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Debris strikes on operational spacecraft are becoming more common due to increasing numbers of space objects.

Sample return missions indicate hundreds of minor strikes, but rigorous analysis is often only performed when a

strike causes an anomaly in spacecraft performance. Developing techniques to identify and assess minor strikes that

do not immediately cause anomalous behavior can help to validate models for debris populations and aid in the

attribution of future anomalies. This study developsmethods to detect subtle abrupt orbit perturbations indicative of

minor debris strikes. An extended Kalman filter with dynamicmodel compensation is used to estimate a spacecraft’s

orbit state based on simulated full-state (i.e., GPS) measurements. The filter is applied to the data forward and

backward in time, and then amodified Fraser–Potter smoother is used to produce a fused state estimate. Various test

statistics are developed and compared to identify abrupt unexpected changes in spacecraft velocity; techniques

includeMcReynold’s filter-smoother consistency test and theMahalanobis distance between forward and backward

filter states. A trade study is performed to investigate the performance of test statistics as a function of filter

parameters, and a Monte Carlo analysis illustrates the filter’s ability to detect and estimate strikes.

Nomenclature

A, CD, ρ, J3 = various common parameters for orbit perturba-
tions, defined in accordance with referenced
sources

A = state dynamics Jacobian (units vary)
a, e, h = semimajor axis (km), eccentricity (unitless), and

orbit angular momentum (km2∕s)
a = spacecraft acceleration, km∕s2
B = matrix that maps accelerations to state, unitless

(for this application)
DMH = Mahalanobis distance, unitless
~H = measurement partials, unitless (for this application)

K = Kalman gain (units vary in accordance with
measurement/state units)

md = mass of debris, kg
ms = mass of spacecraft, kg
P = covariance matrix ( �P denotes a priori)
Q = process noise spectral density matrix, km∕s2
q = process noise power spectral density, km2∕s5
R = McReynold’s filter-smoother consistency statistic
R = measurement noise covariance (units vary in

accordance with measurement units)
r = spacecraft position, km (r denotes scalar position)

S = process noise covariance (units vary in accor-
dance with state units)

v = spacecraft velocity, km∕s (v denotes scalar
velocity)

vd = velocity of debris, km∕s
W = weighting function for smoother, unitless
w = unmodeled acceleration, km∕s2 ( _w denotes time

derivative)
X, Y, Z = components of r in inertial frame, km
X = filter state, km, km∕s, and km∕s2 ( _X denotes

time derivative)
β = momentum enhancement factor, unitless
γ = coefficients for calculating state process noise

(units vary in accordance with state units)
Δp = change in momentum of spacecraft, kg·km∕s
ΔV = change in velocity of spacecraft, km∕s
δ = Dirac delta
η = random element of first-order Gauss–Markov

process, km∕s3
μ = geocentric gravitational constant, km3∕s2
τ = time constant for first-order Gauss–Markov

process, s
Φ = state transition matrix
∼N �a; b� = distributed according to Gaussian distribution

with mean a and variance b

I. Introduction

T HE population of trackable fragmentation debris has more than
doubled in the past 25 years [1]. This is especially concerning

because while trackable debris can be avoided by maneuverable
satellites, most fragmentation events also create clouds of debris
too small to track. The Space Surveillance Network (SSN) tracks
debris down to around 10 cm in low Earth orbit (LEO) and 70 cm in
geosynchronous Earth orbit (GEO) [2], but a piece of debris smaller
than 1 cm can cause mission-ending damage to a spacecraft if it
hits a sensitive component [3], as shown in Fig. 1a. Based on current
estimates for nontrackable debris populations, it is predicted that
well under 10% of the potentially hazardous debris population
is tracked [4]. While definitive anomaly attribution is challenging,
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several spacecraft have experienced abrupt anomalous events plau-
sibly caused by debris, such as Telkom-1 [5], AMOS-5 [6], NSS-806
[7], and Intelsat-29e [8].
However, not all debris strikes are fatal. In August of 2016, the

Sentinel-1A spacecraft experienced an anomaly consisting of an
abrupt attitude perturbation (Fig. 1b) coupledwith a slight orbit change
and simultaneous decrease in solar power output. Onboard cameras
confirmed a debris strike on the solar array, but the damagewas limited
and operations continued nominally [9]. Similar events have been
detected on NASA’s magnetospheric multiscale (MMS) spacecraft,
where anomalous behaviors havebeennoticed andattributed to strikes,
but the effects were recoverable and operations continued nominally
[10]. In addition to these damaging strikes, which cause anomalous
behaviors, small strikes occur on spacecraft without even perturbing
operations. Sample return missions such as the Long Duration Expo-
sure Facility and the Hubble solar arrays have cataloged hundreds to
thousands of debris craters after a few years on orbit (Fig. 1c) [11].
Other constellations have experienced events like Sentinel-1A,

and a 2017 report by the NASA Engineering and Safety Center
(NESC) incorporates these events into a study comparing observed
anomalies to failures predicted using then-current debris models
(ORDEM3.0) and typical risk assessmentmethods. TheNESC report
assessed reported versus predicted failures for several LEO satellite
systems. For one LEO constellation, seven perturbation events had
been observed where satellites experienced sudden unexpected
movements thought to be caused by debris, while the risk assessment
process predicted 24–164 perturbations. Comparing these and other
events to predicted events, the NESC report found very low correla-
tion between the on-orbit events and the ORDEM3.0 predictions,
with ORDEM3.0 predicting a higher risk of failures and perturba-
tions than these LEO systems have experienced [13]. A key recom-
mendation of the NESC report is to collect data on satellite orbital
perturbations and momentum changes.
The NESC report findings are timely, as the space industry is in a

period of rapid change. The number of active spacecraft has more
than doubled in the past 4 years. This burgeoning population leads to
elevated concerns about space debris risks, with more objects poten-
tially being hit by nontrackable debris, which creates still more
debris. Meanwhile debris mitigation requirements for missions are
spotty and sometimes archaic, with a smorgasbord of differing guide-
lines from various players. Against this backdrop it is imperative that
models accurately assess risks and are consistent with operator
experience to incentivize sustainable behaviors. Inaccurate risk
assessments cast doubt on the state of debris, leading to a lack of
consensus in the debris research community, which produces more-
or-less stagnate policy and legislation with extremely limited
progress on remediation. Accurate models are necessary so that the
current status of debris is known and validated, enabling accurate,
trusted predictions of the future debris environment and thus moti-
vating effective legislation, policy, and remediation activities.
A silver lining emerges in the form of satellite-as-a-sensor initia-

tives. Following theNESC report’s recommendation, these proliferated

satellites themselves can be used as in situ sensing platforms to improve
knowledge about the local debris environment. This can be accom-
plished by sensing the momentum perturbations produced by minor
debris strikes and using the data to tune debris environment and risk
models, refining estimates of uncertain parameters. In addition, detec-
tion of debris strikes has obvious implications for autonomous satellite
state of health monitoring. While various dedicated sensors have been
proposed to detect strikes, most satellites, especially low-cost commer-
cial satellites, do not have the design bandwidth to fly these sensors. A
preferred solution is developing methods to process standard telemetry
used by many operational spacecraft to produce algorithms that can
detect minor momentum perturbations too subtle to be observed in the
normal course of operations.
This paper develops techniques to accomplish this by designing an

orbit determination filter that accentuates abrupt, unexpected
changes in spacecraft velocity. By postprocessing existing data or
analyzing new data operators and modelers can gain information
about the local debris environment for improved understanding of
spacecraft risks. The goal of these techniques is to detect benign
impacts that do not cause meaningful damage to a spacecraft, but
could cause issues if impacting a sensitive component like a sensor, a
battery, or a pressurant tank.
Various researchers have investigated similar concepts for identi-

fying effects from abrupt, unexpectedmomentum transfer. Some key
related work has been done by ExoAnalytic Solutions on detecting
momentum impulse transfer events (MITEs) on GEO objects using
their global telescope network. They have demonstrated a capabi-
lity to detect orbit perturbations with in-track velocity changes of
0.2–10 mm∕s [14]. Figure 2 shows an example of one MITE, as
indicated by the measurement residuals from ExoAnalytic’s ground-
based network, where modeling a small ΔV resulted in an improved

Fig. 1 Examples of small debris impact effects. The tank in a) was impacted by a 2 mm aluminum sphere. The hole in c) is 2.5 mm.

