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This work explores reinforcement learning (RL) for on-board plan-
ning and scheduling of an agile Earth-observing satellite (AEOS). In
this formulation of the AEOS scheduling problem, a spacecraft in low
Earth orbit attempts to maximize the weighted sum of targets collected
and downlinked. The AEOS scheduling problem is formulated as a
Markov decision process (MDP) where the number of upcoming imag-
ing targets included in the action space is an adjustable parameter to
account for clusters of imaging targets with varying priorities. Monte
Carlo tree search (MCTS) and supervised learning are used to train a
set of agents with varying numbers of targets in the action space. Two
backup strategies are explored for MCTS—an incremental averaging
operator and a maximization operator. For all backup operators,
performance asymptotically increases as the number of targets in the
action space approaches the maximum number of available targets. A
benchmark is computed with MCTS to determine an upper bound
on performance. Furthermore, MCTS is compared with solutions
generated by a genetic algorithm. MCTS demonstrates a 2%–5%
increase in average reward at 10%–20% of the single-core wall clock
time of the genetic algorithm. A search of various neural network
hyperparameters is presented, and the trained neural networks are
shown to approximate the MCTS policy with three orders of magni-
tude less execution time. Finally, the trained agents and the genetic
algorithm are deployed on varying target densities for comparison
purposes and to demonstrate robustness to mission profiles outside of
the training distribution.
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I. INTRODUCTION

On-board planning and scheduling for spacecraft opera-
tions will become a requirement for future mission architec-
tures in multiple domains. In the Earth-observing domain,
on-board planning and scheduling is useful for replanning in
the event of a ground station outage or unexpected science
collection opportunity. For large constellations, on-board
planning and scheduling can reduce the burden on opera-
tors, saving both time and cost. For deep space missions,
on-board planning and scheduling will reduce constraints
imposed by the round-trip light-time delay and facilitate
operations in the uncertain dynamics environments of as-
teroids and comets. This work explores on-board planning
and scheduling for a single Earth-orbiting spacecraft, but the
lessons learned can also be applied to deep space mission
architectures.

Typically, planning and scheduling is a ground-based
activity in which a plan is generated on the ground using
planning software. The plan is then sequenced and up-
linked to the spacecraft for open-loop execution. Efforts
have been made to automate the ground-based process.
The Automated Scheduling/Planning Environment (AS-
PEN) software architecture is one such architecture used
for a variety of spacecraft missions [1]. Significant work has
been performed to develop on-board systems that modify
the plans generated by ASPEN. The Continuous Activity
Scheduling Planning Execution and Replanning (CASPER)
tool uses iterative repair to modify plans generated by
ASPEN in the event of resource constraint violations or
unexpected science opportunities [2]. ASPEN and CASPER
have been applied to several missions to demonstrate this
process and improve operations. ASPEN and CASPER
were deployed on the Earth-Observing 1 mission as a part of
the Autonomous Sciencecraft Experiment to demonstrate
on-board planning and scheduling modification to detect
and respond to opportunistic science events [3], [4]. These
tools were also deployed as a part of a larger web of space-
and ground-based sensors to detect and capture data on
volcanoes and floods [5], [6]. While ASPEN and CASPER
have increased the autonomous capability of spacecraft and
saved millions of dollars in operations costs, methods with
more control over operational decisions are required for
fully autonomous spacecraft.

In the Earth-observing satellite (EOS) scheduling prob-
lem, one or more spacecraft must collect and downlink
science data to one or more ground stations on the Earth.
Several science objectives may be considered. One such
science objective is nadir-pointing data collection to maxi-
mize the surface area of the Earth imaged and downlinked.
Another is a target-pointing science objective in which
hundreds or thousands of individual targets must be imaged
and downlinked by a spacecraft with three-axis attitude
control capabilities. This latter problem is commonly re-
ferred to as the agile Earth-observing satellite (AEOS)
scheduling problem. Real world examples of such missions
include the two-spacecraft Pleiades constellation developed
by the National Center of Space Research (French Space
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Agency) or the WorldView constellation developed by Dig-
italGlobe [7]. Combinations of these science objectives may
also be considered, depending on the mission architecture.
Nag et al. [8] formulate an AEOS scheduling problem for
a constellation of CubeSats and apply dynamic program-
ming to solve the problem, demonstrating a large perfor-
mance improvement over traditional nadir-pointing satellite
architectures. In literature, mixed-integer programming is
the most common problem formulation for the agile EOS
scheduling problem [9], [10], [11]. While these approaches
find optimal solutions to the AEOS scheduling problem,
the solutions are brittle to a change in initial conditions.
Furthermore, because they are executed open-loop on board
the spacecraft, a significant deviation in resource consump-
tion or the addition of new science opportunities cannot be
easily accounted for on board and require that a new plan
is generated on the ground.

