
REAL-TIME STEREO VISION USING LASER SCANNING 

AND POSITION SENSITIVE PHOTODETECTORS: 

ANALYTICAL AND EXPERIMENTAL RESULTS 

A Thesis 

by 

HANSPETER SCHAUB 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

August 1994 

Major Subject: Aerospace Engineering 



REAL-TIME STEREO VISION USING LASER SCANNING 

AND POSITION SENSITIVE PHOTODETECTORS: 

ANALYTICAL AND EXPERIMENTAL RESULTS 

A Thesis 

by 

HANSPETER SCHAUB 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fullillment of the requirements for the degree of 

MASTER OF SCIENCE 

Approved as to style and content by: 

John 'ns 

(Chair of mmit tee) 
Srinivas R. Vadali 

(Member) 

(, JoW. Ho e 
(Member) 

Walter E. Haisler 
(Head of Department) 

August 1994 

Major Subject: Aerospace Engineering 



ABSTRACT 

Real Time Stereo Vision Using Laser Scanning and Position Sensitive 

Photodetectors: Analytical and Experimental Results. (August 1994) 

Hanspeter Schaub, B. S. , Texas A&M University; 

Chair of Advisory Committee: Dr. John L. Junkins 

A three-dimensional scanning system is studied using two one-dimensional position sensitive 

detectors (PSDs) and a laser light source illuminating the object. This electro-optical concept 

enables real-time stereo triangulation measurements with a system having only one moving part, 

the laser scan mirror. The PSD is a silicon photodiode which produces an analog voltage 

proportional to the tangent of the incidence angle of the incoming light. While performing a scan, 

the laser light spot traces a profile of the target in the scan plane of the two PSD sensors. The 

diffuse reflection is focused onto the photosensitive strip of each PSD. The two resulting angles 

define the two-dimensional coordinates of the laser light spot within the scan plane. The sensors 

will perform a well-defined relative motion about the objeck The profile scan is then transformed 

into a complete set of three-dimensional coordinates by knowing the inertial position and 

orientation of the PSD camera system at all times. 

Each PSD was calibrated with an accuracy of 0. 005' and a field of view of about 22'. The 

reflective light could be detected up to 9 inches away. Beyond this distance the signal to noise ratio 

became to small. Because the diffuse light signals are so weak, electronic noise became an issue. 

Six inches away from the sensors the maximum triangulation error due to electronic noise was less 

than 0. 5mm. 

The sensor position and orientation was determined by measuring the incidence angles for 

several targets whose location is known. Due to the very sensitive nature of this process an 

iterative technique was used to further fine tune the sensor configuration. The final configuration 

caused less than 3. 5% distortion in the three-dimensional scans. 



ACKNOWLEDGEMENT 

This work was accomplished due to the vision and guidance of Dr. John L. Junkins, my 

committee chair. His support allowed me to move away from the purely theoretical domain and 

wet my feet in the practical domain. I thank you for the challenge, since I have learned and grown 

greatly from it. 

I must also thank Laurrie Wittig for her help with the airbearing; Johnny Hurtado for his 

assistance with the signal acquisition; John Grille and Conrad Wilson for their help in constructing 

the sensors; Barry Sims for his help building a target structure; Steve White for doing the 

photographic documentation; Ivan Brigman for his offered assistance in fixing the project; 

Mormon Hughes for supplying me with materials; and Texas A &M for the financial support of my 

graduate studies. 



TABLE OF CONTENTS 

ABSTRACT 

Page 

ACKNOWLEDGEMENT 1V 

LIST OF FIGURES . 

LIST OF TABLES . 

INTRODUCTION . 

V11 

1X 

HARDWARE DESCRIPTION 

POSITION SENSITIVE DEVICE 

SIGNAL PROCESSING BOARD 

ONE DIMENSIONAL SENSOR UNIT 

THEORY 

CALIBRATION 

CONFIGURATION . 

Sensor Unit Position . 
Sensor Unit Orientation 

TRIANGULATION, 

TRIANGULATION SENSITIVITY 

EXPERIMENTAL RESULTS . 

8 
11 

12 

16 

23 

CALIBRATION . 

PSD Signal 
Electronic Noise 
Sensor Unit Pointing Accuracy . 
Sensor Unit Tracking Accuracy 

CONFIGURATION 

SCANNING RESULTS . 

Two-Dimensional Profile Scans 
Three-Dimensional Scans 

23 

23 
27 
31 
32 

34 

37 

37 
40 



TABLE OF CONTENTS (cont. ) 

CONCLUSIONS AND RECOMMENDATIONS . 

REFERENCES 

APPENDICES 

Page 

45 

46 

APPENDIX A 

APPENDIX B 

VITA 

47 

48 

86 



LIST OF FIGURES 

Figure I: Three-Dimensional Scanning System Layout. 

Page 

I 

Figure 2: PSD chip I L5-SP. 

Figure 3: PSD Electrical Equivalent Circuit. 

Figure 4: Basic Operating Circuit of OT300LS Signal Processing Board. 

Figure 5: One-Dimensional Sensor Unit. 

Figure 6: Illustration of the Incident Light Projection onto the Photo-Sensitive Strip. . . 6 

Figure 7: Illustration of SU Origin Determination. 

Figure 8: Illustration of the SU Position Solution Space. . . 

Figure 9: Illustration of SU Orientation Determination. 

Figure 10: Triangulation of an Arbitrary Point. 12 

Figure 11: Illustration of Vectors in the Camera and Inertial Reference Frames. . . . 14 

Figure 12: Camera Flight Path in the x-y Plane. 15 

Figure 13: x-Coordinate Sensitivities versus Xi, Zt, Xz, and Zz. . . . IS 

Figure 14: Configuration Parameter Variations Due to Errors in Configuration Angle 

Measurements. 19 

Figure 15: Illustration of the Configuration Solution Spaces. . . . . . . 

Figure 16: Range of (x, z) Values Due to Configuration Errors. . . 

19 

20 

Figure 17: PSD Voltage versus Tangent of Airbearing Angle. . . . 23 

Figure lg: Non-Linear Term of the PSD Voltage versus Airbearing Angle Relationship. 24 

Figure 19: Comparison of the Calibration Modelling error. 24 

Figure 20: Variation of Calibration Model at Different Target Distances. 25 



V iii 

LIST OF FIGURES (cont. ) 

Page 
Figure 21: Steady State Zero PSD Signal with a Target Distance of Five Inches. . . . . . . . . . . . 28 

Figure 22: Steady State Non-Zero PSD Signal with a Target Distance of Five Inches. . . . 29 

Figure 23: Steady State Zero PSD Signal with a Target Distance of Eight Inches. . . . 30 

Figure 24: Steady State Non-Zero PSD Signal with a Target Distance of Eight Inches. . . 31 

Figure 25: Sensor Unit Pointing Accuracy with a Target Distance of Five Inches. . . . 

Figure 26: Sensor Unit Tracking Error with a Target Distance of Five Inches. . . . . . . . . . 

Figure 27: Sensor Unit Tracking Error with a Target Distance of Eight Inches. . . . . . . . 

Figure 28: Photograph of the Three-Dimensional Scanning System. . . . . . . . . . . . . . . . . . . . . . . . . 

32 

33 

34 

35 

Figure 29: Schematic of a Configuration Setup. 35 

Figure 30: SU Angle Variations Due to Electrical Noise. 38 

Figure 31: Triangulation Variations Due to Electrical Noise. 38 

Figure 32: Profile Scan of a Straight Ruler. 39 

Figure 33: Three-Dimensional Scan of Cylindrical Tube 

Figure 34: Three-Dimensional Scan of a Rectangular Piece of Wood. . 41 

Figure 35: Three-Dimensional Scan of a Small Bottle. 42 

Figure 36: Profile Scan of a Large Plastic Thread. 42 

Figure 37: Profile Scan of White and Black Areas of a Ruler. 43 



LIST OF TABLES 

Table 1: Chebyshev Polynomial Coefficients . . . . . . . . 

Table 2: Comparison of Reconfiguration Targets . . 

Page 

26 

36 

Table 3: Comparison of Sensor Unit Positions 37 

Table 4: Chebyshev Coefficients for Ruler Approximation . 39 



INTRODUCTION 

Non-intrusive remote sensing capabilities are becoming increasingly important in robotics and 

experimental analysis. While it is possible to measure such parameters as distance, velocity or 

temperature, it remains difficult to measure the exact three-dimensional shape of an object in near- 

real-time and without touching it. This paper presents a three-dimensional scanning system using 

two one-dimensional position sensitive detectors (PSDs) and a laser light source illuminating the 

target object. Each PSD measures the angle of the incident laser light. Together they track the dif- 

fuse reflection of the laser light as it sweeps the object's surface and performs a line scan. 

PSD 1 
Scanning 
Laser Light 
Source 

PSD 2 

a 

Conrraves 
Airhearing 

Figure 1: Three-Dimensional Scanning System Layout. 

The sensors themselves can move relative to the target to observe the entire object either due 

to target motion, sensor motion, or both, By knowing the sensor position and orientation at all 

times, two-dimensional profile scans can be converted into a three-dimensional model. Figure l 

shows the experimental system layout. A circular PSD motion is achieved by rotating the object on 

Journal model is Journal of Guidance, Control, and Dynamics. 



the airbearing while keeping the PSDs steady. This electro-optical concept enables real time stereo 

triangulation measurements with a system consisting of only one moving part, the laser scanning 

mirror. Such a non-contact sensing device has many applications in research and manufacturing. A 

robot equipped with this type of vision system would be able to perceive the shape, position and 

orientation of objects. In medicine, such systems would be useful to help construct more exact 

prosthesis or to help plan procedures in reconstructive or cosmetic surgery. Researchers, engineers 

and artists would be able to obtain exact computer representations of their physical models. 

Systems are available today to do the last named task. Cyberware Laboratory Inc. has a system 

which performs three-dimensional scans using a video system to track a laser light target. A sys- 

tern developed by Intelligent Automation Systems Inc. has a similar setup, but it uses a fan of mul- 

tiple laser light planes which are observed by a video system. The system proposed here will use 

analog PSDs to track a single laser light target. The advantages include simpler construction and 

design, higher resolution and less post-processing. 

The purpose of this study is to demonstrate the feasibility and limitations of the proposed 

three-dimensional scanning system. A prototype system was built and tested to compare to the the- 

oretical predictions. The theoretical and experimental results will stress three categories: (I) cali- 

bration of the PSDs and their accuracy; (2) finding the position and orientation (configuration) of 

the PSDs relative to a coordinate system and the sensitivity thereof; and (3) calculating and analyz- 

ing the three-dimensional scans. 



HARDWARE DESCRIPTION 

The function of several key hardware components are explained in this section. A complete list 

of all the hardware components used and their model numbers is found in Appendix A. 

POSITION SENSITIVE DEVICE 

A PSD averages the light intensity along a photo-sensitive strip and returns a voltage propor- 

tional to the centroid of the energy distribution. These position sensors have an advertised analog 

resolution of better than one part in a million and have a very small position non-linearity. Figure 2 

shows the shape and size of the PSD. The photo-sensitive strip is only Smm long, making it a very 

compact chip. Due to its small size, the sensor is very responsive with a rise time of 0. 05lts. 

Pin 1: Bias 
Pin 2:Out Y2 
Pin 3: N/C 

Pin 4: Dut Y1 

photosensitive strip 
E 
E Actual PSD chip size 

Pin 1 Pin 4 

Figure 2: PSD chip lL5-SP. 

Figure 3 shows the equivalent circuit of a PSD. The photo-sensitive strip is divided into two 

sections, each acting like a solar panel converting light into electrical currents Yl and Y2. 

~ L ~ ~ L~ 
Incident Light 

Yt 

R~ Yt) Y2 R~ 

C 

Bias 

Y2 

Ip = Photocurrent generated by incident light 
D = Ideal diode. PN function of PSD 
C = Junction capacitance 
Re, = Shunt resistance 
R = Position resislance 
L = Half the detector length 

Figure 3: PSD Electrical Equivalent Circuit. 



If the incident light is not centered on the strip, a current imbalance occurs. The magnitude and 

sign of the imbalance determines the location of the mean of the incoming light intensity. 

SIGNAL PROCESSING BOARD 

An analog processing board takes the two currents and transforms them into a voltage v which 

is proportional to the non-dimensional position x/L as is shown in (1). 

x Y2- Yl 
L Y2+ Yl 

The basic operating circuit of the processing board is shown in Figure 4. The currents are 

added, subtracted and divided in an analog manner yielding an analog output proportional to the 

mean incident light position. This quantity is scaled to a value between -10V and +10V. The pro- 

cessing board has a second output which returns the sum of Yl and Y2. This sum is effectively a 

measure of the signal strength of the incident light. 

R, 

+V Bias 

Y1 
Y1 - Y2 

R, depends on input light level 

Olher resistors typ. 10KQ 
Capacitors typ. 100pp 

te gu 

'0 0 
si- c. & 

&0 
Output— X 

t 

Y2 ~ 
Yl +Y2 

Output Y1 + Y2 

Figure 4: Basic Operating Circuit of OT300LS Signal Processing Board. 

ONE DIMENSIONAL SENSOR UNIT 

The PSD along with the focusing lens and the casing form a one-dimensional sensor unit. (SU). 

A cross-section of such a unit is shown to scale in Figure 5. The lens mount can be unscrewed to 

access and replace the PSD chip. The sensor itself is rigidly mounted inside a 30 mm barrel, 9mm 



away from the lens. A lens with a diameter and a focal length of 9mm was chosen. It balances well 

the field of view (FOV) and the light through-put problem. The lens itself is coated to reduce chro- 

matic aberration. The FOV is about 22' with the photo-sensitive strip length of 5 mm. The SU has 

three cables going to it. Two are for the currents Yl and Y2, the third is for a bias voltage applied to 

the chip. 

lens mount 

P Qmm 
chip 
socket 

focusing barrel 

E 
E 
R 

cables to signal 
processing board 

focusing lens PSD chip 

dia = Qmm 
focal length = Qmm 

plastic 

Figure 5: One-Dimensional Sensor Unit. 

This sensor was designed in this study and assembled from a combination of off-the-shelf and 

custom-made components. In particular the lens, lens mount, focusing barrel and PSD chip were 

purchased off-the-shelf to suit our design. The other components were custom made. 



THEORY 

CALIBRATION 

The calibration process establishes the exact relationship between the processing board volt- 

age v and the incident angle (I. Figure 6 illustrates how the incident light gets projected onto the 

photo-sensitive stri p. 

e 

~using tens 

Y1 

Y2 

Figure 6: Blustration of the Incident Light Projection onto the Photo- 
Sensitive Strip. 

Studying Figure 6 the relationship between x and 6' is found as: 

(2) 

After dividing (2) by L and making use of equation (1) the following relationship between v 

and 8 can be found. 

(3) 

For small angles, tan8 and tanO' can be considered directly proportional by a proportionality 

factor k. This factor k depends on the geometry of the lens. 

t~e =kta e (4) 

After substituting (4) into (3) the final relationship is found. 



v = fktan8 
L (5) 

Equation (5) assumes that the PSD is perfectly linear, namely that (1) is exact. Discrete Che- 

byshev polynomials were chosen to model the exact nonlinear relationship between v and tan8. A 

Chebyshev polynomial of degree n is defined as: 

T„(x) = cos (n acosx) (-1 & x 5 1) 

A (N-1)-th order Chebyshev polynomial approximation of the transcendental function tan8(v) 

is defined in equation (7). 

N — i 
tan0(v) = g c„T„(v) — — co 

1 

n=0 
(7) 

The variables c„are the Chebyshev polynomial coefficients. For an arbitrary function)1x) 

defined in [-1, 1] these coefficients are defined as: 

c„ = — X f cos ~ cos 

The use of Chebyshev polynomials has several advantages over a regular polynomial curve fit. 

All polynomials are bounded by +1. The Chebyshev coefficients c„directly show the importance 

of that particular order. The first order approximation of tan8(v) should stand out by several orders 

of magnitude because of the nearly linear behavior predicted in (5). 

A Chebyshev approximation is more accurate to calculate than a least squares polynomial 

curve fit since a stable recursive formula (9) exists to calculate the Chebyshev polynomials. Avoid- 

ing having to calculate values to large powers saves a lot of computational time. More importantly, 

the orthogonality properties of the Chebyshev polynomials permit the high degree coefficients to 

be accurately computed without a matrix inverse. 

T„i i (x) = 2xT„(x) — T„ i (x) (n 1) (9) 

Please note that the tangent of the incidence angle, not the actual incidence angle is approxi- 

mated in equation (7). All further formulas will be written in terms of the tangent of the angles. 



Trigonometric calculations are very computationally intensive operations. This method eliminates 

calculating these transcendental functions by measuring the tangent of the angle directly! This 

faster algorithm makes real-time calculations possible. 

CONFIGURATION 

The SU position and orientation together are called the system configuration. This section pre- 

sents a method to establish the configuration. A two-dimensional coordinate frame called the cam- 

era frame is first selected. The origin and orientation of this frame is arbitrary, All the profile scans 

are performed in this camera coordinate frame. 

Sensor Unit Position 

The SU positions are determined by measuring the angles of three locations whose coordi- 

nates are known within the camera frame. Each location is placed on the z-axis an equal distance 

apart from the origin as shown in Figure 7. 

2b 

gV 
~go 

(X, Z) 

+ -2b 

Figure 7: Illustration of SU Origin Determination. 

The laser illuminates the targets successively and the three angle c; are measured. The angles 

p and 7 are defined as illustrated in Figure 7. Given three known points and the two angles p and 7 
only two solutions for the SU position are possible. One has a positive, the other a negative x-coor- 

dinate. Assuring that the x-coordinate is positive in the camera frame, a unique solution can be 

determined! 



b b 

Figure 8: Illustration of the SU Position Solution Space, 

For each angle p and T the solution space is a circle going through the camera frame origin and 

the corresponding outer point as shown in Figure 8. By finding the intersection of the two circles, 

the SU position is determined. The distance e measured from the z-axis to the center of the solu- 

tion space circles is very useful in the following development. 

d= =bcot- b 

tan— P 2 
2 

(10) 

b+e = (d — e) =r 2 2= 2 2 

b (cot — — 1) 
e = = — (cot — — tan — ) = 

2 2 2 tang 2 cot— 
2 

(12) 

Since the PSDs wiH return the tangent of the angles tz; and not the angles themselves, (12) can 

be rewritten making use of a trigonometric identity for tan(ct+t)) given in (13). 

tanct+ tang 
tan (ct+ P) I + tancttanP (13) 

The distance e can be developed for the angle T in a similar manner. Denoting et as the dis- 

tance for the angle t) and e2 for T, they are defined as: 



1+ taunt t tana2 
e = b 

tan tx — tan a 1 2 

1+ tan a2 tan a3 
e =b 

tantx — tuna 2 3 
(14a, b) 

The equations for the two solution space circles are defined as: 

(x-ei) + (z-b) = ri 
2 2 2 

2 2 2 (x — e2) + (z+b) = r2 

(15) 

(16) 

Here it was assumed that the first circle goes through (0, +2b) and the second circle goes 

through (0, -2b). Both circles join at the origin. Consequently the solution at (0, 0) can be sampled 

out later. After expanding (15) and (16) and making use of 

r, . =b+e, . 2 2 2 

the following two equations must be simultaneously solved. 

x — 2xei+z — 2zb = 0 
2 2 

(18) 

x — 2xe2+z +2zb = 0 
2 2 

(19) 

To solve for x in terms of z, set (18) equal to (19) and solve for x. Here the fact that (x, z) is not 

(0, 0) was utilized. 

x 
-2bz 

e — e 1 2 
(20) 

Equation (20) can now be substituted into equation (19) to solve for x and z. The following two 

equations are the SU position (X„Z;). The subscript i denotes whether it was the first or the second 

SU. 

4b'(e, + e, ) 
2 2 4b + (ei — e2) 

(21) 

2b (e2 ei) z 
2 2 

4b +(e 
(22) 



Sensor Unit Orientation 

The SU orientation can be defined by the slope of the zero angle line (ZAL) shown in Figure 7. 
Knowing a2 and the SU position (X;, Z;) the slope of the ZAL can be found as shown in Figure 9. 

2b 

z 
(x, , z, ) 

2b 

5 
zero angle line 

+ 

-2b 
~ zero angle line 

-2b 
X2~Z2) 

Figure 9: Illustration of SU Orientation Determination. 