Fig. 2 Graphic published by ExoAnalytic Solutions [14] showing filter
residuals with and without an estimated MITE.
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fit for the residuals. Similarly, a recent study by the Fraunhofer Ernst-
Mach-Institut assesses the momentum transferred during small
hypervelocity impacts on spacecraft materials via modeling and test,
and then simulates the dynamic response of a spacecraft to these
disturbances [15]. On the LISA Pathfinder, located around L1, mis-
sion data was used to identify 54 micrometeoroid impact events
[16] via rotational momentum transfer. A paper by the Institute for
Defense Analyses discusses methods to monitor satellites for small
changes in orbit [17] with the intent of cataloging minor debris
impacts and feeding back the results to debris models. Methods
proposed for detecting orbit changes include changes to satellite
mean altitude (dSMA), crosslink disruption, and using standalone
GPS position measurements to identify a discrepancy from the
satellite’s nominal orbit.Motivated by theNESC report, Bennett et al.
developed methods to identify subtle perturbations in spacecraft
angular momentum [18] and applied these techniques to NASA
spacecraft [19], successfully identifying instances of unexpected
abrupt angular momentum perturbations. This work is unique among
these developments by implementing adaptations to a Kalman filter
that uses typical navigation telemetry to enhance detectability of
minor unexpected orbit changes.
Looking more broadly at orbit change detection, many authors

have applied a broad smorgasbord of techniques for detecting
unknown maneuvers using various filtering techniques. Highlights
include theOrbit Determination Toolkit byAnalytical Graphics, Inc.,
which employs a backward-running fixed-interval smoother to esti-
mate velocity changes due to an impulsive maneuver [20], and
various flavors of fixed-epoch smoother. Ko and Scheeres investigate
the use of thrust Fourier coefficients to detect unknown maneuvers
[21], while Holzinger et al. detect and characterize maneuvers using
control-distance metrics [22]. Kelecy and Jah develop techniques to
detect and reconstruct maneuvers of low-thrust LEO satellites [23],
and Jiang et al. employ a Mahalanobis distance-based technique to
detect unknown maneuvers [24].
This paper investigates a technique that is similar to but unique

from these, wherein an extended Kalman filter (EKF) with dynamic
model compensation (DMC) is used to estimate unmodeled accel-
erations as a first-order Gauss–Markov (FOGM) process and then
augmented with various test statistics. The filter is applied forward
and backward across the data and then smoothed, and various test
statistics are developed and compared to identify the highest signal-
to-noise ratios (SNRs) in the presence of a small change in velocity.
The backward filter employs a mirrored FOGM model for the
unmodeled accelerations and produces a state estimate using only
“future” data, instead of a smoothed state estimate using both past and
future data as with many smoothers. This modification enhances
debris strike detectability by accentuating the difference between
forward and backward states at the point of the debris strike. Simu-
lated onboard navigation telemetry is employed to develop and test
the filter; very basic orbit propagation andmeasurement noisemodels
are used since the focus is on methods development and characteri-
zation.
First, a filter is developed to produce a state estimate appropriate

for detecting orbit perturbations due to debris strikes. A “truth” orbit
is generated using basic orbit propagation plus a simulated debris
strike, and then this truth state is used to produce simulated GPS
telemetry (position and velocity). An EKF with DMC is developed
and applied to this telemetry, where theDMCmodels the acceleration
state as an FOGM process. For debris strike detection the filter is
modified such that it can be applied backward in time, and then a
smoother is applied to fuse the forward and backward state into a
smoothed state estimate. Several test statistics are developed to
postprocess the filter output and accentuate the effects of the debris
strike, including a Mahalanobis distance and a McReynold’s filter-
smoother consistency test. The filter performance is assessed using a
trade study to characterize the filter’s ability to detect strikes while
trading the FOGM time constant and the power spectral density of the
state process noise.AMonteCarlo analysis is performed to character-
ize the performance when detecting and estimating the size of a
randomized debris strike. Finally, some minor orbit perturbations
are added to the truth state but not the filter dynamics model. This

illustrates the filter’s performance in the presence of additional
unmodeled accelerations. Discussion includes expected challenges
when the filter is applied to on-orbit telemetry, and the potential
utility of these techniques for understanding the hazardous nontrack-
able debris environment.

II. Filter Development

A. Generating Simulated Navigation Telemetry

Simple two-body orbit propagation is used throughout this paper,
except as noted in Sec. IV.D. While modeling higher-order orbital
perturbations will be critical in applying these techniques to on-orbit
telemetry tools already exist for precision orbit determination and
these tools can be leveraged in real-world applications. The focus
here is on methods development, so a two-body orbit propagator is
used. Default orbit parameters are listed in Appendix A; these are
used throughout unless otherwise specified in the text.
A debris strike is applied as an instantaneous change in velocity

(ΔV). Since themomentum transfer effects of a hypervelocity impact
typically resolve in less than a second [25], a strike will essentially
occur between two telemetry points. Themomentum imparted by the
debris strike is calculated as

Δp � βmdvd (1)

where Δp is the momentum transferred to the spacecraft, β is the
momentum enhancement factor [26], md is the mass of the debris,
and vd is the velocity of the debris relative to the spacecraft. This is
applied in the inertial frame to produce the ΔV, but vd can be
specified in either the inertial or orbit frame and then converted if
needed. By conservation of momentum, the change in spacecraft
velocity is then

ΔV � Δp
ms

(2)

At the specified strike time this change in velocity is applied to the
spacecraft state and the newpoststrike orbit state is propagated for the
rest of the specified simulation time. The default values for the debris
strike parameters are provided in Appendix A, and any changes from
these values are specified. Note that when a change is specified in the
text as a scaled proportion to the “default” strike, themass is scaled by
that amount. The default debris mass is 0.2 g, so a “5X strike”
specified in the text means that the mass of the debris is set to 1 g
instead. From the spacecraft orbit state, full-state measurements are
derived, intended as a basic simulation of GPS telemetry. These
position and velocity measurements consist of the truth state with
Gaussian noise superimposed in accordance with the noise parame-
ters specified in Appendix A. As with orbit propagation this model is
far simpler than real-world noise characteristics, comments on apply-
ing these methods to real-world telemetry are included in the dis-
cussion, Sec. V.

B. Implementing EKF with DMC

The EKF is implemented per the algorithm of Tapley, Schutz, and
Born (TSB; [27], p. 212). The filter uses DMC, estimating unmod-
eled accelerations as part of the filter state. Thus the state vector
consists of position r, velocity v, and unmodeled accelerations w.
With position and velocity measurements the measurement partials,
~H, are straightforward:

~Hi � � I6×6 06×3 � (3)

where ~H is defined and used per the TSB formulation, I6×6 is a 6 × 6
identity matrix, and 06×3 is a matrix of zeros. The covariance of the
measurement noise (the R matrix per TSB notation) is provided in
Appendix A.
The truth orbit is propagated with MATLAB’s ODE45 function,

butwithin the filter the state is propagatedwith a fourth-order Runge–
Kutta (RK4) and the state transition matrix (STM) is propagated with
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a second-order Runge–Kutta (RK2), in accordance with typical

practices. Propagating the state and STM both with ODE45 also

works as well but is significantly slower, while propagating the state

with an RK2 was tried and also works well but is less typical in

operational filters. The state propagation RK4 calculates the time

derivative of the state as follows:

_X �
v

a

_w

(4)

where the accelerations are the accelerations from orbital dynamics

plus the unmodeled accelerations estimated with DMC.

a � −
μ

r3
r�w (5)

The DMC estimates the unmodeled accelerations using an FOGM

process [28]. The FOGM model is

_w�t� � −
1

τ
w�t� � η�t� (6)

with η�t� ∼N �0; qδ�t − s�. Note that the correlation time τ is the

time at which the magnitude of the acceleration will fade to 1∕e of its
prior value, in the absence of additional excitation. Since the expected

value of η is zero, the state propagation uses

_w � −
1

τ
w (7)

The state transition matrix is also propagated using an RK2

integrator, specifically Lear’s formulation [29] for an RK2 propaga-

tion of the covariance with two evaluations of A.

Φ�ti�1; ti� � I9×9 �
Ai �Ai�1

2
Δt�AiAi�1

Δt2

2
(8)

where

A �

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

−
μ

r3
� 3μX2

r5
3 μXY

r5
3 μXZ

r5
0 0 0 1 0 0

3 μXY

r5
−

μ

r3
� 3μY2

r5
3 μYZ

r5
0 0 0 0 1 0

3 μXZ

r5
3 μYZ

r5
−

μ

r3
� 3μZ2

r5
0 0 0 0 0 1

0 0 0 0 0 0 −
1

τ
0 0

0 0 0 0 0 0 0 −
1

τ
0

0 0 0 0 0 0 0 0 −
1

τ

(9)

For DMC the process noise covariance matrix S is added during

the time update of the covariance matrix, with �P as the a priori

covariance and P as the a posteriori.

�Pi � Φ�ti; ti−1�Pi−1ΦT�ti; ti−1� � Si (10)

where Si is calculated from the process noise covariance integral.

Note that this process noise covariance integral represents the process

noise spectral density Q transformed into the state space via B and

then integrated from the previous measurement epoch ti−1 to the

current epoch ti using the state transition matrix Φ.

Si �
ti

ti−1
Φ�ti; ϵ�B�ϵ�Q�ϵ�BT�ϵ�ΦT�ti; ϵ� dϵ (11)

In this paper, Si is calculated per the formulation in NASA’s

Navigation Filter Best Practices [28]. Appendix B discusses the

details of this implementation, showing the equations used to calcu-

late all the γ terms for Eq. (12) and the application of this method for

the backward filter (next section). Appendix B also shows how to

calculate ~Q via Eq. (B12): essentially the state process noise is

specified in the orbit frame and then transferred into the inertial frame

for application to the inertial state. Si is then calculated as

Si �
γrr ~Q γrv ~Q γrw ~Q

γrv ~Q γvv ~Q γvw ~Q

γrw ~Q γvw ~Q γww ~Q

(12)

C. Testing Filter on Telemetry with Simulated Debris Strike

A debris strike is applied to the spacecraft, and simulated mea-

surements are generated per the specifications in Appendix A.