Reinforcement learning (RL) has recently been posed as
a candidate for the EOS scheduling problem due to its ability
to generalize across initial condition distributions, rapidly
compute plans after training, and execute closed-loop on
board the spacecraft to dynamically respond to changes in
the environment. Haijiao et al. [12] formulate a satellite
scheduling problem with data storage constraints where the
next imaging task is evaluated for acceptance or rejection
as it becomes available and apply the asynchronous ad-
vantage actor–critic (A3C) algorithm to solve the problem.
Zhao et al. [13] apply RL to solve the scheduling and timing
problem in a two-phase manner for an EOS, demonstrat-
ing that the RL approach can match the performance of
a genetic algorithm. Wei et al. [14] formulate a similar
scheduling and timing problem and apply an actor–critic
RL algorithm that outperforms a genetic algorithm in terms
of cost and execution time. He et al. [15] apply deep Q-
learning to an Earth-observing task scheduling problem and
utilize a heuristic algorithm to solve the timing problem.
Hadj-Salah et al. [16], [17] apply actor–critic RL
(A2C) to a large area coverage scheduling problem
and demonstrate that the proposed method meets or
exceeds state-of-the-art heuristic algorithms under var-
ious weather conditions. While these methods have
demonstrated success in generating solutions for EOS
scheduling problems, especially when compared with
heuristic or genetic algorithms, they typically do not
consider data dynamics, data downlink, and/or energy
dynamics. Harris et al. [18] formulate an EOS scheduling
problem in which the goal is to maximize the amount of time
the spacecraft spends in the nadir-pointing science mode
while also managing resources, such as power and reaction
wheel momentum. They apply shielded proximal policy op-
timization to demonstrate safe operations while maximizing
data collection. Herrmann and Schaub [19] formulate an
EOS scheduling problem where the goal is to maximize the
amount of science data downlinked while managing power,
reaction wheel momentum, and on-board data storage. They
show that Monte Carlo tree search (MCTS) and state–
action value network regression can compute near-optimal

solutions to the problem. The state–action value neural
networks may be executed in tenths of a second to compute
the next mode the spacecraft should enter. While these
problem formulations are an important step toward more
complicated planning problems, they do not account for the
presence of multiple targets that require precise pointing
for imaging. Eddy and Kochenderfer formulate a semi-
Markov decision process (MDP) for the agile EOS schedul-
ing problem and apply MCTS to generate optimized task
schedules [20]. While the authors formulate a multi-target
problem, they do not generalize the solutions to arbitrary
initial conditions for on-board execution, requiring that a
new solution is computed using MCTS for each unique
initial condition. This work applies MCTS methods to the
agile EOS scheduling problem, generating optimal space-
craft plans that may be rapidly executed on board for any
initial condition contained within the training distributions.

This work formulates an AEOS scheduling problem in
which multiple targets on the surface of the Earth must
be imaged and downlinked by scheduling a sequence of
actions to image the targets, downlink them, and manage
spacecraft resources such as power, reaction wheel speeds,
and on-board storage. The problem is formulated as an MDP
where the number of targets included in the state and action
spaces is explored to determine the effect on performance.
The targets in the state and action spaces are replaced with
the next set of upcoming targets as they are passed over or
imaged by the spacecraft. MCTS is utilized to benchmark
the performance of the MDP with different numbers of
targets in the action space. Two different MCTS backup op-
erators are compared—an incremental averaging operator
and a maximization operator. Furthermore, MCTS is com-
pared with a genetic algorithm on the basis of reward and
single-core wall clock time. State–action value neural net-
work regression is then used to compute state–action value
approximations using training data generated by MCTS. A
search of the neural network hyperparameters is performed
and presented, and the learned policies are compared with
MCTS. Finally, a study is performed to determine how
robust the learned policies and the genetic algorithm are
to target densities outside of the training densities. This
work is a substantial iteration of past work that formulates
the MDP and presents preliminary results on the neural
network regression of the state–action value estimates [21].
This work includes several new innovations, such as the
use of the maximization backup operator, comparisons to a
genetic algorithm, a more complete hyperparameter search
and presentation of the results, and a study on the robustness
of the learned policies to target densities outside of the target
density used in training.

II. PROBLEM STATEMENT

A. AEOS Scheduling Problem

In the AEOS satellite scheduling problem, one or more
spacecraft collect and downlink data to one or more ground
stations on the surface of the Earth over some planning
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Fig. 1. AEOS scheduling problem. The decision-making agent selects
the schedule of flight modes to manage resources and maximize the
weighted sum of imaging targets imaged and downlinked, which are

shown in red.

horizon, which is defined as the total amount of operational
time considered for planning and scheduling. In this formu-
lation of the AEOS scheduling problem, a single spacecraft
in a 500 km altitude low Earth orbit collects images of tar-
gets located on the Earth’s surface, which are downlinked to
ground stations in NASA’s Near Earth Network [22]. Over
the course of a three-orbit planning horizon, the spacecraft
has a set of 135 targets available along its flight-path for
imaging, each with its own priority (1 is the highest and
3 is the lowest). This set of all targets is referred to as T,
which is ordered by when the spacecraft has access to the
targets. The goal is to maximize the weighted sum of the
targets in T that are collected and downlinked. The planning
horizon is broken into 45 discrete planning intervals where
new scheduling decisions are made. The decision-making
intervals do not overlap, and each interval is 6 min long. The
length of the planning intervals is primarily driven by the
time required for the attitude of the spacecraft to converge
to the reference. If the planning intervals are too small, the
flight modes may become unstable. Because the planning
horizon is broken into 45 decision-making intervals, the
maximum number of targets that can be imaged is 45 (if op-
erational resources are ignored). The spacecraft schedules
resource management and imaging tasks at each planning
interval to achieve the goal. Fig. 1 depicts this problem.

B. Markov Decision Process

The AEOS scheduling problem is formulated as an
MDP, a sequential decision-making problem in which an
agent observes some state si and selects and action ai

following a policy π : S → A, which maps states to ac-
tions. The agent observes a new state si+1 and receives
a reward ri based on the reward function R : S×A→R.
This process is demonstrated in Fig. 2. MDPs follow

Fig. 2. MDP. A decision-making agent takes an action ai while in state
si. The decision-making agent transitions to a new state si+1 and receives

a reward ri.

the Markov assumption, meaning the next state is con-
ditionally dependent only on the current state and ac-
tion. Mathematically, this may be stated as T (si+1|si, ai ) =
T (si+1|si, ai, si−1, ai−1, . . ., s0, a0). All relevant state infor-
mation for the purposes of maintaining this assumption must
be included in the state space.

