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1 Initialization
Simply call the module reset function prior to using this control module. This will reset the prior
function call time variable, and reset the attitude error integral measure. The control update period ∆t
is evaluated automatically.

2 Steering Law Goals

This technical note develops a new MRP based steering law that drives a body frame B : tb̂1, b̂2, b̂3u
towards a time varying reference frame R : tr̂1, r̂2, r̂3u. The inertial frame is given by N : tn̂1, n̂2, n̂3u.
The RW coordinate frame is given by W〉 : tĝsi , ĝti , ĝgiu. The Using MRPs, the overall control goal is

σB{R Ñ 0 (1)

The reference frame orientation σR{N , angular velocity ωR{N and inertial angular acceleration 9ωR{N
are assumed to be known.

The rotational equations of motion of a rigid spacecraft with N Reaction Wheels (RWs) attached
are given by1

rIRW s 9ω “ ´rω̃s prIRW sω ` rGsshsq ´ rGssus `L (2)

where the inertia tensor rIRW s is defined as

rIRW s “ rIss `
N
ÿ

i“1

`

Jti ĝti ĝ
T
ti ` Jgi ĝgi ĝ

T
gi

˘

(3)

The spacecraft inertial without the N RWs is rIss, while Jsi , Jti and Jgi are the RW inertias about the
body fixed RW axis ĝsi (RW spin axis), ĝti and ĝgi . The 3ˆN projection matrix rGss is then defined
as

rGss “
“

¨ ¨ ¨
Bĝsi ¨ ¨ ¨

‰

(4)

The RW inertial angular momentum vector hs is defined as

hsi “ Jsipωsi ` Ωiq (5)

Here Ωi is the ith RW spin relative to the spacecraft, and the body angular velocity is written in terms
of body and RW frame components as

ω “ ω1b̂1 ` ω2b̂2 ` ω3b̂3 “ ωsi ĝsi ` ωti ĝti ` ωgi ĝgi (6)
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3 Steering Law

3.1 Steering Law Stability Requirement

As is commonly done in robotic applications where the steering laws are of the form 9x “ u, this
section derives a kinematic based attitude steering law. Let us consider the simple Lyapunov candidate
function1,2

V pσB{Rq “ 2 ln
´

1` σTB{RσB{R

¯

(7)

in terms of the MRP attitude tracking error σB{R. Using the MRP differential kinematic equations

9σB{R “
1

4
rBpσB{Rqs

BωB{R “
1

4

”

p1´ σ2B{RqrI3ˆ3 ` 2rσ̃B{Rs ` 2σB{Rσ
T
B{R

ı

BωB{R (8)

where σ2B{R “ σ
T
B{RσB{R, the time derivative of V is

9V “ σTB{R
`BωB{R

˘

(9)

To create a kinematic steering law, let B˚ be the desired body orientation, and ωB˚{R be the
desired angular velocity vector of this body orientation relative to the reference frame R. The steering
law requires an algorithm for the desired body rates ωB˚{R relative to the reference frame make 9V in
Eq. (9) negative definite. For this purpose, let us select

BωB˚{R “ ´fpσB{Rq (10)

where fpσq is an even function such that

σTfpσq ą 0 (11)

The Lyapunov rate simplifies to the negative definite expression:

9V “ ´σTB{RfpσB{Rq ă 0 (12)

3.2 Principal Angle Steering Law

Consider the following saturation function fpσB{Rq which is colinear with the principal rotation axis
êB{R, and the magnitude scales uniformly with the principal rotation angle φB{R:

fpσB{Rq “ êB{RfpφB{Rq (13)

The scalar function fpφB{Rq is an even function where fpφB{RqφB{R ě 0. Note that êB{R is ill-defined
for a zero principal rotation angle. This saturation function will need a check to avoid numerical issues
right at the zero angle condition.

Using the MRP definition in terms of principal rotation angle and axis

σB{R “ êB{R tan

ˆ

φB{R

4

˙

(14)

and substituting into Eq. (12), the Lyapunov rate is for this case

9V “ ´σTB{RfpσB{Rq “ ´ tan

ˆ

φB{R

4

˙

êTB{RêB{RfpφB{Rq “ ´ tan

ˆ

φB{R

4

˙

fpφB{Rq ă 0 (15)
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Fig. 1: Illustrations of Principal Angle Steering Parameters Influence.

This 9V is negative definite in terms of the attitude error, thus yielding asymptotic convergence. The
saturation function in Eq. (13) has the convenient property that the resulting steering law employs
an eigenaxis rotation towards the desired reference orientation. The benefit of the later is that small
errors are reduced quickly, thus reducing the overall tracking error quicker. The benefit of the eigenaxis
approach is that the closed-loop attitude path towards the reference is more predictable.

Consider the fpφB{Rq function given by:

fpφB{Rq “ arctan

ˆ

pK1φB{R `K3φ
3
B{Rq

π

2ωmax

˙

2ωmax

π
(16)

The linear approximation of this function is

fpφB{Rq « K1φB{R ` H.O.T (17)

The resulting attitude steering law is of the form:

ωB˚{R “ ´êB{R arctan

ˆ

pK1φB{R `K3φ
3
B{Rq

π

2ωmax

˙

2ωmax

π
(18)

The impacts of the steering law gains ωmax, K1 and K3 are illustrated in Figure 1. As the function
fpφq returns a value of ˘ωmax as φ Ñ 8, the gain ωmax determines the maximum rate limit that the
steering law with request. This is illustrated in Figure 1(a) where reducing the ωmax value by a factor
of 2 results in half of the asymptotic rate command.