The angles with a ' mark the angles of the second SU shown in the right illustration of Figure 

9. The angle 5 can be calculated using the SU position. 

X, 
5 = atan- 

Zl 

X2 5' = atan- 
Z2 

(23 a, b) 

The angle 5o will define the slope of the ZAL of each SU. It is defined as: 

5o=5 — a2 5'o = 5' — u' (24a, b) 

Further calibration computations require the tangent of 5. Taking the tangent of (24a, b) and 

making use of (13) and (23 a, b) the following results are obtained. 

X, — — tan a 
Zl 2 

tan5o —— 

I + — tuna 1 

Zl 

X2 — — tan c 
Z2 

tan5' 

I + — tan Q 
Z2 2 

(25 a, b) 

Note the orientation of the angles. Any angle above the ZAL (in the +z direction) is considered 

positive. The angle 5'o in Figure 9 is negative, which agrees with the a negative slope of the ZAL. 



TRIANGULATION 

When tracking an arbitrary laser spot, each SU returns a voltage; these two voltages define the 

two incidence angles. Let a be the angle returned by the first SU, and a' be the angle of the second 

SU. 

ZALs ~ 
+ -2b 

(Xz, zz) 

Figure 10: Triangulation of an Arbitrary point. 

The triangulation problem is now reduced to finding the intersection of two lines as seen in 

Figure 10. The two lines of interest are drawn in bold. The slope m; of each line is defined as: 

mt cot (50 + u) mz 
— — cot (5 p+ u ) (26a, b) 

Again the trigonometric calculations can be avoided by making use of (13). The only singular- 

ities occur if either line is vertical, an impossible scenario because if is out of the field of view. 

1 — tan5 tanu 0 

tan50+ tana 

l — tan5' tanu' 
0 

tall 'tl 
p + tan u' (27 a, b) 

The equations for the two lines are: 

z = m, (x-Xt) +Z z = mz (x — Xz) +Z& (28 a, b) 

After solving the two equations (28a, b), the x and z coordinates of the observed point can be 

found as given below in (29) and (30). The only unknown variables in these equations are the two 

slopes which are determined from the measured angles as shown in (27). Equations (27a, b) were 

not substituted to keep equations (29) and (30) more legible. All other variables are configuration 



13 

parameters which were previously established. 

m1 Xi — mzX&+ Z& — Zt 
X 

rlt — m 1 2 
(29) 

mz (Xi — Xz) + Zz — Zi 
z — Z, +m, 

m — m 1 2 
(30) 

To transform these two-dimensional coordinates into three-dimensional inertial coordinates 

the following two reference frames are used. 

N: Inertial reference frame with an origin located over the center of the airbearing. 

The orientation coincides with the initial camera frame orientation. 

S: Camera reference frame. This frame contains only x and z coordinates since it is 

the scanning plane. The y coordinate is always zero. 

The transformation matrix C(t) will transform any vector with components in S into the same 

vector with components in N through (31). 

IP = C(t) r (31) 

The SU positions with S components are defined as: 

s 
rsvt — (Xi, 0, Zt) s 

rsv& —— (X&, 0, Z&) (32a, b) 

The camera position vector is defined as the mean of the two SU position vectors. 

s I s s 
rc 2 (- svl - sv2) (33) 

Let r (t) be the position vector of a observed point with components in S as shown in (34). 
s 
P 

The variables x and z are defined in (29) and (30). 

r (t) = (x, O, z) (34) 

Figure 11 illustrates the relationship between the camera and position vector in the inertial and 

camera reference frames. Note that the camera flight path vector r (t) tracks the inertial camera 

position, not the origin of the camera frame S! 



Camera Position 

6t Observed Point 

tN s 
rp 

N 

P 

Camera Frame S 

Inertial Frame N 

Figure 11: Illustration of Vectors in the Camera and Inertial Reference 
Frames. 

The inertial coordinates of the observed point are found as: 

t (t) = r (t) +5r (t) (35) 

The vector pointing from the camera position to the observed point in the camera reference 

frame is given in (36). 

5r (t) = r (t) — r, (36) 

Making use of (31) this vector is transformed into the inertial reference frame. 

5r (t) = C(t) 5r (t)) (37) 

After substituting (37) and (36) into (35) the following formula is found. It calculates the iner- 

tial three-dimensional coordinates for any arbitrary camera flight path r (t) and camera orienta- 
N 

tion matrix C(t). 

r (t) = r (t) + C(t) (r (t) — r ) (36) 

Note that since the initial camera orientation was chosen to coincide with the inertial frame the 

transformation matrix C initially is equal to the identify matrix. 



(39) 

Since the setup used has a circular relative motion equation (38) can be further refined. All 

vectors are made dependent on the airbearing angle e. All profile scans are done while holding the 

airbearing steady. This angle will define the angular camera position of the circular flight path. 

Note that initially this angle is zero. 

e(0) = o (40) 

The radius of the circular flight path is Ro, defined as: 

Rp ~f 
' (1 0 0)~ (41) 

The inertial camera position vector r (e) describes a circle parallel to the inertial x-y plane. 

The vertical offset between this horizontal circle and the coordinate origin of the inertial reference 

frame is denoted as z, . 

z, = c(e) f, ' (0, 0, 1& (42) 

Figure 12 illustrates the camera flight path. The relative camera motion is in the positive sense 

because the airbearing will have a negative rotation. The angle e is measured from the positive x- 

axis since the initial camera position is at x, =+Ra. This was established in the configuration setup 

by assuring that all SUs will have positive x coordinates. 

t(e) 

R 

Figure 12: Camera Flight Path in the x-y Plane. 



The inertial camera position vector is defined as: 

cos8 0 Rpcos() 

t (e) = sine Rp+ 0 = Rpsin0 

0 C zc 

(43) 

The orientation matrix C defines a rotation about the z-axis. ) It is defined as: 

cos9 -sine 0 
C(0) = sine cose 0 

0 0 I 
(44) 

Using (43) and (44), the three-dimensional position vector r can be calculated with the air- 
tv 

P 
bearing angle 0. 

TRIANGULATION SENSITIVITY 

The transformation of coordinates from the camera frame to the inertial frame will have very 

little error since the only parameter is the airbearing angle 0. This angle can be measured with an 

accuracy of greater than one arcsecond! 1 ) Yet the accuracy of the two-dimensional coordinates in 

the camera frame will heavily depend on the accuracy of the configuration parameters and, of 

course, the PSD measurement accuracy. This section will analyze the sensitivity of any arbitrary 

camera frame coordinates (xa z;) versus the configuration parameters Xt, Zt, fip, X2, Z2, and Sp'. 

The slopes of the two intersecting lines during triangulation will depend on the measured inci- 

dence angles a;, a'1 and the SU orientation angles as given in (45a, b). 

mt; = cot (Bp+ ct, ) m, . = cot(5' + u', . ) (45 a, b) 

The formulas for the coordinates (x;, z;) are given in (46) and (47). 

m 1, X1 — mz, -X2 + Z2 — Zt x. 
mt; — m2. (46) 

m2;(Xt — Xz) + Zz — Zt 
z, . — Z, +m„- 

utt — m2 ~ 
(47) 

The sensitivity parameters are found after taking the partial derivatives of xr and z; versus the 



configuration parameters. Equation (48) through (59) define all sensitivity parameters. 

ax. 

ax, 
= ml ~ 

ml;-m2, . (48) 

ax. 

Zl 

-I 
ml, - — m2, . 

(49) 

ax; 

35p 

x — X I 1 

(ml m'21) sin (a, +5p) 

ax; 

ax2 

— m2 ~ 

mll - m2, . (51) 

ax ~ 

az2 
l 

mll — m2, . 

ax. X2 — x. 

~5p (mll — m21) sin (a'. +5' ) 

az 

ax, 
= ml m2 

m I ~ — Ill 2 
~ 

(54) 

az 

Zl 

— m2- 

m I ~ — Ill 2 

az 

a5p 

az. 

ax2 

( 
z; — Z z; — Zl f 

) sin (5p+u, ) 

— ml . m2 ~ 

ml, . — m2, . 
(57) 

az 

az2 m1 I 
- m2, . 

(58) 

azl 

a5, 
Zl — z, . — m 

1 I (X 1 
— X2) 

(mll — m21) sin (5' +ct', ) 
(59) 

Note that the sensitivities not only depend on all the configuration parameters, but also on the 

incidence angles, This means that the sensitivity of a point depends on where in the field of view 



the point lies. 

0. 0 

0. 6 

0. ~ 
-1 0 

0 

10 10 

0 

10 

0. 6 
10 

0. 1 
-10 

0 

60)) 
10-10 

5 

0 

-5 

10 

00-1. 5 

-10 

0 

o)') 
10-10 

0 

-5 

10 g 00 1. 5 

-10 

5 

10-10 

0 

05 -5 

10 

Figure 13: x-Coordinate Sensitivities versus Xt, Zt, X2, and Z2. 

Figure 13 shows how the sensitivities of x, can vary over the field of view. The SU orientation 

angle fio was steady at 64. 03'. Depending on the magnitude and sign of the configuration error, x; 

could be enlarged or reduced. The sensitivities of z; behave very similarly. 

The accuracy of the configuration parameters will depend heavily on the accuracy of the three 

configuration angles a1, tr2, and ct3. Since the laser spot will be placed on the three targets by 

hand, these angles will not have the same high accuracy the airbearing angle will have. Some sam- 

ple placements found that the configuration angles will vary no more than 0. 01'. While this is a 

small range, it is sufficient to cause a large range of possible configuration parameters. 

The possible range of configuration parameters is illustrated in Figure 14 below. The true SU 

position and orientation used are given in the figure along with the configuration angle ranges 

used. The imaginary configuration targets were placed 20 mm apart. Clearly the configuration 

parameters can vary over a considerable range! 



SU i Configuration Parameters: 
Xt' . 154 mm 
Z, : 75 mm 

Sttt . 64. 03 ' 

Conagurauon Angle Varianees: 

tzt+ 0. 0675 

Gsa 0. 040 

txs+ 0. 080 

SU 2 Configuration Parameters: 
Xit '159 mm 
Zi. -49 mm 

So '. -72. 87 

90 
eo 

srC 70 

60 

50 

+C3 

140 

r 75 
70 ce 
65 sg 
60 sso 
55 

-65 
m-70 
4t -75 
+-eo 

140 
250 2 
4' ( 160 

'0) 7o 

— 30 

-40 

-50 ~+ 

-eo A' 

— 70 

Figure 14: Configuration Parameter Variations Due to Errors in 
Configuration Angle Measurements. 

One cause of this sensitivity is that the SUs will be as far as possible from the target to maxi- 

mize the scanning area. Since the field of view is rather narrow, the configuration targets cannot be 

placed very far apart! The two circles that need to be intersected during the configuration calibra- 

tion process are very close together, making the process very sensitive to errors in configuration 

angles. Figure 15 shows two sample circles and how the intersection is not very distinct. The con- 

figuration process could be made less sensitive by enlarging the field of view of the SUs allowing 

for greater distances between the configuration targets. 

(X, Z) 

-2b 

Figure 15: Illustration of the Configuration Solution Spaces. 



To illustrate how much the (x, z) values could vary a sample point at (20, 20) was used in Figure 

16. The configuration parameters were varied over all possible values given in Figure 14. 

25 

22. 5 

ch 2 

17. 5 

15 
15 20 25 30 

x-Axis [mm] 

Figure 16: Range of (x, z) Values Due to Configuration Errors. 

The x values vary from -20% to +45% of the true values. The z values vary from -17. 5% to 

+10%. Note that these are the extremes, however. Most errors are roughly within +10%. This large 

range of (x, z) coordinates demonstrates a need to improve the accuracy of the configuration param- 

eter calculation. The following method uses the initial configuration parameters as the initial val- 

ues of a nonlinear iterative least squares method to fine tune the configuration parameters closer to 

their true values. 

Let the vector rt point to an known point (xsz;) and the vector cr contain all the configuration 

parameters as given in (60). 

T 
a = [X, Z, fi, x, Z, fi] (60) 

The nonlinear function for r, . is given in equation (61). 

(61) 



The nonlinear function f is linearized with a first order Taylor series expansion about a set of 

configuration parameters go. The higher order terms are cut off. 

a. r, . = f, (go, a, a') + &g. (go, a, a') 5g+ HOT (62) 

Equation (62) can be solved for the triangulation error 5 r, 

5r; = r;- f; (go, a, a') = 
& J;. (go, a, a') 5g+ HOT (63) 

Let the estimated configuration parameters be labelled as ty. Equation (63) can be rewritten in 

terms of the estimated parameters. Since the higher order terms are dropped an error e; is intro- 

duced. 

5r, . = j;. (g, a, a') 5g+ e, . (64) 

By measuring the incidence angles of N sets of known locations r, the following set of equa- 

tions are found. 

5r, 

5r, 

-N 

3», 3», . 3», . 3», a», . 3», . 

3x, 3z, 3M3x, az, 35, 
az, . 3z, . az, 3. , az, az, 

3x, 3z, 35, 3x, 3z, 35, 

3»„ 3»„ 3»„ 3 „ 3»„ a „ 
ax, 3z, 35, ax, az, a5, 
az„a. „a. „az, az„az 
ax, az, 35, ax, aZ, a5, 

e, . (65) 

Let A be the (2Nx6) sensitivity matrix evaluated at a. The error vector e is defined as: 

T 
e= [e, . . . eN] =5r — A5g (66) 

The goal of the iteration method is to minimize the error vector e, Let the cost function 1 be 

defined as the square of the error vector. 

J=e e 
T 

(67) 



22 

After substituting (66) into (67) and expanding the expressions the following second order 

cost function is found. 

J = 5r 5r — 25g A 5r+5g (A A) 5g (68) 

Minimizing the cost function will also minimize the error vector. At an extremum the first 

derivative of J will be zero! 

— = — 2A 5r+ 2(A A) 5g = 0 
BI r r 
Bg (69) 

Equation (69) can be simplified and solved for 5g. 

5g = (A A) A 5r (70) 

N has to be at least three to have a uniquely determined error in configuration parameters. If N 

is greater than three equation (70) finds the error in a least squares manner. ( ) The relationship 

between the configuration parameter error, the estimated and the actual configuration parameters is 

given in (71). 

gi as 
= g gdmed 

= g+ 5g (71) 

After the configuration parameters have been updated the (x, z) coordinates can be recalculated 

and compared to the true (x, z) values. If the error is too large, the iteration is repeated. The success 

of this gradient method will depend on many factors. The initial conhgumtion measurements will 

have to be sufficiently close to the true values for the iteration to converge. The accuracy of the 

final configuration parameters depends on how many points were measured and how accurately 

the coordinates of these points are known. 



23 

EXPERIMENTAL RESULTS 

The source code for all the programs used during calibration, configuration and three-dimen- 

sional scans can be found in Appendix B. 

CALIBRATION 

PSD Signal 

To determine the actual relationship between the PSD voltage v and the tangent of the incident 

angle 8, the SU was mounted on the airbearing with the lens over the center of the airbearing plat- 

form. A laser was aimed at a white target on the same level as the SU. The airbearing was then 

rotated to different positions to measure the corresponding PSD voltage. At each position, the sig- 

nal was oversampled to reduce the effects of electronic noise. As predicted in equation (5), the 

relationship is very linear (see Figure 17). 

0. 3 

j 0. 1 

13 

o -0. 1 

-0. 2 

-0. 3 
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 

PSD voltage [V] 

psD t 
PSD 2 

4 5 6 7 8 9 

Figure 17: PSD Voltage versus Tangent of Airbearing Angle. 

The difference in slopes is a result of having two slightly different gains on each processing 

board. The scale in Figure 17 is too large to see the non-linear term of the relationship, but shows 

that these are indeed near linear position detectors, Figure 18 was created by taking the PSD data 

shown in Figure 17 and subtracting the linear term. The magnitude of the residual non-linear term 

is two orders of magnitude smaller than the linear term. This corresponds to having a non-linearity 

of less than 1%, as predicted by the manufacturer. 



0. 001 
»s 

O 

»t tl -0. 001 

-0. 003 -g. 
-8 -4 

PSD 1 

PSD 2 

0 
PSD voltage [V] 

Figure 18: Non-Linear Term of the PSD Voltage versus Airbearing Angle 
Relationship. 

The relationship between PSD voltage and the tangent of the incidence angle was modeled 

with a set of Chebyshev polynomials. The accuracy of the model depends on the order of the Che- 

byshev approximation and the airbearing step size. A range of step sizes and Chebyshev orders 

were tested to find an optimal combination for minimum modelling error. 

The modelling error in Figure 19 was calculated as the sum of the absolute dilference between 

the model and the actual measurements. After an order of 21 the model errors flatten out quickly. 

They decrease only very slightly for higher orders. 

&i~ 
75 b»9 

5 ap. 
. 25 ~ 

0 

30 
40 p iynomial Oide 

Cbebysnev 

20 
10 

0 001» o 

0. 001 
D o 

0. 0005 

Figure 19: Comparison of the Calibration Modelling error. 



25 

ints It was d se aration o f the measurements po' I dictates the number and p The step size variable ic 

in to step size sm in 
' 

aller than 0. 25' pro- t than the Chebyshev orders. Going 

ut increased the calibration time greatly. The s owes vi e ', ut increase e c 

osition. Therefore c i movin the airbearing to a new posi 'on. tion process was moving e 

1 nomials up to an order of 20. ize of 0. 25' using Chebyshev polynomi s up with an mrbeanng step s 

es rom . er distances the es from the SU. At other 's c en with the laser spot six inches rom All above data was taken wi t e 

e. a 
' 'p d t to be slightly differ- e ationship tume ou o e tan ent of the incidence angle re a 
' 'p o PSD voltage versus the tangent o e i 

rther away the focus changed, - e, rs tmovedcloserorfu craw ent. Due todep -o - e th- f-field etfects, as the laser spo 
' 

h han e in the voltage-disp ace I ement relationship. causing a slig t c ge 
' 

oxen 
pe B 

0BP 0 
ippi 

-1 

4PN5B 0 ~cO 

10 K 
ID 

0. 05 

Xs 0 
4l 
PI 
III 

P -0. 05 
O 
In 

4l 

I4 
Cl 0 p e 
ID 
xz 6 -5 

-10 0. 
4 

8 
distance d /inch 8 8 

finchesl 

Variation of i ra 
' Cal'b tion Model at Differen g nt Tar et Distances 

8 &et distence d 

error 16 t 16 times 

o-5 d. After measur- o-ste rocess was use . e imatel for this focus problem, a two-s p p . e 

les are calculated assuming the targe w ing two vo PSD ltages, the incidence ang es are c 

Figure 20: 

et distances. The left f a PSD changes at different targe s how the calibration of a c 

d'ff e can . if- n on a full scale, no difference can t calibration, yet shown on a u, d'ff e can 

d d 
' ' ' 

e. The calibration at a distance o six inc in the right picture. e c 

corn are tot e six 
' ' ' 

narc 
' 

rations. ThePSDvoltagedifferencecompare tot esix ' 

) 

ro 

accuracy is 0. 00488V. This ocus pr within 0. . 08V. The 12-bit A/D board accuracy is 

the A/D board accuracy. I 



The found (x, z) coordinates are then used to find a better approximation of the target distance d. 

The calibration process was only done at target distances of four, five, six, seven, and eight inches 

away. The actual incidence angles are found by using the new target distance to linearly interpolate 

between two sets of calibration constants. Since the calibration variations are small and smooth, 

the depth-of-field errors were reduced to nearly the same magnitude as the A/D board errors. 

Table 1: Chebyshev Polynomial Coefficients 

Polynomial 
Order PSD 1 PSD 2 

10 

12 

13 

14 

15 

16 

17 

18 

19 

20 

-2. 898711435807941e-003 -4. 255639488248909e-003 

1. 865738889927913e-001 2. 063986745698595e-001 

-9. 846744572974053e-004 -1. 861139324875055e-003 

2. 106006352562894e-003 4. 423704187360154e-004 

5. 252012010075907e-004 2. 242101351328072e-004 

9. 108117735722156e-004 5. 419014729523152e-004 

8. 597118071953371e-006 1. 090098371598563e-004 

4. 161009380323950e-005 1. 926561369360239e-004 

-1. 165380879027579e-004 3. 221203249737141e-005 

-1. 343764758365768e-004 5. 387506617794756e-005 

-2. 031394474557149e-005 -2. 264253354230158o. 006 

-2. 924012407003152e-005 -1. 760042462490284e-005 

4. 453145084760879e-005 -2. 387506428718035e-005 

1. 485919646587206e-005 -4. 927841901712399e-005 

1. 728001587333897e-005 -5. 981918851286550e-006 

1. 487004939920165e-005 -1. 096258768214211e-005 

-9. 524834239409149e-007 1. 577971919347374e-005 

-1. 590003411420417e-005 -9. 829060372190252e-006 

-1. 61528813767563le-005 5. 634727640673226e-006 

-6. 552275211586792e-006 1. 378458940959435e-005 

9. 459421974195356e-006 1. 991662323445494e-005 



27 

The Chebyshev polynomial coefficients for the two PSDs are given in Table 1. Note that the 

first order coefficients are two orders of magnitude larger than the other coefficients, showing 

again the near linear behavior of the PSD. 

