no correction burn will be required; therefore the Deputy will be

allowed to drift as per its natural dynamics.

(2) A Targeting scheme: If/once the constraint is violated (i.e. the relative separation has

grown too large), a targeting scheme will be activated. This scheme will be responsible

for determining a new target that will abide by the relative proximity constraint and a

time of flight to allow the LLS to compute the required correction burns. The new target

is selected to be on a naturally closed relative orbit (or quasi-periodic orbit due to the
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perturbations) whose size is less than the maximum allowable relative separation. This will

allow the Deputy to spend as much time coasting without violating the relative separation

constraint and ultimately reducing the total delta-v requirement.

The complete scenario can be visualized in Figure 4.3.

Figure 4.3: Spacecraft re-targeting scheme using closed-loop LLS when relative separation bounds
are close to being violated.

Here, δv−
1 represents the initial relative velocity of the Deputy at the point of exiting the

constraint sphere, δv+
1 is the initial correction velocity given by LLS, δv−

2 is the velocity with

which the Deputy arrives at the target position and δv++
2 is the final velocity correction required

by the Deputy to be in the desired relative orbit. Figure 4.4 presents a concise block diagram

describing the inner workings of this proposed LLS guidance with the Planning algorithm for a

single spacecraft.

4.2.2 Planning Algorithm Development to satisfy maximum relative separation

constraint

4.2.2.1 Spacecraft retargeting to closed relative orbit:

To reduce the required velocity change throughout the length of the mission, the idea is

to utilize the natural motion of the spacecraft as much as possible. Hence, targeting an orbit
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Figure 4.4: Work-flow of the closed-loop LLS for the single spacecraft re-targeting case with maxi-
mum relative separation constraints.

that would naturally fulfill the maximum separation requirement for a longer time, seemed like

an excellent strategy to achieve this. Stable closed relative orbits are the most intuitive of such

natural orbits. The Tschauner-Hempel (T-H) equations have been used to describe the motion of

the Deputy around the eccentric chief. The solutions to a deputy’s relative motion around a chief

according to the T-H equations are given by equations B.6 that are reproduced here for reference:

x̄(f) = K1ρsin(f) +K2ρcos(f) +K3(2− 3eρsin(f)k̄(τ − τ0))

ȳ(f) = K1(ρ+ 1)cos(f)−K2(ρ+ 1)sin(f)− 3K3ρ
2k̄(τ − τ0) +K4

z̄(f) = K5sin(f) +K6cos(f)

where the parameters K1,K2,K3,K4 are constant of the motion, τ = nt, n is the Chief’s mean

motion, and k̄ =
√
µ[a(1− e2)]−3/2.

It can be seen that k̄(τ − τ0) grows unbounded as time evolves. To ensure bounded relative motion

which is centered around the Chief’s position (a desirable behavior in our analysis), it is imperative

to set K3 = K4 = 0, K4 being the y-offset. These constants of the motion can be expressed as a

function of the initial conditions [14] as follows:

K3 = (3ρ(f0) + e2 − 1)x̄(f0) + es(f0)x̄0
′(f0) + ρ(f0)

2ȳ0
′(f0) = 0 (4.14)

K4 = −3e

(
s(f0)

ρ(f0)

)(
1 +

1

ρ(f0)

)
x̄0 + (1− e2)ȳ0 + (ec(f0)− 2)x̄0

′ − es(f0)

(
1 +

1

ρ

)
ȳ0

′ = 0 (4.15)



73

Solving the above equations we get,

x̄0
′ = − e sin(f0)

e cos(f0) + 1
x̄0 −

(
1

e cos(f0) + 2
− 1

)
ȳ0 (4.16)

ȳ0
′ = −

(
1

e cos(f0) + 1
+ 1

)
x̄0 −

e sin(f0)

e cos(f0) + 2
ȳ0 (4.17)

Where, ρ(f) = 1 + e cos(f), (4.18)

c(f) = ρ(f) cos(f), (4.19)

s(f) = ρ(f) sin(f), (4.20)

(x̄, ȳ, z̄) =
(x, y, z)

R
, (4.21)

R =
1

1 + e cos(f)
(4.22)

Also, here prime notation ()′ = d()
df .

Equations 4.16 and 4.17 can be used to obtain the closed relative orbit under Keplerian

motion.

4.2.2.2 Optimal targeting angle:

A parameter minimization problem is derived to determine the optimal transfer angle (θ)

defining the target δr2 in the chief-centered LVLH frame that will minimize the fuel requirement

of the overall mission.

δr2 = ρ [cos (θ) , sin (θ) , 0]T (4.23)

Here, scalar ρ is a user-prescribed design parameter that will be heuristically chosen given the

level of perturbations. Given the scenario and close relative motion around the virtual Chief, this

definition of the transfer angle (θ) is a valid assumption in this case that was assumed for ease of

calculation.
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The minimization problem is defined as:

Cost function (J) = min
θ

(
1

2
∆vT1 ∆v1 +

1

2
∆vT2 ∆v2

)
, where θ is the transfer angle (4.24)

s.t: ∆v1 = |δv−
1 − δv+

1 (θ)| (4.25)

∆v2 = ∆v2(θ) = |δv+
2 (θ)− δv++

2 (θ)| (4.26)

0 ≤ θ < 2π (4.27)

Where δv−
1 is the initial relative velocity of the Deputy, δv+

1 (θ) = A1δr1+B1δr2 is the initial

velocity correction given by the LLS, δv+
2 (θ) = A2δr1+B2δr2 is the final velocity correction given

by LLS [93] (assuming δt = 0), and δv++
2 (θ) = Cδr2 is the velocity required for closed relative

orbit (given as dimensionalized components in the LVLH), i.e,

C = ḟ


0 1− 1

e cos(f)+2 0

−
(

1
e cos(f)+1 + 1

)
e sin(f)

2+3e cos(f)+(e cos(f))2
0

0 0 0

 (4.28)

The radii δr1 and δr2 are the initial relative radius at the beginning of the transfer and the

targeted final radius, respectively.

Taking consecutive derivatives of the cost (equation 4.24) wrt the parameter θ yields,

∂

∂θ
(J) = −

(
δv−

1 − δv+
1

)T ∂

∂θ

(
δv+

1

)
+
(
δv+

2 − δv++
2

)T
(

∂

∂θ

(
δv+

2

)
+

∂

∂θ

(
δv++

2

))
(4.29)

∂2

∂θ2
(J) =

∂

∂θ

(
δv+

1

)T ∂

∂θ

(
δv+

1

)
+
(
δv−

1 − δv+
1

)T ∂2

∂θ2

(
δv+

1

)
+

(
∂

∂θ

(
δv+

2

)
+

∂

∂θ

(
δv++

2

))T (
∂

∂θ

(
δv+

2

)
+

∂

∂θ

(
δv++

2

))
(4.30)

+
(
δv+

2 − δv++
2

)T
(

∂2

∂θ2

(
δv+

2

)
+

∂2

∂θ2

(
δv++

2

))

Where,
∂

∂θ

(
δv+

1

)
= B1

∂

∂θ
(δr2) ,

∂2

∂θ2

(
δv+

1

)
= B1

∂2

∂θ2
(δr2) (4.31)

∂

∂θ

(
δv+

2

)
= B2

∂

∂θ
(δr2) ,

∂2

∂θ2

(
δv+

2

)
= B2

∂2

∂θ2
(δr2) (4.32)

∂

∂θ

(
δv++

2

)
= C

∂

∂θ
(δr2) ,

∂2

∂θ2

(
δv++

2

)
= C

∂2

∂θ2
(δr2) (4.33)

∂

∂θ
(δr2) = ρ [− sin (θ) , cos (θ) , 0]T ,

∂2

∂θ2
(δr2) = −ρ [cos (θ) , sin (θ) , 0]T (4.34)
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Substituting these values into equation 4.29 and 4.30 gives the derivatives of the cost function J

as a function of θ. Mathematically, equating ∂
∂θ (J) = 0 and evaluating the ∂2

∂θ2
(J) at its solution

values gives us the global extremum values (minimum or maximum) of the cost function J .

Equations 4.16 and 4.17 can be leveraged to generate closed relative motion of the deputy

around the chief spacecraft. With the addition of SRP and J2 perturbations, it is well known that

the relative motion will no longer stay closed and the two spacecraft will eventually drift apart.

However, analysis shows that for a Deputy starting ≈ 1.5 km away from the Chief, the drift between

the two spacecraft is rather slow as can be seen from the Monte Carlo simulation results in Figure

4.5. Thus for the current example scenario, setting our target condition in a closed (Keplerian)

relative orbit for a deputy starting 1.5 km away from the Chief (ρ = 1.5) will allow us to sufficiently

delay any correction burn and hence save on fuel requirements of the mission.

