
Efficient Polygonal Intersection
Determination with Applications to

Robotics and Vision

Christohper E. Smith and Hanspeter Schaub

Simulated Reprint from

IEEE/RSJ International Conference on
Intelligent Robots and Systems
Edmonton, Alberta, Canada, Aug. 26, 2005

Efficient Polygonal Intersection Determination with
Applications to Robotics and Vision

Christopher E. Smith Hanspeter Schaub
Dept. of Electrical and Computer Engineering Dept. of Aerospace and Ocean Engineering

The University of New Mexico Virginia Tech University
MSC01 1100 215 Randolph Hall

1 University of New Mexico Blacksburg VA, 24061
Albuquerque, NM 87131-0001

Abstract
Several robotic and computer vision applications
depend upon the efficient determination of polyg-
onal self- and mutual-intersection checking. The
commonly used algorithms for intersection check-
ing rely upon static geometric primitives, such as
lines and vertices. When these geometric primi-
tives are dynamic, that is moving or changing
shape, these algorithms become inefficient due to
repeated actions that do not utilize topological
features of the primitives. In this paper we present
a novel algorithm for line segment intersection
checking that builds a query structure and then
updates the structure using previously computed
topological data. We exploit the fact that the
amount of model deformation is limited during
any single iteration, yielding a relatively small
bookkeeping cost to maintain the query structure.
The result is an algorithm whose asymptotic runt-
ime complexity in the expected case is better than
competing methods. We then suggest an extension
of this work into higher dimensions (polytope
intersection for 3-D and higher).

1. Introduction

Intersection checking is a crucial activity for
many robotic and computer vision applications.
Many potential techniques have been developed
to perform intersection checks in collections of
line segments and polygons; however these algo-
rithms rely upon the geometric primitives (line
segments and vertices) being static. In applica-
tions where geometric primitives are allowed to
deform, these algorithms must be restarted from
scratch after each deformation. This leads to gross
inefficiencies that can result in asymptotic runt-
ime complexity higher than simple brute force
algorithms.

In particular, we begin with an application of
intersection checking derived from our previous
computer vision work in active deformable mod-
els (snakes, see Figure 1for an example image)
[5][7]. Our particular energy functional in these

models requires that we perform self-intersection
checking. In other forms of these models, self-
and mutual-intersection checking becomes neces-
sary when multiple snakes are used topologically
adapt to apparent splits and merges in tracked tar-
gets [8] (See Figure 2). Merges occur when two
(or more) snakes mutually-intersect and the indi-
vidual snakes are merged into a single model (as
with the red and green snakes). Splits occur when
a snake self-intersects and the result is two (or
more) snakes evolving from the original (the blue
snake shown before a split occurs).

Since snakes are often applied to dynamic
objects in video streams (see Figure 9 for a
sequence from a mobile-manipulation applica-
tion), there is a strong real-time constraint placed
upon the models. If intersection checking is ineffi-
cient, then it jeopardizes the real-time requirement
of the system.

To address this problem, we investigated the
work on intersection checking that has previously

Figure 1 A snake tracking a beach ball section

Figure 2 Mutual (left) and self (right) intersections

appeared in active deformable model and in com-
putational geometry literature. Lin and Gottschalk
[3] provide an excellent overview of many of the
techniques from robotics, computational geome-
try, and computer graphics. The technique most
closely related to ours is the technique of Cohen,
et al. presented in [1]. This technique uses pro-
jected, axis aligned bounding boxes to drive coli-
sion detection among “close” polytopes. The pro-
jection reduces the dimensionality of the query by
one. That is, intersection among 3-D polytopes
will occur after projection of the bounding boxes
into 2-D. While efficient, our particular applica-
tion has further topological knowledge that allows
us to improve upon the expected time for a colli-
sion query from for the method of
Cohen et al. to where is the number
of rectangles (i.e. bounding boxes) and is the
number of intersecting rectangles.

Starting from a brute force algorithm, we modi-
fied the algorithm to be more efficient. In doing
so, we uncovered some topological constraints
that suggested a more efficient method might
exist. Using ideas from both computational geom-
etry and our own optimized brute force approach,
we developed a new, efficient method for deter-
mining line segment intersections that out per-
forms existing algorithms in our application
domain. We then looked at extending the algo-
rithm to higher dimensions (beyond 2-D) that
have potential in other application areas. In all
these cases, when the geometric primitives are
deformable (e.g. allowed to move and change
shape) that our algorithm becomes significantly
more efficient than alternative approaches.

2. Prior Work

Prior work in intersection checking has been
almost exclusively performed under the auspices
of computational geometry. A brute force tech-
nique exists that simply tests each possible pair of
line segments to determine if the segments inter-
sect. This algorithm is clearly where n is
the number of line segments. This is not very effi-
cient and generally is not used in computational
geometry literature.

