#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------
This scenario only performs the pointing component to the OpNav FSW stack.
It uses Hough Circles to identify the planet center.
More details can be found in Chapter 2 of `Thibaud Teil's PhD thesis <http://hanspeterschaub.info/Papers/grads/ThibaudTeil.pdf>`_.
The script can be run at full length by calling::
    python3 scenario_OpNavPoint.py
"""
# Get current file path
import inspect
import os
import sys
import time
from Basilisk.utilities import RigidBodyKinematics as rbk
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np
# Import plotting file for your scenario
sys.path.append(path + '/../plottingOpNav')
import OpNav_Plotting as BSK_plt
# Create your own scenario child class
[docs]class scenario_OpNav(BSKScenario):
    """Main Simulation Class"""
    def __init__(self, masterSim, showPlots=False):
        super(scenario_OpNav, self).__init__(masterSim, showPlots)
        self.name = 'scenario_opnav'
        self.masterSim = masterSim
        self.filterUse = "bias" #"relOD"
        # declare additional class variables
        self.rwMotorRec = None
        self.opNavRec = None
        self.attGuidRec = None
        self.circlesRec = None
        self.scRec = None
        self.rwLogs = []
[docs]    def log_outputs(self):
        # Dynamics process outputs: log messages below if desired.
        FswModel = self.masterSim.get_FswModel()
        DynModel = self.masterSim.get_DynModel()
        # FSW process outputs
        samplingTime = FswModel.processTasksTimeStep
        self.opNavRec = FswModel.opnavMsg.recorder(samplingTime)
        self.attGuidRec = FswModel.attGuidMsg.recorder(samplingTime)
        self.rwMotorRec = FswModel.rwMotorTorqueData.rwMotorTorqueOutMsg.recorder(samplingTime)
        self.circlesRec = FswModel.opnavCirclesMsg.recorder(samplingTime)
        self.scRec = DynModel.scObject.scStateOutMsg.recorder(samplingTime)
        self.masterSim.AddModelToTask(DynModel.taskName, self.opNavRec)
        self.masterSim.AddModelToTask(DynModel.taskName, self.attGuidRec)
        self.masterSim.AddModelToTask(DynModel.taskName, self.rwMotorRec)
        self.masterSim.AddModelToTask(DynModel.taskName, self.circlesRec)
        self.masterSim.AddModelToTask(DynModel.taskName, self.scRec)
        self.rwLogs = []
        for item in range(4):
            self.rwLogs.append(DynModel.rwStateEffector.rwOutMsgs[item].recorder(samplingTime))
            self.masterSim.AddModelToTask(DynModel.taskName, self.rwLogs[item])
        return 
[docs]    def pull_outputs(self, showPlots):
        ## Spacecraft true states
        position_N = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.r_BN_N)
        ## Attitude
        sigma_BN = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.sigma_BN)
        ## Image processing
        circleCenters = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.circlesCenters)
        circleRadii = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.circlesRadii)
        numRW = 4
        dataUsReq = unitTestSupport.addTimeColumn(self.rwMotorRec.times(), self.rwMotorRec.motorTorque)
        dataRW = []
        for i in range(numRW):
            dataRW.append(unitTestSupport.addTimeColumn(self.rwMotorRec.times(), self.rwLogs[i].u_current))
        measPos = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.r_BN_N)
        r_C = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.r_BN_C)
        measCovar = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.covar_N)
        covar_C = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.covar_C)
        sigma_CB = self.masterSim.get_DynModel().cameraMRP_CB
        sizeMM = self.masterSim.get_DynModel().cameraSize
        sizeOfCam = self.masterSim.get_DynModel().cameraRez
        focal = self.masterSim.get_DynModel().cameraFocal  # in m
        pixelSize = []
        pixelSize.append(sizeMM[0] / sizeOfCam[0])
        pixelSize.append(sizeMM[1] / sizeOfCam[1])
        dcm_CB = rbk.MRP2C(sigma_CB)