4.2.3 Implementation and results

The deputy is arbitrarily initialized in a closed relative orbit around the virtual chief such that

it is within the 10 km relative separation bound. The total time of flight used for the simulation is 2

days. During this period, when the constraint checker detects a violation of the maximum relative

separation bound, the optimal targeting angle is computed to define the target point for deputy

reconfiguration. To compute this optimal targeting angle, the values for matrices A1, A2, B1, B2,

and C are computed from the simulation at a point when the Deputy is exiting the constraints

sphere, and the cost function is investigated for different values of θ using equation 4.24. Figure

4.6a shows that a global minimum of the cost function exists and Figure 4.6b confirms the same as

∂
∂θ (J) = 0 and ∂2

∂θ2
(J) > 0 at the same point.

Conceptually, this optimal target angle (θ) provides a point at which the Deputy velocity

will be tangent to the closed relative orbit around the virtual chief, allowing for the δv++
2 velocity

change to be minimum. This idea of tangential velocity can be better understood by contrasting

results in Figure 4.7 and Figure 4.8.

In Figure 4.7, a random targeting angle θ is used to define the target state for reconfiguration.
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(a) fchief = 0◦ (b) fchief = 90◦

(c) fchief = 180◦ (d) fchief = 270◦

Figure 4.5: Slowly drifting perturbed relative position of a Deputy starting 1.5 km away from the
Chief spacecraft for different Chief’s true anomaly (fchief ).

As can be seen, the velocity needed to be in the closed relative orbit, in this case, is not aligned

with the Deputy velocity. As a result, the spacecraft has to drastically change its direction of

motion. However, in Figure 4.8, the optimal targeting angle is calculated and hence the deputy

spacecraft transitions smoothly from the transfer orbit to the closed relative orbit. The use of

optimal targeting angle, in this case, allowed δvsave ≈ 0.6m/sec, where δvsave is the delta-v saved

during the transfer.

The performance of this algorithm was tested for a longer period of 50 days and the results
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(a) Cost Function vs θ (b) Cost Function Derivatives vs θ

Figure 4.6: Cost Function minimization for calculation of optimal angle for fuel-efficient closed-loop
LLS transfer.

(a) 3-D Relative trajectory
(b) Deputy’s relative position over time and com-
puted ∆v burns

Figure 4.7: Non-optimal angle spacecraft re-targeting using closed-loop LLS for maintaining max-
imum relative separation constraint for 2 days. Total ∆v of the transfer = 3.5 m/s.

are shown in Figure 4.9.

In this case, the developed targeting algorithm allowed the deputy to stay within the maxi-

mum separation bounds with δvsave ≈ 13m/sec.
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(a) 3-D Relative trajectory
(b) Deputy’s relative position over time and com-
puted ∆v burns

Figure 4.8: Optimal angle spacecraft re-targeting using closed-loop LLS for maintaining maximum
relative separation constraint for 2 days. Total ∆v for the transfer = 2.9 m/s.

(a) 3-D Relative trajectory
(b) Deputy’s relative position over time and com-
puted ∆v burns

Figure 4.9: Maintaining maximum relative separation constraint for 50 days using optimal angle
spacecraft re-targeting using closed-loop LLS. Total ∆v for the transfer = 50.6 m/s.
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4.3 Using closed-loop LLS for safe spacecraft reconfiguration in a cluttered

environment

4.3.1 Scenario description

The re-targeting strategy discussed in section 4.2.2 for a single spacecraft can be extended

to when the environment is cluttered with obstacles/keep-out zones (can be multiple spacecraft in

the scenario).

For demonstration purposes, an example scenario similar to Case 3 as described in section 2.3

is used where a deputy spacecraft attempts to safely reconfigure itself from an initial relative orbit

to a final relative orbit around a chief spacecraft. The transfer must be collision-free with the chief

and any other known obstacles present in the scenario (defined keep-out zones) and the deputy

should also use less fuel during the transfer. This scenario has been reproduced here in Figure 4.10

for reference. As seen in Figure 4.10, this particular example scenario has three obstacles/keep-out

Figure 4.10: Relative orbit transfer scenario description.

zones for the deputy spacecraft to avoid (including the chief). The classical orbital elements (COEs)

of the chief and the initial and final relative orbital elements of the deputy spacecraft with respect

to the chief (δCOEi and δCOEf respectively) and the initial and final relative states of the deputy
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spacecraft are shown in Tables 2.2 and Table 2.3 respectively.

To demonstrate the performance of the closed-loop LLS in this case, a two-step approach is

considered. In the first step, a collision-free and fuel-efficient transfer solution (reference trajec-

tory) is computed for spacecraft reconfiguration considering Keplerian dynamics using the efficient

AIKMP algorithm. And then in the next step, the closed-loop LLS is used as the guidance law to

allow the spacecraft to closely follow the planned path in the presence of external perturbations.

4.3.2 Implementation and results

Step 1: Generating a motion plan in a cluttered environment considering Kep-

lerian dynamics:

In this step of the implementation, the AIKMP algorithm is used to generate the motion plan (ref-

erence trajectory) using Keplerian dynamics [47, 46]. For generating the motion plan, an inflated

keep-out zone is considered for the AIKMP algorithm. Specifically, for the known spherical keep-

out zones of radius = 20 m (as considered before), an additional obstacle clearance region of 30 m

is considered, which essentially means that the generated motion planning solution is guaranteed

to have a clearance of 30 m from the given keep-out zones/obstacles.

The collision-free and fuel-efficient motion plan computed by the AIKMP algorithm is shown

in Figure 4.11. In these figures, the black color refers to coasting arcs, the cyan color refers to

Lambert transfer to a randomly explored orbit and the blue color refers to the Lambert transfer to

the goal orbit. Figure 4.11b shows how the relative orbit elements of the deputy change over the

length of the final transfer solution.

Step 2: Closed-loop LLS-based guidance:

Closed-loop LLS-based guidance is developed to follow the motion plan generated in Step 1 closely

in the presence of SRP, and drag perturbations. Also, it is to be noted that the AIKMP transfer

solution is a combination of multiple sub-arcs (as described in Figure 4.11) resulting from its

stochastic tree-based framework [44]. In this step of the implementation, the LLS solution is used

to compute the transfer in small sections defined by these sub-arcs. This means that an LLS
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(a) Transfer solution in 3D relative position space.

(b) Relative orbital elements of the reference trajectory vs time of flight

Figure 4.11: Reference trajectory generated by the AIKMP algorithm considering Keplerian dy-
namics in Step 1. The total ∆v required for the transfer = 19.22 cm/sec

.
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solution is computed to transfer the deputy from the beginning of a sub-arc to the end of the same

sub-arc and this is repeated until all the sub-arcs are covered.

In Step 1, the generated reference trajectory (considering Keplerian dynamics) has a clearance

of 30 m from the defined keep-out zones. Thus, when following the generated motion plan in the

presence of external perturbations, there is an allowable tolerance of 30 m around the planned

transfer trajectory to still guarantee collision avoidance by the final transfer solution. For safety

guarantees of the closed-loop LLS implementation, a ’safety check’ value is picked such that:

Safety check tolerance < clearance of the trajectory (4.35)

In this case, a safety check tolerance of 10 m (< 30 m trajectory clearance) is considered

to activate the correction burns by the guidance algorithm. The closed-loop guidance algorithm

may use different strategies to pick a ’refresh rate’ to check if the safety check tolerance has been

violated (happens when the deputy trajectory has deviated from the motion plan beyond the safety

check tolerance). In our implementation, each sub-arc in the generated motion plan is divided into

50 equal time intervals and this is used as the refresh rate for each sub-arc. This strategy is

solely used for ease of implementation because the AIKMP motion planner in Step 1 was set up

to store 50 nodes corresponding to each sub-arc. Alternatively, a fixed time interval can also be

used across all sub-arcs as the refresh rate. If the safety check tolerance is violated, the closed-loop

LLS algorithm computes an LLS correction burn from the present state of the deputy to a target

state in the generated motion plan. This can be any target state in the reference trajectory that is

within the obstacle clearance region. By doing so, every time the deputy is close to violating the

collision-avoidance constraints, an LLS correction burn is applied to bring the deputy back to the

collision-safe zone. It is to be noted that, in implementing closed-loop LLS for collision avoidance,

picking a suitable refresh rate (frequency of constraint violation checking) is very important. If the

refresh rate is too spread out/large, this may lead to constraint violation for a longer time. If the

refresh rate is too small, this will lead to using too many correction burns because it takes some

time for an implemented burn to move the trajectory such that the violation no longer occurs.
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Using a smaller refresh rate will not only increase the total cost of the transfer solution but will

also lead to higher computation time required by the routine. Picking the target states for the

LLS correction burns is also crucial to guarantee successful collision avoidance. The choice of the

refresh rate and the target state for LLS correction burn depends on the mission requirements and

will vary from problem to problem.

