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Existing solutions for spacecraft attitude control have historically accommodated the lim-

ited processing power of spacecraft CPU’s through the use of simplified dynamical models and

traditional feedback laws. However, while such approximations improve the computational com-

plexity (and reliability) of the resulting control solutions (a necessary feature for a viable Attitude

Determination and Control System (ADCS)), the maximum performance of control strategies de-

veloped under these simplified dynamics is limited compared to the potential capabilities of the

physical system. In contrast, this thesis examines the optimal control behaviors and performance

capabilities of physical spacecraft dynamical models by developing and solving trajectory optimiza-

tion problems for rest-to-rest attitude maneuvers under standard operational constraints on input

saturation, maximum angular rates, and solar exclusion cones.

In particular, this thesis examines three problems: (1) maneuvers planned using traditional

abstract body torques and approximated dynamics (a model problem to validate the solver), (2)

maneuvers planned using a comprehensive, momentum-conserving model for a spacecraft CMG

array, and (3) the latter problem augmented with an accurate model for the array’s energy usage.

In each case, the optimal solutions guarantee constraint feasibility and present substantial perfor-

mance improvements over the original guess (determined in most cases using accepted feedback

solutions). Additionally, the proper energy penalty employed in the final case yields substantially

improved performance and efficiency over the accepted Singularity-Robust (SR) feedback law, with

this increased performance correlating with several notable control behaviors observed across the

solution family: (a) a model torque profile for the CMG array analogous to the initial and final
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burns used in orbital transitions and (b) variable CMG wheel speed regulation which is largely

inactive during the maneuver’s ‘cruise’ phase. Finally, potential adaptations of existing feedback

control solutions which incorporate the above behaviors are proposed, achieving the corresponding

performance improvements without the computational burden of strict optimality.
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Chapter 1

Introduction

A fundamental challenge when designing a spacecraft is achieving an appropriate balance

between the performance capabilities necessary to complete the mission, the reliability (both in

hardware and software) to survive multiple years in the extreme environment of space, and the

required electrical power available from the onboard solar panels ([31]). As one might suspect,

this balance plays a key role in the design of the spacecraft’s Attitude Determination and Control

System (ADCS), both in system’s engineering (the efficacy, size, and number of attitude actuators

used rotate the platform) and in control system’s engineering (the required control effort and

computational cost of the integrated control system). From this perspective, it is unsurprising that

spacecraft attitude control (particularly optimal control and optimization) remains an extremely

active research topic both in industry and in academia.

Unfortunately, the limited computational power available from existing spacecraft processors

(which prefer older, bulkier electronics to resist the effects of radiation) has correspondingly re-

stricted the scope of practical control solutions. In particular, the large majority of existing control

solutions (both integrated and in the literature) employ simplified or approximated dynamical mod-

els for the spacecraft’s attitude dynamics: a strategy which can provide valuable improvements in

both the complexity (and reliability) of control solutions. In particular, consider the most prevalent

actuation technique for spacecraft attitude control: momentum exchange. In essence, a Momentum

Exchange Device (MED) generates attitude control torques by using electric motors to exchange

angular momentum between itself and the main spacecraft body [33]. Thus, the ‘true’ dynamics of
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an MED array (and its unique state manifold) are fundamentally governed by the conservation of

the spacecraft’s total inertial angular momentum: a complex constraint requiring a comprehensive

model of all angular momentum exchanged within the array and spacecraft frame. Naturally, this

complex model is challenging (both behaviorally and computationally) for direct application in

spacecraft controller design, where simplicity and reliability are traditionally preferred over raw

performance. As a result, existing ADCS generally simplify the internal momentum dynamics of

their MED arrays, instead modelling them in the top level attitude controller as simplified, exter-

nally generated torques akin to those produced using thrusters. For the momentum array itself,

a separate controller is then used to convert these abstracted ‘command torques’ to appropriate

inputs for the MED’s (or indeed any such actuator). This divide-and-conquer strategy greatly sim-

plifies the design (and optimization of) the top level attitude controller, but sacrifices performance

by treating the original actuator dynamics like a disturbance, thereby distorting the system’s true

state space.

Naturally, the above complications present an even greater challenge in the context of optimal

control and trajectory optimization where the complexity of the resulting problem makes solutions

challenging to obtain even using modern hardware. Correspondingly, the majority of approaches

in the literature employ similar dynamical approximations to ensure the resulting control solutions

remain relevant and compatible with those deployed in existing spacecraft. However, while it is cer-

tainly idealistic to develop a computational-tractable trajectory optimization problem (i.e. solvable

in real time) under the true, physical dynamics of an MED-driven spacecraft, it is possible to ex-

amine the off-line results of such problems to identify the strategies and behaviors employed by the

optimal controller which measurably improve ADCS performance and efficiency. These strategies

can then potentially be incorporated into the more accepted, reliable, and computational control

strategies to improve their performance without the computational burden of strict optimality. It

is this perspective which motivates this thesis.
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1.1 Research Overview

The overarching research objective of this thesis is to develop novel, robust, and computa-

tional tractable control strategies for spacecraft attitude maneuvers using techniques in trajectory

optimization and optimal control while enforcing all relevant operational safety constraints. In

pursuance of this goal, we formulate and solve several constrained trajectory optimization prob-

lems for constrained rest-to-rest attitude maneuvers for spacecraft driven by traditional abstract

body torques and momentum-conserving Control Moment Gyroscope (CMG) arrays. In the process

of solving these problems, we develop new strategies for the application of our chosen trajectory

optimization solver (PRONTO) to problems evolving on constrained nonlinear manifolds, result-

ing in substantially improved performance over other techniques (both commercially and in the

literature).

After validating this general approach, problem formulation, and solver on a model trajectory

optimization problem in the literature (i.e. a maneuver planner using abstract body command

torques), we apply this approach to solve the (previously open) constrained trajectory optimization

problem for rest-to-rest attitude transfers using a momentum-conserving CMG array. In particular,

our formulation employs a dynamical model which preserves the array’s (conservative) momentum

exchange dynamics, a power model directly tracking the usage of the individual CMG motors, and

typical operational safety constraints on input saturation, angular velocity, and camera exclusion

cones. The optimal control strategies produced under this comprehensive formulation present

substantial improvements to mean maneuver performance and efficiency, and identify an acute

shortcoming in cost functions which use the control input (rather than accurately modelled power

usage) to penalize maneuver energy cost.

To address this shortcoming, we augment the above trajectory optimization problem with

a specialized energy penalty in the cost function to accurately limit the electric power used by

the array. Unlike existing approaches, this comprehensive formulation enables optimal solutions

to display their full range of (potentially non-intuitive) behaviors while satisfying constraints and
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reducing the true total electric power used by the array. Finding these solutions to be substan-

tially more performant and efficient than existing feedback solutions, we primarily attribute this

performance increase to two nonstandard control strategies observed across the solution family:

(1) a bang-bang model torque profile for the CMG array analogous to the initial and final burns

used in orbital transitions and (2) variable CMG wheel speed regulation which is largely inactive

during the maneuver’s ‘cruise’ phase. Finally, we suggest potential adaptations of existing feedback

control solutions which incorporate the above behaviors, achieving the corresponding performance

improvements without the computational burden of strict optimality. With this final step, we

achieve our original research objective and demonstrate the immense value in off-line solutions of

traditionally challenging trajectory optimization problems for high performance systems.

1.2 Outline of the Dissertation

Beginning in chapter 2, we review the definitions and relative strengths of popular attitude

models, including Euler angles, quaternions, rotation matrices, and modified Rodriquez parameters.

We next review the basic dynamical models, operational constraints, actuators, and feedback control

strategies employed in classic spacecraft attitude control problems. In particular, we review in detail

the popular Singularity Robust (SR) feedback law as a prime example of the prevalent inner-outer-

loop controller archetype employed in existing spacecraft ADCS’s.

In chapter 3, we review the fundamentals for formulating well-posed trajectory optimization

problems as well as common numeric and analytic strategies for solving them. This includes a review

of classic direct and indirect methods as well as newer hybrid strategies presented in the literature.

In the second half of this chapter, we develop in detail the trajectory optimization algorithm used

in this thesis: the PRONTO solver. In this discussion, we also review the required adaptations

and (regulator) design strategies necessary for addressing constrained maneuver planning problems

which evolve on nonlinear configuration manifolds.

In chapter 4, we examine a traditional trajectory optimization problem formulation for rest-

to-rest attitude maneuvers under simplified body-torque driven dynamics and common operational
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constraints on input saturation, angular rotation rate, and solar exclusion cones. This chapter

largely reviews the implementation of the PRONTO algorithm presented in [12] and highlights

the impressive capabilities and performance benefits offered by the PRONTO solver over popu-

lar commercial solvers, particularly in the case of systems whose dynamics evolve on nonlinear

manifolds.

In chapter 5, we develop the fundamental momentum exchange physics and dynamics for

Single-Gimble Control Moment Gyroscope arrays. In particular, this includes a nonlinear coordi-

nate transformation of existing dynamical results to one appropriate for our problem formulation

as well as a parameterization of the constraint manifold induced by the array’s conservation of

inertial angular momentum. Additionally, we develop an alternative model for the electrical power

consumed by the CMG array’s component motors, which later proves useful in formulating an

energy-optimal trajectory optimization problem.

In chapter 6, we examine the more sophisticated trajectory optimization problem for rest-to-

rest attitude maneuvers for spacecraft using CMG arrays. Specifically, the formulated maneuver

planner evolves the constrained problem discussed in chapter 4 to the comprehensive (conservative)

dynamics developed in chapter 5. Necessary adaptations to the PRONTO solver to accommodate

the (nontrivial) momentum conservation constraints are discussed. Finally, two concurrent studies

are performed (summarizing the results of [14] and [13] respectively) which highlight the poten-

tial performance improvements offered by optimal solutions and the critical importance of proper

models for system dynamics and energy usage in trajectory optimization problems. Finally, this

section concludes by presenting two potential control strategies observed in the optimal solutions

which greatly improve maneuver efficiency. In particular the presented control strategies do not

require strict optimality and may be be implemented using accepted feedback control strategies.

Finally, chapter 7 summarizes this thesis with concluding remarks.



Chapter 2

Classical Spacecraft Attitude Control

In this chapter, we will review the fundamental models used for spacecraft rotations, including

common parameterizations of the attitude (orientation) space and the rotation dynamics of rigid

bodies. In addition, we will review common feedback control strategies and the operational safety

constraints they must satisfy to be employed in modern spacecraft Attitude Determination and

Control Systems (ADCS’s). Finally, we will review the Singularity-Robust (SR) feedback law as a

prime example of the prevalent inner-outer-loop controller archetype employed in existing spacecraft

ADCS’s.

2.1 Spacecraft Attitude Modelling

Unlike with linear coordinates like position or velocity, there is no single ‘correct’ way to

express the orientation or attitude of a rigid body in three dimensions. Indeed, the many challenges

resulting from the symmetries and periodicity of the attitude space have inspired a large variety of

coordinate systems, each with their own unique complications. Perhaps the most intuitive of these

coordinate systems is the simple 3× 3 rotation matrix C ∈ SO(3) whose columns directly list the

x, y, and z unit basis vectors for the object’s body frame Fb viewed in the fixed inertial frame Fi

[24]. That is, a vector vb ∈ R3 written in Fb can be expressed (or re-coordinatized) in Fi using the

matrix Ci
b ∈ SO(3) as follows

vi = Ci
b v

b.
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Unfortunately, while rotation matrices are extremely convenient and precise for expressing attitudes

(directly listing the reference frame of the rotated body), the nine parameters they require and the

nontrivial parent space they are constrained to, the special orthogonal group SO(3), make them

computationally undesirable given the limited processing power available on most spacecraft.

With this limitation in mind, it is naturally tempting to instead seek out a minimal attitude

representation requiring the fewest possible coordinates. For example, a rotation can alternatively

be specified using a sequence of three rotations around the object’s principle (body frame) axes.

These yaw, roll, and pitch angles (commonly called Euler angles) are frequently used to express

attitudes. While this representation is useful for static models however, it also possesses intrinsic

coordinate singularities which make it unsuitable for modelling attitude dynamics. Specifically,

the parent 3-torus T3 for Euler angles is not homeomorphic to SO(3) at every point, meaning

that certain motions in the true attitude of an object (i.e., on SO(3)) cannot be captured using

Euler angles. Practically, this issue manifests in controller design as the well-known problem of

gimbal lock [24]. These coordinate singularities (and the numerical ill-conditioning produced in

their immediate vicinity) make minimal representations unsuitable in many applications, including

the trajectory optimization problems developed in this thesis. Notably, certain specialized minimal

representations like Modified Rodriguez Parameters (MRP’s) can (and frequently are) used for

attitude controller design and offer many practical advantages. However, additional considerations

are required for controllers using MRP’s (e.g. shadow sets) to ensure they safely and reliably avoid

their singular points.

Thankfully, these coordinate singularities can be avoided by using a 4-parameter attitude

representation. Specifically, the quaternion (or Euler parameters) is extremely prevalent in existing

spacecraft guidance, navigation, and control algorithms due to its compactness and numerical

efficiency. By definition, a quaternion q ∈ H is a hypercomplex number of the form

q := qs + qxi+ qyj + qzk︸ ︷︷ ︸
qv :=

,

with real (scalar) part qs := Re(q) ∈ R and imaginary (or vector) part qv := Im(q) written using
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the extended complex basis i, j, and k [11, 46]. Computationally, q is commonly represented using

the real vector q := [qs; qv] ∈ R4 with qv := [qx; qy; qz] ∈ R3, where we use the notation [a; b] to

denote vertically concatenated vectors. The rotation action of a quaternion is achieved using the

non-commutative quaternion product “◦”, which admits the following vector notation equivalent:

h = q ◦ p, h, p, q ∈ H,hs
hv

 =

 qsps − q⊤v pv

qspv + psqv + qv × pv

 , (2.1)

=

qs −q⊤v

qv qsI3 + q̂v


︸ ︷︷ ︸

OL(q):=

ps
pv

 =

ps −p⊤v

pv psI3 − p̂v


︸ ︷︷ ︸

OR(p):=

qs

qv

 ,

where I3 denotes the 3×3 identity matrix and the 4×4 matrices OL(q), OR(p) ∈ SO(4) (the special

orthogonal group) are the matrix representations of the quaternion product from the left (by q)

and from the right (by p), respectively. This definition also employs the matrix representation of

the cross product ω̂v = ω × v denoted using the hat operator

ω̂ :=


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

The conjugate (or adjoint) for a quaternion q is defined to be q∗ = qs − qv and, noting that the

vector part of q∗ ◦ q is zero, its norm is given by ∥q∥2 = q∗ ◦ q = q⊤q which agrees with the usual

Euclidian norm on R4. The inverse of q is then given by q−1 = q∗/∥q∥2.

Like conventional rotation matrices, unit quaternions (q with ∥q∥ = 1 or, equivalently, q on

the unit sphere S3) can be used to represent spacecraft attitudes and rotations. Returning to our

previous example, the vector vb ∈ R3 written in Fb can re-coordinatized in Fi using the quaternion
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q ∈ H or its corresponding rotation matrix C(q) ∈ SO(3) as follows:

ṽ i = q ◦ ṽ b ◦ q∗, (2.2a)

= OL(q)OR(q
∗) ṽ b,

vi = C(q)vb. (2.2b)

where ṽ := [0;v] is the so-called pure representation of the vector v and

C(q) := q2s I3 + 2qsq̂v + qvq
⊤
v + q̂ 2

v .

The above definition for C(q) reveals one of the primary challenges in the practical implementation

of quaternions: the quaternion space S3 is a double covering of the attitude space SO(3). That is,

the quaternions ±q (antipodal points on the sphere S3) represent the same orientation and yield

the same rotation matrix. Correspondingly, any formula for the reverse mapping C̄ : SO(3) → S3

(such as that given by [47]) cannot produce unique results. The equator between these dual

representations shown in black in Figure 2.1 then (also redundantly) collects all possible 180◦

rotations from qd. As a result, the full space of physical attitudes is included in any single closed

hemisphere of S3: a feature which produces problematic results for some control laws. For example,

consider travelling from −q0 to qd along the magenta path shown in Figure 2.1. In this case, the

observed rotation appears to go the ‘wrong’ way, travelling more than 180◦ to reach the target

attitude. Extending this example, controllers which follow the longer geodesic from −q0 to qd

(fully around the opposite side S3) will, in practice, appear to initially spin the correct direction.

However, they will then appear to spin past the target attitude, completing an additional 360◦

rotation. This inefficient behavior is known as unwinding and is produced by control laws which

stabilize almost all of S3 to qd only (as opposed to stabilizing each hemisphere to ±qd respectively).

Modern feedback regulating controllers prevent unwinding via symmetric control laws (satisfying

u(q) = u(−q)) which independently stabilize each half of S3 to the appropriate ±qd (using Hybrid

techniques to include the equator) [35]. We elaborate on these challenges (as well as potential

solutions) in later chapters.



10

Figure 2.1: Illustration of quaternion attitude space S3.

Another useful attitude representation that is frequently employed in spacecraft modelling

are Modified Rodriguez Parameters (MRP’s). Specifically, a quaternion q can be converted to its

equivalent MRP vector in R3 as follows

e tan

(
ϕ

4

)
=

qv
1 + qs

,

where the unit vector e ∈ S2 defines the principal axis of the applied rotation and ϕ ∈ [0, 2π) yields

the principal angle. Notably, this representation is ultimately a vector in R3 (with the principle

angle encoded as the magnitude), and so is a minimal attitude representation. Correspondingly, the

MRP encounters a coordinate singularity when describing a full rotation (ϕ = 360◦), though this

can be avoided in practice by pro-actively switching between dual (shadow) MRP representations

before the principle angle grows too large [10]. Although they are not used for modelling attitudes

in this work (due to the dynamical challenges with coordinate singularities discussed above), this

compact form is often useful for visualization and error tracking. In particular, the principle rotation

angle ϕ serves as a useful performance metric for assessing the convergence rate and accuracy of

attitude controllers, and is used for this purpose in the study in chapter 4.
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2.2 Body-Torque Spacecraft Dynamics and Actuators

Having defined the spacecraft’s attitude model, we may now discuss the most prevalent model

for a spacecraft’s attitude dynamics as well as models for many common attitude actuators. To

define these dynamics, let Fb and Fi define the reference frames for the spacecraft body and inertial

space as before, let the quaternion q represent the spacecraft’s orientation, and let ω ∈ R3 define the

angular rotation rate of the satellite frame (i.e. the rotation rate of Fb with respect to Fi) written

in Fb. In addition, we require the following standard assumptions to simplify and standardize

controller design under this model:

(1) The mass of the spacecraft remains constant,

(2) The principle Inertia J ∈ R3×3 of the platform remains constant,

(3) All actuators can be modelled using external body-torques.

In practice, assumption (1) requires that the propellant (fuel) used by the spacecraft is used suf-

ficiently slowly so that the mass of the spacecraft is effectively constant over any single attitude

maneuver (both reasonable and commonplace in most applications). Assumption (2) is arguably

more restrictive, as it assumes that the spacecraft is entirely rigid and includes no moving parts

with substantial mass (not always true for larger spacecraft such as the ISS). Finally, assumption

(3) requires that every attitude actuator on the spacecraft can ultimately be modelled using torques

acting externally on the spacecraft body (e.g. leveraged against the surrounding space or electro-

magnetic fields). While this proves to be a reasonable assumption for certain classes of actuators

(e.g. conventional thrusters), it presents substantial challenges when applied to the Momentum

Exchange Devices (MED’s) used in a substantial portion of spacecraft.

Under these assumptions, the body-frame dynamics for a torque-driven satellite can be writ-

ten as follows

q̇ = 1/2OL(q) ω̃ , (2.3a)

Jω̇ = −ω̂ Jω + τ c + τ e . (2.3b)
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where J is the satellite’s inertia tensor, τ c ∈ R3 is the applied control torque, and τ e ∈ R3 collects

all measured external disturbance torques on the spacecraft (e.g. solar pressure, atmospheric drag,

etc) [24]. Although included here for completeness, the external torques τ e are frequently ignored

as negligible disturbances in feedback controller design. For comparison, the equivalent rotation

matrix dynamics to (2.3a) on SO(3) is

Ċi
b = Ci

b ω̂,

where, as before, the columns of Ci
b = C(q) yield the axes of the body frame Fb viewed in the

inertial frame Fi.

