
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-limbFinding

MODULE TO FIND PLANET LIMB

Prepared by T. Teil

Status: 1st Draft

Scope/Contents

This module either reads in a message of type CameraImageMsgPayload, or a filename for an image.
It then uses the OpenCV’s Canny method to extract the limb points. It then writes these messages in
a message of type OpNavLimbMsgPayload.

Rev Change Description By Date

1.0 First release T. Teil September
16, 2019

Doc. ID: Basilisk-limbFinding Page 1 of 4

Contents

1 Model Description 1

2 Module Functions 1

3 OpenCV Functions 1

4 Module Assumptions and Limitations 2

5 Test Description and Success Criteria 2

6 Test Parameters 2

7 Test Results 2

8 User Guide 2

1 Model Description
This module imports OpenCV which is installed if the cmake option is triggered. Two cases are possible:
a filename for an image can be given, or an image message containing a size and pointer to image data
can be used. If the message is read, the size is used to decode the image into an OpenCV matrix for
image processing.

The following methods are then applied to the image:

• Greyscale

• Blurr

• Canny

This allows for the limb points to be detected. The default parameters are set to be efficient for
planet edge detection, as the test examples show.

2 Module Functions
• Update State: The image processing takes place in the Update method.

3 OpenCV Functions

More documentation is available on at https://docs.opencv.org/4.0.0/.

• void cv::Canny(InputArray image, OutputArray edgeImage, double cannyThresh1 = 100, double
cannyThresh1 = 200)

• void cv::cvtColor(nputArray src, OutputArray dst, int code)

• void cv::blur(InputArray src,OutputArray dst,Size ksize,Point anchor = Point(-1,-1),int border-
Type = BORDER DEFAULT)

Doc. ID: Basilisk-limbFinding Page 2 of 4

4 Module Assumptions and Limitations
The limitations of this module are in the image processing capabilities of the components. Current the
main limitation is the lack of uncertainty measure around the limb point estimates.

5 Test Description and Success Criteria
In order to test the proper function of this module, three test images are provided. The algorithm needs
to find the limbs and match the expected results.

6 Test Parameters
For each image, four tests are run:

Table 2: Error tolerance for each test.

Test Absolute Error
Validity Flag 1E-5 [-]

Covariance Values 1E-5 [px2]
Number of Limb Points 1E-5 [-]
First Limb Point Values 1 (Relative Error)

7 Test Results
The following table shows the results of the unit test described above.

Table 3: Test results

Check Pass/Fail
MarsBright PASS
MarsDark PASS
Moon PASS

The test does not generate the result image unless called explicitly from python in order to not add
images to the repository.

The Figures draw in red the exact pixel points that are detected at the limb.

8 User Guide
This section contains information directed specifically to users. It contains clear descriptions of what
inputs are needed and what effect they have. It should also help the user be able to use the model for
the first time.

• Construct algorithm and associated C++ container:
module = limbFinding.LimbFinding()()

module.ModelTag = "limb"

• Add test module to runtime call list:
unitTestSim.AddModelToTask(unitTaskName, module)

• Image processing parameters:
module.filename = imagePath

module.cannyThreshHigh = cannyHigh

Doc. ID: Basilisk-limbFinding Page 3 of 4

Fig. 1: Mars Circles

Fig. 2: Mars Circles

module.cannyThreshLow = cannyLow

module.blurrSize = blur

REFERENCES

Doc. ID: Basilisk-limbFinding Page 4 of 4

Fig. 3: Moon crescents circles

	Model Description
	Module Functions
	OpenCV Functions
	Module Assumptions and Limitations
	Test Description and Success Criteria
	Test Parameters
	Test Results
	User Guide