In general, efficient line segment intersection
checking is based upon a class of algorithms
known as sweep-line or sweep-plane algorithms
[6]. Sweep algorithms are equivalent to sorting
and therefore require comparisons to
determine which of line segments intersect (or
if any intersections occur). The basic sweep algo-
rithms lexicographically sorts the line segment

endpoints and uses a priority queue to store the
 sorted endpoints. The algorithm then only per-

forms at most work where is the total
number of intersections. This gives us a

 algorithm to determine if a polygon is
simple (does not self-intersect). Since the control
points of a snake are in constant motion, the algo-
rithm needs to re-sort the endpoints after every
control point update, making a naive application
of this technique for a single iteration
of the snake algorithm (that is, each control point
gets updated once).

It is clear that the naive sweep algorithm is
rechecking segments that need not be rechecked
and re-sorting the entire set of segments when
only two segments (the two that have the updated
control point as an endpoint) need be checked.
Several authors have noted this and produced
algorithms that are variations of a technique
called sweep-and-prune [3]. These techniques do
not naively re-sort the entire list, giving an
improvement over this approach. These improve-
ments still yield runtimes over our target of

 where is commonly a constant,
yielding runtime.

A technique specifically adopted for use in
snake algorithms relies upon graphical line draw-
ing to identify line segment intersections [2].
Basically, a graphical bitplane is initialized to
zeros and then each line segment is drawn into the
bitplane using a unique segment id number as the
pixel color value. When an attempt is made to
draw onto a pixel whose value is already non-
zero, then an intersection has occurred between
the segment currently being drawn and the seg-
ment whose id is stored in the pixel. The major
problem with this algorithm is that aliasing (stair
stepping) of the graphical line segments can
incorrectly report both false positives and false
negatives (see Figure 3 where the red represents
one snake, the blue the other, and the black repre-
sents a detected intersection). The false positives

O n nlog K+()
O n K+() n

K

Θ n2()

Θ n nlog()
n

2n
2n K+ K

Θ n nlog()

Θ n2 nlog()

O n K+() K
O n()

Figure 3 A false positive and a false negative case

can be easily handled by performing a confirma-
tion intersection check, but the false negatives
cannot be confirmed. In order to eliminate false
negatives, another algorithm must be used,
destroying the advantages of this method.

One technique to eliminate this problem
involves drawing lines with a width of two pixels
to eliminate the false negatives; however this can
significantly increase the number of false posi-
tives. Overall, this algorithm is substandard for
line segment intersection applications with
dynamic geometric primitives.

3. More Efficient Intersection Checking

Improved Brute Force
Initially, we used the brute force technique to

determine whether or not intersections exist.
While inherently inefficient, the algorithm is sim-
ple and, as discussed in the previous section, was
better than the naive application of a sweep algo-
rithm.

The method for determining whether or not a
pair of line segments intersect is computationally
expensive relative to other basic operations in the
intersection checking algorithm. The most com-
mon method uses, for a single pair of segments,
four dot-products and multiple coordinate com-
parisons [4]. It is therefore beneficial to reject
testing certain pairs if simple comparisons can
rule out the possibility of an intersection. We used
a popular bounding-box-overlap method to reject
many of the pairs in our snake application. One
simply determines the bounding box for each line
segment that is to be checked and if these bound-
ing boxes overlap each other the segment pair is
tested for intersection. Degenerate cases can force
this technique to run slower than the unmodified
brute force algorithm; however, such degenerate
cases are virtually impossible to produce in real-
world data.

3.1 The New 2-D Algorithm

The sweep technique, while not suited to
changing geometric primitives, has desirable
aspects that are useful in intersection checking.

We used sweep algorithms as a template for the
construction of a query structure that will be used
in our algorithm. When a snake is initially cre-
ated, we know that the snake is a simple polygon
and therefore we only need to build the underly-
ing query structure. The structure is comprised of
two lexicographical sorts (in both and) of the

snake control points. This can also be thought of
as projecting the line segments onto the - and

-coordinate axes (see Figure 4).
During the structure’s construction, basic topo-

logical features are calculated and stored in the
structure to improve algorithm efficiency. Specifi-
cally, these topological features include the great-
est spans of any segment in and in (shown in
red in Figure 4), the minimum and maximum
coordinates over all the control points, and the
minimum and maximum coordinates over all
the control points (all marked with blue arrows).
Once built, the query structure can be directly
accessed through pointers stored in the snake con-
trol point structures for intersection checking and
for updating. Figure 5 shows how a snake control
point node exists within the lexicographically
sorted lists and within the snake model itself. The
lexicographical lists can be conceptualized as
doubly-linked lists while the snake itself is repre-
sented as a doubly-linked ring.