In practice, the control torque τ c is purposefully left arbitrary, as it can be generated by a

variety (and usually a combination) of different spacecraft actuators. These actuators commonly

include thrusters, magnetic torquers, and MED’s such as reaction wheels and control-moment-

gyroscopes. We briefly review the relative strengths and challenges these common actuators below.

2.2.1 Thrusters

From the perspective of a control systems engineer, gas jets or thrusters provide the most

convenient and direct actuator model for translating from requested (planned) maneuver command

torques into actuator control inputs. Specifically, given the requested command torque τ c ∈ R3,

the actuator equation for an array of m thrusters with control inputs ut ∈ Rm can be written as

follows:

τ c = DT ut, (2.4)

Where the columns of the matrix DT ∈ R3×m yield the appropriate torque axis and scaling coef-

ficients for the moment produced by each individual thruster [28]. Naturally, this simple model

readily meets all of the above design assumptions for the dynamical model (2.3), with the fuel

requirements for standard rotations usually having a negligible impact on the satellite’s mass and

inertia. Additionally, thrusters provide a substantial amount of torque, with ‘cold’ gas jets (pro-

duce thrust via phase change) and ‘hot’ gas jets (produce thrust via chemical reaction) generating
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nominal thrusts of 5N and 9 kN respectively [31]. Additionally, thrusters can produce these con-

trol torques at any time, with the satellite’s ultimate propellant capacity (minus requirements for

orbital station keeping) being the only major limitation.

Naturally, thrusters do present certain engineering challenges in their implementation. First,

thrusters are highly nonlinear in their production of thrust due to a wide range of mechanical

challenges in their design. As a result, control commands sent to them are normally encoded using

Pulse Width Modulation, thereby requiring a discrete time model when designing a stabilizing

feedback law [28]. Secondly, thruster exhaust can contaminate and degrade surfaces on the space-

craft, potentially limiting mission performance and lifetime. Finally and most critically, thrusters

require consumable propellants for their operation: a finite resource that is normally reserved for

necessary operations (e.g. orbital station keeping). As a result, thrusters are rarely used during

standard attitude maneuvers, and are reserved for emergencies or to regulate (or dump) the angular

momentum accumulated from the external disturbance torques τ e [31].

2.2.2 Magnetic Torquers

As their name might suggest, magnetic torquers use magnetic coils or electromagnets to

generate magnetic dipole moments against the Earth’s natural magnetic field. The torque produced

by this dipole moment is orthogonal (and proportional) to the Earth’s magnetic field and so is less

effective at higher altitudes [31]. However, these devices do not require propellants and produce

torques leveraged on the magnetic field external to the satellite’s frame, perfectly satisfying all of

the assumptions for use in the dynamics (2.3). Given the time-varying magnetic field BEM (t) ∈ R3

along the satellite’s orbit, the actuator equation for m magnetic torquers with magnetic moments

mi ∈ R3 and current inputs um ∈ Rm is given by [28] to be

τ c =
∑
i

[mi ×BEM (t)] um,i ,

= DB(t)um .

(2.5)
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Apart from its natural time dependency, the actuator Jacobian DB(t) ∈ R3×m bears a striking

resemblance to DT in (2.4), though it is necessarily low rank due to the single direction of the

Earth’s magnetic field. Additionally, magnetic torquers are far less powerful than thrusters, with

normal torque ranges being measured in mN’s. As a result, magnetic torquers are also used mainly

for periodic removal of accumulated momentum from the disturbance torques τ e.

2.2.3 Reaction Wheels

In much the same way that orbits are best described and planned referencing a spacecraft’s

linear momentum (and the momentum available from the onboard propellant), spacecraft attitude

control can be understood as the management of the platform’s angular momentum. From this per-

spective, the above attitude actuators (thrusters and magnetic torquers) generate torques external

to the spacecraft body, exchanging the platform’s inertial angular momentum with the surrounding

space. However, the propellant (or time) required by such actuators make them problematically

inefficient for use in routine attitude maneuvers. Instead, these actuators are primarily used to

regulate the accumulated external disturbance torques τ e on the satellite frame. This strategy

simultaneously minimizes propellant use and ensures that the inertial angular momentum of the

platform remains a conserved quantity.

To avoid unnecessarily dumping angular momentum into the surrounding space, modern

spacecraft ADCS’s instead employ simple electric motors (and renewable electric power) to redis-

tribute the satellite’s internal angular momentum between its various components. The simplest

such MED is called the Reaction Wheel (RW): an electric motor with a high-inertia rotor mounted

to the satellite’s frame [31]. When this motor applies torque to rotate the wheel, the resulting

reaction torque of the wheel is used to rotate the satellite’s frame. Provided that the wheels are

not near saturation (their maximum stable spin rate), this torque (≤ 1Nm) is perfectly suitable for

smaller spacecraft and (unlike magnetic torquers) can be generated at any time [33]. As such, an

array of RW’s mounted on the platform’s principle inertia axes produces an effective and reliable

attitude control system for smaller spacecraft.
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However, since MED’s are fundamentally governed the conservation of angular momentum

(e.g. do not use external body torques), they do not naturally satisfy the second and third assump-

tions for the dynamics (2.3). Nonetheless, the resulting non-physicality can be (and frequently is)

treated as a disturbance in the resulting feedback law, which has a substantially improved capacity

to regulate such disturbances given the improved availability of renewable electric power. Specif-

ically, let each reaction wheel in an array of m wheels have the scalar momentum hswr,i along its

(unit) spin axis as,i ∈ R3 in the body frame Fb. For compactness, let these spin axes be collected

in the matrix

As := [as,1, · · · ,as,m] ∈ R3×m,

and let the wheel momenta be collected in the vector hswr,i ∈ Rm. The resulting actuator equation

for an array of m RW’s can then be written as follows:

τ c = ω̂Ashswr +As uRW , (2.6)

where uRW ∈ Rm are the torque control inputs for the individual reaction wheels [28]. To accommo-

date the dynamics (2.3) via dynamic cancellation, the gyroscopic reaction term (and, potentially,

the entire right side of (2.3b)) can be directly counteracted in the control design by simply re-

defining the target command torque as follows:

τ c − ω̂Ashswr︸ ︷︷ ︸
τ rw:=

= As uRW . (2.7a)

That is, given the desired command torque τ c for the dynamics (2.3), the required RW command

torque τ rw can be computed following the left side of (2.7). This required torque can then be

generated by the wheels according to the wheel allocation specified by the right side of (2.7). Note

once again that this method ultimately produces an (adjusted) command torque τ rw and a static

actuator Jacobian DRW = As following the thruster archetype in (2.4). The motivation for this

very intentional symmetry will become readily apparent in the next section.
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Figure 2.2: Control Moment Gyroscope coordinate frame.

2.2.4 Control Moment Gyroscopes

In practice, the limited momentum capacity of simple RW’s make them inefficient for heavier

spacecraft. Specifically, the mechanical shaft power Pm = ωmτm required for a motor to generate a

torque τm increases linearly with the motor shaft speed ωm. Thus, RW torque generation is ineffi-

cient at high wheel speeds, while complex friction effects also make RW’s challenging to accurately

model at low speeds. Thus, even for smaller spacecraft, RW control systems require active wheel

speed regulation to avoid both effects [33].

Evolving from the design of the RW, the Control Moment Gyroscope (CMG) is a reaction

wheel mounted on a rotating gimbal as shown in Figure 2.2, where the wheel (red) and gimbal

(blue) motors act along the as and ag axes respectively. Rather than using the direct motor

reaction torques for attitude control, a CMG instead relies on the gyroscopic reaction torque

τ r = δ̇hswrat,

produced along the transverse axis at := as × ag. This design is more mechanically complex, but

offers substantial performance benefits. Specifically, the reaction torque τ r is proportional to the

rotation rate δ̇ ∈ R of the gimbal frame (not the gimbal motor torque τ g) and is amplified by the
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rotor momentum hswr ∈ R. This so-called torque amplification effect allows CMG’s to efficiently

generate much larger output torques than RW’s (e.g. ≥ 1000Nm) [33].

However, while a RW’s torque axis remains fixed in the body frame Fb, a CMG’s output

torque axis at rotates with the gimbal angle δ ∈ [0, 2π). As such, the available torque from an array

of m CMG’s varies with the array’s configuration δ := [δ1; · · · ; δm], requiring more sophisticated

maneuver planning strategies. Specifically, following the notation in [17], the available torque

spaces for the CMG gimbal and wheel motors are spanned respectively by the column spaces of the

matrices

As := [as,1, · · · ,as,m] ∈ R3×m,

At := [at,1, · · · ,at,m] ∈ R3×m,

(2.8)

which vary with the array configuration δ following

As(δ) := As0 diag(cos(δ))−At0 diag(sin(δ)),

At(δ) := At0 diag(cos(δ)) +As0 diag(sin(δ)),

(2.9)

where the functions sin(·) and cos(·) act entry-wise for vector inputs and the matrices As(0) =

As0 and At(0) = At0 define the default configuration of the array geometry. For completeness,

the gimbal axes (fixed in the satellite body frame) are collected in the constant matrix Ag =

[ag,1, · · · ,ag,m]. Under this notation, the column space of At compactly summarizes the available

gyroscopic reaction torques from the gimbal motors, while that of As and Ag describe the direct

reaction torques available from the wheel and gimbal motors respectively. For example, consider

the default configuration for the popular rooftop array geometry shown in Figure 2.3. In this

configuration, the array can generate direct (red) reaction torques around the y-axis using the

wheel motors and within the xz-plane using a combination of (purple) gyroscopic reaction torques

from the gimbal motors.

Like with RWs, a feedback control law can be designed by employing dynamic cancellation

and an appropriate actuator Jacobian Dω ∈ R3×m to yield the now familiar actuator equation form:

τSR = Dω uSR,δ̇ , (2.10)
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Figure 2.3: A 4-CMG array in rooftop configuration with inclination β = 45◦.

where uSR,δ̇ ∈ Rm collects the CMG gimbal rotation rates δ̇ ∈ Rm for the m CMG’s in the array,

which are themselves controlled by the gimbal motor torques ug ∈ Rm. Notably, while the m

CMG wheel motor inputs uw ∈ Rm can also be used to produce additional control torques, they

are frequently omitted from the actuator equation (2.10) and are instead used solely for internal

regulation of the CMG wheel speeds. The specifics, benefits, and challenges of this control strategy

are developed in the next section.

2.3 Spacecraft Operational Constraints

Before investigating existing control solutions, it is first prudent to review the predomi-

nant operational (safety) restrictions for a spacecraft attitude control law. Broadly speaking, this

includes (1) classic control input saturation constraints (to avoid damage or performance issues

outside the actuator’s operational limits), angular rate limits for the spacecraft’s rotation (to avoid

straining the platform frame), and exclusion cone constraints for the onboard optical sensors to

avoid damage or signal loss when pointing them at bright stellar objects [19, 31]. These constraints
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can each be written in the nonlinear inequality form cj(x,u) ≤ 0 as follows:

u2j − u2j+ ≤ 0, j ∈ 1, . . . ,m, (2.11a)

ω2
j − ω2

j+ ≤ 0, j ∈ 1, 2, 3, (2.11b)

(ψ i
s )

⊤C(q)ψ b
c − cos (ϕko) ≤ 0, (2.11c)

where uj+ ∈ R>0 are the control saturation limits for the particular actuator, ωj+ ∈ R>0 are the

maximum rotation rates around each body frame axis, ψ b
c ∈ S2 is the body-fixed frame orientation

of the onboard optical sensor, and ψ i
s ∈ S2 and ϕko ∈ [0, π] are the inertial orientation and minimum

avoidance angle for the light source. Notably, the exclusion cone constraint (2.11c) ensures that

the vectors ψs and ψc, when expressed in the same reference frame, remain at least ϕko radians

apart as the spacecraft rotates. As such, this constraint is non-convex and presents the greatest

challenge for real-time optimization.

2.4 Prevalent Attitude Feedback Control Solutions

Armed now with basic models for spacecraft dynamics and actuators, we now review preva-

lent approaches for designing the feedback control law in a spacecraft’s Attitude Determination

and Control System (ADCS). In particular, we will discuss the popular Singularity Robust (SR)

control law presented in [38]: a feedback law which uses an actively regularized pseudo-inverse to

compute the CMG gimbal rates for a stabilizing body torque τ c. This feedback law serves as an

excellent example of the underlying design philosophy and the inherent challenges resulting from

the required dynamical approximations. Additionally, this law will be used in later sections as a

relevant comparison for the performance improvements presented by our optimal solutions.
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2.4.1 Pseudo-Inverse Feedback, Singularities, and the SR-law

As discussed above, this controller design strategy begins with the assumptions motivating

the approximated dynamics (2.3) which we repeat below for reference:

q̇ = 1/2OL(q) ω̃ ,

Jω̇ = −ω̂ Jω + τ c + τ e .

Namely, these dynamics are considered ‘approximated’ as they only model the effects of external

body-torques, ignoring the momentum exchange dynamics governing the function of momentum

exchange devices like reaction wheels and CMG’s. Indeed, the ‘true’ dynamics of an MED array

(and its unique state manifold) are fundamentally governed by the conservation of the spacecraft’s

total angular momentum: a complex constraint requiring a comprehensive model of all angular

momentum exchanged within the array and spacecraft frame. Naturally, this complete model is

extremely challenging (both behaviorally and computationally) for direct use in spacecraft con-

trol design which, historically, has preferred simplicity and reliability over raw performance. As a

result, the intentionally simplified dynamical model above presents compelling benefits in compu-

tational complexity (within a field well known for limited available processing power), simplicity,

and reliability.

Under these approximated dynamics, the actuator dynamics are fully decoupled from the

spacecraft’s attitude dynamics. As a result,the problems of attitude stabilization and the control of

the relevant actuators can be separated, simplifying the individual controller designs and improving

reliability. Specifically, we can first design a top-level attitude feedback controller to stabilize the

body-torque dynamics (2.3) using the generalized command torques τ c. For example, the SR

control law in [38] stabilizes both the attitude q and the angular rate ω to the target values qf ,ωf

respectively using the following feedback law:

τSR = (−ω̂Jω + τ e) + kq Im
(
OR(q

∗
f ) q

)
+Kω(ω − ωf )− Jω̇f , (2.12)

where the first term enforces the dynamic cancellation for (2.3b) (i.e. that Jω̇ = τSR) and the

remaining three terms provide Proportional-Derivative feedback on errors in the attitude and an-
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gular rates with the gains kq ∈ R>0 and Kω ∈ R3×3 respectively (normally chosen diagonal and

critically damped with diagonal elements Kω,i =
√
2kqJi).

With the stabilizing command torque τSR in hand, we now develop a secondary controller

to produce this torque from the available actuators. As developed above, the common spacecraft

actuator equations can all be written in the form

τ c = Du,

using the appropriate actuator Jacobian D ∈ R3×m and control inputs u ∈ Rm. For the CMG’s

considered in the SR control law, this is given by

τSR = Dω uSR,δ̇,

where the actuator Jacobian Dω is state-dependent and takes the form

Dω := 1/2
[
As diag

(
A⊤

t (ω + ωf )
)
+At diag

(
A⊤

s (ω + ωf )
)]

(J t − Js)−At diag(hswr), (2.13)

where the matrices m ×m diagonal matrices Js, J t, and Jg are constructed using the principle

inertias Jg,i, Js,i, and Jt,i ∈ R of the individual CMG’s along their gimbal, spin, and transverse

axes respectively (e.g. Js := diag([Js,1, · · · , Js,m])). Following a strategy often employed in the

control of robotic manipulators, the command torques τSR are then converted to the minimum

norm CMG gimbal rates δ̇ = D†τ r using a Moore-Penrose pseudo-inverse

D† := D⊤(DD⊤)−1,

of the actuator Jacobian (2.13). This pseudo-inverse can be similarly implemented for each of the

actuators discussed above (as well as combinations of them) using the appropriate Jacobian to

produce the individual actuator inputs.

As one might suspect, this pseudo-inverse strategy is not universally effective and, in fact,

presents serious challenges for many of the actuators discussed above. Like with robotic manip-

ulators, this feedback control strategy suffers from the kinematic singularities produced in any
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Figure 2.4: Singular configurations of a 6-CMG (a) rooftop and (b) pyramid array projected into
the array’s momentum workspace.

configuration where the actuator Jacobian D is low rank. In and around such singular config-

urations or singularities, the matrix DD⊤ is either ill-conditioned or not invertible, resulting in

inefficient or impossible numerical actuator commands from the pseudo-inverse D†.

This issue is particularly prevalent in (single-speed) CMG’s, as every array geometry possesses

a nontrivial locus of array configurations δ for which the matrix At(δ) (which shares rank with

the Jacobian Dω above) is low rank. As shown by the projections in Figure 2.4, these singular

configurations are numerous in any array’s configuration space and are highly dependent on the

specifics of the array geometry (see [4] for the most prevalent classification system). In each of

these configurations, the array is unable to return arbitrary torques that may be demanded by

this psuedo-inverse feedback. For example, the default configuration (all δi = 0) of the rooftop

array geometry shown in Figure 2.3 cannot produce torques along the y axis because all the CMG

torque axes are coplanar. Notably, this issue arises primarily for CMG designs which elect to use

only the CMG gimbal motors to produce τSR as in the SR law above, which assumes a fixed

(internally regulated) wheel speed maintained using the individual CMG wheel motors. Feedback

laws which employ the wheel motors for additional torque generation (i.e. as conventional reaction

wheels) are separately classified as Variable Speed CMG’s (VSCMG’s) and present substantially
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fewer kinematic singularities due to the additional control authority (i.e. only those produced by

fully stopping or saturating the wheels). Notably, VSCMG’s are necessarily less efficient in the

vicinity of traditional CMG singularities (due to additional reliance on the less efficient reaction

torque), though this is almost universally preferable to the alternative loss in control authority.

As one might suspect from its name, the Singularity Robust (SR) control law accommodates

these singularities in an inefficient, but safe manner. Specifically, the law adds an adaptive regu-

larization term to the pseudo-inverse which scales based on the singularity metric det(DD⊤). This

robust pseudoinverse takes the form

D‡ := D⊤
[
DD⊤ + α0e

−det(DD⊤)Im
]−1

,

where α0 ∈ R>0 is a (small) weighting coefficient. Notably, this solution produces errant torques

in the vicinity of singularities, but is robust in that an approximate solution is always available.

Given the target attitude qf and angular rate ωf , the complete SR feedback law (including the

internal wheel speed regulation) for the CMG array is then given by:

uSR,δ̇ = D‡
ω τSR, (2.14a)

uSR,δ̈ = kδ

[
uSR,δ̇ − δ̇

]
, (2.14b)

uSR,g = Jg

[
uSR,δ̈ +A⊤

g ω
]
− ḣga, (2.14c)

uSR,w = kw(hswr − hw1m), (2.14d)

where 1m ∈ Rm is an m-vector of 1’s, kδ, kw ∈ R>0 are scalar feedback gains for state and tracking

errors, uSR,g,uSR,w ∈ Rm are the motor control inputs for the CMG gimbal and wheel respectively,

and hga ∈ Rm collects the absolute CMG gimbal momenta (see chapter 5 for specifics).

Examining the complete feedback strategy in detail, (2.12) first computes a (q,ω) stabiliz-

ing command torque for the satellite under the approximate attitude dynamics (2.3). Using the

SR-law gimbal rates from (2.14a), the remaining internal array feedback equations (2.14b) and

(2.14c) then produce the gimbal motor inputs uSR,g which stabilize the gimbals to these target

gimbal rates. Finally, (2.14d) computes the CMG wheel motor feedback uSR,g to regulate the
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CMG wheels to the target momentum hw. The divide-and-conquer strategy used to construct this

feedback strategy greatly simplifies the design (and, eventually, the optimization of) the top level

attitude controller. Additionally (and of likely far greater significance for system’s engineers), this

formulation is naturally resilient to inevitable failure of individual actuators, as the actuator Jaco-

bian can quickly be adjusted to exclude nonfunctional hardware. However, this strategy necessarily

sacrifices performance by treating the original (conserved) momentum dynamics like a disturbance,

thereby distorting the system’s true state space.

