#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import math
import matplotlib.pyplot as plt
import numpy
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import sunlineUKF
from Basilisk.utilities import SimulationBaseClass, macros
import SunLineuKF_test_utilities as FilterPlots
def addTimeColumn(time, data):
    return numpy.transpose(numpy.vstack([[time], numpy.transpose(data)]))
def setupFilterData(filterObject):
    filterObject.alpha = 0.02
    filterObject.beta = 2.0
    filterObject.kappa = 0.0
    filterObject.state = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    filterObject.covar = [0.4, 0.0, 0.0, 0.0, 0.0, 0.0,
                          0.0, 0.4, 0.0, 0.0, 0.0, 0.0,
                          0.0, 0.0, 0.4, 0.0, 0.0, 0.0,
                          0.0, 0.0, 0.0, 0.04, 0.0, 0.0,
                          0.0, 0.0, 0.0, 0.0, 0.04, 0.0,
                          0.0, 0.0, 0.0, 0.0, 0.0, 0.04]
    qNoiseIn = numpy.identity(6)
    qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3]*0.01*0.01
    qNoiseIn[3:6, 3:6] = qNoiseIn[3:6, 3:6]*0.001*0.001
    filterObject.qNoise = qNoiseIn.reshape(36).tolist()
    filterObject.qObsVal = 0.001
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("function", ["sunline_utilities_test"
                                      , "checkStatePropSunLine"
                                      , "checkStateUpdateSunLine"
                                      ])
def test_all_sunline_kf(show_plots, function):
    """Module Unit Test"""
    [testResults, testMessage] = eval(function + '(show_plots)')
    assert testResults < 1, testMessage 
def sunline_utilities_test(show_plots):
    # The __tracebackhide__ setting influences pytest showing of tracebacks:
    # the mrp_steering_tracking() function will not be shown unless the
    # --fulltrace command line option is specified.
    __tracebackhide__ = True
    testFailCount = 0  # zero unit test result counter
    testMessages = []  # create empty list to store test log messages
    # Initialize the test module configuration data
    AMatrix = [0.488894, 0.888396, 0.325191, 0.319207,
                1.03469, -1.14707, -0.754928, 0.312859,
                0.726885, -1.06887, 1.3703, -0.86488,
               -0.303441, -0.809499, -1.71152, -0.0300513,
                0.293871, -2.94428, -0.102242, -0.164879,
               -0.787283, 1.43838, -0.241447, 0.627707]
    RVector = sunlineUKF.new_doubleArray(len(AMatrix))
    AVector = sunlineUKF.new_doubleArray(len(AMatrix))
    for i in range(len(AMatrix)):
        sunlineUKF.doubleArray_setitem(AVector, i, AMatrix[i])
        sunlineUKF.doubleArray_setitem(RVector, i, 0.0)
    sunlineUKF.ukfQRDJustR(AVector, 6, 4, RVector)
    RMatrix = []
    for i in range(4*4):
        RMatrix.append(sunlineUKF.doubleArray_getitem(RVector, i))
    RBaseNumpy = numpy.array(RMatrix).reshape(4,4)
    AMatNumpy = numpy.array(AMatrix).reshape(6,4)
    q,r = numpy.linalg.qr(AMatNumpy)
    for i in range(r.shape[0]):
        if r[i,i] < 0.0:
            r[i,:] *= -1.0
    if numpy.linalg.norm(r - RBaseNumpy) > 1.0E-15:
        testFailCount += 1
        testMessages.append("QR Decomposition accuracy failure")
    AMatrix = [1.09327, 1.10927, -0.863653, 1.32288,
     -1.21412, -1.1135, -0.00684933, -2.43508,
     -0.769666, 0.371379, -0.225584, -1.76492,
     -1.08906, 0.0325575, 0.552527, -1.6256,
     1.54421, 0.0859311, -1.49159, 1.59683]
    RVector = sunlineUKF.new_doubleArray(len(AMatrix))
    AVector = sunlineUKF.new_doubleArray(len(AMatrix))
    for i in range(len(AMatrix)):
        sunlineUKF.doubleArray_setitem(AVector, i, AMatrix[i])
        sunlineUKF.doubleArray_setitem(RVector, i, 0.0)
    sunlineUKF.ukfQRDJustR(AVector, 5, 4, RVector)
    RMatrix = []
    for i in range(4*4):
        RMatrix.append(sunlineUKF.doubleArray_getitem(RVector, i))
    RBaseNumpy = numpy.array(RMatrix).reshape(4,4)
    AMatNumpy = numpy.array(AMatrix).reshape(5,4)