1) Target Notation: In this formulation of the AEOS
scheduling problem, the collection and downlink of indi-
vidual targets is of particular interest. The relative geometry
of the targets, length of the planning intervals, and limited
spacecraft resources preclude the collection of every target.
Therefore, the decision-making agent must make tradeoffs
between the different targets and its resources to maximize
the weighted sum of targets collected and downlinked.
Ideally, each target is included in the state space so the
agent has perfect information. However, this significantly
increases the complexity of the problem by increasing the
size of the state and action spaces because there are 135
targets in set T. Therefore, only a subset of T that contains
the next upcoming, unimaged targets should be considered.
This subset is given in (1), where J is the number of targets in
the state and action spaces and D is a subset of T containing
the imaged or passed targets.

U = {c j ∈ (T − D) | ∀ j ∈ [1, J]} (1)

The targets in set T are generated by sampling the positions
of the spacecraft in the Earth-centered, Earth-fixed (ECEF)
frame and projecting them onto the surface of the Earth.
Before the projection, a small amount of noise is added
to the spacecraft position to generate off-nadir targets. An
example of the generated targets in terms of latitude and
longitude may be found in Fig. 3. The red, orange, and
yellow dots are targets, and the blue line is the ground track
of the spacecraft. The targets are at most one to two degrees
off of the ground track of the spacecraft. Due to the nature
of the target generation, there are varying concentrations of
targets with varying priorities that the agent will encounter.

2) State Space: Real-world problems are difficult to
cast as MDPs with strict adherence to the Markov as-
sumption. The designer of the MDP must decide which
information is most relevant to the problem. The state space
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Fig. 3. Example of spacecraft ground track and target locations. Red is
high priority. Orange is medium priority. Yellow is low priority.

S , for the AEOS scheduling problem may be found in the
following:

1) ECEF spacecraft position, Er;
2) ECEF spacecraft velocity, Ev;
3) image tuples for targets c j ∈ U;

a) target position in the spacecraft Hill frame,
Hr j;

b) priority, p j;
4) L2 norm of Modified Rodrigues Parameter (MRP)

attitude error, ||σB/R||;
5) L2 norm of angular attitude rate vector, ||BωB/N ||;
6) reaction wheel speeds, �;
7) battery charge, z;
8) eclipse indicator, k;
9) stored data in buffer, b;

10) data transmitted, h.

The left-superscript on a vector denotes the coordinate
frame relative to which vector components are taken [23].
The body-fixed frame is referred to as B, and the desired
attitude reference frame is referred to as R. The inertial
frame is denoted with N . The position and velocity of the
spacecraft expressed in an ECEF frame E are included in
the problem to retain information on upcoming downlink
windows. For each target included in the state and action
spaces, a target tuple is also included that contains the target
position expressed in the spacecraft Hill frame H and the
target priority. The position of each target expressed in
the spacecraft Hill frame allows the agent to understand
the geometric relationship between each target to make
tradeoffs between access and priority.

The attitude error σB/R, attitude rate BωB/N , and reaction
wheel speeds � provide state information for the attitude
control system. The battery charge z and eclipse indicator k
provide state information on the spacecraft’s power system.
Likewise, the amount of data stored in the buffer and amount
of data downlinked over the planning interval provide state
information on the spacecraft’s data management system
and ability to downlink data to the ground.

Each state is approximately normalized to a range of
[−1, 1] or [0, 1] to aid convergence in function approxi-
mation. The ECEF position vector and Hill-frame relative
target positions are normalized by the radius of the Earth.

The ECEF velocity is normalized by the velocity of a
circular orbit at the Earth’s surface. Reaction wheel speeds
are normalized using the maximum reaction wheel speed.
Likewise, the battery charge and data buffer storage level
are normalized by their maximum capacity.

3) Action Space: A mode-based planning approach is
taken where each mode represents a high-level spacecraft
behavior. The low-level behavior of each mode is dictated by
the attitude reference and ON/OFF states of each spacecraft
subsystem. Each mode is entered for a total of 6 min, which
is primarily constrained by the rate at which the attitude
control system can converge to the attitude reference. By
utilizing a mode-based planning approach, the continuous
behavior of the spacecraft is decomposed into discrete ac-
tions, making the planning problem tractable. The action
space, A, is given in the following:

1) charge;
2) desaturate;
3) downlink;
4) image target c1 ∈ U

...
6) image target c j ∈ U.

In the charging mode, the spacecraft turns OFF the im-
ager and transmitter and points its solar panels at the sun.
The desaturation mode is the same as the charging mode, but
the spacecraft thrusters are used to remove momentum from
the reaction wheels. In the downlink mode, the spacecraft
points in the nadir direction and turns ON the transmitter
to downlink data to available ground stations. A ground
station is accessible if the spacecraft is within the elevation
and range requirements of the station. In the imaging mode,
the spacecraft points at target j and takes an image once the
spacecraft is within the elevation and range requirements of
the target. The same access model is shared between ground
stations and imaging targets for simplicity. For imaging, an
additional attitude requirement is added such that the L2

norm of the attitude error is below a threshold of 0.1 rad.
4) Transition Function: Due to the continuous dy-

namics of the AEOS scheduling problem, it is difficult
to construct an explicit transition function using condi-
tional probabilities that accurately captures state transitions.
Therefore, the transition function is represented with a
generative model G(si, ai ) given in (2). A generative model
simply returns a new state si+1 and reward ri by sampling
an underlying distribution, integrating equations of motion,
or some combination of both.

