#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        inertial3D
#   Author:             Mar Cols
#   Creation Date:      January 6, 2015
#
import inspect
import os
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import inertial3D                   # import the module that is to be tested
from Basilisk.utilities import macros
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]def test_inertial3D(show_plots):
    """Module Unit Test"""
    # each test method requires a single assert method to be called
    [testResults, testMessage] = subModuleTestFunction(show_plots)
    assert testResults < 1, testMessage 
def subModuleTestFunction(show_plots):
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    moduleConfig = inertial3D.inertial3DConfig()
    moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
    moduleWrap.ModelTag = "inertial3D"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
    vector = [0.1, 0.2, 0.3]
    moduleConfig.sigma_R0N = vector
    # Setup logging on the test module output message so that we get all the writes to it
    dataLog = moduleConfig.attRefOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, dataLog)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(macros.sec2nano(1.))        # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    # This pulls the actual data log from the simulation run.
    # Note that range(3) will provide [0, 1, 2]  Those are the elements you get from the vector (all of them)
    #
    # check sigma_BR
    #
    moduleOutput = dataLog.sigma_RN
    # set the filtered output truth states
    trueVector = [
               [0.1, 0.2, 0.3],
               [0.1, 0.2, 0.3],
               [0.1, 0.2, 0.3]
               ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0,len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed sigma_RN unit test at t=" +
                                str(moduleOutput[i,0]*macros.NANO2SEC) +
                                "sec\n")
    #
    # check omega_RN_N
    #
    moduleOutput = dataLog.omega_RN_N
    # set the filtered output truth states
    trueVector = [
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0]
               ]
    # compare the module results to the truth values
    accuracy = 1e-12
    unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
    for i in range(0,len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed omega_RN_N unit test at t=" +
                                str(moduleOutput[i,0]*macros.NANO2SEC) +
                                "sec\n")
    #
    # check domega_RN_B
    #
    moduleOutput = dataLog.domega_RN_N
    # set the filtered output truth states
    trueVector = [
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0]
               ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0,len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed domega_RN_N unit test at t=" +
                                str(moduleOutput[i,0]*macros.NANO2SEC) +
                                "sec\n")
    snippentName = "passFail"
    if testFailCount == 0:
        colorText = 'ForestGreen'
        print("PASSED: " + moduleWrap.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
    else:
        colorText = 'Red'
        print("Failed: " + moduleWrap.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
    unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
    # each test method requires a single assert method to be called
    # this check below just makes sure no sub-test failures were found
    return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
    test_inertial3D(False)