Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado
Basilisk Technical Memorandum
Document ID: Basilisk-test_okeefeEKF
SUNLINE EKF MODULE AND TEST

Prepared by T. Teil

Status: Initial document

Scope/Contents

This module implements and tests a Extended Kalman Filter in order to estimate the sunline direction.

Rev: Change Description By

Draft Initial Revision T. Teil

Doc. ID: Basilisk-test_okeefeEKF Page 1 of

Contents
(1__Introduction| 1
|2 Filter Set-up, initialization, and 1/0| 1
2.1 Dynamics| 1
2.2 User initializationl 2
[2.3 Inputs and Outputs| 2
3 Filter Algorithm 2
est Design 4
4.1 sunline individual testl 4
[4.2 StatePropStatic|l 5
4.3 StatePropVariable| 5
44 Full Filter testl. e 7

1 Introduction

The Sunline Extended Kalman filter (EKF) in the AVS Basilisk simulation is a sequential filter imple-
mented to give the best estimate of the desired states. In this method we estimate the sun heading with
no rigorous estimate of rate. This is done per the paper written by Steve O'Keefe, hence the module
name "okeefeEKF". The EKF reads in the message written by the coarse sun sensor, and writes a
message containing the sun estimate.

This document summarizes the content of the module, how to use it, and the test that was im-
plemented for it. More information on the filter derivation can be found in Reference [?], and more
information on the square root unscented filter can be found in Reference [?].

2 Filter Set-up, initialization, and 1/0
2.1 Dynamics

The states that are estimated in this filter are the sunline vector, and it's rate of change X™* = [d]T.
The star superscript represents that this is the reference state.

The dynamics are given in equation [I] Given the nature of the filter, there is an unobservable state
component: the rotation about the d axis. In order to remedy this, we project the states along this axis
and subtract them, in order to measure only observable state components.

F(X)=d=-wxd (1)

*
This leads us to the computation of the dynamics matrix A = [X] . The partials are given

in equation , and were verified in Mathematica.

A= [@)
- - [a] ©)

Doc. ID: Basilisk-test_okeefeEKF Page 2 of

If rate gyro measurements are available, we can use the w vector that they provide. In the case
where they are not available, we can approximate it by logging an extra time step of the sun heading
vector estimate d:

Wi = L dip xdir arccos (dk i1) (4)
At |[dy x d—1] | | 1]

The measurement model is given in equation , and the H matrix defined as H = [%]* is
given in equation [6]

In this filter, the only measurements used are from the coarse sun sensor. For the i sensor, the
measurement is simply given by the dot product of the sunline heading and the normal to the sensor.
This yields easy partial derivatives for the H matrix, which is a matrix formed of the rows of transposed
normal vectors (only for those which received a measurement). Hence the H matrix has a changing size
depending on the amount of measurements.

Gi(X)=mn;-d (5)
nT
1
H(X)=|: (6)
nT

2.2 User initialization

In order for the filter to run, the user must set a few parameters:

e The angle threshold under which the coarse sun sensors do not read the measurement:
FilterContainer.sensorUseThresh = 0.

e The process noise value, for instance:
FilterContainer.qProcVal = 0.001

e The measurement noise value, for instance:
FilterContainer.qObsVal = 0.001

e The threshold in the covariance norm leading to the switch from the EKF update to the linear
Kalman Filter update (discussed more closely in the Measurement update part):
FilterContainer.ekfSwitch = 5

e The initial covariance:
Filter.covar =
[0.4, 0., O.,
0.,0.4, 0.,

0., 0., 0.4]

e The initial state :
Filter.state = [1., 0., 1.]

2.3 Inputs and Outputs

The EKF reads in the measurements from the coarse sun sensors. These are under the form of a list of
cosine values. Knowing the normals to each of the sensors, we can therefore use them to estimate sun
heading.

Doc. ID: Basilisk-test_okeefeEKF Page 3 of

3 Filter Algorithm
Once the filter has been properly setup in the python code, it can go through it's algorithm:
Initialization
First the filter is initialized. This can be done at any time during a simulation in order to reset the filter.
e Time is set to ty
e The state X * is set to the initial state X}
e The state error x is set to it's initial value xg
e The covariance P is set to the initial state P

Time Update

At some time t;, if the update filter method is called, a time update will first be executed.

e The state is propagated using the dynamics F' with initial conditions X ™*(¢;_1)

%
e Compute the dynamics matrix A(t) = [%] which is evaluated on the reference trajectory

e Integrate the STM, ®(t,t;_1) = A(t)®(t,t;_1) with initial conditions ®(t;_1,t;_1) = I