si+1, ri = G(si, ai ). (2)

The Basilisk astrodynamics software architecture [24] is
used to construct a simulation to model the complex be-
havior of the spacecraft and environment. The Basilisk
simulation is wrapped within a gym environment, which
provides a standard interface for the agent to interact with
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Fig. 4. Gym environment interface [19]. A decision-making agent
passes an action to the environment, which returns a reward and

observation of the state.

the simulation.1 This is depicted in Fig. 4. The agent passes
an action to the environment, which turns Basilisk models
ON or OFF based on the mode. The simulation is integrated
forwards in time for 6 min with a time step of 1 s. Afterward,
the agent receives a reward and the new state.

The Basilisk astrodynamics software architecture is a
high-fidelity astrodynamics simulation tool developed by
the Autonomous Vehicle Systems Laboratory at the Uni-
versity of Colorado, Boulder.2 The Basilisk simulation de-
scribed within this work is an iteration of the simulator
used in past work [19]. The base simulator for the AEOS
scheduling problem includes high-fidelity orbit and attitude
dynamics, an on-board data system, and an on-board power
system. In this work, an instrument controller is included
that turns the imager ON to take an image if access and
attitude requirements are met. The simulated image is then
passed to the data buffer and downlinked if and when a
downlink is initiated by the spacecraft.

5) Reward Function: The reward function R(si, ai,

si+1) is formulated as a piecewise function of the current
state, action, and next state. The return at step i is computed
as follows:

ri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−10 if failure∑|T|
j H (d j ) if ¬failure ∧ ai is downlink

0.1H (w j ) if ¬failure ∧ ai is image c j

0 otherwise.

(3)

If the agent fails, a failure penalty of -10 is returned and
the episode terminates. The failure condition is true if the
spacecraft exceeds the maximum reaction wheel speeds,
expends all charge in the battery, or overfills the data buffer.
Mathematically, this is represented as

failure = (
z = 0 ∨ any

(
�̂ ≥ 1

) ∨ b ≥ 1
)
. (4)

A function H (x j ) is formulated for each image tuple that
checks if the state variable x is false at step i and true at step
i + 1, returning 1 divided by the image priority p j if these
conditions are met.

H (x j ) = (1/p j ) if ¬x ji ∧ x ji+1 . (5)

1[Online]. Available: https://bitbucket.org/avslab/basilisk-gym-interface/
src/develop/
2[Online]. Available: http://hanspeterschaub.info/basilisk

If the downlink mode is initiated and a resource manage-
ment failure does not occur, the H (d j ) function for all targets
is computed and summed using a downlink state d j that
represents whether or not target j has been downlinked. In
other words, each target is checked to see whether or not it
has been downlinked for the first time. Reward is returned
for each target for which this condition is true, and the total
reward for all targets is summed together.

If the image target c j mode is initiated and a resource
management failure does not occur, the H (w j ) operator
for target c j is computed, returned, and scaled by 0.1. The
variable w j represents if the target has been imaged or not.
In other words, target c j is checked to see if an image was
captured for the first time, and a small reward is returned if
this is true. The addition of this small positive reward helps
to make reward less sparse, which facilitates exploration in
MCTS.

6) Target Replacement: After each step, the targets in U
are checked to see if they have been imaged or passed. If so,
these targets are added to D, and U is updated and added to
the action space. While this does add unobservability to the
problem, there is a value for |U| that will render this impact
negligible because the added information of more targets
will only marginally improve observability while increasing
problem complexity and required training time. If the agent
had observability over every target and their priorities, it
would have perfect information and the ability to compute
the value exactly. In this work, the size of U is explored to
determine when the agent has enough information to extract
the maximum possible reward from the environment.

III. METHODS

A. Solving MDPs

Solving MDPs is done by solving for the optimal policy
π∗(si ), which is the mapping from states to actions that
results in the maximum expected reward. The optimal policy
can also be represented as the policy that maximizes the
value function, as shown in the following:

π∗(si ) = arg max
π

V π (si ). (6)

The optimal value function V ∗(si ) is the expected value of
future reward when starting in state si and following the
optimal policy until the episode terminates [25]. For a de-
terministic and finite-horizon MDP, it is defined recursively
using the Bellman operator

V ∗(si ) = max
a

(
R(si, ai ) + V ∗(si+1)

)
. (7)

The state–action value function Q(si, ai ) is the expected
value of future reward given a state si and action ai. The op-
timal value function can be found by maximizing Q∗(si, ai ).

V ∗(si ) = max
a

Q∗(si, ai ). (8)
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Fig. 5. MCTS algorithm [19]. In the selection step, MCTS selects the action that maximizes the state–action value estimate and an exploration term.
In the expansion step, MCTS initializes the state–action value function and the number of times each state–action pair has been selected. During

rollout, MCTS uses a heuristic rollout policy to select actions until a specified depth. Finally, during backup, MCTS updates the state–action value
estimates with the return from rollout.

If the optimal state–action value function is known, the
optimal policy is

π∗(si ) = arg max
a

Q∗(si, ai ). (9)

This work solves for the state–action value function Q(s, a)
using online algorithms and supervised learning. The ben-
efit of using online algorithms is that only states that are
reachable from state si are explored. Therefore, online al-
gorithms are well suited for generative transition functions,
which this work utilizes. Adding supervised learning allows
for the policies found by the online algorithms to generalize
across the state space.