    q,r = numpy.linalg.qr(AMatNumpy)
    for i in range(r.shape[0]):
        if r[i,i] < 0.0:
            r[i,:] *= -1.0
    if numpy.linalg.norm(r - RBaseNumpy) > 1.0E-14:
        testFailCount += 1
        testMessages.append("QR Decomposition accuracy failure")
    AMatrix = [ 0.2236,         0,
               0,    0.2236,
               -0.2236,         0,
               0,   -0.2236,
               0.0170,         0,
               0,    0.0170]
    RVector = sunlineUKF.new_doubleArray(len(AMatrix))
    AVector = sunlineUKF.new_doubleArray(len(AMatrix))
    for i in range(len(AMatrix)):
        sunlineUKF.doubleArray_setitem(AVector, i, AMatrix[i])
        sunlineUKF.doubleArray_setitem(RVector, i, 0.0)
    sunlineUKF.ukfQRDJustR(AVector, 6, 2, RVector)
    RMatrix = []
    for i in range(2*2):
        RMatrix.append(sunlineUKF.doubleArray_getitem(RVector, i))
    RBaseNumpy = numpy.array(RMatrix).reshape(2,2)
    AMatNumpy = numpy.array(AMatrix).reshape(6,2)
    q,r = numpy.linalg.qr(AMatNumpy)
    for i in range(r.shape[0]):
        if r[i,i] < 0.0:
            r[i,:] *= -1.0
    if numpy.linalg.norm(r - RBaseNumpy) > 1.0E-15:
        testFailCount += 1
        testMessages.append("QR Decomposition accuracy failure")
    LUSourceMat = [8,1,6,3,5,7,4,9,2]
    LUSVector = sunlineUKF.new_doubleArray(len(LUSourceMat))
    LVector = sunlineUKF.new_doubleArray(len(LUSourceMat))
    UVector = sunlineUKF.new_doubleArray(len(LUSourceMat))
    intSwapVector = sunlineUKF.new_intArray(3)
    for i in range(len(LUSourceMat)):
        sunlineUKF.doubleArray_setitem(LUSVector, i, LUSourceMat[i])
        sunlineUKF.doubleArray_setitem(UVector, i, 0.0)
        sunlineUKF.doubleArray_setitem(LVector, i, 0.0)
    exCount = sunlineUKF.ukfLUD(LUSVector, 3, 3, LVector, intSwapVector)
    #sunlineUKF.ukfUInv(LUSVector, 3, 3, UVector)
    LMatrix = []
    UMatrix = []
    #UMatrix = []
    for i in range(3):
        currRow = sunlineUKF.intArray_getitem(intSwapVector, i)
        for j in range(3):
            if(j<i):
                LMatrix.append(sunlineUKF.doubleArray_getitem(LVector, i*3+j))
                UMatrix.append(0.0)
            elif(j>i):
                LMatrix.append(0.0)
                UMatrix.append(sunlineUKF.doubleArray_getitem(LVector, i*3+j))
            else:
                LMatrix.append(1.0)
                UMatrix.append(sunlineUKF.doubleArray_getitem(LVector, i*3+j))
    #    UMatrix.append(sunlineUKF.doubleArray_getitem(UVector, i))
    LMatrix = numpy.array(LMatrix).reshape(3,3)
    UMatrix = numpy.array(UMatrix).reshape(3,3)
    outMat = numpy.dot(LMatrix, UMatrix)
    outMatSwap = numpy.zeros((3,3))
    for i in range(3):
        currRow = sunlineUKF.intArray_getitem(intSwapVector, i)
        outMatSwap[i,:] = outMat[currRow, :]
        outMat[currRow,:] = outMat[i, :]
    LuSourceArray = numpy.array(LUSourceMat).reshape(3,3)
    if(numpy.linalg.norm(outMatSwap - LuSourceArray) > 1.0E-14):
        testFailCount += 1
        testMessages.append("LU Decomposition accuracy failure")
    EqnSourceMat = [2.0, 1.0, 3.0, 2.0, 6.0, 8.0, 6.0, 8.0, 18.0]
    BVector = [1.0, 3.0, 5.0]
    EqnVector = sunlineUKF.new_doubleArray(len(EqnSourceMat))
    EqnBVector = sunlineUKF.new_doubleArray(len(LUSourceMat)//3)
    EqnOutVector = sunlineUKF.new_doubleArray(len(LUSourceMat)//3)
    for i in range(len(EqnSourceMat)):
        sunlineUKF.doubleArray_setitem(EqnVector, i, EqnSourceMat[i])
        sunlineUKF.doubleArray_setitem(EqnBVector, i//3, BVector[i//3])
        sunlineUKF.intArray_setitem(intSwapVector, i//3, 0)
        sunlineUKF.doubleArray_setitem(LVector, i, 0.0)
    exCount = sunlineUKF.ukfLUD(EqnVector, 3, 3, LVector, intSwapVector)
    sunlineUKF.ukfLUBckSlv(LVector, 3, 3, intSwapVector, EqnBVector, EqnOutVector)
    expectedSol = [3.0/10.0, 4.0/10.0, 0.0]
    errorVal = 0.0
    for i in range(3):