This gives us X*(tl) and (I)(ti,tifl).
Observation read in

If no measurement is read in at time ¢;:

e X*(t;) previously computed becomes the most recent reference state

o x; =T; = ®(t;,t;—1)x;—1 is the new state error

o P,=P = ®(t;,t;_1)P_19"(t;,t;_1) becomes the updated covariance

If a measurement is read in, the algorithm computes the observation, the observation state matrix, and
the Kalman Gain.

e The observation (Y;) is compared to the observation model, giving the innovation: y; = Y; —
G(Xi*vti)

- Rk
e Compute the observation matrix along the reference trajectory: H; = [%]

T

_ . Y -1
e Compute the Kalman Gain K; = PZ-HZ-T (HZPZHZ + Ri>

Doc. ID: Basilisk-test_okeefeEKF Page 4 of

Measurement Update

Depending on the covariance, the filter can either update as a classic, linear Kalman Filter, or as the
Extended Kalman filter. This is done in order to assure robust and fast filter convergence. Indeed in
a scenario with a very large initial covariance, the EKF's change in reference trajectory could delay or
inhibit the convergence. In order to remedy this, a few linear updates are performed if the maximum
value in the covariance is greater than a user-set threshold.

Linear update:

e The state error is updated using the time updated value: x; = z; + K; [yZ — ﬁifi]
e The covariance is updated using the Joseph form of the covariance update equation: P; =
N - N\T
(1K) Pr (1 - KGlli) " + KiRiKT
e The reference state stays the same, and it's propagated value X*(¢;) becomes X *(¢;_1)

EKF update:

e The state error is updated using the innovation and the Kalman Gain: x; = K;y;
e The reference state is changed by the state error: X*(¢;) = X*(t;) + x;

e The covariance is updated using the Joseph form of the covariance update equation: P; =
N - AT
(1K) Pr (1 - KGH;) "+ KiRiKT

e The new reference state is now used X *(¢;) becomes X™*(t;_1)

4 Test Design

The unit test for the sunlineEKF module is located in:
FswAlgorithms/attDetermination/sunlineEKF/ UnitTest/test_SunlineEKF.py

As well as another python file containing plotting functions:
FswAlgorithms/attDetermination/sunlineEKF/ UnitTest/SunlineEKF test utilities.py

The test is split up into 4 subtests, the last one is parametrized in order to test different scenarios.
The first test creaks up all of the individual filter methods and tests them individually. The second test
verifies that in the case where the state is zeroed out from the start of the simulation, it remains at
zero. The third test verifies the behavior of the time update in a general case. The final test is a full
filter test.

4.1 sunline_individual _test

In each of these individual tests, random inputs are fed to the methods and their values are computed
in parallel in python. These two values are then compared to assure that the correct computations are
taking place.

e Dynamics Matrix: This method computes the dynamics matrix A. Tolerance to absolute error
e=10"1Y

Passed

Doc. ID: Basilisk-test_okeefeEKF Page 5 of

e State and STM propagation: This method propagates the state using the F' function as well as
the STM using ® = A®. Tolerance to absolute error ¢ = 10710,

Passed

e H and y propagation: This method computes the H matrix, and compares the measurements to
the expected measurements given the state. Tolerance to absolute error e = 10710,

Passed

e Kalman gain: This method computes the K matrix. Tolerance to absolute error ¢ = 10719,

Passed

e EKF update: This method performs the measurement update in the case of an EKF. Tolerance
to absolute error e = 10719,

Passed

e Linear Update: This method performs the measurement update in the linear case. Tolerance to
absolute error e = 10710

Passed

4.2 StatePropStatic

This test runs the filter with no measurements. It initializes with a zeroed state, and assures that at
the end of the simulation all values are still at zero. Plotted results are seen in Figure[l]

Tolerance to absolute error: € = 10710

Passed

4.3 StatePropVariable

This test also takes no measurements in, but gives a random state with rate of change. It then tests
that the states and covariance are as expected throughout the time of simulation. Plotted results are
seen in Figure[2] We indeed see that the state and covariance for the test and the code overlap perfectly.
Tolerance to absolute error: ¢ = 10710
Passed

4.4 Full Filter test

This test the filter working from start to finish. No measurements are taken in for the first 20 time steps.
Then a heading is given through the CSS message. Halfway through the simulation, measurements stop,
and 20 time steps later a different heading is read. The filter must be robust and detect this change. This
test is parametrized for different test lengths, different initial conditions, different measured headings,
and with or without measurement noise. All these are successful.