B. Monte Carlo Tree Search

MCTS is an online search algorithm that uses a com-
bination of simulation and rollout to determine the next
optimal action the agent should take in the planning prob-
lem [26], [27]. The exact implementation of MCTS may be
found in [27, Ch. 4.6.4]. At each step through the environ-
ment, MCTS computes the optimal action by following the
process in Fig. 5. During the selection step, MCTS selects
the action that maximizes the state–action value estimate,
Q̂(s, a), and the exploration bonus, U . The exploration
bonus is a function of an exploration constant ε, the number
of times the state has been visited N (s), and the number
of times a particular state–action tuple has been selected
N (s, a).

U = ε

√
log N (s)

N (s, a)
. (10)

If MCTS reaches a state in the search tree it has not seen
before, it initializes Q̂(s, a) and N (s, a). Then, MCTS exe-
cutes a rollout policy to a specified depth. A rollout policy is
a random or heuristic policy MCTS uses to find areas of high
reward, which are promising to search. After rollout, MCTS
backs up the reward through each state–action tuple to

update Q̂(s, a). In this work, two separate backup operators
are compared: an incremental averaging operator and a
maximization operator. The incremental averaging operator
is given inthe following where q is the return after simulation
and rollout:

Q̂(s, a) = Q̂(s, a) + q − Q̂(s, a)

N (s, a)
. (11)

When the maximization operator is utilized, each
Q̂(s, a) is initialized to -10. During backup, Q̂(s, a) is set to
q if the return is greater than Q̂(s, a); otherwise, no change is
made. The equation for the maximization backup operator
is provided in the following:

Q̂(s, a) = max
{
Q̂(s, a), q

}
. (12)

The entire selection, expansion, rollout, and backup pro-
cess is repeated for a specified number of simulations-per-
step. After the maximum number of simulations-per-step is
reached, the action that maximizes the state–action value
estimate is selected and the agent takes a step forward in
the environment.

1) Rollout Policy: A safety MDP and rollout policy
are derived as described by Herrmann and Schaub [19].
The safety MDP discretizes the state space to reduce di-
mensionality to several safety states

Ssafety : (Tumbling, Low Power, Saturated, Buffer Full).
(13)

The safety states take a value of true or false depending
on whether the relevant resource state variables are above
or below a safety limit. A rollout policy is generated for
the safety MDP that guarantees a resource constraint failure
does not occur, which allows MCTS to only explore areas in
the state space that are promising. At times, the safety MDP
achieves a nominal state (si = (0, 0, 0, 0)), meaning that
any action can be safely taken. For this problem, the target
in the state space with the minimum Hill-frame position
is selected for imaging if the state of the safety MDP is
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Fig. 6. Genetic algorithm convergence example.

nominal. However, if a ground station is accessible, the
downlink mode is initiated instead.

C. Genetic Algorithm

In order to provide a comparison to state-of-the-art
scheduling algorithms, a genetic algorithm is implemented
using the DEAP evolutionary computation framework.3 A
genetic algorithm is a metaheuristic optimization algorithm
that utilizes mutation, crossover, and selection operators to
search for good solutions to a given problem. The genetic
algorithm begins with a population of random sequences of
actions. Each member of the population is evaluated using
a fitness function. In the agile EOS scheduling problem,
the fitness function is simply the reward function of the
MDP. After evaluation, selected members of the population
either mutate (i.e., a given action changes to another action
following some probability) or crossover (action sequences
combine with one another). The new population is evaluated
once more, and the entire process repeats for a given number
of generations. DEAP’s two-point crossover is utilized, and
both the mutation and crossover probabilities are set to 0.25.
An example of the convergence of the genetic algorithm is
provided in Fig. 6.

D. Supervised Learning

A training process is employed to create a state–action
value function that is generalizable over a range of initial
conditions. The entire process is demonstrated in Fig. 7.
MCTS is used to solve the planning problem for hun-
dreds of initial conditions sampled from distributions of
the true anomaly, argument of periapsis, longitude of the
ascending node, battery charge level, etc. [19]. Because
MCTS estimates the state–action value function for each
state–action pair, the estimates from each solved planning
horizon are first updated using the realized reward from
stepping through the planning problem. Afterward, each
state–action value estimate is placed in a dataset that is split
between a training set and validation set. These state–action
value estimates are regressed over using artificial neural

3[Online]. Available: https://deap.readthedocs.io/en/master/

networks to produce a state–action value function approxi-
mation, Qθ (s, a). After Qθ (s, a) is computed, a new policy
may be derived in which the action that maximizes Qθ (s, a)
is returned. This is the policy used by the on-board agent
to determine the next optimal action the spacecraft should
take.

π (si ) = arg max
ai

Qθ (si, ai ). (14)

The learned policies are then validated and benchmarked
in the environment. The benefit of a neural network repre-
sentation of the state–action value network is that it may
be executed in milliseconds on board the spacecraft to
compute the optimal action based on the current state of
the environment.

IV. RESULTS

A. Action Space Parameterization

The effect of the size of U on performance is an impor-
tant question this work explores. A constant target density of
45 possible targets per orbit (135 total targets in T over three
orbits) is assumed. It is worth mentioning that in addition to
target density, the required number of targets in U is also a
function of the length of the planning interval. A spacecraft
that makes a decision every three minutes will be able to
collect more targets than a spacecraft that makes a decision
every six minutes, assuming the spacecraft can slew from
target to target fast enough. This work only considers 6-min
planning intervals.