        errorVal += abs(sunlineUKF.doubleArray_getitem(EqnOutVector, i) -expectedSol[i])
    if(errorVal > 1.0E-14):
        testFailCount += 1
        testMessages.append("LU Back-Solve accuracy failure")
    InvSourceMat = [8,1,6,3,5,7,4,9,2]
    SourceVector = sunlineUKF.new_doubleArray(len(InvSourceMat))
    InvVector = sunlineUKF.new_doubleArray(len(InvSourceMat))
    for i in range(len(InvSourceMat)):
        sunlineUKF.doubleArray_setitem(SourceVector, i, InvSourceMat[i])
        sunlineUKF.doubleArray_setitem(InvVector, i, 0.0)
    nRow = int(math.sqrt(len(InvSourceMat)))
    sunlineUKF.ukfMatInv(SourceVector, nRow, nRow, InvVector)
    InvOut = []
    for i in range(len(InvSourceMat)):
        InvOut.append(sunlineUKF.doubleArray_getitem(InvVector, i))
    InvOut = numpy.array(InvOut).reshape(nRow, nRow)
    expectIdent = numpy.dot(InvOut, numpy.array(InvSourceMat).reshape(3,3))
    errorNorm = numpy.linalg.norm(expectIdent - numpy.identity(3))
    if(errorNorm > 1.0E-14):
        testFailCount += 1
        testMessages.append("LU Matrix Inverse accuracy failure")
    cholTestMat = [1.0, 0.0, 0.0, 0.0, 10.0, 5.0, 0.0, 5.0, 10.0]
    SourceVector = sunlineUKF.new_doubleArray(len(cholTestMat))
    CholVector = sunlineUKF.new_doubleArray(len(cholTestMat))
    for i in range(len(cholTestMat)):
        sunlineUKF.doubleArray_setitem(SourceVector, i, cholTestMat[i])
        sunlineUKF.doubleArray_setitem(CholVector, i, 0.0)
    nRow = int(math.sqrt(len(cholTestMat)))
    sunlineUKF.ukfCholDecomp(SourceVector, nRow, nRow, CholVector)
    cholOut = []
    for i in range(len(cholTestMat)):
        cholOut.append(sunlineUKF.doubleArray_getitem(CholVector, i))
    cholOut = numpy.array(cholOut).reshape(nRow, nRow)
    cholComp = numpy.linalg.cholesky(numpy.array(cholTestMat).reshape(nRow, nRow))
    errorNorm = numpy.linalg.norm(cholOut - cholComp)
    if(errorNorm > 1.0E-14):
        testFailCount += 1
        testMessages.append("Cholesky Matrix Decomposition accuracy failure")
    InvSourceMat = [2.1950926119414667, 0.0, 0.0, 0.0,
               1.0974804773131115, 1.9010439702743847, 0.0, 0.0,
               0.0, 1.2672359635912551, 1.7923572711881284, 0.0,
               1.0974804773131113, -0.63357997864171967, 1.7920348101787789, 0.033997451205364251]
    SourceVector = sunlineUKF.new_doubleArray(len(InvSourceMat))
    InvVector = sunlineUKF.new_doubleArray(len(InvSourceMat))
    for i in range(len(InvSourceMat)):
        sunlineUKF.doubleArray_setitem(SourceVector, i, InvSourceMat[i])
        sunlineUKF.doubleArray_setitem(InvVector, i, 0.0)
    nRow = int(math.sqrt(len(InvSourceMat)))
    sunlineUKF.ukfLInv(SourceVector, nRow, nRow, InvVector)
    InvOut = []
    for i in range(len(InvSourceMat)):
        InvOut.append(sunlineUKF.doubleArray_getitem(InvVector, i))
    InvOut = numpy.array(InvOut).reshape(nRow, nRow)
    expectIdent = numpy.dot(InvOut, numpy.array(InvSourceMat).reshape(nRow,nRow))
    errorNorm = numpy.linalg.norm(expectIdent - numpy.identity(nRow))
    if(errorNorm > 1.0E-12):
        print(errorNorm)
        testFailCount += 1
        testMessages.append("L Matrix Inverse accuracy failure")
    InvSourceMat = numpy.transpose(numpy.array(InvSourceMat).reshape(nRow, nRow)).reshape(nRow*nRow).tolist()
    SourceVector = sunlineUKF.new_doubleArray(len(InvSourceMat))
    InvVector = sunlineUKF.new_doubleArray(len(InvSourceMat))
    for i in range(len(InvSourceMat)):
        sunlineUKF.doubleArray_setitem(SourceVector, i, InvSourceMat[i])
        sunlineUKF.doubleArray_setitem(InvVector, i, 0.0)
    nRow = int(math.sqrt(len(InvSourceMat)))
    sunlineUKF.ukfUInv(SourceVector, nRow, nRow, InvVector)
    InvOut = []
    for i in range(len(InvSourceMat)):
        InvOut.append(sunlineUKF.doubleArray_getitem(InvVector, i))
    InvOut = numpy.array(InvOut).reshape(nRow, nRow)
    expectIdent = numpy.dot(InvOut, numpy.array(InvSourceMat).reshape(nRow,nRow))