2.4.2 Alternative Feedback Approaches

In addition to the SR law, many other feedback approaches have been developed in the litera-

ture to improve performance, reliability, and directly incorporate the operational safety constraints

listed in section 2.3. Following the trends of industry and deployed systems, primary research in

this area has generally adopted the accepted tiered controller design described above (i.e. attitude

maneuver torque planning and actuator command torque tracking). As a result, the majority of

efforts in feedback law design focus on each of these controllers individually and are summarized

thus below.

Research dedicated solely to real-time feedback control solutions for the top level attitude

maneuver planner is surprisingly sparse, as most results for this controller involve some manner

of comprehensive maneuver planning (i.e. trajectory optimization, which will be reviewed and

discussed later in chapter 3). As a direct alternative to the SR attitude feedback law (2.12) de-

veloped above, alternative PD and optimal Lyapunov feedback strategies for the attitude error

were presented by [49]. Additionally, noting that (2.12) does not implicitly satisfy any of the con-

straints presented in section 2.3, both [26] and [53] incorporate the input saturation and exclusion

cone constraints directly into the control feedback. In particular, [26] does this by discretizing

the dynamics, convexifying the constraints, then solving for the corresponding quadratically con-

strained attitude feedback using semi-definite programming. Alternatively, [53] defines a finite set

of constraint-admissable waypoints in (C,ω) ∈ SO(3)×R3, then develops a complementary outer-
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loop supervisory switching strategy and inner-loop Lyapunov feedback law to track between feasible

waypoints. Finally, the approach developed in [29] presents a unique feedback strategy which avoids

CMG singularities by stabilizing to a finite set of pre-computed (offline) ‘safe’ attitude trajectories.

Although somewhat limited in its capabilities and efficacy, this approach is unique in this category

as it addresses an issue commonly left to the actuator controller directly in the maneuver planner.

In contrast, research on alternatives for or improvements upon the pseudo-inverse feedback

solution for the actuator tracking controller are far more prevalent and can be divided into two

fundamental approaches. The first approach focuses in on the specific choice or structure of the

pseudo-inverse for the specific actuator, revising both to improve power consumption, provide track-

ing for specific power profiles, and avoid singularities using the null space for the specific actuator

Jacobian. Regarding reaction wheels, relevant works include [44] and [8], which respectively em-

ploy a re-weighted Singular-Value Decomposition (SVD) for the pseudo-inverse and an optimization

over an explicit parameterization of the Jacobian’s null space to reduce power consumption in the

generation of pre-planned command torques.

Naturally, research on control solutions for CMG’s (and their many variants) which reduce the

practical and numerical effects of kinematic singularities is extremely prevalent in the literature.

Regarding classic CMG implementation’s (which only use the gimbal motors for direct attitude

control), a thorough review of classic steering law approaches can be found in [30]. Moving to

VSCMG’s (i.e. CMG’s which also use reaction torque’s from the the wheel motors for attitude

control), [43, 45] follows a similar strategy to [8] discussed above and develops a parameterization

of the Jacobian’s null space, then employs that null space to avoid regions of lowered efficiency in

the array’s configuration space (i.e. the neighborhoods of singularities for classical CMG models).

Interestingly, [43, 45] also employ a more comprehensive (momentum-conserving) model of the

spacecraft’s rotational dynamics to define an alternative feedback law for the top-level maneuver

planner which actively uses both sets of actuators (the CMG gimbal and wheel motors) and their

combined reaction and gyrosopic reaction torques (i.e. not using dynamic cancelation). Using

this same model, [55] instead extends the Jacobian (and pseudo-inverse) to additionally minimize
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deviation from a pre-planned power profile for the array. Finally, [42] extends the rotation physics

and top level maneuver planner to Double-Gimble VSCMG’s (the actuators employed on the ISS),

and uses a re-weighted SVD for the corresponding psuedo-inverse to minimize array power usage.

The second approach used for improving the actuator tracking controller avoids the pseudo-

inverse entirely, electing instead to use a different method for solving the actuator equation τ c =

Du. Relevant works include [15] and [34] which, respectively, use lexographic convex optimization

and the maximum principle to minimize the error ∥Du − τ c∥ in the actuator equations for RW’s

and CMG’s. Due to the complexity of the resulting problems, both solutions included iterative

elements in their solvers, but additionally provide explicit feasibility guarantees for input saturation

constraints.



Chapter 3

Trajectory Optimization Techniques

In this chapter, we will examine a review the broad subject of Trajectory Optimization (TO)

and its applications in constrained spacecraft maneuver planning. Specifically, we will introduce the

general structure of a constrained trajectory optimization problem as well as alternative interpre-

tations and formulations. Next, we will examine a broad overview of existing numerical approaches

for solving these problems and recent applicable research in the aerospace regime. Finally, we will

specifically examine the PRojection-Operator based Newton method for Trajectory Optimization

(PRONTO) used to solve the challenging problems considered in this thesis (see chapters 4 and 6)

and its comparative benefits to other solvers.

3.1 A General Trajectory Optimization Problem

We begin by introducing the general structure for a finite-horizon continuous-time constrained

trajectory optimization problem. Specifically, we will consider a nonlinear system with state x and

control inputs u evolving within the constrained spaces X and U respectively (for example, the

manifolds S3 or SO(3) for quaternions and rotation matrices, and the respective regions in Rm

defined by input saturation constraints). We further assume that this nonlinear system evolves

under the C2 dynamics ẋ = f(x,u) (twice continuously differentiable in both x and u) over the

finite horizon t ∈ [0, T ]. Under this system, we desire a feasible solution maneuver satisfying

the path constraints cj(x,u) (for example, see section 2.3) and which minimizes the C2 cost (or

objective) functional h from the initial condition x(0) = x0. This trajectory optimization and the



28

cost functional h can be written in the following form:

min
x(·),u(·)

h (x(·),u(·)) =
∫ T

0
ℓ(x(t),u(t)) dt + m(x(T )),

s.t. ẋ = f(x,u), x(0) = x0,

c(x,u) ≤ 0,

(3.1)

where the notation x(·) denotes the entire curve x(t), t ∈ [0, T ] and the functions ℓ(x,u) and

m(x) denote general C2 incremental (running) and terminal cost functionals respectively. This

construction is extremely general, with the only noteworthy restrictions being the assumed structure

for the cost function h (which can easily be exchanged if necessary) and the assumption that both

the dynamics f and cost functional h both be C2 (a necessity for establishing the local optimality

of a solution).

While (3.1) accurately summarizes the problem and its complications however, there exists an

alternative functional space representation that more intuitively expresses its greatest complication:

the dynamical path constraint ẋ = f(x,u). Noting that we are discussing the subject of Trajectory

Optimization, recall that a trajectory of the dynamics f is defined as any bounded curve ξ(t) :=

(x(t),u(t)), t ∈ [0, T ] which satisfies an initial condition x(0) = x0 and the dynamics ẋ(t) =

f(x(t),u(t)) for all t ∈ [0, T ]. More intuitively, a trajectory ξ is any solution to the Ordinary

Differential Equation (ODE)

ẋ = f(x,u), x(0) = x0,

on the horizon t ∈ [0, T ] obtained via a control input u(t). Such trajectories are collected on a

Banach manifold T called the trajectory manifold which is embedded in the ambient Banach space

X ⊂ L∞([0, T ],Rn+m) of bounded curves ξ(t), t ∈ [0, T ] continuous in x and satisfying x(0) = x0

[20]. This manifold T is precisely the search space for the trajectory optimization problem (3.1),

which may be compactly rewritten as follows:

min
ξ∈T

h(ξ) =

∫ T

0
ℓ(x(t),u(t)) dt + m(x(T )),

s.t. c(x,u) ≤ 0.

(3.2)
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In addition to being more compact, this formulation is more representative of the optimal con-

trol problem we aim to solve. Specifically, by enforcing the system’s dynamics implicitly in the

search space, this formulation emphasizes that x(t) is a dependent variable determined from the

control input u(t) via the integration of f . In contrast, (3.1), which encodes the dynamics as a

constraint and searches over the ambient space X, is written in a form that can be easily sampled,

discretized, and transcribed as a Nonlinear Program (NLP). This subtle distinction illustrates a key

practical (algorithmic) difference between the classic direct and indirect approaches to trajectory

optimization discussed below.

3.2 Conventional Approaches

Existing solutions for trajectory optimization problems usually fall into two primary cate-

gories: Direct and Indirect Methods. Not all approaches fit neatly into these categories (genetic

algorithms and Dynamic Programming being notable exceptions) and many methods combine ele-

ments of both to improve computation times or provide additional desirable properties. In general

however, these two approach categories provide an intuitive overview of the diverse approaches for

this problem. For a concise survey of many of the trajectory optimization strategies below and

their applications to aerospace problems, I recommend [6] and [57] respectively.

3.2.1 Direct Methods

Speaking broadly, Direct methods consider the first problem formulation (3.1), with the

system’s dynamics viewed as an additional constraint to be numerically managed by the solver. In

general, direct methods operate by generating a sequence of curves (xk(·),uk(·)) which progressively

descend the objective function, usually achieving feasibility in the path constraints c(x,u) by

including them as an additive penalty (i.e. barrier function) in the objective. This descent is

usually computed numerically by transcribing (3.2) into a finite-dimensional form by sampling

the curves xk(·) and uk(·) in time and incorporating the dynamics as an additional constraint

on and between those samples. These samples can be single points, time-segments of the curves



30

represented by some polynomial fit, or even time-segments obtained by expressly integrating the

dynamics. In any case, these samples do not implicitly connect at the join times between them,

creating defects (with respect to the system’s dynamics) which are then actively minimized by the

solver as additional constraints.

As a result of this approximation, the iterates of direct methods cannot remain on the tra-

jectory manifold T as they descend the objective function, but instead remain near to it (with their

proximity managed as a separate element of the optimization problem). This transcription of the

problem presents appealing speed benefits as the algorithm can step further at each iterate in a

locally unconstrained way. However, this finite-dimensional representation of xk(·),uk(·) can only

be guaranteed to satisfy the dynamics and constraints at the sample join times. As a result, these

solutions must be sampled finely enough so that potential violations between samples remain ap-

propriately small. Common direct methods applied in aerospace research include Model Predictive

Control (MPC), Differential Evolution (DE), and Pseudospectral methods and are reviewed below.

Broadly speaking, Model Predictive Control is a solver archetype which prioritizes solver

efficiency and constraint feasibility guarantees by using simplified (usually discrete time) dynamics

over a shortened, receding horizon which shifts with the system as it tracks the current solution

iterate in real time. Unlike many optimal maneuver planners, the reduced complexity of this

shortened horizon enables the solver to adapt to disturbances and constraints in real-time, providing

many of the same benefits and guarantees of a traditional feedback solution. To account for the

shortened horizon, a complementary stabilizing control law around the target state is included in

this algorithm to ensure the solution iterates remain recursively feasible (i.e. able to reach the target

using this control law past the solution horizon). Recent works employing this approach include

[36] and [50], which plan optimal attitude maneuvers using command torques on S3 (quaternions)

and SO(3) respectively, with [36] additionally including exclusion cone constraints. Additionally,

[56] develops a constrained MPC solution for safe relative spacecraft orbital maneuvers in the Hill

reference frame (a linear reference frame centered on the approximate orbit): a challenging but

critical problem for modern spacecraft design to enable automated refueling and repair operations
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in orbit.

Alternatively, Pseudospectral methods present an alternative method for transcribing the

optimization problem into a numerically tractable Non-Linear Program (NLP) which can then be

solved rapidly using established high performance solvers and techniques (e.g. IPOPT, SNOPT,

etc.). Rather than representing the curves xk(·) and uk(·) using simple time-value samples (which

themselves are connected by dynamically infeasible straight lines or splines), these curves are rep-

resented as sequences of variable-order polynomials of a problem appropriate basis function (e.g.

sinusoids, Bessel functions, Lagrange polynomials, etc.). The length, number, order, and fit preci-

sion of each of these curve segments are then managed as parameters of the NLP, allowing the solver

to more easily capture traditionally challenging solution properties (e.g. the rapid changes found

in bang-bang control solutions). Notably, this solution method does not contain a natural feedback

solution for the resulting optimizer, but accommodates a far broader scope of challenging dynam-

ical models due to the flexibility provided by the curve approximation. Regarding research using

this approach, [40] provides an introduction and survey of pseudospectral methods in aerospace

problems, while [3] provides a practical example of a Body-torque maneuver planner on S3 which

includes input saturation constraints. One commercial solver in particular, GPOPS II, has seen

widespread adoption in this research space, and employs a basis of variable-order Lagrange poly-

nomials which are actively adapted in number and (time) length to accommodate rapid changes

in the solution (a technique called mesh-refinement) [39]. The Gauss-Pseudospectral method is

developed in [5], presented as a commercial solver in [39], and applied to the body-torque maneu-

ver planning problem on S3 in [9]. Due to its widespread adoption and accommodation of highly

nonlinear dynamics, GPOPS II will serve as a comparative example for the algorithm developed

and applied to the problems in chapters 4 and 6.

Finally, Differential Evolution (as its name might suggest) selectively combines and refines

a randomized population of potential solutions to the optimization problem to descend the cost

function. Like psuedospectral methods, this approach provides no intrinsic method for tracking the

resulting solution and the overall speed of the algorithm is highly dependent on the accuracy of
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the initial guess (population). This method is relatively new within the aerospace problem space,

but has still seen successful application by [54] and [52] for constrained body-torque maneuver

planning using quaternions and MRP’s. Notably, these papers also provide direct comparisons to

pseudospectral approaches and demonstrate comparable computational performance.

3.2.2 Indirect Methods

Unlike direct methods, indirect methods consider the second problem formulation (3.2) and

(at least in direct implementations) avoid the inherent transcriptions used in direct methods. Rather

than iteratively descending the cost functional using approximate solution trajectories, they func-

tion by determining properties of the optimizer obtained by analytically solving the first-order

necessary condition ∇h = 0. For example, approaches using the maximum principle (the most

common approach in this context), this yields an optimal control policy u∗(x,λ) and dynamics

λ̇ for a costate λ. This costate evolves backwards in time from a specified boundary condition

λ(T ) and, when combined with the policy u∗ and dynamics f , determines the optimizer ξ∗ as the

solution to a Two Point Boundary Value Problem (TPBVP). This approach converts the problem

from finding an infinite dimensional ξ∗ ∈ T to finding a finite dimensional initial condition λ(0)

which evolves over ξ∗(t) to λ(T ). Once this λ(0) is determined, the solution ξ∗ is then generated

directly on T with numerical errors originating only from the tolerance of the numerical integrator.

This first approach is commonly referred to as single-shooting, as the state and costate both evolve

continuously over the entire problem horizon t ∈ [0, T ]. Alternatively, multiple shooting involves

subdividing the problem into multiple subintervals (each of which are independently solved using

the above approach), with some outer-loop collocation strategy (i.e. pseudospectral methods) used

to reduce the errors between the boundary conditions of subsequent trajectory segments [25].

Unfortunately, indirect methods tend to be very slow for nonlinear constraints or dynamics

because the effects of the iterate uk(·) are only measured cumulatively (i.e. via integration of λ̇).

This means that any derivatives used to update the guess λ(0) must be computed numerically.

This sensitivity gives these solvers a narrow region of convergence and tends to make results highly
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numerically unstable with respect to variations in the initial condition [6, 25]. Most critically,

the use of an open-loop integration step in computing the iterates makes such indirect methods

impractical for highly unstable systems as the resulting solutions can diverge rapidly even on short

time horizons. This last issue is also present in some integration-based direct approaches (e.g.

single or multiple shooting) and serves as the original inspiration for the approach discussed below.

Due to the high nonlinearity and complexity of spacecraft dynamics, aerospace research using

purely using indirect methods is quite limited. Approaches using traditional single shooting include

[18] and [32], both of which employ a variational integrator on SO(3) and use the method to solve

the MPC sub-problem. For [18], this involves planning maneuver body torques, while [32] also

plans the momentum exchange for a RW array by additionally including the momentum exchange

dynamics in the variational integrator. Finally, [27] explores a multiple shooting approach to solve

a unique formulation of the attitude maneuver planner using a RW array while optimizing the

power balance equation of the RW motors and the onboard solar panels.

3.3 The PRONTO Approach

We now develop the unique trajectory optimization solution used to solve the challenging

problems developed in this thesis: the PRojection-Operator based Newton method for Trajectory

Optimization (PRONTO). As discussed in [1, 23], PRONTO is a direct method that implements

Newton descent on elements of the trajectory manifold T (if the reader is unfamiliar traditional

Newton descent methods or desires a brief review, we recommend they review the summary of these

methods presented in Appendix A). Unlike other direct methods, the core PRONTO algorithm

is designed to operate directly on the infinite dimensional space of the trajectory manifold with

the continuous elements of the algorithm (including the trajectory iterate ξi, regulator Kξ, and

descent direction ζk) being computed using numerical integration. This allows the representation

and precision of these results to be controlled by the selected integrator and so implicitly supports

the mesh refinement techniques developed in other conventional direct methods. In application,

PRONTO itself requires only the selection of the regulator Kξ(t) (discussed below) as well as C2



34

Figure 3.1: Outline of PRONTO algorithm showing the trajectory iterates ξi, their tangent spaces
TξiT, the computed steps γiζi, and the application (and domain Uξi) of the projection operator
Pξi to generate ξi+1.

differentiability of the dynamics f and cost functions ℓ,m [20, 22]. Naturally, convexity of the cost

and the constraints is appreciated when available.

The centerpiece of the PRONTO algorithm is the nonlinear Projection operator P: a spe-

cialized trajectory-tracking regulator which projects curve iterates in X onto T provided that they

are sufficiently L∞ close to T. This operator allows PRONTO to take larger steps in descend-

ing the objective function than conventional direct methods without requiring extra iterations to

remain near to T. The second critical element is the geometric insight used to precisely (and

efficiently) compute the descent direction ζi. Following the approach used in traditional Newton

Descent methods, this descent direction is computed within the tangent space TξiT of the current

trajectory iterate ξi by minimizing a positive definite quadratic approximation of the objective

function.

The central recursion of the PRONTO algorithm is summarized in steps (a-d) of the inner

loop in algorithm 1. Following these steps along with the illustration in Figure 3.1, the algorithm

first computes the additive descent step ζi (scaled by an appropriate step-size γi), adds it to the

current trajectory ξi, then projects the resulting curves back onto the trajectory manifold T. The

remainder of algorithm 1 then adapts this approach to an Interior Point (IP) barrier functional

method to incorporate the constraints and achieve feasibility at the minimizer. Once the inner loop

has converged in the predicted descent step size (specified by the tolerance ∆−
h ), the outer loop then
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Algorithm 1: Constrained PRONTO Method

Given Descent & Constraint tolerances ∆−
h , ϵ

−
j > 0;

Initialize Trajectory ξ0 ∈ T, and ϵj , δj = 1∀ j;
while any ϵj > ϵ−j do

while h(ξi+1)− h(ξi) > ∆−
h do

if ξi satisfies all constraints then
δj ← −1/2 ·maxt∈[0,T ] cj(ξi(t));

else
δj ← δj/2;

end

a) Design Regulator Kξi(·);
b) Compute Descent Direction ζi;
c) Compute step size γi;
d) Project Update ξi+1 = P(ξi + γiζi);

end
For each ϵj > ϵ−j , reduce ϵj ← ϵj/10;

end

steepens the constraint barrier functions via the coefficients ϵj , δj > 0. This is repeated until the

solution is sufficiently close to each constraint; a condition managed by the tolerance parameters

ϵ−j > 0. Each step a-d for the main PRONTO algorithm, as well as the IP constraint adaptation,

is discussed in detail in the following sections.