Numerical values are relegated to the appendix because the focus is

on methods development; specific parameters vary widely by system

and thus debates about specific numbers tend to distract from the

main focus of the paper. The parameters were selected to be repre-

sentative of typical systems, and Appendix A includes a table indi-

cating thewide ranges that can be expected of relevant parameters in a

debris strike scenario. The default debris strike and filter parameters

specified in Appendix A are used throughout this paper unless

otherwise specified.

Figure 3 shows a simulated debris strike applied at t � 7500 s, and
the results show that an abrupt change in velocity causes the filter

state to diverge from the truth state for about 50 minutes. Of course,
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producing this graph requires knowledge of the truth state to calculate

the error in the filter’s state estimate, which is not available in a real-

world application. The unmodeled accelerations, which would be

available in a real-world application, show a tiny feature barely

distinguishable from the baseline noise.
Figure 4 shows the measurement residuals, which are typically

used for assessing filter performance, indicating that this debris strike

is too small to spot using the typical filter assessment method of

looking for patterns in residuals.

D. Response of EKF with DMC to Debris Strike

1. Closer Look at DMC and FOGM

To understand the implications of this dynamic model when

applied to a debris strike, some further discussion of DMC and the

FOGM model is warranted. The unmodeled accelerations are ini-

tially set to zero. At each filter measurement update step, the Kalman

gain maps the measurement innovation (position and velocity) into

the state space (position, velocity, and unmodeled acceleration) to

update the estimated state. The magnitude of this update is propor-

tionate to the size of the measurement innovation, and is scaled by

the Kalman gain. As shown in Eq. (13), the strength of the Kalman

gain is effectively proportionate to the ratio of the state uncertainty

(covariance) over the state uncertainty plus the measurement uncer-

tainty (measurement noise covariance, R). Therefore, a large state

uncertainty and small measurement uncertainty result in measure-

ment innovations beingmapped into a large state update. Vice versa,

a small state uncertainty and large measurement uncertainty result in

a smaller Kalman gain and a smaller state update. Essentially, via the

Kalman gain the filter is estimating that some unmodeled acceler-

ation has acted on the state based on the measurement innovation

it sees, and updating its estimate of the unmodeled acceleration

accordingly.

Ki � P−
i H

T
i ∕�HiP

−
i H

T
i � Ri� (13)

With the unmodeled acceleration modeled as an FOGM process,

Eq. (6) shows that the time derivative of the unmodeled acceleration,

_w�t�, consists of two components: the first term produces a function
that decays exponentially in accordancewith the time constant τ. The
second term η�t� is the random noise term. The first term indicates
that the unmodeled acceleration at the last timestep will also appear
in the current timestep, but will have decayed slightly in accordance
with the time constant τ. The measurement update calculated using
the Kalman gain is added to this current estimate of the unmodeled
acceleration. This allows the unmodeled acceleration to grow if
measurement innovations persistently indicate that a larger unmod-
eled acceleration has acted on the process, and then decay away
toward zero when the state has been corrected sufficiently that
measurement innovations are small. Simultaneously, if the measure-
ment innovations indicate that the state is “overcorrected,” the
measurement update will proactively reduce the size of the unmod-
eled accelerations by subtracting a state correction.
The random noise term η�t� comes into play via the covariance

matrix. In the propagation step the process noise covariance Si is
added to propagated covariance from the previous step [Eq. (10)].
This accounts for the integrated effect of process noise acting on the
state fromone timestep to the next, with themagnitude specified byq,
the power spectral density of the acceleration noise (seeAppendixB).
Thus, q provides a knob to tune the strength of the Kalman gain such
that the filter behaves as desired by inflating the covariance. In this
case the desire is for the filter to detect when a subtle debris strike has
influenced the state. Note that this deviates from typical desired filter
performance, which is producing the best possible state estimate
based on the most recent measurements available.

2. Effect of Debris Strike on Filter

In the presence of an impulsive ΔV the truth velocity changes
abruptly from the estimated state, and as the state propagates forward
the position also begins to deviate. The EKF observes these meas-
urement innovations and applies them via the Kalman gain to the a
priori state estimate, nudging the state estimate in the direction of the
truth state. At the next time step, thanks to the FOGM model, the
acceleration state still incorporates that w�ti� but now at ti�1 it has
decayed slightly in accordance with the time constant τ. This is
important, because now if the state estimate has not fully corrected
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Fig. 3 Performance of forward filter on telemetry with small debris strike.
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Fig. 4 Measurement residuals from filter during debris strike show a minute feature that is not apparent via casual observation.
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[i.e. w�ti� was not big enough to correctly capture the unmodeled
acceleration], then a largerw�ti�1� is assumed to have occurred, and
is added to the acceleration state during the measurement update.
This continues to happen while large measurement innovations
indicate that the estimated state is not reflective of the truth state.
Once innovations show that the state has converged, the unmodeled
accelerations decay away, or if innovations show that it is becoming
overcorrected, the measurement update will subtract an unmodeled
acceleration to accelerate the decay.
Figure 5 depicts this concept, showing a conceptual diagram as

well as a sample of the filter’s response to an instantaneous change in
ΔV. Note that this strike is 20× the magnitude of the default strike
specified in Appendix A to show the pattern of the unmodeled
acceleration response in the forward filter. The filter’s response to
the default strike is smaller and is hidden within the noise, so the
pattern of the response is not clear.
Recalling that η�t� ∼N �0; qδ�t − s��, a designer might be in-

clined to increase q, the noise intensity, to increase the state covari-
ance and allow the unmodeled acceleration to correct the trajectory
more rapidly via a larger Kalman gain. In practice, however, a large q
produces higher noise in the estimate of the unmodeled accelerations
as the filter responds aggressively to noisy measurements. A smaller
q improves the SNR of the feature, but a q that is too small causes the
filter to lose the state estimate when the debris strike happens, as the
covariance is no longer large enough to produce a sufficiently large
Kalman gain able to correct the state in the presence of the perturba-
tion. Figure 6 shows the same debris strike as Fig. 5, but with q scaled
to 100 × q (left) and q∕100 (center) to illustrate the resultant filter
issues. Figure 6c shows the position errors associated with the small
q, indicating that the filter loses the state estimate for a prolonged
period of timewhen q is too small (relative to Fig. 5b, where the state
estimate reconverges in a reasonable amount of time). Changing τ
also produces some nonintuitive behaviors. Section IV.B shows some

trades to tune filter parameters to maximize strike detection for this
application. Appendix A gives the baseline “initial” τ and q used to
produce the results shown here, as well as the “final” τ and q after
tuning.

E. Filtering Backward in Time

Most of the test statistics developed in Sec. III for identifying
abrupt changes in velocity employ a state estimate obtained by
running the EKF backward in time. Note that this is not the same
as a backward-smoothing EKF or RTS smoother, where the fusing
process incorporates all the data and thus would tend to smooth out
the debris strike impulse instead of detecting it. In this application a
backward-running filter that incorporates only “future” observations
is required. Therefore, with the previous section’s background on
using an FOGMmodel to estimate unmodeled accelerations, the task
is now to replicate this behavior when the filter moves backward
in time.
The objective is to run the EKFwithDMCbackward through time,

effectively filtering the data in the mirror image of the forward-time
filter to produce a new state estimate at each data point. This back-
ward state estimate is derived from the data that come after the data
point (teval) in time and does not incorporate data that precede teval in
time.§ Thus, two state estimates can be compared at each epoch teval,
one seeing only the data after teval and one seeing only the data before
teval. Thus, if a debris strike occurs at teval, there is a discrepancy in the
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Fig. 6 Example of changingq to tuneprocess noise covariancematrix.Note scales onY axis indicating scale of unmodeled accelerations relative toFig. 5b.

0 5 10 15 20 25
Time [s]

0

5

10

15

20

un
m

od
el

ed
 a

cc
el

er
at

io
n 

[m
m

/s
] Filter estimates that

unmodeled accel has
acted on process

Accel decays
exponentially during
propagation step

a) Stacking consecutive estimates of unmodeled
acceleration

2000 4000 6000 8000
Time [s]

0

5

10

15

R
es

id
ua

ls
 [m

m
/s

2 ]

10-6

b) Filter’s estimate of unmodeled accel

Fig. 5 Illustration and example of FOGM dynamic model compensation responding to impulsive ΔV.