To demonstrate the advantages of using a closed-loop LLS over an open-loop LLS, the latter is

also implemented for comparison of results. In the open loop implementation, regular LLS guidance

is used to compute the transfer solution from one node to another node in the final desired transfer

trajectory without any feedback on the violation of collision avoidance constraints. The results of

the implementation are shown in Figure 4.12.

(a) Transfer trajectories in 3D relative position space.
(b) Deviation of open-loop and closed-loop LLS solu-
tion trajectories from the reference trajectory.

Figure 4.12: Comparison of open-loop and closed-loop LLS guidance performance in tracking the
reference trajectory in the presence of external perturbations.

As can be seen in Figure 4.12b, the LLS computes the transfer solution following each of the

sub-arcs in the AIKMP solution, one sub-arc at a time. Since the open-loop LLS guidance has no

feedback, no correction burn is applied to prevent the deputy from violating the collision-avoidance
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constraints. As a result, the open-loop solution not only results in a final targeting error of ≈ 60

m to the goal state (as seen in figures 4.12a and 4.12b) but this transfer solution also has the

possibility of collision with an obstacle. However, for the closed-loop LLS solution, the guidance

law receives feedback whenever the collision-avoidance constraints are violated and a correction

burn is applied to bring the deputy back to the collision-safe zone hence guaranteeing collision

safety of the transfer. In the demonstrated example, the final targeting error with the closed-loop

LLS ≈ 4 m. Also, the cost of the open-loop solution = 20.78 cm/sec, whereas the cost of the

closed-loop solution = 24.18 cm/sec.

Implementation with multiple large obstacles in the scenario:

To demonstrate the performance of the closed-loop LLS guidance in a very cluttered environment,

multiple obstacles (spheres of radius = 20 m) are introduced in the previous scenario and an obstacle

clearance region of 80 m around the obstacles is imposed. The AIKMP algorithm is then used to

compute a safe and fuel-efficient transfer trajectory considering Keplerian dynamics. The resulting

motion plan is shown in Figures 4.13 and 4.14.

The developed closed-loop LLS guidance is then used with a safety check tolerance of 50 m

to implement the generated motion plan with the same perturbations as before. A comparison of

results using a closed-loop LLS guidance over an open-loop LLS is shown in Figure 4.15.

Similar observations are made from Figure 4.15 that an open-loop LLS guidance is unable

to provide safety guarantees and in this case, the final implemented trajectory is violating the

defined relative-separation constraints. However, a closed loop around the LLS guidance solution is

able to provide timely input to the system and initiate correction burns so that relative separation

constraints are satisfied. In this case, the cost of the open-loop solution = 36.02 cm/sec, and the

cost of the closed-loop solution = 36.85 cm/sec.

4.4 Summary

In this work, the application of the LLS algorithm has been extended to non-Keplerian

environments. With a GEO reference orbit example case, it was demonstrated that a closed-loop
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(a) Transfer solution in 3D relative position space. (b) In-plane motion in relative position space

Figure 4.13: Motion plan (reference trajectory) as computed by the AIKMP algorithm with larger
and more obstacles. The total ∆v required for the transfer = 21.24 cm/s.

system with the LLS can significantly improve the targeting accuracy in relative guidance problems

in the presence of non-Keplerian perturbations. After the application of two correction burns to

the LLS solution in this case, it was observed an improvement of targeting accuracy by ≈ 86% in

the presence of perturbations like SRP, drag, and J2. A planning algorithm was developed to find

the optimal relative target state in order to satisfy the maximum relative separation constraints of

a deputy spacecraft with respect to a reference trajectory. By presenting theoretical developments

backed with multiple simulation results, it was shown that using the closed-loop LLS in conjunction

with the planning algorithm can improve the fuel requirement of re-targeting maneuvers. In fact,

it was shown that using the planning algorithm with the closed-loop LLS can help save ≈ 26% fuel

over a duration of 50 days for a maximum relative-separation constrained re-targeting scenario.

With the help of more example scenarios, it was shown that closed-loop LLS can also be used in

conjunction with complicated orbital motion planners - in particular AIKMP - providing improved

targeting accuracy of ≈ 93% at a cost of ≈ 16% fuel increase as compared to open-loop guidance.
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Figure 4.14: Relative orbital elements of the motion plan (reference trajectory) generated by the
AIKMP algorithm versus time for the scenario with multiple large obstacles.

It was also demonstrated that closed-loop LLS guidance can enable a spacecraft to closely follow a

reference trajectory to ensure safety within targeted keep-out zones at the cost of ≈ 3% fuel increase

as compared to open-loop guidance in a cluttered and perturbed environment. This targeting

accuracy and cost of fuel increase can be adjusted depending on mission requirements by the choice

of closed-loop LLS guidance parameters like the refresh rate and the target state for the LLS

correction burn.
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(a) Transfer trajectories in 3D relative position space.
(b) Deviation of open-loop and closed-loop LLS solu-
tion trajectories from the reference trajectory.

Figure 4.15: Comparison of open-loop and closed-loop LLS guidance performance in tracking the
reference trajectory in the presence of multiple obstacles and perturbations.



Chapter 5

AIKMP with passive collision avoidance

In the previous chapters, the framework of the AIKMP algorithm was fully developed, and

it was demonstrated that the algorithm can quickly and very efficiently compute feasible transfer

solutions for relative motion planning problems in very cluttered environments (in the presence of

multiple obstacles/keep-out zones that are static in the chief-centered relative frame). Spacecraft

relative motion planning in the presence of static obstacles has important applications in satellite

servicing missions and in spacecraft proximity operations where the chief spacecraft/ primary body

may have several keep-out zones that the deputy needs to avoid. However, in more dynamic multi-

spacecraft systems, such as in spacecraft formation flying, multiple spacecraft are maneuvering and

operating in close proximity to each other. In such scenarios, the static obstacle assumption in the

chief-centered relative frame is very limiting and does not always hold true. Moreover, the AIKMP

algorithm implementation results (section 2.3 and section 3.2) had shown that most of the transfer

arcs used by the algorithm comprise of non-zero semi-major axis differences (δa ̸= 0) with respect

to the chief, indicating that the relative motion of the deputy will not remain bounded in those

transfer arcs. Depending on the time of flight and the magnitude of the δa of these transfer arcs, the

deputy’s relative motion will drift away from the chief and this can pose a possible collision threat

with other spacecraft/moving obstacles in the scenario. Thus, it is very important to augment the

AIKMP algorithm with collision avoidance capabilities not just with static obstacles but also with

moving obstacles.

Different collision avoidance strategies exist that include reactive methods [109], proactive
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methods [121], and passive collision avoidance methods [71, 69, 37]. In general, ”reactive” implies

that spacecraft must recalculate trajectories in real-time to avert collisions following a contingency.

On the other hand, ”proactive” can be seen as a refinement of reactive, ensuring the availability of

a controlled escape trajectory or maneuver at all times, even in the face of a partial degradation,

not a complete loss, of control capabilities. Lastly, ”passive” denotes that controlled trajectories

have been pre-arranged to ensure safe separation for collision avoidance guarantees. Examples of

reactive and proactive collision avoidance strategies in the literature are relatively recent [109, 121].

Whereas the first examples of passive-safe strategies date back to the 60s with the co-elliptic

rendezvouses of the Apollo missions [137]. In this chapter, the theory behind E-I vector separation

[56, 37] is leveraged to derive a passive collision avoidance strategy that can be infused with the tree

extension step of the AIKMP algorithm. With the help of simulation results, it is demonstrated

that the resulting AIKMP algorithm picks the intermediate random nodes for tree extension in a

more informed way (as compared to the previous versions described in Chapter 2 and Chapter 3),

such that obstacle tolerance constraints are satisfied for the entire duration of the transfer in the

presence of multiple moving obstacles – a capability that is crucial for spacecraft formation flying

applications.