Electronic Noise 

Since the PSDs are detecting only the diffuse refiection of the laser light, not the laser light 

itself, the signal strength is very weak. To operate optimally, the signal processing board requires a 

signal strength of 1 volu The diffuse refiection of a white matte surface yields a signal strength of 

only 0. 03 volts at maximum gain setting. A shiny surface gave a weaker signal, since most of the 

light was concentrated along the total reHection ray direction. 

Having such weak currents going from the PSD chip to the processing board means that elec- 

tronic noise becomes an issue. An attempt to reduce the noise was made by shielding and ground- 

ing all cables and grounding any metal equipment in the vicinity. After all remedial actions were 

taken, some small amount of electronic noise remained. 

The electronic noise can be broken down into two parts. There is a 60 Hz component and a 

higher frequency noise superimposed on it. Several types of analog and digital filters were exam- 

ined to remove the noise from the main signal. The goal of the filter was to reduce the noise level 

to less than the A/D board accuracy of 0. 00488 volts while keeping the overall system very respon- 

sive. A very clean signal was achieved using an analog RC filter. This filter was second order and 

had a cut-off frequency of around 5 Hz. It got rid of both the 60Hz and the high frequency noise, 

but it was not used because it had considerable lag and therefore could not be used to track rapid 

image motion. Being second order and having such a low cut-off frequency made the system far 

too sluggish. When tracking a 10'/s motion it had a 0. 1' lag, This is 20 times the A/D board accu- 

racy! No satisfactory analog filter was found that reduced the noise to an acceptable level and kept 

the system responsive, 

A digital low-pass filter was tested. Trying to cancel both types of noise yielded the same 

result as the analog filters. The system became too sluggish. Another digital filter was tested were 

only the higher frequency noise was reduced leaving the 60Hz noise. The 60Hz noise was then 

cancelled by taking a fast Fourier transform (FFT) of the signal and smoothing out the 60Hz peak 



28 

and then performing an inverse FFT. This worked fine for steady signals where the true signal was 

a constant line and the 60Hz component was clearly visible. Yet when examining the signal of an 

actual profile scan, the 60Hz noise component was not distinctive in the FFT. Trying to smooth the 

60 Hz noise caused more error in the true signal than was there to begin with. 

The digital filter finally adopted was a localized averaging scheme. Each data point was aver- 

aged with a set number of data points before and after the current data point. This process was rel- 

atively fast and reduced the noise levels to an acceptable level without making the system 

performance sluggish. Since this filter used a small amount of "future" data, it would not be 

acceptable for most real-time applications. However, for near-real-time stereo imaging this process 

was the most attractive filter tested. 

To show the level of noise present and the effect of the moving average filter, several steady 

state test runs are presented. Here the laser spot and the SU are held steady while the computer 

samples the signal. The true signal should always be a constant voltage, 

Both cables that carry the two PSD currents to the processing board are very close to each 

other and will therefore pick up almost the same noise. The PSD voltage formula is given in equa- 

tion (I). In the numerator, one current is subtracted from the other current. If each cable picked up 

identically the same noise, it would cancel itself in the processing board. 

0. 02 

) 001 

g 

o -0. 01 

-0. 02 
0 200 300 

data point ¹ 

400 500 550 

Figure 21: Steady State Zero PSD Signal with a Target Distance of Five 
Inches. 



Figure 21 shows a steady state signal with a PSD voltage of about zero. The black line is the 

filtered signal and the grey line is the unfiltered signal. Keep in mind that the A/D board accuracy 

is 0. 00488 volts, which corresponds with the horizontal grids of the graph for easier viewing, The 

filtered signal variations remain less than the A/D board accuracy as desired. The smoothing factor 

used on all these steady state tests is six. Since the cables did not pick up the exact same electronic 

noise, a small residual noise remains even after the cancellation. The high frequency noise compo- 

nent is caused by the processing board. Very weak signals are processed in the operational amplifi- 

ers and the analog dividers. 

7. 38 

7. 36 

B 7. 34 
8 
O 

7. 3 

7. 28 
0 100 200 300 

data point ¹ 

400 500 550 

Figure 22: Steady State Non-Zero PSD Signal with a Target Distance of Five 
Inches. 

Figure 22 shows the same steady state test at a non-zero PSD voltage. The 60Hz noise level 

has grown larger. A distinct sinusoidal wave can be seen. The filtered signal variations remain 

around the A/D board accuracy. Notice, however, that the 60Hz noise is causing more error to the 

filtered signal than the higher frequency noise. The larger the magnitude of the PSD voltage, the 

larger the 60Hz noise component grew. This enlargement could be an effect of the PSD chip, but 

this is unlikely. It is also unlikely that electronic noise caused the phenomena, since there is no rea- 

son for the 60Hz component enlargement to depend on the incidence angle of the light. The only 

remaining explanation is that it is an optical effect. Slight power fluctuation causes the laser signal 

to be unsteady. These shifts in the energy distribution cause small shifts in the perceived centroid 



30 

of the laser spon The laser used utilizes a five volt DC power supply transformed from 60Hz AC 

power. No AC to DC transformations are perfect and there probably remain some small fluctua- 

tions in the laser power supply. This hypothesis is strengthened by a separate observation. The 

neon light tube in the ceiling and the desk light cause the same effect, though at a larger magni- 

tude. Both types of light sources are unsteady and fluctuate in strength with a 60Hz frequency. The 

neon lights are sufficient to yield a strong diffuse reflection with a signal strength of more than O. I 

volts. At non-zero PSD voltages a large sinusoidal wave of about two volts can be observed on the 

position signaL After orienting the SU to let the ambient light be evenly distributed over the PSD 

chip, the average PSD voltage returned is zero. The 60Hz sine wave is virtually canceled! There is 

still the same signal strength, but the oscillations have been greatly reduced to about 0. 1 volts. This 

is the same effect as observed with the laser spot. The 60Hz noise component is minimized at a 

zero PSD voltage and grows larger with larger PSD voltage magnitudes! 

0. 02 

) 0. 01 

g 
O 

4 
-0. 01 

-0. 02 
0 100 200 300 400 

data point ¹ 

500 550 

Figure 23: Steady State Zero PSD Signal with a Target Distance of Eight 
Inches. 

This 60Hz noise became excessive after 8 volts. Therefore all PSD voltages were limited to 

within kg volts. In Figures 21 and 22 the target distance was five inches, which is close enough to 

provide a strong signal. Figure 23 shows the same test run as Figure 21, but at a larger target dis- 

tance of eight inches. Even though the PSD voltage is centered about zero, there is a larger 60Hz 

noise component than in Figure 21. The laser power influence is the same, but the electronic 60Hz 



31 

component is larger here because of the greater signal. The signal strength drops off with the 

square of the distance. The overall noise level has roughly doubled. The filtered signal is slightly 

larger than the A/D board accuracy. 

Figure 24 shows the same test run as Figure 22, except for being at a larger target distance of 

eight inches. The filtered signal is now bounded by approximately three times the A/D board accu- 

racy. The 60Hz noise is very distinct here. The maximum allowable target distance was found to be 

nine inches. Beyond that, the signal to noise ratio became to small. 

7. 42 

7. 4 
K 
L 7. 38 9 

7. 36 

7. 34 

y- 

7. 32 
0 100 200 300 400 500 550 

data point ¹ 

Figure 24: Steady State Non-Zero PSD Signal with a Target Distance of 
Eight Inches. 

While the noise levels shown are not severe, they could be greatly reduced in a future design 

by building a printed circuit board containing the signal processing electronics and a chip socket 

for the PSD. This would reduce the noise in two ways: (1) the distance from the chip to the signal 

processing would be drastically reduced; (2) the printed circuit boards are inherently more noise 

resistant since all circuits are close together and well grounded. A laser light source with a very 

stable power output would help reduce some of the 60Hz noise components. 

Sensor Unit Pointing Accuracy 

The accuracy and repeatability of the calibration process was tested by having the airbearing 

rotate the SU through the field of view. At certain increments the airbearing would stop and the 



32 

PSD voltage would be sampled. Oversampling a steady signal removed all the electronic noise. 

The resulting voltage was then transformed into an angle using the Chebyshev coefficients. Figure 

25 illustrates the difference between the calculated position angle and the actual airbearing posi- 

tion. The test run was performed with a target distance of five inches. 

0. 01 

0. 005 

C 

I -0. 005 

-0. 01 
-10 0 

airbearing position ['] 
10 

Figure 25: Sensor Unit Pointing Accuracy with a Target Distance of Five 
Inches. 

The pointing accuracy lies just within the A/D board accuracy. This result was also very 

repeatable, demonstrating that the PSD chip was mounted sufficiently rigid in the sensor unit. 

The remaining pointing errors seen in Figure 25 are due (o calibration inaccuracies and a 

minute fiexibility within the sensor unit. To simulate the actual scanning process as closely as pos- 

sible, the SU should remain steady with no position varying forces acting on it. This was accom- 

plished by rigidly attaching the SU to the airbearing! 

Sensor Unit Tracking Accuracy 

To test how well a SU could track a moving target, the SU was left attached on the airbearing 

and the airbearing performed a finite rotation. During dynamic motion, the actual airbearing angle 

was compared to the SU angle. Ideally, the tracking enor should always be zero. Yet because each 

posifion measurement takes a finite amount of time, there will be some lag if the target moves too 

fast! The A/D board access time to read a voltage was measured at around 220!ts. For this access 

time to cause a perceivable tracking error, the target would have to move 22'/s or 0. 06Hz. This 

access time therefore limits the profile scans to be done with a slow moving laser only! 



33 

The PSD chip rise time is advertised at 0. 051ts. For this rise time to cause a tracking error per- 

ceivable by the A/D board, the target would have to move at 271Hz. This is several orders of mag- 

nitudes larger that what the A/D access time dictates. Therefore the PSD chip is responsive enough 

not to cause any tracking error. 

0. 04 

0. 03 

o 0. 02 

o 001 

3 -001 ' 

8 -002 
-0. 03 
-0. 04 

0 1000 

data point ¹ 

3000 4000 4500 

Figure 26: Sensor Unit Tracking Error with a Target Distance of Five Inches. 

The airbearing motion used for the tracking test started at rest at -10', accelerated to a coasting 

mofion of +20'/s and came to rest at a position of +10'. Figure 26 shows the tracking error for a 

test run at a target distance of five inches. As with the steady state plots, the black line is the fil- 

tered signal and the grey is the unfiltered signal. The filter used a smoothing factor of six. The 

tracking error starts out at zero and then quickly drops to -0. 005'. This lag was due to the A/D 

board access time. The airbearing was rotating at the critical speed mentioned earlier! After about 

the 2000th data point measurement, the airbearing is very close to the +10' position and is moving 

very slowly to avoid overshooting the target. At the end of the maneuver, the tracking error 

approaches zero, indicating there was no significant residual pointing error. 

Figure 27 shows the same tracking test, but at a target distance of eight inches. As expected the 

noise levels are higher. The tracking error during the coasting motion is again -0. 005', as pre- 

dicted. Note that the noise in the filtered signal gets smaller towards the 1100th data point and then 

begins to increase again. This happens because the PSD voltage goes through the zero voltage 

point where the noise cancels itself. 



34 

0. 04 

0. 03 

o 0. 02 

0. 01 
V 

-0. 01 
-0. 02 
-0. 03 
-0. 04 

0 1000 2000 
data point ¹ 

3000 4000 4500 

Figure 27: Sensor Unit Tracking Error with a Target Distance of Eight 
Inches. 

To improve the tracking performance of the SU, a faster A/D board and computer would be 

needed. The A/D sampling and access time are the primary features limiting the present system to 

tracking relatively slow targets. 

CONFIGURATION 

The configuration calibration process determines the position and orientation of each SU. Both 

SUs are placed on a support platform, but independent from the airbearing. This platform also car- 

ries the laser light source and the scanning mirror mounted on a motor as is seen in Figure 28. The 

SUs and the scanning laser motion are aligned in the same plane. The approximate distance of the 

SUs to the configuration targets are measured by hand and stored in a file. The configuration pro- 

gram will use these approximate distances when adjusting for the focus. 

A vertical target was placed over the center of the airbearing. The target should be a matte 

black color to absorb all the laser light. Three thin white targets are placed exactly one inch apart 

on the vertical target. The center mark will become the coordinate origin. An elevated origin setup 

shown in Figure 29 was chosen over having the origin on the airbearing platform for visibility rea- 

sons. 



35 

Figure 28: Photograph of the Three-Dimensional Scanning System. 

configuration 

targets 

airbearing 
center + 

Figure 29: Schematic of a Configuration Setup. 

As explained earlier, the configuration process is very sensitive to errors in the configuration 



36 

angles. To minimize configuration angle variations the white targets should be as thin as possible, 

while allowing enough return light to yield sufficient signal strength. During the laser placement, 

the PSD signal strength can be observed on an oscilloscope. As the laser is centered on the mark 

the signal strength should be at a maximum. With these precautions the configuration angle vari- 

ances shown in Figure 14 were achieved. While these angles were very small, they were enough to 

cause significant configuration errors. Scanned objects were found to be 5-10% wider in width and 

shorter in height than physically correct. 

To fine tune the configuration parameters six target points were used. Three were the original 

configuration targets over the center of the airbearing and the other three were on a vertical line at 

x=+20mm. This was sufficient for the nonlinear least-squares method to fine tune the parameters. 

Table 2 shows a comparison of the hand-measured coordinates of the six targets and the coordi- 

nates of the nonlinear least-squares converged estimates. The first point stands out with the largest 

difference. All other points have difference of less than 0. 4mm. The reason the iteration method 

did not converge exactly to the measured coordinates is that the hand measurements inherently 

have same placement error associated with them, as did the configuration placement. Again to 

reduce the placement error all measurements were taken three times and averaged. After fine tun- 

ing, the configuration parameters, the distortions of scanned objects were reduced almost an order 

of magnitude to less than 1-3%! 

Table 2: Comparison of Reconfiguration Targets 

Target 
Number 

Hand Measured 
Coordinates 

[mm] 

(19, 12. 7) 

(19, 0) 

(19, -12, 7) 

(0, 25. 4) 

(0, 0) 

(0, -25. 4) 

Converged 
Coordinates 

[mm] 

(19. 7, 12. 77) 

(18. 96, 0. 02) 

(19. 42, -12. 77) 

(0. 14, 25. 41) 

(-0. 34, -0. 18) 

(0. 14, -25. 26) 

Difference 
[mm] 

0. 703 

0. 044 

0. 426 

0. 140 

0. 385 

0. 198 



37 

The final SU positions are compared to the hand measured positions in Table 3. The differ- 

ences vary from -4% to +10%. Keep in mind that it is very difficult to measure the SU positions 

accurately by hand. Some of the differences are simply due to inaccurate hand measurements. 

Table 3: Comparison of Sensor Unit Positions 

SU 
Number X; [mm] 

measured X; measured Z; 
Z; [mm] [mm] [mm) 

1 148. 3 81 154 75 

2 167 -54 159 -54 

Another cause for the differences in SU positions is the laser diode. After focusing the laser 

beam to a point there is a half-moon shape glow about this point. This glow acts as optical noise 

causing a slightly different angle to be perceived. A pin-hole mask was ineffective in blocking the 

glow since the optical noise originates from the center of the laser beam. The configuration param- 

eter fine tuning process tries to account for this error by shifting the parameters slightly from their 

true values. This "aliasing" is common in any estimation process where the model does not capture 

all of the physics. 

During the configuration calibration process it became evident that the laser spot size must be 

as small as possible. The first test runs were performed without the focusing lens. Having the light 

spread out over a finite region meant that the center of the light intensity was off from the geomet- 

ric center. In the worst case situations this error was enough to cause distortions of 15-20%! 

To increase the configuration accuracy it would be beneficial to have a larger field of view, ide- 

ally using a fish-eye lens. The further apart the configuration targets can be placed, the more accu- 

rate the result will be. The intersection of the two configuration circles would be more distinct. 

SCANNING RESULTS 

Two-Dimensional Profile Scans 

The electronic noise will cause some errors in the SU angles. The range of these errors 

depends on where in the field of view the observed spot is. 



38 

9. 5 1. 62 -6. 4 

9. 4 

g 93 

9. 2 

1. 57 

-6. 45 

-6. 5 

9. 1 

6. 7 6. 8 6. 9 
SU 1 angle [ ] 

1. 52 
7 

-6. 55 
8. 15 

SU 1 angle ['] SU 1 angle ['] 
-1. 375 -1. 325 -1. 275 -8. 45 -8. 35 -8. 25 

Figure 30; SU Angle Variations Due to Electrical Noise. 

Figure 30 shows SU angle variations for three different locations. For each measurement, the 

laser is held steady at a certain location. The left, center and right pictures show the variations for 

the upper, center and lower half of the field of view, respectively. As expected, there is less error in 

the center of the field of view. The. left and right pictures have elongated angle distributions. 

The axis with the larger angle has a larger variation. This is because the further away from the 

PSD center the light spot is, the more the noise is perceivable. Figure 31 shows how these angle 

variations cause triangulation variations. The points observed are roughly in the center of the air- 

bearing, six inches from the SUs. Again the least variation is found in the center of the field of 

view. Note that the worst variation is only about 0. 5 mm! Even though the processing board has to 

work with a very weak signal the noise levels are still tolerable. 

26 

25. 5 -0. 5 -25. 5 

25 -26 
0. 5 0 0. 5 -1 -0. 5 0 -0. 9 -0. 4 0. 1 

x-Axis [mm] x-Axis [mm] x-Axis [mm] 

Figure 31: Triangulation Variations Due to Electrical Noise. 



39 

To measure how well triangulation is working for the first experiment, the side of a straight 

ruler was scanned. The result should be a straight line with no curvature. Figure 32 shows the 

actual scan. The scanner was able to recreate the flat surface very well. The first order curve fit was 

drawn in as a visual reference, The deviations from this line are minimal and only due to electronic 

noise. Their magnitude is less than 0. 5mm. This confirms the maximum error due to noise shown 

in Figure 31. 

2 

1 

Ruler Profile Scan 

First Order Approximation 

-3 
-20 -15 -10 -5 0 

x-Axis [mm] 

5 10 

Figure 32: Profile Scan of a Straight Ruler. 

Table 4: Chebyshev Coefficients for 
Ruler Approximation 

Polynomial Chebyshev 
Order Coefficients 

0 0. 238021 

-31. 562688 

0. 525353 

-0. 241915 

0. 280774 

0. 029339 

-0. 178053 



40 

The scan shown above in Figure 32 was analyzed by fitting a set of Chebyshev polynomials to 

in Table 4 shows the resulting Chebyshev coefficients up to an order of six. The second and higher 

order terms are all at least two orders of magnitude smaller than the first order term. All these 

higher orders terms are trying to model the noise on top of the straight line. This means the only 

significant error is due to electronic noise, not calibration or configuration error. 

Three-Dimensional Scans 

All three-dimensional scans were done with the scanning motor set at approximately 0. 5Hz. 

This is about eight times faster than the critical speed of 0. 06Hz. Having the laser spot move at this 

speed causes a triangulation error of only about O. Imm over the airbearing center, and less error at 

a closer target distance! This error is far less than the electronic noise shown in Figure 31. There- 

fore it has only a minimal influence on the scans. 

20 

~6 0 20 

— 20 

IO 

E 0 
N 

— 10 

20 

y (rnrnI 
0 

-20 

0 
E 
E 

-20 

— 20 

I 
~ 1 

x lmm] 
0 20 

Figure 33: Three-Dimensional Scan of Cylindrical Tube. 