    errorNorm = numpy.linalg.norm(expectIdent - numpy.identity(nRow))
    if(errorNorm > 1.0E-12):
        print(errorNorm)
        testFailCount += 1
        testMessages.append("U Matrix Inverse accuracy failure")
    # If the argument provided at commandline "--show_plots" evaluates as true,
    # plot all figures
    if show_plots:
        plt.show()
        plt.close('all')
    # print out success message if no error were found
    if testFailCount == 0:
        print("PASSED: " + " UKF utilities")
    else:
        print(testMessages)
    # return fail count and join into a single string all messages in the list
    # testMessage
    return [testFailCount, ''.join(testMessages)]
def checkStateUpdateSunLine(show_plots):
    # The __tracebackhide__ setting influences pytest showing of tracebacks:
    # the mrp_steering_tracking() function will not be shown unless the
    # --fulltrace command line option is specified.
    __tracebackhide__ = True
    testFailCount = 0  # zero unit test result counter
    testMessages = []  # create empty list to store test log messages
    unitTaskName = "unitTask"  # arbitrary name (don't change)
    unitProcessName = "TestProcess"  # arbitrary name (don't change)
    #   Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)  # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    moduleConfig = sunlineUKF.SunlineUKFConfig()
    moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
    moduleWrap.ModelTag = "SunlineUKF"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
    setupFilterData(moduleConfig)
    cssConstelation = messaging.CSSConfigMsgPayload()
    CSSOrientationList = [
       [0.70710678118654746, -0.5, 0.5],
       [0.70710678118654746, -0.5, -0.5],
       [0.70710678118654746, 0.5, -0.5],
       [0.70710678118654746, 0.5, 0.5],
       [-0.70710678118654746, 0, 0.70710678118654757],
       [-0.70710678118654746, 0.70710678118654757, 0.0],
       [-0.70710678118654746, 0, -0.70710678118654757],
       [-0.70710678118654746, -0.70710678118654757, 0.0],
    ]
    totalCSSList = []
    for CSSHat in CSSOrientationList:
        newCSS = messaging.CSSUnitConfigMsgPayload()
        newCSS.CBias = 1.0
        newCSS.nHat_B = CSSHat
        totalCSSList.append(newCSS)
    cssConstelation.nCSS = len(CSSOrientationList)
    cssConstelation.cssVals = totalCSSList
    cssConstInMsg = messaging.CSSConfigMsg().write(cssConstelation)
    testVector = numpy.array([-0.7, 0.7, 0.0])
    inputData = messaging.CSSArraySensorMsgPayload()
    dotList = []
    for element in CSSOrientationList:
        dotProd = numpy.dot(numpy.array(element), testVector)
        dotList.append(dotProd)
    inputData.CosValue = dotList
    cssDataInMsg = messaging.CSSArraySensorMsg()
    stateTarget = testVector.tolist()
    stateTarget.extend([0.0, 0.0, 0.0])
    moduleConfig.state = [0.7, 0.7, 0.0]
    dataLog = moduleConfig.filtDataOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, dataLog)
    # connect messages
    moduleConfig.cssDataInMsg.subscribeTo(cssDataInMsg)
    moduleConfig.cssConfigInMsg.subscribeTo(cssConstInMsg)
    unitTestSim.InitializeSimulation()
    for i in range(400):
        if i > 20:
            cssDataInMsg.write(inputData, unitTestSim.TotalSim.CurrentNanos)
        unitTestSim.ConfigureStopTime(macros.sec2nano((i+1)*0.5))
        unitTestSim.ExecuteSimulation()
    stateLog = addTimeColumn(dataLog.times(), dataLog.state)
    postFitLog = addTimeColumn(dataLog.times(), dataLog.postFitRes)
    covarLog = addTimeColumn(dataLog.times(), dataLog.covar)
    for i in range(6):
        if(covarLog[-1, i*6+1+i] > covarLog[0, i*6+1+i]/100):
            testFailCount += 1
            testMessages.append("Covariance update failure")
        if(abs(stateLog[-1, i+1] - stateTarget[i]) > 1.0E-5):
            print(abs(stateLog[-1, i+1] - stateTarget[i]))
            testFailCount += 1
            testMessages.append("State update failure")