5.1 E/I vector separation theory

The concept of eccentricity and inclination (E/I) vector separation was originally developed to

achieve safe collocation of geostationary satellites [56] which was later generalized and extended to

low-Earth orbit (LEO) formations [37]. This concept is based on the consideration that uncertainty

in predicting the along-track separation between two spacecraft is much higher than the radial and

cross-track components. Small uncertainties in orbit determination errors and maneuver execution

errors can lead to secularly growing along-track errors. Therefore, for collision avoidance in the

presence of in-track position uncertainties, the two spacecraft must be properly separated in the

radial and normal directions. Several works in the past have looked into using this strategy of

collision avoidance assuming bounded relative motion between two spacecraft (δa = 0) and have
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concluded that a parallel (or anti-parallel) alignment of relative eccentricity and inclination vectors

is sufficient to guarantee a relative separation between the two spacecraft in the radial-normal

plane. Relative eccentricity vector δ⃗e and relative inclination vector δ⃗i are defined as,

δ⃗e =

δex

δey

 = δe

cosϕ

sinϕ

 (5.1)

δ⃗i =

δix

δiy

 = δi

cosθ

sinθ

 (5.2)

where the relative angular location of the perigee (ϕ) and the ascending node of the relative orbit

(θ) are defined as:

ϕ = atan(
δey
δex

) (5.3)

θ = atan(
δiy
δix

) (5.4)

The angle θ − ϕ is the angle enclosed by δ⃗e and δ⃗i.

In this work, an analytical solution will be derived to describe the relative separation between

two drifting (δa ̸= 0) spacecraft in the radial-normal plane in terms of relative orbital elements.

Based on the derived solution, two approaches will be detailed that can be used to pick a target

safe relative orbit that is guaranteed to avoid collision with moving obstacles present in the scenario

for a desired amount of time.

5.2 Relative separation between two spacecraft with drifting relative motion

(δa ̸= 0)

Apart from the relative eccentricity vector (δ⃗e), relative inclination vector (δ⃗i) and relative

semi-major axis (δa), the relative mean longitude (δλ) and relative mean argument of latitude (δu)

also affect the relative motion of satellites in a formation. As a result, for this analysis, we define

the relative orbital element set of the deputy with respect to the chief (δOE) as:

δOE = (δa, δλ, δi, δex, δey, δΩ) (5.5)
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where,

δλ = δu+ δΩcos(i) (5.6)

u = ω +M (5.7)

ω being the argument of periapsis and M the mean anomaly.

Using the Hill-Clohessy-Wiltshire definition of relative motion, the relative motion between

two spacecraft can be described in terms of the orbit element difference as [55, 34, 111]:

δrR = δa− aδexcos(u)− aδeysin(u)

= δa− aδecos(ϕ)cos(u)− aδeysin(ϕ)sin(u)

=⇒ δrR = δa− aδecos(u− ϕ)

(5.8)

δrI = −2asin(u− ϕ)δe+ aδλ0 −
3

2
(u− u0)δa (5.9)

δrN = −aδisin(θ)cos(u) + aδicos(θ)sin(u)

=⇒ δrN = aδisin(u− θ)

(5.10)

where δrR, δrI , δrN are the hill frame position coordinates (radial, in-track, and normal respectively)

expressed in terms of relative orbital element differences.

Using equations 5.8 and 5.10, the separation between two spacecraft as projected in the

radial-normal plane can be computed as:

δrRN =
√

δr2R + δr2N

=
√
(δa− aδecos(u− ϕ))2 + (aδisin(u− θ))2

=
√
δa2 − 2aδaδecos(u− ϕ) + a2δe2cos2(u− ϕ) + a2δi2sin2(u− θ)

(5.11)

Since −1 ≤ cos(u− ϕ) ≤ 1, from equation 5.11, we have:

δrRN ≥
√
δa2 − 2aδaδe+ a2δe2cos2(u− ϕ) + a2δi2sin2(u− θ)

≥
√

2δa2 − 4aδaδe+ a2δe2 + a2δi2 + a2δe2cos2(u− ϕ)− a2δi2cos2(u− θ)

2

(5.12)
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Now,

[a2δe2cos2(u− ϕ)− a2δi2cos2(u− θ)]2 + [a2δe2sin2(u− ϕ)− a2δi2sin2(u− θ)]2

= a4δe4 + a4δi4 − 2a4δe2δi2cos2(u− ϕ)cos2(u− θ)− 2a4δe2δi2sin2(u− ϕ)sin2(u− θ)

= a4δe4 + a4δi4 − 2a4δe2δi2cos2(θ − ϕ)

(5.13)

Here, (θ − ϕ) is the angle enclosed between δ⃗e and δ⃗i.

Since [a2δe2sin2(u− ϕ)− a2δi2sin2(u− θ)]2 ≥ 0, equation 5.13 gives,

|a2δe2cos2(u− ϕ)− a2δi2cos2(u− θ)| ≤
√
a4δe4 + a4δi4 − 2a4δe2δi2cos2(θ − ϕ)

=⇒ a2δe2cos2(u− ϕ)− a2δi2cos2(u− θ) ≥ −
√
a4δe4 + a4δi4 − 2a4δe2δi2cos2(θ − ϕ)

(5.14)

Substituting equation 5.14 in equation 5.12,

√
2δrRN

a
≥

√
2∆a2 − 4∆aδe+ δe2 + δi2 −

√
δe4 + δi4 − 2δe2δi2cos2(θ − ϕ) (5.15)

where, ∆a = δa
a .

Solving for
√

δe4 + δi4 − 2δe2δi2cos2(θ − ϕ), we have

δe4 + δi4 − 2δe2δi2cos2(θ − ϕ) = (δe2)2 + (δi2)2 − 2δe2δi2cos2(θ − ϕ)

= (δe2)2 + (δi2)2 − 2δe2δi2[2cos2(θ − ϕ)− 1]

= (δe2)2 + (δi2)2 + 2δe2δi2 − 4δe2δi2cos2(θ − ϕ)

= (δe2 + δi2)2 − (2δ⃗e · δ⃗i)2

= (δe2 + δi2 + 2δ⃗e · δ⃗i)(δe2 + δi2 − 2δ⃗e · δ⃗i)

= |δ⃗e+ δ⃗i|2|δ⃗e− δ⃗i|2

=⇒
√

δe4 + δi4 − 2δe2δi2cos2(θ − ϕ) = |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

(5.16)
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Simplifying equation 5.15 using equation 5.16 gives,
√
2δrRN

a
≥

√
2∆a2 − 4∆aδe+ δe2 + δi2 − |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

=⇒ (

√
2δrRN

a
)2 ≥ 2∆a2 − 4∆aδe+ δe2 + δi2 − |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

≥ 2∆a(∆a− 2δe) +
(δe2 + δi2 − |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|)(δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|)

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

≥ 2∆a(∆a− 2δe) +
(δe2 + δi2)2 − (|δ⃗e+ δ⃗i||δ⃗e− δ⃗i|)2

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

≥ 2∆a(∆a− 2δe) +
4(δ⃗e · δ⃗i)2

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

=⇒ δrRN ≥ a

√
∆a(∆a− 2δe) +

2(δ⃗e · δ⃗i)2

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|

(5.17)

This gives,

δrRN min = a

√
∆a(∆a− 2δe) +

2(δ⃗e · δ⃗i)2

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|
(5.18)

δrRN min is the minimum separation between the two spacecraft in terms of the relative orbital

elements describing their relative motion assuming δa ̸= 0.

If δa = 0, from equation 5.18 we get:

δrRN min,δa=0 =

√
2aδ⃗e · δ⃗i√

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|
(5.19)

This is the exact expression derived in [55, 34, 115] which dictates that for δrRN min between two

spacecraft to be maximum for bounded relative motion, a parallel (or anti-parallel) alignment of

relative eccentricity and inclination vectors between them is desired. However, in this work, since

we assume drifting relative motion between the spacecraft, we seek a good balance between δa, δ⃗e

and δ⃗i such that equation 5.18 satisfies δrRN min > 0.

5.3 Computing safe relative orbits for passive collision avoidance

Equation 5.18 can be leveraged to compute a transfer trajectory for a deputy spacecraft that

will guarantee collision avoidance with a chief spacecraft. To achieve this, two different approaches
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can be taken that are described below.

5.3.1 Approach 1

As described before, δrRN min > 0 is necessary to guarantee safe relative motion between two

spacecraft. For the two spacecraft to maintain a minimum separation of a given obstacle tolerance

(‘obs tol’), the required condition is:

δrRN min ≥ obs tol (5.20)

Thus, from equation 5.18 we get

a

√
∆a(∆a− 2δe) +

2(δ⃗e · δ⃗i)2

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|
≥ obs tol (5.21)

Let,

∆a(∆a− 2δe) = A (5.22)

2(δ⃗e · δ⃗i)2

δe2 + δi2 + |δ⃗e+ δ⃗i||δ⃗e− δ⃗i|
= B (5.23)

obs tol = O (5.24)

Therefore, equation 5.21 can be written as:

a
√
(A+B) ≥ O

=⇒ a2(A+B) ≥ O2

=⇒ A+B ≥ O2

a2

=⇒ A− (
O2

a2
−B) ≥ 0

=⇒ ∆a2 − 2∆aδe− (
O2

a2
−B) ≥ 0

(5.25)

Equation 5.25 is a quadratic equation that can be used to solve for ∆a (= δa
a ) and has the following
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roots,

∆a =
2δe±

√
4δe2 + 4(O

2

a2
−B)

2

=⇒ ∆a = δe±
√
δe2 + (

O2

a2
−B)

=⇒ ∆a = δe±D

(5.26)

where, D =
√

δe2 + (O
2

a2
−B).