The object used in Figure 33 was a cylindrical plastic tube. It was covered with white masking 

tape to make the surface less translucent. The actual outer diameter is 57mm. The tube was posi- 

tioned over the center of the airbearing with its walls close to vertical. The scanned profiles shown 

in the left picture are very smooth and vertical. The slight unevenness is due to electronic noise. A 

top view is shown in the right picture. The circular shape of the tube is very well reproduced due to 

the high angular accuracy of the airbearing. The profile scans do not collapse to a point in this view 



4l 

because of the electronic noise. The top view indicates the tube outer diameter to be 57. gmm, only 

a 1. 4% enlargement. 

Another object scanned was a white rectangular piece of wood. Its walls were close to vertical, 

but the wood grain contained grooves in it I-2mm deep. Figure 34 shows the scan, 

-10 
20 

10 

l 

0 ArO 
0 

10 

10 

( 
/ 

E 
E 0 
N 

E 
— 0 E 

— 20 

-10 

— 10 0 
x [mm] 

10 

Figure 34: Three-Dimensional Scan of a Rectangular Piece of Wood. 

The profile scans are far less smooth. It is possible to see where the surface has a distinct grain 

texture. The true side length of the rectangular block was 23mm. The top view shows a side length 

of about 23. 7mm, an enlargement of about 3%. 

Figure 35 shows a three-dimensional scan of a small bottle. It was covered with white masldng 

tape to increase the signal strength. The shape of the bottle can be clearly seen. Note that some 

erroneous points appear where the main bottle transitions to the cap. As the laser swept over the 

edge both the cap and the bottle are illuminated for a split second causing this error. 

Another problem was encountered when trying to scan a surface with sharp cavities. Figure 36 

shows the profile scan of a large plastic thread. The actual thread shape has six teeth threads each 

with a triangular shape. The scanned shape shows the sharp outer edge of the teeth, yet the cavities 

were smoothed out. As the laser light hits the cavity it refiects off the walls illuminating the entire 

cavity! Depending upon the viewing angle and the laser incidence angle it is not possible to reli- 



42 

ably see the bottom of sharp crevice features. When the laser energy enters into the translucent 

plastic material, the light is reflected from a volume of the material rather than from a surface. The 

PSDs cannot clearly distinguish where the laser spot is, resulting in the smoothing elfect. 

20 

E 
0 E 

N 

-20 

I 0 

~ C 

10 

E 
E 

— 10 

-10 font) 
10 20 

20 l 

's 

\ j 
/ 

~ ~ 

&/II)wc ' 
~ ~ 

t 
-10 

Figure 35; Three-Dimensional Scan of a Small Bottle. 

0 
x [mml 

10 20 

15 

5 

N 

-15 
20 22 24 26 28 

x-Axis [mm] 
Figure 36: Profile Scan of a Large Plastic Thread. 

If an objects' surface changes to a color other than white, the signal strength is reduced. This 



43 

by itself would not cause a problem with the triangulation if it were not for the electronic noise. 

With the reduced signal strength the noise becomes more dominant causing more triangulation 

enors. Figure 37 shows a ruler prolile scan again. This time the laser light spot was allowed to 

sweep over the black letters of the ruler. These sections are clearly visible. The otherwise smooth 

graph makes some erratic jumps and then becomes smooth again. The center irregularity does not 

stand out like the other two because the noise happened to go through a low cycle there. 

25 
2 

-20 -15 -10 -5 0 10 
x-Axis [mm] 

Figure 37: Profile Scan of White and Black Areas of a Ruler. 



CONCLUSIONS AND RECOMMENDATIONS 

This study addressed the real-time stereo triangulation of diffusely reflected laser energy. The 

PSDs tracked the moving diffuse laser light reflection very welL Having an analog position signal 

allows for very high resolutions as well as near-real-time processing. Their only drawback was the 

weak signal they returned to the processing boards. This weak signal was found very susceptible to 

electronic noise. The problem could be resolved in two ways: (l) use of a stronger laser to achieve 

a brighter reflection; (2) mount the PSD chip with the signal processing circuits on a printed circuit 

board; (3) and improved optics with a larger field of view and greater depth of field. 

The SU calibration was able to keep the pointing error to less than the A/D board accuracy of 

0. 005'. This accuracy was maintained for targets from four to eight inches away from the sensor. 

The defocusing problem was solved by calibrating the sensors at different distances and then lin- 

early interpolating between the sets. The field of view of a SU was about 22'. The Chebyshev 

polynomials lent themselves well to model the PSD voltage versus tangent of the incidence angle 

relationship. Using these polynomials and measuring the tangent of the angles directly sped up the 

algorithms greatly. The accuracies were not realized reliably in the stereo triangulation measure- 

ment of bodies, mainly due to: (1) low signal strength of diffuse reflection; (2) faster scanning 

rates; (3) and various aliasing effects due to asymmetric diffuse reflections off particular surfaces. 

Finding the configuration of the system is a very sensitive process. Minute errors in placing the 

laser on the three targets caused the estimated configuration parameters to vary greatly. This error 

causes distortions in the triangulation process. Fine tuning the parameters by measuring several 

targets and using a least squares approach to fit the answer helped reduce the distortion. The big- 

gest difficulty here lies again in the accuracy of the target placement. Further it was found that the 

laser beam diameter plays a large role in the accuracy of the angle measurements. Only after 

focusing the beam to a point were reasonable answers achieved. 

The three-dimensional scans performed very well. The distortion were less than 3%. A limita- 

tion of the system is the limited useful scanning area. A fish-eye lens would greatly increase the 

field of view of each SU and thus increase the scanning area. 



45 

REFERENCES 

Gerbig, Volker, "Laser Scanning in Industrial Robots, " in Recording Systems: High- 

Resolution Cameras and Recording Devices and Laser Scanning and Recording Sys- 

tems, Leo Beiser, Reimar K. Lenz, Editors, Proc. SPIE 1987, 287-295 (1993). 

Data sheet of Cybenvare; 1990; Cyberware Laboratory Inc. , 8 Harris Court 3D, 

Monterey, California 93940. 

The PSD User Manual. Version I; 1989; SiTek Electro Optics, Ogardesvagen 13A, S- 

433 30 Partille, Sweden. 

Press, William H. , et al. , Numerical Recipes in C. Cambridge: Cambridge University 

Press, 1992, 

Junkins, John L. , et al. , "A Novel G&C Technology Transfer: Automated Notetaking 

in the Classroom of the Future, " 17th Annual AAS Guidance and Control Conference, 

Keystone, Colorado, February 2-6, 1994. 

Junkins, John L. , and Turner, James D. , Optimal Spacecraft Rotational Maneuvers. 

New York: Elsevier Science Publishing Company Inc. , 1986. 

Technical manual of Contraves Airbearing 50C; 1986; Contraves Goerz Corporation, 

610 Epsilon Drive, Pittsburgh, PA 15238. 

Junkins, John L. , An introduction to optimal estimation of dynamical systems. Alphen 

aan den Rijn, Netherlands: Sijthoff & Noordhoff International Publishers, 1978. 

Technical Manual of DT2821 Series; 1988; Data Translation Inc. , Marlboro, MO 

01752-1192. 



46 

APPENDICES 



47 

APPENDIX A 

HARDWARE LIST 

The following list contains all the hardware components used to construct the three-dimensional 

scanner prototype. 

~ two PSDs model 1LSSP from ONTRACK PHOTONICS 

~ two signal processing boards model OT300LS from ONTRACK PHOTOICS 

~ one Hewlett Packard twin low voltage power supply model 800A-2 to power the signal 
processing boards 

~ a Contraves 50C one-dimensional airbearing 

~ a Intel 386 computer to control the system 

~ two Metrabyte 24 bit high output current parallel digital interface cards model PIO-24 to allow 
the computer to communicate with the Contraves 50C airbearing 

~ one Data Translation DT2821 A/D board 

~ one Data Translation screw terminal panel DT707 

~ two scanning unit focusing lenses with a diameter of 9mm and a focal length of 9mm 

~ one 4mW class Illb laser diode with a beam diameter of 6mm x 2 mm operating at a wavelength 
of 675nm 

~ one laser focusing lens with a diameter of 25mm and a focal length of 400mm 

~ one Maxon DC motor ¹RE035-071-33EAB200A to rotate the mirror 

~ one gold plated flat mirror size 16mm x 23mm 

~ one KEPCO bipolar operational power supply/amplifier to drive the DC motor 



48 

APPENDIX B 

SOURCE CODE 

The following source codes are appended alphabetically: 

airbearh: Header file containing all the necessary subroutines to control the airbearing. 
The function of each subroutines is outlined at the top of the file. Before any 
other subroutines are called the configure() subroutine must be called. ogmodeo 
disconnects the airbearing controls. 

calib. c: This program performs the SU calibration for a certain target distance. After 
finding the zero PSD voltage position the airbearing is moved in certain 
increments. At each increment the airbearing position and the PSD voltage are 
measured and later approximated with a set of Chebyshev polynomials. 

cheby. h: Header file containing the Chebyshev curve finin subroutine and a subroutine 
to calculate a point on the curve fit. 

confrg. c: This program determines the initial configuration parameters by measuring the 
incidence angles for three different positions. To reduce the error in positioning 
the laser spot on the targets, each target is measured three times. 

datbrd2. h: Header file containing subroutines to communicate with the DT2821 A/D 
board. The board is initialized with setup2821() and terminated with 
terminate2821(). Other subroutines are explained at the top of the file. 

eulerh: Header file containing subroutines to generate a direction cosine matrix for a 
rotation about the x, y, or z axis. 

recon. c: This program reconfigures the system and fine tunes the configuration 
parameters. The sensitivity matrix is used to minimize the triangulation error. 
The iteration step size is set at l. 

scali. c: Main program to perform the three-dimensional scans. After measuring a 
profile scan the data is filtered and then stored in a dummy file. After all profile 
scans are taken the post-processor triangulates the data into three-dimensional 
coordinates. 

vector h: Header file containing structures and subroutines to perform three-dimensional 
vector and matrix algebra. 



49 

AZRBEAR. B 

This header file contains all the necessary declarations and 
subroutines to control the Contravee 50-C airbeazing through the two 
Metr&Byte cazds, Model pzO-2¹. Much of. the code is based on work done 
by Laurris wittig in her Univezsity Undergraduate pellow in 1990/91. All subroutines declared are listed below. 

written bye Manspeter Bchaub 
Date: August 17th, 1993 
Organisation: Aerospace Department, Texas A&M University 

subroutines defined ares 
configure(): configures the air bearing and the interface cards 
oifmode()I reSete all ports and goes to offmode. Must be used 

before terminating the program. 
posmode()I sets tha aiz bearing to position mode. Must be set 

before using set~os() 
ratamode(): eats the aiz bearing to rats mode. Must be set 

before using set rate() set~os()c sets the air bearing at a certain position set rate(): lets the air bearing turn at a precision rate set mode() I sets the airbearing in a certain mode set&crt()I wr). tas and the coarse and fine words to the coarse 
and fine addresses. 

read~os()s returns the current position as a float read rate()c returns the current rate as a float in degrees/second read~crt()c reads in the coarse and fine words at the addresses 
given and transforms them into a float value check~s()r waits until the given pos). tion is reached 

handshake()r checks for a handshake between the air bearing and the interface card 
convert()c converts a float value into the four hexadecimal words 000 ~ *101 ~ I ~ I* ~ \ ~ 000401011 ~ **I ~ * ~ I ~ III ~ 1*II* ~ I ~ * ~ I* ~ 1*010 ~ ttt ~ 011** ~ 00* ~ *01/ 

/ ~ *I ~ ~ 00 ~ 4 ~ 40**0000* ~ ~ 0 ~ ~ 0010401*I ~ I ~ 0*I ~ * ~ I ~ 00 ~ 001*010 ~ ** ~ I** ~ **It*It*1000 
include the necessary header files 41 ~ I ~ * ~ 11*1 ~ ~ *01104*1111 ~ I* ~ ~ ~ ~ ~ ~ 0411001*I ~ *I ~ 0*I ~ *t4*00441001**1 ~ 000*00**/ 

¹include &conic. h& 
¹include &bios. h& 

/ ~ ** ~ \ I I I I I I I*I I ~ * ~ *** I I I I t I I I **I * ~ I * ~ * ~ I I I It I I I I *** I ~ I ~ ~ * I ~ * ~ *I I I It I I t *0**0 
define the macros used 

~ * I ~ I I I \ I ~ **** I ~ ** ~ * * \ t I I I I 0**0 ~ * I ~ ** ~ * I I I I t I I I I * ~ I * ~ I * ~ * I ~ I I I t I I I I I I t * 0 * 0 */ ¹define CARD1 Ox303 /I hexadecimal address of card 1 «/ ¹define CARD2 Ox353 / ~ hexadecimal address of card 2 I/ ¹define PA1 Ox300 
¹define PB1 Ox301 
¹define PC1 Ox302 
¹define PA2 Ox350 
¹define PB2 Ox351 
¹define PC2 Ox352 
¹define CDNTWORD1 Ox92 / ~ control word to configure card 1 */ ¹define CONTWORD2 Ox88 / ~ control word to configure card 2 «/ ¹define STROBE -Oxl 
¹define RESET -OxO 

/*I ~ 0**1 ~ I ~ '100010* ~ \*I ~ I* ~ 01000101*041 ~ **** ~ 001 ~ I ~ 0*111 ~ 0*I ~ **00*00000000110 
declaze return types *I ~ 0*0 ~ ~ *000 ~ *110 ~ 0*0 ~ 0*ltt 0000**00** ~ *** ~ It tttt*lt I ~ ********It*0 tt0 I 0***It/ float read~os(); 

float read rate(); 
float read~crt(); 
int flag, flagi; 



50 

/ ~ *** ~ I ~ I I I I I** I I I I * ~ * I ~ I I I I I I I I I *** I ~ I I I ** ~ * I ~ ~ I ~ I I I I I I I I I * 1*** 1 I I I * ~ I ** ~ * ~ 
configure() I This subroutine will configure the two Mstrasyte cards 

and initalize all tha ports. ~ *** ~ 
\tt1»»lit»�» 

~ *I*It»»I»»I« I 1»1 I»»It*i* ~ ~ ~ ~ »It»tl»111 *»»»l»*Ill»*** ~ ~ ~ ltt/ 
conf igure ( ) 
( 

/* configure the cards»/ 
outp (CARD1, CONTWORD1 ); 
outp (CARD2, COÃIWQRD2 ); 
/» initialize all ports to logic low and set flags ~ / outp(PC1, RESET); 
outp(PC2, RESET); 
outp(PA2, RESET); 
outp(PB2, RESET); 
flagi = inp(PC2); 
flag = flagi; 

/11 11 ~ ** ~ \tt»I»1»I* ~ ~ I ~ ** ~ *III 1«\\1*1 ~ »»\*I ~ **I ~ It»» ~ 111111** ~ *»»**»\****It* 
offmode(): This subroutine will stop the airbearing and reset all 

the ports. It must be called before terminating the 
program. *** ~ I I I I I I I *** I I I ** ~ * I t I I I ~ I I * I I I ~ \ **** I ~ I I t I I I 1***1 * I I ~ ** ~ * I I * I I I I I t I I I I I I/ 

o f f mode ( ) 
( 

int dath, 
datl; 

/» contains the high data word «/ 
/» contains the low data word ~ / 

/» stop the airbeazing »/ 
ratemode(); 
set rate(0. 0); 
dath=oxO; 
datl OxO; 

/ ~ set the word foz "offmode" */ 

set mode(dath, datl); 

/ I ~ I * ~ * I t I I I I I t I * I I * ~ I ~ I t I I \ I I I * I ~ * I \ **** I t I \ \ I I I ***** ~ * ~ \ **** I t I I I I * I I * I ~ * ~ 
ratemode() r This subroutine sets the airbearing in the rate mode. 

~ I* ~ ~ ~ ~ ~ »Ill»*l* ~ 1**tt»ttl ~ *1*1 ~ ~ *1**»1»»\»«»»1** ~ I ~ »***I*t»t«1»11*** ~ * ~ \II/ 
ratemode ( ) 
( 

int dath, datl; 
dath = OxO; 
datl - "Ox2; 

/» set the cora«and words to "rate mode" »/ 

set mode(dath, datl); 
) 

/I»l ~ »»11 ~ **II*III » I ~ **I*t»»t * * * ~ I 1»I«III *I ~ ~ I ~ ~ ****litt«« ~ 11* 
set rate(); This subroutine will set a certain precision 

turn rats. The rate is given in degzees/second. 1**1 ~ ~ I* ~ * ~ 111111*l ~ ~ * ~ ***tilt*1*** ~ * ~ ** ~ IIIII«t*1** ~ ** ~ ******11111****I* ~ */ set rate(float rate) 
( 

int addc, 
addf, 
fdatl, 
fdath, 
cdatl, 
cdath; 

/* contains 
/* contains 
/* contains 
/ ~ contains 
/» contains 
/* contains 

the coarse command address */ 
the fine command address «/ 
the low byte of the fine precision »/ 
the high byte of the f(. ne precision ~ / 
the low byte of the coarse precision */ 
the high byte oE the coarse precision ~ / 



51 

/ ~ 144441441 ~ 41 ~ \*I ~ ~ 14 ~ 41*1« ~ II ~ 41 ~ I* ~ * ~ ~ ~ ~ I' ~ I 
calculate fine and coarse word b)/tes from rate * ~ I ~ 1444 ~ «I«It«* ~ I* ~ I* ~ Itttt ~ 1*1* ~ ~ I ~ I* ~ I* ~ ~ It/ 
convert(rate, &cdath, &cdatl, &fdath, &fdatl); 
addc = 0121; 
addf = 0125; 

/I coarse word rate address «/ 
/ ~ fine word zate address ~ / 

set~crt(addc, addf, cdatl, cdath, fdatl, fdath); 

/ ~ I ~ *III ~ *** ~ *t1«t 1«* 1**14* ~ 14 I ~ ~ ~ I ~ 441 ~ 141* ~ *I ~ ~ ** ~ *1**ttt*tt tttt 14144*«t** 
read rats(): This subroutine reads the current rate of 

the airbearing and returns it as a float. **It ~ I** ~ * ~ tt 1144 ~ *I I ~ *I*** ~ \*It« I\41*141« ~ * ~ I* ~ * ~ «I*It««It«\I ~ I ~ **III«* ~ I I/ float read rate() 
( 

int addc, addf; 
float rate; 
addc = 021; 
addf = 025; 

/* address for coarse rate input */ 
/* address for fine rate input ~ / 

rate = read~crt(addc, addf); 
return (rate) 

) 

/*11«11** ~ *4441«1 ~ 4141 ~ 11 ~ * ~ ~ 4«11411*1111*4 ~ ** ~ ~ ~ 4*144414*4114411 ~ 1*1** ~ I ~ It 
posmode() s This subroutine sets the airbeazing in the position mode. *I I ~ I*4 ~ 411444*141 ~ I** ~ *It ~ 44\111*11 ~ I* ~ I**I*«It ~ 4411*111 4 ~ \* ~ ***** ~ 41 ~ 441 ~ / posmode() 

( 
int dath, datl; 
dath = Oxo; 
datl = Oxl; 

/I set the command words to «position mode" I/ 

set mode (dath, datl); 
) 

/ ~ \ ~ I ~ I I t I** I ~ I I * I ~ * I I I I I I **I I I ~ * ~ I ~ t I I I I I I * 1**4 \ ~ ~ ~ ***** I I t I t t I I * I * I I ~ ** ~ ** setous() I This subroutine will set the airbearing at a certain position in degrees. I I I 4*4 I I * ~ **I t I I I I I I I * I I I *** ~ I ~ I I I I I * 1*4 I ~ * ~ I ~ I ~ I I I ~ I I I t*** I ~ I **** \ ~ ~ I t I I I I / set~os(float pos) 
( 

int addc, 
addf, 
fdatl, 
f da t. h, 
cdatl, 
cdath; 

/I contains 
/* contains 
/I contains 
/* contains 
/I contains 
/* contains 

the coarse command address I/ 
the fine command address */ 
the low byte of the fine precision */ 
the high byte of the fine yzecision I/ 
the low byte of the coazse precision */ 
the high byte of the coarse precision */ 

/1441 ~ 114*1 ~ I* ~ 4414111*I ~ I* ~ I* ~ *II«441«1* 4 ~ ~ I 
calculate fine and coarse word )r/tes from pos * ~ ~ Itt144«11* ~ I*I ~ ~ ~ 111«1*I ~ * ~ I* ~ *I ~ 4111«III I/ 
convert(pos, &cdath, &cdatl, &fdath, &fdatl); 
addc = 0111; 
addf = 0115; 

/ ~ coazse wozd position address ~ / 
/ fine word position address ~ / 

set~crt(addc, addf, cdatl, cdath, fdatl, fdath); 



52 

/ I I ~ * ~ * ~ * ~ I I t I ~ I 4 I 4 I I I I 4 I ~ I * ~ * ~ ** ~ I ~ ~ I ~ I 4 I I I I I 4 I I * I I I I ~ * ~ I I I I ~ I ~ I **** ~ \ * ~ I * I 
read~s()c This subroutine reads the current position of 

the airbearing and returns it as a float. I ~ 0**1** ~ \0 0 it i ~ I ~ 10*00 ~ I ~ II**I ~ *it*it tit 01*II**** ~ \* ~ \* ~ I* ~ ~ *I ~ I*01*it*iiI/ 
float read~os() 
( 

int addc, addf; 
float pos; 

addc 011; 
addf = 015; 

/ ~ address for coarse position input */ 
/ ~ addzess for fine position input ~ / 

pos = read~crt(addc, addf ); 
return (pos) 

/*010400*0140 ~ I* *** ~ \ ~ ~ 01 000 ~ 1*II ~ * ~ ~ I ~ * ~ I* ~ I* ~ I* ~ 40000100 I * *140 ~ I 
check~os() c This subroutine waits until the given position is 

reached by the airbeazing. ttitiii ~ ***40 ~ I* ~ **I ~ Ittii t *0*00* ~ * ~ * ~ I* ~ 0*0**iitiitt tii *I * *** ~ * ~ / check~os(pos) 
float pos; 
( 

test=1; 
x, 
inc = 0. 0001; 

while(test) ( 
x = read~os(), if ((x&=pcs-inc) 6& (x&=pos+inc)) test = 0; 

/ ~ *** I I ~ *** ~ I ~ I I I I I I I I I ** I ~ *** ~ \ * ~ I ~ I I t I \ I I I I I I ** ~ * ~ ** I ~ * ~ * I I ** * ~ I t I I I I I t I I t 
handshake()c This subzoutine checks for a handshake between the air bearing and tha interface cards. I* ~ **I ~ 40 ~ 040 ~ ~ tl ~ I* ~ 00* ~ III*0400141100 ~ *I ~ *I ~ ****I***0* I I I *I ~ *I ~ **I*/ 

handshake ( ) 
( 

while (Elagttflagi) 
flag = inp(PC2) 

flag = flagi; 
) 

/00100 ~ *0*0 ~ I* ~ ** ~ \**000014*** ~ I* ~ 0*I ~ * ~ \*00*0401010110 ~ * ~ I ~ I*I** ~ *000000140 
convert()c This subroutine transforms a float number into the 

four hexadeximal integers needed to communicate 
with the data interface cards. 