§Note that the backward filter is seeded with a state estimate from the
forward filter, so the backward propagation window needs to be long enough
that any state corrections have been accomplished and the backward EKF’s
state estimate is converged, and tracking the measurement data, the influence
of the initial state estimate has faded. This is analytically unsatisfying, but
appears to work pretty well. The backward filter is initialized with a large
covariance, which tends to de-emphasize any correlations.
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velocity between the two state estimates, representative of the ΔV
that is imparted by the strike.
To accomplish this, two key aspects of the forward-filter perfor-

mance need to be reproduced in backward time: the dynamic model
and the unmodeled acceleration behavior. Implementing a backward
dynamics model is straightforward. A negative Δt inherently causes
the spacecraft to “fly backward” along its trajectory, and no changes
to the basicmodel dynamics are required. Replicating the behavior of
the unmodeled acceleration dynamics backward in time is more
complicated.While an FOGMprocess is used to estimate the unmod-
eled acceleration, it is important to note that the underlying dynamics
of the acceleration are not, in fact, an FOGM process. It is illustrative
to examine the performance of the filter when the measurement data
are reversed in time and fed into the unchanged filter. The filter’s
estimate of the unmodeled acceleration during the initial filtering
steps is shown in Fig. 7.
Figure 7a shows that in the forward filter the estimated unmodeled

acceleration decays during state propagation between timesteps. The
a priori value at the next timestep is smaller than at the previous
timestep, and then the filter adjusts that estimate up or down by
applying the Kalman gain to the measurement deviation. In the
reversed filter, however, the behavior is different. The state propaga-
tion causes the estimate of the unmodeled acceleration to increase
exponentially during the time update, a somewhat unstable behavior
resulting in large corrections that flip between negative and positive
values. Note especially the scale at the top of the y axis: Just 35 data
points in, the backward filter is already applying corrections to the
unmodeled acceleration that are several orders of magnitude larger
than the forward filter. Note that the rate of decay is set according to
the time constant τ, so for the short τ’s used here the effect is
pronounced. A longer τ, which is more appropriate for a measure-
ment bias or some other unmodeled dynamic effect, would have a less
significant change in performance between forward and backward
filters.
To explain this asymmetric behavior, recall Eq. (7) and Fig. 5. For a

given timestep Δt, Eq. (7) produces Eq. (14), showing the behavior
seen in Fig. 5, where the FOGMprocess decays exponentially as time
moves forward.

w�t� Δt� � w�t�e−Δt∕τ (14)

Figure 7 shows this behavior in the forward filter, with the unmodeled
accelerations decaying exponentially toward zero during the state
propagation. In the backward filter, however, they are increasing
exponentially, leading to excessively large accelerations applied to
the filter state and requiring additional large accelerations to cor-
rect them.

To correct this, the backward filter is adjusted to employ a slightly
different FOGM process: one that decays as the filter moves back-
ward in time, in a mirror image to the forward filter behavior. This
change obtains the desired FOGMbehavior, shown in Fig. 8, with the
accelerations decaying as the state progresses from one timestep to
the other in both the forward and backward filters.
For thismirroredmodel, the relevant equations are as follows.Note

thatΔt could be either positive or negative, but this is usedwhenΔt is
negative and the filter is moving backward through the measure-
ments. TheAmatrix in Eq. (9) also changes, with the sign on the 1∕τ
now positive instead of negative in the 3 × 3 block on the lower right.

w�t� Δt� � w�t�eΔt∕τ (15)

_w�t� � 1

τ
w�t� (16)

To implement this mirrored FOGM the time constant τ is set to be
negative in the backward filter. Comparing the relevant equations
shows that this change essentially replaces Eq. (7) with Eq. (16) in the
state propagation, and makes the necessary change to the A matrix
used to propagate the state transition matrix. The remaining function
where τ appears is calculating the state process noise covariance Si,
and Appendix B shows that with a −τ each γfwd term is equal to the
analogous γbkwd term derived using the mirrored FOGM indicated in
Eq. (16). For a more general solution, the key principle is that the
dynamic behavior of the processes needs to be time symmetric for the
backward filter to function correctly. For the FOGM a −τ accom-
plishes this; for othermodels, alternatemodificationsmay be needed.
One further change is required for the backward filter: similar to

Fraser’s [30] developments, the state process noise covariance is
subtracted when filtering backward in time. This can be seen by
referring to the process noise covariance integral in Eq. (11); note that
Si is derived from the integral from ti−1 to ti. For the backward filter,
the state process noise covariance moves from i� 1 to i instead of
from i − 1 to i. Integrating backward in time results in a negative
integral, but the state process noise variance needs to be added to
capture the increasing uncertainty in the state estimate due to process
noise from one filter step to the next. Therefore, in the backward filter
Si is subtracted. See Eq. (12) and Appendix B for implementation
details. Note that this concept can alternately be applied by sub-
tracting the state process noise covarianceQ, as Fraser andPotter [31]
do when filtering backward.

Si;bkwd � −
ti

ti�1

Φ�ti; ϵ�B�ϵ�Q�ϵ�BT�ϵ�ΦT�ti; ϵ� dϵ (17)
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Fig. 7 Comparison showing unmodeled acceleration estimation and propagation at the beginning of identical forward and backward filters. (Note: This
shows the filter initialization; no debris strike is shown.)
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With these adjustments, the backward filter performance, shown in
Fig. 9, is comparable to the forward filter performance (Fig. 3),
although it is mirrored as the filter proceeds through the data in the
opposite direction.

III. Developing Test Statistics

Various test statistics are developed to accentuate the effects of a
debris strike relative to the baseline noise. The intent of these test
statistics is to explore various ways of postprocessing the filter state
estimate to enhance the detectability of debris strike features. It is
important to note that these results all show simulated telemetry, and
as such the measurement noise is perfectly Gaussian and there are no
additional orbit perturbations acting on the state, except in Sec. IV.D.
In applying these techniques to real-world measurements all the
various sources of difficult-to-characterize noise and perturbations
will have a substantial effect on filter performance. It is expected that
some test statistics that produce a better SNR on simulated data may

perform worse on real-world data, if they require a longer period of
data to function, for example. Therefore, several test statistics are
investigated to produce an a la carte selection of techniques for on-
orbit application.

A. Test Statistic 1: Difference Between Forward and Backward State
Estimates

The results in Figs. 3 and 9 depend on knowledge of the truth state
to produce the error in state estimate, but a proxy can be obtained by
differencing the states estimated by the forward and backward filters.
Figure 10 shows the difference between the forward and backward
state estimates and indicates a significant feature in the velocity at the
time of the debris strike. This is calculated using

Xdiff � Xbkwd −Xfwd (18)

The velocity difference serves as the first test statistic evaluated for
strike detection effectiveness. It also provides the estimate of ΔV,

0 5000 10000 15000
Time [s]

-6

-4

-2

0

2

4

6

D
iff

er
en

ce
 in

Po
si

tio
n 

[m
]

a) Difference in position estimate

5000 10000 15000
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ve
lo

ci
ty

 
Er

ro
r [

cm
/s

]

b) Difference in velocity estimate

5000 10000 15000
Time [s]

-5

0

5

D
iff

er
en

ce
 in

un
m

od
el

ed
ac

ce
l [

m
/s

2
]

10-9

X
Y
Z

c) Difference in unmodeled acceleration

Fig. 10 Difference between forward and backward EKF state estimates shows significant spike in velocity without requiring knowledge of truth state.
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Fig. 9 Performance of backward filter on telemetry with small debris strike.
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which is used even when other test statistics are used to identify the

presence of a strike.

B. Test Statistic 2: Mahalanobis Distance

The second test statistic is the Mahalanobis distance. The Maha-

lanobis distance expresses the generalized distance between two

vectors, providing a multidimensional generalization of the distance

between a point and an associated distribution. This is calculated per

Eq. (19), which calculates the vector difference between forward and

backward states, followed by Eq. (20), which calculates the Mahal-

nobis distance of that state difference relative to the expected uncer-

tainties. Note that Eq. (19) uses the forward a posteriori state and

the backward a priori state. Thus, both states are at the same epoch,

but only the forward state incorporates the measurement data at that

epoch.

XM;i � XF;i − �XB;i (19)

DMH � XT
M;iP

−1
S;iXM;i (20)

This paper investigates both full-state and velocity-only Mahala-

nobis distances to characterize the discrepancies between the forward

and reverse filters. The full-state Mahalanobis distance is calculated

using the distance between the forward and backward state estimates

and the smoothed covariance [see Eq. (20), next section], while the

velocity-only distance replacesXwith just the velocity substate, and

PS with the corresponding central 3 × 3 block of the smoothed

covariance. The results are illustrated in Fig. 11, which shows both

full-state and velocity-only Mahalanobis distances. This overlay

indicates that the baseline noise is higher in the full-state distance,

so only the velocity distance is used as a test statistic as it has a

higher SNR.