The parameter K1 determines the final pointing stiffness, and determines the final exponential
convergence of the attitude pointing error as illustrated in Figure 1(b). Increasing this value results in
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faster final convergence once the principal rotation error has reduced past the saturated fpφq function
region.

Finally, the higher order φ polynomial is provided to cause the fpφq function to saturate more quickly.
Setting K3 = 0.034 in Figure 1(c) doesn’t change the initial slope of the rate command, but impacts
how quickly the rates saturate on the maximum speed command.

Because ê1B{R “ 0, the body relative time derivative of the steering control is

B
dpBωB˚{Rq

dt
“ ω1B˚{R “ ´êB{R

BfpφB{Rq

BφB{R
9φB{R (19)

The fpq function sensitivity is

Bf

BφB{R
“

pK1 ` 3K3φ
2
B{Rq

1` pK1φB{R `K3φ3B{Rq
2
´

π
2ωmax

¯2 (20)

The principal rotation angle time derivative is given by3

9φB{R “ ê
T
B{R

BωB˚{R (21)

Substituting Eqs. (10) and (21) into Eq. (19) yields

ω1B˚{R “ ´êB{R
BfpφB{Rq

BφB{R

´

êTB{R
BωB˚{R

¯

“ ´êB{R
BfpφB{Rq

BφB{R

´

êTB{Rp´êB{RfpφB{Rqq
¯

“ êB{R
BfpφB{Rq

BφB{R
fpφB{Rqq (22)

4 Angular Velocity Servo Sub-System
To implement the kinematic steering control, a servo sub-system must be included which will produce
the required torques to make the actual body rates track the desired body rates. The angular velocity
tracking error vector is defined as

δω “ ωB{B˚ “ ωB{N ´ ωB˚{N (23)

where the B˚ frame is the desired body frame from the kinematic steering law. Note that

ωB˚{N “ ωB˚{R ` ωR{N (24)

where ωR{N is obtained from the attitude navigation solution, and ωB˚{R is the kinematic steering
rate command. To create a rate-servo system that is robust to unmodeld torque biases, the state z is
defined as:

z “

ż tf

t0

Bδω dt (25)

The rate servo Lyapunov function is defined as

Vωpδω, zq “
1

2
δωT rIRWsδω `

1

2
zT rKIsz (26)
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where the vector δω and tensor rIRWs are assumed to be given in body frame components, rKis is a
symmetric positive definite matrix. The time derivative of this Lyapunov function is

9Vω “ δωT
`

rIRWsδω
1 ` rKIsz

˘

(27)

Using the identities ω1B{N “ 9ωB{N and ω1R{N “ 9ωR{N ´ωB{N ˆωR{N ,1 the body frame derivative of
δω is

δω1 “ 9ωB{N ´ ω
1
B˚{R ´ 9ωR{N ` ωB{N ˆ ωR{N (28)

Substituting Eqs. (2) and (28) into the 9Vω expression in Eq. (27) yields

9Vω “ δωT
´

´ rω̃B{N s
`

rIRW sωB{N ` rGsshs
˘

´ rGssus `L` rKIsz

´ rIRWspω
1
B˚{R ` 9ωR{N ´ ωB{N ˆ ωR{N q

¯

(29)

Let rP sT “ rP s ą be a symmetric positive definite rate feedback gain matrix. The servo rate
feedback control is defined as

rGssus “ rP sδω ` rKIsz ´ rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

´ rIRWspω
1
B˚{R ` 9ωR{N ´ ωB{N ˆ ωR{N q `L (30)

Defining the right-hand-side as Lr, this is rewritten in compact form as

rGssus “ ´Lr (31)

The array of RW motor torques can be solved with the typical minimum norm inverse

us “ rGss
T
`

rGssrGss
T
˘´1

p´Lrq (32)

To analyze the stability of this rate servo control, the rGssus expression in Eq. (30) is substituted
into the Lyapunov rate expression in Eq. (29).

9Vω “ δωT
´

´ rP sδω ´ rω̃B{N s
`

rIRW sωB{N ` rGsshs
˘

` rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

¯

“ δωT
´

´ rP sδω ´ rĂδωs
`

rIRW sωB{N ` rGsshs
˘

¯

“ ´δωT rP sδω ă 0 (33)

Thus, in the absence of unmodeled torques, the servo control in Eq. (30) is asymptotically stabilizing
in rate tracking error δω.

Next, the servo robustness to unmodeled external torques is investigated. Let us assume that the
external torque vector L in Eq. (2) only approximates the true external torque, and the unmodeled
component is given by ∆L. Substituting the true equations of motion and the same servo control in
Eq. (30) into the Lyapunov rate expression in Eq. (27) leads to

9Vω “ ´δω
T rP sδω ´ δωT∆L (34)

This 9Vω is no longer negative definite due to the underdetermined sign of the δωT∆L components.
Equating the Lyapunov rates in Eqs. (27) and (34) yields the following servo closed loop dynamics:

rIRWsδω
1 ` rP sδω ` rKIsz “ ∆L (35)

Assuming that ∆L is either constant as seen by the body frame, or at least varies slowly, then taking
a body-frame time derivative of Eq. (35) is

rIRWsδω
2 ` rP sδω1 ` rKIsδω “ ∆L1 « 0 (36)

As rIRWs, rP s and rKIs are all symmetric positive definite matrices, these linear differential equations
are stable, and δω Ñ 0 given that assumption that ∆L1 « 0.
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