        # Plot results
        BSK_plt.clear_all_plots()
        pixCovar = np.ones([len(circleCenters[:,0]), 3*3+1])
        pixCovar[:,0] = circleCenters[:,0]
        pixCovar[:,1:]*=np.array([1,0,0,0,1,0,0,0,2])
        measError = np.full([len(measPos[:,0]), 4], np.nan)
        measError[:,0] = measPos[:,0]
        measError_C = np.full([len(measPos[:,0]), 5], np.nan)
        measError_C[:,0] = measPos[:,0]
        trueRhat_C = np.full([len(circleCenters[:,0]), 4], np.nan)
        trueCircles = np.full([len(circleCenters[:,0]), 4], np.nan)
        trueCircles[:,0] = circleCenters[:,0]
        trueRhat_C[:,0] = circleCenters[:,0]
        centerBias = np.copy(circleCenters)
        radBias = np.copy(circleRadii)
        ModeIdx = 0
        Rmars = 3396.19*1E3
        for j in range(len(position_N[:, 0])):
            if position_N[j, 0] in circleCenters[:, 0]:
                ModeIdx = j
                break
        for i in range(len(circleCenters[:,0])):
            if circleCenters[i,1:].any() > 1E-8 or circleCenters[i,1:].any() < -1E-8:
                trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[ModeIdx+i , 1:4])) ,position_N[ModeIdx+i, 1:4])/np.linalg.norm(position_N[ModeIdx+i, 1:4])
                trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[ModeIdx+i,1:4])))/pixelSize[0]
                trueRhat_C[i,1:] *= focal/trueRhat_C[i,3]
                trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5
                trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5
                measError[i, 1:4] = position_N[ModeIdx+i, 1:4] - measPos[i, 1:4]
                measError_C[i, 4] = np.linalg.norm(position_N[ModeIdx+i, 1:4]) - np.linalg.norm(r_C[i, 1:4])
                measError_C[i, 1:4] = trueRhat_C[i,1:] - r_C[i, 1:4]/np.linalg.norm(r_C[i, 1:4])
            else:
                measCovar[i,1:] = np.full(3*3, np.nan)
                covar_C[i, 1:] = np.full(3 * 3, np.nan)
        timeData = position_N[:, 0] * macros.NANO2MIN
        BSK_plt.plot_rw_motor_torque(timeData, dataUsReq, dataRW, numRW)
        BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam))
        figureList = {}
        if showPlots:
            BSK_plt.show_all_plots()
        else:
            fileName = os.path.basename(os.path.splitext(__file__)[0])
            figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"]
            figureList = BSK_plt.save_all_plots(fileName, figureNames)
        return figureList  
def run(showPlots, simTime=None):
    # Instantiate base simulation
    TheBSKSim = BSKSim(fswRate=0.5, dynRate=0.5)
    TheBSKSim.set_DynModel(BSK_OpNavDynamics)
    TheBSKSim.set_FswModel(BSK_OpNavFsw)
    # Configure a scenario in the base simulation
    TheScenario = scenario_OpNav(TheBSKSim, showPlots)
    if showPlots:
        TheScenario.log_outputs()
    TheScenario.configure_initial_conditions()
    TheBSKSim.get_DynModel().cameraMod.saveImages = 0
    # opNavMode 1 is used for viewing the spacecraft as it navigates, opNavMode 2 is for headless camera simulation
    TheBSKSim.get_DynModel().vizInterface.opNavMode = 2
    # The following code spawns the Vizard application from python
    mode = ["None", "-directComm", "-noDisplay"]
    TheScenario.run_vizard(mode[TheBSKSim.get_DynModel().vizInterface.opNavMode])
    # Configure FSW mode
    TheScenario.masterSim.modeRequest = 'pointOpNav'
    # Initialize simulation
    TheBSKSim.InitializeSimulation()
    # Configure run time and execute simulation
    if simTime != None:
        simulationTime = macros.min2nano(simTime)
    else:
        simulationTime = macros.min2nano(200)
    TheBSKSim.ConfigureStopTime(simulationTime)
    print('Starting Execution')
    t1 = time.time()
    TheBSKSim.ExecuteSimulation()
    t2 = time.time()
    print('Finished Execution in ', t2-t1, ' seconds. Post-processing results')
    # Terminate vizard and show plots
    figureList = TheScenario.end_scenario()
    return figureList
if __name__ == "__main__":
    run(True)