3.4 The Projection Operator

The projection operator P is a generalization of a trajectory tracking regulator which projects

a bounded, continuous curve η = (α(·),µ(·)) ∈ X to a trajectory ξ = (x(·),u(·)) ∈ T via the

nonlinear feedback system

ẋ = f(x,u), x(0) = x0,

u = µ(t) +K(t) [α(t)− x(t)] .
(3.3)

Under this simple definition, the choice of the regulatorK(·) is not immediately obvious as the above

construction will produce a projection operator for any K(·). That is, evenK ≡ 0 satisfies ξ = P(ξ)

if and only if ξ ∈ T. In practice, the purpose ofK(·) is best understood in the context of the infinite-

horizon optimization problem (T =∞) where it must provide local exponential stability in the error
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(α − x) for the closed loop system (3.3). This stabilizing property ensures that solutions of (3.3)

remain finite and computationally tractable for systems with unstable dynamics (an extremely

useful property which ultimately extends to the solver’s iterates and descent directions as discussed

below). More directly, the choice and weighting of the feedback gains in K(·) affects which ξ we

obtain for a given η, affecting the size and shape of dom(P) (i.e. the maximal effective step size of

the algorithm).

However, while local exponential stability is also sufficient for the finite horizon case, it is

unnecessarily strict. In practice, we can ensure that (3.3) remains computationally tractable on a

finite horizon by selecting K(·) which provides a locally stabilizing effect around the trajectories

of a given system. Since the family of trajectories is quite large even for simple nonlinear systems

however, it is often simpler to select a local regulator Kξ′(t) around a specific nearby trajectory

ξ′ (e.g. the previous algorithm iterate). In this case, Kξ′(t) can be quickly designed around ξ′

using classic time-varying linear-quadratic optimal control techniques: a process which guarantees

the desired stability in (α − x) for nearby η ∈ X. This regulator then defines a local projection

operator Pξ′ , which includes in its domain an L∞ neighborhood Uξ′ ⊂ dom(Pξ′) ⊂ X indicated

by the colored regions in Figure 3.1. Provided that our step size remains within the (often quite

large) set Uξ′ , the two optimization problems

min
ξ∈T

h(ξ), min
ξ∈Uξ′

h(Pξ′(ξ)), (3.4)

are then equivalent in the following sense: if ξ∗ ∈ T∩Uξ′ is a constrained local minimum of h, then

it is an unconstrained local minimum of g := h ◦Pξ′ . Furthermore, if ξ+ ∈ Uξ′ is an unconstrained

local minimum of g, then ξ∗ = Pξ′(ξ
+) is a constrained local minimum of T [20]. This observation

motivates the core PRONTO loop structure shown in algorithm 1, where the computation of the

update step ζi for the iterate ξi can now be developed using an unconstrained approach. Moreover,

provided that ξi+1 = P(ξi + γiζi) is projected back onto T at each iteration, this unconstrained

method can also converge to a shared minimizer ξ∗ satisfying the nonlinear dynamics.
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3.5 Projection Regulator Design

Following the discussion above, we now consider the problem of designing a time-varying

regulator around trajectories for the (potentially unstable) dynamics ẋ = f(x,u). For the purposes

of this thesis, we refer to the well known instability observed in the angular rates of rigid-bodies

along their intermediate principle inertia axis (corresponding to J2 if J1 > J2 > J3 are the diagonal

elements of the inertia tensor J) [24]. To limit the effects of this instability in the iterations of

our optimizer, we desire a time-varying regulator Kξ(t) defined on an known trajectory ξ which

attracts nearby curves by stabilizing the time-varying linearized dynamics

ż = Aξ(t) z +Bξ(t)v, t ∈ [0, T ], (3.5)

where z ∈ Rn, v ∈ Rm represent linear perturbations in the state and control from the trajectory ξ

around the linearized dynamics Aξ(t) := ∂f(ξ(t))/∂x and Bξ(t) := ∂f(ξ(t))/∂u and live in the ambient

linear spaces of the state and control spaces X and U . In this case, an effective regulator can

readily be obtained as the solution to the classic finite-horizon linear quadratic control problem

min

∫ T

0

1

2
∥z∥2Qreg

+
1

2
∥v∥2Rreg

dt +
1

2
∥z(T )∥2Preg

. (3.6)

where ∥v∥2R is shorthand for the semi-norm vTR v (technically not a true norm unless R is positive

definite) and the matrices Qreg, Preg ∈ Rn×n and Rreg ∈ Rm×m are suitable positive semi-definite

and positive definite quadratic weights on the state and control inputs respectively (details for the

selection of these matrices are developed below). This well-known problem admits the solution

Kξ(t) = R−1
regB(t)P (t) where P (t) is obtained by integrating the Differential Riccati Equation

(DRE)

Ṗ = PBξ(t)R
−1
regB

⊤
ξ (t)P − PAξ(t)−A⊤

ξ (t)P −Qreg, (3.7)

backwards in time from the boundary condition P (T ) = Preg [2]. Although other regulator designs

are certainly possible (and indeed should be explored), this design approach for the projection

regulator has been found to be effective for a variety of different nonlinear systems [1, 41].
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While the state and control weight matrices Qreg and Rreg can be chosen in an intuitive

manner appropriate to the regulatory priorities of the specific problem and dynamics, the positive

definite terminal cost matrix Preg which serves as the boundary condition P (T ) for the DRE above

is perhaps not so intuitive. Provided that this terminal cost is chosen non-negative definite (and,

without loss of generality, symmetric), the choice of Preg is relatively arbitrary [2], ultimately only

affecting the capabilities of the resulting projection regulator Kξ(t). As described above, even the

null projection regulator Kξ = 0 resulting from Preg = 0 will still possess the projection property

(albeit with a substantially reduced basin of attraction around the base trajectory ξ). Below, we

develop one particular strategy for determining the terminal cost and regulator which has proven

particularly effective in the existing PRONTO literature [1, 20, 23].

3.6 Determination of the Terminal Cost on Constrained Manifolds

Following the above developments in Linear Quadratic control theory, a suitable terminal

cost Preg = P (T ) for the DRE (3.7) can be readily obtained from the solution for an exponentially

stabilizing (infinite horizon) Linear Quadratic Regulator (LQR) designed at the target state xd ∈

X using the same cost function (3.6) (i.e. solving for an equilibrium point of the DRE at the

desired target state xd). Specifically, given symmetric positive definite matrices Qreg ∈ Rn×n and

Rreg ∈ Rm×m, there will be a positive definite matrix Preg ∈ Rn×n satisfying the Algebraic Riccati

Equation (ARE):

Qreg = PregBdR
−1
r B⊤

d Preg −A⊤
d Preg − PregAd. (3.8)

where, following the notation above, the matrices Ad := ∂f(xd,0)/∂x and Bd := ∂f(xd,0)/∂u specify the

local linearized dynamics around the desired target (equilibrium) state xd.

Note that the above strategy requires both Qreg and Preg to be positive definite (unlike

the DRE above which only requires them to be positive semi -definite). While this restriction is

inconsequential in many applications, it poses a potential problem for systems with states that

evolve on constrained submanifolds of their ambient linear space (e.g. quaternions q whose vector
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Figure 3.2: Illustration of quaternion attitude space S3.

definition lives in R4 but are constrained to the sphere S3). Due to the restricted configuration

space of such systems, the linearized dynamics (Ad, Bd) of such systems cannot be locally linearly

controllable in the ambient linear space. As such, no exponentially stabilizing regulator exists, and

the ARE (3.8) has no solution.

Thankfully, this restriction can be circumvented in case where the tangent space of the

state’s constraint submanifold (i.e. the state’s true configuration space) is known [12]. In this case,

the regulator Kξ(T ) and the terminal cost Preg can instead be constructed on this (controllable)

subspace then lifted into the ambient linear space. For example, recall the simplified body-torque

dynamics developed in chapter 2:

q̇ = 1/2OL(q) ω̃ , (3.9a)

Jω̇ = −ω̂ Jω + u , (3.9b)

with state x = [q,ω] ∈ S3 × R3 and control input u ∈ R3. As discussed in chapter 2, quaternions

are naturally constrained the unit sphere S3 embedded in R4. As such, the quaternion dynamics

in (3.9) above can alternatively be written in the form

q̇ = 1/2OR(ω̃) q ,

= 1/2Z(q)ω ,

(3.10)
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where the matrix Z(q) collects the right three (orthogonal) columns of OL(q) so that OL(q) =

[q, Z(q)] and q⊤Z(q) = 0. Letting (p,w,v) represent the linear perturbations about the tar-

get final state and control (qd,ωd,ud) (with ωd,ud = 03×1 to ensure a resting equilibrium), the

linearized dynamics (3.9) around xd can then be written as follows:

ṗ =
1

2
Z(qd)w ,

ẇ = J−1v .

(3.11)

As alluded above, because the attitude q(t) evolves on the sphere S3, the system matrix pair (Ad, Bd)

for the LTI system (3.11) is not linearly controllable in the ambient space R4 × R3. Instead, the

columns of Z(qd) form a basis for the tangent space Tqd
S3 (orthogonal to qd as shown in Figure

3.2), making the reachable subspace for (3.11) Tqd
S3×R3. However, noting that Z(qd)

⊤Z(qd) = I3,

we can project (3.11) to this controllable subspace by defining the projected coordinate s ∈ R3 by

p = Z(qd) s, so that

ṡ =
1

2
Z(qd)

⊤Z(qd)w =
1

2
w ,

ẇ = J−1v .

(3.12)

Unlike (3.11), the projected dynamics are a three dimensional double integrator system that is

clearly controllable (independent of qd) and therefore stabilizable using a standard linear quadratic

regulator.

Summarizing and generalizing the above example, let us return to the general dynamics

ẋ = f(x,u) whose state evolves a submanifold X of the ambient linear space Rn. Around the

target state xd, we can locally parameterize this submanifold by obtaining an orthonormal basis

spanning the tangent space Txd
X. For example, a basis for the above example is given by the

columns of the matrix Z(qd). Using this basis, the local linearized dynamics around the target

state

ż = Ad z +Bd v,

can then be projected onto the tangent space Txd
X using the projected coordinate r := M(xd)z ∈
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Rk, yielding the reduced form

ṙ =
[
M(xd)AdM(xd)

⊤
]

︸ ︷︷ ︸
Ar:=

r + [M(xd)Bd]︸ ︷︷ ︸
Br:=

v, (3.13)

where the rows of the projection matrix M(xd) ∈ Rk×n are the orthonormal basis of Txd
X deter-

mined above. For the above example, this projection from R4 × R3 to R3 × R3 is given by

M(qd) =

Z(qd)
⊤ 0

0 I3

 , (3.14)

In this projected subspace, the pair (Ar, Br) should now ideally be controllable (though if not,

the same technique above may be repeated, projecting onto the subspace which is locally linearly

controllable at the target). Thus, an exponentially stabilizing LQR can now be designed directly

on this controllable subspace by solving the (projected) ARE

Qr = PrBrR
−1
regB

⊤
r Pr −A⊤

r Pr − PrAr, (3.15)

where Qr is a symmetric positive definite cost weight matrices defined on the projected subspace,

which can be easily obtained by projecting the original Qreg (or indeed any positive definite weight

matrix) to this subspace following

Qr := M(xd)QregM(xd)
⊤.

Having obtained the Riccati solution Pr and the corresponding regulator Kr = R−1B⊤
r Pr on the

reduced subspace, we can now lift these results (as well as the projected state cost Qr) into the

ambient space as follows

Qreg(xd) = M(xd)
⊤QrM(xd),

Preg(xd) = M(xd)
⊤PrM(xd),

Kξ(T ) = KrM(xd),

(3.16)

where, by design, both Qreg(xd) and Preg(xd) are now appropriately positive definite on the tangent

space Txd
X and zero otherwise (i.e. their kernels are the orthogonal complement of Txd

X). As

such, the lifted terminal cost Preg(xd) now serves as a suitable boundary condition P (T ) for solving

the DRE (3.7) to obtain the desired projection regulator Kξ.
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Figure 3.3: Illustration of PRONTO descent search process by Alessandro Saccon (reprinted from
[1]), where the descent direction ζi is determined by minimizing (3.17) over TξiT, while the step
size γi is computed via line search on T.

3.7 Computing the PRONTO Descent Direction

Next, we need to determine an appropriate descent direction by exploring a neighborhood of

the trajectory iterate ξ ∈ T as illustrated in Figure 3.3. To parametrize this space, let the curve

η ∈X ∩ dom(Pξ) and let the trajectory ξ′ ∈ T be the projection ξ′ = Pξ(η) of this curve. Given

ζ ∈ TξT, we summarize the following Fréchet derivatives of the projection operator

ξ′ = (x(·),u(·)) = Pξ(η), η = (α(·),µ(·)),

σ = (z(·),v(·)) = DPξ(η) · ζ, ζ = (β(·),ν(·)),

θ = (y(·),υ(·)) = D2Pξ(η) · (ζ, ζ),

which are computed in practice by solving the following ODE’s

ξ′ : ẋ = f(x,u), x(0) = x0,

u = µ(t) +Kξ(t)[α(t)− x(t)],

σ : ż = Aξ′(t)z +Bξ′(t)v, z(0) = 0,

v = ν(t) +Kξ(t)[β(t)− z],

θ : ẏ = Aξ′(t)y +Bξ′(t)υ +D2f(ξ′(t)) · (σ(t),σ(t)),

υ = −Kξ(t)y, y(0) = 0.
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Note that the stabilizing effects of the projection regulator Kξ are also imparted to the above

derivatives, thus allowing these solutions to be computed numerically in the cases where f is

unstable. Using these derivatives and following the mentality used to derive the Newton descent

method, we note that trajectories in a neighborhood of ξ can be examined using the Taylor series

expansion

Pξ(ξ + ζ) = Pξ(ξ) +DPξ(ξ) · ζ +
1

2
D2Pξ(ξ) · (ζ, ζ) · · ·

When examining the above expansion, note that we need only consider descent directions ζ in the

tangent space of the trajectory manifold ζ ∈ TξT rather than all arbitrary curves η ∈ X. This

reduction of the search space originates from [22], where it is shown that T is a Banach manifold.

That is, a neighborhood of ξ is homeomorphic to the tangent space TξT so that every nearby

trajectory ξ′ to ξ can be uniquely represented by some ζ ∈ TξT via

ξ′ = Pξ(ξ + ζ),

Under this greatly simplified search space, a Newton descent direction ζ∗ can now be determined

as the solution to

min
ζ∈TξT

Dg(ξ) · ζ + 1

2
D2g(ξ) · (ζ, ζ), (3.17)

where the composite cost functional g := h◦Pξ computes the cost of the step ξ+ζ when projected

onto T. To tackle this infinite dimensional optimization problem, we can now rewrite (3.17) to

leverage techniques from linear quadratic optimal control. Noting that we have ξ ∈ T and ζ ∈ TξT

from the above results, the above unconstrained derivatives of the projected cost g can be simplified
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to the following

Dg(ξ) · ζ = Dh(Pξ(ξ)) ·DPξ(ξ) · ζ,

= Dh(ξ) · ζ,

D2g(ξ) · (ζ, ζ) = D2h(Pξ(ξ)) · (DPξ(ξ) · ζ, DPξ(ξ) · ζ)

+Dh(Pξ(ξ)) ·D2Pξ(ξ) · (ζ, ζ),

= D2h(ξ) · (ζ, ζ)

+Dh(ξ) ·D2Pξ(ξ) · (ζ, ζ).

In practice, the final term Dh(ξ) ·D2P(ξ) · (ζ, ζ) can be computed by first rewriting in the form∫ T

0
λ(t)⊤D2f(ξ(t)) · (ζ(t), ζ(t)) dt,

where the adjoint vector λ(t), much like a Lagrange multiplier, evolves backwards in time from

λ(T ) = m⊤
x (x(T )) according to

λ̇ = −[Aξ(t)−Bξ(t)Kξ(t)]
⊤λ− ℓ⊤x (t) +K⊤

ξ (t) ℓ⊤u(t) ,

where we now adopt the common notation fx := ∂f/∂x used for partial derivatives. Notably, the

above differential equation is also stabilized by the regulator Kξ. Under these simplifications, the

quadratic term D2g(ξ) · (ζ, ζ) can be rewritten in the following quadratic form

∫ T

0

z(t)
v(t)


⊤ Qξ(t) Sξ(t)

Sξ(t)
⊤ Rξ(t)


︸ ︷︷ ︸

Wξ(t)

z(t)
v(t)


︸ ︷︷ ︸

ζ(t)

dt+ z(T )⊤Pξz(T ),

where Pξ = mxx(x(T )) and the matrix Wξ(t) has entries given by

wij(t) =
∂2ℓ

∂ξi∂ξj
(t, ξ(t)) +

n∑
k=1

λk(t)
∂2fk
∂ξi∂ξj

(ξ(t)), (3.18)
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Finally, letting aξ(t) = ℓx(ξ(t)), bξ(t) = ℓu(ξ(t)), and rξ = m⊤
x (x(t)), we can now rewrite the

minimization problem (3.17) as a conventional constrained linear quadratic optimal control problem

min

∫ T

0

aξ(t)
bξ(t)


⊤

ζ(t) +
1

2
ζ(t)⊤Wξ(t)ζ(t) dt

+ r⊤ξ z(T ) +
1

2
z(T )⊤Pξz(T ),

s.t. ż = Aξ(t)z +Bξ(t)v, z(0) = 0,

(3.19)

The optimal descent direction ζ∗ can then be obtained by solving the above using the DRE.

Following established methods, this is done by first solving the following ODE’s backwards in time

for the adjoint states, optimal regulator Ko, and optimal control input vo:

−Ṗ = A⊤
ξ P + P⊤Aξ −K⊤

o RξKo +Qξ, P (T ) = P (qd),

−ṙ = (Aξ −BξKo)
⊤r + (aξ −K⊤

o bξ), r(T ) = rξ,

−λ̇ = (Aξ −BξKξ)
⊤λ+ (aξ −K⊤

ξ bξ), λ(T ) = rξ,

Ko = R−1
ξ (S⊤

ξ +B⊤
ξ P ),

vo = −R−1
ξ (B⊤

ξ r + bξ).

(3.20)

Following intuitively from the restrictions of the classical Newton Method, the Ricatti solution P (·)

above will diverge before reaching t = 0 if the quadratic functional D2g(ξ) is not strongly positive

definite on TξT (indicating that no unique ζ∗ solving (3.17) exists) [21]. Since the incremental

cost ℓ and terminal cost m are both positive definite by design, this can only occur when Wξ is

perturbed in a negative direction by the product of the costate λ and the 2nd-order derivatives

of the dynamics f in (3.18) (or by the 2nd-order constraint derivatives in the augmented cost ℓ̄

developed below). In either case, we can temporarily shift to an infinite dimensional analog of

the Quasi-Newton method by approximating D2g(ξ) with the quadratic cost D2h(ξ) obtained by

omitting these additional terms. Specifically, we approximate the entries of Wξ(t) given in (3.18)

by

w̄ij(t) =
∂2ℓ

∂ξi∂ξj
(t, ξ(t)).
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This approximation is often required when far away from a minimizer and (typically) restricts the

solver to linear (or superlinear) descent rate (i.e. accelerated gradient descent). However, because

D2g is necessarily positive definite in a neighborhood of a feasible minimizer, the algorithm must

eventually achieve a quadratic descent rate. Thankfully, potentially divergent behavior in the

costate solution P (t) is simple to detect numerically and can thus be used as an reliable switching

condition in the algorithm for applying this approximation.

Having now obtained a bounded solution to (3.20), the descent direction ζ∗ is finally obtained

by solving

ż = Aξ(t) z +Bξ(t)v, z(0) = 0,

v = −Ko(t) z + vo,

forward in time. With a descent direction now determined, standard discrete line-search techniques

(e.g. Armijo backstepping) are then used to select an appropriate step size γ ∈ R>0 by evaluating

the cost g(ξ + γζ∗) and feasibility of the projected curve on T as shown in Figure 3.3. This

step guarantees sufficient descent of the objective, ensures a quadratic convergence rate near the

optimizer, and preserves feasibility once a feasible trajectory has been obtained.