When a control point’s location is updated, the
two segments that have the control point as an
endpoint are used to access the query structure.
The basic idea is to search in both the increasing
and decreasing directions of the lexicographical
sort to determine candidate segments to test for
potential intersection. The candidate segments are
determined similar to the bounding box test used
in our modified brute force algorithm.

X Y

X
Y

Figure 4 Line segment projections

y

x

X Y
X

Y

Cntrl pt, seg-
ment, and

topological
information

…

…

… X-sorted list

Y-sorted list

Figure 5 A snake node’s relationship to
the query structure

…… snakesnake

…

During such a test, only one of the two lexico-
graphically sorted lists needs to be used, so the
axis with the largest difference between the mini-
mum and maximum coordinate values for that
axis. This heuristic is based upon the assumption
that the axis with this largest difference will also
be the axis with the fewest overlaps among the
projected line segments.

The distance from the control point that must
be searched is determined by the greatest span of
any segment for the axis used in the sort. For
instance, two line segments might intersect if,
when lexicographically sorted, they overlap (akin
to bounding box overlap) in the sort. Figure 6
shows the two cases where line segments will
overlap in the lexicographical sort. Consider that
control point has been updated. Since we know
the greatest span of any segment projected into
the coordinate axis, one only needs to search half
of that distance below and half of that distance
above . This will guarantee that any segment
that lexicographically overlaps will have an
endpoint encountered during the search process.
This occurs regardless of whether the overlap is
the left or the right case in Figure 6.

While the query structure can be built in
, this is a one-time cost and the efficiency

actually depends upon the number of line seg-
ments that are tested and the updates to the struc-
ture. In our snake application, the snake must be
reparameterized to maintain validity of the energy
model. To address this, the control point spacing
is bounded by both a minimum and a maximum
length. Because of this, and in part due to the lim-
its placed upon control point motion during a sin-
gle iteration, we can guarantee that control points
will move only small distances during any update.
When a move occurs, the point may be required to
move inside the lexicographically sorted lists to
maintain the query structure; however, small
motion will generally mean that the number of
positions in the lists that the control point must be
moved will be in the expected case. It is

this topological knowledge that allows us to
reduce our runtime.

Similarly, given any snake other than severely
degenerate cases, the number of line segments
that will need to be checked will be
expected case for a single control point update.

In both instances (updates and tests) the
expected case runtime is for each control
point, the overall expected case runtime for an
entire snake iteration (where each control point is
updated once) will cost .

Worst case runtime is much worse, reaching a
theoretical limit of . Heuristically, we
choose either the or the list by picking the
one with the greatest span measured by

 where is either or . This
limits our exposure to degenerate cases, but does
not eliminate them. In fact, a true degenerate case
that produces an runtime is virtually
impossible to obtain for our application. It would
require a snake that looks like the one pictured in
Figure 7. This case requires that every line seg-
ment overlaps every other segment in both the
and the directions. In practice, we have never
witnessed any case that did not exhibit the
expected case behavior.

The most difficult part of maintaining the query
structure is keeping the topological data updated.
The maximum and minimum values in each ordi-
nal direction are relatively easy to derive during a
single snake iteration; however the greatest seg-
ment span in and in are more difficult to
derive. Upon a control point update, the spread of
the two changed segments must be checked to see
if they exceed the current maximums. If they do,
then the greatest spread must be updated for use
through the end of the current iteration. At the
same time, new greatest spread data must be col-
lected only from those segments that have been
updated during the current iteration. Once the iter-
ation ends, this new data replaces the old spread
data and will in turn be used for the next iteration.
These updates have a constant runtime, but the
housekeeping requires careful attention to the
topological data and its current validity.

Figure 6 The two cases for line segment overlap

a

b

c
a

b

c
d d

c

c
d

cd

Θ n2()

Θ 1()

Θ 1()

Θ 1()

Θ n()

O n2()
X Y

maxW minW– W X Y

O n2()

Figure 7 A degenerate snake

X
Y

X Y

3.2 Experimental Validation

3.3 Extension to Higher Dimensions

The basic ideas in our 2-D algorithm can be
extended to 3-D (and higher) geometric models.
The limiting factor will be maintaining nearly uni-
form geometric primitive size. In 2-D, this was
taken care of via the spacing constraint placed
upon the snake by reparameterization require-
ments. In 3-D, the basic geometric primitive
becomes a polygon and the lexicographical sorts
must be maintained along three axes (, , and

). For two polygons to have a potential intersec-
tion, the polygons’ spreads must overlap in each
of the three ordinal directions. Since the intersec-
tion tests rely upon knowing the greatest spread
over all polygons in the model and the constant
time performance relies upon these spreads to be
relatively uniform across all the polygons, again
we must enforce reparameterization of the model.