At these two roots, δrRN min = obs tol. These two roots divide the solution space of ∆a into

three intervals namely (− inf, δe − D], (δe − D, δe + D), [δe + D, inf). Values of ∆a from these

intervals that satisfy equation 5.25 are valid solutions to δrRN min ≥ obs tol.

It is to be noted that the ∆a solution from equation 5.26 depends on δ⃗e and δ⃗i which needs

to be picked first depending on user preferences.

This approach is very convenient when a single chief spacecraft is known and the goal is to

design a relative orbit that will maintain a certain relative separation from this chief. However,

when there are multiple spacecraft to avoid, solving for a single safe relative orbit that will avoid

collision with every obstacle, using this approach, can get tricky. This is where this next approach

comes in handy.

5.3.2 Approach 2

In this approach, a relative orbit is picked at random, and its minimum separation from each

given obstacle is computed using the analytical solution as shown in equation 5.18. For computing

this rRN min of the deputy with respect to each obstacle, each obstacle is individually treated as

the chief in their respective turns, and the relative orbital elements of the randomly picked relative

orbit with respect to this obstacle/ ‘new chief’ (δOEdeputy|obs) are determined as:

δOEdeputy|obs = δOEdeputy|chief − δOEobs|chief (5.27)

where δOEdeputy|chief refers to the relative orbit elements of the randomly picked relative orbit with

respect to the original chief and δOEobs|chief is the relative orbit elements of the obstacle with
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respect to the original chief.

For all obstacles, if δrRN min > obs tol, then the picked relative orbit is considered a valid

collision-free solution. However, for any of the obstacles, if rRN min ≤ obs tol, there are two possible

options:

(1) The randomly picked relative orbit can be discarded and a new relative orbit may be

sampled. OR

(2) Further steps are required to check whether the obs tol violation occurs in the time interval

of interest.

In the presence of multiple moving obstacles in the scenario, the first option may be expensive in

terms of the required number of random draws to find a safe relative orbit. As a result, here we

explore the second option further.

Additional analysis to evaluate obs tol violation in the time interval of interest:

If rRN min ≤ obs tol, the goal of this routine is to check if the overall relative separation between

the two spacecraft (δrRIN ) violates the obs tol in the time interval of interest, where δrRIN is

defined by using equations 5.8, 5.9, and 5.10 as:

δrRIN =
√
δr2R + δr2I + δr2N (5.28)

To achieve this, an optimization scheme is set up for the time interval of interest [ t0, t ], where

the minimum value of δrRIN is computed according to equation 5.28. This δrRIN depends on

the optimization variable ‘time’ because the δrR, δrI , δrN (as shown in equations 5.8, 5.9 and 5.10)

depend on the mean argument of latitude of the chief (u). Moreover, the in-track relative separation

(δrI) secularly grows with time due to its direct dependency on u. Thus, once the minimum δrRIN

is computed in the time interval of interest, it is compared with the allowable obstacle tolerance

value. If δrRIN > obs tol, then the picked relative orbit is considered a valid solution for the given

time frame. Otherwise, the relative orbit is declared unsafe and a new relative orbit is picked and

the entire analysis is repeated.
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5.4 Implementation and simulation results

5.4.1 Demonstration of ‘Approach 2’ for computing safe relative orbits:

Figure 5.1 demonstrates an implementation of approach 2 as described in section 5.3.2. Here

two spacecraft in the scenario are in their respective relative orbits with respect to a common chief

spacecraft (orbital elements shown in Table 5.1). The goal is to compute a safe relative orbit that

COEs Chief δCOEs Obstacle 1 Obstacle 2
Picked Random

Deputy

a 15000 km δa 10 m 10 m −2.6 m
e 0 δe 3.333× 10−5 3.333× 10−5 5.94× 10−5

i 50o δi 7.64× 10−3o 1.91× 10−3o 3.36× 10−5o

Ω 10o δΩ 5.73× 10−5o 0o 6.01× 10−8o

ω 10o δω 0o 0o 1.08× 10−5o

M 0o δM 5.73× 10−3o 0o 1.39× 10−5o

Table 5.1: Orbital elements of the chief, obstacle spacecraft, and the deputy’s safe solution trajec-
tory.

is guaranteed to avoid collision with the existing spacecraft/ moving obstacles in the scenario. As

approach 2 dictates, a random relative orbit is picked (orbital elements shown in Table 5.1) and

it is evaluated for its rRN min separation from the obstacles. In this particular implementation,

rRN min < obs tol. However, after performing the additional analysis as described in section 5.3.2,

the randomly picked relative orbit (in green) was found to be safe from a collision for the initial

≈ 2 Period time of flight (as can be seen from Figures 5.1a and 5.1b). In contrast to this, the

relative motion of the deputy was evaluated for a longer period of time (5 Period), and in this

case, the additional analysis yielded δrRIN < obs tol meaning that the relative trajectory is not

safe anymore. This result can be visualized in Figures 5.1c and 5.1d. Thus, in this case, the picked

relative orbit is a valid solution if collision avoidance is desired for the initial time of flight ≤ 2

Periods. Otherwise, a different safe relative orbit needs to be computed.
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(a) Collision-free relative motion in picked random rel-
ative orbit for 2 orbit periods.

(b) Relative separation between randomly picked rel-
ative orbit and moving obstacles for 2 orbit periods.

(c) Picked random relative orbit in collision with an
obstacle when propagated for 5 orbit periods.

(d) Relative separation between randomly picked rel-
ative orbit and moving obstacles for 5 orbit periods.

Figure 5.1: Demonstrating working of approach 2 in picking random relative orbit for collision-free
spacecraft motion for given time of flight in the presence of multiple spacecraft/moving obstacles
in the scenario.
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5.4.2 Demonstration of AIKMP with passive collision avoidance:

In this implementation, the tree extension step of the AIKMP algorithm is modified such

that the tree accepts a randomly picked node for tree extension only if the node is found to be safe

(collision-free from all existing obstacles) using the analysis as described in the approach 2 (section

5.3.2). To demonstrate the working of this modified AIKMP algorithm, a transfer scenario similar

to the scenario described in section 2.3 is defined but now with both static obstacles (static in the

chief-centered relative frame) and moving obstacles.

In this scenario, the deputy spacecraft attempts to safely reconfigure itself from a state in an

initial closed relative orbit to a state in a final closed relative orbit around the chief as described in

Table 5.2. The chief is in a circular orbit and it is assumed to have two cameras attached to it with

an angle of view of 20o making observations in the negative along-track direction (-Y) and the cross-

track direction (Z) (both acting as static obstacles in the relative frame). The deputy spacecraft

should not obstruct the field of view of these cameras during the reconfiguration. There are three

other spacecraft in the scenario (moving obstacles) assumed to be in three different relative orbits

around the chief (orbital elements shown in Table 5.3) whose relative motions with respect to the

chief are drifting over time. The overall scenario is illustrated in Figure 5.2.

Relative states Deputy (Initial) Deputy (Final)

x (km) 9.999× 10−1 −1.249× 10−1

y (km) 4.113× 10−1 −2.664× 10−1

z (km) 1.308× 10−1 −1.915× 10−1

ẋ (m/s) 1.278× 10−7 −7.441× 10−5

ẏ (m/s) −6.873× 10−4 8.586× 10−5

ż (m/s) −1.242× 10−4 5.521× 10−5

Table 5.2: Initial and Final desired relative states of deputy spacecraft.

The goal of the transfer is that the deputy’s transfer must be collision-free with the chief and

the obstacles present in the scenario and the deputy should also use less fuel for the transfer.

The transfer solution computed by the AIKMP algorithm (using LLS steering law and prun-

ing) is shown in Figures 5.3 and 5.4.
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COEs Chief δCOEs Obstacle 1 Obstacle 2 Obstacle 3

a 15000 km δa 10 m 10 m 10 m
e 0 δe 3.333× 10−5 3.333× 10−5 3.333× 10−5

i 50o δi 3.82× 10−3o 9.55× 10−3o 5.73× 10−4o

Ω 10o δΩ 0o 5.73× 10−5o 0o

ω 10o δω 0o 0o 0o

M 0o δM 0o 5.73× 10−3o 5.73× 10−4o

Table 5.3: Orbital elements of chief and other spacecraft/moving obstacles in the scenario.