    testVector = numpy.array([-0.8, -0.9, 0.0])
    inputData = messaging.CSSArraySensorMsgPayload()
    dotList = []
    for element in CSSOrientationList:
        dotProd = numpy.dot(numpy.array(element), testVector)
        dotList.append(dotProd)
    inputData.CosValue = dotList
    for i in range(400):
        if i > 20:
            cssDataInMsg.write(inputData, unitTestSim.TotalSim.CurrentNanos)
        unitTestSim.ConfigureStopTime(macros.sec2nano((i+401)*0.5))
        unitTestSim.ExecuteSimulation()
    stateLog = addTimeColumn(dataLog.times(), dataLog.state)
    postFitLog = addTimeColumn(dataLog.times(), dataLog.postFitRes)
    covarLog = addTimeColumn(dataLog.times(), dataLog.covar)
    stateTarget = testVector.tolist()
    stateTarget.extend([0.0, 0.0, 0.0])
    for i in range(6):
        if(covarLog[-1, i*6+1+i] > covarLog[0, i*6+1+i]/100):
            testFailCount += 1
            testMessages.append("Covariance update failure")
        if(abs(stateLog[-1, i+1] - stateTarget[i]) > 1.0E-5):
            print(abs(stateLog[-1, i+1] - stateTarget[i]))
            testFailCount += 1
            testMessages.append("State update failure")
    FilterPlots.StateCovarPlot(stateLog, covarLog, 'update', show_plots)
    FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, 'update', show_plots)
    # print out success message if no error were found
    if testFailCount == 0:
        print("PASSED: " + moduleWrap.ModelTag + " state update")
    else:
        print(testMessages)
    # return fail count and join into a single string all messages in the list
    # testMessage
    return [testFailCount, ''.join(testMessages)]
def checkStatePropSunLine(show_plots):
    # The __tracebackhide__ setting influences pytest showing of tracebacks:
    # the mrp_steering_tracking() function will not be shown unless the
    # --fulltrace command line option is specified.
    __tracebackhide__ = True
    testFailCount = 0  # zero unit test result counter
    testMessages = []  # create empty list to store test log messages
    unitTaskName = "unitTask"  # arbitrary name (don't change)
    unitProcessName = "TestProcess"  # arbitrary name (don't change)
    #   Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)  # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    moduleConfig = sunlineUKF.SunlineUKFConfig()
    moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
    moduleWrap.ModelTag = "SunlineUKF"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
    setupFilterData(moduleConfig)
    dataLog = moduleConfig.filtDataOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, dataLog)
    # connect messages
    cssConstInMsg = messaging.CSSConfigMsg()
    cssDataInMsg = messaging.CSSArraySensorMsg()
    moduleConfig.cssDataInMsg.subscribeTo(cssDataInMsg)
    moduleConfig.cssConfigInMsg.subscribeTo(cssConstInMsg)
    unitTestSim.InitializeSimulation()
    unitTestSim.ConfigureStopTime(macros.sec2nano(8000.0))
    unitTestSim.ExecuteSimulation()
    stateLog = addTimeColumn(dataLog.times(), dataLog.state)
    postFitLog = addTimeColumn(dataLog.times(), dataLog.postFitRes)
    covarLog = addTimeColumn(dataLog.times(), dataLog.covar)
    FilterPlots.StateCovarPlot(stateLog, covarLog, 'prop', show_plots)
    FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, 'prop', show_plots)
    for i in range(6):
        if(abs(stateLog[-1, i+1] - stateLog[0, i+1]) > 1.0E-10):
            print(abs(stateLog[-1, i+1] - stateLog[0, i+1]))
            testFailCount += 1
            testMessages.append("State propagation failure")
    # print out success message if no error were found
    if testFailCount == 0:
        print("PASSED: " + moduleWrap.ModelTag + " state propagation")
    else:
        print(testMessages)
    # return fail count and join into a single string all messages in the list
    # testMessage
    return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
    test_all_sunline_kf(True)