C. Test Statistic 3: Smoothed Accelerations from Fused Backward
and Forward State Estimates

The state estimates and covariances from the forward and back-
ward filters are fused into a smoothed estimate using a modified
Fraser–Potter fixed-interval smoother [28,32]. Note that the a poste-
riori estimates from the forward filter (XF;i,PF;i) are fusedwith the a

priori estimates from the reverse filter ( �XB;i, �PB;i) at the same

measurement time (i). Thus, like the Mahalanobis distance, all the
estimates are at the same time but only the forward filter incorporates
themeasurement update at that time. The smoothed state estimate and
covariance are calculated per

XS;i � WF;iXF;i � �I −WF;i� �XB;i (21)

PS;i � WF;iPF;iW
T
F;i � �I −WF;i� �PB;i�I −WF;i�T (22)

where WF;i is

WF;i � �PB;i�PF;i � �PB;i�−1 (23)

The smoothed state estimates for the velocity and acceleration are
shown in Fig. 12. The smoothed velocity exhibits an intuitive behav-
ior where the smoothed estimate lies between the forward and back-
ward filter states with the high-frequency noise removed, as shown in
Fig. 12a. Note that this figure employs the truth orbit to display the
errors in state estimates.
An interesting feature appears in the smoothed accelerations

(Fig. 12b), which are derived from the filtering process and do not
rely on knowledge of the true state. Recall that the unmodeled
acceleration estimates in both the forward and backward filter are
close to zero (∼10−9 m∕s2) with no distinct features (reference
Fig. 10). In the smoothed acceleration, however, a distinct feature

appears on the order of ∼10−6 m∕s2. To explain this recall Eq. (23),
where aweightingmatrixWF is calculated based on the ratio between
the forward and backward covariances. The off-diagonal terms in this
weighting matrix allow each smoothed state to be affected when a
discrepancy occurs between the forward and backward states [this
can be seen in Eq. (21)]. In this case, a discrepancy in the velocities is
differentiated into the estimate of the unmodeled acceleration via
the terms WF�7;4�, WF�8;5�, and WF�9;6� (specifying the ijth term of

theWF matrix asWF�i;j�). This unmodeled acceleration feature is the

third test statistic evaluated for debris strike detection performance.

D. Test Statistic 4: McReynold’s Filter–Smoother Consistency Test

The fourth test statistic is derived from the McReynold’s Filter-
Smoother Consistency Test. In this test, an abrupt deviation from
expected state can be identified by characterizing the consistency
between the forward filter state estimate and the smoothed state
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Fig. 12 Smoothed state exhibits signature in unmodeled acceleration.
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estimate. First the difference between the forward state estimate and
the smoothed state is found (per Wright [20]):

XD � XF −XS (24)

PD � PF − PS (25)

Then the McReynold’s test statistic (Rm) is calculated as the ratio
of each individual state (XD;j for state j) over the square root of the

corresponding diagonal element in the covariance (σD;j � PD;j;j)

Rm;j � jXD;jj∕σD;j (26)

An alternative formulation calculates a single scalar test statistic to
express the consistency between the filter and smoother, rather than a
separate statistic for each state. This full-stateMcReynold’s consistency
statistic is calculated via

Rscalar � XT
DPDXD (27)

The resultant McReynold’s filter-smoother consistency statistic
shows signatures in all nine states, as shown in Fig. 13. This indicates
that all nine states show a feature at the time of the debris strike, but the
acceleration states show the strongest feature. The scalar consistency
statistic is plotted with each state on the second axis. This allows the
qualitative performance of each test statistic to be observed by compar-
ing the baseline noise on the left and right portion of the plot, away from
the peak. Since the height of the peaks is matched a noisier baseline
away from the peak indicates a lower SNRwhile a lower noise baseline
indicates a higher SNR. In the position states the baseline noise is higher
than it is in the scalar test statistic, while in the acceleration states it is
lower, indicating that the acceleration states have a better SNR.

E. Test Statistic 5: Measurement Residuals from Propagated State
Estimate

The fifth test statistic applies change detection methods to assess

the measurement residuals relative to a nominal orbit propagated

forward and backward from the current state estimate. The state just

before the strike is propagated forward in time and the measurement

residuals relative to the state estimate are determined (shown in the

plots on the right side of Fig. 14). Simultaneously, the backward state

estimate at ti � tstrike � 1 is propagated backward toward t � 0 and
compared to the measurements before the strike. Thus, both state

estimates are propagated across the strike such that the state estimate

does not incorporate the change in velocity, and the deviation in orbit

due to the strike is observable in the measurement residuals. For

reference, a simulationwith no strike is also plotted in Fig. 14 to show

the magnitude of the residual patterns created by the effects of the

debris strike. These results indicate that the position deviations tend

to be greater than the velocity deviations.

Note that the example in Fig. 14 is for a debris strike in the −v̂
direction, which produces a change in semimajor axis and causes the

residuals to build up quickly due to asynchronous periods. A debris

strike in a different directionwould have a less dramatic effect, but the

majority of debris strikes in LEO tend to be roughly in the −v̂
direction [33], so this provides a useful example.

Applying a change detection algorithm to this test statistic gen-

erates a scalar statistic for the entire data window surrounding a given

evaluation point teval. A likelihood ratio test is employed here, which

examines a specified window of data and sums the log of the like-

lihood ratio for each data point in that window. The likelihood ratio

compares the likelihood of obtaining that data point under an

assumed changed distribution over the likelihood of obtaining that

data point under an unchanged distribution. Thus, if the data points as

a whole tend to be more representative of a changed distribution than

an unchanged distribution, the sum of the log of the likelihood ratio is

Fig. 13 McReynold’s consistency statistic shows feature in all nine states. Red indicates scalar consistency statistic from Eq. (27) plotted on right axis to
compare to each state from Eq. (26) (in blue, left axis).
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positive. If they are more representative of the unchanged distribu-
tion, the sum is negative.
From Moulin and Veeravalli [34] (Chap. 9), the likelihood ratio

test, L, is calculated as follows using the expected distribution

of parameters when there is no debris strike Hns and the expected
distribution under a hypothesis that the distribution has changed due

to a debris strike (Hs); i.e., the patterns of propagated residuals are

expected to be smaller in the absence of a debris strike, but larger in
the presence of a debris strike.

L�y� � p�yjHs�
p�yjHns�

(28)

wherep�yjHi� is the probability of obtaining data y given hypothesis
Hi (i.e., the probability density function for hypothesisHi evaluated
at data point y). The log of the resulting likelihood ratio L�y� is then
summed across the dataset to give the test statistic TLLRT.

TLLRT � ln�L�y�� (29)

Note that this test statistic is especially sensitive to orbit pertur-
bations that may perturb the state more slowly than a debris strike,

but still significantly, and its applicability to real-world data will
likely be orbit dependent. This is because a longer period of time is

used to generate the test statistic. Also, this test statistic takes by far
the longest to process, since the orbit must be propagated forward

and backward from each point at which the test statistic is eva-
luated, and then the resultant noise in the distribution of those

residuals needs to be characterized to develop a meaningful test
statistic using a log likelihood ratio test. Since this test statistic adds

substantially to processing time and is unlikely to generate results

comparable to the real world, it is not included in the trade studies
and comparisons of the other test statistics, but is described here. It

might be well applied on systems with precision orbit determina-
tion filters/propagators or limited perturbing effects.

F. Test Statistic 6: Change in Orbital Constants

In priorwork [26,35], the change in satellitemean altitude (dSMA)
is used to identify orbit perturbations. For comparison to these efforts,

the change in semimajor axis is used for the sixth test statistic.

However, a dSMAwill only occur if a strike changes the magnitude
of the spacecraft velocity. Out-of-plane ΔV components will change

the orbit plane, but not the semimajor axis. ΔV components that

change the direction of the velocity but not the magnitude will like-

wise not change the semimajor axis. Therefore, for this test statistic

three orbital constants are used: the traditional dSMA, the eccentric-

ity e, and the direction of the orbital angular momentum (hdir). It is
worth noting that in many LEO orbits the prevalent debris flux is near
head-on [33], so the dSMA alone would likely be a strong indicator

for many collisions, but for other orbits, like GEO, prevalent fluxes

may occur in other directions, so the more general solution using

three orbital constants is developed here. See discussion for addi-

tional cautions on using an orbit change detector with highly direc-

tional sensitivity.
The orbital constants are calculated using only the forward-filter

state, to represent a straightforward application requiring minimal

postprocessing of existing data. Using the filter’s estimate of the

position r and velocity v, the semimajor axis a, eccentricity e, and
orbital angular momentum h are calculated as follows. The magni-

tudes of the position and velocity are denoted r and v, respectively,
while μ represents the geocentric gravitational constant.

a � 1

�2∕r� − �v2∕μ� (30)

e � �v2 − �μ∕r��r − �r ⋅ v�v
μ

(31)

h � r × v (32)

To reduce the direction of the angular momentum to a scalar test

statistic, the azimuth and elevation of the angular momentum unit

vector are calculated (i.e., in spherical coordinates as expressed in the

inertial frame), and then the root-sum-square of these values is taken

to obtain a scalar representing the current direction of the orbital
plane. Note that this is an approximation that assumes small angles,

but since the intention is just to reduce the change in orbit plane to a

scalar this is adequate for this application.
With these scalar test statistics, changes in the orbital state due to

impacts in any direction in the orbit frame are rendered observable.

Fig. 14 Residuals generated by comparing forward and backward orbit propagation to measurements.
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A strike in the velocity direction produces changes in the semimajor
axis and eccentricity, a strike in the radial direction produces a change
in eccentricity, and an out-of-plane strike produces a change in the
direction of the orbit plane. In previous test statistic examples, the
strike is applied evenly on the inertial X, Y, and Z axes, but in this
example the strike is applied evenly across the three directions of the
orbit frame to produce a change in each of these test statistics.
Since these test statistics can be applied without reversed filters or

smoothing, the filter parameters are adjusted to be more typical of
standard operations. In Fig. 15, the process noise q is inflated to be
more representative of a typical navigation filter. The value used is
100× the initial default value for q shown in Appendix A. In the prior
test statistics the filter is designed to allow the state to deviate tomake
the debris strikemore observable, but the intention of this test statistic
is to compare to “typical”methods so that the filter is retuned toward
a more traditional performance, where the covariance is tuned to
correct the state quickly in the presence of perturbations to maintain
an accurate state estimate based on the available data.