Tolerance to absolute error without measurement noise: € = 10710

Tolerance to absolute error with measurement noise: € = 1072

Passed

Plotted results are seen in Figures[3} [4} and [5] Figure [3] shows the state error and covariance over
the run. We see the covariance initially grow, then come down quickly as measurements are used. It
grows once again as the measurements stop before bringing the state error back to zero with a change
in sun heading.

Figure [4 shows the evolution of the state vector compared to the true values. The parts where there
is a slight delay is due to the fact that no observations are read in.

Doc. ID: Basilisk-test_okeefeEKF

1.00

0.981

0.96 1

10+

1.041

1.02

1.00

First LOS component

Page 6 of

===~ Expected
— Filter
0 200 400 600 800 1000
1e—5+49.999e-1 First rate component
0 200 400 600 800 1000
Second LOS component
0 200 400 600 800 1000

Fig. 1: States vs true states in static case

Doc. ID: Basilisk-test_okeefeEKF Page 7 of

First LOS component

e E—
1
0
— 1 —— Error Filter
===~ Covar Filter
—— Error Expected
_2 ___ \—..—=- Covar Expected |
0 2 4 6 8 10 12 14
First rate component
e E—
1
0
-1
_2 "" e
0 2 4 6 8 10 12 14
Second LOS component
P e e e e -
1
0
-1
_2 """"""""""""""""""""""""""""""""""""""" ==
0 2 4 6 8 10 12 14

Fig. 2: State error and covariance vs expected Values

Doc. ID: Basilisk-test_okeefeEKF Page 8 of

Figure [5| shows the post fit residuals for the filter, with the 30 measurement noise values. We see
that the observations are read in well an that the residuals are brought back down to noise. We do
observe a slight bias in the noise. This could be due to the equations of motion, and is not concerning.

First LOS component

2,
1
i
1 i
i
O :\ ___
-1
._: —— Error Filter
_2 | | Sp— | === Covar Filter
0 25 50 75 100 125 150 175 200
First rate component
27—,
i
1 i
i
0 I:::::::'_':::::::::::::::::::::::::::::—-)E:::::::::::::::::::::::2:::::::::‘
; —
o
:
-2 -
0 25 50 75 100 125 150 175 200
Second LOS component
27—,
1
i
1- i
i
S A N N N S N R
01 e Ssssssgsssssssssmssssssssgozsssssas
o
E
-2 -
0 25 50 75 100 125 150 175 200

Fig. 3: State error and covariance

Doc. ID: Basilisk-test_okeefeEKF Page 9 of

First LOS component
1.0 I
—

0.5

0.0

—— Filter
—=—- Expected

—0.51

S A

0 25 50 75 100 125 150 175 200

First rate component

1.01

S

R B — e S

0.81 :

0.7 1

0 25 50 75 100 125 150 175 200

Second LOS component

1.00

0.751

0.501

0.25

0.00 1

-6 -4 -2 0 2 4 6 8
le—10

Fig. 4: States tracking target values

Doc. ID: Basilisk-test_okeefeEKF

0.01 First CSS
0.00 | —GSaNIsal sl
e Residual
—=- Covar
—-0.01— " ; : :
0 50 100 150 200
0.01 Second CSS
“o"."."’"“. .: “““““““ .‘"
000| | SNARRTE Sty
L 820 w @ ol0000 T 2o 080
—-0.01— ; — " "
0 50 100 150 200
0.01 Third CSS
Tl T TR s T :‘;‘;“:"
0-007 ___f::t___'_‘%:__'_:i:‘ __ 5@ __ _____
-0.01+— ; T T T
0 50 100 150 200
0.01 Fourth C.SS
B o PPN A
0.001 — SAHEMmMe— SRCAIe
-0.01 T T T T
0 50 100 150 200
t(s)

Page 10 of

0.01 Fifth CSS
““"""“""""".:". ' 9% 8 5 op
0.001 W '*36
-0.01 " . . !
0 50 100 150 200
0.01 Sixth CSS
0.001
-0.01 " . . !
0 50 100 150 200
0.01 Seventh CSS
0.00
-0.01 ; " " "
0 50 100 150 200
0.01 Eight CSS
0.00 1
-0.01 T T . ;
0 50 100 150 200
t(s)

Fig. 5: Post Fit Residuals

	Introduction
	Filter Set-up, initialization, and I/O
	Dynamics
	User initialization
	Inputs and Outputs

	Filter Algorithm
	Test Design
	sunline_individual_test
	StatePropStatic
	StatePropVariable
	Full Filter test