To determine how the size of U impacts performance,
an experiment is conducted in which the number of targets
in the action space is increased from one through five. A
range of |U| = {1, . . . , 5} is selected because the spacecraft
rarely has access to more than five targets. MCTS with an
incremental average operator, MCTS with a maximization
backup operator, and the genetic algorithm are applied
to solve the problem for each size of U. For each |U|,
the MCTS hyperparameters that balance performance and
execution time are selected. For the incremental average
backup, an exploration constant of ε = 10 is selected. For
the maximization backup, an exploration constant of ε = 20
is used because of the higher state–action value estimates.
The number of simulations-per-step for each |U| is linearly
increased from 15 to 35, with |U| = 1 at 15 simulations-per-
step and |U| = 5 at 35 simulations-per-step. The increase
in simulations-per-step is selected due to the increase in
problem complexity due to additional actions in the action
space. The number of times future state–action pairs are
visited is on the order of

1

|A|depth
. (15)

The depth is the depth of the search. To equalize explo-
ration between the different experiments, the number of
simulations-per-step is marginally increased to account for
this decay. Furthermore, past work has shown that after a
certain point, additional simulations-per-step in the EOS
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Fig. 7. Training pipeline. MCTS is used to generate thousands of estimates of the state–action value function. Various artificial neural networks are
used to regress over the training data, and each neural network is then validated and benchmarked in the environment.

scheduling problem do not result in a large difference in
the quality of MCTS solutions [19]. Therefore, the smallest
number of simulations-per-step is selected for each |U| such
that an MCTS performance plateau is achieved.

The genetic algorithm is initialized with a population
of 80 for |U| = 1 and is linearly increased to 160 for
|U| = 5 to account for the increase in problem complex-
ity. For each size of U, the number of generations is set
to 100.

In Fig. 8, the average reward, number of imaged targets,
and number of downlinked targets for each size of U are
plotted, along with the 95% confidence intervals for each.
The maximum possible number of imaged targets is 45.
However, this is impossible to obtain because of the data
buffer constraint. Therefore, MCTS with the maximization
backup operator is used to generate a value for each metric’s
maximum expected value (75 simulations-per-step and ten
targets in the action space). This is provided using the dotted
black line, with the 95% confidence intervals provided in
gray. The solid blue line is generated from MCTS using the
maximization backup operator. The solid green line is gen-
erated from MCTS using the incremental averaging backup
strategy. Finally, the orange line is generated using the
genetic algorithm. The reward asymptotically approaches
the maximum possible reward for each backup strategy
as |U| increases. However, the maximization backup strat-
egy consistently achieves more reward. The maximization
backup operator also images and downlinks more targets on
average. This is because the incremental averaging operator
averages in the return from future low-value states. The
maximization backup operator does not average in this
return and instead sets the action-value estimate to the
maximum return found during search. Consider a scenario
in which the agent is close to filling up the spacecraft’s data
buffer. The state–action value estimates along the optimal
trajectory of actions will be lower than the true optimal
state–action value, the closer the agent is to filling up the
data buffer. In contrast, the maximization operator will not
consider the low return from a data buffer overflow until it
reaches a state in which it will overfill the data buffer at the
next time step if it takes an image.

An interesting result in Fig. 8 is that the mean number
of imaged and downlinked targets are relatively constant
for each backup operator as the size of U increases. The
average reward, however, increases as |U| increases. The
reason for this disparity is that as more targets are included
in the action space, MCTS has more of an opportunity to
select high priority targets over low-priority targets. The
target priorities are uniformly sampled from a range of
one to three. With one target in the action space, there is
a probability of 1/3 that the target will be priority one.
However, this probability increases with the size of U using
the following equation: 1 − (2/3)|U|. With five targets in
the action space, the probability that MCTS will have at
minimum one priority one target is approximately 0.868.

In terms of reward, the genetic algorithm performs better
than MCTS with the incremental averaging operator, but
not as good as MCTS with the maximization operator.
Generally speaking, this is true for the number of imaged
targets as well. However, the genetic algorithm usually
downlinks more targets than the maximization operator and
incremental averaging operator. The GA seems to take bet-
ter advantage of downlink opportunities, but does not lever-
age the imaging target priorities quite as well. The mean
single-core wall clock time of each algorithm is plotted in
Fig. 8(d). The MCTS computation time is typically between
10% and 20% of that of the genetic algorithm. The reason for
this is that MCTS leverages expert knowledge in the rollout
policy to find high-value states, so the MCTS algorithm is
more sample efficient. This implementation of the genetic
algorithm does not have an analogous mechanism. It should
be noted that the computation times are on the order of
hours long for each algorithm. If a faster simulator was
used, especially one that makes linear assumptions about
the dynamics of the problem, these simulation times could
be greatly reduced.

In Fig. 9, the normalized frequency of the number of
accessible targets at any given step is provided. The 1σ

standard deviation of the frequencies between different
initial conditions is plotted in orange. This is computed
by generating the normalized frequencies for each unique
initial condition and computing the associated standard
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Fig. 8. MCTS performance metrics for different sizes of U with
associated 95% confidence intervals. (a) Mean reward. (b) Mean number

of imaged targets. (c) Mean number of downlinked targets. (d) Mean
single-core wall clock time.

Fig. 9. Normalized frequency of the number of accessible targets at
each planning interval. |T| = 135.