IV. Tuning, Comparison, and Performance Assessment

To evaluate the filter’s performance a streaming implementation is
introduced to analyze a data series and identify strikes without a
priori knowledge of the strike time. The forward filter is applied once
across the entire dataset (in online analysis this could be updated
persistently as telemetry is received). Then the test statistics are
calculated using a sliding window where all test statistics are evalu-
ated at teval, which is situated a fixed interval behind the leading data
point in the window. Thus, the backward filter can be applied back-
ward through the data and across teval, and then the smoother,
allowing the calculation of each test statistic at teval based on data
windows surrounding teval. Since the test statistics show a spike in the
presence of a debris strike, an “integrated” test statistic is stored as
well as the peak value, to determine if that improves the detectability
of the debris strike feature.

A. Normalizing Test Statistics as SNR

Each test statistic is calculated at each teval. The peak value of each
test statistic is stored and also a window of data is empirically
integrated to form an integrated test statistic, to see if that produces
a stronger signal. To compare test statistics against each other, each
value must be normalized. This is done by calculating the SNR of
each test statistic, where the baseline noise is calculated in a long
simulation with no debris strike applied.
Calculating the detectability threshold Tthres from the baseline

noise is a nontrivial exercise on simulated data and is even more
complicated on real data. The core of the challenge lies in assessing
the desired probability of false alarm versus probability of missed
detection. A higher detection threshold will result in fewer false
alarms but maymiss some detectable strikes, while a lower threshold
will detect more strikes but also return a high rate of false alarms.
Figure 16 shows a diagram of this decision, which is inherently
application dependent: for some applications a low false alarm rate
may be paramount, while for others a high chance of detecting small
strikes may be preferred. The blue curve shows the probability
density function (pdf) of the test statistic output when no debris strike
is present. The red shows the pdf when a given debris strike has
occurred. Depending on where the threshold is set (dashed black
line), the probability of false alarm can be smaller or larger, and the
probability of missed detection will become larger or smaller accord-
ing to the same threshold.
For this paper, the thresholds are determined by setting a desired

rate of false alarm of one per week.With this rate of false alarm and a
given telemetry rate a target probability of false alarm is established.
A long simulation is conducted to establish the baseline noise inher-
ent in each test statistic when no debris strike is present. An example
is shown in Fig. 16a, with the test statistic output evaluated at 200,000
data points and the resultant baseline noise, with no debris strike,
plotted. The characteristics of the distribution of this noise varies
depending on test statistic, so a kernel distribution is fitted to the
noise, as shown in Fig. 16c.
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Fig. 15 Orbital constants calculated from forward-filter state estimates show change at time of strike.
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Fig. 16 Depiction of process for setting detection thresholds. Left: Goal is to set threshold above baseline noise, which varies. Center: Probability density
functions of filter outputwith andwithout debris strike.Right:Kernel distribution fitted to histogramof filter outputwith nodebris strike used to establish
threshold.
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From this distribution and the desired probability of false alarm the
detection threshold Tthres is set; i.e., it is set at a point where the re-
mainder of the tail of the distribution, above the threshold, corresponds
to thedesired false alarm rate.With this detection threshold theSNRof a
given test statistic in the presence of a givendebris strike is calculated.A
debris strike is applied repeatedly to the simulation in a Monte Carlo,
with randomized strike time and orbit location, to establish the magni-
tude of each test statistic’s response to the debris strike by averaging
the response across all Monte Carlo runs. The magnitude of this res-
ponse divided by the detection threshold is saved as the SNR for the test
statistic.Thus, thevarious test statistics canbecompared to eachother to
assess their relative performance in detecting strikes.

B. Tuning τ and q

Typically q is tuned to obtain a covariance that bears the desired
scale relative to the state errors (i.e., an appropriate number of data
points fall within the 3σ boundary) or to minimize state errors. In this
application, however, the goal is not to obtain the best possible state
estimate at each time, instead the goal is to detect debris strikes. A
traditionally tuned filter might tend to correct the state too quickly
and smooth out the debris strike,whereas in this case it is desired to let

the effects of the debris strike affect the state for long enough to cause

a detectable signal. Note that τ is also a tuning parameter, and while

intuitively a short τmightmimic a short debris pulse, in practice it can

fail to accumulate a substantial enough acceleration quickly due to

themechanics depicted in Fig. 5a. These two influences interact and a

trade study is required to determine which combination of τ and q
produces the best SNR.
An initial trade study is conducted to understand the relationships

between τ, q, and the SNR for the various test statistics. A subset of

results is shown in Fig. 17. These indicate that there is a clear zone

where τ and q produce a higher SNR, but that this zone varies

somewhat between the test statistics. In general, a smaller q and

larger τ produce an equivalent or sometimes improved test statistic,

but with a smaller q the filter tends to diverge from the truth state for

longer when an unexpected acceleration occurs, so the larger q and

smaller τ are selected. The red star in the figure is at τ � 1 s and

q � 2.15e − 17 m2∕s5, which produces a strong SNR in most test

statistics. Note that the acceleration test statistics produce a notice-

ably higher SNR than the velocity-related test statistics.
Figure 18 shows these trade studies superimposed for a single τ, to

illustrate the relationship between q and SNR for each of the test
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Fig. 18 Superimposing SNR from various test statistics to compare results for given time constant τ.

Fig. 17 Trading τ and q to determine effect on SNR of various test statistics.
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statistics. This shows that the best test statistics are the smoothed
accelerations and the McReynold’s consistency statistic for acceler-
ations, but it is important to remember that some other test statistics
may perform better in the real-world where additional orbit pertur-
bations may affect the state. Orbit perturbations typically affect the
state more slowly than a debris strike, so test statistics that require a
long span of data may perform well on simulated telemetry but
struggle in real-world applications.

C. Performance when Detecting and Estimating Unknown Strikes

AMonte Carlo is conducted that randomizes the strike magnitude
and direction and orbit parameters (inclination and true anomaly)
such that the strike is applied randomly relative to the orbit frame of
the satellite. For each strike each test statistic is calculated, and the test
statistics that detect the strike are recorded along with the estimated
size of the strike, if it is detected, as shown in Fig. 19. Note that false
alarms are not characterized in this analysis, butmissed detections are
shown along the x axis. The colors of the plot indicate the number of
test statistics that successfully identified the strike on each axis,
noting that the “RSS” axis also includes the scalar test statistics:
Mahalanobis distance and change in orbital constants. This Monte
Carlo uses the τ and q identified in the trade study in the prior section.
While the detectability of some strikes seems improbably small,

similar real-world capabilities have been demonstrated by Exoana-
lytic Solutions, which identified an unexpected in-track ΔV of
approximately 0.7 mm∕s shown in Fig. 2 [14]. Also, characterizing
the noise baseline using a kernel distribution provides a decent proxy
for the detectability threshold, but with a fairly short data set to
develop the no-strike noise distribution false alarms may still occur.
Conducting trade studies with long datasets requires excessively long
computation times without adding much to this content, so shorter
runs are used since the intention of this paper is to explore the
problem using simulated data. Specific noise levels will change,
likely dramatically, with each individual on-orbit system.

D. Performance in the Presence of Orbit Perturbations

The primary challenge of applying these techniques to real-world
systems will likely be separating debris strike perturbations from
other orbital perturbations and telemetry idiosyncrasies. In prior
work, algorithms have been applied to detect rotational momentum
changes in the attitude telemetry of NASA spacecraft and found
abundant unexpected features that complicate detection of debris
strikes [19].
While modeling the unknown is always a challenge, a quick proxy

assessment is performed by adding J3 perturbations and drag pertur-
bations to the simulated truth state, but not to the filter dynamics. To
accentuate the effects of these perturbations the orbit is lowered to
400 km (from the default 800 km) and the eccentricity rose from 0 to
.001 (the lower orbit is necessary to show the effects of drag on the
short time scales seen here). To produce a signature higher than the
noise in the presence of these perturbations, the debris strike magni-
tude is increased by 2×.
The acceleration due to drag is added to the orbit state per Chapter

8 of Vallado andMcClain [36]. The parameters used to calculate drag

are specified in Appendix A. Note that the solar array is rotated

relative to the velocity throughout the orbit, as if it were tracking

the sun, which causes the drag applied to the spacecraft to vary as it

would on orbit, with ϕ and θ determined such that the array always

points in the inertial X direction regardless of the satellite location.