3.8 Inclusion of Constraints

To incorporate general nonlinear constraints of the form c(x,u) ≤ 0 into the PRONTO

solver, we employ a modified Interior-Point (IP) barrier functional approach which is commonly

effective in convex optimization problems [23]. Specifically, we modify the original problem (3.2)

to the following form

min
ξ∈T

∫ T

0

ℓ̄(x(t),u(t))︷ ︸︸ ︷
ℓ(x(t),u(t)) +

∑
j

ϵjβδj (−cj(x(t),u(t))) dt+m(x(t)), (3.21)

where the augmented incremental cost ℓ̄ now includes the barrier functions βδ : R→ R which add

a rapidly increasing cost penalty for approaching or violating each constraint. The weights ϵj > 0

are used to control the individual scaling of these barrier functions and are progressively lowered

in later stages of the algorithm to allow the solution iterates progressively closer to the constraint
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Figure 3.4: Illustrations of (a) the barrier function βδ(s) and (b) the composition βδ,κ(s) with the
input-scaling hockeystick function σκ(s).

boundaries. The augmented cost ℓ̄ of this (soft) constraint implementation then approaches the

original ℓ(x,u) as ϵj → 0+.

The selected barrier functions are C2 modifications of the classic log() function given by

βδ(s) =


−log(s), s > δ,

1

2

[(
s− 2δ

δ

)2

− 1

]
−log(δ), s ≤ δ.

(3.22)

As shown in Figure 3.4, the parameters δj ∈ (0, 1] control the shape of this barrier function by

specifying where it changes from a classic log() function to a C2 extension that is finite on the entire

real line. While it might initially appear extraneous, this extension is necessary for PRONTO to

operate on constrained problems, as it ensures that infeasible trajectories possess a finite cost and

a well-defined descent direction. Once a feasible trajectory is obtained, the shaping parameter δj

can then be lowered, effectively modeling the constraint barrier as a true log() barrier function on

the interior of the feasible set. This modification easily blends with the original IP approach as,

for fixed ϵj > 0, the problems (3.2) and (3.21) are both locally convex and share the same solution

ξ∗ϵ = (x∗
ϵ (t),u

∗
ϵ (t)) if

δj < min
t∈[0,T ]

−cj(x∗
ϵ (t),u

∗
ϵ (t))
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is satisfied for each j [23]. As shown in algorithm 1, this requirement is satisfied over two stages.

First, we allow the barrier functions to push the solution iterates into the feasible set: a process

that can be accelerated by decreasing δj at each iteration. Once feasibility is obtained, δj can be

actively set below this threshold at each iteration.

However, while the default log-like barrier construction in (3.21) is sufficient to ensure opti-

mizer feasibility, we can further improve its performance by ensuring that the constraints cj(x,u)

are well-conditioned. By default, when a constraint is able to satisfy cj(x,u) < −1, the default cost

penalty βδ(−cj(x,u)) can erroneously become a negative cost incentive as shown in Figure 3.4.

Specifically, this incentive can cause issues with non-convex obstacle avoidance or exclusion cone

constraints like (2.11c), as it promotes behaviors which over-avoid the exclusion region. For convex

constraints like (2.11a) and (2.11b), this issue is easily addressed by scaling the constraints (e.g.

dividing (2.11a) and (2.11b) by uj+
2 and ω2

+ respectively) to ensure that this incentive region

cannot be reached.

However, this solution is insufficient for non-convex exclusion type constraints (such as

(2.11c)) as the surrounding space cannot (generally) be bounded, allowing the exclusion barrier

functional to erroneously affect the entire parent space rather than the immediate neighborhood

of the constraint boundary. To minimize the effect of this perturbation (and ensure that the con-

straint penalty is always positive), we can reshape the original barrier function (3.22) using the

‘hockeystick’ function

σκ(s) =


tanh(κs), s ≥ 0,

κs , s < 0,

via the composition

βδ,κ(s) := βδ(σκ(s)).

As shown in Figure 3.4, the asymptote in the tanh() function causes βδ,κ(s) to quickly flatten to

zero on the interior of the feasible set at a rate determined by the coefficient κ > 0. For example,

a value of κ = 125 is sufficient to ensure perturbations < 0.2◦ by the exclusion cone constraint

(2.11c) for camera trajectories ending at least 5◦ from the edge of the exclusion cone.



Chapter 4

Maneuver Planning via Tracked Command Torques

In this chapter, we will employ the Trajectory Optimization solvers PRONTO and GPOPS II

developed in chapter 3 to solve a family of standard rest-to-rest constrained attitude maneuvers

for simple body-torque (thruster) driven spacecraft subject to input saturation, angular velocity,

and non-convex exclusion cone constraints. In addition to providing a demonstrative example of

PRONTO’s capabilities for problems with dynamics evolving on constrained nonlinear manifolds,

this broad family of sample problems will also highlight its comparative computational efficiency

with a state-of-the-art commercial solver. These results will present a strongly recommendation

for PRONTO as a suitable real-time optimal maneuver planner for the more complex (momentum

exchange) spacecraft attitude control problems developed in chapter 6. The following results re-

iterate the results presented in [12].

4.1 System Dynamics and Constraints

In this chapter, we wish to determine an optimal rest-to-rest attitude transfer from the initial

attitude q0 ∈ S3 to the target attitude qd ∈ S3 with ω0 = ωd = 0) using generic body torques.

That is, we wish to plan the optimal rotation from x0 = (q0, 0) to xd = (qd, 0) under the standard

body-torque dynamics

q̇ = 1/2OL(q) ω̃ , (4.1a)

Jω̇ = −ω̂ Jω + u . (4.1b)
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where, for simplicity, the generalized control torques u ∈ R3 assumes that all external disturbance

body torques τ e(t) ≡ 0.

Notably, the restriction to rest-to-rest transfers in our problem formulation is somewhat re-

strictive when considering the full maneuver space considered in practical spacecraft operations (e.g.

de-tumbling maneuvers and sensor tracking problems frequently require ω0, ωd ̸= 0). However, it

should be noted that this restricted scope was intentionally chosen to simplify problem generation,

analysis, and presentation rather than enforced by restrictions in our approach or solver. Indeed,

arbitrary ω0, ωd and arbitrary state tracking problems are certainly possible using the PRONTO

solver (though dynamic equilibria certainly simplify the design of the PRONTO projection regula-

tor). For the purposes of this thesis however, the family of rest-to-rest maneuvers is sufficiently rich

to capture the primary performance improvements and unique control behaviors for the majority

of standard ADCS operations.

In addition to the above dynamics and boundary conditions, the desired maneuver must be

feasible under the following standard operational safety constraints on maximum control torque

(input saturation), maximum angular slew rate, and optical sensor exclusion cones

u2j − u2+ ≤ 0, j ∈ 1, 2, 3, (4.2a)

ω2
j − ω2

+ ≤ 0, j ∈ 1, 2, 3, (4.2b)

(ψ i
s )

⊤C(q)ψ b
c − cos (ϕko) ≤ 0, (4.2c)

where, to review, u+, ω+ ∈ R>0 are the maximum control thrusts and angular rates, respectively,

ψ b
c ∈ S2 is the body-fixed frame orientation of the onboard sensor, and ψ i

s ∈ S2 and ϕko ∈ [0, π]

are the inertial orientation and minimum avoidance angle for the light source. Intuitively, the

non-convex exclusion cone constraint (4.2c) ensures that the vectors ψs and ψc, when expressed in

the same reference frame, remain at least ϕko radians apart as the spacecraft rotates and presents

the greatest challenge for real-time optimization. In some cases, this is further complicated by an

additional convex inclusion cone constraint needed for sensors that must remain pointed in certain

directions to function (e.g. star or horizon trackers, communications equipment, etc.). We consider
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only (4.2c) here to simplify presentation.

In addition to the operational constraints (4.2), note that the dynamics (4.1) above are also

dynamically constrained to the manifold x ∈ X = S3 × R3. While this constraint is implicitly

satisfied by iterates of the PRONTO solver (with complications addressed in the design of the cost

function below), it should be noted that solvers which do not obtain the attitude path q(t) via

precise integration of (4.1a) (e.g. transcription based solvers like GPOPS II) must also explicitly

enforce the constraint ∥q(t)∥ = 1 as a member of (4.2) to ensure x(t) evolves on X.

4.2 Problem Formulation

With the goals, dynamics, and constraints now specified, we may now specify the complete

constrained trajectory optimization problem on the finite horizon t ∈ [0, T ] as follows

min
x(·),u(·)

∫ T

0
ℓ(x(t),u(t)) dt + m(x(T )),

s.t. ẋ = f(x,u), x(0) = x0,

c(x,u) ≤ 0,

(4.3)

where c(x,u) collects the constraints in (4.2), the functions ℓ(x,u) and m(x) specify the running

and terminal costs, and the notation x(·) denotes the entire curve x(t), t ∈ [0, T ]. Alternatively,

the problem (4.3) can be written more compactly on the trajectory manifold as follows:

min
ξ∈T

h(ξ) =

∫ T

0
ℓ(x(t),u(t)) dt + m(x(T )),

s.t. c(x,u) ≤ 0.

(4.4)

Although there are certainly many suitable potential options for the cost functionals ℓ and m, a

classically effective choice are the quadratic forms

ℓ(x,u) :=
1

2
∥x∥2Q(xd)

+
1

2
∥u∥2R, (4.5a)

m(x) :=
1

2
∥x∥2P (xd)

, (4.5b)

where ∥v∥2R is shorthand for the semi-norm vTR v and the matrix weights Q(xd), P (xd) ∈ R7×7

for the state and R ∈ R3×3 for the control are chosen positive semi-definite and positive definite
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respectively.

Recalling that the above cost function must be appropriately defined on the nonlinear man-

ifold X (rather than the parent linear space R7), the use of a classic quadratic cost in the above

problem allows us to employ the same projection strategy used to define the PRONTO projection

regulator to choose suitable weights Q(xd), P (xd). This strategy, (and indeed, this specific exam-

ple) is developed in detail in section 3.5. To briefly re-iterate, we first define the projection matrix

M(xd) ∈ R6×7

M(qd) =

Z(qd)
⊤ 0

0 I3

 , (4.6)

used to project the local linear coordinates z ∈ R7 (of x) to the tangent space Txd
X around the

target state xd via the coordinate transformation r := M(xd)z. Applying this projection to the

linearization of the dynamics (4.1) around xd (given by the pair (Ad, Bd)), we obtain the simplified

dynamics

ṙ =
[
M(xd)AdM(xd)

⊤
]

︸ ︷︷ ︸
Ar:=

r + [M(xd)Bd]︸ ︷︷ ︸
Br:=

v, (4.7)

where, in this projected subspace, the pair (Ar, Br) is now completely linearly controllable (see

Appendix B for a complete proof). Thus, an exponentially stabilizing LQR can now be designed

directly on this controllable subspace by solving the (projected) ARE

Qr = PrBrR
−1
regB

⊤
r Pr −A⊤

r Pr − PrAr, (4.8)

where Qr is a symmetric positive definite cost weight matrices defined on the projected subspace

appropriate to either the state cost for the original trajectory optimization problem (4.4) or the LQ

feedback problem (3.6) defining the PRONTO projection regulator. For each of these problems, Qr

can be readily obtained by projecting a standard diagonal weight matrix Qc ∈ R7×7 (with diagonal

entries scaled intuitively based on the desired individual state errors or regulation) to this subspace

following

Qr := M(xd)QcM(xd)
⊤.
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Having obtained the Riccati solutions Pr on the reduced subspace for the regulator and cost prob-

lems respectively, we can now lift these results into the ambient space as follows

Q(xd) = M(xd)
⊤QrM(xd),

P (xd) = M(xd)
⊤PrM(xd),

K(T ) = KrM(xd),

(4.9)

where, by design, both Q(xd) and P (xd) are now appropriately positive definite on the tangent

space Txd
X and zero otherwise (i.e. their kernels are the orthogonal complement of Txd

X).

For the purpose of defining the cost functionals ℓ and m, the above procedure yields cost

functionals which are symmetrically defined between the two hemispheres of S3, conveniently en-

suring that the traditional ‘unwinding’ problem encountered under the quaternion attitude model

is avoided for rest-to-rest transfers [12]. For the purposes of designing an effecitive PRONTO regu-

lator, the lifted terminal cost P (xd) now serves as a suitable boundary condition P (T ) for solving

the DRE (3.7) to obtain the desired projection regulator Kξ, and is suitably defined to be locally

exponentially stabilizing around the terminal state xd.

4.3 Trajectory Initialization

As direct methods approaching problem (4.4), both PRONTO and GPOPS II require an

initial guess for the curves x(·),u(·). For performance reasons, this guess should (at least approx-

imately satisfy the dynamics f(x,u) and boundary conditions x(0) = x0 and x(T ) = xd. For a

rest-to-rest attitude transfer using simple body-torque dynamics, a reasonable initial guess for the

attitude path q(t) can be determined analytically from a geodesic on S3 from q0 to q̄d. To select

the shortest rotation, the variant q̄d for the final attitude is chosen from ±qd to ensure that q0 and

q̄d lie in the same hemisphere (e.g. q⊤0 q̄d ≥ 0). Note that, if q⊤0 q̄d = 0, this choice is arbitrary.

On SO(3), a geodesic for the net rotation q̃ = q∗0◦q̄d corresponds to a single principal rotation

of ϕd ∈ [0, π] around a unit axis ed ∈ S2. This angle-axis representation is obtained directly from
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the MRP

ed tan

(
ϕd

4

)
=

q̃v
1 + q̃s

.

Using Spherical Linear Interpolation [48], q(t) is then given by

q(t) =

(
sin ((1− τ)ϕd/2)

sin (ϕd/2)

)
q0 +

(
sin (τϕd/2)

sin (ϕd/2)

)
q̄d,

where τ(t) ∈ [0, 1] shapes the velocity profile along this geodesic. Since we know q(t) rotates around

ed, all that remains is to select a rest-to-rest rotation rate ∥ω(t)∥. A suitable choice is given by

τ(t) = 1/2 (1− cos (πt/T)) ,

ω(t) = τ̇(t) · ϕded.

The torque control u(t) is then obtained by inverting the angular rate dynamics (4.1b) as follows

u(t) = (τ̈(t) Jω(t) + ω̂(t) Jω(t)) ,

This procedure generates an initial guess x(·),u(·) which satisfies our dynamic model and boundary

conditions, but leaves optimality and constraint satisfaction to the solver.

4.4 PRONTO Solver Demonstration

Before moving on to the experimental design forming the major results of this chapter, it is

worthwhile to first briefly examine some example results (intermediate and final) obtained using the

PRONTO algorithm. As a practical example of solutions to problem (4.4), consider now a model

half rotation (180◦) about the spacecraft’s z-axis. Examining the (operationally) unconstrained

problem first, a simple geodesic guess solution to this problem is given by the dashed lines in

Figure 4.1(a), while the dotted lines show how this guess trajectory is deformed along T by the

central PRONTO loop in algorithm 1. Even on the highly nonlinear attitude dynamics for the

quaternion sphere S3, the PRONTO approach is able to reach the optimizer in only 4 iterations.

Next, let us modify the problem to include the operational constraints given by (4.2). With

the constraints enabled, the completed PRONTO algorithm (see algorithm 1) now solves for a
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Figure 4.1: Example PRONTO guess, iterates, and solution for a 180◦ rotation about the z-axis of
the spacecraft. Panel (a) (left) shows the unconstrained problem and the required 4 iterations to
reach the solution, while Panel(b) shows the fully constrained problem and the (IP) central path
for the solver.

feasible, optimal trajectory ξ for a particular set of constraint weights ϵj . Once this intermediate

result is obtained, the solver proceeds down the so-called ‘central path’ by lowering ϵj by a fixed

ratio and then re-solving for a new optimizer that is closer to the constraint boundary cj(x,u) = 0.

This process is repeated until ϵj reaches a predetermined threshold. A very fine sampling of the

iterates of this central path for our 180◦ rotation example are shown in Figure 4.1(b) where the

constraints for control saturation and angular velocity are visibly satisfied. Additionally, note

the appearance of nonzero rotations along the x and y-axes to swerve around the exclusion cone

constraint. An animation of these results is also available on our lab’s website. Finally note

that, with the exception of the initial guess, each iterate displayed in Figure 4.1(b) is an optimal,

feasible result for (4.4) under a particular weight choice. As such, these intermediate solutions

can be safely used in circumstances where rapid decisions are required (e.g. docking maneuvers or

https://www.colorado.edu/faculty/nicotra/2021/03/22/poc-constrained-attitude-control-satellite-using-pronto
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collision avoidance).

4.5 Experimental Design

In this section, we evaluate the computational and operational performance of the PRONTO

algorithm when applied to the constrained satellite attitude problem (4.4). To give these results

context amongst the huge family of modern commercial solvers, we provide a comparison against

the solutions obtained from the trajectory optimization package GPOPS II which has become a

respected benchmark for evaluating new solvers [9, 51]. This comparison against an established

benchmark serves to highlight the unique benefits of the PRONTO approach for real-time maneuver

planning as well as to illustrate several potential improvements to the algorithm. All solutions

obtained for both solvers were computed in Matlab on an Intel Core I5 6600K CPU.

In this study, both solvers were given 500 randomized problems generated via the attitudes

q0, qd sampled randomly on S3. The exclusion cone vector ψs was defined in each case to nearly

intersect the path of the fixed camera vector ψc on the initial guess trajectory with an exclusion

angle of ϕko = 10◦. An intentional offset of 1◦ was applied to the cone’s center ψs to encourage

both solvers to take the same direction around the exclusion region (though this is not necessary

for either method to converge). For the remaining constraints, we selected u+ = 0.25N and

ω+ = 0.2 rad s−1 to ensure that each constraint was actively considered in each problem. The

spacecraft was modelled as a 100 kg CubeSat with an inertia tensor J = diag([10.6, 10.6, 6.2])kgm2.

Finally, the quadratic cost functionals ℓ and m and the projection regulator used by the PRONTO

solver were each constructed following the procedure outlined above (i.e. solving (3.8) on the

controllable subspace and lifting via (3.16)), where the weight matrix Qr := M(xd)QcM(xd)
⊤ on

the controllable subspace was generated using Qc := I7 and R := I3 for both the regulator and cost

functional.

To further ensure that both PRONTO and GPOPS II were compared in a consistent and

controlled way, both solvers were configured with
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(1) Identical problems and initial guesses

(2) Matching cost, constraint, and solution tolerances.

(3) Matching Matlab MEX executables to compute the dynamics, cost, and constraints.

This last point ensures that both programs are solving identical optimization problems and that

evaluations of the objective function (frequently the most computationally expensive step) are com-

puted identically. The remaining configuration options for each solver were optimized to minimize

computation time over a group of 20 test cases. Unfortunately, some minor intrinsic differences in

the solvers could not be controlled for:

(1) PRONTO uses a 4x finer time-sampling of x(·),u(·).

(2) GPOPS uses an exterior point approach for constraints.

(3) GPOPS computes its derivatives numerically.

This first discrepancy originates from PRONTO not natively including a mesh refinement strategy

to exactly model sharp changes in the solution curves ξi and, correspondingly, in the descent

direction ζi. However, because both ξi and ζi are generated via continuous time integration, the

default sampling employed by the integrator can be used as a suitable form of mesh refinement.

For this study however, PRONTO was instead configured with a finer, fixed resolution to simplify

presentation. The second point is a simple difference in how the constraints were implemented in

each solver. PRONTO solutions approach the constraints with feasible curves, while GPOPS II

solutions approach with infeasible curves. This distinction makes little difference in practice as

the constraint definitions can be modified to ensure both algorithms return feasible results. This

difference is visible in the final costs of each solution however, as exterior point methods are naturally

able to get slightly closer to the constraints. Finally, simplifications in the commercial release of

GPOPS II prevent it from directly using PRONTO’s functions for computation of the analytic

derivatives of the cost, dynamics, and constraint functions. However, GPOPS II’s use of sparsity
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to reduce complexity when computing numerical derivatives heavily reduces the impact of this

difference on actual computation time.