Figure 5.2: Relative orbit transfer scenario with both static (static in the chief-centered relative
frame) and moving obstacles to demonstrate the working of AIKMP algorithm with infused passive
collision avoidance capabilities.

As can be seen from Figures 5.3a and 5.3b, the AIKMP algorithm was able to compute a

final transfer trajectory that maintains the desired separation (obs tol = 100m) from the moving

obstacles present in the scenario and is collision-free from all obstacles for the entire duration of the

transfer. In this case, the motion planner was allowed to run for a total of 50000 iterations and the

algorithm took ≈ 20 minutes to complete the simulation. A total of ≈ 2700 transfer solutions were
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(a) Transfer solution in 3D relative position space.

(b) Relative separation between the transfer solution and moving obstacles over the duration of the transfer

Figure 5.3: Transfer solution as computed by the efficient AIKMP algorithm infused with passive
collision avoidance for tree extension. The total ∆v required for the transfer is 43.76 cm/s.

computed during this time and the best cost transfer computed (∆v = 43.76 cm/sec) is shown in
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Figures 5.3 and 5.4.

To compare the performance of this efficient version of the AIKMP algorithm (uses LLS

steering law + Pruning) that uses a tree extension strategy slightly different than the basic version

of the AIKMP algorithm (uses Lambert steering law without pruning) as explained in Chapter 3,

the later version was also allowed to compute a solution trajectory in this transfer scenario. The

best cost transfer solution (∆v = 29.26 cm/sec) computed by this version is shown in Figures 5.5

and 5.6. In this case, the motion planner took ≈ 4 hours to run 1500 iterations of the algorithm

and computed ≈ 40 transfer solutions.

Figures 5.5 and 5.6 in contrast to Figures 5.3 and 5.4 highlight an important point that –

in complex transfer scenarios like the one demonstrated here (Figure 5.2), using all the prescribed

ways to improve the computation and storage efficiency of the AIKMP algorithm may not always

guarantee a fuel-efficient transfer solution in a given number of algorithm iterations. Particularly

since cluttered environments like this offer very restricted state space for random exploration, the

outcomes of using the different tree extension strategies for improved computation efficiency are

evident in these results. The basic version of the AIKMP algorithm (that uses Lambert steering

law), although took a longer simulation time, yielded a better cost solution in a lesser number of

algorithm iterations in this scenario because this version uses the PSO-based tree extension strategy

that optimizes the cost of each intermediate transfer arc resulting in an overall smoother transfer

solution.

Given the complexity of the defined transfer scenario, the efficient version of the AIKMP

algorithm was allowed to run for a larger number of algorithm iterations (150000 iterations) with

slightly modified values for the AIKMP radius parameters (δnear = 3× 10−5 and δbest = 2× 10−5).

The results can be seen in Figures 5.7 and 5.8. The algorithm took ≈ 3 hours (still less than

the time taken by the Lambert steering law-based AIKMP) to complete the 150000 algorithm

iterations. A total of ≈ 3200 transfer solutions were computed during this time and the best cost

transfer computed (∆v = 28.65 cm/sec) is shown in Figures 5.7 and 5.8 which is, in fact, a better

cost solution as compared to the one computed using Lambert steering law-based AIKMP algorithm
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(∆v = 29.26 cm/sec).

Thus, given the complexity of the transfer scenario, the efficient version of the AIKMP

algorithm may require a larger number of iterations to compute a better cost solution. However,

if the goal is simply to generate a valid transfer solution for a given relative transfer scenario, the

overall AIKMP algorithm along with the pruning module can be used to quickly compute feasible

collision-free transfer solutions. The best part of the presented AIKMP framework along with the

pruning module and the passive collision-avoidance strategy is that they can be adapted with any

steering law and any modified tree extension strategy depending on the requirement of the mission.

If more moving obstacles are present, the probability of having to draw more random relative

orbits for the tree extension step to guarantee collision avoidance, increases. To demonstrate this,

different numbers of obstacles were considered in the scenario, and for each case, a relative orbit

was drawn at random and checked for collision safety (using approach 2) for a total time of flight

of 5 Periods (chosen for demonstration purpose). For different numbers of obstacles, the number

of random “draws” to find the first safe relative orbit was recorded and this process was repeated

for a total of 10 “attempts”. Finally, the average of the number of draws for the different cases

(defined by the total number of obstacles) was computed and the results are as shown in Figure

5.9. Figures 5.9a and 5.9b show the average number of draws and the average time (out of the 10

attempts) required in this example to find the first safe relative orbit for the different cases. Figure

5.9c highlights the minimum and the maximum number of draws (out of the 10 attempts) required

by each case. When contrasted with the average number of draws, Figure 5.9c clearly indicates

that even though this approach of picking a safe relative orbit may take as low as a single draw

(minimum number of draws for each case was 1 in this example), with a higher number of obstacles

to avoid, the probability of requiring a higher number of draws increases. The required number

of draws may increase or decrease depending on how complex the search space for the random

sampling becomes based on the relative motion of the moving obstacles.
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5.5 Summary

In the work presented in this chapter, passive collision avoidance capability was infused in the

tree extension step of the AIKMP algorithm, expanding its application to relative motion planning

problems with moving obstacles. Leveraging the theory behind E-I vector separation, an analytical

solution was derived to describe the relative separation between two drifting (δa ̸= 0) spacecraft in

the radial-normal plane in terms of relative orbital elements. Based on the derived solution, two

approaches were detailed that can be used to pick a safe relative orbit that is guaranteed to avoid

collision with known moving obstacles for a desired amount of time. With the help of simulation

results, it was shown that the resulting AIKMP algorithm picks the intermediate random nodes

for tree extension in a more informed way (as compared to the previous versions described in

Chapter 2 and Chapter 3), such that obstacle tolerance constraints are satisfied for the entire

duration of the transfer in the presence of multiple static and moving obstacles – a capability that

is crucial for spacecraft formation flying applications. With theoretical reasoning and simulation

results, it was also pointed out that, given the complexity of the transfer scenario, the efficient

version of the AIKMP algorithm may require a larger number of iterations to compute a better

cost solution. However, if the goal is simply to generate a valid transfer solution for a given relative

transfer scenario, the overall AIKMP algorithm along with the pruning module can be used to

quickly compute feasible collision-free transfer solutions. The best part of the presented AIKMP

framework along with the pruning module and the passive collision-avoidance strategy is that they

can be adapted with any steering law and any modified tree extension strategy depending on the

requirement of the mission. It is to be noted here that, since this formulation of δrRN min is derived

from equations 5.8, 5.9 and 5.10 which in turn are derived from the HCW equations ([55, 34]), this

passive collision avoidance strategy derived in this chapter are valid for circular and near-circular

chiefs. To extend their application to elliptical chief orbits, a similar approach may be attempted

with Tschauner Hempel’s description of relative motionB.
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(a) Relative state error of solution trajectory with respect to the goal state.

(b) Relative orbital elements vs time of the final AIKMP solution

Figure 5.4: Relative states and relative orbital elements of the deputy’s transfer solution as com-
puted by the passive collision-avoidance infused efficient AIKMP algorithm.
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(a) Transfer solution in 3D relative position space.

(b) Relative separation between the transfer solution and moving obstacles in the scenario over the duration
of the transfer

Figure 5.5: Transfer solution as computed by the AIKMP algorithm (using Lambert steering with-
out pruning) infused with passive collision avoidance for tree extension. The total ∆v required for
the transfer is 29.26 cm/s.
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(a) Relative state error of solution trajectory with respect to the goal state.

(b) Relative orbital elements vs time of the final AIKMP solution

Figure 5.6: Relative states and relative orbital elements of the deputy’s transfer solution converging
to the desired goal states as computed by the passive collision-avoidance infused AIKMP algorithm
(using Lambert steering without pruning).
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(a) Transfer solution in 3D relative position space.

(b) Relative separation between the transfer solution and moving obstacles over the duration of the transfer

Figure 5.7: Transfer solution as computed by the efficient AIKMP algorithm infused with passive
collision avoidance for tree extension. The total ∆v required for the transfer is 28.65 cm/s.
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(a) Relative state error of solution trajectory with respect to the goal state.

(b) Relative orbital elements vs time of the final AIKMP solution

Figure 5.8: Relative states and relative orbital elements of the deputy’s transfer solution as com-
puted by the passive collision-avoidance infused efficient AIKMP algorithm.



110

(a) Average number of random draws required to find
the first safe relative orbit for different numbers of ob-
stacles

(b) Average time required to find the first safe relative
orbit for different numbers of obstacles

(c) Minimum and the maximum number of draws (out of 10 different “attempts”) as contrasted with the
average number of draws required by each case.

Figure 5.9: Number of random draws (out of total 10 total “attempts”) required to find the first
safe relative orbit for different numbers of moving obstacles.