~ 0110011** ~ \* ~ 000404 ~ Itl ~ * ~ \00* ~ Iti ~ 400 ~ 40010 ~ I ~ I** ~ ** ~ *it* ~ 4000 ~ 401*0101 ~ I/ 
convert(number, cdath, cdatl, fdath, fdatl) float number; 
int *cdatl, *cdath, *fdath, *fdatl; 
( 

int dl, sign = 0; 
float r; 
/ ~ check sign of number I/ if (number&0. 0) ( 

sign = 1; 
number = -number; 

dl = ((int)(number/100)) 
r = number — dl*100; 
*cdath = dl*16; 
dl = ((int)(r/10)); 
r -= dl*10; 



53 

*cdath += dl; 
dl = ((int)(r)); 
r -= dl; 
*cdatl = dl*16; 
dl = ((int)(r"10+ . 00005)); 
r -= (float)(dl/10. ); *cdatl += dl; 
dl = ((int)(r*100+. 0005)); r — — (float)(dl/100. ); 
*fdath = dl + sign*16; 
dl = ((int) &x*1000+. 005)); r — — (float)(dl/1000. ); Ifdatl = dl*16; 
dl = ((int)(r*10000+. 05)); *fdatl += dl; 

/ ** I ~ * I I I I I I ~ I I I ** I I I ~ * ~ *** I ~ ~ I t I I I I I I I*** ~ I I ~ * ~ I * ~ I * ~ \ ** ~ * ~ \ * ~ \ ~ I I t * I I I I I I I reedit()c This subroutine reads the coarse and the Eine words 
from the the port and converts the words into a float. 1111*}*II ~ 1**11** ~ 1*}}}} ~ I} I ~ 111 ~ ~ ~ ~ I I ~ 11* ~ * ~ 1*It»Ill}It ~ 111 ~ *11 ~ *11*1111 ~ II float reassort(addc, addf) 

int addc, addf; 
( 

int dath, datl, bits, sign, num; float number; 

num = Oxff00; 

/I set coarse address I/ 
outp(PCl, -addc); 
handshake(); 

/ ~ read in the coarse positon *I 
dath = (-inp(PB1)) — num; 
datl = (-inp(PA1)) — num; 
number (dath/16)*100. + (dath-(dath/16)*16)*10. ; 
number += (datl/16) + (datl-(datl/16)*16)/10. ; 

/I set fine address I/ 
outp(PCl, -addf ); 
handshake(); 

/» read in fine address I/ 
dath = (-inp(PB1)) — num; 
datl = (-inp(PA1)) — num; 

/* check for the sign */ 
bits = dath/16; 
sign = (Oxl 6 bits); 
dath -= bits*16; 
number += &dath- (dath/16) *16) /100. ; 
number +t (datl/16)/1000. + (datl — (datl/16)*16)/10000. ; 

/ ~ adjust for the sign +I if (sign == 0) / ~ number is negative «/ 
number = number; 

reset ports I/ 
outp(PC1, RESET); 
outp(PA2, RESET); 
outp(PB2, RESET); 

return (number) 

/*ttt ~ Ill}Ill»» ~ I** ~ * ~ ~ t »}It«}*11»t** ~ ~ *t ~ »*It It»1}ttl** ~ *I **I*** ~ ~ *ttttt 
set mode(): This subroutine commands a certain mode as given br dath and datl. * ~ *I*IIII*III** ~ ~ * ~ *«111111» * ~ ~ * ~ * ~ *11*1*II»11111»1 ~ * ~ ~ ** ~ ***1*tttltl*111/ 



54 

set mode(int dath, int datl) 
int add; /I stores the command address ~ / 

addt0101; /* set the command address */ 

outp(PCl, -add); 
outp(PA2, -datl); 
outp(PB2, -dath); 
handshake(); 

outp(PC2, STROBE)l 
outp(PC2, RESET); 

add = 001m 
outp(PCl, -add); 
outp(PA2, -datl); 
outp(PB2, -dath); 
handshake ( ); 
outp(PC2, STROBE)' 
outp(PC2, RESET); 

/ reset the ports */ 
outp(PC1, RESET); 
outp(PA2, RESET); 
outp(PB2, RESET); 

/00 ~ *004 ~ * ~ * ~ I ~ 00004*ttlll* ~ 1 *tt*lt04 0 01***t I* ~ **** ~ ~ *tt* ~ tt 01*I***II II ~ *I** 
set~crt()t This subroutine the coarse and fine words to the 

correspondin(Z addresses. 
~ I ~ *00010 ~ I ~ ~ I ~ ** ~ 00004 ~ lt* ~ I** ~ I ~ I ~ 0*040000001 ~ ~ I ~ 0*I ~ ** ~ Ilttt04400 ~ ~ 11*14/ set~crt(int addc, int addf, int cdatl, int cdath, int fdatl, int fdath) 

/04000 ~ **001 ~ 0**It tltt ~ 1*1*0 ~ I* ~ ** ~ * ~ tttlt ~ 
send coarse read word to air bearin{r. 
see pass 32, Mpacs szsTEM zMTEREAOE DmpzmzrzoN 
(BCD VERSZOM) for the bit pattern I * ~ * ~ * ~ I * I I I I I I 4* I ~ * I ~ *** ~ * I t I 4 I I I ** ~ * ~ ~ * I I / 
outp(PCl, -addc); 
outp(PA2, -cdatl); 
outp(PB2, -cdath); 
handshake(); 

outp(PC2, STROBE)l 
outp(PC2, RESET); 

/ I ~ It I I I 0 0*4 I I *** ~ \ * I I I I ~ ~ **** ~ * ~ ** ~ \ * ~ I I I I I I 
sexti fine rate word to airbearin{( 000 ~ *I ~ * ~ 01*000*14041*I ~ ~ * ~ *11 ~ 00004401*0*1* ~ / 

outp(PCl, -addf); 
outp(PA2, -fdatl); 
outp(PB2, -fdath); 
handshake(); 

outP(PC2, STROBE); 
outp(PC2, RESET); 

/ ~ ** ~ ~ tt ~ 44040*4 ~ ** ~ ~ ~ 000 * ~ *** ~ I* ~ I ~ lit*04 
clear address and data output porte **I ~ I ~ ~ ~ 00 ~ Ittt ~ I* ~ 0*000011 ~ 1*0 ~ * ~ I**\* ~ 00140/ 

outp(PC1, RESET); 
outp(PA2, RESET); 
outp (PB2, RESET); 



55 

CAI ISS. C 

written bys Eanspeter Schaub 
Dates January 26th, 1994 
Organizations Texas Aam University 

Aerospace Departement 

This program finds the relationship between voltages and 
position angle of the 1-D psD using chebyshev polynomials. 
Position the airbearing at 180 degrees and then mount the 
sensor on the center of the airbearing. The laser is sitting on 
a steady foundation aiming at the sensoz. 
The ai. rbeazing will then turn the sensor to zero the output voltage and find the corresponding angle. This is done using a 
Newton method root solver. Then the airbearing 
rotates in the positive and negative direction in 2 degree 
increments and stores the corresponding voltages. 
All angles and voltages are stored in a data file. 

»»»»**» ~ »»* ~ \ ~ »»»»»»**** ~ ~ »** ~ \ ~ *»»»» ~ \»**»* ~ »*»»** ~ *»»»»«»»»» ~ »»****»»* ~ »*/ 

()include 
finclude 
()include 
()include 
()include 
()include 
finclude 

cstdio. h& 
&math. h& 
»bios. h& 
"datbzd2 . h" 
"airbear. h" 
"cheby. h" 
&string. h& 

float check(); 
float voltage3()s 
float zero PSD(); 

/» 
dei'ine the macros 

~ / 
()define V TOLERANCE 0. 0001 
()define N SAMPLES 600 

/* 
/ ~ 

voltage tolerance considezed zezo «/ 
() of sample voltage readings «/ 

float func(float); 
double xx[1000), yy[1000]; 
int num; 

/* 
/ ~ 

arrays for the data points »/ 
number of data points obtained */ 

/ ~ function to interpolate the data points ~ / 

max, 

float 
flag; 

pos, 
V, 
pos0, 
DEGREE, 
error, 

double 
vl; 

*a, 

main() 
( 

/* declare all variables 
char key, 

*chl, »ch2s 
int i, j, k, dum, 

poly, 
dist, 
counter, 
psd, 
min, 

used »/ 

/* S of poly. coefficients»/ 
/» distance from target to PSD »/ 
/» array position counter «/ 
/* number of I'SD to be calibrated «/ 
/* stores the number of data points in 

the negative direction «/ 
/« stores the number of data points in 

the positive direction */ 
/« test flag for calibration direction */ 

/* the current airbearing position ~ / 
/« voltage of PSD «/ 
/ ~ zero voltage position »/ 
/» calibration step si. ze in degrees ~ / 
/« gives a measure of the calibration 

error, no actual unites ~ / /* temporary variables «/ 
/» pointer to poly. coef. array «/ 



56 

FILE 

conv, 
*x 
*y . 
fp, *fp2; 

/I deg to rad convertion faktor I/ 
/ ~ array for voltages «/ 
/ ~ array for positions */ 
/ ~ file pointer to store all measurements «/ 

x = (double *) calloc(5000, sizeof(double)) 
y = (double *) calloc(5000, sizeof(double)) 
chl = (char *) calloc(15, sizeof(char)); 
ch2 = (char *) calloc(15, sizeof(char)); 
configure(&; 

posmode(); 
pos = read~os() 
set~os(pos); 
setup2821&); 

/+ configures the airbearing and the 
two MetraByte cards */ 

/* configures the DT2821 board ~ / 

/ ~ I ~ «* ~ * «« I **** ~ \ ~ « ~ I I I I I I I « I 
Sensor informati. on input 

~ I ~ ««\**Ill ~ I*I ~ \*144 ~ \ ~ «** ~ I/ 
conv = 3. 14159265359/180. ! 
printf("&nEnter PSD number to be calibrated: "); 
scanf("%d", &pad); 
printf('enter distance to target: "); 
scsnf(L%d", &dist); 
sprintf(chl, "psd'tldtld. dat", psd, dist); 
sprintf(ch2, "coef%ld%1d. dat ", psd, dist); 
fp = fopen(chl, "w'); 
fp2 = fopen(ch2, "w"); 
printf("enter order of Chebyshev poly. :"); 
scanf("td", &poly); 
printf("enter degree step size:"); 
scanf("%f", &DEGREE); 
printf("PSD data is written to file %10s'!n', chl); printf("coefficients stored in %10shn", ch2); 

/ I *** ~ ««« ~ I « I * I «« I ~ *** « ~ I « I I « 
zeroing the PBD voltage 1**144««1«* ~ II ~ «II ~ * ~ ~ 4«4««14/ 

i=O; 
while (i!=1) ( 

posO = zero PSD(psd); 
printf("is this zero ok2 (y=l;n«0) L) 
scanf&"%d", &1); 

/ * I ~ «* I « ~ I ~ ~ « ~ «4**4 * « I ~ * I * ~ « ~ « 
calibration process 

« ~ II **I ~ I * ~ ** ~ \ I I I ~ I « I * ~ I * ~ ** ~ / 
print f ( " lnlnStarting Calibration: lnln' ); i«l;counter=O; 
flag = 1; 
/* press any key to stop calibration process I/ 
while(+los keybrd( KEYBRD READY)4«0) ( 

pos = posO + i»DEGREE*flag; 
pos = check(pos); 
set~os(pos); 
check~os(pos); 

/ ~ delay to 1st PSD voltage catch up */ 
dum=O;for &k»1;k&10000;k++) dum»sin(k); 

read the position voltage «/ 
read the signal strength */ 

v = voltage3(0+(psd-1)*2); / ~ 
vl = voltage3 (1+ (psd-1 ) 42 ); /» if (vl & 0. 004 && fabs(v) 1» MAX) ( fprintf(fp, L%15. 10e %15. 10ehn", v, tan((pos-posO)»conv)) 

printf("pos=%10. 5f v=%10. 5f(r", pos-posO, v); counter++; 



y[counter) = tan((pos-posO)*conv) 
x[counter] = v; 
ie+; 

else ( if (flag & 0) ( 
min = i-1; 
break; 

flag = -flag; 
max = i-l; i = 1; 
) 

) 

/ee ~ sexes*ev*e ~ ee ~ e*es*eseeeeee*a*I 
Curve fitting eeeeseessel***1** ~ \*Iteeaeees**s*as/ 

num = min+max; 

/* store the data points in ascending voltage order */ 
for (i=1;is=min;i++) ( 

xx[min-i] = x[max+i]; 
yy[min-i] = y[max+i); 
) 

for (i=1;is=max;i++) ( 
xx[min+i-1) = x(i]' 
yy[min+i — 1) = y[i]; 

a = (double *) calloc(poly+1, sizeof(double)) 
cheby fit(-MAX, MAX, a, poly, func); 
error = 0; 
for (i 0;isnum;i++) ( 

error += fabs(yy[i)-cheby eval(-MAX, MAx, a, poly, xx[1]))"DEGREE; 

fprintf(fp2, "%15. 9f(n", posO); 
fprintf(fp2, JEdhn', poly); 
for(i=O;i&poly;i++) ( printf("coef[tld] = %20. 15e(n", i, a[i]); 

fprintf(fp2, "%20. 15e(n", a[i]); 
printf("error -& tf(n", error); 
set~os(posO); 
check~os(posO); 

offmode(); 
free(a); 
free(x); 
free(y); 
free(chl); 
free(ch2); 
fclose(fp); 
fclose(fp2); 
return 0. 

/* 
check(): Takes a float n and rounds it off to the fourth digit */ 

float check(n) 
float n/ 
( 

int long num; 
num = (n*10000. + . 5) 



58 

n = num/10000. 
return n; 

/\ 
voltage3 () s Takes M SAMPLES voltage raadiags from channel 

and averages them. 
~ / 
float voltage3(channel) 
int channel; 

float a = 0. ; 
fat 
for (i=O;i&N SAMPLES;i++) ( 

a += read ad(channel); 
) 

a = a/N SAMPLES; 
return a; 

/ ~ 

sero PSD() a Subroutine to zero the PSD voltage */ 
float zero PSD(psd) 
int psd; 
( 

float pos, posl, poso, v, vl, inc; 
printf("(nzeroing the PSD voltage. (n(n"); 
pos = read~os(); /* read initial airbearing position */ 
v = voltage3 (0+(psd-1) *2&; /* read initial PSD voltage */ printf("pos=t10. 5f v=t10. 5f'(n", pos, v); 
/ ~ move aizbaariag by +1 degree and measure aew angle and voltage s/ 
posl = pos+1. ; 
posl = check(posl); /* check for round off errors */ 
set~os(posl); 
check~os(posl); 
vl = voltage3 ( 0+ (psd-1) *2); 
printf("pos=t10. 5f vkk10. 5f(n", posl, vl); 
inc = 1. /(vl-v); 
/* press any key to interupt this newton method iteratioa */ 
while( bios keybrd( KEYBRD READY)==0) ( 

pos = posl — inc*vl; 
set~os(check(pos)); 
check~os(pos&; 
v=(vol tage3 (0+ (psd-1) *2)+vol tage3 (0+ (psd-1) *21 

+voltage3 ( 0+ (psd-1) *2) ) /3 . ; printf("pos=t10. 5f vkk10. 5fhr", pos, v); if (fabs(v)&=v TOLERANCE) ( 
break; 

inc = (pos-posl)/(v-vl); 
vl = v; 
posl = pos; 
) 

return pos; 

/* 
fume() c This function linearly interpolates betweea the measured 

data points and return a float value. used by cheby fit() ~ / 
float funcifloat x) 
( 

float a; 
int first=O; 



59 

if (x & xx[0] ) ( 
a = (YY[1]-YY[0] ) /(xx[1]-xx[0] ) *(x-xx[0) ) + YY[0) . 
) 

else if (x & xx[num-1]) ( 
a = (yy[num-1] — yy[num-2])/(xx[num — 1]-xx[num-2)) (x-xx(num-11) 

+ yy [num-1]; 

else ( 
while (x &= xx[first+1] ) ( f 11 s't++; 

) 
a = (yy(first+1]-yy(first] ) /(xx[first+1]-xx[ first) ) *(x-xx[first] ) 

+ yy[first); 
) 

return a; 



60 

CHHHY. H 

autorr' Hanspeter Schaub 
Date: March 29th, 1994 
Organisationc Texas aaM University 

The following functions perform a a Chebyshev polynomial best fit. 
cheby fit()c Calculates the chebyshev coefficients c[] for the 

range [a, b] up to order n. The curve is given as 
a function. 

chevy eval()cgvaluates the actual point on a curve given the 
value x in [a b) and the chebyshev coefficients c[] 

** ~ v * e e e e e e e * v s I ~ v *** ~ * ~ v ~ v v a v \ e e v e e v e ~ v ~ \ I * ~ I e ~ \ * e e * v v v e e e e e e e ~ v e v e v v v * v v e s ~ */ 
sinclude tstdlib. h& 
()include emath. h& 

idefine PI 3. 141592653589793 
tdefine MAX 8. 
float cheby eval(); 

v/ 
void cheby fit(fl 
( 

int k, j; 
double fac, 

bpa, 
bma, 

Y 
sum; 

oat a, float b, double c [], int n, float ( func) (float) ) 

/ ~ 2/n v/ 
/v &b+a)/2 e/ 
/e (b-a)/2 */ 

/* x mapped into [-l, ll ~ / 

/v 
cheby fit()z Takes a functin func and performs a n-th order chebychev 

polynomial curve fit on it on the bound (a, b). The 
chebyshev coefi'ici. ants are stores in c[] . 

f = (double ) calloc(n, sizeof(double)); 
bma = . 5*(b-a); 
bpa = . 5 (b+a); 
for (k=O;kcn;k++) ( 

y = cos(PI*(k+0. 5)/n); 
f[k] = (float) (*func)(y*bma+bpa); 
) 

fac = 2, 0/n; 
for &j=0;jan;j++) ( 

sum = 0. ; 
for (k=O;ken;k++) ( 

sum += f [k] *cos (pI*j *(k+0. 5 ) /n) 
) c[jl = fac*sum; 

) 
free(f); 

) 

cheby eval&) Takes the chebyshev coefficinets c[] up to an order 
order of n and evaluates the f(x). ~ / 

float cheby eval(float a, float b, double c(l, int m, float x) 
( 

float d=0. 0, 



int 

dd=0. 0, 
Sv, 
y ~ 

y2; 

if ((x-a) (x-b) & 0. 0) ( printf("x not in range in routine cbeby avalon") exit(1); 
y2 = 2. 0*(y=(2. 0*x-a — b)/(b-a)); 
for (j=m-1;j&=1;j --) ( 

Sv = CII 
d = y2*d-dd+c[j]; 
dd = sv; 
) 

return y*d-dd+0. 5 c[0]; 
) 



62 

CONPIQ. C 

written by& Eanspeter Schaub 
Dates February 4th, 1993 
Organisation4 Texas ASM University 

Aerospace paper%ament 

This program will ba establish the configuration of the 3-D Lasez 
Scanning System. Por each eye, it will take three angle measurements of three known points and extract the position snd the orientation of tha eye. The three fixed points should ba located on a vertical line on the center of the airbearing an equal distance apart ~ Each target will be successively illuminated with a laser bean. 