4.6 Solution Features and Accuracy

To begin our comparison of the two solvers, we first compare the respective solutions produced

by each solver for the problem shown in Figure 4.2. First, a brief inspection will show that both

solutions are feasible in all constraints (with the yellow cone and green line indicating the solar

exclusion cone and camera direction respectively) and successfully reach the target in approximately

half the time of the original (geodesic) guess. However, while these two solutions appear to be nearly

identical, the exterior point approach and dynamically-sampled trajectory representation strategy

used by GPOPS II enables it to push its solution slightly closer to each of the constraints. This

difference is visible in the camera path ψc(t) (which passes slightly closer to the exclusion cone) as

well as in the control trajectory (which shows a sharper jump from max y-axis torque at t ≈ 7 s).

Indeed, this observation is further supported when comparing the relative cost improvement

of the GPOPS II solution over PRONTO as shown in Figure 4.3. Specifically, for the (449) cases in

which both solvers chose the same direction around the exclusion cone constraint (and so approached

the same optimizer), GPOPS II was able to descend the cost functional 0.2% further on average

than PRONTO from the same initial guess. Critically, we note that this difference is not reflected in

the final attitude errors shown in Figure 4.4(a). In fact, both solvers return nearly identical decay

profiles and residual distributions in the MRP attitude error (i.e. the principal angle to rotate

q∗(t) to qd). In practice, these distinctions are all minor and can be reduced by either lowering the

solution constraint tolerances ϵ−j or increasing the constraint dropoff rate κj .

4.7 Algorithm Performance Comparison

We now reach the critical issues for the deployment of any real-time spacecraft maneuver-

planner: algorithm computation time and feasibility. As shown in Figure 4.4(b), PRONTO takes

25 s on average to compute a feasible optimal result on a relatively modern CPU. In contrast,
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Figure 4.2: Optimal trajectories ξ∗P and ξ∗G and camera paths ψi
c(t) for PRONTO and GPOPS II

algorithms respectively.

Figure 4.3: Distribution and Gaussian fit N(µ, σ) for the percentage descent improvement δh of
the GPOPS II optimizer cost over that from PRONTO from the same initial guess.

Figure 4.4: (a) Trajectories and final distributions for the principal rotation angle error ϕe(t) from
the target attitude qd and (b) Measured convergence times and Gaussian fits Tc ∼ N(µ, σ) for
PRONTO and GPOPS II algorithms.
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GPOPS II takes approximately six times longer with a much wider distribution for its most difficult

cases. While this difference can be partially attributed to GPOPS II’s numeric computation of

derivatives, the result clearly emphasizes the immediate computational benefits of optimization on

the trajectory manifold. This significant improvement in computation time is further emphasized

by the near-equivalence of the computed solutions displayed above.

However, there is an even greater advantage to this approach when discussing real-time imple-

mentation on spacecraft: the recursive feasibility (in both dynamics and constraints) of intermediate

solutions. Specifically, recall that virtue of the projection operator, each PRONTO iterate is a valid

trajectory of the system. Secondly, the feasibility requirement in the descent step-size calculation

ensures that, once a feasible trajectory iterate is obtained, each successive iteration is also feasible.

For the computed cases, this feasible iterate was always obtained within 6 iterations (or approx-

imately 7 s) and, on average was obtained within 3 iterations (or 3 s). As a result, a spacecraft

using PRONTO can reliably use sub-optimal intermediate solutions in cases where quick decisions

are required for safe operation (e.g. docking or collision avoidance maneuvers). This capability

is not available to classical direct collocation methods like GPOPS II, as both the dynamics and

constraints are only loosely satisfied until the final solution is reached.

4.8 Conclusions

In this chapter, we specialized an existing optimal trajectory planning algorithm to the

problem of rest-to-rest spacecraft attitude transfers subject to input saturation, angular rate, and

non-convex state constraints. Specializing PRONTO to this uniquely nonlinear and non-convex

problem required the design of custom quadratic cost functions, a custom regulator design, and an

Interior Point modification to the algorithm to include constraints. After an extensive numerical

comparison against the modern commercial trajectory optimization package GPOPS II, the com-

pleted PRONTO solver was found to return nearly identical solutions while taking only 16% of

the computation time. It was also discussed that this performance gap could be further widened

(perhaps significantly) by modifying PRONTO to use its native integrator time-sampling for the
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curve iterates rather than a fixed representation. Finally it was noted that, in the realm of real-time

trajectory optimization, this construction for PRONTO uniquely provides feasible intermediate so-

lutions in circumstances where fast control action is required for the safety of the spacecraft. From

this analysis, it is reasonable to conclude that PRONTO is a suitable optimal maneuver planning

solution for spacecraft attitude maneuver planning. Following this final line of reasoning, the two

subsequent chapters of this thesis will now develop the (substantially more complicated) spacecraft

maneuver planning problem using a standard CMG momentum array.



Chapter 5

Spacecraft Attitude Control via Momentum Exchange

In this chapter, we will develop the fundamental (conservative) momentum exchange physics

of a traditional Single-Gimbal Control Moment Gyroscope array. Using this foundation, we will

then develop a comprehensive, conservative dynamical model for CMG-driven spacecraft with the

intent of developing a conservative, computationally tractable trajectory optimization problem

which utilizes the full capabilities of the momentum array. From the literature review presented

in chapter 2, it should be noted that such a comprehensive approach (including momentum con-

serving dynamics, a single centralized control policy for the entire spacecraft, and common safety

constraints) is entirely novel (likely owing to the bewildering complexity of the resulting problem).

The dynamical model developed in this chapter was first presented in [13, 14], with the second

work still under review.

5.1 Momentum and Inertia of a CMG array

Recall from chapter 2 that a Control Moment Gyroscope is a reaction wheel mounted on a

rotating gimbal as shown in Figure 5.1, where the wheel (red) and gimbal (blue) motors act along

the as and ag axes respectively and the gimbal’s orientation is measured by the angle δ ∈ [0, 2π).

In addition to the standard (direct) reaction torques produced by the gimbal and wheel motors, a

CMG additionally employs the gyroscopic reaction torque

τ r = δ̇hwat,
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Figure 5.1: Control Moment Gyroscope coordinate frame.

produced along the transverse axis at := as × ag for attitude control. This reaction torque τ r is

proportional to the rotation rate δ̇ ∈ R of the gimbal frame and is amplified by the rotor momentum

hw ∈ R. Unlike with RW’s however, the available torque from an array of m CMG’s varies with the

array’s configuration δ := [δ1; · · · ; δm], requiring more sophisticated maneuver planning strategies.

The available torque spaces for the CMG gimbal and wheel motors are spanned respectively by the

column spaces of the matrices

As := [as,1, · · · ,as,m] ∈ R3×m,

At := [at,1, · · · ,at,m] ∈ R3×m,

(5.1)

which vary with the array configuration δ following

As(δ) := As0 diag(cos(δ))−At0 diag(sin(δ)),

At(δ) := At0 diag(cos(δ)) +As0 diag(sin(δ)),

(5.2)

where the functions sin(·) and cos(·) act entry-wise for vector inputs and the matrices As(0) =

As0 and At(0) = At0 define the default configuration of the array geometry. For completeness,

the gimbal axes (fixed in the satellite body frame) are collected in the constant matrix Ag =

[ag,1, · · · ,ag,m].

With this notation established, we now examine the momentum exchange physics of a CMG
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array to determine the satellite’s variable Moment of Inertia (MoI) and body-frame angular mo-

mentum. First let JB ∈ R3×3 be the constant diagonal inertia of the satellite (omitting the CMG

array) in the body frame Fb. Let the array have m CMG’s with relative positions bi ∈ R3 and

orientations in Fb given by the matrices Ag, As, and At as defined above. Let each CMG have

mass mi and principle inertia Jg,i, Js,i, and Jt,i ∈ R along their gimbal, spin, and transverse

axes respectively. Collecting these inertias into the m×m diagonal matrices Js, J t, and Jg (e.g.

Js := diag([Js,1, · · · , Js,m])) and applying the parallel axis theorem, the satellite’s total MoI is

assembled as follows:

Jstg(δ) := J +AgJgA
⊤
g +AsJsA

⊤
s +AtJ tA

⊤
t , (5.3a)

J = JB +

m∑
i=1

mi

(
I3∥bi∥2 − bib⊤i

)
, (5.3b)

where I3 is the 3 × 3 identity matrix. Note that the first two terms of (5.3a) are constant as the

CMG gimbal axes and centers of mass are fixed in the body frame.

To define the individual momenta and inertias of the gimbal frame and wheel of each CMG,

we now introduce the comprehensive notation system employed by [16]. Specifically, each scalar

CMG momenta term h(···) ∈ R and single axis inertia term J(···) will be identified using a specific

sequence of subscripts. The first two subscripts directly identify a) the relevant CMG rotation axis

(s for spin, g for gimbal, or t for transverse) and b) the rotating mass within the CMG (w for the

CMG’s wheel or g for its gimbal frame). For each momentum term, a third additional subscript is

used to specify the specific Center of Mass (CoM) about which the angular momentum is modeled,

with r (relative) indicating rotation around the CMG CoM, and a (absolute) indicating rotation

around the satellite’s CoM (i.e. including the extra orbital angular momentum of the CMG around

Fb). For example, the ith CMG’s wheel momentum and inertia about its own spin axis is given by

hswr,i ∈ R and Jsw,i ∈ R≥0 respectively, and the vector hswr ∈ Rm lists this angular momentum

for each CMG in the array (with inertias following the above diagonal structure for Js). For

compactness, the second subscript may be omitted to indicate the total momentum in the CMG

(e.g. hsa := hswa + hsga). It should be noted that some momentum terms in this notation are
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zero by definition due to mechanical restrictions in the CMG’s motion (e.g. hsgr ≡ 0 as the CMG

gimbal cannot rotate around the spin axis in Fb).

To determine the satellite’s angular momentum, let the body frame Fb have an angular

rotation rate ω ∈ R3 (measured in Fb) with respect to the inertial frame Fi. The satellite’s total

angular momentum is then a combination of the momentum Jstgω from the rotation of Fb and the

CMG’s angular momentum relative to Fb. This can be compactly written in Fb as

h = Jstgω +Ashsr +Aghgr +Athtr, (5.4)

where, mechanically, htr ≡ 0 by definition (i.e. the CMG frame is mechanically unable to rotate

about the transverse axis). For the purposes of our optimization problem however, it will prove

preferable to exchange some of the relative CMG momenta coordinates in (5.4) for their absolute

variations given by

hga = hgr + JgA
⊤
g ω, (5.5a)

hswa = hswr + JswA
⊤
s ω, (5.5b)

hsga = hsgr + JsgA
⊤
s ω, (5.5c)

which incorporate the orbital component of their angular momentum (normally embedded in Jstgω).

Noting again that hsgr ≡ 0 or, notationally, hswr = hsr, (5.3) and (5.4) can be compactly rewritten

as

Jst(δ) := J +AsJsA
⊤
s +AtJ tA

⊤
t , (5.6a)

h := Jstω +Ashswr +Aghga. (5.6b)

For compactness, we will often use (5.6b) to convert between h and ω via the following transfor-

mations:

h̄(ω, δ,hswr,hga) := Jstω +Ashswr +Aghga, (5.7a)

ω̄(h, δ,hswr,hga) := J−1
st (h−Ashswr −Aghga) , (5.7b)
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and will often write h̄ or h̄(x) for (5.7a), and ω̄ or ω̄(x) for (5.7b) respectively. Notably, (5.7a)

can be used to determine the array’s 3×m actuator Jacobian

D(ω, δ,hswr) :=
∂h̄

∂δ
=

∂Jst
∂δ

ω +
∂As

∂δ
hswr (5.8)

=
[
As diag(A

⊤
t ω) +At diag(A

⊤
s ω)

]
(J t − Js)−At diag(hswr).

Note that this particular variation of the actuator Jacobian, while still relating the gimbal rates

δ̇(t) to the array’s output torque τ r, differs slightly from that employed by the classic SR feedback

law (see equation (2.13)). In particular, the variation employed in the SR law includes additional

terms relating to the dynamic cancellation employed by that feedback law (a design strategy we

are intentionally avoiding here).

5.2 CMG Energy Modeling

In addition to the comprehensive momentum exchange physics developed above, it will also

prove useful to develop an accurate model of the true electric power consumed by the CMG motors.

As introduced in chapter 2, the electrical power consumed by a motor is defined by the relation

Pm = ωmτm, where ωm specifies the current shaft speed of the motor and τm specifies the requested

torque. Extending this definition to the motors of a Single-Gimbal CMG, the individual power

consumed by a CMG’s gimbal and wheel motor respectively can be written as

Pg,i = δ̇i ug,i, Pw,i := J−1
sw,i hswr,i uw,i, (5.9)

where ug,i, uw,i ∈ R are the commanded (control input) torques for each gimbal and wheel motor

respectively. Following the notation developed above, these powers can be grouped by motor type,

yielding the following compact representations for total gimbal and wheel motor power consumed

by the array

P g := diag(fδ)ug, Pw := J−1
sw diag(hswr)uw, (5.10)

where the function fδ(x,u) = δ̇ (developed below) captures the dynamics of the array gimbal

angles. As with the single motor, these power equations are bilinear in the motor shaft speeds
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and control torque, ensuring that the same torque requested at a higher shaft (or wheel) speeds

will require a proportionally increase in power draw. With this in mind, the powerful efficiency

improvement offered by CMG’s over conventional RW’s is apparent when comparing the coefficients

for both of the above motor torques. In particular, the gimbal rate δ̇ of a CMG is nominally zero

and (virtue of torque amplification) is normally much smaller than the speed of a traditional RW,

requiring a much lower power to produce the same output torque. As a result, CMG’s promote

greater efficiency and agility for larger spacecraft like the ISS, which employs four double-gimbal

CMGs in its design.

However, this engineering feature also critically impacts the formulation of our optimal control

problem, as the absolute control torque ∥τm∥ (or ‘control effort’) alone is no longer sufficient to

capture the true (state-dependent) energy usage of the array. As such, the standard penalty on

∥u∥ employed by standard incremental cost formulations is not suitable for this system. Instead,

penalties of the form ∥P g∥ and ∥Pw∥ are needed to specifically target the total electric power usage

of the array. Notably, this subtlety cannot be considered by maneuver planners using approximated

dynamics that omit the internal momentum states of the CMG.

5.3 Momentum Exchange Dynamics

With the satellite’s momentum exchange physics fully modeled, we may now develop the

complete momentum-conserving dynamics for a CMG driven spacecraft. Specifically, this deriva-

tion takes the form of a complex nonlinear coordinate transformation (see Appendix C for the

complete derivation) from their original direct coordinate choice in [16] to a set of coordinates more

appropriate to the relevant constraints and error metrics of our trajectory optimization problem. In

particular, the relative CMG wheel momenta hswr are preferable to their (marginally more obscure)

absolute representation hswa, as the former are directly proportional to the individual CMG wheel

speeds. As developed above, these wheel speeds (under any control law) require a minimum amount

of regulation in order to prevent the unnecessary wear or modelling error encountered at very low or

high speeds. By choosing the coordinates hswr, this performance goal can be directly incorporated
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into the cost functional via a (nominal) state tracking penalty (or alternatively, included as a pair

of convex box constraints). Similarly, we prefer the spacecraft’s angular rate ω to the body-frame

angular momentum ω as this simplifies the incorporation of standard angular rate slew constraints.

Finally, the original CMG motor torques were a natural choice for the control inputs, as they give

the optimizer maximal control over the array’s momentum exchange dynamics and the resulting

reaction control torques. With these considerations, the clear choice of coordinates for the state

and control inputs are then

x := [ q ;hswr ;ω ; δ ;hga ] ∈ R3m+7,

u := [ug ;uw ] ∈ R2m,

(5.11)

where uw,ug ∈ Rm collect the CMG motor torque inputs for the wheel and gimbal respectively.

Using the notation ν̇ := fν(x,u) for ν ∈ {h,hswr,ω, δ,hga}, the body-frame dynamics for a

momentum conserving CMG array are

q̇ = 1/2OL(q) ω̃, (5.12a)

ḣswr = Jsw

[
diag(A⊤

t ω)f δ −A⊤
s fω

]
+ uw, (5.12b)

ω̇ = J−1
st,a

[
fh −Daf δ −Agfhga −Asuw

]
, (5.12c)

δ̇ = J−1
g hga −A⊤

g ω, (5.12d)

ḣga = diag
(
A⊤

t ω
) [

(J t − Js)A
⊤
s ω − hswr

]
+ ug, (5.12e)

where the dynamics for the satellite’s body frame angular momentum are given by

fh(x, τ e) :=
̂̄hω + τ e, (5.13)

and τ e ∈ R3 collects all known external disturbance torques on the satellite body (atmospheric

drag, solar pressure, etc.). To compactly accommodate the new coordinate choice, (5.12) employs

minor variations on the functions for the satellite’s MoI (5.6a) given by

Jst,a(δ) := J +AsJsgA
⊤
s +AtJ tA

⊤
t , (5.14)
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as well as for the actuator Jacobian (5.8) given by

Da(ω, δ,hswa) :=
∂Jst,a
∂δ

ω +
∂As

∂δ
hswa (5.15)

=
[
As diag(A

⊤
t ω) +At diag(A

⊤
s ω)

]
(J t − Jsg)−At diag(hswa).

Notably, the individual state dynamics in (5.12) are ordered by computational dependency (not

integrator order) with each dynamical block requiring results only from lower blocks (e.g. fω

depends on f δ but not on fhswr).

5.4 Implicit Dynamical Constraints

As with the body-torque attitude dynamics considered in the previous chapter, the dynamics

(5.12) naturally evolve along a nonlinear constraint manifold X induced (in part) by the quaternion

constraint q ∈ S3. Unlike these dynamics however, the state manifoldX for the CMG driven system

is also induced by a physical constraint: the conservation of the spacecraft’s total inertial angular

momentum. To examine this, we first write these two constraints in the following form

1 = ∥q∥, (5.16a)

h0 = C(q)h̄(ω, δ,hga,hswr), (5.16b)

where the satellite’s inertial-frame angular momentum h0 ∈ R3 is conserved in the absence of ex-

ternal forces (and, indeed, nominally regulated by other attitude actuators aboard the spacecraft).

Together, the constraints (5.16) implicitly constrain x to a (3m+3)-submanifold X(h0) of the am-

bient linear space R3m+7. Notably, common dynamical approximations which compromise (5.16b)

(e.g. modeling the MoI Jst(δ) as a constant) are not constrained to X(h0) (ensuring that resulting

trajectories are almost certainly not physical).

As with the body-torque attitude dynamics, the state manifold X(h0) also implicitly con-

strains the local linear controllability of the linearized dynamics (A(x), B(x)) of the CMG array to

the tangent space TxX(h0). To develop a parameterization of this controllable subspace (which,

as above, can be used to define a locally stabilizing LQ regulator and quadratic terminal cost
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functional), we can write the 1st-order Taylor expansion of the constraints (5.16) around x in the

direction z as follows 1

h̄(x)

 ≈
 1

h̄(x)

+

 q⊤/∥q∥ 0 0 0 0

2
[
h̄,−̂̄h]OL(q

∗) As Jst D Ag


︸ ︷︷ ︸

Z(x):=

z, (5.17)

where we have simplified the expansion by applying the (full rank) transformation C(q)⊤ to the

(normally constant) lower block (i.e. C(q)⊤h0 = h̄(x)). Noting the nonzero element q⊤/∥q∥ and

strongly positive definite matrix Jst, it is clear that, for any x ∈ X(h0), the rows of the matrix Z(x)

are linearly independent and (by construction) span the null space of A(x) (e.g. A(x)Z(x)⊤ = 0).

Using this parametrization of the orthogonal complement to the tangent space TxX, the desired

projection matrix M(x) ∈ R3m+3×3m+7 to TxX can then be defined row-wise by any orthonormal

basis spanning the kernel of Z(x) (obtainable via null(Z(x))⊤ in Matlab).

Having obtained the desired projection matrix M(x) to the tangent space of the configuration

manifold X(h0), the only remaining requirement for obtaining a local LQ regulator stabilizing the

dynamics (5.12) about a general point x ∈ X(h0) is that the local dynamics (Ar, Br) in the

reduced subspace are locally linearly controllable. While this is certainly true around the static

equilibria xd considered for the trajectory optimization problems in the next chapter, a general

proof for arbitrary array geometries and target states x ∈ X(h0) is entirely nontrivial and absent

from existing literature. However, [7] have shown a (comparatively underactuated) variation of

the dynamics (5.12) to be linearly controllable around non-singular equilibrium points. While this

result (and our own extensive numerical testing) indicate that this restriction is unlikely to have

any significant practical impact, the general case remains an open problem.