However, the density of the atmosphere only varies with altitude,

without seeing the variability throughout the orbit that would be

experienced in reality. All vectors here are expressed in the inertial

frame.

adrag � −
1

2

CDAtot

ms

ρv2rel
vrel
vrel

(33)

Atot � Abus � Aarray cos�ϕ� cos�θ� (34)

ρ � ρoe
−�r−ro�∕H (35)

The following acceleration due to J3 perturbations is added to the

orbit state, per Eq. (11.65) in Schaub and Junkins [37].

aJ3 �
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While J2 is neglected, it is also straightforward to capture J2 in

Kalman filter dynamics. Capturing an estimate of J3 and drag is only

a little less straightforward, so this represents the efforts of a rather

mediocre filter, and shows that a small strike is still detectable even in

the presence of unrealistically severe unmodeled orbit perturbations.
The results in Fig. 20 show that adding these unmodeled dynamics

causes additional noise in the test statistics, as expected. The filter’s

estimate of the unmodeled acceleration successfully estimates these

unmodeled perturbations so that the filter stays converged, but this

produces additional noise in the filter output and increases the noise

floor of the filter, obfuscating the effect of the debris strike. However,

a somewhat larger strike is still detectable, which is still well into the

size regime of hazardous nontrackable debris. Refer to Appendix A

for specific debris sizes and impact parameters. It is worth noting that

these J3 and drag perturbations are currently completely unmodeled

in filter dynamics, but these and more are accounted for in precision

orbit determination filters, so the performance of real-world systems

could be better than what is shown here.
Figure 21 repeats the trade from Fig. 18, but with the perturbations

added to the state and the orbit lowered to 550 km and debris strike

size increased by 5×. Comparing to the previous trade, it can be seen

that the best performance occurs with a somewhat larger q, as a larger
q allows the filter to track the perturbed state more accurately. With a

well-converged filter state the larger debris strike still causes a

detectable signal in the presence of noise due to J3 and drag.
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Fig. 19 MonteCarlo analysis indicating estimated size of random strike relative to true strike. Color indicates number of test statistics that detected each
strike.
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E. Final Comparison Between Measurement Residuals and Test Sta-

tistic Output

As a final observation, Fig. 22 shows the pattern of measurement
residuals from the forward EKFwith no test statistics or postprocess-
ing. Patterns of filter residuals are typically used to assess filter
performance and screen for unexpected features. These residuals
indicate that standard practices for observing filter performance are
much less sensitive to debris strike features than the test statistics
developed herein. The output from the smoothed acceleration test
statistic is compared to the measurement residuals for two debris
strikes: the small one is 1/10th the default strike specified in Appen-
dix A, and the large one is 2X the default strike specified in Appen-
dix A. This shows that a large strike begins to show up in the
measurement residuals of a typical filter, but the test statistic produces
a much stronger signal for detecting subtle strikes.

V. Discussion

Themagnitude of detectable strikes is highly dependent on system
parameters. These numbers are only placeholders and do not prove a
capability; real system data must be used to determine detectableΔV
thresholds. Therefore, while these metrics are promising in terms of
being able to detect minor impacts from hazardous nontrackable
debris, the quality and usefulness of data obtained will likely be
system dependent, and not all systems may have the precision orbit
determination required to separate abrupt unexpected changes pro-
duced by debris strikes from routine changes due to gravity effects,
drag fluctuations, etc.
While implementing these methods in the presence of real-world

orbit perturbations will be a challenge, precision orbit determination
tools exist and can be leveraged when implementing these methods
on active spacecraft. It is more efficient to develop methods using
basicmodels and then apply thesemethods to real data and character-
ize the results rather than exhaustively modeling perturbations, even

though they are critical to detection thresholds. Sensor noise charac-
teristics present a similar complication; sensor noise and irregular-
ities can be very challenging to model accurately but are a critical
element for accurately predicting detectability thresholds. The exact
magnitude of detectable orbit changes may vary, but on-orbit expe-
rience has proven that the capability is possible. Several spacecraft
[9,35] have detected orbit changes in conjunction withminor anoma-
lous events and thereby detected debris strikes, so it seems likely that
improving these orbit change detection capabilities, as illustrated in
this paper, will result in an improved ability to detect minor debris
impacts in the typical course of operations.
This paper leverages simulated GPS telemetry, but these methods

could conceivably be applied to non-cooperative and uncontrolled
objects to obtain a larger population of in situ measurements. The
detection thresholds would likely suffer, but with LeoLabs and other
companies providing increasingly precise orbit determination ser-
vices, it is possible that the increasing precision required for space
traffic management in the emerging space era will allow methods
like this to be applied broadly to populations of objects on orbit.
For example, ExoAnalytic Solutions has already demonstrated an
impressive capability to detect similar events on GEO satellites, and
maintains routine observations of objects in GEO [14]. Combining
capabilities and datasets from various providers could likely generate
a rich dataset for validating and tuning debris environment models.
This is critical in the emerging space era as burgeoning populations

of satellites are operated by commercial entities and emerging state
actors. Most established players follow more stringent debris guide-
lines than are required by international systems, but for newer space
operators it is important to incentivize compliance with space sus-
tainability initiatives. Previous work [35] has indicated a mismatch
between debris risks assessed using heritage methods and events
experienced on orbit, which is not a sustainable modus operandi

to motivate appropriate behavior from new space actors. Model
predictions must be consistent with operator experience; otherwise
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Fig. 21 Superimposing SNR from various test statistics to compare results for given time constant τ. Note that preferred q is now larger than the trade
without perturbations, and the SNR is smaller even with a larger strike.
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Fig. 20 Simple perturbationmodels (J3 and drag) added to truth state but not filter dynamics show that baseline filter noise is higher, but strikes are still
detectable. This plot shows a 400 km orbit and a debris strike that is 2X the magnitude of the default strike (see Appendix A).
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operators may leverage a loose legislative environment and disregard
safe practices to the detriment of the long-term debris environment.
This paper investigates a method to use on-orbit data to detect debris
strikes so that operators can be cognizant of their local debris envi-
ronment and to potentially provide additional data to tune orbital
debris environmental models and methods and inform decisions
on legislation and debris mitigation requirements and remediation
investments.
The heritage method of detecting debris strikes via a change in

satellite mean altitude produces a strong test statistic, but it is
primarily sensitive to debris strikes in the v̂ direction. With current
LEO populations this may be justified, as models predict that most
debris strikes will occur near this direction. However, it has li-
mitations as radial or out-of-plane components of strikes are not
observable. Breakups occurring in GTO or Molniya orbits are
already difficult to characterize, so using a debris strike detection
system that can only detect the expected debris strikes introduces a
strong confirmation bias within the measurement system, which
shouldmake any scientist cringe. Tomaintain a clearer picture of the
debris environment it is important to have direction-agnostic and
orbit-agnostic debris-sensing systems, like the techniques devel-
oped in this paper.
As the emerging space era puts thousands of new satellites on orbit

at an accelerating rate, it is especially critical to characterize the
hazardous nontrackable debris environment. Accurate, timely infor-
mation is crucial to shaping policy, legislation, mitigation, and
remediation initiatives, and these initiatives are essential to ensuring
a sustainable future for the global space enterprise.

VI. Conclusions

An EKF with DMC can be adapted to accentuate abrupt orbit
changes that are too small to show a feature in the pattern of filter
residuals typically used for filter performance assessment. Various
test statistics derived from the filter output provide strong signals to

allow detection of subtle changes indicative of minor debris strikes.
The strongest of these test statistics are derived from the smoothed
unmodeled acceleration, obtainedwhen the smoother fuses estimates
from separate forward and backward filters. This is similar to the
Fraser–Potter smoother, and a necessary adaptation is ensuring that
the backward filter employs a mirrored model for the unmodeled
acceleration behavior such that filter performance is symmetric when
filtered forward and backward in time. Thesemethods offer a capabil-
ity for spacecraft operators to monitor the state of health of their
spacecraft and, with a sufficient population of data, could provide in
situ data for tuning debris environmental models and risk assessment
processes.

Appendix A: Default Values for Parameters

This appendix specifies values that are used for parameters unless
they are otherwise specified in the text. Debris strike parameters are
inherently probabilistic and vary by orbit, so specifying a value often
sparks debate that distracts from more relevant debates about meth-
ods. Therefore, an entire table of values is provided here in Table A1
to specify debris strike and spacecraft parameters that could produce
the baseline ΔV and the scaled ΔV’s used in various simulations
throughout this paper. The table is shaded in accordance with the
likely hazard presented by the piece of debris and its detectability. As
shown, the hazardous nontrackable debris pieces (orange) represent a
large percentage of the strikes that are applied in this paper. Some
systems could push the detectability threshold low enough that even
nondamaging strikes could be detected (blue), and some systems
(large spacecraft and/or spacecraft with substantial unmodeled per-
turbations) could have detection thresholds corresponding to debris
that is potentially trackable. However, steel debris, typically modeled
as spheres, currently drives the risk to LEO spacecraft, and this table
indicates that detection thresholds are likely in the range where this
type of debris could be detected to acquire more information about
the hazardous nontrackable debris population.
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Fig. 22 Comparing test statistic output to traditional measurement residuals in the presence of large and small debris strikes. Test statistic shows strong
signal in response to strike far too small to see in measurement residuals.
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The intention ofmoving values to the appendix is to ensure that the
focus of the paper stays on methods development, the actual param-
eters will vary widely by system, and the detectability of small debris
strikes will vary widely as well. Ultimately, spacecraft have detected
strikes with no specialized filtering, so introducing a filter that can
accentuate the subtle effects of strikes can only improve their per-
formance as detectors and result in a larger body of data for assessing
the debris environment. The parameter values used throughout this

paper are provided in Table A2, and any deviations from these values
(i.e., for trade studies, etc.) are specified in the text.