I ~ I* ~ I* ~ ~ *** ~ I ~ «4 ~ 444444«44 ~ 4« ** ~ ** ~ *I** ~ *** ~ * ~ I*** ~ I** ~ I ~ ~ 4*4444 ~ 4444*44444/ 

¹include 
¹include 
¹include 
¹include 
¹include 
¹include 

&stdio. h& 
&math. h& 
&bios. h& 
&stdlib. h& 
"datbrd2. h4 
"cheby. h* 

float voltage(); 
¹define N SAMPLES 
¹define MAX 

1000 
8, /* maximum ysd voltage allowed */ 

main() 
( 

int 

double 

char 

FILE 

i, j, k, 
fa, 
N[2]; 
angle[4] [2], 
dum, 
beta, gamma, 
el, e2, 
error, 
dist, 
scalel, scale2, 
b, 
m[2], 
X[2], 2 [2], 
deltaO[2], 
***cosf 
x[4], z[4), 
v[2]; 

c, 
'ch; 

* fp 
*f2; 

/I focal adjustment number */ 
/ ~ 

¹ of chebyshev coef¹icients ~ / /I StareS three angles for each SD ~ / /* dummy double value ~ / 
/* temp. vaziables «/ 
/I temp. vaziables I/ 
/* offset error ~ / 
/ ~ distance to target */ 
/ ~ weighing factors foz focus adjustment ~ / /I distance between two fixed points I/ 
/I slope of the lines */ 
/ ~ position of eye I/ 
/I tangent of the zero line angle I/ 

/* array for least squaz'es coefficients ~ / /I measured coordinates of the thzee points I/ 
/* PSD voltage I/ 

/* character pointer to file name */ /' pile pointer ~ / 
/* pile pointer to setup file */ 

setup2821(); 

/ ~ I ~ 44 ~ 44 ~ 444**« ~ 4*I*I ~ **I* ~ \* ~ 444 ~ 444* ~ IIII*I ~ I 
read the Chebyshev calibration coaffients I I I ~ I ~ I I I I I I I I I I I I ** I II ** I I ~ I I I ~ I ~ I I I I I I 4 I I 4 * I 4 * / coef = calloc(2, sizeof(double *)); 

ch = (char *) calloc(15, sizeof(char)); 
for (j=0;j&41;j++) ( coef[j] = calloc(5, sizeof(double *)); 

for (k 0;k&5;k++) ( 
sprintf(ch, "coef%ld%1d. dat", j+l, k+4); 
fp = fopen(ch, "r"); 
fscanf(fp, "%If', &dum); 
fscanf(fp, "%d", BV[j]); 
coef [j ] [k) = (double * 

) callcc (N[j ] +1, sizeof (double) ); for (i=O;i&N[j];i++) ( 



63 

fscanf ( fp, Slf ", &coef [j] [k] [i] ); 
fclose(fp); 

) 

/ ~ tt ~ ttttt ~ ttttt«I ~ **«* ~ ~ \tttltttttltttttl\«II****« 
take angle measurements of three fixed points ~ t \ ~ t ~ t t t t ~ *l * t t l I t **** ~ \ ~ ~ t t t t t t l t ** t t t t ~ ~ I ***** ~ t / printf("enter the distance b in mm:"); scanf('()lf', &b)& 

printf("position 1 is the highest, position 3 the lowest!lnln') 
f2 = fopen("setup. dat", "r"); 
for (itl;i&=3;i++) ( 

v[0] = v[1) = 0. ; 
for (3«0;3&3;3++& ( 

printf("place laser on position %id!, n", i); 
while( bios keybrd( KEYBRD READY) =0) ( printf("strl = %10. 6f str2 = %10. 6f(r', voltage(1) 

voltage(3)); 
for (ktl;k&3000;k++& ( 

dum = 0; 

c = getch(); 
printf("(n"); 
v[0] += voltage(0) 
v[1] += voltage(2) 
) 

v[0] = v[0] /3 . ; 
v[1] = v[1] /3 . ; 
/ ~ measure angle for both psd eyes ~ / 
for (j«0&j&tl;j++& ( 

/» fief focal adjustment number «/ 
fscanf(f2, "tlf", &dist); 
fa = 0; k=4; 
while ((dist & k+1) && (k & 8)) ( 

k++; 
fa++; 

if (dist & 8. ) ( 
dist = 8. ; fa--; 
) 

scalel = k+1. -dist; 
scale2 = dist — k; 
/t calibrate voltage to the tangent of the angles ~ / 
angle [i] [j ] = scaleltcheby eval( -MAK, MAx, coef [j ] [fa], N[j ], v[j ] ) + 

scale2*cheby eval ( -MAX, MAX, coef [j ] [fa+1], N[j ), v[j ) ); printf('angle(&id = (&f)n", j, atan(angle[i][j]&); 
) 

printf("took position aid measurements. !, n(n", i); 
) 

fclose(f2); 
/ tl» »***»I ~ ****tt *it» tt*t*l I** ~ l** ~ ttt tltttl*lt ltt** ~ ** ~ t 

calculate position and orientation of each PSD eye * » *» ~ * I ~ * « » t I t » » * »** ~ \ * I ~ I * ~ t ~ t t ~ t t t t * ~ * t * ~ ~ *** » l * l t \ t t t ~ / fp = fopen("config. dat", "w"); 
for (j=0;j&=1;j++) ( el = b/ (angle [1] [j ] -angle [2] [j ] ) * (1 . +angle [1) [j ) *angle [2) [j ] ); e2 = b/ (angle [2] [j ] -angle [3] [j ] ) * (1 . +angle[2] [j ] *angle [3 ) [j ] ); printf("el = tf!, n", ei); 

printf("e2 = tf'Ln", e2); 



64 

X[j] = (4. *b*b*(el+e2))/(4. b*b+(el-e2)*(el-e2)); 
Z[j] = (2. b*(e2"e2-el*el))/(4. *b*b+(el-e2)*(el-e2)); 
deltaO [j ] = (X[j ] /2 [j ] -angle [2] [j ] ) / ( 1 . +X[j ) /2 [j ] &angle [2] [j ] ); fprintf(fp, '%16. 10f %16. 10f %16. 10fgn", X[j], Z[j], deltaO[j]); printf('PSD Aldhn", j+1); 
printf ( "X=afmm Z=tfmm delta0=%fdegkn", X[j ], Z [j ], atan(deltaO [j ) ) *180 . / 3. 14159265359); 

) 
fclose(fp) 
/era&&as&*vv*eve& ~ I ~ &** ~ & ~ a*i& ~ &ac& ~ a&as&seve* ~ ae ~ II ~ a ~ ~ * ~ * ~ 

find vertical offset from center point measurement 
~ * l 1 e e a & * ~ * ~ ** a ~ & * ~ *** e ~ * e t e ~ ~ e & e ~ & a e & I & * I t *** ~ * e v ** ~ * & ~ * ~ * / for (i 1 i& 3;i++) ( 

for(k=O;k&=1;k++) ( 
m[k) = (l. -deltaO[k]*angle[i][k])/(delta0[k]+angle[i][k]); 
) x(i) = (m[0]*X[0) — m[1] *X[1] + Z[1] — Z[0) ) /(m[0]-m[1] ); z(i) = Z[0] + m[0] (m[1]'(X[0]-X[1])+Z[1]-Z[0))/(m[0]-m[1]); printf('point %1d: x = 410. 5f mm z = %10. 5fmm), n", i, x[i], z[i]); 

) 
error = sqrt(pow(x[1)-x[2], 2)+pow(x[3]-x[2), 2)); printf(" vertical offset: %10. 5f(n", error); 
for (i=O;i&=1;i++) ( 

for (k=O;k&5;k++) ( 
free(coef[i][k]); 
) 

free(coef[i]); 
) 

free(coef); 
free(ch); 
return 0; 

/* 
voltage()a Takes N SAMpLES voltage readings from channel 

and averages them. 
*/ 
float voltage(channel) 
int channel; 
( 

float a = 0. ; int i; 
for (i=1;i&=N SAMPLES;i++) ( 

a += read ad(channel); 
) 

a = a/N SAMPLES; 
return a; 



65 

DATBRD2. E 

written by: Sanspater Schaub 
Datea march 4th, 1994 
Organisations Texas Aam University 

This header file contains code to communicate with the Data 
Translation 2S21 board. 

setup2821() 

set voltage() 
read ad() 
filtez() 
terminate2821 () 

- configures the 2821 board to use one D/A port 
and zeros the voltage. Also sets up the DNA 
access routines. - commands a certain voltage at the X D/A port - reads the analog ]. nput from channel c unfiltezed - filters an array by averaging each point about 
tha point before and after - terminate the ATLAS channels 

&stdio. h& 
&conic. h& 
"atldefs. c' 
"atlerrs. c" 
&stdlib. h& 
&malloc. h& 

¹include 
¹include 
¹include 
¹include 
¹include 
¹include 

& * v & s * ~ *** ~ & * & & & & & ~ & * & * & & & ~ & ** ~ & ~ & ~ & ~ & & & & & & * & & s & & & * ~ ***** ~ * ~ \ & ~ ~ & & & v & & & & s & & & & / 

«/ 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 
¹define 

ADCSR Ox240 
TNRCTR Ox24E 
DACSR Ox246 
DADAT Ox248 
SUPCSR Ox24C 
CHANCSR Ox242 
ADDAT Ox244 
NIPPERS 
BUFFER SIZE 
scan count 
n scans 
n sans 
BUFFER 

/\ 
define the macron 

1 
30 
2 
15 
2 
100 

extern int 
float 
int 

SAMPLES=15; 
*buffer; 
position; 

AL CONFIGURATION configuration; 
int channels[16]; 
int gains[16]; 
int *get buffer (); int bufnum[N SUPPERS]; 
int *buffers[N BUFFERS]; 

/ ~ channel scan list &/ 
/* gains for channels %/ 
/& get a usable buffer (see ATLEXSUB) &/ 
/& storage for buffez numbers */ 
/& array of pointers to data buffers &/ 

/& 
configure the D/A output port and sero it 

&/ 
setup2821() 
( 

int 1, 



66 

timeout; 
float rate; 
outpw(SUPCSR, Ox0021); /» sst bit Sc DAC initialize 

set bit 1: board initialize */ 
outpw(DACSR, Ox0100); /« set bit 8: Single channel select »/ 
outpw(DADAT, 2048); / ~ send zero volts to d/a channel «/ 
outpw(SUPCSR, Ox0080); /» set bit 7s DAC Single Conversion «/ 

buffer = (float *) calloc(BUFFER, sizeof(float)); 
position = 0; 

al initialize(); 
al select board(1); 
al reset(); 
dump configuration(); 

/ ~ Initialize the ATLas subroutines ~ / 
/» Select hoard 1, ths first unit */ 
/» perform a reset on the device «/ 
/ ~ Dianlay the current unit configuration «/ 

/ ~ 

define the channels and gains 
*/ 
for (i=O;i&=3;i»») ( 

channels[i] = i; 
gains[i] = 1; 
) 

/» 
Set the A/D parameters 

»/ 
al setup adc (INTERNAL TRIGGER+INTERNAL CLOCK, scan count, 

channels, gains); 
rate = 150 le3; 
al set frequency(rate); /* set frequency rats «/ 

/\ 
Allocate some data arrays, declare them to ATLas, and link them onto ths Buffez Tz'ansfer List. 

~ / 
for (i=O; i&N BUFFERS; i++) ( if ( (buffers[i] = get buffer ( BUFFER SIZE )) == NULL ) printf (" ERROR -- cannot allocate buffer %dKr'Ln', i ); else ( 

al declare buffer ( Abufnum[i], buffers[i], BUFFER SlzE ) al link buffer ( bufnum[i] ); 

al set timeout (3) 
) 

/» 
set voltage(): command a voltage v from D/A port x »/ 

set voltage(double vol) 

int v; 
v = (vol/5. *2048); 
/«check bounds of demanded voltage */ if (v&2047) v«2047; if (v&-2048) v=-2048; 

outpw(SUPCSR, Ox0020); /* set bit 5: DAc initialize */ 
outpw(DADAT, 2048+v); /» send the voltage «/ 
outpw(SUPCSR, Ox0080); /* set bit 7: single DAc conversion «/ 

) 



/» 
read ad()» reads the analog input from channel and returns a integer value 

between -10 and 10 using the ATLAS zout]. nes. 
»/ 
float read ad(channel) 
int channel; 
( 

float a; 
unsigned value; 

al adc value(channels[channel], gains[channel], &value) 

a = ((int)value-2048)/204. 8; 
return a! 

) 

/* 
read ad2(): reads the analog input fzom channel and returns a integer value 

between -10 and 10. 
*/ 
double read ad2(int channel) 
( 

double a; 
outpw&SUPCSR, Ox2240)! /» 

outpw(ADCSR, Ox0200+channel)!/ ~ 

outpw(CNANCSR, Ox0000); 
outpw(SUPCSR, Ox0010); 

/* 
/ ~ 

outpw(CHANCSR, Ox8000); / ~ 

set bit 13» Clear DMA Done 
set bit 9 s use buf far A 
set bit 6c A/D initialize »/ 
set bit 15: LLE (load list enabled) 
set bits 3-Oc 0000 Number of RAM entries 
~ / 
set bit 9c A/D Clock enable 
set bits 5-4~ 00 (gain select for 

voltage range -10 to 10& 
set bits 3-Os 0000 channel select »/ 
clear bit 15: LLB ~ / 
set bit 4» Pzeload Multiplexer */ 

/* monitor the MUXBUSY (bit 8 of ADCSR) */ 
while &(inpw(ADCSR) & 256) != 0) (& 

outpw(SUPCSR, Ox0008); /» set bit 3: Software Trigger »/ 

/» monitor A/DDONR (bit 7 of ADCSR) */ 
while ((inpw(ADCSR) & 128) != 128) () 

a = ((int)inpw(ADDAT)-2048) 10, /2048. ! return a! 
) 

terminate2821()s 
»/ 
terminate2821() 
( 

tnt 

Terminate the 2821 contzols. 

outpw(DADAT, 2048); 
outpw(SUPCSR, Ox0080)! 

for (i=O;ixN BUFFERS;i++) ( free(buffers[i])! 
) 

free&buffer); 

al terminate() 

/* send zero volts to d/a channel */ 
/* set bit 7: DAC Single Conversion ~ / 

/» terminate atlab channels »/ 



68 

/ ~ 

filter() l sakes an array of Max EOE size and filters the first SIKE 
elements by averages each element with 
the +/- SMOOTE elements. 

*/ 
filter(a, size, smooth) 
float *a; 
int size; 
int smooth; 

float 
int 

*b; 
count, pos, i; 

b = (float *) calloc(size«2, sizeof(float)); 
/* filter b and store result in a «/ 
for (pos=O;pos&size;pos++) ( 

b[pos] = 0. ; 
count = 0; 
for (z=pos-smooth;i&=pos+smooth;z++) ( if (in buffer(i, size)) ( 

b(pos) += a[i]; 
count++i 
) 

) 
b[pos] = b[pos] / count; 

/* copy b into a «/ 
for (i=O;i&size;i++) 

a[i] = b[i]; 

free(b) 
) 

/« 
in buffer() c makes sure the E is within 0 and SIKE ~ / 

int in buf f er (k, size) 
int k, size; 
( if ((k & 0) [[ (k&=size)) ( 

return 0; 
) 

return 1; 



69 

/% 
* 
~ / 

EUI ERSNQLES . H 

/z header Sile containing subroutines which construct the transformation 
matrixes for the Euler angles. 
all rotations are made according to the right hand rule) 

4/ 

/z declare the subroutines defined in 
struct matrix3 xrot(douhle angle); 
struct matrix3 yrot(double angle); 
struct matrix3 zrot(douhle angle); 

this header a/ 

/e 
Listing of the subroutines 

e/ 

/e 
xrot () Ineturns a direction cosine 

~ / 
struct matrix3 xrot&double angle) 

matrix foz' a rotation about the x-axis 

struct 
zl. ll . X 
m. rl. y 
III . 1'2 . y 
zl. 12. 1 
m. r3. y 

matr1x3 mI 
1. 0I 

= m. rl. z = m. r2. x = m. r3. x 
m. r3. z = cos(angle); 
sin(angle) I 
-sin(angle); 

0. 0 

return mI 
) 

/* 
yrot&) Iaetuzns a direction cosine 

z/ 
struct matrix3 yrot(double angle) 
( 

matrix for a rotation about the y-axis 

stree't 
m. r2. y 
BI. 12. x 
m. rl. x 
m. rl. z 
m. r3. x 

matrix3 mI 1. 0I 
m. r2. 1 = m. rl. y = m. r3. y 

= m. r3. z = cos(angle) I 
-sin(angle); 
sin(angle); 

O. OI 

return mI 

/* 
zzot() IReturns a direction cosine matrix for a rotation about the z-axis a/ 

struct matrix3 zrot(double angle) 
( 

struct 
m. r3, 1 
m. r3. x 
Ol . 1" 2 . y 
m. r2. x 
m. rl. y 

matrix3 m; 1. 0; 
= m. r3. y = m. r2. z = m. rl. z = 0. 0; 

m. rl, x = cos(angle); 
-sin(angle); 
sin(angle); 

return mI 



70 

/ ~ 

RECON. C 

written bye 
Date c 

Organisationr 

Eanspeter Bchaub 
May 10th, 1994 
Texas AAM University 
Aerospace Engineezing Depaztment 

Due to the sensitive nature of the configuration pzogzam, this 
reconi'iguzation program was developed. Three known points aze 
smasured ard then compared to the known solution. The ezror is 
used along with tha sensitivity matrix to calculate an improved 
sensor configration. 

l I t l ** t t ** l l t l l l l l l I ~ *l l l I l t I ~ *** ~ ** ~ * ~ * l l t l l t l l l l l l l l t I l t * ~ t l ****« t * l l * l l * ~ / 

()include 
()include 
iinclude 
iinclude 
()include 
4include 

&stdio. h& 
&math. h& 
&bios. h& 
&stdlib. h& 
'datbrd2. h" 
'cheby. h 

float voltage() 
void LU(); 

sdefine N SAMPLES 1000 
idefine MAX 8. / ~ maximum psd voltage allowed ~ / 

main() 
( 

int i, ii, j, k, n, 
fa, 
poly, 
N[2]; 

/» focal adjustment number ~ / /* order of inverse matrix */ 
/l 8 of chebyshev coefficients t/ 

double 

char 

FILE 

x[2], z[2], 
delta0[2], 
dum, 
error, 
***coef, 
dist[2], 
scalel, scale2, l lm 
**v 
*xr *zr 
*x *z 
*"angle, 
'*matrix, 
**A 
* dx, 
*dx2, 
*dc, 
alpha, 
s, sp; 
c, 
*oh; 
*fp. 