Chapter 6

Trajectory Optimization with Momentum Arrays

In this chapter, we will develop an optimal spacecraft maneuver planner for rest-to-rest atti-

tude transfers using a Control Moment Gyroscope array. In contrast to conventional formulations

built using approximated dynamical models, our formulation will examine the optimal performance

and unique control strategies available to a CMG array under comprehensive physical models for

its dynamics and power consumption. In particular, our formulation employs the dynamical model

(5.12) which preserves the array’s (conservative) momentum exchange dynamics, typical opera-

tional safety constraints on input saturation, angular velocity, and camera exclusion cones, and

in certain cases, a sophisticated power model (5.10) directly tracking the usage of the individual

CMG motors. The optimal control strategies produced under this comprehensive formulation dis-

play substantial improvements to mean maneuver performance and efficiency. Additionally, several

specific control behaviors are identified to correlate with these improvements across the solution

family. Finally, potential approaches are suggested to reproduce these behaviors using existing

feedback control methods without requiring strict optimality. This chapter summarizes the results

presented in [13, 14].

6.1 System Dynamics and Constraints

Evolving from the problem developed in chapter 4, we examine a family of optimal attitude

transfers from x0 to xd ∈ X(h0) while satisfying the (momentum conserving) dynamics ẋ = f(x,u)

in (5.12). For simplicity, we only consider rest-to-rest transfers between (non-singular) equilibrium
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points (e.g. x0,xd ∈ {x ∈ X(h0) : f(x, 0) = 0, ω = 0}). Additionally, feasible solutions must

satisfy the following operational safety constraints on control input saturation, angular rate limits,

and an exclusion cone constraint to avoid damaging onboard cameras or sensors by pointing them at

bright stellar objects [31]. These constraints are given in the nonlinear inequality form cj(x,u) ≤ 0

as follows:

u2g,j − u2g+ ≤ 0, j ∈ 1, . . . ,m, (6.1a)

u2w,j − u2w+ ≤ 0, j ∈ 1, . . . ,m, (6.1b)

ω2
j − ω2

j+ ≤ 0, j ∈ 1, 2, 3, (6.1c)

(ψ i
s )

⊤C(q)ψ b
c − cos (ϕko) ≤ 0, (6.1d)

where ug+, uw+ ∈ R>0 are the maximum control torques for the gimbal and wheel motors, ωj+ ∈

R>0 are the maximum rotation rates around each body frame axis, ψ b
c ∈ S2 is the body-fixed

frame orientation of the onboard sensor, and ψ i
s ∈ S2 and ϕko ∈ [0, π] are the inertial orientation

and minimum avoidance angle for the light source. Notably, the exclusion cone constraint (6.1d)

is non-convex and may prove challenging for traditional solvers.

6.2 Problem Formulations

Having specified the goals, dynamics, constraints, and boundary conditions for this problem,

the general constrained trajectory optimization problem considered in this chapter can be written

in the following standard form on the finite horizon t ∈ [0, T ]

min
x(·),u(·)

∫ T

0
ℓ(x(t),u(t)) dt + m(x(T )),

s.t. ẋ = f(x,u), x(0) = x0,

c(x,u) ≤ 0,

(6.2)

where c(x,u) collects the constraints in (6.1), the functions ℓ(x,u) and m(x) specify the running

and terminal costs, and the notation x(·) denotes the entire curve x(t), t ∈ [0, T ]. Alternatively,
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the general problem (6.2) can be written more compactly on the trajectory manifold as follows:

min
ξ∈T

h(ξ) =

∫ T

0
ℓ(x(t),u(t)) dt + m(x(T )),

s.t. c(x,u) ≤ 0,

(6.3)

where we again select the following familiar quadratic forms for the cost functionals ℓ and m

ℓ0(x,u) :=
1

2
∥x∥2Q(xd)

+
1

2
∥u∥2R, (6.4a)

m(x) :=
1

2
∥x∥2P (xd)

, (6.4b)

where ∥v∥2R is shorthand for the semi-norm vTR v and the matrix weights Q(xd), P (xd) ∈ R7×7

for the state and R ∈ R3×3 for the control are chosen positive semi-definite and positive defi-

nite respectively. Also following the design procedure employed for the problem in chapter 4, the

positive-semidefinite state weights Q(xd), P (xd) ∈ R3m+7×3m+7 are designed on the linear subspace

at the target xd (i.e. the tangent space Txd
X(h0)). The projection matrix M(xd) defined imme-

diately below equation (5.17) (designed for this system’s specific configuration manifold) is used to

affect the required linear transformation.

Additionally, note that the problem (6.3) considered in the first study of this chapter employs

a classical penalty on the norm of the motor control inputs ∥u∥. As discussed in chapter 5,

this standard approach does not adequately capture the true electrical energy use of the array.

Referencing the CMG motor power equations (5.10), an appropriate additive quadratic penalty for

the aggregate power used by the array is given by

ℓe(x,u) :=
1

2
∥P g∥2Reg

+
1

2
∥Pw∥2Rew

, (6.5)

where Reg, Rew ∈ Rm×m are positive definite diagonal weight matrices. In particular, we choose

the weights Reg, Rew := ρeIm to ensure that energy usage is uniformly penalized on all devices in

the array. The resulting additive penalty can then be incorporated directly into the incremental

cost in (6.3) (i.e. letting ℓ = ℓ0 + ℓe).

Finally, while (6.2) specifies the general problem under consideration, it should be noted

that the specific problems considered in sections 6.5 and 6.6 include minor variations of this base
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problem. In order to introduce a simpler variation of the problem, the initial study in section 6.5

considers the default cost functional (ℓ = ℓ0) and omits the standard operational constraints c(x,u)

for simplicity. Building on these results, the more advanced study in section 6.6 does enforce these

constraints and compares the optimal solutions from omitting (ℓ = ℓ0) and including (ℓ = ℓ0 + ℓe)

the additional cost penalty.

6.3 Trajectory Initialization

As with the body-torque maneuver planner developed in chapter 4, PRONTO requires a

suitable initial guess ξ0 for the optimization problem (6.3) which (at least approximately) satisfies

the dynamics f(x,u) and the boundary conditions x(0) = x0 and x(T ) = xd. While the dynamics

(5.12) do not directly yield a simple analytic solution like the geodesics in chapter 4, existing control

laws provide an effective and simple way of obtaining such guess solutions when given a sufficiently

long time horizon. For this problem in particular, we return to the accepted Singularity Robust (SR)

control law presented in [38] and specified in section 2.4. To briefly review, this feedback solution

stabilizes the classic torque dynamics (2.3) by converting the desired (planned) command torques

τ r to the minimum norm CMG gimbal rates δ̇ = D‡τ r using the following singularity-perturbed

variant of the Moore-Penrose Pseudoinverse

D‡ := D⊤
[
DD⊤ + α0e

−det(DD⊤)Im
]−1

,

where α0 ∈ R>0 is a (small) weighting coefficient. Given the target attitude qf , angular rate ωf ,

and corresponding angular torque ω̇f = fω(xf ) from the target xf ∈ X(h0) (which we assume

zero for rest-to-rest mnaneuvers), the complete SR feedback law for the satellite attitude and CMG
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array is then given by:

τSR = kq Im
(
OR(q

∗
f ) q

)
+Kω(ω − ωf ) + fh(x)− Jω̇f , (6.6a)

uSR,δ̇ = D‡
ω τSR, (6.6b)

uSR,δ̈ = kδ

[
uSR,δ̇ − f δ(x)

]
, (6.6c)

uSR,g = Jg

[
uSR,δ̈ +A⊤

g ω
]
− fhga(x), (6.6d)

uSR,w = kw(hswr − hw1m), (6.6e)

where 1m ∈ Rm is an m-vector of 1’s, kq, kδ, kw ∈ R>0 are scalar feedback gains for state and

tracking errors, and Kω ∈ R3×3 is a diagonal feedback gain on the angular rate error (critically

damped with diagonal elements Kω,i =
√

2kqJi). The specific actuator Jacobian used to convert

torques to CMG gimbal rates for (6.6) while also stabilizing angular rates is given by

Dω := 1/2
[
As diag

(
A⊤

t (ω + ωf )
)
+At diag

(
A⊤

s (ω + ωf )
)]

(J t − Js)−At diag(hswr), (6.7)

One further consideration is necessary when applying the above feedback to generate initial

solutions for the optimization problem (6.3). While the feedback law (6.6) asymptotically stabilizes

q → ±qf , ω → ωf , and hswr → hw1m, the array configuration δ and momentum hga may

vary freely along X(h0). As a result, flows under (6.6) will not generally satisfy the complete

boundary condition x(T ) ≈ xf , producing a large initial penalty in the terminal cost function.

For the purposes of rest-to-rest maneuvers however, achieving a specific δf and hga,f is generally

unnecessary as most mission objectives require only a resting, non-singular array configuration at

the target attitude. Given this extra freedom, we may generate our guess solution curve from x0

to xf , then mildly adjust δf and hga,f to prevent unnecessary efforts from the solver. Specifically,

we generate initial guesses using the following procedure:

(1) Flow x(t) from x0 using (5.12) with the feedback (6.6),

(2) Determine T > 0 such that q(T ) ≈ qf and ω(T ) ≈ ωf ,

(3) Adjust xf ∈ X(h0) such that x(T ) ≈ xf .
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For the satellite platform considered in this work, we found T ≥ 180 s to be sufficient to accom-

modate any rotation < 180◦. For the final step, the resting condition f(xf , 0) = 0 and ωf = 0

necessarily fix hga,f = 0. Thus, we need only determine a compatible (non-singular) δf ≈ δ(T ) on

X(h0). For this purpose, the recursion δf ← δf + d(xf ,x(T )) where

d(xf ,x) = ∆† (h̄(x)− h̄(xf )
)
,

∆ = −At(δf ) diag[hswr + JswA
⊤
s (δ)ω],

(6.8)

was found to reliably produce compatible, non-singular boundary conditions δf near the horizon

δ(T ) produced by (6.6). Notably, this recursion only defines a local contraction around δ(T )

(iterated until the step size d(xf ,x) is sufficiently small) and may fail if δf approaches a singularity.

However, this solution was found to be reliable for the purposes of generating initial guess solutions

for our optimization problem.

Notably, as a classic CMG control law, the standard SR law formulation uses only the CMG

gimbal motor inputs (defined by (6.6d)) to generate attitude control torques, with the wheel motors

dedicated entirely to wheel speed regulation in (6.6e) (a standard assumption in classic CMG

implementations). Given that the proposed trajectory optimizer directly leverages the wheel motors

for additional control torques (i.e. operation more akin to VSCMG’s), some component of measured

performance improvements in the optimizer will likely result from this additional control authority

(and so might also be found in existing VSCMG control laws). As such, the relative performance

improvements discussed in the remainder of this section are qualified against the SR law specifically,

which was chosen for prevalence, rather than peak performance.

6.4 Experimental Design

The following two sections summarize the results of two separate studies for PRONTO so-

lutions to (variations of) the optimization problem (6.3). In each study, we consider 10 random

rest-to-rest attitude transfers, each with random initial and final attitudes q0, qd ∈ S3, resting

initial and final angular rates ω0,ωd = 0, and with CMG array boundary conditions selected to
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Figure 6.1: A 4-CMG array in the (a) Rooftop and (b) Pyramid configurations with inclinations
of β = 45◦ and 54.74◦ respectively.

be non-singular zero-momentum (h0 = 0) configurations in the feasible momentum workspace (e.g.

satisfying x0,xd ∈ X(h0)). In addition to these random problems, we examine a typical 180◦

rotation about the satellite’s z-axis to more closely examine specific features of the solution trajec-

tories. The initial guess trajectory ξ0 for each maneuver was generated using an extension of the

classic SR feedback law presented above. Using aggressive feedback gains for this law, a maneuver

time horizon of 180 s was found to allow sufficient convergence to xd for all tested maneuvers. All

solutions discussed in this study were computed in Matlab on an AMD Ryzen™5800x CPU using

32 MHz memory.

For our spacecraft and CMG-array models, we examine the popular rooftop and pyramid

array geometries shown in Figure 6.1 with the platform inertias (in kgm2)

diag(J) =

[
1500 1500 2000

]
, Jg = 0.115,

Jsw = 0.075, Jsg = 0.015, Jt = 0.001,

and a target (and initial) CMG wheel momentum of hw = 25 kgm2s−1. In each case, the base

LQR cost functional (and the projection regulator used by the PRONTO solver) were constructed

following (3.8) and (4.9), where the positive definite weight matrix Qr := M(xd)QcM(xd)
⊤ on the
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controllable subspace was generated using the structure

Qc := diag([ρq14 ; ρhswr1m ; ρω13 ; ρδ1m ; ρhga1m]),

where individual state error weights are specified via the scalar weights ρi and 1m ∈ Rm denotes a

vector of 1’s. For the cost functional and regulator respectively, these weights were chosen to be

[ρq, ρhswr, ρω, ρδ, ρhga]cost = [5, 10, 0.1, 0.01, 50],

[ρq, ρhswr, ρω, ρδ, ρhga]reg = [3 · 104, 3, 200, 0.3, 3] · 10−4.

The control weights for R := diag([ρug1m; ρuw1m]) for the cost function and regulator were likewise

chosen as

[ρug, ρuw]cost = [1, 1], [ρug, ρuw]reg = [1, 3] · 10−5.

Finally, the control energy weight matrices for the energy penalty (6.5) were selected identically as

Reg = Rew := 2 Im to sufficiently and equivalently penalize energy usage for both motor types.

Regarding the operational constraints considered in study B (6.6), the exclusion cone direction

ψs was oriented to nearly intersect the path of the camera vector ψc on the initial guess trajectory

with a solar exclusion angle of ϕko = 10◦. For the remaining operational safety constraints (2.11),

we limit the maximum motor input torques to ug+ = 5 and uw+ = 0.01Nm for the gimbal and

wheel respectively. Finally, we limit the principle axes of the spacecraft to maximum slew rates of

ω+ = [4.98, 9.95, 3.72] ·102 rad s−1 respectively (roughly approximating the CMG array’s spheroidal

momentum envelope).

6.5 Study A: Variations with Array Geometry

In this initial study, we first examine the features and mean performance statistics for

PRONTO solutions to the simplified optimization problem (6.3) obtained by omitting the opera-

tional constraints c(x,u) and using the (default) cost functional ℓ = ℓ0. Specifically, we compare

the optimal solutions of 11 (10 randomized and 1 model) sample problems to those of the default

(SR) feedback law under for the rooftop and pyramid array geometries shown in Figure 6.1. The
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Table 6.1: Mean Optimal Trajectory Statistics (w/o constraints under ℓ0)

Rooftop Pyramid
Metric Guess Opt. Guess Opt.

Computation Time [min] NA 15.45 NA 36.47
Maneuver Cost 83.56 39.90 91.53 34.07

Maneuver Time [s] 95.70 47.93 100.35 37.39
Final Attitude Error [◦] 0.83 0.06 1.68 0.10

Control Effort [Nm s] 109.77 25.40 140.21 26.05
Max ug [Nm] 0.47 1.19 1.5E-4 3.9E-3
Max uw [Nm] 0.50 1.08 1.2E-4 4.0E-3

Maneuver Energy [J] 5.07 15.15 4.82 19.95

mean performance statistics for each solution method and geometry (averaged across problems)

are presented in Table 6.1 below (*note that these results should only be considered for general

impressions, as the variance between individual problems is not controlled in this analysis).

Examining Table 6.1, we first note that solutions to this challenging problem are not obtained

easily. For the rooftop and pyramid geometries, PRONTO takes an average of 15 and 35 minutes

respectively to reduce the objective cost to 47% and 42% of the original feedback solution. Notably,

Matlab’s ode45 function limits the algorithm to a single CPU thread (a limitation shared by the

majority of spacecraft CPU’s). Interestingly, solutions for the pyramid geometry were far more

computationally expensive than those of the rooftop array, indicating a higher intrinsic complexity

in the effective operation of that geometry.

While the maneuver convergence time and terminal attitude error show similar reductions to

that of the objective function, a more interesting effect is observed in the mean maneuver efficiency.

In particular, while the total control effort (integration of
∑

i|ui|) shows a reduction of 77% and

81% respectively, the optimal maneuver uses far more electric power (3-4x) than the initial guess.

While this increased energy usage partially originates from an aggressive cost function weighting, it

primarily highlights the fundamental modelling limitation of the standard model for control energy

employed in the cost functional ℓ0 chosen for this study (namely that the standard penalty on ∥u∥

does not capture the true electrical energy used by the array). This key observation presents the

original motivation for the design of the additive penalty ℓe considered in the next section.
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Figure 6.2: Guess (ξ0) and unconstrained optimal (ξ∗) Trajectories for a 180◦ z-axis rotation of a
spacecraft under the Rooftop (a) and Pyramid (b) CMG array geometries respectively.
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Examining these solutions in more detail, the left and right panels of Figure 6.2 show the

optimal and guess trajectories for a 180◦ rotation about the z-axis for the rooftop and pyramid

geometries respectively. These optimal trajectories display several interesting features

(1) ω(t) saturates in both maneuvers and geometries.

(2) Both uw and ug are impulsive in nature.

(3) The CMG angles δi display unusual coordination.

Regarding observation 1, we remind the reader that slew rate constraints are not considered in this

simplified problem. Instead, the apparent maximum rotation rate results from the finite momentum

capacity of a CMG array (the envelope of the momentum workspace of the array like that shown

in Figure 2.4), which naturally enforces a maximum rotation rate along any axis. This natural

property of MED’s also informs upon observation 2, with each control input acting impulsively to

rapidly achieve the array configuration for this maximum rotation rate. Regarding observation 3,

the coordination of the pyramid array is intuitive as its symmetry with the requested rotation axis

clearly promote symmetry in the actuators. However, the coordination for the rooftop geometry is

far more interesting. While we might expect the CMG’s to coordinate in groups with shared gimbal

axes (as sides of the rooftop), they instead operate in pairs across the rooftop. This intriguing

behavior was observed for multiple maneuvers with different rotation axes and warrants further

investigation.

6.6 Study B: Solution Variations with Energy Model

Having established the potential performance gains offered by solutions to the simplified,

unconstrained version of problem (6.3) in the previous section, we now consider the fully constrained

problem. As before, we examine the features and performance improvements offered by solutions

to (6.3) (both including and excluding the new energy penalty ℓe) over those produced by the

accepted SR feedback. In order to isolate the performance effect produced by the CMG energy
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Table 6.2: Mean Solution Performance

Solution Guess ξ∗ ξ∗e
Feasible No Yes Yes
Comp. Time [min] 0 58.38 50.70

Maneuver Time [s] 95.7 51.8 53.4
Final Attitude Error [◦] 0.829 0.0728 0.0723

Control Effort [Nm s] 109.77 33.63 34.50
Max ug [Nm] 0.47 1.23 1.22
Max uw [Nm] 1.47E-4 1.01E-3 3.29E-6

Maneuver Energy [J] 5.07 14.7 3.35

penalty, we compare three solution trajectories for each maneuver: (1) the unconstrained initial

guess ξ0 produced by an established feedback law (discussed below), (2) the constrained solution

ξ∗ to (6.3) using classic Linear Quadratic state and control weights in the incremental cost (e.g.

ℓ = ℓ0), and (3) the constrained solution ξ∗e to (6.3) including the penalty (6.5) on the true CMG

energy usage (e.g. ℓ = ℓ0 + ℓe).

Following the protocol developed in section 6.5, optimal solutions were computed using the

PRONTO solver over the 11 sample maneuvers for the Rooftop array geometry. By design, this

family of sample problems spans an enormous variety of different constrained maneuvers with dif-

ferent lengths, axes of rotation, and array configurations. To control for these differences in the

performance analysis, we examine the relative performance improvement of each maneuver’s opti-

mal solutions over its initial guess (the SR feedback law). The average of these relative performance

gains and their standard errors are collected in Table 6.3, with negative results indicating a perfor-

mance loss. The average performance statistics and computational cost over each solution family

(including the high variance between the maneuvers) are also included in Table 6.2 to provide

real-world estimates for these gains.

