Autonomous Vehicle Simulation (AVS) Laboratory,

University of Colorado
Basilisk Technical Memorandum
CORRUPTIONS

Rev

Change Description By

Date

1.0

First draft S. Carnahan

20171018

Doc. ID: Basilisk-Corruptions

Contents

1 Desired Corruptions

2 Sensor Discussion

2.1 Error ..o
211 Bias . ..o
2.1.2 Noise

2.1.3 Discretizationo
2.1.4 Saturation
2.2 Recommendations e
221 Noise
2.2.2 Discretization
2.2.3 Saturation
224 General for IMU

Page 1 of 7

To facilitate adequate and efficient error modeling in Basilisk, this document will discuss which
“corruptions” need to be implemented. Then, for each module which needs corruptions it will discuss

the current methods as well as the recommend changes and updates.

1 Desired Corruptions

Having not received FMEA documentation from LASP at this point, we have agreed that the following

corruptions will be useful:
1. bias
2. random walk
3. stuck sensor (on, off, at present value, at set value, max, min)
4. noise
5. square wave
6. max/min saturation
7. triangle/ramp
8. discretization
My current understanding of these corruptions tells me they could be grouped like this:
1. Error

(a) bias
(b) white noise

(c) brown noise

2. Stuck sensor

Doc. ID: Basilisk-Corruptions

3. Saturation

(a) Max
(b) Min
4. Discretization
(a) Max/min only = 2 bit
(b) ramp/triangle = 3 bit

2 Sensor Discussion

Page 2 of 7

The IMU has most of the desired corruptions and | am familiar with it, so | will start with the IMU.

2.1 Error

The IMU has all three types of error from above. The IMU runs the code below when UpdateState() is

called:

/* Compute true data */
computePlatformDR() ;
computePlatformDV(CurrentSimNanos) ;

/* Compute sensed data */
computeSensorErrors() ;
applySensorErrors(CurrentSimNanos) ;
applySensorDiscretization(CurrentSimNanos) ;
applySensorSaturation(CurrentSimNanos) ;

/* Output sensed data */
writeOutputMessages(CurrentSimNanos) ;

2.1.1 Bias
Bias is input to the IMU by the python code:

ImuSensor.senRotBias = [xRotBias, yRotBias, zRotBias]
ImuSensor.senTransBias = [xBias, yBias, zBias]

where the values in the bias lists are doubles and the names don't matter.

izes these as

double senRotBias[3];
double senTransBias[3];

The c++ code initial-

The bias values are unaffected by computeSensorErrors(). When applySensorErrors() is called,

Doc. ID: Basilisk-Corruptions Page 3 of 7

the bias values are added per-axis to the errors computed in computeSensorErrors(). Then those
values are added to the trueValues to get sensedValues . This is done no matter what, so bias is
just turned off by having 0 values for bias.

2.1.2 Noise
Noise inputs are given to the IMU by the python code:

ImuSensor.PMatrixAccel = sim_model.DoubleVector(PMatrixAccel)
ImuSensor.walkBoundsAccel = sim_model.DoubleVector (errorBoundsAccel)
ImuSensor.PMatrixGyro = sim_model.DoubleVector (PMatrixGyro)
ImuSensor.walkBoundsGyro = sim_model.DoubleVector (errorBoundsGyro)

where the input matrices and bounds are calculated in python as:

PMatrixGyro = [0.0] * 3 * 3

PMatrixGyro [0*3+0] = PMatrixGyro[1#3+1] = PMatrixGyro[2#3+2] = senRotNoiseStd
PMatrixAccel = [0.0] * 3 * 3

PMatrixAccel [0¥3+0] = PMatrixAccel[1*3+1] = PMatrixAccel[2*3+2] = senTransNoiseStd
self.PMatrixAccel = sim_model.DoubleVector(PMatrixAccel)

self.walkBoundsAccel = sim_model.DoubleVector (errorBoundsAccel)

self .PMatrixGyro = sim_model.DoubleVector (PMatrixGyro)

self.walkBoundsGyro = sim_model.DoubleVector (errorBoundsGyro)

where senRotNoiseStd and senTransNoiseStd are input by the user as 1.5x the desired standard
deviation as scalar floats. The error bounds are input by the user as 3x1 lists of floats.
The values sent to the IMU are initialized in c++ as:

std::vector<double> PMatrixAccel; //'< [-] Covariance matrix used to perturb state
std: :vector<double> AMatrixAccel; //'< [-] AMatrix that we use for error propagation
std::vector<double> walkBoundsAccel;//!< [-] "3-sigma" errors to permit for states

std: :vector<double> navErrorsAccel; //!'< [-] Current navigation errors applied to truth
std::vector<double> PMatrixGyro; //'< [-] Covariance matrix used to perturb state
std::vector<double> AMatrixGyro; //'< [-] AMatrix that we use for error propagation
std: :vector<double> walkBoundsGyro; //!< [-] "3-sigma" errors to permit for states

std: :vector<double> navErrorsGyro; //!< [-] Current navigation errors applied to truth

computeSensorErrors () contains this code:

this->errorModelAccel.setPropMatrix(this->AMatrixAccel);
this->errorModelAccel.computeNextState();

this->navErrorsAccel = this->errorModelAccel.getCurrentState();
this->errorModelGyro.setPropMatrix (this->AMatrixGyro) ;
this->errorModelGyro.computeNextState();

this->navErrorsGyro = this->errorModelGyro.getCurrentState();

setPropMatrix () literally just sets:

propMatrix = prop

Doc. ID: Basilisk-Corruptions Page 4 of 7

where both values are a double vector, prop is AMatrixAccel, and AMatrixAccel is just identity.

The Gauss-Markov model takes over when computeNextState() is called. This method iterates
through the state vector given and calculates a random noise for each state. It also checks if a value
greater than 0 was given as walk-bounds. If not, it doesn’t do anything with the error given. If there is
a bound, it applies an exponential correction to values that are too close to the edge. It states here :

/*! - Ideally we should find the statistical likelihood of violating a bound and use that.
However, that would require an error function, for now (PDR), just use an exponential
to pull states down that are getting "close" to the bound.*/

After the random numbers are generated and modified, the noise matrix (deviations) is multiplied
by the random numbers vector to get noise along each axis. The weighted noise is then added to the
current state of the GM model (adding the noise to the previous noise).

After noise is calculated, bias is added to the noise within the IMU model.

Then, these values are added to the truth values (element-wise) and stored as sensedValues. The
noise added to acceleration and omega is multiplied by dt to get DV and PRV noise which is then added
to those values as well.

Things to note about the Gauss Markov model:

1. | see how random walk is bounded, but not how it is created in the first place. is it the additive
noise part? how is plain white noise made, then?

2. std deviations can be given per state
3. walk bounds can be given per state, but are assumed to be the same +

4. the random number generator is reseeded between computeNextState() calls, but not between
states.

5. the walk bounds are limited exponentially, rather than using an error model?
6. GM does not use Eigen. (neither does the IMU)

7. GM requires the user to do significant work in python to generate the inputs. Can simpler inputs
be given and GM or the sensor model does more work to generate noise matrices, etc?

8. the std deviation value input is actually 1.5 the output std deviation.
9. errors are computed with computeNextState () but must be retrieved with getCurrentState ()

2.1.3 Discretization

After error application, sensedValues linear acceleration and angular rate are discretized. This is based
on the least significant bit (LSB) input.

ImuSensor.gyrolLSB = gyroLSBIn
ImuSensor.accellLSB = accellLSBIn

Doc. ID: Basilisk-Corruptions Page 5 of 7

Essentially, the sensed value is rounded down in magnitude to the nearest multiple of a least signif-
icant bit. The difference from before and after discretization is integrated over the time step and
added/subtracted with the DeltaV or step PRV value to simulate the integration error due to discretiza-
tion.

Things to note about discretization:

1. This would be difficult, but not impossible, to generalize because the integration of the discretiza-
tion error is not straightforward for the general case.

2. The DeltaV value is not necessarily a multiple of the least significant bit.

3. There is not bit-limit on the data. should we have a bit limit and should does a negative sign
require a bit? By bit-limit | mean the output data is 2-bit or 4-bit and scaled to fit somehow.
A lot of GPS receivers are 1 bit or 2 bit. Doing this turns the data into square waves, like Mar
mentioned. That makes square waves just a special case of discretization.