Fortunately, most 3-D models already require
reparameterization. For instance, finite element
meshes generally enforce minimum and maxi-
mum triangle areas, forcing reparameterization
when a triangle in the mesh either becomes too
large or too small.

The extension to 3-D opens up new applica-
tions in areas such as collision detection and
graphical modeling. The same technique can be
extended arbitrarily; however, the utility and effi-
ciency lessen as dimensions are added to the
model space. Basically, the overhead incurred to
maintain the multiple lexicographical lists (one
for each dimension) overwhelms the gains in effi-
ciency produced from the use of the query struc-
ture to identify candidate geometric primitives for
further intersection tests. In general, the number
of applications in robotics and vision are greatly
reduced for dimensions higher than three.

4. Experimental Evaluation

We have tested our improved intersection
checking using a simple snake application built
from the OpenCV image processing libraries. The
brute force intersection checking exhibited signif-
icant slowdown when the number of snake control
points reached >80. This is typical of a
algorithm. With our new intersection algorithm,
snakes with >200 control points continued to run
at the frame rate of the camera being used (a USB
webcam). These tests were performed on a Pen-
tium III laptop with a 700Mhz clock.

Code profiling on our improved algorithm
showed that using snakes with a high number of

control points, the vast majority (>90%) of the
machine cycles were used by the Tcl/Tk interface
on our demonstration application. This was a
completely unexpected result given that the
improved algorithm still has a worst case perfor-
mance that is the same as the brute force algo-
rithm. We then benchmarked our results by timing
the intersection code.

To verify our analysis of the expected case
runtimes, we conducted two sets of experiments.
One set used the brute-force method on simple
object tracking cases where relative object size
determined the number of snake control points.

In Figure 8 we see the time taken (blue data
points) by the brute-force method when checking
a single line segment against the entire polygon.
The plot shows time in microseconds (vertical
axis) vs. number of control points (horizontal
axis) with multiple trials for each size of object.
The plot shows the characteristic linear growth
with respect to the number of control points.
Remember that this is the time taken for a single
segment to be checked, so that the time to check
the entire polygon follows the predicted .
We then conducted the same set of object tracking
trials using our improved algorithm. These results
are plotted in red. The time remains constant even
when intersections are induced by occlusion of
the object being tracked. This results in our pre-
dicted complexity where is a con-
stant, thus reducing the expression to .

5. Conclusions

We have presented a novel line segment inter-
section checking algorithm that has a significantly
lower expected case runtime than popular alterna-
tive algorithms. The methods works well with
dynamic geometric primitives and can easily be
extended to higher dimensional geometric mod-
els. Our results show a significant decrease in the
runtime of our selected example application of
active deformable models (e.g. snakes) allowing
snakes of well over 100 control points (in a single
snake or combined when running multiple snakes

X Y
Z

Θ n2()

25 50 75 100 125 150 175

20

40

60

80

100

120

140

Figure 8 Comparison of intersection runtimes

T
im

e
(m

se
cs

)

Number of control points

O n2()

O n K+() K
O n()

simultaneously) without significant system slow-
down.

6. Acknowledgements

This work has been supported in part by the U.S.
Department of Energy under Grant No. DE-
FG04-95EW55151 issued to the Manufacturing
Engineering Program at the University of New
Mexico, by the Sandia National Laboratories Uni-
versity Research Program (SURP), and the
Department of Electrical and Computer Engineer-
ing at the University of New Mexico.

7. References

[1] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi,
“I-COLLIDE: an interactive and exact collision
detection system for large-scaled environments,”
Proceedings of the ACM Symposium on Interac-
tive 3D Graphics, 1995.

[2] J. Ivins, “Statistical snakes: active region models,”
Ph.D. Thesis, University of Sheffield, 1996.

[3] M. Lin and S. Gottschalk, “Collision detection
between geometric models: a survey,” Proceed-
ings of the IMA Conference on Mathematics of
Surfaces, 1998.

[4] J. O’Rourke, Computational Geometry in C, Cam-
bridge University Press, Cambridge, UK, 1998.

[5] D. Perrin and C. Smith. “Rethinking classical
internal forces for active contour models,” Pro-
ceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, 2001.

[6] F. Preparata and M. Shamos, Computational
Geometry: An Introduction, Springer-Verlag, new
York, NY, 1985.

[7] H. Schaub and C. Smith, “Color snakes for
dynamic lighting conditions on mobile manipula-
tion platforms,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots
and Systems, 2003.

[8] S. Stoeter and N. Papanikolopoulos, “Closed
Dynamic Contour Models that Split and Merge,”
Proceedings of the IEEE International Conference
on Robotics and Automation, 2004.

Figure 9 An image sequence from a mobile-
manipulator security application