Chapter 6

Conclusion and Future Work

6.1 Conclusion on completed work

In this work, it was shown that by augmenting sampling-based motion planning ideas from the

field of robotics with knowledge of astrodynamics, fuel-efficient and collision-free motion planning

can be achieved in astrodynamics applications. The work presented an astrodynamics-informed ver-

sion of the popular Rapidly Exploring Random Trees (RRTs) to make the algorithm more suitable

for fuel-efficient orbital motion planning (Chapter 2). An astrodynamics-informed pruning module

was developed to allow the motion planner to maintain and store a sparse set of nodes improving

its overall computation efficiency by ≈ 98% and storage efficiency by ≈ 80% in the considered

example scenario (Chapter 3). The overall motion planner with this pruning module comprises the

proposed algorithm in this work, which is called the Astrodynamics-informed kinodynamic motion

planning (AIKMP) algorithm. This AIKMP algorithm is probabilistically complete meaning that

as the number of iterations of the algorithm tends to infinity, the motion planner will be able to find

a feasible transfer solution with probability = 1, if a solution exists. This algorithm is a single-step

sampling-based kinodynamic approach to orbital motion planning problems (as opposed to existing

two-step sampling-based motion planning approaches in literature) and can quickly find solutions

to spacecraft relative transfer problems in a cluttered environment – without requiring an initial

guess of the solution.

This work also presented a novel extension of the linearized Lambert solution (LLS) called the

closed-loop linearized Lambert guidance solution that allows a spacecraft to apply correction burns
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during the transfer to improve the targeting accuracy in relative guidance problems in the presence

of perturbations like Drag, J2, and Solar Radiation Pressure (SRP) (Chapter 4). Simulation results

were used to demonstrate that closed-loop LLS can help save ≈ 26% fuel over a duration of 50

days for a spacecraft formation flying scenario with maximum relative separation constraints. It

was also shown that closed-loop LLS can be used in conjunction with orbital motion planners like

the AIKMP - providing improved targeting accuracy of ≈ 93% at a cost of ≈ 16% fuel increase in

the presence of external perturbations as compared to open-loop guidance.

Finally, an extension of the popular E/I vector separation method was derived for the case

of drifting relative motion (δa ̸= 0) to infuse passive collision avoidance capabilities in the AIKMP

algorithm (Chapter 5). The resulting motion planning algorithm performs tree extension in a more

informed way such that obstacle tolerance constraints are satisfied for the entire duration of the

transfer in the presence of multiple static (static in moving reference frame) and moving obstacles

– a capability that is crucial for spacecraft formation flying applications.

Overall, the proposed AIKMP algorithm describes the sufficient number of steps that can

be adapted from a sampling-based robotic motion planner with required modifications to achieve

fuel-efficient and collision-free sampling-based motion planning in astrodynamics applications. A

notable aspect of this proposed motion planning framework lies in its modularity, as individual

modules of the algorithm can be adapted to any existing sampling-based motion planner (tree-

based planners or graph-based planners) to improve their applicability to orbital motion planning.

6.2 Possible extensions and future work

The work presented in this dissertation offers many opportunities for further extensions:

(1) Investigate mathematical definitions and properties for the motion planner:

Chapters 2 and 3 described some basic rules of thumb that were used to pick the different

parameters associated with a sampling-based orbital motion planner, such as state space

for the random exploration as well as defining the radius parameters (δnear and δbest). The
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definition of these parameters is critical for convergence of the motion planner and they

mostly depend on the mission requirements. However, investigating the use of informed

mathematical analysis (as done in [89]) to find a generic definition of these parameters will

be very helpful for an orbital motion planning framework. Implementing self-adjustable

δnear and δbest parameters depending on the dynamic environment can also be another

viable option for these parameters [16].

Moreover, the tree pruning applied to the developed AIKMP algorithm is inspired by the

asymptotically near-optimal stable sparse RRT (SST) robotic motion planning algorithm.

One assumption contributing to this asymptotic near-optimal nature is the Lipchitz con-

tinuity of the cost function used [89]. Similar numerical analysis for evaluation of the

asymptotic optimality of the AIKMP algorithm will be a useful next step especially when

considering applications that do not have algorithm run-time constraints.

(2) Automate selection of parameters in closed-loop LLS guidance: In Chapter 4,

for implementing closed-loop LLS for collision avoidance, picking a suitable refresh rate

(frequency of constraint violation checking) is very important. If the refresh rate is too

spread out/large, this may lead to constraint violation for a longer time. If the refresh rate

is too small, this will lead to using too many correction burns because it takes some time

for an implemented burn to move the trajectory such that the violation no longer occurs.

Similarly, the number of correction burns allowed for the closed-loop LLS implementation

is another important parameter that will define the improvement in targeting accuracy that

can be achieved by utilizing such a guidance algorithm. During this work, it was observed

that although targeting accuracy can be improved by introducing correction burns, more

correction burns do not always mean more improvement in targeting accuracy. In fact, if

a correction burn is applied “too close” to the target state, this can in turn introduce a

significant targeting error.

For the studies conducted in this dissertation, a considerable amount of time was spent
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carefully selecting the refresh rate for collision checks and the placement of the correction

burns in the defined scenarios for improved targeting accuracy. It will be very useful if the

choice of these parameters can be automated depending on the fuel availability, propulsion

system capability, and/or mission duration and requirements.

(3) Extend passive collision avoidance capabilities to elliptical chief descriptions:

In chapter 5, an extension of the E/I vector separation method was derived for the case

of drifting relative motion to infuse passive collision avoidance capabilities in the AIKMP

algorithm. This formulation is based on the Hill-Clohessy-Wiltshire (HCW) equations

[32, 131], meaning that the derived passive collision avoidance strategy is valid for only

circular and near-circular chiefs [34, 55, 115, 37]. To extend their application to elliptical

chief orbits, a similar approach may be attempted with Tschauner Hempel’s description of

relative motionB.
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Appendix A

Spacecraft relative motion and relative orbital element description

Figure A.1: Illustration of chief centered Local-Vertical Local-Horizontal frame and deputy’s general
relative motion with respect to the chief in this frame.

Let, O : {ôr, ôθ, ôh} denote the chief centered orbit frame, also called the Local-Vertical

Local-Horizontal (LVLH) frame as shown in Figure A.1. The unit vector ôr is aligned with the

radial direction (positive outwards), ôh is parallel to the orbit momentum vector (positive in orbit

normal direction), and ôθ completes the right-hand coordinate system. Mathematically these unit
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vectors are defined as follows:

ôr =
r⃗c
|r⃗c|

(A.1)

ôh =
r⃗c × v⃗c
|r⃗c × v⃗c|

(A.2)

ôθ = ôr × ôh (A.3)

where, r⃗c and v⃗c are chief’s inertial position and velocity vectors respectively. A deputy spacecraft’s

relative position (ρ⃗) and relative velocity ( ˙⃗ρ) with respect to the chief in this LVLH frame are

described as:

ρ⃗ = [x, y, z], ˙⃗ρ = [ẋ, ẏ, ż] (A.4)

In this work, the following orbital element set is chosen which is a common choice for circular

non-equatorial orbits to avoid singularities:

OE = (a, θ, i, q1, q2,Ω) (A.5)

where, θ = ω + f (A.6)

q1 = eX = e cos(ω) (A.7)

q2 = eY = e sin(ω) (A.8)

Here a is the semi-major axis, θ is the true latitude angle (Eq. A.6, where ω is argument of periapsis,

f is the true anomaly angle), i is the orbit inclination angle, Ω is the argument of the ascending

node, and q1 and q2 are as defined in Eqs. A.7 and A.8 respectively where e is the eccentricity

[111].

Given this definition of orbital elements, the deputy’s relative orbital element set is defined

as:

δOE = OEd −OE = (δa, δθ, δi, δq1, δq2, δΩ) (A.9)

where OEd and OE refer to deputy’s and chief’s orbital elements respectively. The subscript d is

used to denote deputy-related quantities and to distinguish them from the orbital elements of the
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chief (without a subscript). Relative latitude (δθ) is defined as:

δθ = δω + δf (A.10)

Relative eccentricity vector δ⃗e = (δeX , δeY )
T where,

δeX = δq1 = (δe+ e)cos(δω + ω)− ecos(ω) (A.11)

δeY = δq2 = (δe+ e)sin(δω + ω)− esin(ω) (A.12)

A visual representation of the relative orbital elements is shown in Figure A.2.