TABLE I
Neural Network Hyperparameters

deviations between each initial condition. The agent has
no targets available to image in the next decision-making
interval approximately 10% of the time. The agent has
two targets available to image in the next decision-making
interval about 28% of the time. Finally, the agent rarely has
eight targets available for imaging and never has nine targets
available for imaging. Therefore, ten targets in the action
space provide MCTS with the maximum amount of targets
required to get the maximum reward at any step, with some
margin added. The frequencies of available targets also shed
light on the curves in Fig. 8. The spacecraft has five or more
targets available for imaging less than 10% of the time. The
magnitudes of the frequencies between one through four
targets are much larger and, therefore, have a much higher
impact on the performance.

B. State–Action Value Function Approximation

To determine the appropriate artificial neural network
hyperparameters for approximating the state–action value
estimates generated by MCTS, a hyperparameter search is
conducted over the number of nodes, number of hidden lay-
ers, activation function, dropout rate, and α parameter (spe-
cific to the Leaky ReLU activation function). The complete
network parameters are included in Table I. The training
data generation and neural network hyperparameter search
were conducted on a computer with a Windows operating
system, a 24-core AMD Threadripper 3960x processor,
NVIDIA RTX 3090 graphics card, and 128 GB of RAM.
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The neural networks are created and trained using the Keras4

deep learning API in the Python programming language.
In general, training data generation takes between 1 and
2 days with multiprocessing being utilized. Each network
requires approximately 5–10 min of training using the GPU.
If the CPU is utilized instead, this training time increases
dramatically.

To approximate the state–action value estimates, fully
connected feedforward neural networks with linear out-
put layers are implemented with various hyperparameters.
To prevent overfitting, dropout is added to each hidden
layer [28]. The dropout rate is the probability that a node
will be dropped during training. Two dropout rates are
explored: 0.01 and 0.1. If the dropout rate is too low, it
will not have the desired effect. If the dropout rate is too
large, the network may not sufficiently learn. In order to
determine the appropriate number of hidden layers and
width of these layers, a hyperparameter search is conducted
over a range of these parameters. The number of hidden
layers is increased from one to five. Four network widths
are considered −50, 100, 200, and 300 nodes. These ranges
of values were iteratively increased until a depreciation in
performance was present. In general, it is desirable to keep
the network as small as possible to increase the speed of
training and decrease the memory footprint and execution
time of the network, especially when on-board execution is
desired.

Both the Leaky ReLU and hyperbolic tangent activation
functions are considered. The hyperbolic tangent activation
function is a popular activation function that may be used for
regression, but suffers from the vanishing gradient problem
for deep networks [29]. Therefore, Leaky ReLU is also con-
sidered, which has become a popular choice for regression
because it does not suffer from the vanishing gradient prob-
lem (for sufficiently large values of α) or the dying ReLU
problem associated with the ReLU activation function. The
α-parameter in the Leaky ReLU activation function is the
slope of the activation function for x < 0. Two α-parameters
are explored: 0.1 and 0.2. If the α-parameter is too small,
Leaky ReLU may also suffer from the vanishing gradient
problem.

MCTS is used to generate 45 000 data points (1000
unique planning horizons solved). In total, 90% of the data
are used for training, and 10% of the data are used for
validation. The data generated by MCTS is not pre- or
post-processed (outside of MCTS updating the state–action
value estimates after it steps through the environment). The
networks are trained for 10 000 epochs using the mean
squared error (MSE) loss function, a popular choice of loss
function for regression problems. In general, the MSE for
the training and validation set is between 10 and 20. The
mean absolute error is also logged and is found to be in
between 2 and 4. Overfitting is observed as the networks
became larger, but in general this is not an issue for smaller
networks with 1–3 hidden layers and 50–200 nodes.

4[Online]. Available: https://keras.io/

Fig. 10. Hyperparameter surface plots for mean reward normalized by
the mean reward of best performing network. |U| = 3. (a) Leaky ReLU

activation function. (b) Hyperbolic tangent activation function.

To validate the performance of each trained neural
network, the state–action value networks are used to gen-
erate the policy described in (14), which is executed on
a standard set of initial conditions. An example of this
hyperparameter search is shown with the number of tar-
gets in the action space set to three, |U| = 3. The same
hyperparameter search is performed for the other sizes of
U, but these are not shown here for brevity. The general
trends shown here are consistent among the other numbers
of targets in the action space. In Fig. 10, a surface plot is
shown that plots normalized reward against the number of
nodes per hidden layers and number of hidden layers. The
normalized reward is the average reward divided by the
reward of the best hyperparameter combination. A surface
plot is generated for each activation function. However,
for each data point in the surface plot, the reward is av-
eraged among the remaining hyperparameters. In the case
of Leaky ReLU, the α parameter and dropout rate rewards
are averaged. In the case of hyperbolic tangent, only the
dropout rate reward is averaged. In general, performance is
not as sensitive to the dropout rates and α parameters as it
is to the width of the hidden layers and number of hidden
layers.

A general trend can be extracted from the plots in
Fig. 10. One to two hidden layers are typically insufficient to
produce high-performing policies, particularly when small
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layer widths are used. Furthermore, performance is rela-
tively poor for large layer widths and large numbers of
hidden layers, albeit not as poor as the former case. In
the former case, the network does not have enough pa-
rameters to sufficiently approximate the state–action value
estimates. In the latter case, the network has too many
parameters and becomes overfit. In the region that excludes
these two conditions, performance is relatively high. It
is also worth mentioning that no combination of layer
widths or hidden layers produces less than 85% normal-
ized reward. Therefore, the performance is relatively ro-
bust to the network architecture, which is an encouraging
result.