Appendix B: Derivation of Process Noise Covariance
for Mirrored FOGM in Backward Filter

In the backward filter, the traditional FOGM, which decays expo-
nentially as time advances, results in estimates of the unmodeled

Table A1 Table illustrating myriad situations that could produce a detectable ΔV for a hazardous nontrackable piece of debris

Scale refers to debris strike magnitude as specified throughout the paper. Debris listed as “potentially trackable” is not tracked currently, but may be tracked as current state-of-the-art

systems mature.

Density units are g/cm^3 for aluminum, steel, and copper, g/cm^2 for MLI and CFRP. Abbreviations used in table: S/C = spacecraft, Mass db = mass of the debris, MEF = momentum

enhancement factor, DV = change in velocity, MLI = multilayer insulation, CFRP = carbon fiber reinforced plastic.

Table A2 Default parameters used in simulations throughout unless otherwise specified

Parameter Value Unit

Spacecraft parameter

S/C mass 200 kg

Orbit parameters

Orbit altitude 800 km
Orbit eccentricity 0 — —

Orbit inclination 40 deg
Orbit right ascension of the ascending node 30 deg
Orbit argument of perigee 50 deg

Measurement parameters

Measurement noise in position, σmeas;pos 10 m (1σ)

Measurement noise in velocity, σmeas;vel 0.25 m/s (1σ)
Data rate 1 Hz

Debris parameters

Debris mass 0.2 g
Debris velocity 12 km/s
Momentum enhancement factor [38] 2 — —

Strike direction [.5774; .5774; .5774] In inertial frame

Filtering parameters

Time constant τ (initial, before tuning) 10 s (for FOGM)

Process noise spectral density q (initial) 2e−18 km2∕s5

Time constant τ (final, after tuning) 1 s

Process noise spectral density q (final) 2.15e−17 km2∕s5

Measurement noise matrix, R [σ2meas;posI3×3, 03×3; 03×3, σ
2
meas;velI3×3] Measurement units2

Orbit perturbation parameters

Coefficient of drag, CD 2.2 — —

Reference altitude, ro Per Table 8-4 of [36] — —

Atmospheric scale height, H Per Table 8-4 of [36] — —

Reference density, ρo Per Table 8-4 of [36] — —

Area of satellite bus 1 m2

Area of solar array (tracks sun, area relative to v̂ varies) 5 m2
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acceleration that growwith each timestep when used in a filter process-
ing the data in reversed time. To correct this, a mirrored FOGM is used
in the backward filter, which decays exponentially as the filter moves
backward in time through the dataset, as shown in Eq. (15) and Fig. 8.
Implementing this change in the state dynamics and state transition
matrix is obtained by setting the time constant τ to be negative. τ is also
used in the state process noise covariance matrix, and the objective of
this appendix is to rederive the coefficients of this state process noise
covariance using the mirrored FOGMmodel to verify the computation
of the state process noise covariance in the backward filter.
First, the FOGM acceleration is integrated twice to establish the

acceleration, velocity, and position at t� Δt. Note that this is the
kinematic effect of the process noise only; it does not incorporate
system dynamics. For a Keplerian orbit and a short timestep, this
approximation is sufficient for characterizing the effect of noise on
the state, but if longer timesteps or stronger system dynamics were
involved, it should be revisited.

w�t� Δt� � w�t�eΔt∕τ (B1)

v�t� Δt� � v�t� �w�t�τ�eΔt∕τ − 1� (B2)

r�t� Δt� � r�t� � v�t�Δt −w�t�τΔt�w�t�τ2�eΔt∕τ − 1� (B3)

where the constants of integration are solved for by noting that atΔt �
0,w�t� Δt� � w�t�, v�t� Δt� � v�t�, and r�t� Δt� � r�t�.
Next, form the state transitionmatrix at t� Δt by taking the partial

derivatives of these equations with respect to the state. Note that this
assumes that Δt is small enough for a first-order Taylor series
truncation to be used. The STM is found by

Φ�t� Δt; t� � ∂X�t� Δt�
∂X�t� (B4)

Φ�t� Δt; t� �
I3 ΔtI3 �τ2�eΔt∕τ − 1� − τΔt�I3
03×3 I3 τ�eΔt∕τ − 1�I3
03×3 03×3 eΔt∕τI3

(B5)

For convenience, the following definitions are formed from this state
transition matrix:

Φ12 � Δt (B6)

Φ13 � τ2�eΔt∕τ − 1� − τΔt (B7)

Φ21 � τ�eΔt∕τ − 1� (B8)

Φ33 � eΔt∕τ (B9)

This approximation of the state transition matrix is then used to
form the integrand for the state process noise covariance matrix. The
Q is the power spectral density of the acceleration noise, and it is
applied in the orbit frame (radial, tangential, normal). The B matrix
maps the orbit frame to inertial frame (so that it can be added to the
state vector). Thus,

Qrtn �
qr 0 0

0 qt 0

0 0 qn

(B10)

B �
03×3

03×3

Mrtn

(B11)

whereMrtn is the direction cosinematrix tomap the orbit frame to the

inertial frame. For convenience, the following definition of ~Q is

established. Note that this is the ~Q that is used in Eq. (12).

~Q � MrtnQrtnM
T
rtn (B12)

With these, the integrand of the process noise covariance matrix
can be assembled, denoted asNi. Recalling Eq. (11), the integrand is

Ni � Φ�t� Δt; ϵ�B�ϵ�Q�ϵ�BT�ϵ�ΦT�t� Δt; ϵ� (B13)

such that

Si �
t�Δt

t
Ni dϵ (B14)

Multiplying this out and approximatingNi for one timestep from t to
t� Δt reduces to

Ni ≈

Φ2
13

~Q Φ13Φ21
~Q Φ13Φ33

~Q

Φ13Φ21
~Q Φ2

21
~Q Φ33Φ21

~Q

Φ13Φ33
~Q Φ33Φ21

~Q Φ2
33

~Q

(B15)

For the filter, the Φ coefficients of Ni are multiplied out and then
integrated to form the γ coefficients for calculating Si. The constants
of integration are found by setting γ � 0 when Δt � 0.

Φ2
13 � �−Δtτ − τ2 � eΔt∕ττ2�2 (B16)

γrr;bkwd �
Δt3τ2

3
� Δt2τ3 � Δtτ4 − 2eΔt∕τΔtτ4 −

τ5

2
� 1

2
e2Δt∕ττ5

(B17)

Φ2
21 � τ2 Δt − 2eΔt∕ττ� 1

2
e2Δt∕ττ (B18)

γvv;bkwd �
1

2
τ2�2Δt� �3–4eΔt∕τ � e2Δt∕τ�τ� (B19)

Φ2
33 � e2Δt∕τ (B20)

γww;bkwd � −
τ

2
� 1

2
e2Δt∕ττ (B21)

Φ13Φ21 � �−1� eΔt∕τ�τ�−Δtτ − τ2 � eΔt∕ττ2� (B22)

γrv;bkwd �
Δt2τ2

2
� Δtτ3 − eΔt∕τΔtτ3 � τ4

2
− eΔt∕ττ4 � 1

2
e2Δt∕ττ4

(B23)

Φ13Φ33 � eΔt∕τ�−Δtτ − τ2 � eΔt∕ττ2� (B24)

γrw;bkwd � −eΔt∕τΔtτ2 −
τ3

2
� 1

2
e2Δt∕ττ3 (B25)

Φ33Φ21 � eΔt∕τ�−1� eΔt∕τ�τ (B26)

γvw;bkwd �
1

2
�−1� eΔt∕τ�2τ2 (B27)

For the forward filter, the γ coefficients are from Carpenter and
D’Souza [28] and are repeated here. Note that these are used in the
forward filter for the γ coefficients shown in Eq. (12).
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γrr;fwd �
τ5

2
�1 − e−2Δt∕τ� � 2Δt

τ
�1–2e−Δt∕τ� − 2

Δt
τ

2

� 2

3

Δt
τ

3

(B28)

γvv;fwd �
τ3

2
f�1 − e−2Δt∕τ� − 4�1 − e−Δt∕τ� � 2Δt∕τg (B29)

γww;fwd �
τ

2
�1 − e−2Δt∕τ� (B30)

γrv;fwd �
τ4

2
�e−2Δt∕τ − 1� − 2�e−Δt∕τ − 1�

� 2Δt
τ

�e−Δt∕τ − 1� � Δt
τ

2

(B31)

γrw;fwd �
τ3

2
�1 − e−2Δt∕τ� − 2Δt

τ
e−Δt∕τ (B32)

γvw;fwd �
τ2

2
�1 − e−Δt∕τ�2 (B33)

For the backward filter, the text established that setting the time
constant τ to be negative is an effectivemeans to adjust the code to use

themirrored FOGM in the backward filter. For theSi matrix, ~Q is not
a function of τ, so the question is whether using a negative τ in the
forward-filter γfwd coefficients renders an equivalent result to the
γbkwd coefficients derived above. Comparing Eqs. (B17), (B19),
(B21), (B23), (B25), and (B27) to Eqs. (B28–B33) with a negative
τ, it does render an equivalent result, so the state process noise
covariance calculation can be left intact in the backward filter, and
no additional sign changes are required within the γ terms beyond
setting τ to be negative.
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