It is important to realize here that, unlike the true anomaly (f) of a closed orbit, the relative

true latitude (δθ) of a closed relative orbit does not range between 0 to 2π. Varying the δθ means

considering different phasing between the deputy and the chief that results in relative states that

belong to different relative orbits around the chief as can be seen in Figure A.3.
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(a) Relative inclination angle (δi), relative right ascension of the ascending node (δΩ), and relative argument
of latitude (δθ = θd − θc)

(b) Relative eccentricity vector (δ⃗e)

Figure A.2: Visual illustration of relative orbital elements.
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Figure A.3: Relative states corresponding to varying only the relative true latitude (δθ) (keeping
all other relative orbit elements the same) in the interval of [-0.05, 0.05] degrees for the same chief
state.



Appendix B

Estimating the cost-to-go (∆vest):

When the maximum relative separation between two spacecraft is relatively small compared

to the Chief’s orbit radius, we leveraged the Tschauner-Hempel (T-H) equations [129], which are

a linear set of equations describing the motion of a Deputy around a generic eccentric chief orbit.

Tschauner-Hempel STM for relative spacecraft motion:

The non-dimensional T-H equations are provided below:

x̄′′ − 2ȳ′ − 3x̄

ρ
= 0

ȳ′′ + 2x̄′ = 0

z̄′′ + z̄′ = 0

(B.1)

Where, ρ = 1 + e cos(f), (B.2)

(x̄, ȳ, z̄) =
(x, y, z)

R
, (B.3)

R =
1

ρ
, (B.4)

()′ =
∂

∂f
() (B.5)

here, e and f describe the Chief’s eccentricity and true anomaly, respectively, and (̄) notation refers

to a non-dimensional state. The analytical solution for the relative motion has the following form
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[138, 14].

x̄(f) = K1ρsin(f) +K2ρcos(f) +K3(2− 3eρsin(f)k̄(τ − τ0))

ȳ(f) = K1(ρ+ 1)cos(f)−K2(ρ+ 1)sin(f)− 3K3ρ
2k̄(τ − τ0) +K4

z̄(f) = K5sin(f) +K6cos(f)

(B.6)

where the parameters K1,K2,K3,K4 are constant of the motion, τ = nt, n is the Chief’s mean

motion, and k̄ =
√
µ[a(1 − e2)]−3/2 is derived from the constant of angular momentum (h) as

reproduced here from [138]:

Orbital rate (ḟ) = (h/r2c ) = (h/p2)(1 + ecos(f))2 = k̄ρ2 (B.7)

where rc is the magnitude of chief’s inertial position vector, angular momentum magnitude h =√
(µp) and p = a(1− e2).

Let ρcos(f) = c, and ρsin(f) = s, and J(f) is defined as k̄(τ − τ0) =
∫ f
f0

1
ρ(f)2

df . Then from

equation B.6, we get:

x̄(f) = K1s+K2c+K3(2− 3esJ)

x̄′(f) = K1s
′ +K2c

′ − 3eK3(s
′J + s/ρ2)

ȳ(f) = K1(
ρ+ 1

ρ
)c−K2(

ρ+ 1

ρ
)s− 3K3ρ

2J +K4

ȳ′(f) = −2K1s+K2(e− 2c) +−3K3(1− 2esJ)

z̄(f) = K5s/ρ+K6c/ρ

z̄′(f) = K5c/ρ−K6s/ρ

(B.8)
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This gives,

x̄(f) =



s c 2− 3esJ 0 0 0

(1 + 1/ρ)c −(1 + 1/ρ)s −3ρ2 1 0 0

0 0 0 0 s/ρ c/ρ

s′ c′ −3e(s′J + s/ρ2) 0 0 0

−2s −2c+ e −3(1− 2esJ) 0 0 0

0 0 0 0 c/ρ −s/ρ


K

=⇒ x̄(f) = ΦfK

(B.9)

where K = [K1 K2 K3 K4 K5 K6]
T . Now given the initial state x̄(f0), K can be written

as K = Φ−1
f0

x̄(f0). Substituting this in equation B.9 gives,

x̄(f) = ΦfΦ
−1
f0

x̄(f0)

=⇒ x̄(f) = Φf
f0
x̄(f0)

(B.10)

where Φf
f0

is the STM of the relative motion that propagates the initial non-dimensional relative

state (x̄(f0)) to a final non-dimensional relative state (x̄(f)) for an arbitrary time. It is to be

noted here that bold notation represents a vector.

Dimensionalizing non-dimensional states:

From equations B.3 and B.4, we have non-dimensional state’s position vector r̄ = r
R = ρr.

This gives:

r =
r̄

1 + ecos(f)
= r̄/ρ (B.11)

Now,

ṙ = r′ḟ (B.12)

Using equations B.11, B.12 and substituting ḟ from equation B.7, we get:

ṙ =

(
esin(f)r̄

(1 + ecos(f))2
+

r̄′

1 + ecos(f)

)
ḟ

=

(
esin(f)r̄

ρ2
+

r̄′

ρ

)
k̄ρ2

=⇒ v = k̄esin(f)r̄ + k̄ρv̄

(B.13)
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This gives the following relation between non-dimensional state x̄ and dimensional state x:

x =



1/ρ 0 0 0 0 0

0 1/ρ 0 0 0 0

0 0 1/ρ 0 0 0

k̄esin(f) 0 0 k̄ρ 0 0

0 k̄esin(f) 0 0 k̄ρ 0

0 0 k̄esin(f) 0 0 k̄ρ


x̄ (B.14)

Cost-to-go estimate:

Equations B.10 can be written asr̄(f)
v̄(f)

 =

Φrr Φrv

Φvr Φvv


r̄(f0)
v̄(f0)

 (B.15)

where r̄ and v̄ refer to the non-dimensional relative position and velocity of the deputy with respect

to the chief respectively.

The initial change in velocity (δv̄(t0)) required to reach a target state is defined as

δv̄(t0) = v̄(t0)
+ − v̄(t0) (B.16)

where v̄(t0) is the relative velocity of the deputy before executing the transfer and v̄(t0)
+ is the

velocity after applying the transfer impulse that can be solved from equation B.15 as follows:

r̄(t) = Φrrr̄(t0)+Φrvv̄(t0)
+

=⇒ v̄(t0)
+ = Φ−1

rv [r̄(t)− Φrrr̄(t0)]

(B.17)

Similarly, the final change in velocity (δv̄(t)) given the relative orbital velocity on the arrival

relative orbit (v̄(t)) can be computed as

δv̄(t) = v̄(t)− v̄(t)− (B.18)

where v̄(t)− is the final relative velocity achieved at the end of the transfer and can be solved from

equation B.15 as follows:

v̄(t)− = Φvrr̄(t0)+Φvvv̄(t0)
+ (B.19)



134

Both, δv̄(t0) and δv̄(t) are dimensionalized using equation B.14 to give δv(t0) and δv(t) respec-

tively. This gives the final estimated total cost-to-go as:

∆vest =


|δv(t0)+ δv(t)|+ 100, if the estimated transfer arc is in violation of keep-out zones

|δv(t0)+ δv(t)|, otherwise

(B.20)

If the estimated transfer arc from the current node to the goal node is violating the keep-out zones,

a high penalty (in this case, the penalty is picked as 100) is added to the estimated cost-to-go

meaning it will be expensive to execute that transfer.



Appendix C

Review of Prussings and Conway’s Lambert’s Solution (reproduced from [93]):

Lambert’s problem is to determine the orbit that allows an object to transfer between two

terminal position vectors (r1 and r2) in a given time of flight (∆t) using Keplerian dynamics. The

Prussings and Conway’s Lambert’s solution [32] is based on determining two Lagrange parameters,

α and β [104] defined as:

sin(
α

2
) =

√
s

2a
(C.1)

sin(
β

2
) =

√
s− c

2a
(C.2)

where a is the transfer orbit’s semimajor axis, s is defined as

s =
1

2
(r1 + r2 + c) (C.3)

where ri are magnitudes of the position vectors and c is given by

c = |r2 − r1| (C.4)

To solve for α and β, we must know a, all of which must simultaneously satisfy the time-of-

flight problem cast as

∆t =
a3/2
√
µ
[α− β − (sinα− sinβ)] (C.5)

=⇒ ∆t = g(r1, r2, a) (C.6)

A full discussion of the solution to parameters a, α, and β are discussed in [93, 32]. Using these

solutions, the terminal velocities can be computed as:

vi = fi(r1, r2, a) (C.7)
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Specifically,

v1 = (B +A)uc + (B −A)u1 (C.8)

v2 = (B +A)uc − (B −A)u2 (C.9)

where,

A =
√

(
µ

4a
)cot(

α

2
) (C.10)

B =
√

(
µ

4a
)cot(

β

2
) (C.11)

u1 =
r1
r1

(C.12)

u2 =
r2
r2

(C.13)

uc =
r2 − r1

c
(C.14)
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