C. Comparison Between MCTS and Learned Policies

Once the state–action value network hyperparameteri-
zation is performed for each |U|, as described in the previous
section, the best state–action value networks for each |U|
are selected to compare against MCTS. Each of these net-
works are trained using data generated from MCTS with the
maximization operator solving approximately 1000 unique
initial conditions. The average reward, number of imaged
targets, number of downlinked targets, and the wall clock
time, along with the 95% confidence intervals, for both
MCTS and the best-performing neural networks are plotted
in Fig. 11. For each |U|, the neural network policies image
and downlink anywhere between 0.5 and 1.0 more targets
on average. There is a significant overlap in the confidence
intervals, but the network policies image and downlink more
targets for every number of targets in the action space.
Because of this and the fact that the reward achieved by
MCTS and the neural network policies is almost identical, it
is likely that the neural network policies are slightly worse at
imaging the high-priority targets. However, this difference
is quite small, so it can be concluded that the neural network
policies approximate the MCTS policy very well. Finally,
the learned policies find a solution three orders of magnitude
faster than MCTS.

D. Robustness to New Target Densities

In the last experiment, the robustness of the trained
state–action value function approximators is explored for
various sizes of the total target set, T. During training,
|T| is set to 135. However, in a real operational scenario,
this number will not be constant. The trained networks are
deployed in environments with |T| = {45, . . . , 270} in in-
crements of 45. The results of this experiment are presented
in Fig. 12(a) where the average reward and associated 95%
confidence intervals are plotted. At |U| = 1, there is little
difference between the performance of the trained network
for the different numbers of targets in the total target set.
This is because the agent is only ever considering the next
upcoming target. Adding or subtracting targets typically
does not impact the performance, except when |T| = 45.
In this case, the targets are very sparse and performance
is limited by the number of targets available for imaging
and downlink, not the agent’s ability to discern between

Fig. 11. MCTS and learned policy performance for different sizes
of |U|. (a) Mean reward. (b) Mean number of imaged targets. (c) Mean

number of downlinked targets. (d) Mean wall clock time.

different priorities. However, as the number of targets in the
action space increases, a separation in performance emerges
for |T| = {90, 135, 180}. These three target densities are
fairly distinct from one another, although there is some
overlap in confidence intervals. For |T| = {225, 270}, there
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Fig. 12. Average reward for different sizes of T. (a) Network trained on
nominal target density. (b) Genetic algorithm.

Fig. 13. Normalized frequency of the number of accessible targets at
each planning interval. |T| = 270.

is a lot of overlap in the means and confidence intervals
for all numbers of targets in the action space. This is ex-
pected because priority one targets become more available
as the target density increases. In Fig. 13, the normalized
frequencies of available targets at each planning interval
are plotted for |T| = 270. In contrast to Fig. 9, the most
commonly available number of targets is four as opposed
to two. The agent has higher priority targets available to it
more frequently, which increases the average reward.

A comparison to the genetic algorithm is performed
once more, this time on different target densities. In Fig.
12(b), the average reward of the genetic algorithm is plotted
for |T| = {45, 135, 270}, which provides a lower, middle,

and upper bounds on the performance of the GA. At |T| =
45, the performance of the trained networks and the GA
immediately plateau because the MDP limits the ability
of either decision-making agent to prioritize high-priority
targets over low-priority targets. However, the GA performs
slightly better at this target density because it makes no
assumptions about the underlying density. At the nominal
size of T, |T| = 135, the GA fails to match the reward of
the networks trained using MCTS, which is discussed in
the original comparison. However, at |T| = 270, the GA
begins to slightly outperform the trained networks again.
The networks are trained for a nominal density of 135 total
targets. Therefore, the state–action value outputs assume a
given target density, which may result in suboptimal results.
The GA makes no such assumptions and simply searches
for the sequence of actions that will maximize the reward
signal, albeit at a high computational cost. Hypothetically,
the networks could be retrained using MCTS assuming
the lower or higher target density, and the discrepancy in
performance would disappear while maintaining the low-
computational cost of the trained networks.

V. CONCLUSION

This work demonstrates the use of MCTS and state–
action value function approximation using artificial neural
networks for the AEOS scheduling problem. The depen-
dence of average reward on the number of targets in the
action space is explored for two separate backup operators in
MCTS. For a constant target density, increasing the number
of targets in the action space provides the agent with the
ability to make tradeoffs between target priorities and target
geometry, resulting in higher reward. This increase in mean
reward for |U| = {1, . . . , 5} is demonstrated for a density
of 135 targets over three orbits. The maximization operator
is shown to generate higher reward than the incremental
averaging operator. This is due to the maximization op-
erator’s ability to ignore low-reward states close to the
optimal trajectory. Furthermore, MCTS is compared with
a genetic algorithm. MCTS with the maximization operator
consistently outperforms the genetic algorithm at a frac-
tion of the computation required by the genetic algorithm.
MCTS demonstrates a 2%–5% increase in average reward at
10%–20% of the single-core wall clock time of the genetic
algorithm.

The MCTS policies are then approximated using ar-
tificial neural networks. A hyperparameter search of the
neural networks is presented, showing the dependence of
the average reward on the number of hidden layers and
number of nodes per hidden layer. The best performing
neural networks for each number of targets in the action
space are compared with MCTS using the maximization
backup operator. The networks are shown to match the per-
formance of MCTS. After training, the networks execute in
three orders of magnitude less wall clock time than MCTS,
which makes them a candidate for on-board planning and
scheduling. Finally, the networks are deployed in environ-
ments with different numbers of total targets, demonstrating
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robustness to changes in the size of the target request set.
The performance of the networks exceeds that of the GA in
the nominal target density. However, in the cases that the
networks were not trained for, there is a slight reduction in
performance when compared with the GA, which could be
eliminated if the networks were retrained.
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