4. Discretization is all internal to the IMU. There is no model that can be reused for other sensors
right now.

5. if discretization is used for square/triangle waves, how are the two of those distinguished logically?

2.1.4 Saturation

Finally, the sensedValues are saturated. This is your basic max/min situation for each state (along each
axis for the IMU). Again, the error due to saturation of acceleration and omega is integrated to get
error due to saturation for DV and PRV.

Inputs are given by:

ImuSensor.senTransMax = senTransMaxIn
ImuSensor.senRotMax = senRotMaxIn

Notes on saturation:

1. saturation cannot be set separately for each state (axis). it is set separately for rotational and
linear states. Saturation values are considered the same +.

2. this would not be easily generalizable because the integration of the error is not straightforward.
it would be straightforward to generalize the direct discretization parts.

3. saturated values are not forced to be discretized values. This is left to the user. since the
discretization is a floor, does it make sense to just reverse the order? Should discretization be a
floor or a round?

4. if saturated values were given with a max and a min rather than one + value, those values could
be set equal to some desired value, giving a "stuck” behavior. alternatively, saturation could be a
stuck behavior that is activated outside of certain bounds. Does this work with the way that the
errors are integrated for DV and PRV?

Doc. ID: Basilisk-Corruptions Page 6 of 7

2.2 Recommendations
2.2.1 Noise

1. Make GM model use Eigen

2. make a unit test for GM

3. Update the random walk bounds per the comment to use an error model.

4. Make an overall noise model that combines bias, white noise, and brown noise and gives a single
value back to to whoever asks for it in one line. Make options for the types of noise that this
outputs, with Gaussian being one type.

5. Bring noise matrix generation into noise method only asking the user for standard deviations and
type of noise

6. make it so that the given standard deviation doesn’t have to be scaled by 1.5.

7. this could all be set from python by user using syntax like:

IMUsensor.noise.type = '"normal"
IMUsensor.noise.std = [1.5,1.1, 1.3]
IMUsensor.noise.bias = [1., 2., 3.]

for things like the imu where there are different states (accel, DV, PRV, etc.) should the
code be re-written to make these all part of one state vector? Should it work like IMUsen-
sor.accel.noise.bias? this means that a different instance of the noise module would be used for
each separate state, while states could have multiple "sub-states” (like coordinate axes).

8. there should be a toggle for noise on/off:

IMUsensor.noise.on = 0
9. this noise behavior could then be standardized across sensors like CSS.noise.on = 1 by use of

a standard noise utility.

2.2.2 Discretization

1

2.

give an option to input number of bits

given an option for floor, ceiling, and round

. how to deal with discretization of integrated values?

run discretization on saturation values in selflnit() to ensure saturated output is a proper discrete
value

. example:

IMUsensor.linear.discrete.LSB = 0.1 Currenty, LSB inputs are the float value that can be
represented by a bit. Is this the best/good enough way to enter the value?

IMUsensor.angular.discrete.numBits = 4 Here, angular and linear are different instances
of discrete that the programmer makes for the linear and angular states.

Doc. ID: Basilisk-Corruptions Page 7 of 7

6. if number of bits are given and saturation is given, the width of a bit can be determined to
discretize values across the full range of possible outputs. This can be taken care of in selflnit()?

7. integrating discretization errors remains in the realm of each sensor model.
8. make a switch: IMUsensor.linear.discrete.on = 1

2.2.3 Saturation
1. make saturation specific to each state (i.e. each axis for the imu)

2. make both a max and a min value for each state:
IMUsensor.linear.sat.max = [1,1,1]
IMUsensor.linear.sat.min = [-1,-1,-0.9]

3. make a helper function to go with saturation to simulates stuck values when asked for it. i.e., the
helper function adjusts the saturation limits as necessary.

4. provide an on/off switch.

2.2.4 General for IMU

1. convert to Eigen

2. saturation checks the instantaneous value. It could be updated to check the average value over
the past time step as well.

3. make corruption groups (.linear and .angular)

4. attach .noise, .discrete, and .sat to the corruption groups.

	Desired Corruptions
	Sensor Discussion
	Error
	Bias
	Noise
	Discretization
	Saturation

	Recommendations
	Noise
	Discretization
	Saturation
	General for IMU