Examining these results in detail, we first note that (as before) the aggressive cost weighting

chosen for ℓ0 improves the speed and accuracy of each optimal solution, with each reaching a

neighborhood of the target in just over half the time achieved by the original feedback law (and

getting nearly 10x closer to the target attitude over the full 180 s maneuver period). Additionally,
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Table 6.3: Mean Sol. Performance Gain over SR-Law

Solution ξ∗ ξ∗e
Maneuver Time 46.1 ± 2.9% 44.3 ± 2.7%
Final Attitude Error 87.7 ± 2.1% 87.7 ± 2.2%

Control Effort 67.4 ± 3.1% 66.4 ± 3.2%
Max ug −169 ± 18% −170 ± 17%
Max uw −596 ± 115% 97.7 ± 0.3%

Maneuver Energy −207 ± 33% 35.0 ± 6.5%

the classic quadratic control penalty ∥u∥2R ensures that both optimal solutions reduce the total

motor torque applied in each maneuver. From the greatly increased motor torque maximums

applied in the optimal maneuver, we can infer that the optimal strategy employs shorter, higher

intensity torques to achieve the same rotation with reduced classical control effort. These results

present a compelling (if somewhat unsurprising) argument of the powerful benefits of standard

trajectory optimization techniques in complex high-performance systems.

At this point however, we reach a critical distinction between the two optimal solution fam-

ilies. While the classic LQ cost function ℓ0 does improve the total applied motor torque over the

maneuver, it requires nearly triple the total CMG motor power used by the standard feedback law

(mirroring the result we obtained above for the unconstrained case). While one might assume that

this loss is a result of the cost function weighting (trading efficiency for speed), the energy-penalized

solution ξ∗e shows differently. By properly modeling and penalizing the electric power employed by

the array, this optimal strategy executes the same maneuver using 35% less energy than the orig-

inal feedback law while retaining the improved performance in every other metric. Intriguingly,

while the updated penalty ξ∗e largely improves tracking of the gimbal motor’s energy usage over

the traditional LQ cost ℓ0, the total energy used by the gimbal motors in the optimizers ξ∗ and

ξ∗e is nearly identical. Instead, the observed efficiency improvement appears to strongly correlate

with substantially lowered usage of the wheel motor: a feature we will examine in greater detail

below. Again, it should be noted that a (potentially substantial) portion of the measured efficiency

improvement of the optimizer over the SR law originates from the additional control authority
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provided by the variable speed operation of the wheels. As such, one should not interpret this

improvement as relative to the ‘best’ available VSCMG control solutions (many of which are likely

not publicly available). Instead, the above performance comparison demonstrates the limitations

imposed by the approximations leveraged in existing CMG control strategies (specifically the SR

law) as well as an approximation of the remaining performance available to the fully modelled sys-

tem. With this motivation in mind, our efforts are now directed to identifying the solution features

which generate this performance difference.

To identify the origin of the performance improvements discussed above, we next examine the

specific features of the optimal solutions ξ∗ and ξ∗e . In particular, Figure 6.3(a) compares the optimal

and guess trajectories for a 180◦ rotation about the satellite’s z-axis: a standard maneuver whose

simplicity effectively highlights the differences between each strategy. Additionally, Figure 6.3(b)

provides a helpful visualization of this rotation, showing the paths of the satellite’s body-frame,

camera orientation, and solar exclusion cone.

Comparing these solutions to the original guess, we first observe several similarities: Both

solutions are feasible in all constraints, follow similar attitude paths, and employ short, rapid

accelerations around the primary axis of rotation to arrive at the target more quickly than the

gentler feedback law. In particular, we note that both optimal solutions immediately saturate the

CMG array along the z-axis, maximizing ωz on the array’s momentum envelope and creating a

‘cruise’ phase for the rotation analogous to those seen in standard orbital maneuvers. Though

each optimal solution differs slightly in the specific array configurations and particular transition

maneuvers to and from this cruise phase, this general strategy is universal for both optimal solutions

across the test cases.

As before, the key difference between ξ∗ and ξ∗e appears in the control and regulation of the

CMG wheels. Specifically, while ξ∗ follows a more conventional (if aggresive) regulatory approach

during the cruise phase of the rotation (immediately regulating the wheel speeds to their standard

operating values), the energy-penalized solution ξ∗e instead allows the wheel momentum to deviate

during this period, regulating only after the final deceleration. As is often the case in optimization,
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Figure 6.3: (a) Guess (ξ0), constrained optimal (ξ∗), and constrained energy optimal (ξ∗e ) solution
trajectories for a 180◦ z-axis rotation of the n = 6 Rooftop CMG geometry and (b) their projection
to SO(3). The blue, red, and magenta lines track the satellite’s body frame, while the green line
and yellow circle indicate the satellite’s camera path and solar exclusion cone.
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the motivation behind this strategy is quite apparent in retrospect. Recall that the power usage

P = τwωw of a classic RW is proportional to its wheel speed ωw. Because ωw is regulated to be quite

high in a CMG, the minor wheel speed regulation torques are substantially more expensive than

the primary gimbal torques. As such, reducing regulation via the wheel motor control inputs uw

substantially lowers the array’s energy usage without meaningfully impacting the performance of

the array. As above, this behavior was observed in each of the other test problems, indicating this

intermediate regulation to be a potentially widespread efficiency loss for existing feedback solutions.

The above strategy is particularly valuable for practical spacecraft design because it does not

require optimality (an expensive property to achieve in existing spacecraft hardware). Instead, this

strategy could be achieved using a traditional wheel speed regulator with variable (stabilizing) gains

designed to reduce regulation during the maneuver’s cruise phase. While more complex CMG array

behaviors may be required to maximize the potential of this strategy (e.g. produce a distinct cruise

phase and employ the deceleration action of the array to regulate the wheels), this strategy by

itself could largely improve efficiency by eliminating unnecessary regulation. This powerful result

demonstrates the often understated value of off-line trajectory optimization techniques, as well as

the critical importance of developing accurate models for a system’s dynamics and energy usage.

6.7 Conclusions

In this chapter, we formulated an optimal maneuver planner for rest-to-rest attitude trans-

fers with CMG-driven spacecraft subject to input saturation, angular velocity, and non-convex

exclusion cone constraints. To examine the true optimal performance of the CMG array and the

strategies employed to achieve it, we employed comprehensive physical models for the CMG array’s

momentum exchange dynamics and electric power usage, avoiding the implicit behavioral restric-

tions introduced by prevalent approximations of CMG momentum dynamics. To formulate and

solve this constrained trajectory optimization problem, we designed a locally stabilizing LQR on

the system’s configuration manifold, then lifted it into the ambient state space to produce suitable

terminal and running LQ cost functionals. A family of random maneuver problems were then ex-
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amined, with the optimal solutions presenting substantially improved performance and efficiency

under the comprehensive dynamical models. In the first study, a subtle but critical shortcoming

was identified in the energy penalty cost functional. This issue was then remedied using a special-

ized additive energy penalty term in the incremental cost functional which tracks the array’s true

power usage.

Upon examining the solutions under this constrained and properly energy-optimized system,

two control behaviors were observed in correlation with the observed performance benefits. First,

the CMG array produced rapid accelerations at the beginning and end of the maneuver, creating

an intermediate and inactive ‘cruise’ period in the spacecraft’s rotation analogous to that found in

typical orbital transitions. Second, the wheel speeds of the CMG’s were not regulated during this

cruise interval, waiting instead until after the deceleration action of the gimbal motors to regulate

the wheel momenta to their nominal values. In particular, this second behavior directly challenges

the strategy employed by typical CMG feedback laws, achieving a 35% reduction in electric power

for the same maneuver. Notably, these specific control strategies do not require optimality, and

may potentially be implemented using minor modifications of typical CMG array feedback control

laws.



Chapter 7

Summary and Conclusions

In this thesis, we formulated and solved several constrained trajectory optimization prob-

lems for constrained rest-to-rest attitude maneuvers for spacecraft driven by traditional abstract

body torques and momentum-conserving Control Moment Gyroscope arrays. In the process of

solving these problems, we developed new strategies for the application of our chosen trajectory

optimization solver (PRONTO) to problems evolving on constrained nonlinear manifolds, result-

ing in substantially improved performance over other techniques (both commercially and in the

literature).

After validating this general problem formulation and solver on a model trajectory optimiza-

tion problem in the literature (i.e. a maneuver planner using abstract body command torques), we

applied this approach to solve the (previously open) constrained trajectory optimization problem

for rest-to-rest attitude transfers using a momentum-conserving CMG array. In particular, our

formulation employed a dynamical model which preserves the array’s (conservative) momentum

exchange dynamics, a power model directly tracking the usage of the individual CMG motors, and

typical operational safety constraints on input saturation, angular velocity, and camera exclusion

cones. The optimal control strategies produced under this comprehensive formulation presented

substantial improvements to mean maneuver performance and efficiency, and identified an acute

shortcoming in cost functions which use the control input (rather than accurately modelled power

usage) to penalize maneuver energy cost.

To address this shortcoming, we then augmented the above trajectory optimization problem
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with a specialized energy penalty in the cost function to accurately limit the electric power used by

the array. Unlike existing approaches, this formulation enabled optimal solutions to display their

full range of (potentially non-intuitive) behaviors while reducing the true total electric power used

over the maneuver. Finding these solutions to be substantially more performant and efficient than

existing feedback solutions, we primarily attributed this performance increase to two nonstandard

control strategies observed across the solution family: (1) a model torque profile for the CMG array

analogous to the initial and final burns used in orbital transitions and (2) variable CMG wheel speed

regulation which is largely inactive during the maneuver’s ‘cruise’ phase. Finally, we suggested

potential adaptations of existing feedback control solutions which incorporate the above behaviors,

achieving the corresponding performance improvements without the computational burden of strict

optimality. With this final step, we achieved our original research objective and demonstrate the

immense value in off-line solutions of traditionally challenging trajectory optimization problems for

high performance systems.
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Appendix A

Traditional Newton Descent Methods

The trajectory optimization technique discussed in this work is fundamentally an adaptation

of the conventional Newton descent method developed for unconstrained optimization problems.

For example, consider the following optimization problem on Rn

min
ξ∈Rn

h(ξ), (A.1)

in which we desire the optimizer ξ∗ which minimizes the objective functional h(ξ) ∈ C2(Rn,R).

The classic Newton method is a direct method which approaches local minimizers of (A.1) from an

initial guess ξ0 via the recursion:

ξk+1 = ξk + ζk, (A.2)

where ζk ∈ Rn is the optimal descent direction for h at ξk determined by examining the 2nd-order

Taylor expansion of h around ξk:

h(ξk + ζ) ≈ h(ξk) +∇h(ξk)⊤ ζ +
1

2
ζ⊤∇2h(ξk) ζ.

Observing this Taylor expansion, it is clear that the best improvement obtained by stepping in the

direction ζ occurs when the difference (h(ξk + ζ) − h(ξk)) is minimized. As such, an optimal (to

2nd-order) descent direction along h is the solution to the problem

ζk = argmin
ζ∈Rn

∇h(ξk)⊤ ζ +
1

2
ζ⊤∇2h(ξk) ζ, (A.3)

which can be solved for the unique minimizer

ζk = −∇2h(ξk)
−1∇h(ξk),
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Figure A.1: Illustration of Armijo backtracking line search.

if and only if the hessian ∇2h(ξk) > 0. In the case that a local minimizer ξ∗ of the C2 function h(·)

has a positive definite hessian, that minimizer will be an isolated local minimizer and the sequence

∥ξk − ξ∗∥ produced by (A.2) converges to zero quadratically for initial points ξ0 sufficiently close

to ξ∗. Below, we introduce two compatible adjustments to the classic Newton method which are

implemented in PRONTO.

A.1 Dampened Newton Method

One limitation of the classic Newton method arises from the fixed step size ζk indicated by

γ0 in Figure A.1. In this example, the default step magnitude is large enough that the higher

order nonlinear terms of h dominate the quadratic approximation, causing the computed step to

overshoot and actually increase the cost. This issue can be addressed by using a variable step size

γk ∈ (0, 1] in the recursion (A.2)

ξk+1 = ξk + ζkγk,

by enforcing an explicit descent condition on the iterates such as the linear descent enforced by the

Armijo rule:

h(ξk + ζkγk) ≤ h(ξk) + α∇h(ξk) ζk, (A.4)
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where α ∈ (0, 1/2) ensures linear descent (or better) at each iterate. A step size γk satisfying (A.4)

can be determined rapidly using a backtracking line search via the recursion

γkj+1
= βγkj ,

where γk0 = 1 and β ∈ (0, 1). This recursion is illustrated in Figure A.1 (using the typical values

α = 0.4 and β = 0.7) and is repeated until (A.4) is satisfied.

A.2 Quasi-Newton Method

Another limitation of the classic Newton method arises when the local approximation of h

is not positive definite (∇2h(ξk) ̸> 0), causing the solution of (A.3) for the descent direction to be

unbounded. The Quasi-Newton method addresses this issue by approximating (A.3) with

ζk = argmin
ζ∈Rn

∇h(ξk) ζ +
1

2
ζ⊤Hk ζ, (A.5)

where Hk > 0 is some positive definite matrix. Since the choice Hk = I leads to the gradient

descent solution ζk = −∇h(ξk) (which has a linear convergence rate), we note that this method

may achieve a superlinear convergence rate when Hk > 0 is a suitable approximation of ∇2h(ξk).

For a more thorough discussion of the Newton method and its variations in finite dimensions, we

refer the reader to [37].



Appendix B

Lyapunov Stability of Body-Torque Dynamics

In this appendix, we briefly establish the local stability of the body-torque attitude dynamics

(2.3) using Lyapunov methods and employing notations and definitions from 2 and Section 3.5. To

study the stability of the satellite under linear feedback, we will make use of a number of inequalities

regarding distances in the state manifold S3 × R3. First, referring to Figure B.1, it is clear from

geometry that

1√
2
∥q − qd∥ ≤ ∥Z(qd)

⊤(q − qd)∥ ≤ ∥q − qd∥,

for all q ∈ S3 with ∥q − qd∥ <
√
2 (i.e., on the open hemisphere with qTd q > 0). Recalling that

ωd = 0 for rest to rest problems and that, by definition,

∥M(qd)(x− xd)∥2 = ∥Z(qd)
⊤(q − qd)∥2 + ∥ω∥2,

we have the bounds

1

2
∥x− xd∥2 ≤ ∥M(qd)(x− xd)∥2 ≤ ∥x− xd∥2,

Figure B.1: Planar slice of S3 containing qd and q together with Z(qd)
⊤q.
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for ∥x− xd∥2 <
√
2. Thus, for any symmetric matrix S > 0, it is clear that

1

2
λmin(S) ∥x− xd∥2 ≤ ∥M(qd)(x− xd)∥2S ≤ λmax(S)∥x− xd∥2,

holds on the same set.

Referring to the default dynamics (2.3) and the alternate representation (3.10) and noting

that the operator q 7→ Z(q) is linear, we see that the dynamics of the satellite satisfies the following q̇
ω̇

 =

0 1
2Z(qd)

0 0


q − qd

ω

+

 0

J−1

u+

1
2Z(q − qd)ω

−J−1ω̂ J ω

 (B.1)

or, more compactly

ẋ = A(qd) (x− xd) +B u+ f2(x− xd),

where the nonlinear term f2(·) is quadratic with ∥f2(x−xd)∥ ≤ c ∥x−xd∥2 for some c > 0 and all

x,xd ∈ S3 × R3. Using the LQR feedback developed in section 3.5, we have

ẋ = (A(qd)−BK(qd)) (x− xd) + f2(x− xd) . (B.2)

Combining these results, we can now prove local exponential stability via our Lyapunov

function. Specifically, the quadratic Lyapunov function V (x − xd) = 1
2∥M(qd)(x − xd)∥2Ps

is

positive definite (and decrescent)

1

4
λmin(Ps) ∥x− xd∥2 ≤ V (x− xd) ≤

1

2
λmax(Ps)∥x− xd∥2,

on ∥x− xd∥ <
√
2. Finally, a straightforward calculation shows that

V̇ (x− xd) = −
1

2
∥M(qd)(x− xd)∥2Qc

+ (x− xd)
⊤P (qd) f2(x− xd),

≤ −1

4
λmin(Qc) ∥x− xd∥2 + c λmax(Ps) ∥x− xd∥3,

≤ −1

8
λmin(Qc) ∥x− xd∥2,

≤ −1

4

λmin(Qc)

λmax(Ps)
V (x− xd),

for ∥x− xd∥ < ϵ where ϵ > 0 is the smaller of
√
2 and λmin(Qc)/(8 c λmax(Ps)). It follows that the

equilibrium point x = xd is locally exponentially stable for the closed loop dynamics (B.2).



Appendix C

Derivation of CMG Momentum Dynamics

In this appendix, we examine the specific coordinate transformation used to obtain the dy-

namics (5.12) from established results. Using both Newtonian and Lagrangian methods, conser-

vative body-frame momentum exchange dynamics for a rigid CMG driven satellite were originally

derived by [16] to be

q̇ = 1/2OL(q) ω̃, (C.1a)

ḣ = ĥω̄ + τ e, (C.1b)

δ̇ = J−1
g hga −A⊤

g ω̄, (C.1c)

ḣga = diag
(
A⊤

t ω̄
) [

(J t − Jsg)A
⊤
s ω̄ − hswa

]
+ ug, (C.1d)

ḣswa = uw, (C.1e)

where τ e specifies external torques on the satellite body and uw, ug ∈ Rm collect the control

inputs for the CMG wheel and gimbal motors respectively. However, while these dynamics are

physical, the default coordinate choice used in their derivation is not ideal for the purposes of

our optimization problem. In particular, the body-frame angular rate ω of the satellite and the

(classically regulated) relative CMG wheel momentum hswr are preferable choices to h and hswa

respectively when specifying desirable boundary conditions and path constraints. To accomplish

this change of coordinates, we first differentiate the definition (5.5b) and use (C.1e) to determine
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the dynamics of hswr as follows:

ḣswr = Jsw

[
diag(δ̇)A⊤

t ω −A⊤
s ω̇

]
+ ḣswa

= Jsw

[
diag(A⊤

t ω)δ̇ −A⊤
s ω̇

]
+ uw.

(C.2)

Following a similar approach to determine the dynamics of ω, we first differentiate the definition

(5.7b) to yield

Jstω̇ = ḣ−Dδ̇ −Asḣswr −Agḣga. (C.3)

Unfortunately, using the above expression above in conjunction with (C.2) produces an implicitly

defined function. Thankfully, we can address this issue by substituting (C.2) into (C.3) and then

simplifying as follows

Jstω̇ = ḣ−Dδ̇ −Asḣswr −Agḣga,

Jstω̇ = ḣ−Dδ̇ −As

(
Jsw

[
diag(A⊤

t ω)δ̇ −A⊤
s ω̇

]
+ uw

)
−Agḣga,(

Jst −AsJswA
⊤
s

)
ω̇ = ḣ−

(
D + Jswdiag(A

⊤
t ω)

)
δ̇ −Agḣga −Asuw,

Jst,aω̇ = ḣ−Daδ̇ −Asuw −Agḣga,

(C.4)

which motivates the following definitions in the reduced expression

Jst,a = Jst −AsJswA
⊤
s ,

Da = D + Jswdiag(A
⊤
t ω).

(C.5)

We then complete the coordinate transformation by substituting (5.5b) into (C.1d) as follows

ḣga = diag
(
A⊤

t ω̄
) [

(J t − Jsg)A
⊤
s ω̄ − hswa

]
+ ug

= diag
(
A⊤

t ω̄
) [

(J t − Js)A
⊤
s ω̄ − hswr

]
+ ug.

(C.6)

Combining (C.1a), (C.1c), (C.2), (C.4), and (C.6) and ordering by computational dependence

completes the dynamics (5.12).
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