/ ~ position of eye */ 
/* tangent of the zero line angle */ 

/* 
/l 
/* 
/* 
/l 
/ ~ 

/ ~ 

/ ~ 
/t 
/ ~ 
/\ 
/* 
/l 
/* 
/ ~ 

/ ~ character pointer to file name t/ 

average of x, z errors t/ 
array for least squares coefficients «/ 
distance to target «/ 
weighing factors for focus adjustment ~ / 
slope of the lines ~ / 
PSD voltage2 t/ 
real position coordinates t/ 
measured position coordinates */ 
stozes three angles foz each psd eye ~ / 
matrix used during calculations */ 
sensitivity matrix t/ 
position error vector */ 
Transpose(A) . dx «/ 
configuration parameter error vector t/ 
iteration scale «/ 

setup2821() 

/* ~ ll ~ «ll«tt«l«llltl«*ll ~ «t««««««««« 
allocate memory for arrays * ~ **« ~ «««««««««*««* ~ **««**lt*ltl\t«t/ 

printf("enter 4 of points: "); 
acanf(tkd", Spoly); 
m = calloc(poly+1, sizeof(double *)); 
v = calloc(poly+1, sizeof(double *)); 



angle = calloc(poly+1, sizeof&double *)); 
for (i=O;i&poly+1;i++) ( 

m[i) = (double *) calloc(2, sizeof(double)); v[i) = (double ') calloc(2, sizeof(double)); 
angle[i] = (double *) calloc(2, sizeof(double)); 
) 

xr = (double *) calloc(poly, sizeof(double)); 
zr = &double «) calloc(poly, sizeof(double)); 
x = (double *) calloc(poly, sizeof(double)); 
z = (double *) callocipoly, sizeof(double)); 
poly = 2*poly; 

calloc(poly+1, sizeof(double )); for (i=O;i&=poly;i++) ( 
&[i] = (double *) calloc(6+1, sizeof(double)); 
) 

matrix = calloc(6+1, sizeof(double )); for (i=O;i&=6;i++) ( 
matrix[i] = (double *) calloc(6+1, sizeof(double))& 
) 

dx = (double *) calloc&poly+l, sizeof(double)); 
dx2 = (double *) calloc(6+1, sizeof(double)); 
dc = (double *) calloc(6+1, sizeof(double)); 
/I ~ 1**1 ~ I ~ 1111111*IIII ~ * ~ ***I ~ 1111111 ~ *11*«11 ~ I* 

read the Chebyshev calibration coeffients I I ~ ** I I ~ ~ ~ I * ~ ~ * ~ ~ I I I I I I * I ~ I I ~ * ~ ** I ~ ~ ~ ~ ~ ' I I ~ I I * I I */ 
coef = calloc(2, sizeof(double *)); 
ch = (char ) calloc(15, sizeof(char)); 
for (j=O;j&=l;j++) ( coef[j] = calloc(5, sizeof(double *)); 

for (k=O;k&5;k++) ( 
sprintf(ch, "coefaldald. dat", jtl, k«4); 
fp fopen(ch, "r ); 
fscanf(fp, "Slf", &dum); 
fscanf(fp, "ed , &N[j])& 
coef [j ] [k] = (double *) calloc (N[j ] +1, sizeof(double) ); for (i=O;i&N[j];i++) ( 

fscanf(fp, «%if', &coef[j)[k][i]); 
) 

fclose(fp); 
) 

/ * ~ I ~ 'I ~ I I I I I * I ~ ~ * ~ * * ~ ~ * I I I ~ \ I I ~ * ~ «* ~ I ** ~ * I I 
read old configuration parameters I ~ *** ~ I \ t I I I I** I I ~ **** I ~ * I I I I I t t** I ~ * ~ I * I * I / 

fp = fopen("config. dat', "r"); 
for (i=O;i&2;i++) ( 

fscanf(fp, "elf , &X[1]); 
fscanf(fp, "(&lf", &2[i]); 
fscanf(fp, "elf", &deltaO[i])& 

fclose(fp); 
/** I ~ ~ **** ~ ~ I I I I ~ * **I I ~ I I * \ * I ~ I I I I I I **** ~ * 

enter coordinates of the positions 
to be measured. I I I I I I ** ~ ** ~ ~ ~ I I I I I «* I ~ I ~ ** I * I I I I I I I « I * I ~ */ 

printf("enter coordinates of:ln"); 
for (i=O;i&poly/2;i++) ( 

printf("x[%1d]=", i+1); 
scanf(«%if", &xr[i]); 
printf("z[$1d)=", i+1); scanf("elf", &zr[i]); 

/ ** ~ * I ** I I I I I *** ~ * ~ ** I I « I I I I I * I ~ I ~ ** ~ ** I t 
Take voltage measurements 



72 

~ 1**1** ~ 1111111 ~ **11 ~ 1* ~ * ~ 1**1 ~ * ~ 1* ~ 11111/ 
printf("(n'); 
for (i=O;i&poly/2;i++) ( for (j=0;j&2;j++) ( v(i)[j] 

) 
) 

for (k=O;k&3;k++) ( for (i=0;i&poly/2;i++) ( 
printf("lnplace laser spot on xke7. 2f z=t7. 2fln , xr[i], sr[i]) 
printf("PRESS ANY KEY TO TAKE MEASUREMENTSln"); 
while( bios keybrd( KEYBRD READY)==0) () 
c = getch(); 
for (j=O;j&2;j++) ( v[i][j] += voltage(j12); 

) 

for (i=O;i&poly/2;i++) ( for (j=0;j&2;j++) ( v[i] [j ] = v[i] [j ) /3 . ; 

alpha = 1. ; 
error = 10. ; 
while (error & . 0001) ( /*11 ~ 111** ~ ~ ~ 111 ~ 11* ~ 1* ~ 1 ~ 1** ~ ~ * ~ \* ~ 1111111 

take angle measurements and 
calculate the positions ** 1 ~ 1 ~ ~ 1 ~ 1 1 1 1 1 1 * 1 ~ 1 *** 1 1 ~ 1 ~ * 1 ~ 1 1 1 1 * 1 1 * ~ * ~ ~ ~ / for (i=O;i&poly/2;i++) ( dist[0) 1 dist[1) = 6. ; for (j=O;j&=1;j++) ( /1 loop for focus iteration */ 

/1 meaaure angle for both psd eyes */ 
for (ii=0;ii&2;ii++) ( /* find focal adjustment number '/ 

fa = 0; 
k = 4; 
while ((dist[ii] & k+1) ! & (k & 8)) ( 

k++; 
fa++; 
) if (dist[ii] & 8. ) ( dist[ii) = 8. ; fa--; 

scalel = k+1. -dist[ii]; 
scale2 = dist[ii) — k; 
/* calibrate voltage to the tangent of the angles ~ / 
angle [i] [ii] = scalel cheby eval( — MAX, MAX, coef [ii] [ fa), N[ii] 
, v[i] [ii] ) + scale2*cheby eval (-MAX, MAX, coef [ii] [ fa+1), N[ii) 
, v[i][ii)); 
m[i][ii] = (l. -delta0[ii)*angle)i)[ii])/ 

(deltaO [ii] +angle [i] [ii] ); 
) 

/* calculate measured position 1/ 
x [i] = (m[i] [0] *X[0] — m[i] [1] 1K[1] +Z [1] -Z [0] ) / (m[ i] [0] — m[i] [1) ) 
z [i] = Z [0] +m[i) (0) * (m[i] [1] * (X [0] -X[1] ) +2 (1) — Z [0] ) / (m[i)[0)-m[i][1]); 
/1 update distance estimate in inches ~ / for (ii=0;ii&2;ii++) ( dist[ii) = sqrt(pow(x[1)-X[ii), 2)+pow(z[i]-Z[ii], 2))/25. 4; 

) 



73 

printf('xsld0%8. 3f ztld488. 3f ", i, x[il, i, z[iJ); 
) printf("Kr"); 

/000 ~ 1*11 ~ ** ~ 01 ~ 1*1**0 ~ ~ ~ 0011100000 ~ 0001 
Calculate position error vector 000000****00* ~ * ~ \* ~ **I* ~ ~ 0*It tt0tt t1 ~ 0*1/ 

error = 0. ; 
for (i=O;i&poly/2;i++) ( j = 1+1*2; 

dum = xr[i] — x[i]; 
error += fabs(dum-dx(1+i02)); 
dx [1+i*2) = dum; 
dum = zr[i] - z[i]; 
error += fabs(dum-dx[2+i*2]); 
dx[2+i*2) = dum; 
) 

/ * I I I I ~ ***** ~ * ~ I I I I t I I It I I ~ ***4*4 I I ~ I ** ~ 
Calculate Sensitivity Matrix I I I I I ~ ~ I * * ~ I ~ * I I I I ~ I I I I * I I I ~ I ~ \ **** ~ *** ~ / 

for (i=O;i&poly/2;i++) ( 
s = pow(sin(atan(angle[i)[0])+stan(deltaO[0])), 2); 
sp = pow(sin(atan(angle[i][1])+atan(deltaO[1])), 2); A[1+2*i) [1] m[i) [0] /(m[i] [0) — m[i] [1] ); A[1+2*i) [2] = -1 . / (m[i] [0] - m[i) [1) ); 
A[1+2*i) [3 ] = (x[i] -X[0] ) / (m[i] [0] — m[i] [1] ) /s; A[1+2*i) [4] = -m[i] [1) / (m[i] [0] — m[i] [1] ); A[112*i) [5] = 1. /(m[iJ [0] — m[i) [1] ); 
A[1+2*i) [6] = (X[1) -x[i) ) /(m[i] [0] — m[i] [1] ) /sP; A[2+2*iJ [1] = m[i) [0) *m[i] [1) /(m[i] [0] — m[i) [11); 
A[2+2*i) [2] = -m[i] [1) /(m[i) [0] — m[i] [1] ); A[2+2*i] [3] = ( (z [i]-2[0] ) /(m[i] [0]-m[i] [1] ) — (z [i]-Z [0] ) /m[i] [0) ) /S; A[2+2*i] [4) = -m[i] [0] *m[i] [1] /(m[i) [0) — m[i] [1] ); A[2+24i] [5) = m[i] [0) /(m[i) [0] — m[i] [1) ); A[2+2*i] [6) = (Z[0] — z[i] — m[i] [0]*(X[0]-X[1] ) ) /(m[i) [0] — m[i] [1) ) /sp; 
) 

/00000011*1*01 ~ I ~ I* ~ I*00*04000 01 011*1110 
Calculate dx2 Transpose (A) . dx 

~ ~ 0 *It 0 0 ~ 01 110** ~ *\ ~ * ~ *** ~ **0*0 ~ 010 011t*/ 
for (i=1;i&=6;i++) ( 

dx2 [ i. ) = 0 . ; 
for (j=l;j&=poly;j++) ( 

dx2[i) += A[j] [i)*dx[jl: 
) 

) 

/0100 ~ II* ~ *** ~ 0*00000111***01 ~ * ~ I ~ *I** ~ I 
Calculate matrix I Transpose(A). A 

~ I ~ *I ~ * ~ I ~ I ~ 0000101100 ~ I* ~ I* ~ *It*It* ~ 040/ 
for (itl;i&=6;i++) ( 

for (j=l;j&=6;j++) ( 
matrzx[z)[3) = 0. ; 
for (k=1;k&=poly;k++) ( matrix[i][j] += A[k][i] *A[k][j] 

) 
) 

) 
/t**I ~ * * * ~ ** t 01 ~ 1**I*It*I**040040414*I *I 

Solve linear set of equations using Cholesky LU decomposition I I I I ~ I I I * 0 * ~ I * ** I * I * 'I I I * I I I I I * I I * ~ * I * ~ * *** *** ~ * * I I * I I I + I I I I I *4 I * I * I * ~ I / 
LU(6, matrix, dx2, dc); 
/ I I ** I ~ * ~ ~ I ** ~ * I I I I I I \ I I I * I ~ ~ I ~ *** I *** *** * I t 

Adjust old configuration parameters 
1 0*4 I ~ I * ~ I ~ I ~ I I I I I I I 4 I * I I I ~ I * ~ ***** I * ~ I I I I 4 I / for (i00;i&2;i++) ( 

X[i] += alpha*dc[1+ij3]; 



Z[i] -= alpha*dc[2+i"3]; 
deltaO(il -= alpha*dc[3+i*3] 

printf( lnlnNew configurationcln ); for (i=O;i&2;i++) ( 
printf("X[%1d] = %f Z [%)d] = %f delta0[%1d] = %fin", i, X[i] . i Z[i], i, deltaO[i]); 

printf('Do you want to store this result? (Yes=1;No=0) ); scanf("%id", &1); if (i==1) ( 
fp = fopen("config. dat', "w"): 
for (j=0;j&2;j++) ( 

fprintf ( fp, "%16 . 12f %16 . 12f %16 . 12f(n", X[j ], Z [j ], deltaO [j ] ); 
fclose(fp); 
printf("Result stored. ln"); 
) 

else ( 
printf("Result not stored. Kn"); 
) 

/I e e e ~ I e ~ e* ~ e e e eee+ ew e II 
free pointers ee**ee ~ II** ~ &**as ~ &aeeee/ 

for (i=O;i&=1;i++) ( 
for (k=O;k&5;k++) ( 

free(coef[i] [k]); 
free(coef[i]); 
) 

free(coef); 
free(ch); 
for (i=O;i&=poly;i++) ( free(a[i]); 

) 
for (i=O;i&=6;i++) ( 

free(matrix[i]); 
) 

free(matrix); 
free(A); 
freeidx); 
free(dx2); 
free(dc); 
free(x); 
free(z); 
free(xr); 
free(zr); 
for (i=O;i&=poly/2;i++) ( free(m[i]); 

free(v[i)); 
free(angle(i]); 
) 

free(m); 
free(v); 
free(angle); 
return 0; 

) 

/e 
voltage() c Takes N sAMszss voltage readings from channel 

and averages them. 
e/ 
float voltage(channel) 



75 

int channel; 
( 

float a = 0. ; 
int i; 
for (i=1;i&=N SAMPLESli««) ( 

a +« read ad(channel); 
) 

a = a/N SAMPLES; 
return a; 

/* LU()« 
subroutine uses a LU decomposition to solve the linear set of 
equations, to save memory the the L and U matrix are stored in 
the augmented A matrix */ 

void LU(int n, double **a, double *b, double *alpha) 
( 

int i, j, k, m, ii, ipl, jml, iml; 
double **A, sum, max, ab, 

/«allocate memory «/ 
A = calloc(n+l, sizeof(double *)); 
for (i=0;i&=n;i++) ( 

A[i] = (double ") calloc(n+2, sizeof(double)); 
) 

/ ~ make augmented a matrix ~ / for (i=1;i&=n;i++) ( 
A[i][n+1) = b[i]; 
for (j=l;j&=n;j++) 

A[i] [j] = a(i] [j]; 
/* search first column of matrix for largest element «/ 
m= 1; 
max=fabs(A[1](1)); 
for (i=2;i&=n;i++) ( if ( fabs (A[i] [1] ) & max) ( 

max=fabs(A[i][1)); 
m=i; 
) 

) 

if (max == 0) ( printf(" no unique solution exits 1n'); exit(1); 
) 

if (m!= 1) [ 
for (j=l;j&«n+1;j++) ( 

max = Afm][j]; 
A(m](jl = A(1)(j]; 
A [1] [ j ) = max; 

) 
/ ~ calculate first row of the new matrix «/ 
for (j=2;j&=n+1;j+t) 

A[1][j] = A[1][j]/A[1][1]; /* calculate the ith column from A[i] [i) to A[nl[i] «/ 
for (i=2;i&=n;i++) ( 

j«1; 
for (ii=j;ii&=n;ii++) ( 

sum=0. 0; 
jml=j — 1; 
for (k=1;k&=jml;k++) 

sum = sum + A[ii][k] *A[k][j); A[iil[j] = A[ii](j] — sum; 
) 



76 

if (i != n) ( 
/* search for largest A[ii)[j) value from A[i)[i] 

to A[n][i) */ 
m=i; 
max=fabs(A[i)[i]); 
ipl=i+1; 
for (ii=ipl;ii&=n;ii++) ( 

ab = fabs(A[ii)[i)); if (ab & max) ( 
max = ab; 
m ii; 
) 

if (max == 0. 0) ( 
printf(" no solution m=tdRn", m) exit(1); 
) 

if (m! i) ( 
for (j=l;j&=n+1;j++) ( 

max. = A[m][j]; 
A[m) [j ] = A[i] [j ]; A[i][j] = max; 
) 

) 
) 

/a CalCulate the neW elementa Of the ith rOW frOm A[i] [i+1] to A[i] [n+1] &/ 
ipl = i+1; 
for ( j =ipl; j&=n+1; j++) ( 

sum = 0. 0; 
iml = i-1; 
for (k=1;k&=iml;k++) 

sum = sum + A[i](k] *A[k] [j]; A[i][j) = (A[i][j] — sum)/A[i][i]; 
) 

) 
/* solve for alpha by hack substitution */ 
alpha[n) = A[n][n+1]; 
for (i=1;i&=n-1;i++) ( 

sum = 0. 0; 
for (j=n-i+1;j&=n;j++) 

sum = sum + A[n — i] [j ] *alpha [j ); 
alpha[n-i) = A[n-i] [n+1] — sum; 
) 

for (i=0;i&=n;i++) ( 
free(A[i)); 
) 

free(A); 
) 



77 

written by: Nanspeter Schaub 
Date: Pebruazy 9th, 1993 
Organisation: Texas ASN University 

Aerospace Departement 

This is the main 3-D scannin{{ program. It performs proi'ile scans of an 
object on an airbearing and then zotates the airbearin{r slightly. 
The "PSD eye« calibation and configuration data are read in from 
previously established data files. (see CALIB. C and CONPlg. c) 

1 1 ~ 1 ~ * 1 ~ 1 1 ~ 1 1 1 1 \ 1 *** 1 * 1 * ~ *** ~ ** 1 1 * 1 1 1 t 1 \ 1 ~ 1 * ~ ** 1** ~ 1 ** ~ 1 * ~ ** ~ 1 ** ~ * 1 t * 1 1 ~ 1 1 t 1 1 1 / 

¹include 
¹include 
¹include 
¹include 
¹include 
¹include 
¹include 
¹include 
{) inc 1ude 
¹include 

&stdic. h& 
1math. h& 
&bios. h& 
&stdlib, h& 
&string. h& 
"datbrd2. h" 
"airbear. h" 
"vector. h' 
"euler. h" 
"cheby. h" 

/1 ~ 1*1111* ~ *1 ~ 1* ~ 11«11«11*11 
define the macros 1111 ~ 111« ~ 1**1** ~ 11 ~ 11« ~ «111/ 

¹define MAX 8. 
¹define MIN SIGNAL 0. 004 
¹define MAX SCAN 300 

float check() 

main() 
( 

int 

float 

double 

char 

struct 

i, j, k, ii, jj, kk 
fa, 
FIRST, 
poly(2), 
smooth, 
time, 
N scan; 
posO, 
pos, 
dum, duml, 
inc, 
scalel, scale2, 
sl, s2, 
dist[2], 
theta, 
motor, 
vol[2], 
*vl, *v2, 
scan angle; 
***coef, 
alpha[2], 
m[2], 
X [2 J, 2 [2], 
RO, 
deltaO[2J; 

«ch; 
vector 

/1 
/* 
/ ~ 

/1 

/* 
/ ~ 

/ ~ 

/1 

airbearing motion increment */ 
weighing factors for i'ocus adjustment */ 
stores signal strengths */ 

distance to target in inches 1/ 
angle from initial position ~ / 
motor voltage */ 
stores the cuzrent PSD voltages ~ / 
arrays to store the PSD voltages 1/ 
scan angle to be performed ~ / 

poly. coef. for PSD calibration */ 
incidence angles 1/ 
slope cf incident light 1/ 
arrays for PSD position */ 
radius of circular camera flight path 1/ 
array for PSD orientation */ 

/1 
/* 
/* 

/ ~ 

/1 
/ ~ 

/ ~ 

/1 
/* 

/1 
/* 
/1 
/* 
/1 

/* stores the output file name 1/ 
/» camera frame vector of obs. point «/ 
/* inertial vector of obs. point */ 
/ ~ inertial position of camera */ 

rl, 
12, 
r, 

focus adjustment factor «/ 
¹ of profile scans to be performed 1/ 
flag indicating first profile point */ 
¹ of chebyshev coef. */ 
smoothing factor o! the digital filter ~ / 
counter for elapsed time 1/ 
¹ of points per profile scan */ 

initial aizbearing position ~ / 
actual aizbearing postition «/ 



78 

rc; /I camera frame vector of camera */ 
struct matrix3 C; /* camera ozientation matt'ix */ 
PILE fp *fp2; 

/ ~ * ~ tttlttltllltt*tl*l**ttt IIIIIII*11* ~ ~ * 
read the Chebyshev coeffients 111** ~ I*\I ~ 11111** ~ Il ~ * ~ 1*t ~ ~ ~ ttttttttlt ~ / 

ch = (char *) calloc(15, sizeof(char)); 
coef = calloc(2, sizeof(double *)); 
for (j10;j&=1;j++) ( 

coef[j] calloc(5, sizeof(double )); for (k=O;k&5;k++) ( 
sPrintf(ch, "coeftlda1d. dat , j+l, k+4); 
fp = fopen(ch, "r"); 
fscanf(fp, "%if", &RO); /* read in an unused variable */ 
fscanf(fp, "%d", &poly[j]); 
coef[j)[k) - "(double *) calloc(poly[j]+l, sireof(double)); 
for (i=O;i&poly[j];i++) ( 

fscanf(fp, elf , &coef[j][k)[i]); 
) 

fclose(fp); 
) 

) 

/ ~ I ** ~ * ~ ~ I I I I I I I I * ~ I **** ~ \ * ~ ~ I I ~ I I I I I * I ~ I 
read the PSD position, orientation * ~ * I ~ \ ~ *** I * I I I I \ I I I I ~ ~ ~ \ ~ ** ~ * I I I I t I ~ I I I t / 

fp = fopen("config. dat", "r"); 
for (j=O;j&=1;j++) ( 

fscanf(fp, ttlf', &X[j]); 
fscanf(fp, "elf', &Z[j]); 
fscanf(fp, "elf", &deltaO[j]); 

fclose(fp); 
/** ~ I ** ~ * ~ \ It I I \ ~ ** I ~ * ~ *** I ~ * It I I I I I I I I * ~ 

calculate the camera parametezs I ~ I I I * ~ * ~ I ~ I I \ ~ * I I I ~ I **** ~ \ ~ ~ I I I ~ I I I I ~ I * I / rc. x = 0. 5*(X[0]+X[1] ); rc. y = 0. ; rc. z = 0. 5*(Z[0]+Z[1]); 
RO = rc. x; 

/ I I I I** I* ~ I ** ~ It I I I I I I * I I I ~ ~ ** ~ * ~ ~ I I I I I I * I I I ~ 
configuze airbearing and read position * ~ I ~ I I ~ I I ~ I I ~ ~ I* ~ I ~ I ~ I ~ 1 1*1 ~ * ~ I * ~ * I ~ *11*1 ~ I II/ 

configure (); 
posO = read~os(); 
posmode(); 
set~os(posO); 

/ t I I I ~ *I * I I ~ ** ~ I I I I I I I I I I I I I ~ I ~ ** I * I I I ~ I I I I I ~ 

configure the 2821 data board \11111111 ~ ~ * ~ 11*11*11111* ~ 1 ~ * ~ **I*It*11111* ~ I/ 
setup2821(); 
set voltage(. 15); /* warm up motor */ 

/ ~ ~ I I I I I I ~ I ~ *** ~ * ~ I I I ~ I I I** ~ 
entez scan infozmation I ~ *I I I 11 I ~ * I ~ I* I ~ I Ill I ~ I *I ~ / 

printf("The current airbearing position is: 810. 6f degreesNnNn", posO) printf("enter scan angle in degrees:"); scanf("tf", &scan angle); 
printf("enter angle between profile scans:"); scanf("af", &inc); 
M = ((int) scan angle/inc) + 1; 
printf("enter smoothing filter factor:"); 
scanf("%d', &smooth); 
printf("enter output file name: "); 
scanf("ts", ch); 



ch = street(ch, ". dat"); 
FIRST = 0; 
while(FIRST != 1) ( 

printf("enter scanning motor voltage:") scanf('tf', &motor); 
set voltage(motor); 
printf("Is this speed ok? (Y=l/N=O)"); 
scanf("%Id", &FIRET)! 
) 

printf("(n'(nThis run will scan from %10. 6f deg to %10. 6f deg. (n", 
posg, posO+scan angle); 

printf("A total of '%d profile scans will be performed. (n", N); 
printf("Output will be stored in file:%s(n", ch); 
printf("(n'(nlnTurn off any lights!" ); 
pz intf( lnPRESS ANY KEY TO START SCANNING . Inln ) 
while (~los keybrd( KEYBRD READY)==0) (); c = getch(); 
/* ~ ttt ttt***Ill** ~ **II Ill t ~ * ~ *IIII**** ~ *t*ttt 

Start the 3-D scanning operation I I ~ ** I I ~ I I ~ I ~ I I ~ \ I * I I I I ~ I I ~ * ~ ** ~ I I t I I ~ I * I * I I I / printf (" (nScanning has begun. (npress any key to interuptln" ) 
fp = fopen("dummy. dat", "w"); 
i = 0; 
pos = posO; 
vl = (float *) calloc(MAX SCAN+1, sizeof(float)); 
v2 = (float ) calloc(MAX SCAN+1, sizeof(float)); 
printf("STATUS; %6. 2f%%lr", i*100. /N); 
while ((i&N) && ( bios keybrd( KEYBRD READY)==0)) ( fprintf(fp, "%14. 9f(n", (float)(pos-posO)I3. 14159265359/180. ) 

/ I I I I I * I I I ~ \ ** ~ I ~ I I 
Profile Scan 

~ * ~ IIIIII ~ I* ~ ~ I**It/ 
j = 0; 
FIRST = 1; 
time = -32000! 
while (time & MAX SCAN) ( vl[j] = read ad(0); 

v2[j) = read ad(2); sl = read ad2(1); 
s2 = read ad2(3); if ((fabs(vl[j])&MAX) && (fabs(v2[j])&MAX) && 
(sl&MIN SIGNAL) && (s2&MIN SIGNAL)) ( /*if ((fabs(vl[j])&MAX) && (fabs(v2[j])&MAX)) [*/ 

3++' 
if (FIRST) ( 

time = 0! 
FIRST = 0; 
) 

) 
time++; 
) 

/ I I I I I * ~ I * ~ I * ~ I I I ~ I I I I * I ~ ** ~ * I I I I I I I I I I I 
Move airbeazing to new position &*Ill* ~ I* ~ t*tttll ~ * ~ ** ~ * ~ IIII ~ II*I ~ * ~ * ~ / 

1++ ' 
pos = poso + i*inc; 
pos = check(pos); if (pos &= 360. ) pos -= 360. ; else if (pos & 0. ) pos += 360. ; set~os(pos); 
printf('STATUS: %6. 2f%%!, r", il100. /N); 

/ I I I I I I I I I ~ ***** I \ I I I I I ~ * I ~ **** I I I I I I ~ I t 



80 

filter voltages by central averaging ** ~ ~ I ~ I I I ~ I I ~ I ~ I I * I ~ I ~ I I ~ **** I ~ * ~ \ ~ I ~ I I */ 
filter(vl, j, smooth); 
filter(v2, j, smooth); 

/* ~ *I ~ \11111111* ~ *11*1 ~ I***** ~ 1*1 ~ ~ 1*ttt 
store voltages in file "dummy. dat 
while airbearing is moving 1111 ~ *I* ~ I* ~ ** ~ ** ~ \ttttIII\1111***11* ~ I ~ / 

fprintf(fp, '%dan", j); 
for (k=O;k&j;k++) ( 

fprintf(fp, "814 . Bf %14 . 8f1n", vl [k], v2 [k) ) 
) 

check~os(pos); 
) 

fclose(fp) 
free(vl); 
free(v2); 
/111 ~ *1111 ~ I** ~ * ~ 1*tttt ~ 1111 

turn scanning motor off \*ttIII ~ **I ~ * ~ \* ~ ** ~ * ~ 111111/ 
set voltage(0. ); 
/\111111111111 ~ * ~ *I* ~ **11111111111 11* ~ 1*1* ~ I** ~ *I ~ 

Postprocessing of voltages into 3D points * I I ~ * ~ I ~ III \ III*I ~ I ~ I* ~ I I * ~ * ~ I I II I I ~ I II II* ~ I* I ~ I I ~ / 
printf("Kn1nperforming postprocessing(n"); 
fp = fopen("dummy. dat", "r"); 
fp2 = fopen(ch, "w"); 
for (i=O;i&N;i++) ( 

printf("STATUS: &6. 2fa&hr", i 100. /N); 
/ ~ I I ~ ~ I I I I \ I I * I I I I ~ ** I ~ * I I I I I I I I I I \ * I I I I I I ~ I ~ I ***** I I 

find inertial camera position and orientation 
~ I t I I ~ I * I I * ~ I ** ~ ** I ~ I I I I I t ~ I ~ * I* I** ~ I ** ~ **** I ~ I ~ I t t I I / 
fscanf(fp, "&f", &theta); 
fscanf(fp, "&d", &N scan); 
C = trot(-theta); r. x = cos(theta)*RO; 
r, y = sin(theta) *RO; r. z = rc. z; 
for (j=O;j&N scan;j++) ( 

fscanf(fp, "%f", &vol[0)); 
fscanf(fp, "af", &vol[1)); 
/111 ~ ~ II*I ~ * ~ ~ 1111 ~ I ~ *I ~ ~ *** ~ ***I* ~ I 

loop twice trough position 
calculation to adjust for focus 1*111111 ~ ~ I* ~ \1111* ~ *11*11111*1 ~ *11*/ 

for (ii=0;ii&2;ii++) ( if (ii==0) dist[0] = dist[1] = 6. 
for (k=O;k&=1;k++) ( 

/* find focus adjustment number */ 
fa = 0; jj = 4: 
while ((dist[k] & jj+1) && (jj & 8)) ( jj++; 

fa++' 
) if (dist[k] 1 8. ) ( 
dist[k] = 8. ; fa- — ; 
) 

scalel = jj+l. -dist[k]; 
scale2 = dist[k]-jj; 



8[ 

/& find tangent of PSD incidence angle ~ / 
dum = cheby eval(-MAX, MAX, coef[k] [fa], poly[k], vol [k] ); 
duml = cheby eval(-MAX, MAX, coef [k] [fa+1], poly[k], vol [k] ) 
alpha[k] = scalel*dum + scale2*duml; 
/ ~ find the slope z/ 
m[k] = (l. -deltaO(k]'alpha[k])/(deltaO[k]+alpha[k)); 
) 

/* calculate position in camera frame «/ rl. x = (m[0] &X[0] — m[1] *X[1] + Z[1] - Z[0] )/(m[0]-m[1] ); rl. y = 0. ; rl. z = Z[0] + m[0)*(m[1]*(X[0]-X[1])+Z[1]-Z[0])/(m[0]-m[1]); 
/ ~ update distance estimate in inches+/ 
for (k=O;k&2;k++) ( 

dist[k) = sqrt(pow(X[k] — rl. x, 2)+pow(Z[k]-rl. z, 2))/25. 4; 

/ ~ &*0\ease ~ x*44*II ~ * ~ a ~ \* ~ ** ~ *I ~ **1aew&aw ~ awwz&w*&&*we*&wee ~ 
find light position vector in inertial coordinate frame 

& & 0 a w 0 a 0 ~ * ~ & **I * e z & e 0 I & w z 0 * w w *** & e ~ & * ~ ** we * ~ ** ~ ** & \ e z t & et & w e / 
r2 = add(r, Mdot(C, sub(rl, rc))); 
fprintf(fp2, "t16. 10f 616. 10f t16. 10f(n", r2. x, r2. y, r2. z); 
) 

) 

fclose(fp); 
fclose(fp2); 
for (i=O;i&2;i++) ( 

for (k&0;k&5;k++) ( 
free (coef[i] [k] ); 
) 

free(coef[i)); 
) 

free(coef); 
free(ch); 
printf("Nn(nSCAN PROCESS COMPLETED. ln(n"); 
return 0; 

) 

/& 
check() r Takes a float n and rounds it off to the fourth digit e/ 

fIoat check(n) 
float n; 
( 

int long num; 
num = (n*10000, + . 5) 
n = num/10000. ; 
return n; 



82 

/z 
* VECTOR. E 
*/ 

/* header file defining all the vector structures and operations «/ 

/* declare the structures used ~ / struct vector ( 
double x; 
double y; 
double z; ): 

struct matrix3 ( 
struct vector rl; 
struct vector r2; 
struct vector r3; 
); 

/ ~ Declare all function defined */ 
struct vector add(struct vector, struct vector); 
struct vectorsub(struct vector, struct vector); 
struct vectormult(double, struct vector); 
struct vector cross(struct vector, struct vector&; 
double dot(struct vector, struct vector); 
struct matrix3dotT(struct vector, struct vector); 
double mag(struct vector); 
struct vectormdot(struct matrix3, struct vector); 
struct matrix3MdotM(struct matrix3, struct matrix3); 
struct matrix3transpose(struct matrix3); 
struct matrix3Mmult(double, struct matrix3); 
struct matrix3Madd(struct matrix3, struct matrix3); 
struct matrix3Msub(struct matrix3, struct matrix3); struct matrix3tilde(struct vector); 
struct matrix3inverse(struct matrix3); 
double det(struct matrix3); 

/ ~ 
~ DEPININQ ALA VECTOR PVNCTIONS AND OPERATIONS 

/e subz'outine to perform the dot product of two vectors 
~ / 

doubledot(struct vector vl, struct vector v2) 
( 

return (vl. x*v2. x+vl. y*v2. y+vl. z*v2. z) 
) 

/ ~ subroutine to calculate the cross product of two vectors 
~ / 

struct vector cross(struct vector vl, struct vector v2) 
( 

struct vector v; 
v. x = vl. y*v2. z — vl. z*v2. y; 
v . y = vl . z*v2 . x — vl . x*v2 . z; 
v. z = vl. x*v2. y — vl, y*v2. x; 
return v; 

/e subroutine to add two vectors 
~ / 

struct vector add(struct vector vl, struct vector v2) 

struct vector v; 

v. x = v2. x+vl. x; 
v. y = v2. y+vl. y; 
v. z = v2. z+vl. z; 
return v; 



83 

/» subroutine to subtract two vectors 
~ / 

struct vector aub(struct vector vl, struct vector v2) 
( 

struct vector v; 

v. x = -v2. x+vl, x; 
v. y = -v2. y+vl. yI 
v. z = -v2. z+vl. zI 
return v; 

) 

/ ~ subzoutine to mulitiply a scalaz by a vector 
»/ 

struct vector mult(double k, struct vector vl) 
struct vector v; 
v. x = vl. x»kI 
v. y = vl. y*k; 
v. z = vl. z*kI 
return v; 

) 

/» subroutine to do the outer dot product of two vectors v. vT 
returns a 3x3 matrix */ 

struct matrix3doty(struct vector a, struct vector b) 
( 

struct matrix3 mI 

m. rl = mult(a. x, b)I 
m. r2 = mult(a. y, b) I 
m. r3 mult(a. z, b) I 

return mI 
) 

I» subroutine to find the magnitude of a vector */ 
doublemag(struct vector a) 
( 

return sort&dot&a, a))I 
) 

/* subroutine to dot a vector with a 3x3 matrix / struct vector Mdot(struct matrix3 m, struct vector a) 
( 

struct vector r; 
r. x = dot(m, rl, a) r. y = dot(m. r2, a) r. z = dot(m. r3, a) 

return rI 
) 

/» subzoutine to find the transpose of a 3x3 matzix */ 
struct matrix3 transpose(struct matrix3 m) 
( 

struct t. rl t. r2 t. r3 
return 

ma'trix3 
Mdot&m, (struct vector) (1. 0, 0, 0)) I 
Mdot(m, (struct vector) (0, 1. 0, 0)); 
Mdot(m, (struct vector) (0, 0, 1. 0)); 
t& 

I» subroutine to perform the dot product between two 3x3 matrixes ~ / struct matrix3 MdotM(struct matrix3 ml, struct matrix3 m2) 
( 

struct matrix3 a; 



m2 
a. rl 
a. zl 
a. rl 
a. r2 
a. r2 
a. r2 
a. r3 
a. r3 
a. r3 

transpose(m2); 
x = dot(ml. rl, m2. rl); 
y = dot(ml. rl, m2. r2); 
z = dot(ml. rl, m2. r3); 
x = dot(ml. r2, m2. rl); 
y = dot(ml. r2, m2. r2); 
z = dot(ml. r2, m2. r3); 
x = dot(ml. r3, m2. rl); 
y = dot(ml. r3, m2. r2); 
z = dot(ml. r3, m2. r3); 

return a; 

/* subroutine to multiply a constant times a matrix ~ / struct matrix3 Mmult(douhle k, struct matrix3 m) 
( 

m. rl = mult(k, m. rl); 
m, r2 = mult(k, m. r2); 
m. r3 = mult(k, m. r3); 
return m; 

/» subroutine to add two matrices «/ 
struct matrix3 Madd(struct matrix3 ml, struct matrix3 m2) 
( 

struct matrix3 m; 

m. rl = add(ml. rl, m2. rl) 
m. r2 = add(ml. r2, m2. r2) 
m. r3 = add(ml. r3, m2. r3) 
return m; 

/ ~ subroutine to subtract two matrices */ 
struct matrix3 Msuh(struct matrix3 ml, struct matrix3 m2) 
( 

struct matrix3 m; 

m. rl = suh(ml. rl, m2. rl) 
m. r2 = suh(ml. r2, m2. r2) 
m. r3 = suh(ml. r3, m2. r3) 

return m; 

/ ~ subroutine Co return a tilde matrix «/ 
struct matrix3tilde(struct vector v) 
( 

struct matrix3 m; 

m, rl. x 
m. rl. y 
m. rl. z 
m. r2. x 
m. r2. z 
m. 13. x 
m. r3. y 

m. r2. y = m. r3. z = 0. 0; 
v. z; 

v. y; 
v. z; 
v. xi 
v. yi 

V. X; 

return m; 

/ ~ subroutine to calculate the determinants oi' matrix m */ 
douhledet(struct matrix3 m) 
( 

douhle a; 

a = -m. rl. z*m. r2. y*m. r3. x+m. rl. y*m. r2. z*m. r3. x+m. rl. z*m. r2. x*m. r3. y 



85 

m. rl. x*m. r2. z*m. r3. y-m. rl. y*m. r2. x*m. r3. z+m. rl. x*m. r2. y*m. r3. z; 
return a; 

) 

/v subroutine to return the inverse of the 3x3 matrix m *I 
struct matrix3inverse&struct matrix3 m) 

struct matrix3 a; 
a. rl. x 
a. rl. y a. rl. z 
a. r2. x 
a. r2 . y a. r2. z 
a. 13. x 
a. r3. y a. r3. z 
a Maul 

-m. r2. z*m. r3. y+m. r2. y m. r3. z; 
m. rl. z*m. r3. y-m. rl. y*m. r3. z; 
m. rl. y*m. r2. z-m. rl. z*m. r2. y; 
m. r2. z*m. r3. x-m. r2. x'm. r3. z; 
m. rl. x*m. r3. z-m. rl. z*m. r3. x; 
m. rl. z*m. r2. x-m. rl. x*m. r2. z; 
m. r2. x*m. r3. y-m. r2. y*m. r3. x; 
m. rl. y*m r3. x-m. rl. x'm. r3. y; 
m. rl. x*m. r2. y-m. rl. y*m. r2. x; 

t&i. lier. &m), a); 
return a 



86 

VITA 

Hanspeter Schaub is the son of Hanspeter and Margarita Schaub of Fuellinsdorf, Switzerland. 

Hanspeter received the Matura Typus-C from the Gymnasium Liestal in Switzerland in 1987. 

After fulfilling his military duties with the Swiss army he went to Texas A&M University in 1988. 

He earned a B. S. degree in aerospace engineering in spring of 1992. Staying with Texas A&M he 

studied under Dr. J. L. Junkins toward his master's degree with an emphasis in dynamics and 

controls. Hanspeter will continue on at Texas A&M University to work towards a doctorate 

degree. His permanent mailing address is Hanspeter Schaub, Giebenacherstrasse 73, 4414 

Fuellinsdorf, BL, Switzerland. 


